DOCUMENT RESUME

ED 341 557 SE 052 485

AUTHOR Greenwell, Raymond N.

TITLE Problem Solving via Pascal, with Data Structures.
Dissemination Packet--Summer 1989: Booklet #4.

INSTITUTION Hofstra Univ. , Hempstead, NY. Dept. of Mathematics.;

SPONS AGENCY

Hofstra Univ., Hempstead, NY. School of Secondary
Education.
National Science Foundation, Washington, D.C.

PUB DATE 89

CONTRACT TEI8550088,8741127

NOTE 52p.; For related documents, see SE 052 482-490.

PUB TYPE Guides - Classroom Use - Teaching Guides (For
Teacher) (052) -- Computer Programs (10l) --
Tests/Evaluation Instruments (160)

EDRS PRICE MF01/PC0O3 Plus Postage.

DESCRIPTORS xComputer Assisted Instruction; =*Computer Software
Evaluation; Higher Education; High Schools;
xInservice Teacher Education; »*Mathematics Education;
xMathematics Teachers; Program Descriptions;
Secondary School Mathematics; Secondary School
Teachers; Teacher Education Programs; Teacher
Workshops

IDENTIFIERS x*Hofstra University NY; »PASCAL Programing
Language

ABSTRACT

This booklet is the fourth in a series of nine from
the Teacher Training Institute at Hofstra University (New York) and
provides descriptive information about the introductory course in
Pascal programing with emphasis on the solving of problems found in
the advanced-placement computer science curriculum oi secondary
school mathematics. Included in this booklet are: (1) the
instructor's evaluation of the behavioral aspects and affective
observations gleaned from his 3 years of participacion in this
program, as well as proposals for program improvement; (2) a short
appraisal of the program and comments from one participant; {3) the
course outlines for each year; (4) a sampler of homework assignments,
class notes, and computer programs used in the courses; and (5) the
examinations used in the courses with some handwritten solutions. An
extensive sample of the instructor's and the participants' course
project solutions using Pascal programs can be found in booklet #5 in
this series (SE 052 486). (JJK)

ARKRARARRRARRKKANKRKRARRANRKRARRRRRARRRRRRRRRRRRARRRRARRRRRARRRARARRRRARRRRRRRRRR KX

X Reproductions supplied by EDRS are the best that can be made 4

X from the original document. x
AREKRARKRRKARARRRRARRRRRRRRNRRRRR? ARRRRKRRRRARRRRRRARRARRXRARRRRRR AR KRR KRR RRRRRKRR

»

SAURS

(€)

ERIC

Full Tt Provided by ERIC.
L

ED341557

HOFSTRA UNIVERSITY

TEACHER TRAINING INSTITUTE

Departmént of Mathematics and School of Secondarv Education
Hofstra University

Hempstead, NY 11550

DISSEMINATION PACKET - SUMMER 1989
Booklet #4

RAYMOND N. GREENWELL
PROBLEM SOLVING VIA PASCAL, WITH DATA STRUCTURES

e .

NSF Grant * TEI8550088, 8741127

U.S. DEPARTMENT OF EDUCATION “PERMISSION TO REPRODUCE THIS
Ottice of Educational Research and Improvement : MATERIAL HAS BEEN GRANTED gY
3 ATIONAL R NFORMAT(

FOUCATION LCEgst%g‘?ggl%)' ORMATION Raymond Greenwell
(x"ns document has been repfoduced as
received tom the person or ofganization
onginating 1t
{* Minor changes have been made to improve
reproduction quahty
® Points of view Or Opinions stated in this docu TO THE EDUCATIONAL RESOURCES
ment do not necessafly reprasent ofhcial 2 INFORMATION CENTER (ERIC)."
OERI position or policy .

REST POPY AVAN ARIF

TTI #4

Phin booklet in the fourth in a neriea of nine booklets
vhich constitute the Hofstra Univeraity Teacher Training
Institute (TTI) packet. The Institute vas a National Science
Foundation supported three-year program for exemplary secondary
achool mathematics teachers. Its purpose vas to broaden and
update the backgrounds its participants vith courses and special
events and to train and support them in preparing and delivering
dissemination activities among their peers so that the

Institute's effects vould be multiplied.

This racket of booklets describes the goals, development,
structure, content, successes and failures of the Institute. We
expect it to be of interest and use to mathematics educators
preparing their own teacher training programa and to teachera
and students of mathematics exploring the many content areas

described.

“Problem Solving via Pascal" wvas an introductory course in
Pascal programming, vith an emphasis on solving probleas related
to the high school mathematics curriculum. "Problem Solving via
Pascal Data Structures" vas a followvup course covering those
topics in the Advanced Placerent Computer Science curriculum not

discussed in the first course.

This booklet gives the syllabi and exams for both Pascal
courses along vwith a complete set of class handouts. Also

included are the instructor's evaluation of the course and a

participant's comments.

Report on the Teacher Training Institute
Math 287: Problem Solving Through Pascal
and
Math 299A: Problem Solving Using Pascal Data Structures

Booklet #U

Raymond N. Greenwell
Department of Mathematics
Hofstra University
Hempstead, NY 11550

copyright (c) 1989 Raymond N. Greenwell

All rights reserved, except that permission will be granted 1.0 make a limited
number of copies for noncommercial educational purposes, upon written
request, provided that this copyright notice shall appear on all such copies.

Table of Contents

A. Instructor's Evaluations

B. A Participant's Comments

cC. Syllabi

D. A Sampler of Handouts: Exercises, Notes and
Progranms
E. Exams (some wvith handvwritten solutions)

Booklet #5 contains a sampler of instructor and
participant project solutions.

=1

Report on the Teacher Training Institute
Math 287: Problem Solving Through Pascal
by
Raymond N. Greerwell
Associate Professor
Department of Mathematics

Mathematics 287 (Problem Solving Through Pascal) was offered in Fall of
1987 as part of the first round of the Teacher Training Institute. The class
met every Thursday afternoon from 4:20 to 6:45, with a break of about 15
minutes. The course was successful in many of its objectives, but there
were also problems.

The success of the class could be measured partly through comparing the
pre- and post-test scores. Professor Esin Kaya of the Hofstra University
Department of Education can give the exact figures, but | can state in general
terms that most of the participants got most of the questions wrong on the
pre-test, while almost everyone achieved a perfect score on the post-test.
They clearly learned a lot.

More information was obtained from the evaluations the participants
filled out, as we!l as comments they made informally. Many of the
participants were delighted with the course. They learned things they
wanied to learn, made new professional contacts, and became better
equipped to teach some of the courses they were teaching. On the other hand,
many of the participants were unhappy with the course. They found the
material too difficult and the assignments too demanding of their time. For
them, the course was a grueling experience. | will address some of the
reasons why, in my opinion, this occurred.

One of the first problems is that the program in general, and my course in
particular, was not planned well enough. This was not necessarily the fault
of the planners; the problem was that we hadn't done this before and could
not know exactly how things would work out. In the original plan, all
participants in the course would be able to write simple Pascal programs
with output on paper by the end of the summer. This was to occur either
through their prior experience, through work done in one of the summer
courses, or through working outside the class during the summer. When we
met in the fall, | intended to continue from where the prior training left off.
Unfortunately, | discovered in our initia! fall meeting that many of the
participants knew nothing of Pascal or of how to write a program. The
summer had been too busy for them to learn anything beyond what was

4

A-2

required for their summer courses in the Institute. Further, some of those
who had credentials indicating they could program, in fact, could not. This
was often because their background was shallow. They may have taken some
computer courses, but if insufficient work was demanded in those courses,
the material never stayed with them. Thus my expectations and theirs were
at odds on the first day. | spent time backtracking, trying to bring them up
to where they should be, but a few never quite got over the feeling that | was
expecting them to do something that was, in their eyes, impossible.

;

These feelings were further aggravated by my expectations that, since
this was a select group o1 high school mathematics teachers, they should be
better at solving problems than the typical group of undergraduates. What |
discovered as the semester went on is that, althrugh they may be considered
good teachers, some were poor students. This was often because their
background was weaker than it appeared at first. Some of them had degrees
in mathematics education in which they did very little serious mathematics.
For example, when | gave a problem that required knowledge of trigonometry,
| assumed this was a topic all high school teachers knew very well. | was
wrong. It came as a shock to me that some high school teachers know less
about trigonometry that what | expect my freshman calculus students to
know. For other participants, it seemed that the pace of a college course
was toe ‘ast. After years of teaching high school, some were used to slow
going, - ith lots of review, and not much expected outside of class. | tried to
remind them that college is not like that, but they pointed out that college
students don't have families to take care of and fulltime jobs as teachers.
Since all of us teaching in the program had been telling the participants what
an honor it was for them to be here and what wondei'ful teachers they were,

they were not ready to be told that their performance as students was
inadequate.

As a result, even some of those who learned a lot from the course and did
good work felt sour about the experience. On the other hand, some of the
truly excellent teachers enjoyed the experience and felt apologetic about the
complaints and bad attitudes of their fellow teachers. Despite the

successes, it was not an enjoyable course for many of the participants and
myself alike.

Changes made in Round Two

In round two of the Teacher Training Institute, | taught Math 287 three
afternoons a week for two hours an afternoon during the five-week summer
session, plus once a month during the fall. Although the participants seemed

8

less qualified on paper, their performance and attitude was superior to those
of the round one participants. | judged it to be a far greater success than the
round one course. This is due to changes made to overcome the mistakes of
round one.

First, a pre-course was held the 1ast week of June to introduce the
novices to writing short programs in Pascal and getting the results on paper.
This only required four sessions of three hours each, but when the regular
course started, | knew that everyone had at least a minimum background.
This allowed me to teach the course at a satisfactory level, without boring
the experienced or terrifying the beginners.

Second, by running the course through the summer and the fall, the
participants had more time to get their programs working. Computer
programming takes time, and the first round participants often couidn't find
the time between one week and the next to get on the computer. Spreading
the programs out made all the difference in the world. Not only did almost
all participants get their programs working on time, but many found time to
add extra credit features to their programs. |n addition, the programming
assignments in round two were harder, requiring more thought and time.

Third, my attitude had changed. | now knew what | was working with, and
| came down a lot harder on what | expected. | did not present the course as
an honor just for them to be there; | told them from the beginning that
programming takes time, and that they should plan their schedules
accordingly. When | got to the part where | wanted to use trigonometry, |
told them that all high school teachers should know this material, but some
may not, so | would spend a short time reviewing it. Those for whom this
review was insufficient would reed to spend time outside of class, not only
because it was going to be on the test, but because they had no business
being high school math teachers if they didn't know trigonometry. That
worked. One teacher borrowed a precalculus text from me; others dug up
their high school math texts. And they did learn trigonometry.

Fourth, | had a much clearer conception of the course. In round one, my
plan to integrate mathematical probiem solving with learning Pascal started
out somewhat vague and evolved over time. In round two, | taught a more
traditional introduction to computer science, much like the first part of A.P.
course in computer science.

The results of the class impressed me. In fact, | have only once or twice
before taught a class whose performance was as superb as the performance

9

A-3

of these teachers. The class was a joy to teach. And although the
participants still found the class difficult and challenging, they enjoyed the
experience of learning.

One problem arose in the fall, when the teachers only saw me once a
month. Many felt they forgot a lot in between sessions and had a hard time
getting back into the swing of things. This problem was most acute at the
final examination in December, when many teachers felt they did poorly
because it had been so long since they had been immersed in the material,
Nevertheless, their scores on the final exam were not as bad as they had
expected. The class average was a respectable 76%. The teachers'
perception of having forgotton most of what they learned did not seem born
out by their performance.

The Coda: Math 299A

In summer of 1988, | taught “Problem Solving Using Pascal Data
Structures,” which was intended as a follow-up course to Math 287. My goal
was to familiarize the teachers with the topics in the A.P. Computer Science
Curriculum which | had not covered in Math 287: pointers, linked lists,
queues, searching, and sorting. The course also included trees and stacks,
which | had discussed briefly in the first round of Math 287. | wasn't
bothered by this small amount of overlap, especially since only one of the
teachers in the course had taken Math 287 in round one. The rest were from
round two, except for two teachers new to the program.

The coui =2 met for eleven two hour sessions over four weeks. This is not
really enough time to do data structures in depth, so the course deliberately
was superficial. Also, with only three weekends, there was less time
outside of class to work on projects. As aresuit, only two-thirds of the
class had completed all the pro jects by the time of the final exam. And
althcugh the post-test scores showed a great improvement over the pre-test
scores, the class average for the final exam was only 68%. Given the
constraints, and the fact that many of the participants were taking a second
class over the four weeks, this may be as good as can be expected.

Proposal for a third round:

There is still a need for high school teachers to know more about problem
solving and using the language Pascal. Before running the program again,
however, | would change several features that | see as problems.

10

First, the program as it currently exists is difficult enough to deter many
who could benefit from it. Some teachers are unwilling or unable to r-ake a
commitment for a summer plus an academic year. Even those who may
consider participating for the summer alone may not be prepared to take two
intensive courses over five weeks. With one course in the morning and or: .n
the afternoon, they are left with little time to enjoy and explore the
material, to say nothing of living a normal life.

Second, many high school teachers need to work during the summer ana
can't afford to enroll in a program which provides no financial remuneration.

Thus, | propose a program consisting of two summers. In the first
summer, participants would take Math 287 alone for five weeks. The course
would meet four mornings a week, leaving the afternoons free to work on
solving problems and working on programs. The following summer the
participants would take a more complete and thorough version of Math 299A,
Participants who finish the two courses would be prepared to teach the A.P.
Computer Science curriculum. Some participants may choose to stop after
the first course, but other participants with stronger backgrounds in Pascal
may choose to omit the first course and take only the second.

In between the two summers, the participants would complete a project
at their own school. Typical projects would be teaching a Pascal course
which they hadn't taught before, bringing new ideas, concepts, and activities
into a Pascal course they had taught before, or training other teachers at
their schools about what they learned in the course.

During each of the two summers, the teachers wouid receive a stipend to
help replace lost earnings.

11

Student Commentary on the Teacher Training Institute
Math 287: Problem Solving Through Pascal
Math 29%A: Coda (Pascal Data Structures)

After reviewing Dr. Raymend Greenwell”’s report on the
three courses he offered in Paccal for the Teacher Training
Institute, I feel the need to identify myself before I add
any> further comments. | was a Cycle Il participant as well
as a student in the summer coda program. I had a "mild"
background in Pascal before entering any of Dr, Greenwell’s
courses, having taken a graduate level introductory course
in Pascal and having taught a one-half semem-ter course in
Pascal in the high school.

The underliying concerns I feel Dr. Greenwell expressed,
namely that the teacher participants did not have a strong
enough mathematics background and that there was a great
feeling of being overwhelmed are correct. However, these
need to be addressed (defended?) cseparately. Several of the
Crcle Il participants were indeed Junior High teachers or
even not directly in a classroom setting. When you spend
many years doing rememdial worK of this nature or do not use
the more advanced concepts, they are not at your finger-
tips. Mathematics is somewhat like a language that gets
rusty when not wused. Granted too, there were some
participants whose mathematical background truly was
lacking, but these people should have been screened by the
directors of the program and perhaps be encouraged not to
take this course if its goals were so high. I alwaye feel
however, that you cannot please all of the people all of the
time.

The feeling of being overwhelmed was, I think mcre of a
concern. Naturally those who were struggling mathematically
would be struggling with the programming assignments too as
the two are so inter-related. However, those of us who were
"mathematically sound" often needed more hours than were in
the day to Keep up with the reading and programming
assignments, 0f c¢ourse there were exams also to be
considered. Most of us were simultaneously taking other
courses, not to mention that during the summer there are
family obligations and during the school year there are
teaching responsibilities which could not be pushed aside.
(I often found myself working through until 2 a.m. on the
assignments!')

Degpite all of the hours of hard work, I feel the
courses I participated i~ were highly successful and perhaps
Dr. Greenwell was too hard on himself in his commentary. We
learned, we grumbled, but we grew in our Pascal abilities.
If 1 were asked to assess the courses, I would rate them as
highly succesful....the measure of success depending on the
individual’s input, seriousness of purpose and hicz/her
desire to achieve.

Respectfully submitted by
Irene Ober

April 13, 1989
12

C-1 '

[

Mathematics 287: Prablem Solving Through Pascal

Fall 1986

100 South hall, Thursday 4:20-6:45

instructor: Dr. Raymond Greenwall

Ovfice: 104 South Hall, 560-5573

Texis: Aow i Solve It by Camputar, R. G. Dromey
Fascai far Frogrommers , Lecarme and Nebut
Your Gnn fovarite Foscal Taxt, by Hu Mever

There will ke five computer assignments, worth 40 points each, plus ane

or twe other non-computer exercises or short computer projscts. There

will also be a midterm and a final exam, both worth roughly 130 points.
Schedule

Sept. 11 Preliminaries
Sep.. 18 How to write a program

Sept. 25 | dimensionai arroys

Gul. 2 Procecures, tuncliens, and puramele’s
Oct. 9 2 dimensionat errays and Boolesn variables
Oct. 16 Mathematical induction

Oct. 23 Records

Oct. 30 Midterm exam

Nav. 6 Stacks

Nov. 13 Infix, prefix, and postfix notation; sets
Nov. 20 Recursion

Dec. 4 Special session--to be announced

Dec. 11 Review

Dec. 18 Final exam

13

Mathematics 287: Problem Solving Througn Pescal
Summer-Fall 1967

100 Seuth Hall

fnstructor: Dr. Reymond Greenwretl

Office: 104 South Hall, 260-5573

Toxts: Q¥ Fascall {2nd ed), Doug Cooper and Michael Clancy

There will be roughly six computer assignments, warth 30 points each, as
well as @ midterm and a final exam, both worth reughly 130 points.

Schedule

Breliminery course (for thase who need it);

Chep. 1 & 2 Simple programs, constents, variables, reading snd writing,
srithmetic expressions, stondard functions, getling copies
of progrems and output on paper.

Jummer Segsion

Week 1 Chap. 3 & 4. procedures, functions, for stetement.
\/eek 2 Chap. S & € ¢ase énd i sielaments.

Week 3 Chap. 7 & §: white loops, recursion, text procassing.
Week 4 Chap. 9 & 10: Drdirei types, MIDTERM.

Vleck S Chap. 11 & 12 érrays and records.

Fall

Chap. 13, 14, & (with a littie luck) 15
Files, sets, and (here's the luck part) pointers.

ERIC 14

Full Tt Provided by ERIC.

Mathematics 299A: Problem Solving via Pascal Data Structures

Summer 1988 :

100-South Hall

Instructor: Dr. Raymond Greenwell KPS

Office: 104 South Halt, S60-5573 '

Text: Pascal Plus Data Structures, Algorithms, and Advanced Programming
(2nd ed.) by Nell Dale and Susan Lilly

The prerequisite for this course is a knowledge of Pascal through arrays,
records, procedures, and recursion. The course covers the part of the AP
Computer Science curriculum commonly referred to as “data structures.” The
grade will be based on roughly four computer asstgnments and a final exam.

Independent reading:

Chap. 1: Programming Tools |

Chap. 2: Verifying, Debugging, and Testing (Don't worry about the details of
the application on pp. 67-83).

Tentative Schedule
July 5 Chap. 3: Data Design
July 7 Chap. 4 Stacks
July 11 Chap. 5: FIFO Gueues
July 12 Chap. 6: Linked Lists
July 14 Chap. 6 (continued)
July 18 Chap. 7. More Linked Lists
July 19 Chap. 9: Binary Search Trees :
July 21 Chap. 10: Binary Expression Trees, Heaps, and Graphs
July 25 Chap. 11: Sorting
July 26 Chap. 12: Searching

July 28 . Final Exam

SQUARE-SERVICE CORPDORATION
Service: To compute r? for the customer's non-negative integar n. ‘

Job specification to employee:

12 Get o number from your boss and name it x. .

" 2) it x s 0, then wake up your boss, return the value of x to him or her, ond
stop.

3) If x is not 0, then hire an assistant and give him or her a copy of the
-1

4) Go to sleep until your assistant wakes you up.

S) When your assistant wakes you un, get the number he or she returns to
you, name it y, ard fire him or her.

&6} Computey + x + x - 1, wake up your boss, give him or her a copy of this
number, and stop.

F1BONACCH SERYVICE CORPCRATION
Service: To compute the Fibonacci number F(x} for the customer's
non-negative integer %, where

) 1 ifX=0o0rx=1
X)= ' '
F(x-1)+F(x-2) ifx>1.

Job specification to employee:

1) Get a number % from your boss.

2) i1 % 1s less than 2, then return 1 to your boss and stop.

3) Otherwise hire two assistants, and give one assistant a copy of the
number X - 1 and the other assistant a copy of the number x - 2.

4) Teke o nap while your essistants are working.

5) When your assistants wake you, get & number, y, from assistant one, and a
number, z, from assistant two. Fire your assistants.

6} Compute y + 2, weke your boss, end give him or har & copy of this resuit.
Then stop.

16

D-1

D=2

Exercises for recursion:

1) Write e job specification for the NFACTR Service Corparation, which
computes nl.

2) Euclid's algorithm fur finding the greatest common divisor of two integers

is defined by:
GCD(n, m) iftno>m
GCD{m, n) =[m ifn=0
GCD{n, m mod n) otherwise

where m mod n {s the remainder when m is divided by n. Write o Pascal
program to calculete GCD(m, n), and then trace through the program to find
GCD(6, 20) and GCD(60, 105). Use the built-in Pascal function mod.

3) Ackerman's function is defined recursively on the nonnegative integers as
follows:

+ 1 ifm=0
A(m,n):fA(m-l,l) fmz20,n=0
Alm-1,Almn=-1) ifmz0,nz0
write a Pascal program to calculate A(m, n) and trace through it to show
thet A(2,2) = 7.

17

Math 2087 Programming Project 1 due
rade Point Average

Grades at Hofstra University are awarded on tha following basis: A = 4.0,
B=30,0=20,0=1.0,ond F = 0.0, Letter grades can also be modified with
+ (plus 0.3 point) or - (minus O3 point). For exampla, A= counts os 3.7
points, and B+ 15 3.3 points. There is no A+. If aprofessor glves such 8
grads, 1t only counts as 40 points. Similerly, en F+ or F- is worth 0.0 points,
end & D- ts worth 1.0 points.

Write a program thet computes @ grads-point average based on as many
letter gredes es the user wants to enter. Your progrem should:

a) explein whot's going to hepper, end ask the user how many grades will bs
entered;

b) compute the number of grude points corresponding to each letter grade
entered (one per line), and keep a running total of the grads points;

¢) print the user’s grade paint average--the total divided by the number of
grades entered.

Assume that every letter grada is followed by a *+', a *~', or a space. Be sure
to deal with the special casss such as A+ or F-,

You are to turn in:

a) a listing of your progrem, with propsr comments, meaningful variable
names, nice indentation, etc.
b) The output for the following sets of date:

i) 3 grades: A, B-, A-

i1) 4 grodes: A+, B+, C, F+

111) 4 grades: D-, 8+, B, B-

Hints:

Write the program in stages. First write a function that converts the
letter grade into a numerical grade. Put this function into 8 short program

-thet inputs a single letter grade and then uses the function to print the

Q

ERIC

numerical value.

BGnee you have this werking, complste the metn program so it will enter as
many grades as the user desires and computes the grede point average.

For the exparienced progremmers:

The program as described counts all grades equally. Modtfy the progrem
so that 1t asks how many cradits eech grade is worth and uses this in
computing the grade noint average.

Do some error checking. Modify the program so thet grades such as E#
vrill not be eccepted. Modify it so the leiter grade will be counted whether it
ie entered upper case or lowar cass.

Allow the user to type a single letter, such s A, without being required
to type & blank folloving the letter.

You can probably think of some other improvements. Go aheed! Be sure to
note on your program and/or output what you have sccomplished.

18

D-3

D=4

Math 287 Project 3 due
Extended preciston arithmetic

For this project you ere to write a program thet performs as a
calculator with an erbitrarily large number of digits of accuracy. The
basic project need only do integer addltion up to 100 digits, but there is
far more to do for the adventuresome. - ~

The proyram should allow you to enter the first term, digit bg digit,
{ollowed by & '+', followed by the sacond term, followed by an '=". It should
then print out the correct resull. The program should allow you to
continue doing tiis until you type 'q"

Run the progreit with the following computations:

1) 367426865+67 3=

2) 678+3874268 55z

3) 94327068518+12305A78944=

4) 999G+1 1=

The first operation verifies that your program can add 8 small number to a
large number. The second verifies that the small number can be added
first. The third verifies that two large numbers can .. ~ded, with the
result having a greater number of digits than either term. The fourth
verifies that, after adding large numbers, tie program cen go back: to
adding small numbars.

The prcgram should be reasonably efficient so that it only adds nonzero
digits. In other words, it should not add up 100 digits when your numbhers
are only 2 digits leng.

Extra features for the experienced ta try:

Allow your program to enter an arbitrary number of terms before
adding, such 8s S5+76+345=.

Allow your program to continue adding terms to the previous sum, as a
celculator actually does. In other words, after entering 75+32=, you cen
then enter +45= and see the result 152.

Allow other operations, such as subtraction, multiplication, division,
ond exponentiation. The easiest woy to do this is with the operators
evaluated from left to right. A more sophisticated approach uses the
algebraic hierarchy of operations. Or even parentheses.

Allow real arithmetic.

19

Math 287 Project S due Nov. 5, 1987
Permutations

For this project you are to write aprogram which asks the user for a
positive integer N and then generates all permutations of the first N
letters of the alphabet. For example, if the user enters 3, the program
should print ABC

ACB

BAC

BCA

CAB

CBA
The program should also count the number of permutations generated (6 in
this case). You know that the answer in general is NI, but don't write a
factorial function; have your program count the permutations as they are
generated, so you can verify that all permutations were counted.

Your program must ‘ise recursion to generate the permutations. This is
a natural method of sc.ution. After all, it is easy to generate the
permutations of one letter. Further, if you want to generate the
permutations of N letters, you can take each letter in turn and “hire an
assistant” to generate all permutations of the remaining N-1 letters. The
permutations must be printed in alphabetical order, which they will be
automatically if your program is written in an orderly way.

As often happens with recursion, the final program should be fairly
short. In fact, my program was shorter than any of my programs for the
previous four projects. On the other hand, the amount of thought per line
for a recursive program is often very high.

Turn in a listing of your program along with the output for N =1, 2, 3,
4, and 5.

Extra credit options:
| can’t think of any. Got any ideas?

20)

NOTES TO ACCOMFANY THE FILM °SORTING OUT SORTING®

INSERTION! NEW ELEMENT PLACED INTO ORDERED DATA
3333433333333 38333333 33333333 323334223333 823 2%

LINEAR INSERTION
SORT THE FIRST TWO ITEMS., EACH ITEM AFJER THAT IS SORTED INTO
FRE-ORDERED LIST SEQUENTIALLY. ORDER O (n~2),

BINARY INSERTION
POSITION OF NEW ITEM IN ORDERED DATA IS FOUND THROUGH A BINARY
SEARCH (CUT DATA IN HALF TO SPFEED UP THE SEARCH).
%* SLOW GOING IF DATA IS FRETTY WELL SORTED ALREADY. ORDER Gn~2y,

SHELL-METZNER SORT
WORK ON SMALL SUE-ARRAYS OF ITEMS FLACED FAR APART (TO MAXIMIZE
ADVANCEMENT TO CORRECT LOCATION). THE SORT WITHIN EACH SURARRAY

IS BY INSERTION (COULD BE EXCHANGE OR SELECTION). SUCCESSIVE

SUBARRAYS USE ITEMS CLOSER TOGETHER (SPAN:= SFAN DIV 2, WORKS
BEST IF SUCCESSIVE SIZES ARE RELATIVELY FRIME). FINAL PASS IS
ON ADJACENT ITEMS. ORDER GQ(N(LOG N)"2),

EXCHANGE! EXCHANGE FPAIRS OF ITEMS UNTIL ALL ARE IN OKDER
3383332388388 3333333333333 8833333333833 33 333333328,

EURBLE SORT
EXCHANGE ADJACENT FAIRS TO MOVE SMALLEST TO TOF., SUCCESSIVE FASSES
MOVE SMALLEST OF REMAINING ITEMS TO EACH AFPPROPRIATE POSITION.

ORDER OQ(N~2).

SHAKER SORT
“COCKTAIL SHAKER®., EXCHANGE FAIRS TO GET SMALLEST TO TOP THEN BRING
LARGESY TO BOTTOM ON THE RETURN., CONTINUE WITH NEXT SMALLEST.» NEXT
LARGEST» ETC.,
X "SMART® - IT STOPS WHEN A FASS DOES NO SWAFS. ORDER &2y,

QUICK SORT
DEVELOPED BY HOARE. PIVOT CHOSEN AND ITEMS ARE COMPARED TO THE
PIVOT UNTIL ALL ITEMS > PIVOT ARE ON ONE SIDE AND ALL ITEMS < PIVOT
ARE ON THE OTHER SIDE. NEW PIVOTS ARE CHOSEN FOR THESE SMALLER
SETS OF ITEMS AND THE PROCESS CONTINUES RECURSIVELY. ORDER O (NCLOG N)).

SELECTION?: SELECT KEY ITEM AND MOVE IY INTO FLACE
L3222 23 2223232822338 3 233333233323 83333333333323338¢33

STRAIGHT SELECTION

LINEAR SEARCH FOR SMALLEST ITEM» MOVE IT INTD FLACE. SEARCH FOR NEXT
SMALLEST» ETC. ORDER O(N"2),

TREE SELECTION
PUT DATA AT BOTTOM OF A TREE. °*PROMOTE® THE SMALLER ITEM IN EACH FAIR
UNTIL SMALLEST OF ALL IS AT THE TOF., FICK OFF THE TOF ITEM AND STORE
IT IN AN ARRAY, FROMOTE THE NEXT SMALLEST TO THE TOF» FICK IT OFF AND
STORE IT, ETC, °*PETER PRINCIPLE® OF AUTOMATIC FROMOTION.,

¥ NEEDS A GREAT DEAL OF MEMORY SFACE (ORIGINAL ARRAY» TREE, FINAL
ARRAY), ORDER Q(N(LOG N)),

/ \\
/ \ / \
/ N\ / \N/ N/ \
HEAF SORT
DATA IS DISTRIBUTED IN A TREE., ITEMS MUST BE ARRANGED TO FLACE THE
LARGEST VALUE FROM EACH SUBTREE AT ITS TOP (A °"HEAF®). THE LARGEST OF

THE WHOLE TREE (°ROOT®) IS THEN SWAPFED TO THE END POSITION AND THE
TREE IS RE-HEAFED.

x BETTER MEMORY USE THAN TREE SELECTION., RUNS FAST. ORDER Q(N(LOG N)),

A COMPARISON OF THE RELATIVE MERITS OF SOME SORTS USING 1000 ITEMS
L 232323223230 320 0033333383833 233333333333 33333333333333333333383233323222282 380

"YPE COMPARISONS SWAPS OR MOVES TIME IN SECONDS

MEKR EXRKEXXKXRX REXKRKRRRKKKKX REKKKKKRRRKK KKK
BUBBLE 4991479 242,428 SUWAPS 30538
LINEAK INSERTION 25,870 243,421 MOVES 29060
BINARY INSERTION 11,496 243,623 MOVES 1,045
SHELL-METZNER 14,160 6:711 SWAPS 100
QUICK SORT 131444 29639 SUWAPS 47

22

p-8

program showfunctions (input, output);
(demonstrates some funtions from sections 3.1, 3.2,3.3, and 3.7 of)
("How to Solve it by Computer" by R.G. Dromey)

function sqgroot (a : real) : real;
(find the square root of a)
const
error = 1.0e-8;(error tolerated in the answer)
var
al, (previous estimate of square root)

g2 (current estimate of square root)
. real;

begin
g2:=a/ 2
repeat
gl :=g2,
g2:=(gl +a/ql)/ 2
until abs(g! - g2) < error;
sqroot := g2
end;(function sqroot)

function smalldivisor (n: integer) : integer;
(finds the smallest exact divisor of an integer n)
var
d, (current divisor and member of odd sequence)
r: [biggest integer <= sqrt(n))
integer;
 begin
if not odd(n) then
smalldivisor := 2
else
begin(search for odd divisor)
r .= trunc(sqgrt(n));
d:=3;
while (hmod d © 0) and (d <r) do
d:=d+2
if nmodd=0 then
smalldivisor := d
else
smalldivisor := |
end(search for odd divisor)
end;{function smalldivisor}

function gcd (n, m: integer) : integer;
(find the greatest common divisor of two positive integers m and n}
var
r(remainder after division of n by m)
. Integer;
begin
repeat
r:=nmodm;
n:=m;
m:=r,
untilr=0;
gcd:=n
end; (function gcd)

function power (x, n: integer): longint;
(raise x to the n power)
var
product, (current accumulated product)
psequence: [current power sequence value)
longint;
begin
product := |;
psequence := x;
whilen> 0 do
begin
if (hmod 2) = | then
product := product * psequence;
n:=ndiv2;
psequence := psequence * psequence
end;
power := product
end;(function power)

begin{main program)
writeIn(‘'The square root of 2 s, sqroot(2): 12 8);
writeln("The smallest divisor of 901 is *, smalldivisor(901) : 1);
write(‘The greatest common divisor of 1008 and 270 is °);
writeln(gcd(1008, 270) : 1);

writeln('3 raised to the 13th power is°, power(3, 13): 1);
end.

D10

program countem (input, output);
{ex. 8-14 of Oh! Pascal!)
{Count the number of words and sentences in some text}
var
symbol : char;{the latest symbol read}
numwords, numsent : integer;{the number of words and sentences}
inaword : boolean; {tells whether we are currently in a new word}

begin
numwords := 0;
numsent := 0;
inaword .= false;
while not eoln do
begin
read(symbol);
if symbol in (., 1, '?’] then
begin{found the end of a sentence}
numsent := numsent + 1;
if inaword then
begin {this is also the end of a word)
numwords := numwords + 1;
inaword := false;
end; {of word at end of sentence}
end{found the end of 8 sentence}
else if (symbol < *°) and (not ineword) then
inaword := true {found the beginning of & word}
else if (symbol = ' ') and inaword then
begin {found the end of & word}
numwords := numwords + 1;
inaword := false;
end;{found the end of a word)
end;{while not eoln}
writeln;
write(There are ', numwords : 1, words and ‘, numsent : 1, * sentences’);
writeIn(’ in this text.’);
end.

O
G

program magician (input, output);
{exercise 6-31 of Ohl Pascel, 2nd ed.}
{After doing some funny computations, the original number is}
{errived at }
{Written by Ray Greenwell, summer 1967, to thrill his Math 287 students.)
var
num, {the original number)
e, b,c, {the digits of the original number}
X, Y,2,suml, sum2, sum3: {some intermediate variables}
integer;

function resultmod!1 (p, q, r: integer) : integer,;
{returns the remainder of pqr, interpreted as & 3 digit number}
{when divided by 11.}
begin
resultmodil := {100 *p+ 10*q+r) mod 11
end;{function resultmodi1)

procedure checkodd (var sum : integer);
{if the sum is odd, increase or decrease it, whichever results)
{in 8 nonnegative number less than 20)
begin
if odd(sum) then
ifsum< 11 then
sum = sum + 11
else {sum is odd and >=11)
sum = sum - 11
end;{procedure checkodd}

begin {main progrem)}
write(’Enter & 3 digit number: °);
readin{num); °
8 := num div 100;{hundreds digit}
b := num div 10 mod 10;{tens digit}
C:=num-a8*100-b* 10,{ones digit}
X := resultmod1 1(a, b, c);
y := resultmod1 1(b, c, a);
2 := resultmodi 1(c, o, b);
sumi ;= X + y;
sum2 = y + 2;
sum3 ;= 2 ¢ X;
checkodd(sum1);
checkodd(sum2);

D-11

o D-12
checkodd(sum3);
write('The result of the magic computation is *);

writeln((sumt div 2): 1, (sun2 div 2): 1, (sum3 div 2) : 1);
end.

27

program hpcalculator (input, output);
{Program to simulate & Hewlett Packerd celculator.)
{Written for Math 287 by Ray Graenwell, Fell 1986)
const '
maxsize = 10;
type
stacktype = record
top : integer;
entry : array(1..mexsize] of integer;
end; {stacktype}
var
stack : stacktype;
number, num1, num2 : integer;
symbol : char;
operators : set of cher;

function empty (stack : stacktype) : booleen;
{check to see if the stack is empty)

begin
if stack.top = O then
empty := true
else

empty := false;
end; {function empty}

procedure push (var stack : stacktype;
value : integer);
begin
with stack do
if top >= mexsize then

writeln('Stack overflow. Lest entry ignored.”)
else

begin
top:=top + 1;
entryltop] := value
end

end;{procedure push}

procedure pop (var stack : stacktyps;
var value : integer);
begin
i1 empty(steck) then
writeln('Stack empty. Operator ignored.’)

28

D-13

with stack do
begin
velue := entryltop);
top:=top- 1
end

end; {procedure pop}

function convert (symbol : cher) : integer;
{convert e digit character to its numeric vaiue}
begin
convert := ord(symbol) - ord('0’);
end;{function convert}

function operate (num1, num2 : integer,;
operator : char) : integer;
{operate on numt and num2 with the operator}
begin
case operator of
.
operate := num2 + numt;

operate := num2 - numt;
e
operate := num2 * numt;
end;{cese}
end;{function operate}

begin {main}
operators := '+, '=', ‘%]
writeln('Enter an expression in Reverse Poligh Notetion.’);
writeln('if you type an °r", the result will be printed.);
writeln(Type 8 “q" to quit.’);
writeln('For simplicity, only one digit numbers mey be entered,’);
writeln('and the only operators are +, -, and *.");
repeat
resd(symbol);
if (symbol 5= ‘0') and (symbol <= '9’) then
begin {digit case}
number := convert(symbol);
push{stack, number);
end{digit case}
else if symbol in operators then

Q (
‘ 2 l)

D=1l

begin{operator cese}
pop(stack, numt);
pop(stack, num2); |
push(stack, operate(num1, num2, symbol));
end{operator case}
else if symbol = 'r' then
begin {print result case)
writeln;
if stack.top > 0 then
writeln('Result= ", stack.entrylstack.top]: 1)
‘glse
writeln('Stack is empty; no result.’)
end{print result case}
until symbol = 'q’;
writeln; -
if stack.top > 0 then
writeln('Result= °, stack.entrylstack:top): 1);
end.

30

D-15

/ | | ‘ E-1
Math 287 Dallotween MVITM nome_Bass foaet

October 30, 1986 Worth 130 poin's.
In ali methematicel problems, be sure to show 81l your work.

1) (11 pts) Compute 151151 to the accuracy of your calculator. And don't teli
me your calculetor won't compute a number that big; | elready know that.

[5)" = 2 340408775210
és d
151%'= @3 wouag1ea10“) 5

- s
= 1béos, 20433 10

=),0605 20937 wo’”

o /om“""'“. /ou'/".?,c?t"n 47
= 'oaao.oa;r:q
L0551 Y

-, a9 g
=)0 w0 = ,6{osx0383~|0

2) (16 pts) In the quadratic formula problem dane in class, we coi-pisted
DISCR:= B*B ~ 4*A*C, and if this quantity was negative, we printcd out the
message “No real roots.” Now you are to madify the program so thit if the
roots are, for example, 3 ¢ 2i, the program will print “The comple: coijugste
roots are 3.0 - 2i and 3.0 - 2i." A1l you need do is write the Pasca
statements that go between the begin and end in the following stiiement:

if discr < O then

begin

end
MPART = = B/(anA),
::um-r: = 54{5(- o);sck)/(a “A), .
WRITE(‘:'A “.,_,.4.,‘ “rrb novte au 9)
VATTELN(REALIMTI3:1)"s 2 A GIARTIS! 1)) o) ! REALPARTIS; ' ')
TImAGPART; 311", ')J'

31
P.10f 6 nrer nnBv AVAII ARIF

3) (13 pts) Write o procedure that adds together two matrices A and B and
puts the result in C. For example, if A=[123]endB=[02-1], thenC =
fa21. lo12] [31 2]

|22 4]

You may assure that the program contains the statement

type matrix = array(1..10, 1..10] of integer;

Letting “rows” and "cols” be the number of rows and columns in the matrices,
here is the first statement of your procedure:

procedure sddmativar A, B, C: matrix; rows, cols: integer);
VAR :'-,J ! TN TFGER;

BEGaIN
For X:=| To Rows DO

FoR V.=t To ¢cocS DO

c[3,9]:=Az,90+8L3 Y
E D, § gonmidine a—J-J—»-JZ

r(w P “q{n’qa._. v 3-‘!!)
4) {12 pts) Suppose 16!'is written as & binary number. How meny treiling 0's
are Lthere, counting from the right, until the first 1 is encounterzd?

&MQWH%QM;GA O,a'«.«f oo a
Aroae 10 MVS'(WMLJDM L= O,

/]‘('m'"‘ 130020401 « (oG <F=)+ nr»a-f‘f' /
Yy

[] [

J"‘ 2 QJ Y 2‘ ‘?
Gl #ofde = Hryra/y e/t = [&

s ay /wau?o;,

J

p.20f 6 32

5) (18 pts) Use a Boolean variable to rewrite the following section of Pascal
code without using any gota’'s. The comments in brackets refer to
unspecified sections of code.

fori=1tondo
begin
{stuff}
if x <0 then gito later;
{more stuff)
if y>= 0 ther gato later;
{even more s:uff}
end;
later: {the res’ of the progrom goes here};

VAR DovE. Booc fapN

'
[
i

I:'=l

DonE.= FALSE,

WHZLE (‘1< :."J) AND @_or DooIE) bo
RE &IV

fo=i

TF %<0 THEN [owNE = TeyuE

ELSE BEGIN
e
IF Y=o THEWN PonNE = TRVE

Ei1sE BEG2N

I =T l,’
END/Saneeryl Ey sz}

D.30f93

6) (16 pts) Suppose we represent frections by the type
type fraction = record
numerator, denominator: integer

end;
write a procedure which adds the (rections A and B to give the result L. You
may essume that A and B are alrendy -educed, but you need not reduce C.
However, you must find use the luwest common denominator of A and B when
finding C. For example, if A=3/10andB = 7/15, C should equal
(3/10)*(3/3) + (7/15)%(2/2) = 22/30. You mey assume thet we already hove
created @ function tcm which rives the least common multiple of two
numbers (e.g. L {10, 15) = 30). Here is the first line of the procedure:

procedure addfrac(ver A, 7, C: fraction),
VAR AFacroR, BFacL~ R % INTEGERS

BEGIN
C. DENOMINATOR, = LCM (A.DENDMZNAT()KI B, DE~vomzTNA roe)J'

AFACTOR. = C, DE omINATOR PIV J, DENOMTNATOR S
BFAcToR' = C, brroMzuAaTR DIV B, DENIMINATOR "
-

C.NUMERATOR' = AFACTOR * A, NUMERATR + BFAcrop® B NUMERATIR,

END { roen s addfnae]

pdof6 33

7Y(18pts)if a,, 8y, 0y, . .. is 0 Sequence of real numbers such thet a ,, =
(n*a, ~ 1)/(n+ 1), find & closed formula for a_(as & function of nand a,) and
prove this formula by induction. Then find lim q,.

N-300
Ay= I*a, =1 a4y
NPT
6(,-)aa'/
& -I}-/ -
FYl 4‘31
d"z 3‘03 / :<q’-a>—/ _ a‘__B
34 5 T T
Cli! a,= a - (w-)

PROOF: o ~s LA, 34 fy sl caledadii,

M" Oep= a.—/ﬁ'l)
4+

fw: a,“, =a, - k

At

alul = *al”“/ Ath ' d{#\———-@_q,
< (qo &“')) / ‘b?’ "“""P""

p.Sof6

BE-6

8) Terr'dbl Pascal s a non-standerd version of Pascal, available ot wWaldbaums
for $3.95, or aveilable for free with 17 boxlaps from Kellogg's Raisin Bran.

a) (14 pts) The only frverse trigonometric function in Terr'dl Pascel is
arcsec(x), which gives sec 'x in radians if x 2 | end bombs for eny other
values of x. Use this functior. to define an arctan function thet will give
ten"'# in radians for gl real numbers x. Here is the first line:

\0”

function arctan(x. real). real; ” X ragatie !

BEGI]

IF X>=0 TNEN ARCTAN:=AR<$EC(SQnT(l t %ex)) ‘/S‘J«
EL5E A‘cr“‘l::“AACSEC(SaAT[I# ,(-x)) o

EAD; { duitin: actal

b) (12 pts) Terr'bl Pascal has ths div function of stendard Fascel, co p div q
gives the intuger quotient of p/q, where p and g are integers. Unfortunately,
it has no mrd function, which gives the remainder. Create such a function,
so that, for example, mod(S,17) returns the value 2.

FomcTIoN MOD(A)B: ZATEGER). ZNTFGER,
BEGIN
mop:=A— (A bzv B)a D

E,JD)' {M M;

E-7

Math 287 Exciting Midtern name Lecer fooe S

Worth 110 yummy points. July 30, 1987

1) (15 pts) The following program is supposed to take the average of a set of
nonnegetive numbers and print the average to 2 decimal places. A negative
number is to be read in at the end of the set; it is not to be counted in the
average. Unfortunately, the program was written by my untrusty essistent
Igor and contains some errors. Correct o1l the errors, but do not change
anything that is correct.
program matic(input,output);
. integer; .
::;':um, count, value, average: in B0CT, ikace ¢ REA e
count:=0,
yelue:=0; ¢
while velue>=0 do
begin
sum:=0,;
read(velue); Z—-—J
sum:=sum + velue,

end; _
average.=sum/count; IF ¢ 0:“78; 0 0
(3 . * N [
writeIn{"The average is ',average:4:2); TR e bz Sum/counT, |)
end. WRZTEL N('Ala areage a, AVERACE ! & ' 2
EnD
ELsE WRITE W (T rimdine 2. TGuf, 9)’
plofs 37

E-8

2) (15 pts) The latest version of Terr'bl Pascal has an arccos function built
in but no arcten function. Use the arccos function to write a function that

returns the arcten of eny reel number x. Here is the first line: -
function arctan(x: real): real;
RE 7 N 'Y
IF X>=0 THEN ARCTAN;)

:A£6605 (

ELSE ARcran!=

'/ sar o
T - ARctoS(T(1r xax)

END’ '/f‘”'"(/*xxx))

4

3) (15 pts) Explain briefly what the following program accomplishes,
assuming it reaches a successful conclusion without running into integer

overflow problems. ; ;
program others{input,output); Az 1ralte e N
var o,b,c: integer; Ereuytis g nrakos of A
begin [t e @ oot -
8:=0; ~ g
b::O' M /. 74/[;(C—«-Jt 1‘740
¢:20: Lo o~ BZ3, .
while b<3 do -~/ : - Koo
begin ’xé‘ f‘vz 7 |
C=C+; ot to &AA«? AL at fm«w
a:=a + sqric); ttat.e 2ol a- M«i
if sqr{round(sqrt(a)))=o sa 1L o Y. _5
then begin . NE £
writeln(e); ot s e /M
b:=b+1;
end;
end;
end.
o p.2of5S 38

DECT ANAY AlIAN ARES

4) (15 pts) What is the output of the following procedure?

procedure al;

vor c: integer;

begin

forc:=10 to 20 do

case c*3 mod S of
0,4: write('who °);
1: write('whet °);
2: write('sees °); WRzTveLN
3. write(’knows °);
end;
end;

S ande boose vtk

“‘Wg Ay AREE b

C_l(nimo’ §
90 -9 O
11}33 =~ 3
12 (3¢ — |/
13|39 =y
¢ |v2 = 2
1SS |45 -9 o
|4]¢¢ =3
17[51 ¢
I1I€[5¢ »y
19157= 3

QW60

5) (15 pts) Write a Pascal function with the single parameter NUMBER,
assumed to be a three-digit integer. The function should return an integer

that contains the digits in reverse order.

FunvcTZon REVERSE (N.‘ INTEGER) ! TNTE GER)

VAR HUNP, TENS 0NES | .Z',JT'EGFRJ'

BEGIN
ONES.;= N mob 19,
Teds: = N DIV 10 Mo 10,

HuwD.= N PIat$t o (-JfA/ES

REVFRSE: = ONES»1c0 + TENS¥ 10 t HUND

enD,

p.30f5 3‘(’

B-10

6) (15 pts) Suppose the following input is entered into the program below:
If McDougel progrems in FORTRAN, then d’Antonio programs in Pascal.
Assuming thet all writes are sent to the printer, but what is read only
appears on the screen, what is printed by the progrem?

program ming(input,output);

: : A....,..Uﬂ A o
var ch: cher; - (od St)M {w’j‘"““‘{

) ﬁa&:M,pX—«}»ILM
ifchinl[A.'Z) «— Y - a@,ﬂl A .
clhenn fepent el o~ ofpta O W Ae M.

write(ch);
read(ch);
if chin[e.2) o Aortn oz Lt
then ch::chr(ord(ch)*ord('A')-ord('o'));% to o i A
until (ch=" *) or (ch=".); . it X
write(ch); - s
until ch="; P ool

72 EEZEF MC Dov AL W“ ;:o/z’rﬂ,m/, ALl J’ANTONIO
W.ox,.. PASCAL ,

‘ p.40f5 40

E-11

7) (20 pts) Use a Boolean variable to rewrite the following section of Pascal
code without any gote’s. The comments in brackets refer to unspecined
sections of code.

for i:=n downto m do
begin
{stuff)
for j:=i tando
begin
{more stuff)
if x=0 then goto later;
{even more stuff)
end;
{still more stuff}
end;
later: {rest of program follows}

" VAR DOWE! $00LEAN,

:r:=N,‘
.DO”E;: F/“—SE,
WHILE (wor bonE) AND (T >=mM) Do

BEGCzZN

s‘mﬁf

Jiz T,

WHTLE @< N) anp (WOt Douﬂ Do
BE LIV
f s §

IF X=o THEN DONE!=TRUE

EcsE ?eu»’ Ao 4%5

Je+i,)
EnD, §wwack o4 "‘" {ecs €}
P F NOT DIONE

HEN BF G-IV 4 ,
T Cocth s aLﬁH

MA"’ ! T'= T+l
%MP i END! § THEN}
LEND, (odts 7

Q SofS w
’ 41 neeTrapv AVAI ARIE

—— . E-12

And nowy, what you've been waiting a1l semester for,

MATH 287 FINAL BXAM

Dec. 18, 1966 Vlorth 144 puints. naine

Part 1. Multiple choice. (worth 69 points)

4 pts for each correct answer, -1 pt forr each tncorrect answer. No penalty
for those left blank.

1. Suppose that one of mehy taske e large progrem must perform is Lo displau
information about particular items in a table. (Somiz of the othar tasks also
involve seerching end menipulsting the table and dispisying velues.) 0f the
following, which indicates the best design of & procedure P that perferms
this task upon receiving 8 specificetion for an iter?

Da) P searches the teble for the specified item and then dlSpl’gS the
information about that item.

[Ib) P displays the whole table.

Oc) P cans a procedure S Lo search the table for the sparified item and then
calls & procedure D to display the informetion about tiat {tem.

Ud) P searches tha table for the specified item and ther calls a procedure D
to display the information about thet itern.

De) P calls a procedure S to sesrch the table for the specifisd item and then
itself displays the information about that item.

2) Suppose that items X1, X2, X3, X4, and XS are pushed, in that order, onto an
inftially empty stack S, that S is then popped four timss, end that o3 each Xi
is popped off S, that Xi is then inserted into an initially empty queus. If one
Xi is then deleted from the queue, what is the pext item that will be deleted
from the queue?

Ooxt Owxe Do Ooxd Doxs

3) A hypotheticel digital computer computes the results of the four ordinary
binary operations +, -, *, / to 4 significant figures end returns thz result of
each operation trunceted to 3 significant figuras. If the expression

(6.74 - 0.024)*2.00 - 8,38
is used a5 fnput, what ic the rasult retumed by this computer?

Onsoo Onsoz Lises Oansoa e soe

42

E-13

Questions 4and 5 ere bosed on & prog-am with the following struciure:

procedure D;
begin

4) A veriable that is declared in procedure B and only in procedure B is
accessible in

[Je) a1t of progrem A

[Ib) procedurs B, but nat in procedures C and D
Oe) procedures B and C, but not in procedure D
O procedures B and D, but not in procedure C
[Je) procedures 8, C, and C, but not elsewhere in A

ERIC | p.2 of11 43

5) Suppose that the progrem A contains no goto statements arid no procedure

calls other than those indicsted. Whi~h of the fellowing lists doscribes
completely the order in which the procedures conteined in program & &re
called or invoked?

Oe)p, 8, ¢
Ovys,c,o
Uoc;s,8,0
O p,e.8,C
Oe)p,s,¢C,8,¢C

6) Which of the following statements, when used as the body of the furction
definition procedure Fact(n:integer): integer;
begin

end;

will enabi2 that function to compute n! correctly for any n > 0, where
nl = n¥(n=-1)*(n-2)% . #3%*2%} ?

. Fact := n*Fact(n~1)

. if n¢2then Fact:=n

else Fact := n*Fact(n-1)
. tfn=1then Fact:= 1
else Fact .= Fact(n+1)/(n+1)

Oe) 1 only

Clb) 11 oy

[c) 1 end 1t only
Oo) 11 ond th omy
Cle) 1, 11, and 111

p.3 of 11 44

E-14

7 tht output is produced by the following program?
program ABC(input, output),
var n: integer;

procedure Increment{var g, b: integer);
begin

Q=0+l

b:= b+1
end;

begin
n=2;
Increment(n,n);
write(n)

end.

Ooys DOwa Ooz Oonz Oe AN error message

8) Consider the following sequence of procedure calls:

Push(x); |

Push(y);

Add;

Push(2);

Push(w);

Mult;

Add;
Invoking Push causes its argument to be pushed onto a stack.. Invoking the
procedures Add or Mult causes (1) the steck to be popped twice, (2) the two
popped items to be added or multiplied, and (3) the result to be pushed onto
the stack. If x = 20,y = 30, 2 = 20, end w = 70, and the stack is empty
initislly, then ot the end of the sequence of procedure call above, tha stack
conteins

Ooynotring Owo Ocyrozo Owizso Do) 1450

9) If there are 10 internal nodes (thet is, nodes that are not leeves) in &
binery tree, at mast how many leaves can there be?

Oyt Owa Oce Dot Oer2o

p.4 of 11 45

E-15

E-16

Questions 10 and 11 ere based on the following declarstions,:
type SexType = (M, F);
PartyType = (Christmas, Helloweaen, Comeasyouere, Other):
AgeTyp2 =0.125;
CitizenType =record
Sex :SexType,;
Party : Part!Type
Age : AgeType;
. end;
var Citizen : CitizenType;
Longevity : AgeType;

10) Which of the following is & valid Pasce! steternent?
Da) writein(Citizen)

D) writein(Citizen.Sex)

Oe) writeln(Citizen.Age)

Ua) writein{Age Citizen)

DOe) writein(CitizenType.Age)

11) I G is & function with header
function G(x, y: AgeType) : AgeType;
which of the following is 8 valid Pesca} statemeit?

Oe) G

Dby s(1,3)

Oe) readta(1,3)

Oa) Longevity:= 6(5, Citizen.Party)
Oa) writeln(G(70 Longevity))

o p.5 of 11 46

12) Suppose that the following program segment is used Lo apnrommate 8
2ero of the real-valued function

f(x) = x*x -3
storting with Left = 1 ang Right = 2.

var Left, Right, x, Epsilon: real;
repeat
x:= (Left + Right)/2;
if f(x) < 0 then Left:= X
else Rigni:= X
until (Right - Left) < Epsilon

How meny times musi the loop be executed to produce an x that is guaranteed
to be within Epsilon of a zero of f when Epsilen is 0.0017

Lle) once

[lb) 10 times

‘De) 100 times

Oa) 1000 times

[de) 1t cennot be determined from the informetion given,

13) Let Rnd be & function that returns a random value uniformly distributed

between 0 and 1. Which of the following expressions, when fnsarted at the
indicated point in the program segment

Count:= 0;
fori:=1tondo
if {sxpression goes here} then
Count:= Count + 1;
Pi:= 4*Count/n

will cause thet program segment to approximate the number Pi = 3.14159. ..
by a Monte Cerlo method?

. sqr{Rnd) + sqriRnd) < !

Il. Rnd*Rnd + Rnd*Rnd < 1

. Rnd +Rnd < 1

Osyronty Ovyrromy DOeymioniy Tadiend it DOe) 1 and ni

p.6 of 11 47

E-17

E-18

14) A certain binary tree T is represented as & two-dimensional Sx3 array A,
with rows of A corresponding to nodes of T. The columns of A contain the
following information:

column 1--the metrix rew index of the left chila

coluran 2--the velue stored at the node

column 3--the metrix row index of the right child
A matrix row index of 0 indicates a nonsxistent child. i7 A consiets of the
entries S5 7 4 '

001
010
340
0860
then T is given by which of the following diagrams?
Qo 7 Oy 7 Oe) 7
/ \ / \ /' \
4 8 8 4 ¢ 1
\ / /
1 | 4
U 0 e 0 /
/ \ 5
7 7
/ \ /\
B8 4 4 B
/ \

15) Suppose that the veriable d represents the number of dollars in 8 bank
account after interest has just been credited to that account (e.g., d =
123.456). Wwhich of the following Pascal expressions would round that
amount to the nearest cent (e.g, to 123.46)?

[Je) round(d/100)*100
Ob) round(100%d)/ 100
e) round(d/100)

Oa) round(100*a)

Oe) roundta)

p.7 of 11 45

: E-19

Part 2. ¥un part. (worth 84 points)
10) (B pts) Represent the expression A/B - C¥D*(E - G + 6¥H) &< & binary
tree.

b) (6 pts) Write the expression from part €) in pestfix notation (i.e. Beverse
Polish Notation).

c) (6 pts) Write the exprescion from part a) in prefix notation.

2) (9 pts) Here is Ackermann's function again:

ne | fr=0
A(m,n) ={A(m- L1 ffmz20,n=0

Alm=-1,Am,n-1)) ifmz0,n=0
Compute A(2,0). Show your work!

(
o p.8 of 11 43

E-20

3) Consider the following Pascal function, defined for N2 1.
function f(N: integer): integer;
segin |
iN=1then(=0
else f:=Ndiv 2 + {(Ndiv 2 + Nmod 2)
end;

a) (10 pts) Compute f(1), 1(2), 1(3) and 1(4).

b) (S pts) Based on your answer from pert @), you should be able to guess a
very simple, nonrecursive version of the function f. Write such a function.
(Note: if an extremely simple function is not obvious from part o), you've
done something wrong, and you won't be able to do part c). If you still went o
shot at doing part c), bring your test up to me and 11} grade parts a) ond b)
immediately end give you the correct answers.)

c) {11 pts) Use induction to prove thet you answer from part b) gives the
exact same result 8s the original function in part a). (Hint: to compute
f{K + 1), consider even and odd cases.)

p.9 of 1}

E-21

4) (6 pts) Show how the postfix expression 4 3 2 ° S 7 + - * {g
evalueted with a stack by showing the contents of the stack at each step.
(Note: all numbers in the expression are single digit-positive numbers. This
will not necessarily be true of all numbers in the stack.)

S) (12 pts) Here is a section of code from & hypothetical game, where at
various points in the game, if more than 100 seconds have elepsed, the game
is over. The comments refer to unspecified sections of code. Use a Boolean
varisble to write 8 section of code that performs exactly the same actions
8s the code below, but without use of any goto's.

while citiesleft » 0 do
begin
{first bunch of stuff)
if time > 100 then goto gameover;
{second bunch of stuff}
if time > 100 then goto gomeover;
{third bunch of stuff}
end;
gameover: writeln(‘Geme overi);

Q p. 100of 1}
ERIC ol

6) (1! pts) Assume we heve the folloviing declarations in the beginning of
our progrsm
tyne smallset = sef ¢f vhar;
Cis.s = set of smslicet;

var hold: emallse!;

result: class:;

1,12 integer;
Trace through he fallowing section 7 Pasce] code, stawing the values of
the variables at each step. Tell what the fins) velue of the set “result” is,
and descrin2 in words what this section of code accomplishes. (Note:
aciually, this wouid not vork in stardard Fascei, sinci: the elements of sets
must be of an erumera’eg type, so we cannot have turcs such as "ciass”
lgriore this restriction wile doing the problem, Lecause to ge’. aroung it
would ba rziher compiicatea)

hold.= [J;
result.=|}:
forit:i=1 107 d¢
begin
if 11=1 then hald:= holdt + ['a]
else hold:= holst - ['e];
for i2:= 1 to 2 do
begin
i1 1221 then hold:= hold + ['b |
eles hold:= hold - b,
result:= resuli + hoig
end {for i2 loop}
ens; {ior i1 loop) .

p. i1of 11

E-22

