AUTHOR title	Pagni, David, Ed. CAMP-LA: Preservice Sampler Book, Grades K-B. Calculators and Mathematics Project.
SPONS AGENCY	California State Univ., Fullerton.; Los Angeles Unified School District, Calif.; National Science Foundation, Washington, D.C.
REPCRT NO	ISBN-1-879853-08-6
PUB DATE	91
NOTE	147p.; For related documents, see SE 052 575-578.
AVAILASLE FROM	Cal State Fullerton Press, 2875 Orange Olive Road, Bldg. \#2, Orange, CA 92665.
PUB TYPE	Guides - Classroom Use - Teaching Guides (For Teacher) (052) -- Tests/Evaluation Instruments (160)
EDRS PRICE DESCRIPTORS	MFOl Plus Postage. PC Not Available from EDRS.
	Algeora; Aritnnetic; *Calculators; Classroom
	Techniques; *Curriculum Development; Curriculum
	Enrichment; Discovery Learning; Edicational
	Technology; Elementary Education; *Elementary School
	Mathematics; Evaluation Methods; Functions (Kathematics); Geometry; Lesson Plans; Mathematical
	Enrichment; Mathematical Logic; Mathematics
	Curriculum; Mathematics Education; *Mathematics
	Instruction; Number Concepts; Problem Solving;
	Teaching Methods; Units of Study
IDENTIEIERS	*Calculators and Mathematics Project CA; Mathematics
	Framework for Calif Public Schools; NCTY Curriculum and Evaluation Standards; Patterns (Mathematics)

ABSTRACM
The Calculacors and Mathematics Project, Los Angeles (CAMP-LA), funded by the National Science Foundation for developing use of technology in the classroom, developed curziculum materials focused solely on the use of calculators in three stages. The first stage studied the mathematics curricula from different states and identified topics that are not included but should be if every stuaent haj a calculator, topics treated in too much detail, and topics no longer appropriate. Eased on this information, CAMP-LA compiled a prototype curriculum organized by grade level to be consistent with the "California Mathematic Framework" strands. The second stage developed lessons by classroom teachers to cover the ropics. The lessons were divided into four levels: Grades $\mathrm{K}-2$, Grades 3-4, Grades 5-6, and Grades 7-8. The third stage field tested these lesscns in various parts of the country. This book is composed of lesson samples from books $1-4$ in the series. The introduction gives an cverview of CAMP-LA, information on how to use the lesson plans, a glossary of calculator termanology, special features of the calculator, calculator limitations, and a discussion of assessment approaches, with sample assessment items appearing at the end of the book. The remainder of the book is composed of 16 lessons from the four levels. Each lesson i= broken down into three sections. The three sections are labeled: "Grade", including grade level, strand, skill required, and purpose; "Management", including class organization, time frame, materials needed, vocabulary, and prerequisite skilis; and "Lesson" including suggestions for directed instruction, guidec practuce, independent practice, evaluation, and nome actuvity. (MDH)

CAMP
 LA

CAMP-LA

 SAMPLER GRADES K-8
CAMP-LA PROJECT STAFF

Codirector David Pagni
Co-director Robert Hamada
K-2 Writing Team Marea Channel Vicki Newman
3-4 Writing Team Jan Christinson William Hammond Shirley Roberts Bruce Takashima
5-6/7-8 Writing Team Zelda Gold Elisabeth Javor Steve Rosentsweig
K-2 Spanish Translation Fred Chavez
Production Typist and Computer Graphics Donald Luey
Cal State Fullerton Press

Limited Reproduction Permission: Permission to duplicate these materials is limited to the teacher for whom they were purchased. Reproduction for an entire school or school district is unlawful and strictly prohibited. For conditions of use and permission to use materials contained herein for foreign publications or publications in other than the English language, apply either to the Publisher or the copyright owner. Publication pursuant to such permission shall contain the statement: "Some (All) of the materials incorporated in this Work were developed with the financial support of the National Science Foundation. Any opinions, findings, conclusions or recommendations expressed herein do not necessarily reflect the view of the National Science Foundation."

The following mathematics lessons were produced by the Calculators and Mathematics Project, Los Angeles (CAMP-LA). The project was supported by California State University, Fullerton, Los Angeles Unified School District and the National Science Foundation (Grant \#MDR - 8651616). However, the opinions, findings, conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Science Foundation. The lessons were developed around mathematics topics that could be taught or enhanced with the use of a calculator. In some cases the calculator is used to explore or learn a mathematical concept; in other cases, it is used as a computing tool. All lessons were field-tested in the Los Angeles Unified School District in a wide variety of school settings. Sample lessons have been used in workshops for teachers and other mathematics educators across the United States. The CAMP-LA lessons have always been well-received. The directors and writers of CAMP-LA believe that you and your students will find these lessons to be fun and challenging!

The following lesson samples were selected from Books 1-4, representing examples from grades $\mathrm{K}-2,3-4,5-6$, and 7-8. The lessons should give prospective elementary school teachers an appreciation of the mathematical content that lends itself to calculator use. Though this experience, prospective teachers will be better prepared to integrate calculators into the elementary school mathematics curriculum.

> Copyrighi 1991 by Cal State Fullerton Press All rights reserved. Printed in the United States of America. ISBN: 1-879853-08-6

ADDITIONAL ACKNOWLEDGMENTS

Advieory Board: Art Hiatt, California State University, Fresno Robert Reys, University of Missouri Walter Szetela, University of British Columbia Marilyn Suydam, Ohio State University J. Fred Weaver, University of Wisconsin (Retired)

Field Testers:	Beverly Baba Henry Behrens Renee Boswell Desdra Butler Marjorie Champawat Joan Douglas Donna Edris Susan L. Elms Cheryl Eppink Juliet Ethirveerasingam Michael Gordon Shirley Hirschfeld Jean Huston Yuki Thara Jackie Johnson	Joyce Kirsch Elizabeth Lemons Mary Major Geraldean McDaniel Polly McDowell Feliciano Mendoza Ellen Mitchell Patti Poon Irene Stewart Lynn Tharsing Mary Lou Vanderlip Merrie Wartik Audrey Washington Diane Weinstein Kimi N. Yasui
Consultants:	Karen Bachofer Aíriana Brady Becky Breedlove Marjorie Cochran Dennis Dulyea Ed Esty Viggo Hansen Claire Heidema Chris Holle	Pat Johnson Donna Jorgensen Judith Koenig Beatrice La Pisto Kolburn Hughes Patti McCullough Terri Pagni Karen Richey Carolina Tercero

Books by David Pagni:

CAMP- LAA Book 1
CAMP. LA Book 2
CAMP- LA Book 3
CAMP- LA Book 4
Math Lessons for Grades K - 3
Math Lessons for Grades 3 -5
Math Investigations for the Months

PROJECT BACKGROUND

The Calculators and Mathematics Project, Los Angeles (CAMP-LA) was one of six projects ${ }^{1}$ in the country funded by the National Science
Foundation, Division of Materials Development and Research Instructional Materials Development Program, under a special program solicitation entitled "Materials for Elementary School Mathematics Instruction" in September, 1986. Th? special solicitation requested proposals that focused on the use of technology in elementary school mathematics.

Of these six projects, only CAMP-LA focussed its efforts soley on the use of calculators. The CAMP-LA philosophy is that every child should have access to a calculator at all times when investigating, studying, or learning mathematics.

The lesson development process spanned three stages. First, the project teams of writers and the two co-directors studied the mathematics curriculum guides from different states. They looked for:

- Topics not treated but which should be (assuming every child has a calculator)
- Topics treated in too much detail

- Topics no longer appropriate

Based on the results of this research, the CAMP-LA staff compiled a prototype curriculum organized around the strands of the California Mathematic Framework: Number, Measurement, Geometry, Patterns and Functions, Statistics and Probability, Logic, and Algebra. The CAMP-LA staff next isolated those topics that lent themselves to being taught with the use of a calculator. These topics were organized by grade level and became the CAMP-LA Calculator Continuum.

The second stage of the lesson development process was the writing of lessons that captured the essence of the Calculator Continuum. At this time, we decided to introduce a new strand, the Calculator Awareness strand for lessons designed to introduce students to the mechanics of operating a calculator. Of course, these lessons for introducing the calculator features are written in a mathematics context.

Drafts of lessons were written during the summer, 1987. During the following fall these skeletal lessons were evaluated to see which ones needed to be fleshed out, which needed to be deleted, and where in the Calculator Continuum additional lessons were needed.

The third stage of the CAMP-LA lesson development process was the field testing of the lessons. Because of a nationwide interest in the project, a few lessons were field tested in schools in various parts of the country.
However, all lessons were field tested in the Los Angeles Unified School District in a variety of school settings. The CAMP-LA field test teachers turned in written reports including samples of students' work for each lesson. The field test teachers also met with the project writers to discuss the strengths and weaknesses of the various lessons. The field testing went hand - in - hand with new lesson development throughout 1988, 1989, and 1990. During the summer and fall of 1990 the writing teams completed their work and the final editing was completed by David Pagni, Principal Investigator and Co-director of CAMP-LA.

Book	CAMP-LA Books Grade Level	Cost
Book 1	$K-2$	$\$ 14.95$
Book 2	$3-4$	$\$ 14.95$
Book 3	$5-6$	$\$ 14.95$
Book 4	$7-3$	$\$ 20.95$

${ }^{1}$ The six NSF funded projects were:

1) "A Revision of the Geometry and Measurement Strands, K-6" University of Georgia
2) "Calculators and Mathematies Project, Los Angeles" California State University, Fullerton
3) "Development of a Logo-Based Geometry Curriculum" Kent State University
4) "K-6 Supplementary Mathematics Materials for a Technological Society" New York University
5) "Reckoning with Mathematics: Tools and Challenges for the Information Age" Education Development Center
6) "Used Numbers: Collecting and Analyzing Real Data" Technical Education Research Centars

TABLE OF CONTENTS

Sampler

CAMP-LA Overview ix
Features of CAMP-LA Lessons x
Using The Lesson Plan xi
Calculator Glossary xiii
Calculator Features xiv
Calculator Limitations xv
CAMP-LA Assessment xvi
Featured Lessons
Lesson Title OHijectives Page
1 Hit The Target, Find The Use the constant feature to 1 Winning Number count by ones.
2 Discover and Compare Identify patterns, count by 8 multiples and compare number patterns.
3 It Counts Count by numbers other than 17 one to build the foundation for understanding the concest of multiples and remainders.
4 Multiple Applications Find and name the multiples 22 of a given number.
5 On Vacation We Go Estimate and measure length 26 in standard units.
6 Push "M" For Area Estimate and find the area of 32 polygons.
7 The Pencil Box Problem Find a function rule from a 38 situation or graph.
8 Big "D's" Parking Use charts to organize 46 Garage I information to solve simple logic problems.
9 Watch Your Money Grow
Problem solving exploration of 55 powers using money as motivation.
10 Folding Paper Fold paper to build an 64 understanding of the area and perimeter of rectangles.
11 Going to the Movies Explore combinations of 68 different priced movie tickets to organizi and interpret data.
12 Going Camping Plan a camping trip as a 73 group project.
13 Pardon My Dear Aunt Sally
Use the order of operations to 81 compute.
14 An Ancient Oddity Discover patterns on an 87 ancient stone tablet.
15 Another Fence on the Wall
Investigate the area of 94 rectangles under a unique condition.
16 This Lesson Rules! A very challenging logic 102 investigation using functions as a vehicle for exploration.
Sample Assessment Items 112

CAMP-LA OVERVIEW

The Calculators and Mathematics Project, Las Angeles (CAMP-LA) provides materials for grades K-8 that integrate the calculator into the elementary school mathematics curriculum in a meaningful way.

CAMP-LA lessons support the philosophy expressed by the :
Mathematical Sciences Education Board

- Everybody Counts

National Council of Teachers of Mathematics

- Agtonda for Action,
- NCTM Standards

California State Department of Education

- Mathematics Framewort

CAMP-LA materials were written by classroom teachers and resource specialists. These materials are divided into four levels.

Grades K-2
Grades 3-4
Grades 5-6
Grades 7-8
The CAMP-LA lessons are based upon the strands of the California Mathematics Framework plus a special Awareness strand.

Calculator Awareness Patterns and Functions
Number - Statistics and Probability
Measurement Logic
Geometry Algebra
Meaningful assessment of student understanding is provided for all levels.
CAMP-LA lessons use calculators with the following features:

- Constant function for basic operations
- Clear/ Clear entry key(s)
- Memory Keys
- Square Root Key
- \% Key (Recommended by not essential)

FEATURES OF CAMP-LA LESSONS

Calculators and Mathematics Project, Los Angeles Lessons:

- Provide a challenging currriculum based on the assumption that every child has access to a calculator.
- Help students become confident and comfortable using the calculator as an effective tool for exploring mathematical concepts.
- Develop students' ability to choose how and when to use a calculator.
- Assist students to make the connection between the concrete and the abstract.
- Emphasize conceptual development, reasoning, numerical relationships, and application in real-life experiences.
- Help students use the language, symbols, and processes of mathematics to gain confidence with numbers.
- Encourage the discovery of patterns in our number system.
- Remove computational constraints so that students can focus on the processes of solving problems and develop problemsolving skills and strategies.
- Provide students opportunities to reason logically and develop an intellectusl curiosity toward mathematics.
- Stimulate interest in mathematics.
- Involve students in cooperative learning groups to solve problems.

USING THE LESSON PLAN

The first section of the lesson plan includes TEACHER NOTES:

GRADE LEVBLE
STRAND:

SIKTL(S):

MANAGEMIONT
CLASS ORGANVATION:

TME FRAME:

MATMRIALS:

PREREQUISITE SKILIS:

LESSON THLE

Suggested grade levels are provided.
A content strand is identified (Calculator Awareness, Patterns and Functions, Number, or Algebra).

The specific mathematics skill(s) are identified.

Recommendations are made relating to group size (total class, small group, or pairs).

A suggested time frame is provided to assist the teacher in scheduling.

A list of materials is included. (Student Record Sheets and Home Activity Sheets are provided when appropriate.)

Prerequisite skills are identified with reference to mathematical knowledge and mechanics of the calculator.

The second section of the lesson plar includes the LESSON:

LESSON	
DIRECTED INSTRUCTION:	Lessons are sequentially developed and include background information and suggestions for delivery of instruction: - Problem Solving - Concrete P/aterials - Cooperatiora Learning - Mathematical Language - Situational Lessons
	Questions are provided to help the teacher: - Stimulate critical thinking - Focus on concepts to be developed - Encourage student involvement - Informally assess student progress
	Possible answers to questions are included to help the teacher guide the students in understanding mathematical concepts to be developed.
	Suggestions are provided to encourage student involvement and establish the teacher's role as facilitator.
GUIDED PRACTICE:	Students are provided practice under the teacher's guidance so that eventually they can apply their mathematical knowledge independently.
INDEPENDIINT PRACTIICE:	Student Record Sheets are provided to reinforce mathematical concepts. (Answer Keys are included.) There is a separate record sheet for each grade level when appropriate.
EVALUATION:	A variety of evaluation methods are used to: - Assess students' understanding of mathematical concepts. - Judge whether the use of the calculator was effective and efficient in solving the problems. - Bring mathematical closure to the lesson.
EXTENSION:	Home Activity Sheots and suggestions for Extension Activities provide additional opportunities to apply mathematical concepts in various situations.

CALCULATOR GLOSSARY

Equal Key - Press this key to get the answer on the display. Also used to repeat a given function, such as addition.

On/Clear Key - A key that turns on the calculator. Often this key is used to ciear the calculator display.

Memory Plus Key - A key used to add the number in the displaj to the memory.

Memory Minus Key -A key used to subtract the number in the displey from the memory.

Memory Recall/Memory Clear Key - Press this key once to display the number stored in the memory. Press this key twice to clear the memory.

Square Root-A key used to tell the calculator to perform a square root.

Percent Key - A key used to compute percents of a number.

Change Sign Key - A key used to change the sign of a number.

CALCULATOR FEATURES

Addition Constant

Press：8 +5 日
Look at the display as you continue to press $⿴$ ．On most calculators the display will show［13，18，23，．．．Each time you press $\cap, 5$ is added to the number shown on the display．This is called the addition constant function．

Subtraction Constant

Press：80日 5 日
Look at the display as you continue to press \square ．On most calculators the display will show $75,70,65, \ldots$ Each time you $\overline{\mathrm{z}}$ ， 6 ess $\Theta, 5$ is subtracted to the number shown on the display．This is called the subtraction constant function．

Division Corstant

Press：8］ $\boldsymbol{8}$ 国
Look at the display as you continue to press \quad ．On most calculators the display will show $40,20,10, \ldots$ Each time you press \square ，the number on the display is divided by 2．This is called the division constant function．

Mrutiplication Constani

Press： 2 区 3 日
Look at the display as you continue to press \because ．On most calculators the display will show 6，12，24，．．．Each time you press 0 ，the number on the display is multiplied by 2．This is called the multiplication constant function．

CAMP-LA ASSESSMENT

The purpose of assessment is to enhance learning and improve teaching. For the student, assessment indicates a measure of mathematical knowledge and power. For the teacher, it indicates how the instructional program should be modified. Teacher observation of students' actions and interactions gives information about mathematical knowledge, understanding of concepts, and ability to apply reasoning and analysis to solve problems.

Sample CAMP-LA assessment items appear at the end of this book. The assessment items:

- have been written as models of assessment which support the major concepts presented in the CAMP-LA lessons;
- provide both open-ended and traditional assessment tasks;
- are meant to be done by pairs and/or small groups;
- indicate anticipated student responses for open-ended questions.
hit the target, find the winning number

GRADE:	K-2
STRAND:	CALCULATORAWARENESS
SKILL:	Exploring the calculator: To use the constant feature to count by ones.
MANAGEMENT:	
CLASS ORGGANIZATION:	Total class
TIME FRAME:	Half-hour
MATERIALS:	- Overhead calculator or calculator transparency - Calculator for each student - Hit the Tamet. Find the Winning Number Record Sheet (Kdgn, First, Second and the blank form) - Pencil
VOCABULARY:	Constant feature, symbol
PREREQUISITE SKILLS:	One-to-ane correspondence, identify numbers 0-9, count in sequence.
LESSON	
- DIRECTED INSTRUCT The procedur	ION: as for using the constant feature may differ among
calculators.	Alter the directions il necessany

1. Follow these steps

TEACHER DRECTIONS	ASK THESE QUESTIONS	POSSABLE ANSWERS	STUDENT DIRECTIONS
	How many different ways can we count the number of students in this classroom?	Students brainstorm ideas: Count out loud. Count people. Use the calculator.	STUDENT DARCTIONS
Distribute a rdiculator to each student and place the overhead calculator O. 1 the projector.			
"Today let's try using the calculator to count the number of students in our class."	What number should we stant with when we count?	0 O	
III press [+], [1] and then [-].	What number do you see on my display screen?	1	Press [+], [1] and then read the display. [11
Walk around the room and clap once each time while walking by a child until all students have been counted.			Each time the teacher claps, press [m] and read the number on the display.
Record the total number of students on the chalkboard.			

2. Follow these steps for discussion:

TEACHER DRECTIONS	ASK THESE QUESTIOMS	POSSIDIE ANSWERS	STUDENT DIRECTIONS
	What happoned each time you pressed the [-] koy?	The number got bigger by one.	STCENT DRECTONS
The [=] can be a counting key.	How did we use the $[-]$ to holp us count?	- Press [+] - Press [1] - Press [-] - Continue prossing lel to count.	

- GUIDED PRACTICE:

3. Use the [I] to count to 50. (Have Kdon students read each number orally. First and second graders can read the numbers silenty.)
4. Write a two or three digit "Target Number' in the chalkboard and have students press $[+][1][-]$ and continue pressing [-] until the Target Number appears on thelr calculator display.
5. Write a starting number such as 6 and a "Target Number" and have students press [6] [+] [1] [=] and continue pressing [x] until the "Target Number" appears on their calculator display. This will give students practice with counting on.

- INDEPENDENT PRACTICE:

1. Use the Hit the Taroet. Find the Winning Number Record Sheet. (Kdgn, ist and 2nd)

- Encourage students to predict their target numbers before hitting the [=].

2. Students can design their own Hit the Tarcet, Find the Winning Number Record Sheet using the blank form. (Count by ones, twos, threes, fours, etc. See EVALUATION section.)

- EVALUATION:

Ask students how they could use the calculator to count by 2, 3, etc.? See If they can come up with a system to make this discovery. (To count by 2 , press [+]. [2], [-], [-], etc.)

- HOME ACTIVITY:

Count other things using the calculator such as trees, pets, houses etc.
\qquad
hit the target, find the winning number - Kdgn START: PRESS [6] [+] [1]

NAME
HIT THE TARGET, FIND THE WINNING NUMBER - 2ND START: PRESS [78] [+] [1]

HIT [-] 10 TIMES. WRITE YOUR TARGETNUMBER.

HIT [-] 14 MORE TIMES. WRITE YOUR TARGET NUMBER.

HIT [-] 14 MORE TIMES.

soms: How many times did you hit [-] altogether to get your winning number?
\qquad

HIT THE TARGET, FIND THE WINNING NUMBER

START: PRESS [] [+] []

DISCOVER AND COMPARE

GRADE:
K-2
STRAND:
SKILL:

MANAGEMENT

CLASS ORGANIZATION:

TIME FRAME:

MATERIALS:

PATIERNS AND FUNCTIONS

Identify patterns, count by multiples and compare number patterns.

Total class
Hall-hour

- Overhead calculator or calculator transparency
- Calculator for each student
- Discoyer and Compare transparency
- Overhead pen
- Record Sheets
- Discover and Compan Two Numbar Pattems (Kdgn)
- Discovar and Compara Four Numbar Pattems (1st)
- Discover and Compare Six Number Patterns (2nd)
- Home Activity - (Opitonal)
- Pencil

YOCABULARY:
Compare, alike, different
PREREQUISITE SKILLS: Use of constant feature : [C] [t] [3] [-] [-], completion of Lasson 15

LESSON

- DIRECTED INSTRUCTION:

1. Teacher says: We've been counting by different numbers and today we're going to compare different number patterns."
2. Follow these steps:

TEACHERDPECTIONS	ASK THESE CUESTIONS	POSSIBEE ANSWERS	STUPENT DIRECTIONS
Distributo a calculator so each student and place the overhead calculator and Discover and Compans transparency on the projector. $=$ Choose one student to use the overhead calculator and color in the numbers on the Discover and_Compare trans,garency.	How can we use the calculator to count by 3's?	[C] [1] [3] [-1 [-]	$\begin{aligned} & \text { Prose }[C][+][3][-1 \\ & {[=]} \end{aligned}$

TEACHERDIRECTIONS	ASK THESE QUESTIONS	POSSIBIE ANSWERS	
Tell the recorder to color in the number 3 on the Discover and Compare transparency.		PSMEASWERS	STUDENT DIRECTIONS
Each time a now nuinber appears on their calculator display, have students eay the number orally so the recordar can color on the Discover and Compare Chat. (Say "prose" each time students nood to proce the [-] so that the clase stays fogether.) At some point, when the pattom becomes vialble on the ovorhead aok this question:	Can you predict the next number in the paftern withous using your calculator?	Accept all reasonable answere.	Continue to 100.
Follow the same steps to count by 5 \%s.			
Aftor both charts have beon comploled, have atudenta describe each pattern and compare thenosees and differences.			
Posslble Descriptions:			

Discover and Compare Answer Key

- GUIDED PRACTICE:

Use the Discover and Compare Record Sheets (Kdgn, First or Second).

- EVALUATION: How are your patterns alike? How are they different?

- HOME ACTIVITY:

Students need 2 copies of the Home_Activity so they can compare patterns.

- The number chart on this page is a multiplication table rather than a hundreds chart.

This will allow students to explore different patterns.

DISCOVERANDCOMPARE

COUNT BY 3'S LEAVES ON A SHAMROCK									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

NAME
DISCOVER AND COMPARE TWO NUMBER PATTERNS - K DIRECTIONS: Color in the numbers to show how you counted by:
胇

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

\qquad
DISCOVER AND COMPARE FOUR NUMBER PATTERNS - 1ST
DARECTIONS; Color the numbers that show how you counted by:

1	2	3	4	5	6	7	8	\bigcirc	10
11	12	13	14	15	16	17	18	18	20
21	22	23	24	25	26	27	28	29	30
31	32	30	34	35	36	37	38	30	40
41	42	43	44	45	46	47	48	40	50
81	52	58	84	88	56	67	88	8	60
61	6	68	64	65	68	67	68	69	70
71	72	73	74	75	76	77	78	70	80
81	$\underline{7}$	8	86	55	85	87	88	80	90
91	9	¢	$\boldsymbol{9}$	95	96	97	¢ 8	99	100

1	2	3	4	5	E	7	\square	0	10
11	12	13	14	18	16	17	18	10	20
21	22	23	24	26	28	27	23	20	30
34	32	33	34	35	38	37	33	39	∞
41	42	44	44	48	48	47	4	49	50
51	82	4	84	55	58	8	5	50	60
81	6	∞	4	63	68	6	*	∞	7
74	72	73	74	78	7	7	78	70	∞
84	5	48	4	8	B	87	\pm	50	90
99	9	0	0	\oplus	98	97	93	90	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	18	17	18	19	20
21	22	23	24	26	28	27	28	29	30
31	32	33	34	36	36	37	38	39	40
41	42	43	44	46	48	47	48	49	50
81	82	53	84	36	56	87	88	50	60
61	8	63	64	6	68	67	68	69	70
71	72	73	74	78	78	7	78	70	80
81	12	83	M	36	\%	67	38	59	90
99	$0 \cdot$	93	94	05	9	97	0	\oplus	100

How are your patterns allke?
How are they different?

DISCOVER AND COMPARE SIX NUMBER PATTERNS - 2ND

Directions: Color in the numbers to show how you counted by:

1	2	3	4	5	B	7	8	9	10
11	12	13	14	15	18	17	18	19	20
21	22	23	24	23	28	27	28	20	30
31	32	33	34	38	36	37	38	39	40
41	42	43	44	48	48	47	48	40	50
51	52	53	54	55	58	57	58	59	80
81	82	63	64	85	68	67	88	89	70
71	72	73	74	75	76	77	78	70	80
81	82	83	34	85	88	87	88	39	90
81	02	83	04	95	98	97	98	98	100

'S

1	2	3	4	5	8	7	E	-	10
11	12	13	14	15	18	17	18	19	20
21	22	23	24	25	28	27	28	29	30
31	32	33	34	35	38	37	38	30	40
41	42	43	44	45	48	47	48	48	50
51	52	53	54	55	58	57	53	50	80
61	82	83	84	85	68	67	88	89	70
71	72	73	74	75	78	77	78	78	80
81	82	83	84	85	81.	67	88	89	90
01	92	日S	94	95	96	97	88	99	100

How are your patterns alike?
How are they different?

1	2	3	4	5	8	7	-	-	10
11	12	13	14	15	18	17	18	19	20
21	22	23	24	25	28	27	28	29	30
31	32	33	34	35	38	37	38	39	40
41	42	43	44	45	48	47	48	49	50
51	52	53	54	55	88	57	58	59	80
61	82	53	84	65	66	67	88	69	70
71	72	73	7*	75	76	77	78	76	30
81	82	83	44	85	88	87	38	89	90
01	02	93	94	95	98	97	98	89	100

$\cdot 8$

1	2	3	4	5	6	7	*	9	10
11	12	13	14	18	16	17	18	98	20
21	22	23	24	25	26	27	28	20	30
32	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	40	50
51	52	53	54	55	88	57	58	58	80
51	82	83	84	85	88	87	88	85	70
71	72	73	74	78	78	77	78	79	80
81	82	83	84	85	88	87	86	80	90
91	92	83	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	38	38	37	38	39	40
41	42	43	44	45	48	47	48	48	50
51	52	53	54	55	56	57	58	59	60
81	82	83	84	65	68	87	68	69	70
71	72	73	74	75	78	77	78	79	80
81	82	63	84	65	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

DISCOVER AND COMPARE - HOME ACTIVITY

1. Choose a number from 1 to 12. Write it in this box and in the first box
\square on the chart below.
2. Count by that number using your calculator.
3. Each time you see a new number on the display, record it on the chart.
4. Stop when you get to or past 144.

5. Color in the squares on the chart below for each number that you wrote. You might find a number more than once.
6. Look for a pattern.
7. Tell about your pattern.

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	14	18	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
4	8	12	16	20	24	28	32	36	40	44	48
5	10	15	20	25	30	35	40	45	50	55	60
6	12	18	24	30	36	42	48	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	58	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

IT COUNTS

GRADE: K-2
STRAND: Number
SKILL: Count by numbers other than one to build the foundationfor understanding the concept of multiples and remainders.
MANAGEMFNT
CLASS ORGANIZATION: Total class, pairs
TIME FRAME: Half-hour
MATERIALS:
For each par of students:
For each par of students:

- Calculator
- 15 counters- LLCounts Record Sheet
- Pencil- Calculator_Raca Record Sheet (Kdgn or 1sv/2nd)- Calculator Raca Home_Activity (optional)
VOCABULARY: No new vocabuiary
PREREOUISITE SKILLS: Completion of Lessons 1-5 and Lessons 13-16

LESSON - DIRECTED INSTRUCTION: 1. Follow these steps.			
TEACHERDPECTIONS	ASK THESE QUESTIONS	POSSIRIE ANSWERS	STUDENT DIRECTIONS
Distribute a calculator, 15 counters and the if Coumes Record Sheat to each pair of students.		POSS	STUDENDKLCTMA
Ask these questions:	How can we use the calculator to count by twos?	[C] [+] [2] [-] [-]	
	Do you think you can make the number 15 appear on your display if you count by twos?	Accept a "yes" or "no" answar at this time because students are making a prediction.	Invesfigate: - Press [+] - Press [2] - Press [-] - Continue pressing [=] to see if 15 will appear on the display. - Students will discover that it is impossible to count by lwos to ifteon.
	What happened when you used the calculator to count by wos?	Accept all reasonable answers.	
	Why couldn't you make 15 appear on the display when you counted by twos?	Students brainstorm ldeas.	
Let's use counters to help us discover why we couldn't make 15 appear on the display when we counted by twos.			- Use the counters to count by twos. - Record on the If Counte Record Sheet while counting by twos. - Count by twos. 1(2)3 AD5日7806 11) P13145 One student can use the counters while the other student records. Explain the results of the investigation.
CAMP-LA SAMPLER LESSON 3		CAMP-LA - 1991 Cal State Fullerton Press	
ERIC		35	

TEACHER DTRECTIONS	ASK THESE CUESTIONS	POSSREIEANSWERS	STUDENT DIRECTIONS
	What happened when you used the counters to count by twos?	Accapl all reasonable answers.	
	Why couldn't you count to 15 by twos?	We had one counter laft over 80 we couldn't make equal groups of two.	
- With first and second graders you may want to introduce the term: remainders.			
Ask these questions:	What was the pattern on your recond sheet?	Every other number was circled.	
	Why didn't you circle the number fifteen?	Because hi wasn't part of the pattern and it's not a number that you get when you count by equal groups of two.	
- You may want to mention that all of the numbers circled are multiples of 2.			

- Optional
- GUIDED PRACTICE:

2. Teacher says, You used the calculator, counters, and number patterns to find out if you could count by twos to 15. Now you can investigate other numbers to see if you can count to 15."
3. Follow these steps.

TEACHER DIECCIIONS	ASK THESE CUESTIONS	POSSIPIE ANSWERS	STUDENT DIPECTIONS
Tell each pair of students to experiment with different numbers until they find one that they can use to count to 15.	Do you think there will be more than one number?	Accept a "yes" or "no" answer at this time because students are making a prediction.	Investlgate: - Use the calculator or counters and record results on the it Counte Record Sheet. - Continue using different numburs until a solution is found. Answer: 3 and 5. - Discuss results.

- INDEPENDENT PRACTICE:

A Calculator Race Record Sheet is provided for further investigations.

- EVALUATION:
- What numbers can you count by to reach 18 ? (1, 2, 3, 6, 9)
- Why do you think you can count by 3 and 6 to reach 18 ?
- Why couldn't you count by 4 to reach 18 ?
- How did the calculator help you count?
- What mathematics did you learn?
- HOME ACTIVITY:

The Calculator Race Home_Activity is provided for you to create your own record sheet. Choose any numbers appropriate for your students.
\qquad

IT COUNTS

Can you count to $15 ?$
Directions: Circle the number as you count by 2. Circle yes or no to answer the question.
Then choose 2 different numbers and follow the same steps.

Count by 2

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15

yes no

Count by

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15

yes

no

Count by

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15

CALCULATOR RACE kdan

 WHO WILL WIN THE RACE?DIRECTIONS: Use the calculator to count. Circle the numbers you can count by to reach the finish

\qquad

CALCULATOR RACE

1st/2nd

WHO WILL WIN THE RACE?

DIRECTIONS: Use the calculator to count. Circle the numbers you can count by to reach the finish Une.

$$
\begin{aligned}
& \rightarrow-9 \rightarrow-\frac{10}{7}-9 \\
& \begin{array}{llllll}
2 & 3 & 11 & 22 & 33 & \frac{1}{\mathbf{1}} \\
\hline
\end{array}
\end{aligned}
$$

25
35
50
100
300

2000

CALCULATOR RACE kdan

WHO WILL WIN THE RACE?
DIRECTIONS: Use the calculator to count. Circle the numbers you can count by to reach the finish

4月me artuurv

CALCULATOR RACE

1st/2nd

WHO WILL WIN THE RACE?

DIRECTIONS: Use the calculator to count. Circle the numbers you can count by to reach the finish

MULTIPLE APPLICATIONS

GBADE:
STRAND:
SKILL:
PURPOSE:
MANAGEMENT
CLASS ORGANIZATION: Pairs
TIME FRAME: One class period
mATERIALS:
VOCABULARY: Muftples, constant
PREREQUISITE SKILLS: Mathematics: Basic Operations
Calculator: Basic functions
LESSON The purpose of this lesson is to use the constant counting feature of the calculator.

- DIRECTED INSTRUCTION:

Discuss the meaning of multiples. Explain that you can obtain multiples of a number on most calculators by prossing $[\mathrm{C}]$ [number] \square, then continue pressing the \square key. Use the catculator to find 6 multiples of 5 by pressing $C \square 5 \square \square \square \square$.

- GUIDED PRACTICE:

Have students find several multiples for 3, 6, and 11. As they are working, have students predict multiples before pressing the $=$ sign.

- INDEPENDENT PRACTICE:

Complete the Student Activity Sheet.

- EVALUATION:

Check the Student Activity Sheet.

- HOME ACTIVITY:

Demonstrate the constant feature of the calculator to your family.

MULTIPLE APPLICATIONS Student Activity Sheet

Find the missing numbers by using the calculator to find multiples of the first number.

1. $2,4,6$, \qquad 10, \qquad .14 \qquad $\underline{\square}$
2. 7, 14, \qquad ,28, \qquad 42, \qquad , \qquad 77
3. 12,24 , \qquad 60, \qquad 96 \qquad

132, \qquad 168
4. 15, \qquad
 120
5. \qquad , ,
6. 78 , \qquad

Use multiples to solve these problems.
7. Sam and his brother are both between the ages of 35 and 50.

Sam is older than his brother. Both of their ages are multiples of 8.
How old is Sam? How old is his brother? \qquad -
8. Jeff is between 46 and 60 inches tall. His height is a multiple of 9 . How tall is Jeff? \qquad .
9. Mary has between 50 and 65 books in her room. The number of books is a multiple of both 4 and 5. How many books does Mary have? \qquad
10. Julie and Stan collected between 30 and 60 pounds of aluminum cans for the school can drive. The number of pounds of cans is a common multiple of 4, 6, and 8. How many pounds of cans did they collect? \qquad

MULTIPLE APPLICATIONS
 Teacher Answer Sheet

1. $2,4,6,8,10,12,14,16,18$
2. $7,14,21,28,35,42,49,56,63,70,77$
3. $12,24,36,48,60,72,84,96,108,120,132,144,156,168$
4. $15,30,45,60,75,90,105,120$
5. $1,2,3,4,5,6,7,8$
6. $78,156,234,312,390,468$
7. Sam 48, Brother 40
8. 54 inches tall
9. 60 books
10. 48 pounds

ON VACATION WE WILL GO

GRADE:	$3-4$
STRAND:	Measurement
SKILL:	Estimate and measure length in standard units
MANAGEMENT	
CLASS ORGANIZATION:	Whole class and pairs
TIME FRAME:	Two class periods
MATERIALS:	Ruler, calculator, map, transparency, clear ruler
VOCABULARY:	Scale, conversion, route
PREREQUISITE SKILLS:	Mathematics: Basic operations Calculator: Basic functions

LESSON
The purpose of this lesson is to have the students use a map, scale, and a calculator to determine distance.

- DIRECTED INSTRUCTION:

Davonn

"How many of you have seen your parents use a road map? Why do we use a map?" Discuss how to use a map to plan a route of travel.
Project a transparency of the map. Use a transparent ruler to demonstrate how to measure the distance from home to the mountains on the map. Show how to label the inches on the map. Students use their ruler and map to measure and record the distance from home to mountains.

Next measure from the stadum to the mountalins on the transparency. Then have the students record the distance as 2.5 inches on their map. Tell students that $\mathbf{5 = 1 / 2}$ and that on this lesson they only need to measure to the nearest $1 / 2$ inch mark or full inch mark (we say we are measuring to the nearest half inch).

- GUIDED PRACTICE:

Students measure and record several distances on the map. You may want to develop a story to tell why you are going certain places on the map.

- INDEPENDENT PRACTICE:

Students complete all measurements on the map.

- EVALUATION:

Check studenis' measurements on map.

Day Two

- DIRECTED INSTRUCTION:

Look at the distance between the home and the mountains. Is two inches actually 28 miles on this map? Discuss models and scales ($1 \mathrm{in} .=14$ miles).

The next two calculations can be done mentaly.
Demonstrate how to convert the 2 inches from the home to the mountains into 28 mi . by adding 14 miles for each inch.

Demonstrate how to convent the distance between the mountains to the stadium by adding 14 miles for each inch and 7 miles for each $1 / 2$ inch. [answer: $2.5^{\prime \prime}$.

Students use a calculator to do the second conversion: $2.5[x] 4=35$.
Discuss the most efficient way to do the conversion: addition or multiplication.

- GUIDED PRACTICE:

Do 3 or 4 conversions and record the miles on the map.

- INDEPENDENT PRACTICE:

Students work with a partner to complete the student activity sheet using the map and a calculator.

- EVALUATION:

Check the answers of: the students' charts.

- HOME ACTIVITY:

Write a letter 10 a friend describing:

- Where you went
- What you did
- The route you took
- How far you traveled

Students designate their own routes and tind the total distance.

Use the map and a calculator to find the total miles for each trip.

From	Destination	Route	Miles
CAMP	FARM	$11-19-111$	
FARM	LAKE	$160-R 1-115$	
LAKE	BEACH	$115-R 1-12$	
FARM	HOME	$160-R 1-11$	
OBSERVATORY	AMUSEMENT PARK	$12-R 1-R 10$	

Use the map and a calculator to determine the route that matches the total miles.

From	Destination	Route	Miles
LAKE	CBSERNATORY		231
CAMP	BrACH		266
BEACH	HCME		91
STADIUM	CAMM		343
HOME	AMUSEMENT PARK		350

55

From	Destination	Route	Miles
CAMP	FARM	$11-19-111$	182
FARM	LAKE	$160-R 1-115$	140
LAKE	BEACH	$115-R 1-12$	126
FARM	MOME	$160-R 1-I 1$	105
CBSERVATORY	AMUSEMENT PARK	$19-R 1-R 10$	154

From	Destination	Route	Miles
LAKE	CBSERVATOFY	$115-11-19$	231
CAMP	BEACH	$115-R 1-19-111-$ $16 f_{j}-12$	266
BEACH	HOME	$I 2-R 1-11$	91
STADIUM	CAMP	R2-19-R1-R10-I10- $I 15$	343
HOME	AMUSEMENT PARK	I1-I15-R1-R2-I11- $I 60-12-I 10$	350

$5 f$

PUSH "M" FOR AREA

GRADE: 3.4
STRAND: Geometry
SKILL:
Estimate and find the area of polygons

MANAGEMENT

CLASS ORGANIZATION: Pairs
TIME FRAME: One class period
MATERIALS: Calculator, ruler, Iransparency
VOCABULARY: Area, dimensions, polygon, regular, Irregular, memory, recall, decimeter

PREREQUISITE SKILL: Mathematics: Basic operations, area of rectangular polygons
Calculator: Basic functions, memory feature
LESSON The purpose of this lesson is to have the students find the area of irregular polygons.

- DIRECTED INSTRUCTION:

Project Transparency 1.
Review how to compute the area of a rectangle.
Area $=$ Length x Width
Demonstrate how to find the area of a irregular polygon on the transparency. Partition the irregular polyoon into rectangular regions. Find the area of each rectangular region. Use the memory feature of the calculator to find the total area of the irregular polygon.

MRC	MRC	C
6 x	3	M+
3) x	3	M+
6 x	2	M
MPC		

display 39

- GUIDED PRACTICE:

Project Transparency 2.
Distribute Student Activity Sheet 1. Determine the area of the irregular polygon with the students. [answer: 42 sq. units]

- INDEPENDENT PRACTICE:

Distribute Student Activity Sheet 2.
Students work in pairs to complete the activity. [answer: 16848 sq . in.]

- EVALUATION:

Teacher observation

- HOME ACTIVITY:

Students measure (in feet) and make a drawing of a room at home which has a ctoset. They then find the area of the room with the closet, labeling the area on their drawing. This information can be useful for ordering
carpeting or linoleum flooring.

PUSH "M" FOR AREA

PUSH "M" FOR AREA
Student Activity Sheet 1

PUSH "M" FOR AREA
Student Activity Sheet 1

PUSH "M" FOR AREA

 Student Activity Sheat 2Directions: The diagram below is of a special kitchen counter. It is to be made of marble which is expensive. The builder needs to know the exact area of the counter. Compute the area for the counter.

$[M+]$
[M-]
[MR]/[MRC]
Adds data into the memory
Subtracts from the memory's total
Recalls the current figure from the memory

THE PENCIL BOX PROBLEM

GRADF:	$3-4$
STRAND:	Patterns and Functions
SKILL:	Find a function rule from a situation or graph
MANAGFMFNT	Whole class, pairs
CLASS ORGANIZATION:	One class period
TIME FRAME:	Calculator, transparency of Student Activity Sheet 1
MATERIALS:	Function rule, ordered pairs
VOCABULARY:	Mathematics: Coordinate graphing Calculator: Memory keys

LESSON The purpose of this lesson is 10 use a graph to estimate quantities and to record ordered pairs.

- DIRECTED INSTRUCTION:

Five hundred prizes are needed for a Mathematics Fiold Day. The local toy store has a special sale on pencll boxes. Each box has four penclis and three erasers. How many boxes will need to be purchased?

Project the transparency. Explain that a graph is used to record information. Have students read the labels on the graph and identify the ordered pairs for the three points on the line.

$$
(60,420) \quad(80,560) \quad(100,700)
$$

What is the rule? [answer: multiply by 7]
The line on the graph shows the function rule.
Use the line to find the number of hems in 70 boxes. Demonstrate how to go over to 70 and up to the intersection with the line. Show that the intersection is between 480 and 500. Apply the rule:

$$
7 \times 70-490
$$

Use the line to find the number of items in 87 boxes. Estimate using the line, and then use the calculator to get the actual number [enewer: $7 \times$ $87=809]$.

- GUIDED PRACTICE:

Distribute Student Activity Sheets 1 and 2 to pairs of students. They wh use the graph to make an estimate, use the calculator to verify the number of fiems, and then record the ordered pairs.

Work through the first two examples.
Example 1:
60 boxes. Estimate from the line on the graph: 420
Number of thems using the rule: 420
Ordered palr [answar: $(60,420)$]
Example 2:
65 boxes. Estmate from the line on the graph: 450
Number of hems using the rule: 455
Orde ad pair [answer: $(\mathbf{3 5 , 4 5 5})$]
Students complete Student Activity Sheet 2.

- INDEPENDENT PRACTICE:

Distribute Student Activity Sheet 3. Students work together to plot the points for the given ordered patrs and draw the line. Use the line to determine the missing numbers in the remaining ordered pairs. Complete the chart by recording the numbers of boxes and hems.

- EVALUATION:

Teacher observation.

- HOME ACTIVITY:

Students demonstrate understanding of the function rule by completing the home activity sheet.

Answers:	
\# of People	
20	of packs
48	4
5	8
60	1
42	10
54	7
	9

Put the ordered pairs on the graph.

THE PENCIL BOX PROBLEM Student Activity Sheot 2

Number of Boxes	Estimate	Number of liems	Ordered Pairs
60			
65			
70			
73			
75			
80			
85			
87			
90			
93			
95			
97			
99			
100			

THE PENCIL BOX PROBLEM
Student Activity Sheot 3
Directions: Complete the table, plot the points, draw the lines and state the rule.

Boxes	Items	Ordered Pairs
5	70	$(5,70)$
		(7),
		(12),
		$(15,210)$
		$(20,280)$
		(25),

Boxes	Items	Ordered Pairs
		$(75,675)$
		$(76, \quad)$
		(77),
		$(78))$,
		$(79,711)$
		$(80, \quad)$
		$(81,729)$
		$(83, \quad)$
		$(84, \quad)$
		$(85,765)$
		$(87, \quad)$

Rule
CAMP-LA SAMPLER LESSON 7

CAMP-LA

- 1991 Cal State Fullerton Press

THE PENCIL BOX PROBLEM Home Activity Sheet

Use the graph to determine how many soft drinks to buy for the glven numbers of people. Assume that every person will have one soft drink.

Soft drinks for	How many 6 packs would you noed to buy?	
20	people	
48	people	
5	people	
60	people	
42	people	
54	people	

THE PENCIL BOX PROBLEM Teacher Answer Sheet 2

Boxes	Estimate	Number of liems	Orderod Pairs
60		420	(60, 420)
65		455	(65, 455)
70		490	(70, 490)
73		511	(73, 511)
75		525	(75, 525)
80		560	(80, 560)
85		595	(85, 595)
87		609	(87, 609)
90		630	(90, 630)
93		651	(93, 651)
95		665	(95. 665)
97		679	(97, 679)
99		693	(99, 693)
100		700	(100, 700)

THE PENCIL BOX PROBLEM Teacher Answer Sheel 3

CAMP-LA SAMPLER LESSON 7

Boxes	Items	Ordered Pairs
5	70	$(5,70)$
7	98	$(7,98)$
12	168	$(12,168)$
15	10	$(15,210)$
17	238	$(17,238)$
20	280	$(20,280)$
25	350	$(25,350)$

Rule Multiply by 14

Boxes		
75 Items Order6d Pairs 76 675 $(75,675)$ 77 684 $(76,684)$ 78 693 $(77,693)$ 79 702 $(78,702)$ 80 711 $(79,711)$ 81 729 $(80,720)$ 82 738 $(81,729)$ 83 747 $(82,738)$ 84 756 $(84,747)$ 85 765 $(85,765)$ 86 774 $(86,774)$		
Rule		
Multiply by 9		

BIG "D'S" PARKING GARAGE I

GRADE:
 3-4

STRAND:
Logic
SKILL:
MANAGEMENT
CLASS ORGANIZATION: Whole class and small groups
TIME FRAME:
MATERIALS:

VOCABULARY:
PREREQUISITE SKILL:

One class period
Calculator, Transparency 1, Transpar icy of Student Activity Sheet 1

Logical reasoning
Use charts to organize information to solve simple logic problems

Mathematics: Basic operalions, loyic grid Calculator: Basic functions

LESSON
The purpose of this lesson is to use logical reasoning to solve a problem.

- DIRECTED INSTRUCTION:

Discuss methods to solve a logical reasoning problem. Project
Trar. parency 1 and use the following sequence to demonstrate the use of the logic grid.

1. Read the problem and all of the clues. Clues can be tricky. One clue may give a little information by itself but a lot more information when you fit it together with another clue.
What is the problem? [answer: Who lives in each different colored house.]
Who are the people in the problem? lanawer: Bob, Terri, Dave] What are the cotors of the houses?[answer: Green, Yellow, Brown]
2. Demonstrate how to labal the grid with the names of the people across the top and the colors down the side.
3. Demonstrate how to mark the grid after reading a clue.

Clue \#1-Dave does not live in the green house.

	Bob	Terri	Dave
Green			no
Yellow			
Brown			

Clue \#2. Terri does not live in the yellow house.

	Bob	Terri	Dave
Green			no
Yellow		no	
Brown			

Clue \#3 - Bub's house is not green or brown.

	Bob	Terri	Dave
Green	no		no
Yellow		no	
Brown	no		

Conclusion - Bob lives in the yellow house because he doesn't live in the green or brown house.

	Bob	Terni	Dave
Groen	no		no
Yellow	yes	no	
Brown	no		

Conclusion - Dave does not live in the yellow house because Bob lives there.

	Bob	Terri	Davo
Green	no		no
Yellow	yes	no	no
Brown	no		

Conclusion - Terri tives in the green house because nether Bob nor David live there.

	Bob	Terrl	Dave
Green	no	yes	no
Yellow	yes	no	no
Brown	no		

Conclusion- Terri does not live in the brown house because she lives in the green house. Dave lives in the brown house because he doesn't live in the yollow is green house.

	Bob	Terri	Dave
Green	no	yes	no
Yellow	yes	no	no
Brown	no	no	yes

- GUIDED PRACTICE:

Distribute Student Activity Sheet 1. Project Transparency of Student Acthity Sheet 1 and guide students through the process of completing the logic grid.
Discuss the solution to the problets:
Conclusion from Clue *1 - Rosie is not Red or Skipper
Conclusion from Clue ${ }^{4} 2$ - Skipper is female
Conclusion from Clue * 3 - Red tis not Jose and Jose is not Bud

	Bud	Skipper	Tu9	Pred
Roste	yes	10	10	no
Demman	no	no	10	yes
Lose	10	no	yes	no
Wencly	no	yes	10	no

- INDEPENDENT PRACTICE:

Read Student Activity Sheet 2A together. Distribute Student Activity Sheots $2 B$ and $2 C$.
Students work with a partner to solve the problem.

- EVALUATION:

Students explain how they arrived at their solution.

- HOME ACTIVITY:

Solve this ridde with your family: What can you put in a bucket to make it waigh less?

Transparency 1

BIG "D'S" PARKING GARAGE I

Example 1

Bob, Terri, and Dave each live in a different house colored graen, yellow, or brown.
Dave does not live in the green house. Terli does not live in the yellow house. Bob's house is not green or brown.

What is the color of each person's house?

BIG "D'S" PARKING GARAGE I

Student Activity Sheet 1

Example 2

Rosie, Damon, Jose, and Wendy each have nicknames. The nicknames are Bud, Skipper, Tug and Red not necessarily in that order. Read the clues to find the nickname of each person.

Clues:
Rosie is shorter than Red and is taller than Skipper.
Skipper bought her mother a present yesterday.
Red is older than Jose and younger than Bud.

BIG "D'S" PARIING GARAGE I Student Activity Sheet 2A

Read the story. Read all of the clues. Which clue gives enough information to declde where one of the cars is parked?

This is Big "D's" Parking Garage. Drivers have assigned parking spaces. Each parking space is numbered. The Hlustration shows how the spaces are numbered.

One day 4 drivers forgot their parking space numbers. They thought that if they could just find the correct floor then they would remember their parking space numbers. Big " D ", the owner of the parking garage, llkes logic puzzles and math games. Big "D" sald he would hetp the drivers find their parking spaces by giving them 3 clues. If the drivers could determine the floor they park on, Big "D" would tell them their parking space number. Help the drivers solve their problem.

1. Problem: On which floor is each car parked?

Use the following infurmation, clues, the logic chart, and a calculator to solve the problem:

Clues and Information

Car models and the year each was built:

BMW	BUICK	CHAYY	HONDA
1984	1987	1979	1978

ClIES:

Each car parks on a different ficor. The car that parks on the fourth floor was buitt In a year that is $\mathbf{5 5 0}$ more than its parking space number.

If the Bulck parks in the correct space, then the year it was built is close to 800 more than ths parking space number.

The car that parks on the third fioor was built in a year that is 756 more then its parking space number. It is six years older than the car on the ist fioor.

BIG "D'S" PARKING GARAGE I Student Activity Sheet 2C

LOCCCHART

2. Problem: Find the parking space number for each car. Use the clues from the first problem and the 2 clues listed below to solve the problem.

Clues:

If you find the average date of manufacture of the four cars, it will be 900 greater than the first-floor parking space.

If you round the year the Buick was manufactured to the nearest decade, then its space number is exactly 200 greater than half its date.

The BMW's parking space is number \qquad on the \qquad floor.
The Buick's parking space is number \qquad on the \qquad fioor.

The Chevy's parking space is number \qquad on the \qquad floor.

The Honds's perking space is number \qquad on the \qquad floor.

Teacher Answer Sheet
LOGCCHART

	1st	$\begin{gathered} \text { Fr } \\ \text { 2nd } \\ \hline \end{gathered}$	3rd	'h
BMW	Nb	No	Yes	Nb
Buick	Nb	Yes	No	Nb
Chevy	No	Nb	No	Yes
Honda	Yes	Nb	nb	Nb

2. Problem: Find the parking space number for each car. Use the clues from the first problem and the 2 clues listed below to solve the problem.

Clues:

If you find the average date of manufacture of the four cars, it will be 900 greater than the first-floor parking space.

If you round the year the Bulck was manufactured to the nearest decade, then its space number ts exactly $\mathbf{2 0 0}$ greater than half hs date.

The BMW's parking space is number 1228 on the 3rd floor.
The Buick's parking space is number 1195 on the and floor.
The Chevy's parking space is number 1289 on the sth fioor.
The Honda's parking space is number 1082 on the 1st floor.

WATCH YOUR MONEY GROW

GRADE: 5-6
STRAND: Number
SKILL:
Use powers and multiples of powers to explore large numbers.
MANAGEMENT CLASS ORGANIZATION: Pairs

TIME FRAME: One or two math periods
MATERIALS: Calculator
VOCABULARY: Milionr. thousands
PREREQUISITE SKILL: Place value

LESSOM

- DIRECTED INSTRUCTION:

Tall students the purpose of this lesson is to discover how rapidly numbers grow through mulitplication. Give students Student Activity Sheet 1. Read the sluation with your class. Everyone records an estimate and completes the worksheet.

Note: The constant function of the calculator may be used in this actwity. For example, on Student Activity Sheel 1 you may press 2×1 - - ...

Discuss students' results and comments.

- INDEPENDENT PRACTICE:

Hand out Student Activly Sheet 2. Working in pairs, students complete the worksheet. Discuss results with the class.

Hand out Student Activity Sheet 3. Working in pairs, students complete the worksheet. Discuss results with the class.

Hand out Home Activity. Encourage Students to do the activity with their parents.

- EVALUATION:

Teacher observation and Student Activity Sheots.

Somabody gives you a maglc dollar. It is magic because every night it doubles so that the next day instead of one dollar you have two magic dollars.

Estimate how many days it whll take for your dollar to become over a million dollars.

Record your estimate: \qquad
Complete the chart below using your calculator. (Note: on the calcutator you are continually multiplying the number shown on the display by 2 without cloaring the calculator.)

Day number	Number of magic dollars
1	1
2	2
3	4
4	8
5	16
6	32
7	64
8	128
8	258
10	512
11	1024
12	2048
13	4096
14	8192
15	16384
16	32768
17	65536
18	131072
19	262144
20	524288
21	1048576
22	
23	
24	

At what point were you surprised by the number of ragic dollars?
\qquad

How did the result differ from your expectations?

WATCH YOUR MONEY GROW Student Activity Sheet 2 Teacher Answer Sheet

Somebody gives you a magic nickel. Each magic nickel grows ovemight to three magic nickets. Estimate how many days it would take untl your magic nickel becomes at least one million dollars.

Record your estimate: \qquad
Complete the chart below using your calculator. (Note: You continually multiply the number shown on the display by 3 whthout clearing the calculator or use your calculators constant function.)

Day number
1
2

How did the result differ from your expectations?
Answar will yary.

Compare these results to those you found in Student Activity Eheet 1.

WATCH YOUR MONEY GROW
 Student Actwity Sheet 3
 Teacher Answer Sheet

Magic quarters double every night to 2 magic quarters. Magic pennies change every night to 4 magic pennies.

If you could borrow one of these coins for only 5 days, which coin would you choose?
\qquad Magic Cuartar \qquad

If you could borrow one of these coins for 13 days, which would you choose? Manle Penny \qquad

Now complete the chart. Use it to decide if you made the correct choices. Complete one column before starting the other.

Day number	Magic Quarter (muitiply by 2)	Magic Penny (multijly by 4)
1	. 25	. 01
2	50	. 04
3	1	. 16
4	2	. 64
5	4	2.56
6	8	10.24
7	16	40.96
8	32	163.84
9	64	655.36
10	128	2621.44
11	256	10485.76
12	512	41843.04
13	1024	167772.16

What did you discover? Why do you think this happened?

WATCY YOUR MONEY GROW Teacher Answer Sheet

HONE ACTIVITY:

Discuss the following problem at home. If you were to sign a contract with your family that in return for keeping your coom clean for an entire year yuu would to be glven 1 penny the first day of February, two pennies the second day of February, 4 pennies the next, dcubling each day untll the month was over, would this be a falr deal? Would your family be willing to pay you that much?
Why or why not? \qquad

Using the calendar for February, fill in the amount of money that you would be paid each day.

SUNDAY	MONDAY	TUESDAY	WEDMESOAY	THUPSDAY	Friday	SATURDAY
	$\begin{aligned} & 1 \\ & \$.01 \end{aligned}$	$\begin{gathered} 2 \\ 5.02 \end{gathered}$	$\begin{gathered} 3 \\ 5.04 \\ \hline \end{gathered}$	$\begin{array}{r} 4 \\ 3.08 \end{array}$	$\begin{array}{r} 5 \\ 5.16 \end{array}$	$\begin{gathered} 6 \\ 5.32 \\ \hline \end{gathered}$
$\begin{gathered} 7 \\ 364 \end{gathered}$	$\begin{gathered} 8 \\ \$ 1.28 \end{gathered}$	$\begin{array}{r} 9 \\ \$ 2.58 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ 35.12 \\ \hline \end{array}$	$\begin{gathered} 11 \\ \$ 10.24 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \$ 20.48 \\ \hline \end{gathered}$	$\begin{array}{r} 13 \\ \$ 40.96 \\ \hline \end{array}$
$\begin{gathered} 584 \\ 14 \\ \$ 81.92 \end{gathered}$	$\begin{gathered} 31.20 \\ 15 \\ \$ 163.84 \end{gathered}$	$\begin{gathered} 72.30 \\ 18 \\ \$ 327.68 \end{gathered}$	$\begin{gathered} 17 \\ \hline \$ 655.36 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \$ 1310.72 \end{gathered}$	$\begin{gathered} 19 \\ \$ 2821.44 \end{gathered}$	$\begin{array}{r} 20 \\ \$ 5242.88 \\ \hline \end{array}$
$\$ 81.92$ 21 $\$ 10485.76$	$\begin{gathered} \frac{8163.84}{22} \\ \$ 20971.52 \end{gathered}$	$\begin{gathered} 337.05 \\ 23 \\ \$ 41943.04 \end{gathered}$	$\begin{gathered} 24 \\ 383886.08 \end{gathered}$	$\begin{gathered} 25 \\ \$ 187772.18 \end{gathered}$	$\begin{gathered} 26 \\ \$ 335544.32 \end{gathered}$	$\begin{gathered} 27 \\ \hline 6871088.64 \\ \hline \end{gathered}$
$\begin{gathered} 28 \\ \$ 1342177.28 \end{gathered}$	(calculator	shows	1342177.2)			

What did you discover? \qquad
\longrightarrow

How did the results differ from your family's expectation? \qquad
\qquad
\qquad
\qquad
Share your discoveries from Student Activity Sheets 1, 2, and 3 with your tamily.
\qquad Student Activity Sheet 1

Somebody gives you a magic dollar. It is magic because every night it doubles so that the next day instead of one dollar you have two magic dollars.

Estimate how many days it will take for your dollar to become over a million dollars. Record your estimate: \qquad
Complete the chart below using your calculator. (Note: on the calculator you are continually multiplying the number shown on the display by 2 without clearing the calculator.)

Day number
1
2
3
4
5
6
7
8
9
16
11
12
14
15
16
17
18
19
20
21
22
23
24

At what point were you surprised by the number of magic dollars?

How did the result differ from your expect Sons?
\qquad

Somebody gives you a magic nickel. Each magic nickel grows overnight to three magic nickels. Estimate how many days it would take unth your magic nickel becomes at least one million dollars.

Record your estimate: \qquad
Complete the chart below using your calculator.(Note: You continually multiply the number shown on the display by 3 without clearing the calculator or use your calculators constant function.)

Day number	Number of mapic doilars
1	Numer dollars
2	. 15
3	. 45
4	1.35
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
18	
20	

How did the result differ from your expectations?

Compare these resulis to those you found in Student Activity Sheet 1.

WATCH YOJR MONEY GROW
 Student Activity Sheet 3

Magic quarters double every night to 2 magic quarters. Magic pennies change every night to 4 magic pennies.

If you could borrow one of these coins for only 5 days, which coin would you choose?

If you could borrow one of these coins for 13 days, which would you choose?

Now complete the chart. Use if to decide if you made the correct choices. Complete one column betore stanting the other.

Day number	Mapic Quarier (multiply by 2)	Magic Ponny (mulifily by 4)
1	.25	.01
2	.50	.04
3	.16	
4	.64	
5		
6		
7		
8		
10		
11		
12		
13		

What did you discover? Why do you think this happened?
\qquad
WATCH YOUR MONEY GROW

Home Activity Sheat

Discuss the following problem at home. If you were to stgn a contract with your family that in return for keeping your room clean for an entre year you would to be given 1 penny the first day of February, two pennies the second day of February, 4 pennies the next, doubling each day unill the month was over, would this be a fair deal? Would your family be willing to pay you that much? \qquad
Why or why not? \qquad

Using the calendar for February, fin in the amount of money that you would be paid each day.

Sunday	MONDAY	TuESDAY	WEDMESDAY	THuRSDAY	Friday	SATURDAY
	1				5	6
	3.01	3.02	\$.04	\$.08		
7	8	9	10	11	12	13
14	15	18	17	18	19	20
21	22	23	24	25	26	27
28						

What did you discover?

How did the results differ from your family's expectations?

Share your discoveries from Student Activity Sheets 1, 2, and 3 with your family.

GRADE:
STRAND:
SKILL:
MANAGEMENT CLASS ORGANIZATION:

TIME FRAME:
MATERIALS:
VOCABULARY:
PREREOUISITE SKILL: Perimeter and area of rectangles

LESSON

- DIRECTED INSTRUCTION and GUIDED PRACTICE:

1. Give students a piece of paper (8.5 by 11) inches and the Student Record Sheet. Find the perimeter of the rectangle represented by the paper. [P = 39 in .] Find the area of the rectangular region of the paper. [$A=93.5 \mathrm{sq}$. in.]
2. Fold the piece of paper in hall matching the 8.5 inch edges together. What are the dimensions of the new rectangle? [8.5 by 5.5] Find the perimeter of the new rectangle. $[P=28 \mathrm{in}$.] Find the area of the rectangular region. [A $=46.75$ sq. in.]
3. Fold the paper in half again, matching the 5.5 inch edges tegether. Find the:

Length
Width Perimeter Area
[5.5 in.]
[4.25 in.]
[$P=19.5 \mathrm{in}$.]
[A= 23.375 sq. in.]

- INDEPENDENT PRACTICE:

1. Repeat the activity by folding the paper in half, always matching the shorter sides. Continue until you complete the chant. Look for patterns.

EVALUATION:

1. How did the length and width of the rectangle change after you folded the paper? IThe width of the new rectangle is .5 (the length of the previous rectangle), and the length of the new rectangle was the width of the previous rectangle.)
2. How did the perimeter of the rectangle change? The perimeter of the third rectangle was 5 of the perimeter (the first rectangle). The perimeter of the fourth rectangle was .5 (the perimeter of the second rectangle), and so on.]
3. How did the area of the new rectangular region change? The area of the new rectangular region was .5 (the area of the provious rectangular region).]

HOME ACTIVITY:

Each student measures his or her room to find:

1. The perimeter and area of the floor.
2. The perimeter and area of one wall.

FOLDING PAPER Student Record Sheot Teacher Answer Shee!				
	Length	Width	Perimeter	Area (calculator display)
Original paper	11 in.	8.5 in .	39 ln.	93.5 sq . in.
First Fold	8.5 in .	5.5 in .	28 in.	46.75 sq. in.
Second Fold	5.5 in .	4.25 in .	19.5 in.	23.375 sq. in.
Third Fold	4.25 in .	2.75 in.	14 in.	11.6875 so. in.
Fourth Fold	2.75 in.	2.125 in.	9.75 in.	5.24375 sq. in.
Fifth Fold	2.125 in.	1.375 in.	7 in.	2.921875 sq. in.
Sixth Fold	1.375 in.	1.0625 in.	4.875 in.	1.4609375 sq. in.
Seventh Foid	1.0625 in.	U. 68755 in.	3.5 in.	0.73046875 sq. in. (0.7304687)
Eighth Fold	0.6875 in .	0.53125 in .	2.4375 in.	0.365234375 sq. in. (0.3652343)
Ninth Fold	0.53125 in .	0.34375 in.	1.75 ln.	0.1826171875 sq. in. (0.1826171)
Tonth Fold	0.34375 in.	0.265625 in.	1.21875 in .	0.09130859375 sq. in. (0.0913085)

Write any pattems you found and conclusions you reached from the data above.

Name \qquad

FOLDING PAPER Student Record Sheot

	Longth	Width	Perimeter	Aroa (calcuia:or display)
Original paper	11 in.	8.5 in.	39 in.	$83.5 \mathrm{sq} . \mathrm{in}$.
Firsi Fold	8.5 in.	5.5 in.		
Second Fold				
Thind Fold				
Fourth Fold				
Fifth Fold				
Sixth Fold				
Seventh Fold				
Eighth Fold				
Ninth Fold				
Tenth Fold				

Write any pattems you found and conctusions you reached from the data above.
\qquad
\qquad
\qquad

32

Number of Adult tickets Total Cost of Adult tickets $\rightarrow 5 X \rightarrow$		Number of Student Tickets	Total Cost of Student Tickets	Total Cost of All tickets
		$\rightarrow 3 \mathrm{X} \rightarrow$		
3	$\$ 15$	95	5285	\$300
6	\$30	90	\$270	\$300
9	\$45	85	\$255	\$300
12	\$60	80	\$240	\$300
15	\$75	75	5225	\$300
18	$\$ 90$	70	5210	\$300
21	5105	65	\$195	\$300
24	\$120	60	\$180	\$300
27	\$135	55	\$165	\$300
30	\$150	50	\$150	\$300
33	\$165	45	\$135	\$300
36	\$180	40	\$120	\$300
39	\$195	35	\$105	\$300
42	5210	30	\$90	\$300
45	\$225	25	\$75	\$300
48	\$240	20	560	\$300
51	\$255	15	\$45	\$300
54	\$270	10	$\$ 30$	\$300
57	5285	5	$\$ 15$	\$300

Ask students what pattems they observe in the chart. They should notice that in this form the first column increases by 3 , the second by 15 , the thrd decreases by 5 , the fourth decreases by 15. They might say, as the student numbers get larger, the adult numbers get smaller. Give credit to any true observations.

- INDEPENDENT PRACTICE:

Have students or groups of students complete Student Activity Sheet 2. Discuss the results with the class.

- EVALUATION:

Have students or groups of students develop a similar situaticn. Write a chart reconding all possible solutions, then write a set of conditions which narrows the choices down to a single solution.

GOING TO THE MOVIES

GRADE:	$5-6$
STRAND:	Logic
SKILL:	Organize and interpret data.

MAMAGEMENI
CLASS ORGANIZATION: Small group or pairs
TIME FRAME: One math period
MATERIALS: Calculator, overhead transparency
PRERECUISTTE SKILL: interpret data from a table

LESSOM

- DIRECTED INSTRUCTION:

Tell the class this story. Some afudents from our school would llike to take a fiold trip to the movies. Adulta as well as children must attend. Adult tickets cost $\$ 5$ and student tlckete \$3. Your Job is to Investigate what posalble combinations of atudents and adulte can attend If you must spend EXACTLY \$300. Use an overhead transparency of Student Activity Sheet 1.

Ask, can these conditions be met if only 1 adut attends? Give them time to figure out that 1 aduft ticket costing $\$ 5$ would leave $\$ 295$ for student tickets.

The answer to $295+3$ is not a whole number, so you can't spend exactly $\$ 295$ on $\$ 3$ student tickets.

There must be more than 1 adult. Ask, can there be exactly 2 adults? Give them time to work. Discuss that 2 adult tickets at $\$ 5$ each leaves $\$ 290$ for student tickats. $290+3$ is not a whole number so you can't sperv exactly $\$ 290$ on student tickets. There can't be 2 adults.
Ask, can there be exactly 3 adults? Allow inne for students to work, then discuss that 3 adult tickets cost $\mathbf{\$ 1 5}$. There is $\mathbf{\$ 2 8 5}$ left for student tickets. $285+3=95,8095$ student tickels could be purchased. Hand out the Student Activity Sheet 1. Tell them that the chart has already been filled in for 3 adults on the trip.

- GUIDED PRACIICE:

Ask students to see H there can be exactly 4, 5, 6 or more adults. Have them fill in successful solutions on their chart.
Ask students to find as many solutions as possible. Suggest that they look at the successful solutions on their chart to see if they can detect any pattorns that will assist them in finding additional solutions. After they have spent sufficient time finding solutions, hand out Student Activity Sheol 2.

[^0](Hand out only after Student Activity Sheet I has been completed and discussed)

Number of Total Cost of Adult tickets Adult tickels			Number of Student Tickets	Total Cost of Student Tickets	Total Cost of Al tickets
$\rightarrow 5 \mathrm{X} \rightarrow$			$\rightarrow 3 \mathrm{X} \rightarrow$		
Z	3	\$15	95	\$285	\$300
2	6	\$30	90	\$270	\$300
2	9	\$45	85	5255	\$300
2	12	\$60	80	\$240	\$300
2	15	\$75	75	\$225	\$300
	18	\$90	70	\$210	\$300
Y	21	\$105	65	\$195	\$300
Y	24	\$120	60	\$180	\$300
Y	27	\$135	55	\$165	\$300
Y	30	\$150	50	\$150	\$300
Y	33	\$165	45	\$135	\$300
Y	36	\$180	40	\$120	\$300
X	39	\$185	35	\$105	\$300
X	42	\$210	30	\$90	\$300
X	45	\$225	25	\$75	\$300
X	48	\$240	20	\$60	\$300
X	51	\$255	15	\$45	\$300
X	54	\$270	10	\$30	\$300
X	57	\$285	5	\$15	\$300

the data glven betow-10 oliminate possibilities from the chart.

1. There must be more students than adults. (Put an x in front of the rows for answers you must eliminate.)
2. The school musi spend less than $\$ 100$ on aduft tickets. (Put a y in front of the rows for now answers you can ellminate.)
3. The bus holds only 89 passengers. (Put a z in front of the rows for new answers you can eliminate.)
4. How many adults and how many students are going on this trip?

Adults 18 Students \qquad
5. Could you have artved at his answar using only two clues above or were all three necessary? \qquad Onlv cluas 2 and 3 are neaded.

Name \qquad

GOING TO THE MOVIES Student Activity Sheel 2

Use the data given below to eliminate possibilities from the chart.

1. There must be more students than adults. (Put an \times in front of the rows for answers you must eliminate.)
2. The school must spend less than $\$ 100$ on adut tickets. (Put a y in front of the rows for now answers you can eliminate.)
3. The bus holds only 89 passengers. (Put a \mathbf{z} in front of the mws for now answers you can eliminate.)
4. How many adults and how many students are going on this trip?

Adults \qquad Students \qquad
5. Could you have arrived at this answer using only two clues above or were all three necessary? \qquad
GRADE: 5-6
STRAND: Number
SKILL: Solve real life problems.
MANAGEMENT
CLASS ORGANIZATION: Small groups
TIME FRAME: Two math periods
MATERIALS: Calculator, Data Organization Sheet, Guess and Check Sheet
VOCABULARY: Profit
PREREQUISITE SKILL: Interpret decimal remainders
LESSON

- DIRECTED INSTRUCTION:
Tell each group they will be given a situation to solve in whichthey will be responsible for:

Organizing their data
Deciding what information is important
Determining a solution
Sharing with the class

- GUIDED AND INDEPENDENT PRACTICE:

1st Day of lesson

- Hand out Sudent Activity Sheet 1 and Data Organization Sheet.
- Students read the problem and work together to complete the Data Organization Sheet and then Student Activity Sheet 1.
- Students compare how they arrived at their answars. Make sure discussion focuses on how to deal with remainders in real life situations.

2nd Day of Lesson

- Hand out Student Activity Sheet 2 and Guess and Check Sheet. Have student complete both. Discuss results. Answers will vary.

Situation:
The students in room 18 want to go on a class camping trip.
There are 32 students in the class. Food will cost $\$ 2.25$ per meal for each person. Students will bring their own clothes and a sleeping bag. The camping equipment will be borrowed from the students' families. School vans will be used to get to the campsite. The van holds 12 people and gets 15 miles per gallon. The school district will provide vans for free that normally rent for $\$ 60.00$ per day. The campsite is 76 miles from the school. Gasoline costs $\$.93$ a gallon.

Campsites cost $\$ 12.00$ per night and each campsite will hold 8 people. The principal says there should be 1 adult for every 6 students. The camping trip will last from 5:00 p.m. Friday night to $4: 00 \mathrm{p} . \mathrm{m}$. Sunday afternoon.

The students must raise the money for gas, food, and the campsites for averyone involved.

How much money must be raised for each student to go on the camping trip? What is the total cost? Use the Data Organization Sheet to complete information below.

Total cost for food.

Total cost for vans.

Total cost for campsite.

Total cost for the trip.
Total amount for each student to raise
$\$ 513$ [l32 students_ +8 adults) \times (6 meals a $2.25 /$ meal $=$ Iotall
$\$ 3770$ [38_noppla +12 _popplenan - 32 nead 4 yans.
$[12 \times 76$ milas $)+15 \mathrm{mpog} \times 5.93 /$ /allion $\times 4$ yans $=$ Total.
S120_139_papole + 8_poopla/campsite - 5 campsites)
[512/night $\times 2$ nights $\times 5$ campsites]
$\$ 670.70$
$\$ 20.96$ ITotal cost for trio +32 students]

CAMP-LA

- 1991 Cal State Fullirton Press

> GOING CAMPING
> DATA ORGANZATIONSHEET
> Teacher Answer Sheet

PEOPLE GOING:	Number of Studants _ 32	
	Number of Adults 6	
	TOTAL PEOPLE _ 38	
meals:	Number of meals per person __ 6	
	Number of people __38	
	Total meats served _228	
	Cost per meal __ $\$ 2.25$	
	Total food cost $\mathbf{5 5 1 3 . 0 0}$	
VAN COST:	Total milies (round trip) 152	
	Miles per gallon 15	
	Total gallons ___ 10.133	
	Cost per gallon _ S.93	
	Number of vans_4__ Individual van cost (gas)	\$9,42
	Total van cost (gas) $\mathbf{8 3 7 7 0}$	
	(rounded so noarsat dilin)	
CAMPSITES:	Number of peoplo _-38	
	Number of people allowed	
	Per campsite _8	
	Number of campsites needed ___ 5	
	Number of nights__ 2	
	Cost of a campsite per night $\$ 12.00$	
	Totr, campsite cost _	
	Total cost of food, transportation, and campground	\$670.70

Sltuation:
The students decided to sell pencils and erasers with the school name on them to raise money for the camping trip.

Pencils cost $\$.05$ each and erasers cost $\$.07$ each. They plan to sell pencils for $\$.15$ each and erasers for $\$.20$ each.

How many pencils and erasers must be sold to raise the money necessary to go on the camping trip?

Total cost of trip from Activity Sheet 1 867070

Cost of 1 pencil $\$.05$

Selling price of 1 pencil
$\$.15$
Profit on the sale of 1 pencil
$\$.10$
Cost of 1 eraser $\$.07$

Selling price of 1 eraser 8.20

Profl on the sale of 1 eraser $\$.13$

To help you compete this Student Activity Sheet you nesd to first complete the Guess and Check Sheet.

Approximate number of pencils to be sold to meet goal
Profit on the sale of pencils
Approximate number of erasers to be sold to meet goal
Profit on the sale of erasers

Answer_will_yary
gecording to discussion in
the process_ of working
throuch the Guess and
Checks Sheot

TOTAL PROFIT

Names \qquad

GOING CAMPING
 Student Activity Sheet 1

Pianners: \qquad
Situallon:
The students in room 18 want to go on a class campling trip.
There are 32 students in the class. Food will cost $\$ 2.25$ per meal for each person. Students will bring their own clothes and a sleeping bag. The camping equipment will be borrowed from the students' families. School vans will be used to get to the campsite. The van holds 12 people and gets 15 miles per gallon. The school district will provide vans for free that normally rant for $\$ 60,00$ per day. The campsite is 76 mites from the school. Gasoline costs $\mathbf{\$. 9 3}$ a galion.

Campsites cost $\$ 12.00$ per night and each campsite will hold 8 people. The principal says there should be 1 adult for every 6 students. The camping trip will last from 5:00 p.m. Friday night to 4:00 p.m. Sunday aftemoon.
\bullet
The students must raise the money for gas food, and the campsites for everyone involved.

How much money must be raised for each student to go on the camping trip? What is the total cost? Use Data Organization Sheet to complete information below.

Total cost for food. \qquad $-$ \qquad

Total cost for vans. \qquad

Total cost for campsite. \qquad

Total cost for the trip. \qquad

Total amount for each student to raise. \qquad

- 1991 Cal Stave Fullerton Prose

GOING CAMPING DATA ORGANZATION SHEET

PEOPLE GOING: Number of Students \qquad
Number of Adults
TOTAL PEOPLE

MEALS: Number of meals per person \qquad
Number of people \qquad
Total meals served \qquad
Cost per meal \qquad
Total food cost \qquad

VAN COST: Total miles (round trip)
Miles per galion \qquad
Total gallons \qquad
Cost per gallon \qquad
Number of vans \qquad Individual van cost (gas) \qquad
Total van cost (gas) \qquad
CAMPSITES: Number of people \qquad
Number of people allowed
Per campsite \qquad
Number of campsites needed \qquad
Number of nights \qquad
Cost of a campsite per night \qquad
Total campsite cost \qquad

Total cost of food, transportation, and campground

Names \qquad
GOING CAMPING
Siudent Activity Sheel 2

Sifuation:
The students decided to sell pencils and erasers with the school name on them to raise
money for the camping trip.
Pencils cost $\$.05$ each and erasers cost $\$.07$ each. They plan to sell pencils for $\$.15$ each and erasers for $\$.20$ each.

How many pencils and erasers must be sold to raise the money necassany to go on the camping trip?

Total cost of trip from Student Activity Sheet 1
Cost of 1 pencil \qquad
Selling price of 1 pencil \qquad
Profit on the sale of 1 pencil \qquad
Cost of 1 eraser \qquad
Selling price of 1 eraser \qquad
Profit on the sale of 1 eraser \qquad
To help you compete this Student Activity Sheet you need to first complete the Guess and Check Sheet.

Approximate number of pencils to be sold to meet goal \qquad
Profit on the sale of pencils \qquad
Approximate number of erasers to be sold to moet goal \qquad
Proffit on the sale of erasers \qquad
Total profit \qquad
\qquad

GOING CAMPING GUESS ANDCHECKSHEET

Total cost of trip from Activity Sheet $1 \$$
Estimate the number of pencils and erasers you will need to sell in order to earn just enough money for the trip. Write the estimate in the chart and use your calculator to compute the profit. In order to arrive at the amount of profit, you may need to do several estimates. Use each result to get as close to your goal as you can to meet expenses.

Estimated pencils to be sold	Profit per pencil	Prolit from pencil sales	Estimated \% of erasers to bo sold	$\begin{array}{\|c\|} \hline \text { Profit } \\ \text { per eraser } \end{array}$	Profit from oraser sales	Total Profit from pencils and erasers

PARDON MY DEAR AUNT SALLY

GRADE:
7-8
STRAND:
Algebra
SKILL:
Use onder of operations to compute.

MANAGEMENT

CLASS ORGANIZATION: Partner/Individual

TIME FRAME: One or two math periods

MATERIALS: Calculator
VOCABULARY: Order of operations, experiments
PREREOUISITE SKILL: Basic operations, exponents

LFSSON

- DIRECTED INSTRUCTION:

- Teacher asks: "John put on his shoes and his socks and his pants. If this were the order in which he dressed, would it make sense? If not, why? What would be
belter?:
"Now, use your calculator to solve $6+15 \times 5=$ \square
- Teacher asks: "What answer did you get? Did anyone get another answer? How
did you get your answers?"
- Place the two possible responses on the board:

- Explain that mathematicians have developed rules to avoid getting two answers for this kind of problem. (Note: the "Rules for Order of Operations" page may be used as a transparency for the overhead projector.)

- GUIDED PRACTICE:

- Hand out Student Activity Sheet 1 and a Rules For The Order of Operations.

Part 1 Directions: Underline the pa 5 of numbers and the operation you will do first and then complete the problem.

1. $8+9 \times 7=71$
2. $135-2 \times 9=72$
3. $29+58 \times 32=1885$
4. $3 \times 15 \cdot 11=34$
5. $\frac{58+2+63=92}{}$
6. $516+6+742=828$

Discuss and verify correct responses.

- INDEPENDENT PRACTICE:

Students complete Activity Sheet 1, Part 2.

Part 2 Directions: Use the Order of Operations to solve:

1. $(5 \times 3)+(9 \times 6)+10=79$
2. $5 \times(3 \times 9) \times(6+10)=2160$
3. $(5 \times 3)+9 \times(6+10)=159$
4. $12 \times 15+17 \times 19=503$
5. $12 \times 15-17 \times 6=78$
6. $12+3+72+9=12$
7. $115+5 \cdot(18-12)=17$
8. $42+37+15-2 \times 3=88$
9. $42+37+(15-2) \times 3-118$
10. $42+30+15 \times 3=48$

- EVALUATION:

Teacher observation and Student Activity Sheets.

- EXTENSION ACTIVITY

Students complete Student Activity Sheot 2.

PARDON GY DEAR AUNT SALLY
 Transparency
 BULES EOR THE ORDER OF OPERATIONS

1) PARENTHESES
[Do all operations $x_{1}+,+-$, INSIDE parentheses () first.]
2) MULTIPLY 8 DIVIDE [Mutiply and divide in order. If division appears to the left of multiplication, then divide before multiplying.]
3) ADD \& SUBTRACT
[Add and subtract in order, left to right]

The acceptable answer to
$6+15 \times 5$ would be the same as
$6+(15 \times 5)=$
or
$6+75=81$

Memory device for this rule:

Parden	Mx	Dear	Aunt	Sally
a	u	i	d	u
r	1	v	d	b
θ	1	i		t
n	1	d		r
1	p	-		a
h	1			c
θ	y			t
s				
e				
s				

Name \qquad
PARDON AY DEAR AUNT SALLY

RULES FOR THE ORDER OF OPERATIONS

1) PARĖNTHESES

2) MULTIPLY \& DIVIDE
3) ADD \& SUBTRACT
[Do all operations $x_{1}++_{1}-{ }_{-}$, and powers INSIDE of parentheses () first.]
(Mullipy and divide in order. If division appears to the left of multiplication, then divide before multiplying.]
[Add and subtract in order, left to right.]

The accepted answer to
$6+15 \times 5$ would be the same as
$6+(15 \times 5)=$
$6+75=81$

Memory device for this rule:

Pardon	My	Dear	Aunt	Sally
a	u	1	d	
r	1	v	d	b
-	1	1		1
n	i	d		P
t	p	e		a
H				c
0	y			,
s				
θ				
s				

Name
 PARDON MY DEAR AUNT SALLY
 Student Activity Sheel 1
 Part 1 Directions: Underline the pair of numbers and operation you will do first and

 then complete the problem.$1.8+9 \times 7=$ \qquad 4. $3 \times 15 \cdot 11=$ \qquad
2. $15-7 \times 9=$ \qquad 5. $58+2+63=$ \qquad
\qquad $6.516+6+742=$

Part 2 Directions: Use the Order of Operations to compute.

1. $(5 \times 3)+(9 \times 6)+10=$ \qquad
2. $5 \times(3 \times 9) \times(6+10)=$ \qquad
3. $(5 \times 3)+9 \times(6+10)=$ \qquad
4. $12 \times 15+17 \times 19=$ \qquad
5. $12 \times 15-17 \times 6=$ \qquad
6. $12+3+72+9=$ \qquad
7. $115+5-(18-12)=$ \qquad
8. $42+37+15-2 \times 3=$ \qquad
9. $42+37+(15-2) \times 3=$
$10.42+30+15 . \times 3=$ \qquad

Name \qquad
PARDON MY DEAR AUNT SALLY
Student Activity Sheet 2
RULES FOR ORDER OF OPERATIONS WITH EXPONENTS
$1)$ PARENTHESES
2) EXPONENTS
3) MULTIPLY \& DIVIDE
4) ADD \& SUBTRACT
[Uo all operations $x_{1}+,+,-$, and powers INSIDE of parentheses () first.]
[Find value of any powers (exponents)]
[Multipy and divide in order. If division appears to the left of multiplication, then divide before multiplying.]
[Add and subtract in order, left to right.]

Memory device for this rule:

${ }_{\text {Please }}^{(1)}$	$\begin{gathered} n^{2} \\ \text { Excuse } \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathbf{y y} y \end{gathered}$	Dear	Aunt	Sally
a	x	U	1	d	u
「	p	1	v	d	b
e	0	t	1		1
n	n	i	d		r
t	θ	p	θ		a
h	n	P			c
e	1	y			1
\mathbf{S}	s				
θ					

Rewrite the exponents: $\quad 2^{3}=2 \times 2 \times 2$
Example: $4+\mathbf{2}^{3}$ is the same as
$4+8=12$
$(2+4)^{3}$
is the same as
$6^{3}-216$

1. $7+3^{2}=16$
2. $(7+3)^{2}=100$
3. $(5+3)+9 \times 6+10^{2}=162$
4. $7^{2}+3=52$
5. $49^{2}+35=2436$
6. $(49+35)^{2}=7056$

Write and solve 5 new probleme on the back of this page.

AN ANCIENT ODDITY

GRADE: 7.8
STRAND:

SKILL:

MANAGEMENT

CLASS ORGANIZATION:
TIME FRAME:
MATERIALS:
VOCABULARY:
PREREOUISITE SKILL:

Patterns and Functions
Discover the pattern reiationship between consecutive odd numbers and numbers to the third power. (Cube numbers)

Individual or pairs
One math period
Calculator, scissors
Cubes and squares of numbers, exponential, archaeologist
Powers of numbers

LFSSOM

- DIRECTED INSTRUCTION and GUIDED PRACTICE.

Hand out Ancient Stone Tablet pant 1 (Stirient Activity Sheet 1) and read the following motivating story to the class.

Archacologlats found an old tone tablet buried In the ruins of a
destreyed city. Over the centuries some of the numbers on the tablet destroyed cify
were damaged.

Your task is to flgure out what the missing numbers are.

1. Tell the students to complete the blanks on the tablet by filing in the missing numbers to form a pattern. Assist students as needed by telling them the pattern is related to odd numbers.

- INDEPENDENT PRACTICE:

2. Teachor reads: Years Iater the Archaeologlsts found the second pant of the tibi... Hand out Ancient Stone Tablet Pant 2 (Student Activity Sheet 2).
3. Students use sclssors to cut out the Ancient Stone Tablet. Place the second part of the tablet to the right of the first pant.
4. Have studems complete the numbers, and discuss the patterns that were originally written on the tablets.

- HOME ACTIVITY:

Hand out Home Activity Sheet and have students complete the tablet and columns for homework.

Teacher Answer Key - Student Activity Sheet 1

1. Complete the blanks on the tablat by filling in the missing numbers to form a pattern.
2. What do you notice about the numbers on this tablet?

ROW

1
2
3
4

5

6

7

8

9

10

11

AN ANCIENT ODDITY
Teacher Answer Kay - Student Activity Sheet 2
Years later Archaeologists found the second part of the tablet.

1. Cut out or place the two sections of the tablet together so the horizont: I lines match.
2. Fill in the missing numbers to discover the pattern on the Ancient Tatlet. What did you discover?

Teacher Note: The next to the last column consists of cube numbers. i.e. numbers found by multiplying a number by itself three times. Example: $64=4 \times 4 \times 4$

AN ANCIENT ODDITY
Teacher Answer Kay - Home Activity Sheet

The sum of the numbers in each row of tablet is to be written in column A. The row number raised to the second power is placed in column B . Example: $1+3+5-9$ which is 3^{2} or 3×3.
In row 25 you will have column $A=625$ and column $B=25^{\circ}$
\qquad
AN ANCIENT ODDITY
Student Activity Sheet 1

1. Complete the blanks on the tablet by filling in the missing numbers to form a pattern.
2. What do you notice about the numbers on itis tablet?

ROW
ANCIENT
STONE
TABLET
PART 1

Name \qquad
AN ANCIENT ODDITY Student Activity Sheet 2

Years later Archaeologists found the second pan of the tablet.

1. Cut out or place the two sections of the tablet together so the rows line up.
2. Fill in the missing numbers to discover the pattern on the Ancient Tablet. What did you discover?

3. Complete the blanks on the tablet by filling in the missing number in form a pattern.
4. Use the numbers of each row to complete column \mathbf{A} and B .
(Hint: What kind of numbers are found in the tablet.)

What are the numbers for columns A and B in row 25?
How does this tablet difter trom the other Stone Tablets?

CAMP-LA

ANOTHER FENCE ON THE WALL

GRADE:
STRAND:
SKILL:

MANAGEMENT

CLASS ORGANIZATION: Whole class, pairs, or small groups
TIME FRAME:
materials:
VOCABULARY:
PREREQUISITE SKILL: Area of a rectangle formula, graphing data

LESSON

- DIRECTED INSTRUCTION:

Explain that you want to fence a rectangular area in your back yard to be used for a vegetable garden. One side will be an existing brick wall. The other three sides are so be enciosed by 30 feet of fencing. You want to find which dimensions wifl create a rectangle, so that the area of the garden is as large as possible.

Hand out Student Activity Sheet 1 and a graph sheel. Ask them to fill in the first line of the chart. Z is 1 foot. Discuss.

If Z is 1 ft ., there are 2 sides this size, then 2×1 or 2 feet of the original 30 feet of fence are used in those 2 sides. This leaves $30-2$ or 28 feet for side Y.

Y

Z	Y	Amount of fencing used $2 \times Z+Y$	Aras of vegotable garden $Z \times Y$ sg.f.
1	28	30	28

$2 \times Z+Y$ is $2 \times 1+28=30$ feet which shows that we didn't make a mistake in finding Y. Remember you should always end up using exactly 30 feet of fencing. Students record this answer on the graph.

- GUIDED PRACTICE:

Sludents fill in 2 on the chart for $\mathbf{Z}=2$ feet

2 sides of 2 feot
1 side of 26 feet Total

- 4 feet
- 26 for
- 30 teel

Students record this answer on the graph.
First use whole number choices for \mathbf{Z}. When they have narrowed down their choices of whole numbers, they then start with decimals.

As an example of working with a decimai number, ask them to fill in a line on the chart for $Z=2.4$ feet. They should realize 2 sides of 2.4 uses 2×2.4 or 4.8 feet of the fence, leaving $30-4.8$ or 25.2 feet for the other side. So $Y=25.2$ feat.

Checking for mistakes:
2 sides of 2.4 feet $=4.8$ feet
1 sida of 25,2 foet $=25.2$ feat
Total fencing used $=30.0$ feet

The area of the vegetable garden is $2.4 \times 25.2=\mathbf{6 0 . 4 8} \mathbf{~ s q}$. ft .

Z	Y	Amount of foncing used $2 \times Z+Y$	Area of vegetable arden $Z X Y$ sq.f.
1	28	30	28
2.4	25.2	30	60.48

Ask what they observed. Guide them to notice that yhen Z increased by $1.4 \mathrm{ft}, \mathrm{Y}$ decreased by 2.8 ft , the area increased by 32.48 sq . ft., and the amount of fencing specified in the problem remains 30 feet. Students search for the largest possible area, using previous results as a guide.
Students record all trials on the graph.

- INDEPENDENT PRACTICE:

Students complete Student Activity Sheel 1, and graph each answer. Upon completion of the Student Activity Sheet, discuss class observations from the chant and graph. They should find that the closer they chose \mathbf{Z} to 7 or 8 inches the larger the area became, the further from 7 or 8 inches the smailer the area became. Those students who explore using decimals, between 7 and 8 find that the largest area occurs when $Z=7.5$.

ANOTHER FENCE ON THE WALL

Teacher Answer Sheet
Below is an organized list of possible answers. Student choices for Z may vary from this.

2	Y	$\begin{gathered} \text { Amount of fenced used } \\ 2 \times 2+Y \end{gathered}$	Area of vegetable grarion $7 \times Y$ soft.
1	28	30	28
2	26	30	52
3	24	30	72
4	22	30	88
5	20	30	100
6	18	30	108
- 7	16	30	112
- 8	14	30	112
9	12	30	108
10	10	30	100
11	8	30	88
12	6	30	72
13	4	30	52
14	2	30	28

2	Y	$\begin{aligned} & \text { Amount of fenced used } \\ & 2 \times 7+y \end{aligned}$	Area of vegotable =rardon $7 \times Y$ gafi.
7.0	16	30	112.00
7.1	15.8	30	112.18
7.2	15.6	30	112.32
7.3	15.4	30	112.42
7.4	15.2	30	112.48
- 7.5	15.0	30	112.50
7.6	14.8	30	112.48
7.7	14.6	30	112.42
7.8	14.4	30	112.32
7.8	14.2	30	112.18
8.0	14.0	30	112.00

'You may wish to have them look at the results of the area columns of these two charts.

CAMP-LA
LESSON 15

Another Fence On The Wall Student Activity Sheet 1, page 2 Teacher Answer Kay

Answers to student questions:

1. The dimensions for largest ares are

$$
\begin{aligned}
& Z=7.5 \mathrm{ft} \\
& Y=15 \mathrm{ft} . \\
& m \theta a=112.5 \mathrm{sq} . \mathrm{ft} .
\end{aligned}
$$

Since students are using guess and check they may nol arrive at the exact
answer.
2. A Y is twice as blg as Z. ($15=2 \times 7.5$)
B. Y is $\frac{1}{2}$ of the amount of fencing used. (15 $=\frac{1}{2} \times 30$) Z is $\frac{1}{4}$ of the amount of fencing used. ($7.5=\frac{1}{4} \times 30$)
C. You may wish to have students do the extension below or discuss the fact that 1,2 , and 3 above would be true for any size fence. If instead of 30 ft . you had 100 ft . of fencing, then
a) Y would be $\frac{1}{2} \times 100$ or 50 ft .
b) Z would be $\frac{1}{4} \times 100$ or 25 ft .
c) Y would be as big as Z

Teacher observation and Student Activity Sheet.

- EXTENSION:

Student solve the same problem with 40 ft . or 100 ft of fencing.

Name \qquad

ANOTHER FENCE ON THE WALL

 Student Activity Sheet 1 page 1You want to fence in a rectangular area in yeis inackyard to be used for a vegetable garden. One side will be an existing brick wall. The other three sides are to be enclosed by exactly 30 ft . of fencing. You need to find which dimensions will create a rectangle, so that the area of the garden is as large as possible. Reminder: Area of a Rectangle = length x width.

Y

	$\begin{gathered} \text { (feet) } \end{gathered}$	Amount of fencing used $2 \times \underset{(f e \theta t)}{\longrightarrow}+$	Aree of vegetable garden (square feat)
1			

CAMP-LA LESSON 15

98
CAMP.LA

- 1891 Cal Stato Fullorton Pross

123
\qquad
Another Fance On The Wall Student Activity Sheet 1, page 2

Additional workspace.

| (feet) | Amount of fencing used | Ares of vegetable garden | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

\qquad

ANOTHER FENCE ON THE WALL
 Student Activity Sheet 1, page 3

1. What dimensions gave the biggest area?

Z $=$ \qquad Y $=$ \qquad
\qquad Area $=$ \qquad
2. Use your \mathbf{Z} and Y in question 1 to answer the following questions.
A. What do you observe about the relationship of the width to the length in your solution? \qquad
\qquad
\qquad
\qquad
B. What do you observe about the relationships between the width and the amount of fencing, and the length and the amount of fencing? \qquad
\qquad
\qquad
\qquad
C Other observations. \qquad
\qquad
\qquad
\qquad
\qquad

THIS LESSON RULES!

GRADE:
STRAND:
SKILL:
MANAGEMENT CLASS ORGANIZATION:

TIME FRAME:
MATERIALS:
VOCABULARY:
PREREOUISITE SKILL:

7-8
Logic
Classification, logical reasoning, rounding, using function rules.

Whole group, individual or pairs
One or two math periods
Calculator, Data Recording Page
Odd, even
Round numbers, order decimals, follow a defined rule, classification

LESSON
To the teacher: This lesson is different from any you may have seen before and certainly different from any your students have experienced. It is one of the CAMP-LA Lessons on original mathematical research al the student's level. As a teacher -- stress to the students that they are taking on the role of "research mathematicians."

- DIRECTED INSTRUCTION:

1. "Here is a rule that can be applied to numbers. Weill call it Function Rule F." On the board write

> FUNCTION RULE F Multiply the number by 7
> and then round down to
> the nearest whole number

(Rounding dowis is also called "truncating" or "chopping off" the fractional part.)

As a class, apply Rute F to several starting numbers to see what happens. For example, if you start with 5.4 you first multiply by 7, getting 37.8. Rounding down to the nearest whole number gives 37. So, Rule F, applied 10 5.4, gives 37. We can write:

F

$$
5.4 \rightarrow 37
$$

You can read it as: "5.4 is changed by Rule F to 37" or "Rule F sends 5.4 to 37.: Try several other examples by asking your students to supply the missing numbers. Use examples such as these:

F $100 \rightarrow ?$	(answer) $(700$, no rounding needed)
$100.1 \vec{F} ?$	$(700.7 \rightarrow 700)$
$100.2 \rightarrow ?$	$(701.4 \rightarrow 701)$

$$
\begin{array}{ll}
0.01 \rightarrow ? & (0.07 \rightarrow 0) \\
0.86 \rightarrow ? & (6.02 \rightarrow 6)
\end{array}
$$

In discussing problems like the next three, be sure to get more than one starting number, but dont: expect anyone to describe all possible starting numbers that work.
Begin with a number, apply Function Rule F, and get 35.
1

> FUNCTION RULE F
> $2 \rightarrow 35$

Ask, "What could the starting number be?" Elicit student input. The function rule changes 5 into 35, and also any number from 5 up to but not induding ($5 \frac{1}{7}$ or $5.142857 \ldots$...)

ANSWERKEY

$$
\begin{gathered}
\text { FUNCTION RULE F } \\
? \rightarrow 35
\end{gathered}
$$

Any number between 5 and 5.142857 are possible numbers that work.

The range of products that wifl round down to 35 is 35 to $\mathbf{3 5 . 9 9 9 9 9 9}$. The inverse of the function rule, (divide by 7) is applied above to find the range of missing factors.

2

> FUNCTION RULE F
> $? \rightarrow 24$

Ask, "What corid the starting numbers be?" Solution: Divide 24 and 24.999999 by 7, that is, work backwards.

ANSWERKEY

```
FUNCTION RULE F
```

$\rightarrow 24$
(3.4285714...
to
$3.5714284 \ldots$)

$$
? \rightarrow 44.1
$$

Ask, "What could the starting numbers be?" ANSWERKEY

FUNCTION RULE F

$$
? \rightarrow 44.1
$$

(no solution)
(Try any numbers as factors that students suggest, without comment, until they realize that no number will work since the result of applying Function Rule F must be a whole number.)

Function Rule F provides a way to separate all numbers into two groups the ones that result in even numbers after applying Function Ruie F and the numbers that result in ood numbers after applying Function Rule F:

Draw a chart on the board as above. Put the starting numbers in the proper columns. Your chart might look like the one on the right. The results of applying Function Rule F are in parentheses.

Ask the students what they notice. A few observations might be:

- If a starting number is an aven whola number, it will go in the EVEN column (bocause 7 times any oven number is even).
- If a starting number is an odd whole number it will go in the ODD column (because 7 times any odd number is odd).
- If a number is a whole number plus $\frac{1}{2}$, then it will go in the column Other than the one for the whole number by itself (e.g. $\frac{1}{2}$ goes in the odd column because $\frac{1}{2} \rightarrow 31$, whereas 4 goes in the even column; $3 \frac{1}{2}$ goes in the even column because $\frac{1}{2} \rightarrow 24$, whereas 3 goes in the odd column).
- Check : iny observations students notice to verify accuracy.

2. Now introduce Rute G

FUNCTION RULE G

 Multiply the number by 8 and then round down to the nearest whole number.Notice that the only difference between Rules \mathbf{G} and F is that \mathbf{G} multiplies by 8 (rather than 7) before rounding down.
Apply Rule G to some of the numbers you have already used as starting numbers. For example:

5.4	$\xrightarrow{\text { G }}$	43	
	G		
100	\rightarrow	3	(800)
	G		
100.1	\rightarrow	$?$	(800)
	G		
100.2	\rightarrow	$?$	(801)
	G		
5	\rightarrow	$?$	(40)
2	G	24	

(Any number from 3 up to, tut not including, $3 \frac{1}{8}$ or 3.125 . On the calculator, the largest number that works is $\mathbf{3 . 1 2 4 9 9 9 9)}$.
$\xrightarrow{\text { ? }} \rightarrow$
35
(Any number from $4 \frac{3}{8}$ or 4.375 up to, but not including, $4 \frac{1}{2}$ or 4.5).
3. Now draw a chan that allows us to classify a number according to bott, rules simultaneously. Label the four celis A, B, C and D for converience.

RESULTOF USING RULEG

Hand out Student Activity Sheet 1 and the Data Recording Sheet.
To place a number on this chart you must use both rules F and G on your starting number. For example, which cell does 5.4 go in ? First apply F to 5.4. Witte
$5.4 \rightarrow 37$
37 is odd, 80 the starting number 5.4 must 90 in the "ODD" eolinmn (cell B or D). What does Rule G do to 5.4 ? Continue your dlagram 眺e this:

43 is also odd, 805.4 must go in the "ODD" [mu (cell C or D). Conclude that 5.4 must 90 in cell D, and write it in.

RESUTT OF USING RULEF

Students should record these results on their own chart and Data Recording Sheet. Similarly, they put other starting numbers that you have already used into their proper calls.

- INDEPENDENT PRACTICE:

Encourage students to use thetr Data Rocording Sheets to find other numbers that would go in each of the cells.
When the students have had a chance to put several numbers in the chart, discuss class observations of results. As part of this discussion ask questions like:

- What are some numbers between 0 and 0.2 that wouid 90 in cell A ? (Anything between 0 and 0.1249999.)
- What are some numbers between 0 and 0.2 that would 90 in cell C? (Anything between $\frac{1}{8}$ and $\frac{1}{7}$ i.e between 0.125 and 0.1428571 .)
- What are some numbers between 0 and 0.2 that would go in cell B? (There aren't any.)
- Where do the whole numbers go? (Rule G, applied to any whole number, results in an oven number, so all whole numbers must go in cells \mathbf{A} or \mathbf{B}. We already know that the eyen whole numbers must 90 in \mathbf{A} or C , so in fact they must go in A. Similarty, the odd whole numbers must 90 in B.)

Extensions:

1. Suppose you used the following 100 starting numbers: $0.00,0.01,0.02,0.03, \ldots, 0.98,0.99$.
How do you think they would be distributed among the four cells? Would each cell get 25 of them? Look for efficient ways to decide where the 100 numbers go. (The chart below shows, surprisingly, that the 100 numbers are not cistributed equally among the cells.)

RESURT OF USANG PULEF

	EVEN	000
	A .00.29.58.86	B. . $25.5 \quad .75$
	A .01 . 3 . 59.87	. 26.51 .76
	. 02 . 31.6	$\begin{array}{llll}.27 & .52 & .77\end{array}$
	. 03.32 .61	. 28.53 .78
Even	. 04.33 .62	. 54.79
	. 05.34	. 55.8
	. 06.35	. 56.81
	. 07.36	. 57.82
	. 08.37	. 83
	. 09	. 84
	. 1	. 85
	.11	
	. 12	
RESUTOF	(29 numbers)	(23 numbers)
USNG	C. 13 . 38.63 .88	D. 15 . 43.72
PULEG	. 14 . 39.64 . 89	. 16.44 . 73
	. 4.65 .9	. 17.45 . 74
	. 41.66 .91	. 18.46
	. 42 . 67.92	.19 .47
	. 68.93	. 2.48
	. 69.94	. 21.49
	. $7 \quad .95$. 22
	. 71.96	. 23
at	. 97	. 24
	. 98	
	(28 numbers)	(20 numbers)

Students who get this far should be encouraged to continue by looking at these 100 numbers: $1.00,1.01,1.02, \ldots 1.98,1.99$. They will find that the full set of 200 numbers are more ovenly distributed among the cells.)
2. Drop Rule G and replace if whth Rule H. Hand out Siudent Activity Sheet 2.

RULE H
Multiply the number by 9 and then round down to
the nearest whole number.
Students explore how this rule change affects the classification of starting numbers. More generally, students can explore what happens when the rules are changed to multiply by other numbers before rounding down.

RULE F
Multiply the number by 7
and then round down to
the nearest whole number

RULE G
Multiply the number by 8 and then round down to the nearest whole number

\qquad
THIS LESSON RULES!
Data Recording Sheet

RULE \bar{F}
Multiply the number by 7 and then round down to the nearest whote number

RULE H
Multiply the number by 9 and then round down to the nearest whole number

SAMPLE ASSESSMENT:

Lessons 4-16

1. Vehicles on Eighway 3

Vehicle	Longth
18 Wheeler	48 feet
Piclap	18 feet
Drlivery Van	18 feet
Car	12 feet

Vehicles traveling on Bighway 3 have to talire a ferryboat to cross the Deep River. The ferry is 20 yards long.
What combinations of vehicles can be on the ferry at any crossing if we want the farry to be as full as possible?

Student response should include:
Convert 20 yards to 60 feet.
Add to find vehicles whose ccmbined lengths would be 60 feet or less.

1.	1-18 wheeler and 1 car	60
2.	1 pickup and 2 delivery vans	50
3.	1 pickup, 1 delivery van and 2 cars	58
4.	1 pickup and 3 cars	54
5.	2 pickups and 1 delivery van	52
6.	2 pickups and 2 cars	60
7.	3 pickups	54
8.	1 delivery van and 3 cars	52
9.	2 delivery vans and 2 cars	56
10.	3 delivery vans and 1 car	60
11.	5 cars	60

2. Measure and record the lengths on the map in inches and and miles. Find the shortest route to each destination.

a. From Home to Uncle Jim's
h. From Home to the Mall
c. From Home to the Water Park, to the 200 , and back home \qquad
d. The shortest route from Uncle Jim's to the Mail?
e. The lonsert route from the Mall to Uncle Jim'e? You way not use the same

Student responses should include:

a. From Home to Uncie Jim's $\left[5.5^{n}=71.5 \mathrm{miles}\right]$
b. From Home to the Mall [$4^{\prime \prime}=52$ miles]
c. From Home to the Water Park, to the 200 , and back home $\left[9^{\prime \prime}=117\right.$ miles]
d. The shortest route from Uncle Jim's to the Mall? $\left[7.5^{\prime \prime}=97.5\right.$ miles]
e. The longest route from the Mall to Uncle Jim's? You may not use the same road twice. [answers will vary]
3.

The double dodseball court is 24 feet long and 16 feet wide. What is the perimeter of the court?
What is the area of the court? \qquad
How did you use your calculator to find the perimetar and the area?

Student responses should include:
a. The perimeter is $\mathbf{8 0}$ feet long.
b. The area is 384 square feet.
c. Students will add two lengths plus two widths for the perimeter and will not necessarily need the calculator. They multiply length x width for the area using the calculator.
4. Square each of the following mombers and look for a pattern. 22 \qquad 2 \qquad 24 \qquad 25 \qquad
26 \qquad 27 \qquad 28 \qquad 29 \qquad 30 \qquad

Describe the pattern you find.

Does the pattern remain the same for 31 to $39 ?$ Show your answer.

Student response should include:

a. Multiply each number by itself to find the square number.
b. Subtract smaller square number from the next larger square to find the difference between them.
c. Recognize pattern of odd numbers in the differences.

a. The differences are the odd numbers from 63 to 77.
b. The pattern of odd numbers is the same.
5.

Attendance Statistics for Three Amusement Parks			
	Magic	Sandyland	Enchanted
	Playground		Island
	78,261	$\mathbf{7 6 , 3 5 9}$	$\mathbf{7 8 , 1 0 3}$
January	$\mathbf{8 1 , 0 2 6}$	$\mathbf{7 4 , 2 9 7}$	$\mathbf{7 5 , 6 2 1}$
February	$\mathbf{7 8 , 5 9 3}$	$\mathbf{7 9 , 4 8 5}$	$\mathbf{8 0 , 1 3 9}$
March			
Total			

a. Find the average attendance for the three months for each amusement part
Magic Playground
Sendyland
Enchanted Island
h. Use the average to determine in which month each park might expect
its one millionth visitor.
Magic Playground
Eandyland
Enchanted Island
c. How did you find your answers?

Student response should include:
Chart totals:

Magic Playground 237,883

Sandyland 230,141

Enchanted Island 233,863
a. 79294

76714
77954
(rounded to the nearest person)
(rounded to the nearest person) (rounded to the nearest person)
b. January of following year

February of following year
January of following year
c. Add the total attendance and the average until the display shows 1,000,000 or more.
Use the constant feature for addition. Example: $237883+79294===$.. Student might also multiply the average by 12 to estimate a full year's attendance, then add the average amount until $1,000,000$ is exceeded.
6.

Car Numbers	Places					
	256	1	2	3	4	5
	512					
	394					
	141					
	253					

The first 5 cars to finish a race lost their car numbers. Use the logic grid and clues to find the numbers of the cars and in what place they finished.
a. The car that finished thind has a number that is a multiple of 16.
b. The second place finisher's number is half as large as the third place car.
c. The fourth place car's number is a palindrome.
d. The sum of the fourth and fifth place finishers' numbers equals the winner's number.

Student responses should include:

Stader			laces			
		1	2	3	4	5
Car	256		Yes			
Numbers	512			Yes		
	394	Yes				
	141				Yes	
	253					Yes

Lessons 9-12
7. a. Which do you think is larger, 7^{7} or 977 Estimate, then use the calculator.
Student response: $\quad \mathbf{7}^{9}=40,353,607 \quad 9^{7}=4,782,696 \quad 7^{9}>\mathbf{9 7}^{7}$
h. Choose two different mumbers for the base and power. Investigate using your calculator whether the amaller number as the base or the larger number as the base gives the greater answer. Record all results. Can you draw a conclusion?

Student response should include examples showing that no conclusion can be reached. For example:

$$
\begin{aligned}
& 1^{2}=1 \text { is less than } 2^{1}=2 \\
& 2^{3}=8 \text { is less than } 3^{2}=9 \\
& 3^{4}=81 \text { is greater than } 4^{3}=64 \\
& 4^{5}=1024 \text { is greater than } 5^{4}=625
\end{aligned}
$$

8. CANP-LA Ice Cream store has 37 different flavors to offer. Discuss how many different ways you can make a twoscoop ice cream cone. Chocolate on top of vanilla is comsidered different than vanilla on top of chocolata.

Student response: 1369. There are 37 choices for the first scoop and 37 choices for the second scoop. There are $37 \times 37=1369$ total possibilities.
9. Steve is riding a bicycle with 24 inch diameter wheels on a 17 mile trip. Answer the questions below:

Needed Information
12 inches $=1$ foot
5280 feet $=1$ mile

a. How many feet long is the diameter of the wheel?
h. How many feet long is the circumference of the wheel?
c. How many feet long is the bicycle trip?
d. How many revolutions will the bicycle wheel make during the trip?
Student responses:
a. $\quad 24$ inches $=2$ feet
b. $\quad c=3.14 \times 2=6.28$ feet
c. $\quad 17 \times 5280=89760$ feet
d. \quad Revolutions $=\frac{\text { distance }}{\text { circumference }}=\frac{89760}{6.28}=14292.993-14293$ completed revolutions.
10. How do you use a calculator to get a quotient with a whole number remainder? Write the steps used to find the quotient with a whole number remainder in simple language so that a young child would

Student response.

To use a calculator to find remainders in division of whole number

1. Divide using the calculator.
2. Write down the whole number part of your answer. (Leave off the decimal part.)
3. Multiply the whole number part of your quotient by the divisor.
4. Subtract this result from the dividend.
5. The result should be your remainder.
$2 6 \longdiv { 8 3 7 }$
$837+26$ shows 32.192307 on the calculator. Record the 32. Multiply $32 \times$
$26=832$. Subtract 832 from 837. $837-832=5$. SO $2 6 \longdiv { 8 3 7 } = 3 2$ RS.
6. Dxplain the mmbers that appear in a calcul-ior display when you do the following Record after each press on the equal sign.
a. $75+58=$ ㅍㅍㅍ플
b. 1020-72 $=$ ㅍㅍㅍㅡ․
c. $1024+2=\equiv=\equiv=$
d. 23×57=ㅍ플

Student response:
a. $75+58=====133,191,249$, 307 , 365

When " m " is first pressed the calculator computes $75+58$. Each additional time " $=$ " is pressed, the calculator adds 58 to the number in the display.
b. $1020-72=m===948,876,804,73 \%, 660$

When " $x^{\prime \prime}$ " is first pressed the calculator computes 1020-72. Each additional time " ${ }^{n}$ " is pressed, the calculator subtracts 72 to the number in the display.
c. $1024+2====$

Whon " $=$ " is first pressed the calculator computes $1024+2$. Each additional time " $=$ " is pressed, the calculator divides the number in the display by 2.
d. $23 \times 57====$

When " m " is first pressed the calculator computes 23×57. Each additional time " $=$ " is pressed, the calculator multiplies the number in the display by 23.
12. Choose five diffierent reccerding axtists Design a survey to dotermine the percent and number of ctudents that prefer each artist. Display the results using charts and circle graphs, Interpret your findings, and compare them with other students' results

Student response will vary.
13. a. The rectangular floor of your litchen has an area of 400 square feet. Write several possible dimensions for the room. Make a chart to display results.

Length	Width	Area

b. How many possibilities are there?

Student responses may include:

Length	Width	Area
1	400	400
2	200	400
4	100	400
5	80	400
8	50	400
10	40	400
16	25	400
20	20	400

If only whole numbers are considered there are 8 possibilities. This assumes a 2 by 200 room is the same as a 200 by 2 room. If fractional dimentions are allowed. There is an infinite number of possibilities.
14. Sparkling apple juice comes in three different sives: 12,32 , and 48 fivid ounces, Todiay the marlvet showed them priced as followse 12 om for $\$ 55$, 38 of for $\$ 129$, and 48 oz for $\$ 1.69$. Which is the best sive to buy? Explain
$\$ 55+1208$ w. 0458593
$\$ 1.29+5202=.0408125$
$\$ 1.69+4802=.0352083$
The 480 package is the least expensive per ounce. The best to buy may also take into account the size of the package and how often you drink apple juice.

CAMP - LA

> PRESERVICE
> SAMPLER BOOK GRADES K- 8

8

+ 5:~

[^0]: - 1991 Cal State Fullenton Press

