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THINKING IN ARITHMETIC CLASS

For many years now, most efforts to improve educational outcomes for
disadvantaged students have been based on the premise that what such children need
is higher expectations for learning coupled with intensified and careful application of
traditional classroom methods. Thus, what Is typically prescribed is more careful
explanations, more practice, and more frequent testing to monitor progress. Such
methods seem to workup to a point. That is, they produce gains on basic skills tests.
But they are not designed to teach children to reason am: solVe problems. Today, such
abilities are fundamental for participation in the economy and society in general.

The nearly exclusive focus on the kinds of "basic skills" that can be taught by
repetitive drill does not necessarily derive from a lack of ambition for disadvantaged
students or from a belief that the children are inherently Incapable of thinking and
problem solving. Rather, it is rooted in an assumption that most educators share about
all learning by nearly all children (some wouid except the °gifted"); that successful
learning means working step by step through a hierarchical sequence of skills and
concepts. The common view is that skills and concepts are ordered in rather strict
hierarchies, and that asking children to perform complex skills before they master the
prerequisite, simpler ones is to doom them to failure, or at least to frustration, in the
course of learning. This hierarchical mastery learning approach dictates that children
who have trouble learning some of the simpler skills practice them longer. But in
practice this turns out to deny disadvantaged children the opportunity to learn higher-
order abilities. i3ecause many disadvantaged are among those who learn slowly at the
outset, they are doomed tc more and more supervised practice on the "basics." They
never get to graduate to the more demanding and interesting problems that constitute
the "higher-order" part of the curriculum.

The work we describe in this paper is premised on a radically different set of
assumptions. We argue that disadvantaged children, like all children, can begin their
educational life by engaging in active thinking and problem solving. We argue further
that, when thinking-oriented instruction is carefully organized for this purpose, children
can acquire the traditional basic skills in the process of reasoning and solving problems.
As a result, they can acquire not only the fundamentals of a discipline, but also the ability
to apply those fundamentals, andcritically--a belief in their own capacities as learners
and thinkers.

Reviewing research and practical efforts to teach higher-order thinking skills a few
years ago, Resnick (1937) concluded that shaping a disposition to critical thought is as
important in developing higher-order cognitive abilities in students as is teaching
particular skills of reasoning and thinking. Acquiring such dispositions, she proposed,
requires regular participation in activities that exercise reasoning skills within social



environments that value thinking and juctiment and that communicate to children a

sense of their own competence in reasoning and thinking. This, in turn, calls for

educational programs suffused with thinkirv and reasoning, programs in which basic

subjed matter instruction serves as the daily occasion for exercising and extending

cognitive abilities. Explicit attention to thinking and reasoning seems particularly

important for children who are not experiencing daily practice in such reasoning in their

homes or wno do not trust their own out-of-school experience as being relevant to

school success. Such children often fail to learn the *hidden curriculum" of thinking and

reasoning that more favored children acquire without much explicit help from teachers.

We report here on the early results of an effort to aKily these ideas to early

mathematics teaching for disadvantaged chikiren. To embed basic mathematics

learning in a thinking curriculum, we had to design a new set of practices for the

mathematics classroom. We wanted to create an environment in which children would

practice mathematics as a field in which there are open questions and arguments, in

which interpretation, reasoning, and debateall key components of critical thought

play a legitimate and expected role. To do this, we needed to revise mathematics

teaching in the direction of treating mathematics as if it were an ill-structured discipline.

That is, we needed to take seriously, with and for young learners, the propositions that

mathematical statements can have more than one interpretation, that interpretation is

the responsibility of every individual using mathematical expressions, and that argument

and debate about interpretations and their implications are a normal part of

mathematical activity. Participating in such an environment, we thought, would develop

capabilities and dispositions for finding relationships among mathematical ideas and

between mathematical statements and problem situations. It would develop skill not

only in applying mathematics but also in thinking mathematically. In short, it would

socialize children into a developmentally appropriate form of the practice of mathematics

as a mode of thought, reasoning, and problem solving.

This goal, however, seemed at first to pose an insurmountable problem for school

beginnersespecially, perhaps, those we label cksadvantaged. To engage in the kind of

mathematical discussions we were aiming for, chikiren would have to know some

mathematics at the outset. They would need something to think about if the exercise

was not to be an empty one. A first question, then, was whether children entering school

knew enough about numbers and quantities to permit a reasoning- and discussion-

oriented program from the outset. Fortunately, a large body of research accumulated

over the past decade suggests that almost all children come to school with a substantial

body of knowledge about quantity relations and that children are capable of using this

knowledge as a foundation for understanding numbers and arithmetic.(see Resnick,

1989; Resnick & Greeno, 1990, for interpretive reviews). This knowledge,- we thought,

could provide the initial foundations for children's participation in a reasoning-based

mathematics program.



The Intuitive Basis for Early Mathematical Reasoning

Children come to school with two kinds of intuitively developed knowledge relevant to
mathematics learning. First, they know a good deal about amounts of physical material
and the relations amorv these amounts, even though they cannot yet use numbers to
describe these relations. Second, most chikken know the rules for counting sets of
objects. This gives them the beginning tool for using numbers to manipulate and
°ascribe quantity relations.

Protoquantitative Schemes

During the preschool years, children develop a large store of knowletje about how
quantities of physical material behave In the world. This knowledge, acquired from
manipulating and talking &tout physical mattirial, Mews children to compare amounts
and sizes and to reason about changes in amounts and quantities. Because this early
reasoning about amount of material is done without measurement or exact numerical
quantification, we refer to it as protoquantitativa reasoning. We can document
development durirg the preschool years of three sets of protoquantitative schemas:
compare, increasehdecrease, and part-whole (see Figure 1).

The protoquantitative compare schema makes greater-smaller comparative
judgments of amounts of material. Before they are two years old, children express
quantity jutiments in the form of absolute size labels such as big, small, lots, and little.
Only a little later, they begin to put linguistic labels on the comparisons of sizes they
made as infants. Thus, they cm look at two circles and declare cne bigger than the
other, see two trees and declare one taller than the other, examine two glasses of milk
and declare that one contains more than the other. These comparisons initially are
based on direct perceptual judgments without any measurement process. However,
they form a basis for eventual numerical comparisons of quantity.

The protmuantitative increaseldecrease schema interprets changes as increases or
decreases In quantities. This schema allows children as young as three or four years of
age to reason about the effects of adding or taking away an amount from a starting
amount. Children know, for example, that if they have a certain amount of something
and they get another amount of the same thing (perhaps mother adds another cookie to
the two already on the child's plate), they have more than before. Or, if some of the
original quantity is taken away, they have less than before. Equally important, chAlren
know that if nothing has been added or taken away, they have the same amount as
before. For example, children show surprise and label as "magic" any change in the
number of objects on a plate that occurs out of their sight (Gelman, 1972). This shows
that children have the underpinnings of number conservation well before they can pass
the standard Piagetian tests. They can be fooled by perceptual cues or language that
distracts them from quantity, but they possess a basic understanding of addition,

f;
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FIGURE 1 THE PROTOQUANTITATIVE SCHEMAS
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subtraction, and conservation. The protoquantitative increaseidecrease schema is also
the foundation for eventual understanding of unary addition and subtraction.

The pmtoquantitative part-whole schema is really a set of schemes that organize
children's knowledge about the ways in which material around them comes apart and
goes together. The schemas specify that material is aickiva That is, one can cut a
quantity into pieces that, taken together, awl the original quantity. One can also put
two quantities together to make a bigger quantity and then join that bigger quantity with
yet another in a form of hierarchical additivity. Implicitly, children know about this
additive property of quantities. This protowantitative knowledge allows them to make
judgments about the relations between parts and wholes, Mcluding class inclusion
(Markman & Siebert, 1976) and the effects of changes in the size of parts on the size of
the whole. The protocgrantitative part-whoie schema is the foundation for later
understanding of binary addition and subtraction and for several fundamental
mathematical principles, such as the commutativity and associativity of addition and the
complementarity of addition and subtraction. It also provkies the framework for a
concept of additive composition of number that underlies the place value system.

Counting

Counting is the first step in making quantitative judgments exact. It is a
measurement system for sets. Gelman and her colleagues have shown that children as
young as three or four years of age implicitly know the key principles that allow counting
to serve as a vehicle of quantification (Gelman & Gallistel, 1978). These principles
include the knowledga that number names must be matched one-for-one with the
objects in a set and that the order of the number names matters, but the order in which
the objects are touched does not. Knowledge of these principles is inferred from the
ways in which children solve novel counting problems. For example, if asked to make
the second object in a row "number 1," children do not neglect the first object entirely
but, rather, assign it one of the higher number names in the sequence.

Other research has challenged Gelman's assessment of the ages at which children
can be said to have acquired all of the countirg principles. Some of the challenges are
really arguments about the criteria for applying certain terms. For example. Gelman has
attributed knowledge of cardinality, a key mathematical principle, to children as soon as
they know that the last number in a counting sequence names the quantity in the whole
set; others would reserve the term for a more advanced stage in which children reliably
conserve quantity under perceptual Vansformations. A challenge that goes beyond
matters of terminology comes from research showing that, although children may know
all the principles of counting and be able to use counting to quantify given sets of objects
or to create sets of specified sizes, they may not, at a certain point, have fully integrated
their counting knowledge with their protoquantitative knowledge. Several investigators
(e.g., Sophian, 1987) have shown that many children who know how to count sets do not



spontaneously count in order to Gompare sets. This means that counting and the

protoquantitative cchemas exist initially as separate knowledge systems, isolated from

each other.

Integrating counting with the protoquentitative schemes. Such findings make it

clear that, even after knowledge of counting principles is estab!ished, there is

substantially more growth in number concepts still to be attained. A first major step in

this growth is integration of the number-name sequence with the protoquantitative

comparison sdlema. This seems to happen as young as about four years of age. At

this point. children behave as if the counting word sequence constitutes a kind of "mental

number line" (Resnick. 1983). They can quickly Identify which ea pair cf numbers is

morn tv, mentally consulting this number line, without actually stepping through the

sequence to determine which number comes later.

In the child's subsequent development, counting as a means of quantifying sets is

integrated with the protoquantitative part-whole and increase/decrease schemas. This

integration seems to develop as a result of participating in situations in which changes

and combinations of quantity are called for and there is a cultural mandate for exact

quantification. Out of school, this can occur in various play or household activities

particularly when age segregation is not strict so that young children engage freely with

older children and adults. School settings can mimic the conditions of everyday life to

some extent. However, a principal resource for promoting quantificaton of the schema!,

in school is the story problem. Several researchers (e.g.. De Corte & Verschaffel, 1987;

Riley & Greeno, 1988) have shown that children enterim school can solve many simple

story problems by applying their counting skills to sets they create as they build physical

models of the story situations. Because the stories involve the same basic relationships

among quantities as the protoquantitative schemes extensive practice in solving

problems via counting should help children quantify their original schemes. Such

practice should not only develop children's ability to solve problems using exact

numerical measures, but also lead them to interpret numbers themselves in terms of the

relations simcified by the protoquantitative schemes. Eventually, children should be able

to construct an enriched meaning for numberstreating numbers (rather than measured

quantities of material) as the entities that are mentally compared, increased and

decreased, or organized into parts and wholes.

Principles for a Reasoning-Based Arithmetic Program

With this research base as a grounding for our efforts, we set out.to develop a

primary arithmetic program (for grades 1 through 3) that would engage children from the

outset in invention, reasoning, and verbal justification of mathematical ideas. The school

in which we worked served mainly minority (94% were African-Americans). low-income

(69% were eligible for free or reduced-price lunches) children. Our goal was to use as

little traditional school drill material as possible in order to provide for children a
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consistent environment in which they mufti bit, socialized to think of themselves as
mathematical reasoners and to behave accordingly. This meant that we needed a
program in which children would successfully learn the traditional basics of arithmetic
calculation as well as more complex forms of reasoning and argumentation. The

11
program evolved gradually over a oariod of months. We describe it here in somewhat
schematized form as the instantiation of a set of six prindpies that guided our thinking
and experimentation.

1. Develop children's trust In Their own kn__ Wedge. Traditional instruction, by
focusing on specific procedures and on special mathematical notations and vocabulary,
tends to teach children that what they already know is not legitimately mathematics. To
develop children's trust in their own knowledge as mathematics, our program stresses
the possibility of multiple procedures for solving any proLlem, invites children's invention

11111 of these multiple procedures, and asks that children explain and justify their procedures
using everyday language. In addition, the use of manipulatives and finger counting

1111
ensures that children have a way of establishing for themselves the truth or falsity of
their proposed solutions. Fgure 2 provides examples of multiple procedures used by
second-grade children to solve the same addition problem, 158 + 74. The examples are

1111
copied from six different children's homework papers. Child A used a procedure of
adding the value of the leftmost digits, first 100 + 70, then 50 + 4. This unusual
decomposition left the 8 of 158 still to be added, which the child added to the already

11111
accumulated 54. To add the resulting 62 to 170, the child decomposed It to 60 and 2.
He added to 60 first, yielding 230, and then the 2, to yield the final answer. Child F used

1111

a more conventional place value decomposition, first adding up the hundreds (note that
she indicates that there are 0 hundreds in 74), then the tens, then the units, and finally
combinirq the three partial sums. Child E also tised a place value decomposition but
worked initially on the hundreds and tens combined (150 + 70). These and the other
solutions in the figure illustrate the ways in which written notation and mental arithmetic
are combined in the children's procedures.

11 2. Draw children's informal knowledg" developed outside school, Into the
classroom. An important early goal of the program is to stimulate the use of counting in
the context of the compare, increase/decrease, and part-whole schemes to promote
children's construction of the quantified versions of those schemes. This is done through
extensive problem-solving practice, using both story problems and acted-out situations.
Counting (including counting on one's fingers) is actively encouraged. Figure 3 gives an
example of a typical class problem, showing how it can generate several solutions; the
notations shown are copied from the notebook in which a child recorded the solutions
proposed by several teams who had worked on the problem. "
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FIGURE 2 EXAMPLES OF SEVERAL SECOND-GRADERS' SOLUTIONS TO
A COMPUTATIONAL PROBLEM
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Mary told her friend Tanya that she would glve her 95
barrettes. Mary had 4 bags of barrettes and each bag had9 barrettes. Does Mary have enough barrettes?
The class first developed an estimated answer, Then they wereasked, "How many more does she need?" The solutions below woregenerated by different class groups.

Group I first solved for the number of barrettes by repeated addition.Then they decomposed 4 x 9 into 2 x 9 plus 2 x 9. Then they sat 4) ismissing addend problem, 36 * 59, which they solved by a combinationof estimation end correction.

Group 2 set up a subtraction equation and then developed a solutionthat used a negative partial result.

Group 4 began with total number of barrettes needed and subtractedout the successive bags of 9.

rst.44
31

36 4-
3to
c\t/
LoO-

9

v49. 95 -3toc-3LO-30
-(0 =

(pb I 7.
$7

9.5-9 -4M

CIA-9

77-3(0
tck T. i
)(`

3"36

FIGURE 3 A SECOND-GRADE PROBLEM AND LEVERAL SOLLMONS
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3. Use formal notations (identity sentences and equations) as a public record

of discussions and conclusions. Children's intuitive knowlece must be linked to the

formal language of mathematics. By using a standard mathematical notation to record

conversations carried out in ordinary language and rooted in well-understood problem

situations, the formalisms take on a meaning directly linked to children's mathematica!

intuitions. First used try the teacher as a way of displaying for the class what a child had

proposed, equations quickly became common currency in the classroom. Most of the

children began to write equations themselves only a few weeks into the school year.

Figure 4 shows part of a typical teanher-led sequence in which children propose a

solution to a story problem. The teacher carefully linked elements of the proposed

solution to the actual physical material involved in the story (the tray of cupcakes) and an

overhead schematic of the material. Only after the referential meaning of each number

had been carefully established was the number written into the equation. The totql

sequence shown took about 1 minute 20 seconds.

4. introduce key mathematical structures as quickly as possible. Children's

prcitoquantitative schemas already allow them to think reasonably powerfully about how

amounts of material compare. increase and decrease, come apart and go together. In

other words, they already know, in nonnumerically quantified form, something about

properties such as commutativity, associativity, and adthive inverse. A major goal of the

first year or two of school mathematics is to 'Thathematize" this knowledgethat is,
quantity it and link it to formal expressions and operations. lt was our conjecture that

this could best be done by laying out the additive structures (e.g., for first grade: addition

and subtraction problem situations, the composition of large numbers, regrouping as a
special application of the part-whole schemas) as quickly as possible and then allowing

full mastery (speed, flexibility of procedures, articulate explanation!) of elements of the

system to develop over an extended time. Guided by this principle, we found it possible

to introduce addition and subtraction with regrouping in February of first grade.

However, no specific procedures were taught; rather, children were encc,uraged to

invent (and explain) ways of solving multidigit addition and subtaction problems, using
appropriate manipulatives and/or expanded notation formats that they developed.

It is important to note that a program built around this principle constitutes a major

challenge to an idea that has been widely accepted in the past twenty or tifirty years of

educational research and practice. This is the notion of teaming hierarchies
specifically, that it is necessary for learners to master simpler components before they

try to learn complex skills. Acoording to theories of hierarchical and mastery learning,
children should thoroughly master single-digit addition and subtraction, for example,
before attempting multidigit procedures, and they should be able to perform multidigit

arithmetic without regrouping smoothly before they tackle the complexities of regrouping.

We propose instead a distributed curriculum in which multiple topics are developed all

year long, with increasing levels of sophistication and demand, rather than a strictly

sequential curriculum.
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FIGURE 4 PART OF A WHOLE-CLASS DISCUSSION OF A STORY PROBLEM
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To convey the flavor of the process, Figure 5 shows the range of topics planned for a
single month of the second-grade program. All topics shown are treated at changing
levels of sophistication and demand throughout the school year. This distributed
curriculum discourages decontextualized teaching of components of arithmetic skill. It

encourages children to draw on their existing knowledge framework (the
protoquantitative schemas) to interpret advanced material, while gradually building
computational fluency.

Domain Spec fic Content

Reading/Writing Numerals 0-9,999

Set Counting 0-9,999

Addition 2- and 3-digit regrouping, Basic Facts 20

Subtraction 2-digit renaming, Basic Facts 20

Word Problems Addition, Subtraction, Multiplication

Problem Solving Work backward, Solve an easier prob em, Patterns

Estimation Quantities, Strategies, Length

Ratio/Proportion Scaling up, Scaling down

Statistics/Probability Scaling up, Scaling down, Spinner (1/4), Dice (1/16),
3 graphs

Multiplication Array (2, 4 tables), Allocation, Equal groupings

Division Oral problems involving sharing sets equally

Measurement Arbitrary units

scimals Money

Fractions Parts of whole, Parts of set, Equivalent pieces

Telling Time To hour, To half hour

Geometry Rectangle, square (properties)

Negative integers
.,

Ones, tens .

FIGURE 5 TOPIC COVERAGE PLANNED FOR A SINGLE MONTH OF GRADE 2
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5. Encourage everyday problem finding. In stating this principle, we deliberately
use the term everyday in two senses. First, it means literally doing arithmetic every day,
not only in school but also at home and in other informal settings. Children need
massive practice in applying arithmetic ideas, far more than the classroom itself can
provide. For this reason, we thought it important to encourage children to find problems
for themselves that would keep them practicing number facts and mathematical
reasoning. Second, everyday means nonformal, situated in the activities of everyday
life. It is important that children come to view mathematics as something that can be
found everywhere, not just in school, not just In formal notations, not just in problems
posed by a teacher. We wanted to get children in the habit of noticing quantitative and
other pattern relationships wherever they are and of posing questions for themselves
about those relationships. Two aspects of the program represent efforts to instantiate
this principle. First, the problems posed in class are drawn from things children know
about and are actually involved in. Second, homework projects are designed so that
they use the events and objects of children's home lives: for example, finding as many
sets of four things as possible in the home; counting fingers and toes of family members;
recording numbers and types of things removed from a grocery bag after a shopping trip.
From child and parent reports, there is good, although informal, evidence that this
strategy works. Children in the program are noticing numbers and relationships and
setting problems for themselves in the course of their everyday activities. Figure 6
shows part of a letter from a parent to the teacher, sharing a story of a child's everyday
math engagement.

6. Talk about mathematics, don't Just do arithmetic. Discussion and argument
are essential to creating a culture of critical thought. To encourage this talk, our program
uses a combination of whole-class, teacher-led discussion and structured small-group
activity by the children. In a typical daily lesson, a single relatively complex problem is
presented on the chalkboard. The first phase is a class discussion of what the problem
meanswhat kind of information is given, what is to be discovered, what possible
methods of solution there are, and the like. In the second phase, teams of children work
together on solving the problem, using drawings, manipulative% and role playing to
support their discussions and solutions. The teams are responsible not only for
developing a solution to the problem, but also for being able to explain why their solution
is mathematically and practically appropriate.
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FIGURE 6 EXCERPT OF A LETTER FROM A PARENT
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The following transcrOt of a four-minute segment of a third-gra:le team's conversation
as they work indepermlently on a problem, shows how linguistic interpretation and
development of manipulative displays interact in the children's work.

Mick, Joe, Anna, and Ms. B. were working on the following story problem:

Mr. Bill bought 3 boxes of Ninja Turtle cookies for $3.79. One box costs
$1 .50 at other stores. Which is the better buy?

How much are the $3.79 Ninja Turtles per box?

Ms. B.: I want to discuss It with your grows. I want you to show how you
figured it out. And when you have it, raise your hand. I'll let you put it
on. If you need manipulatives, you may just get them.

Ms. B. circulates around the room while children work at solving the problem in
their respective discussion teams.

Joe: Four dollars and that's automatically over.

Anna: So here's the three boxes. [Anna puts three pieces of colorec. paper
on the desk]

Joe: Now irs time to . . now it's time to . . . Wait, wait a minute.

Mick: What .

Anna: What kind of problem could we do?

Mick: We could say, we could say three dollars and seventy-nine cents.
Okay, three dollars and seventy-nine cents divided by the three
boxes, because we're taking the three seventy-nine and trying to see
how much each box would cost if it wasn't in a bulk. [Ms. B. appears
at group table carrying the three-box unit of Ninja Turtle cookies]

Joe: All right.

Anna: I agree, I agree because we have three seventy-nine in three boxes . .

Ms. B. brought it for second grade. Third grade will divickad it up . in
into and divided it up for second grade and third grade class.

Joe: All right, now.

Anna: So I agree.

Joe: All right, now. [inaudible] What's over three dollars [writing in notebook]

Mick: I agree.

Anna: I agree.
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Joe: I agree with myself. [all three students writing in notebooks] We have
to show [three dollars divided by three]. We have to put the date.

Anna: I agree. I agree . . three dollars divided by three.

Joe: We have to show this [Joe stands and reaches into the manipulatives
bin which contains bundles of 10 and 100 popsicle sticks, as well as
single popsicle sticks]

Anna: How can we show this, Joe?

Mick: You could say . . . .

Joe: Three dollars. These are our three cbllars. [puts down three bundles of
hundred and wiites something in his notebook]

Mick: So what is this, Anna, three dollars or three pennies?

Anna: Three pennies.

Mick: Okay, so three, so what do we do with this three dollars?

Anna: We divide it three hundred. [Anna picks up a bundled of one-hundred
and begins to take off the rubber band]

Mick: Wait a minute

Joe: We have the other two hundred.

Mick: Yeah, so . . but are we taking off the rubber band? [addressing Anna]

Anna: Yeah, we have to.

Joe: No, we don't. Here are two more. One, two, three. [picks up and puts
down the three bundles]

Anna: One goes here, one goes here, and one goes there. [puts bundles of
one hundred, one at a time, on top of the pieces of colored paper]

In the third phase of the lesson, teams successively present their solutions and
justifications to the whole class, and the teacher records these on the chalkboard. The
teacher presses for explanations and challenges those that are incomplete or incorrect;
other children join in the challenges or attempt to help by expanding the presented
argument. By the end of the class period, multiple solutions to the problem, along with
their justifications (as in Figures 2 and 3), have been considered, and there is frequently
discussion of why several different solutions couklall work, or why certain ones are better
than others. In all these discussions, children are permitted to express themselves in
ordinary language. Mathematical language and precision are deliberately not demanded
in the oral discussion. However, the equation representations that the teacherand
children write to summarize oral arguments provide a mathematically precise public
record, thus linking everyday language to mathematical language (as in Figure 4).
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Results of the Program

We are describing here a program that has been uncle,' development for a little over
two years. The project began not as a research project but as an effort to help an
ambitious teacher apply research findings to imwove her teaching. During the
developmentil period, we did not want to irrpose testing programs beyond those that
the school regularly administered. We are thus limited, in this period of the project's life,
to data from the school's standardized testing program and from clinical interviews that
we conducted with some of the children, along with some impressionistic reports of child
and parent reactions to the overall program.

Formal evaluation data consist of scores from the California Achievement Test
(CAT), which is administered in the school each September. First-graders were tested
at the beginning of second grade, second-graders at the beginning of third grade.
Scores on the Metropolitan Reading Readiness Test, administered by the school in
March of the kindergarten year, provide data on children's general academic level before
entering first grade. We have data on two colv-43 of children who participated in the
program, one beginning in first grade, one t 4. Sing in second grade. Figure 7a shows
three years of reading and math data for Cohort A, who began the program in first grade.
The children were low performers (about the 25th percentile) in both math and reading in
kindergarten and remained quite low in reading in grades 1 and 2. However, their math
scores rose dramatically, to a mean of the 80th percentile and stayed high (mean of 70th
percentile) during the second year of the program. Figure lb shows four years of data
for Cohort B, who began the program during second grade. Like Cohort A, they were
low scorers before the program. When the program was introduced in second grade,
their math scores jumped to nearly the 70th percentile on average and stayed in that
range through third grate. For this cohort, realing scores also rose somewhat.
Reading was taught by a different teacher in the school. We are now investigating what
might have been responsible for this gain. For comparison, Rgure 7c shows three years
of data for a cohort of children taught by the intervention program teacher before she
adopted the new program. Throughout the period, mean scores remained at a low 40th
to 45th percentile. An important point, one that cannot be seen in the means of the
graphs, is that the math gains were not limited to only a few of the children. In Cohort A,
for example, the lowest-scoring child at the end of the first grate was at the 66th
percentile. Thus, the program appeared effective for children of all ability levels.

These global data tell only part of the story, of course. We would like to know much
more for which systematic data are not yet available. Nevertheless, we can point to
some indicators based on our interviews, class observations, and reports from the
school. We interviewed all first-graders three times during the year, focusing on their
knowledge of counting and addition and subtraction facts, along with their methods for
calculating and their understanding of the principles of commutativity, conservation, and
the complementarity of addition and subtraction. At the outset, these children, as
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might be expected given their socioeconomic status and their parents' generally low

educational background, were not highly proficient Only one-third of them could count

orally to 100 or beyond, and most wem unable to count reliably across decpde

boundaries (e.g., 29-30, 59-60). The size of the sets that they could quantify by counting

famed from 6 to 20. About one-third of these chiklren could not solve small-number

midition problems, even with manipulathres or finger counting and plenty of encouraging

support from the interviewer. Only about six appeared able to perform simple

subtractions using counting procedures. Thus, these children seemed very weak in

entering arithmetic knowledge, especially compared with data presented by a number of

investigators for micidle-class and educationally favored populations. By December the

picture was sharply different All but a handful of children were performing both addition

and subtraction problems successfully, and all of these demonstrated knowledge of the

commutativity of addition. At least half also were using invented procedures, such as

counting on from the larger of two addends, or using procedures that showed that they

understood principles of complementarity of addition and subtraction. By the end of the

school year, all children were performing in this way, and many were successfully

soMng and explaining multidigit problems.

The following additional evidence indicates that the program was having many of the

desired effects. The children displayed variotz examples of confidence in doing

mathematical work. Many sang to themselves as they took the standardized test. When

visitors came to the classroom, they would offer to show off by solving math problems.

They frequently asked for harder problems. These displays came from children of

almost all ability levels. They had not been typical of any except the most able children

the preceding year. Homework was more regularly turned in than in preceding years,

without nagging or pressure from the teacher. Children often asked for extra math

periods. Many parents reported that their children loved math and wanted to do math all

the time. Parents also sent to school examples of problems that children had solved on

their own in some everyday family situation. Knowing that the teacher frequently used

such problems in class, parents asked that their child's problems be used. It is notable

that this kind of parent engagement occurred in a population of parents that is

traditionally alienated from the school and tends not to interact with teachers or school

officials.

Conclusion

We believe we have made a promising start at reaching our goals. We have shown

that an interpretation- and discussion-oriented mathematics program can begin at the

outset of school by building on the intuitive mathematical knowledge that children have

as they enter school. Our standardized test score data show that this kind of thinking-

based program also succeeds in teaching the basic number facts and arithmetic
procedures that are the core of the traditional primary mathematics program. It is not
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necessary to teach facts and skills first and only then go on to thinking and !yawning.
The two can be developed simultaneously. Assuming that we can maintain and
replicate our results, this means that an interpretation- and discussion-oriented program
can serve as the basic program in arithmetic, not just as an adjunct to a more traditional
knowledge and skills curriculum.

Moreover, our results show that an interpretation-oriented mathematics program can
be suitable even for children who are not socially favored or, initially, educationally able.
The children with whom we have worked come disproportionately from among the least
favored of American families. Many are consktered to be educationally at risk; their
educational prognosis, without vecial interventions or charved educational programs, is
poor. Yet these children teamed effectively in a type of program that, if present in
schools at all, has been reserved for children judged able and talentedmost often
those from favored social groups.

What is at issue here, as we suggested at the outset. is not only an apparently
successful program but also some fundamental challenges to dominant assumptions
about learning and schooling. As we worked to develop this program, we realized that a
new theoretical direction was increasingly dominating our thinking about the nature of
development, learning, and schooling. This is the view, shared by a growing minority of
thinkers in the various disciplines that comprise cognitive science, that human mental
functioning must be understood ;,,r3 fundamentally situation-specific and context-
demndent, rather than as a collection of context-free abilities and knowledge. This
apparently simple shift in perspective in fact entails reconsideration of a number of long-
held assumptions in both psychology and education.

Until recently, educators and scholars have defined the educational task as one of
teaching specific knowledge and skills. As concern has shifted from routine to higher-
order or thinking abilities, we have developed more complex definitions of the skills to be
acquired and even introduced various concepts of nwta skill in the search for teachable
general abilities. But we have continued to think of our major concern as one of
identifying and analyzing particular skills of reasoning and thinking and then finding ways
tu teach them, on the assumption that successful students then will be able to apply
these skills in a wide range of situations.

As we developed our program, we found ourselves less and less asking what
constitutes mathematics competence or ability for young schoolchildren, and more and
more analyzing the features of the mathematics classroom that provide activities that
exercise reasoning skills This meant choosing story problems on file basis of the
mathematical principles they might illustrate and developing forms of blassroom
conversation designed to evoke public reasoning about these principles. Our focus on
mathematics as a form of cultural practice did not deny that children engaging in
mathematical activity must be knowledgeable and skillful in many ways. However, our
emerging perzpective led us to focus far less on the design of lessons" than on the
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development of a sequence of problem-solving situations in which children could

successfully partiaipate. Another way of saying this is that we were trying to create an

appremtfceship environment for mathematical thinking in which children could participate

daily. We expected them to acquire thereby not only the skills and knowledge that

expert mathematical reasoners possess, but also a social Identity as a person who is

able to and expected to engage in such reasoning (see Lave, in press).

Our program constitutes a version of the cognitive apprenticeship called for by

Collins, Brown, and Newman (1989) in a recent influential paper. Its very success,

however, calls into question some aspects of the apprenticeship metaphor as applied to

early learning in a school environment Among these is the nature of the master

apprentice relationship. In traditional apprenticeship, apprentices seek to become like

their masters, and masters continually cksplay all elements of skilled productive activity

in their field of expertise. Teaching is only asecondary function of the traditional master.

This simpleindeed, perhaps oversimplifiedrelationship does not seem applicable to

the school setting, where the teachers predominant function is not to do mathematics

but to teach it. We will need to work out the particular role of the teacher in designing an

environment spedfically for learning purposes. A second issue surrounding cognitive

apprenticeship in school is how to ensure that necessary particular skins will be

acquired, even though the daily focus of activity is on problem solving and reasoning.

Our first-year standardized test results suggest that we have not done badly on this

cdterion, but we need to understand better than we do now just what it is in our program

that has succeeded and what the limits of our methods might be. in short, we offer this

paper as only a very preliminary report onwhat we expect to be a long-terr affoll to

revise instructional practice in ways that will bring educators closer to being able to meet

the goal of shaping dispositions and skills for thinking through a form of socialization into

cultural environments that value and practice thinking.
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