
ED 331 468

AUTHOR
TITLE

INSTITUTION

REPORT NO
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

IR 014 646

Yoder, Sharon; Moursund, David
Introduction to LogoWriter and Problem Solving for
Educators.

International Society for Technology in Education,
Eugene, OR.

ISBN-0-924667-72-9
90

113p.

International Society for Technology in Education,
1787 Agate Street, Eugene, OR 97403-9905.
Guides - Non-Classroom Use (055)

MF01 Plus Postage. PC Not Available from EDRS.
*Computer Assisted Instruction; *Computer Software;
Elementary Secondary Education; *Inservice Teacher
Education; Microcomputers; Postsecondary Education;
*Preservice Teacher Education; *Problem Solving;
*Programing; Programing Languages; Word Processing
*LOGO Programing Language

This book about Logo programming and problem solving
is designed to introduce preservice and inservice teachers to problem
solving in a Logo programming environment. Such a unit of study can
be an important part of an introductory computers in education course
for educators. Although Logowriter--a version of Logo--was developed
by Logo Computer Systems, Inc., primarily for use on the Apple II, MS
DOS (IBM compatible), and Commodore microcomputers, no specific
computer hardware or version of Logo is required to use the ideas
presented in this book. The following topics are discussed: (1)

getting started with Logowriter; (2) using REPEAT and turtle move
mode; (3) color and RANDOM, shapes and STAMP, FILL and SHADE; (4)
mixing text and graphics; (5) writing procedures and more than one
procedure; (6) designing programs; and (7) music. Appendices inclutle
a description of Logowriter keys, keyboard stickers, and a list of
quick word references. (34 references) (DS)

Reproductions supplied by FDRS are the best that can be made

from the original document.
**AAA

t'1.

awasiorm

U S. DEPARTMENT OF EDUCATION
Office ot Educational Research and Ind(nnanwnt

EDUCATIONAL RISOURCES INFORMATION
CENTER (ERIC)

This document has been fepflAuCed as
oceived horn the person or organization

originating it
fl Minor chanWis have been made to improve

eprodie lion quality

Points of 418* or Opinions stated in this dot la
ment do nol necessarily represent official
OE RI position or pold y

"PERMISSION TO REPRODUCE THIS
MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

David Moursund

TO THE EDUCATIONAL RESOURCES
I INFORMATION CENTER (ERIC)

LogoWriter ,for Educators.:

Sk,,,

A Emblem .Solviug Approadi

BEST COPY AVAILABLE

MIMI.441E RefifillthililiZ By Sharon Yoder and Dave Moursund

I
co,

About the Authors

Dave Moursund has been teaching anti writing in the field of computers in edtication since 1963. He is a professor at the
University of Oregon in the College of Education. There he teaches in and helps direct both a master's degree program
and a doctoral program in computers in education.

Some of Dr. Moursund's major accomplishments include:
111 Author or co-author of about 25 books and numerous articles.

I Chainnan of the Department of Computer Science, University of Oregon, 1969-1975.

Ill Chairman of the Association for Computing Machinery's Elementary and Secondary School Subcommittee,
1978 - 1982.

Founder, International Council for Computeri in Education, (ICCE) 1979. The name of this organization was changed
to Intemadónal Society for Thchnology in Education (ISTE) in 1989 when it was merged with the
International Assoclation for Computing in Education.

111 Chief Executive Officer, ICCE, 1979-1989.

IIII Executive Officer, ISTE, 1989-present.

Sharon Yoder has taught mathematics and computer science at the junior high and high school level for 15 years. Her most
recent public school expenence was as a secondary computx science teacher and a computer coonlinator involved in
developing system-wide computer curriculum and in planning teacher inservice training.

In addition, she has taught mathematics, computer science, and computer education at a number of universities in northeastern
Ohio, including ICent State University, the University of Akron, and Cleveland State University. She has wceked closely with
the College of Education of Cleveland State University in developing their computer programming courses for teachers.

After a year as an Education Specialist for Logo Computer Systems, Inc., Sharon has returned to teaching. She is currently
at the University of Oregon, where she teachers computer education coutses.

For the past several years, she has conducted wodtshops and presented papers at conferences nation-wide, and has been
involved in a number of book publishing projects, including the Nudges series. In addition, she has been a frequent contributor
to The Computing Teacher and the Logo Exchange. She is currently editor of the Logo Exchange and a column editor for The
Logo Center in The Computing Teacher.

Project Editors: Anita Best, Ellen Siegel, Neal Strider
Cover Design: Percy Franklin
Production: Tamara Kidd

For Ordering and a complete catalog contact:

INTERNATIONAL SOCIETY FOR
TECINOLOGY IN EDUCATION

University of Oregon
1787 Agate Street

Eugene, Oregon 97403-9905
503/346.4414

CompuServe: 70014,2117 BITNET: ISTE®Oregon

ISBN 0-924667-72-9
1990 International Society for Technology in Education

Introduction to
LogoWriter and Problem
Solving for Educators

Sharon Yoder

Dave Moursund

International Society for Technology in Education
1787 Agate Street
Eugene, Oregon 97403-9905

© 1990 ISTE

Contents

Preface

Chapwr 1: Computers and Computer Programming 1

Chapter 2: Keeping a Journal 5

Chapter 3: Getting Staned With Logo Writer 9

Chapter 4: Using REPEAT and Turtle Move Mode 19

Chapter 5: Color and Random 27

Chapter 6: Shapes and STAMP 35

Chapter 7: Defming New Shapes 43

Chapter 8: FILL and SHADE 49

Chapter 9: Mixing Text and Graphics 55

Chapter 10: Writing Procedures 63

Chapter 11: More Than One Procedure 71

Chapter 12: A Word About Designing Programs 81

Chapter 13: Music 87

Appendices 97

References 109

Index 111

Preface

The Logo programming language was designed for children. Logo can be used to help create a
fun, exciting, stimulating learning environment. Children of all ages, both youngsters and okisters,
enjoy working with Logo. Moreover, a Logo environment gives a window into the world of
computers, computer programming, and problem solving using computers.

This short book is about Logo programming and problem solving. It is designed to introduce
preservice and inservice teachers to problem solving in a Logo programming environment. Such a
unit of study can be an important part of an introductory computers in education course for
educators.

Computers and computer-related technology are having a profound impact on our society and
have the potential to strongly affect education. There is general agreement that all teachers should
have a functional level of knowledge of the roles computers play in the teaching and learning
process. Many teacher training institutions now require all preservice teachers to take a course on
computers in education. Many school districts are working to help all of their inservice teachers
acquire a functional level of computer knowledge and skills.

The overall field of instructional use of computers can be divided into three main parts:

1. Computer science, computer programming, and the associated underlying theories.

2. Computer assisted instruction, computer managed instruction, and other aspects of using a
computer system to help teach.

3. Productivity tools for use by students and teachers, such as a word processor, database, or
gradebook program.

These three major categories are not distinct. A single piece of computer software or a single
computer idea may fall into all three categories. Today's versions of Logo, as well as problem
solvhig as a computer-related idea, each fall into all three categories. However, Logo falls most
strongly into the computer science/computer programming category. This book focuses mainly on
programming in Logo and those aspects of problem solving that fit well into discussions of Logo
programming and of problem solving in a Logo environment

Logo is a computer programming language that was specifically designed for use in schools.
When Logo was first developed in the late 1960s, there were no microcomputers. The early
versions of Logo contained none of the graphics capabilities common to all versions of Logo
today. Interactive computer graphics was very expensive and had not yet come into common use.
Computer use in elementary schools was mainly limited to drill and practice progxams that focused
on helping students to acquire basic skills. Thus, Logo was a revolutionary idea.

Over the years, Logo has changed immensely. Undoubtedly the greatest breakthrough was the
late 1970s implementation of a graphics-oriented versionof Logo that could run on an inexpensive
microcomputer. Since then a variety of versions of Logo have been developed for microcomputers
and have been widely distributed. Logo has been used with millions of students at all levels,
ranging from preschool to graduate school. Logo has been the focus of hundreds of research
studies. Seymour Papert's book (1980) has been a best seller for many years. In total, Logo has
had and condnues to have a major impact on the field of instructional use of computers.

This book provides a brief introduction to one particular version of Logo, called Logo Writer.
This version of Logo was developed by Logo Computer Systems, Incorporated (LCSI). It
available for the Apple II series of computers, MS DOS (IBM compatible) computers, and
Commodore computers. However, most of the ideas presented in this book are independent of any
particular computer hardware or version of Logo.

This book can be used in a short, stand-alone course to invoduce educators to some of the key
ideas of Logo and problem solving. Alternatively, the material in this book might be covered in a
two to three weelc part of a three credit course covering the fundamentals of computers in
education. Such a course should have problem solving as a central and unifying theme. Keep in
mind that the main reason computers are used throughout the world of business, industry, and
government is that they are a very useful aid to problem solving. They are an aid to the human
mind. Computers are a powerful mind tool.

Computers are important in education because they axe a unique and powerful new aid to
problem solving in every academic field. The literature on problem solving and the literature on
Logo are both quite large. This short book does not attempt to be comprehensive in either field.
Rather, it is intended to introduce a few of the underlying and unifying ideas in these fields, and to
provide a methodology for studying them. This boolc draws heavily from previous works of the
authors. Educators interested in a more comprehensive introduction to LogoWriter may want to
read Yoder (1990), and those wanting a more comprehensive introduction to computers and
problem solving may want to read Moursund (1990). A number of other sources of information
are given in the References section. Readers seeking a continuing source of new ideas on the use
of Logo in education should consider subscribing to the Logo Exchange, a periodical published by
the International Society for Technology in Education.

Sharon Yoder and Dave Moursund
July 1990

Chapter 1
Computers and Computer Programming

Did you read the Preface? If you didn't, please p back and browse through it. The Preface is
like an advance organizer. It helps orient you to thinking along the same lines as the authors are
thinking.

A computer is a machine designed to rapidly and automatically carry out a detailed, step-by-
step set of instructions. Such a step-by-step set of instructions is called a computer program.
People write compuor programs to help themselves and others solve certain types of problems.

The ideas involved in using the computer to write programs to solve particular kinds of
problems are a central part of the objectives of this book. These objectives are:

1 . To increase your understanding of the capabilities and limitations of a computer as an aid to
solving problems.

2 . To give you a brief introduction to the topic of "computer programming" and the process of
writing computer programs to solve problems.

3. To help you learn the rudiments of writing computer programs in LogoWriter, a specific
version of the Logo programming language.

However, these are actually secondary objectives. Logo was designed to bring a new
dimension to education. The overriding objective of this book is to introduce you to a unique
computer-based learning environment and to give you opportunities to practice working in this
environment.

This book assumes that you, the reader, are a person who plans to become a teacher or is
already a teacher. The book will help you to learn some key ideas about problem solving, computer
proramming, and the Logo programming language. Many of the ideas will be useful to you even
when you are not working with computers.

The assumption is that many of the ideas we will cover will be relatively new to you. Thus you
will have the opportunity both to learn sonic new ideas and to practice learning to learn. Learning
to learn, and learning more specifically about how you learn, is fun, exciting, and critical to being a
successful life-long learner.

In recent years there has been a lot of research on the value of learners keeping a journal and
writing in the journal as they study a subject (Specht, 1990). As you use this book, you will want
to introspect. You will want to carefully examine your own learning processes. You will want to
keep a record of this introspection process in a journal. In the future, if you use Logo when
working with children, you will find it helpful and rewarding to have them keep a journal.

Learning and Knowing
Have you ever asked yourself what it means to "know" something or to have learned

something? Think of some small part of an academic area you know quite well. How do you know
that you know it? How can someone else tell that you know it?

One answer is that you can make use of the knowledge. You can demonstrate to yourself and
others that you can use the knowledge for personal purposes, accomplishing specific tasks, for
helping other people, and so on. Learning anddoing, or maldng use of one's knowledge, are
closely intertwined. Indeed, we know that most students learn best by doing. For them, a good
instructional environment is one that includes substantial opportunity to practice using what they
are learning.

However, an equally important aspect of a good learning environment is feedback. The
feedback can come from the learner. For example, consider a student who has written a poem. The
student might say, "I really feel good about this poem. When I read it to myself, it brings a smile to
my face. However, the rhyme scheme still doesn't sound quite right, and I want to say more about
the cat."

Of course, the student can also get feedback from a teacher or from fellow classmates. Such
external feedback is often very important. A teacher needs to be sldlled in providing appropriate
feedback to students.

Feedback While Doing Computer Programming
A computer environment adds an important new dimension to learning. A computer can help

provide feedback to the learner. This book will help you to learn to write Logo programs. As you
learn to write programs, you will get feedback from yourself, from other people, and from the
computer you are programming. Programming means writing instructions to tell a computer what
to do. As you attempt to write a program, you will have in mind what task you want the computer
to accomplish. You will observe what the computer actually does (and/or fails to do). You and the
computer together will provide feedback to yourself.

Sometimes this feedback will be positive and very rewarding, for example, "I wanted to tell the
computer how to draw a picture of a house with smoke coming out of a chimney. My program
works just exactly like I wanted it to."

At other times the feedback will be mixed or negative. "I wanted to have the computer draw a
plane flying in a cloudy sky. Right now my plane looks more like a car and my clouds seems to be
sitting on the ground. I'm making progress, but it's clear I've still got some problems with my
program."

Errors (Bugs) in Computer Programs
Computer programmers call an error in a computer program a bug. This goes back to a time

when a computer failed to function properly because a real insect (a "bug") got stuck in the
circuitry. The process of removing errors from a program (removing bugs) is called debugging.

The metaphor of finding bugs and doing debugging, or detecting and correcting errors in one's
work, is applicable both in computer programming and in many other endeavors. It is an important
metaphor applicable in all problem solving tasks. It is very easy to learn and practice this metaphor
when programming a computer, and this is one of the unique aspects of the computer
programming environment. However, it is important to ask if the knowledge and skills you gain
about debugging in a computer programming environment transfer to other areas.

Transfer of Learning
Very few people make a living writing Logo programs. For most people, the main reason for

learning to write Logo programs is to gain knowledge, skills, and attitudes that transfer to other

2

situations. For example, you might become quite skilled at detecting and correcting bugs in your
Logo programs. Does this help you to get better at detecting and correcting errors in some other
activity that you do? The research suggests "Maybe."

Research on 1,roblem solving indicates that self-confidence and self-esteem in problem solving
transfer among different problem solving domains (subject areas). For example, suppose that you
are successful in learning to write Logo programs and feel good about your ability to do so. Quite
likely this will help you as you work to learn another programming language. Seymour Papert
(1980), who is consiciered to be the father of Logo, argues that there is considerable transfer of
self-confidence and self-esteem from learning Logo to learning math.

Early researchers into problem solving in a computer programming environment were
confident that they would find a great deal of transfer from this domain to other problem solving
domains. They expected that the types of thinking needed to write computer programs would
readily transfer to solving problems m science, mathematics, and the social sciences. They were
disappointed. Teaching a child to write computer programs does not automatically produce
siruficant gains in problem solving in other fields of endeavor.

There has been a great deal of research on iransfer of learning. Here are a few things we know:

1. In near transfer, a person automatically (with little or no conscious thought) uses knowledge
and skills gained in one situation to help solve a problem that occurs in a different atuation.
Every student is capable of doing near transfer. However, what is near transfer for one student
may not be near transfer for another student. The nearness or farness of transfer is mainly
dependent on the student rather than on what is being transferred.

2. The amount of transfer and the farness of transfer that occur can be increased by careful
introspection, talking and thinking about transfer, and attempting to make transfers. Thus, a
teacher can "teach for transfer" and a learner can consciously and actively "learn for transfer."

Every teacher and every student should have a good, conscious understanding of the latter
point. Think of yourself as a learner, studying Logo programming and problem solving in a
computer programming environment. The nature and extent that trhnsfer occurs for you is
dependent mainly on you. It will occur if you carefully and consciously work to help it occur.
Similarly, if you teach Logo to your students, transfer will be substantially increased if you help
your students work towards learning to transfer the ideas they learn. Each chapter of the book
contains a specific discussion on problem solving designed to help increase transfer.

Summary
This book provides a brief introduction to writing Logo programs to solve problems. The

overriding goal is to help provide an environment in which you can practice learning to learn.
Secondary objectives include learning more about computers, problem solving, and the process of
writing computer programs to solve problems.

Chapter 2
Keeping a Journal

Throughout this book, you will be encouraged to think about your own thinking, to
metacognate. As indicated earlier, the key focus of your work with Logo is to give you experience
in a particular learning environment: one in which you can explore, experiment, and receive
feedback on an ongoing basis. As you work with Logo, you will have moments of frustration and
moments of success. A journal is an excellent way to record your learning process and to keep a
written trail as you think about your own thinking.

You should get a separate notebook that you always keep with you as you work at the
computer or think about Logo programming. In it you should record your thoughts and feelings.
Since a journal is a personal document, it can be quite informal. Your journal will become a record
of your learning. It will help you document your progress. Further, it will help you see your
successes at moments when you are feeling like a failure.

Here are some exampks of typical journal entries.

"Today I started working with Logo. Much to my surprise, I was able to move the turtle quite
easily."

"This is the third time I la . e tried to figure out how to draw a triangle. I am VERY
frustrated..."

"What a wonderful insight I had...I understand my own thinking so much better..."

"Logo really makes me think. The debugging process, while frustrating, forces me to examine
my own reasoning."

"I intended to draw this:

...but it came out like this:

What happened?"

"At last I understand how procedures work....I think!"

"I'm beginning to understand Logo error messages. They really do provide useful feedback."

"I thought you had to be a brain to write computer programs. I'm doing really well, and I'm
proud of myself."

"Mumblemumble...mumble...dumb computers...dumb programming language."

Start each session entry with a date and time. Put down what you are thinking and take some
time at the end of each session to reflect on what you have written and what you are thinking and
learning. Make a conscious effort to tie in your work with Logo with the ideas you are learning
about problem solving.

There are some suggested exercises and activities at the end of each chapter of this book. Some
of them will ask you to make use of your journal. As you work on other activities, you will no
doubt want to use your journal to document your progress.

Thinking and Metacognition
The human brain is very complex and contains a huge number of neurons. Think of a neuron

as a long, very thin cell that may be closely interconnected with thousands of other neurons. When
you are learning, you are building and strengthening interconnections among neurons. When you
are thinking, many millions of neurons may be engaged. You do not consciously control all these
neurons. Almost all your thinking activity occurs at a subconscious level.

However, by conscious effort, you can direct your thinking toward a specific topic or proMen
Such thinking may seem like talldng silently to yourself, mating pictures in your head, or creawig
sounds, smells, and feelings in your head.

Research on thinking indicates that we can all get better at thinking through study and practice.
One way to do this is through metacognitionthinldng about thinking. Another way is by carefully
monitoring the outcomes of our own thinldng processes. Become consciously aware of your more
effective thinking processes and your less effective thinking processes. Then use this increased
understanding of yourself to get to be a better thinker.

Research on metacognition indicates that even primary school students can learn to monitor
their own thinking efforts and can use this activity to improve their thinking skills. Thus, teachers
who work with Logo in elementary schools should be encouraged to have their students do
metacognidon. In a Logo environment, journaling can be a useful aid to metacognition. Research
has indicated that journaling can be effectively used with children even at the primary school level
(Specht, 1990).

Activities
Before you actually start on Logo programming, you may want to capture a snapshot of some

of your cuiTent feelings and understanciing about computer programming and problem solving in
your journal. Here are some possible topics you might want to address.

1. What do I already know about computer programming, and what new things do I expect to
learn?

6
1

1 What is "problem solving" and what do I really know about problem solving?

3. Will studying Logo and problem solving help me to be a better teacher?

4. How do I really feel about the idea of learning to write computer programs?

5 What are examples of some types of problems that computers cannot solve?

Chapter 3
Getting Started With Logo Writer

Starting Logo Writer
The easiest way to get started using Logo Writer is to have someone show you how to get

sorted. The details of what to do at the beginning vary with the computer system and version of
Logo Writer you are using. If you are using a computer system with a floppy disk drive then you
will need two disks to hegin:

A disk containing the Logo Writer language.

A Logo Writer Scrapbook disk (this is a "files" disk).

It is assumed that your course instructor will provide you with these disks. (If you are using a
networked Logo Writer system, the Logo Writer language will be a file on a hard disk rather than on
a separate floppy disk. Other details about getting started will be different than what is described in
these next few paragraphs.)

Begin by putting the disk containing the Logo Writer language in the disk drive of the computer
and then start the system. The specific keys to press depend on the kind of computer you are
using. It is assumed that your course instructor has provided you with instructions for the specific
hardware and version of Logo Writer you are using.

The disk drive will whir and buzz, and then you will see a screen containing thP word
"Logo Writer" written in large letters.

Take out the disk containing the Logo Writer language and put it away. It is needed only when
you are starting Logo Writer. Put in your Scrapbook disk, and press the ReturnlEnter key. You
then see the Contents page, which shows a list of pages (files) that are on your disk.

contents
Use up aAd down arrows to clooso a page
and press Return

To select a page from the Scrapbook disk, use the arrow keys to move the small square, called the
cursor. When the cursor is on the page name you wish to use, press Return/Enter. To get started,
select NEW PAGE and press ReturnMnter.

Note: Logo Writer comes with "keyboard stickers" to help you remember what keys to use for
various activities. You can find copies of these stickers along with a list of the various key strokes
that are used with several different versions of LogoWriter in the Appendix of this book.

It is assumed that as you read the sections of this book, you will have access to a computer so
that you can try out new ideas as they are presented. You will understand the material much better
if you become actively involved. At the same time, you should have your journal close at hand.
You can note discoveries you make as you explore. You can jot down questions that arise so that
you can seek answers at a later time.

If you started LogoWriter correctly and selected a new page, then your screen should now look
like this:

This is the page.

This is the Command Center.

This is a blank LogoWriter screen for you to work with. The area above the dark line is called the
Page. The area below the dark line is called the Command Center. You will use the Turtle to draw.

Whenever you get a new page, it is a good idea to give it a name. To do this, you must type

NAMEPAGE "name.you.want (Return/Enter)

or use the abbreviated form

NP "name.you.want (Return/Enter)

in the Command Center. Note that name.you.want is the word you want to use to name your page.
Be sure to put a space after NAMEPAGE. Fut a " (quotation mark) before the name. Do not leave a
space after the quotation mark.

For example, you might type

NA "PICTURE.1 (Return/Enter)

The name you choose
appears here.

PICTURE.

HAMMER "PICTURE.1

The cursor is flashing.

If you select a name that is more than one word long, use a period between the words. Do not
leave blank spaces between the words. You can name your page almost anything you wish.
LogoWriter displays a message telling you if you use illegal characters or if your name is too long.
The name you type appears at the top of the page in place of ???.

If you make a typing error and detect it before you do a Return/Enter, you can correct it by
using the Delete/Backspace key. Often when you make a mistake in typing, Logo will respond
with a message such as

I don't know how to ...

Simply try again, paying particular attention to the spaces. The "I don't know how to ..." is an
that you will see frequently, for example when you make a keyboarding error. Right now would
be a good time to deliberately make an error so that you begin to get used to dealing with this
message. (Does the idea of deliberately making an error bother you? If so, write aloout these
feelings in your journal.)

Like any other programming language, Logo has a number of specific rules that you must learn
in order to use the language well. At first many of these rules will seem arbitrary. Why, for
example, must there be only one quotation mark before a page name? Why must a page name be a
single word with no blank spaces in it? As you learn more about the structure of the Logo
language, you will begin to see reasons for these rules.

11

Drawing With the Turtle
Now you are ready to start drawing with the turtle. The turtle holds a pen that draws lines as

the turtle moves. Tty typing

FORWARD 50 (Return/Enter)

or use the abbreviated form

FD 50 (Return/Enter)

Be sure you type a zero (0), not the letter 0 ("oh"). The turtle moves forward 50 "turtle steps."

Next type

RIGHT 90 (Return/Enter)

or use the abbreviated form

RT 90 (Return/Enter)

Notice how the turtle turns 90 degrees to the right. Using the up arrow key, move the cursor that is
at the bottom of the screen until it is on the "FORWARD" line. Press Return/Enter. Does your
turtle drawing look like this?

90

PICTURE. 1

rup

Do you see that you don't have to retype an instruction to use it again? Can you finish drawing the
square without typing any more commands?

Primitives and Instructions
You have now learned three LogoWriter commands: NAMEPAGE, FORWARD, and RIGHT.

Words that LogoWriter "understands" are called primitives. A command is one kind of primitive.
You will learn about a second type of primitive, reporters, later in the book.

12

The word instruction is used to describe a line of Logo code. A correctly written instniction
always consists of a command along with the inputs (if any) to that command. Thus, while
FORWARD is a command, FOWARD 50 is an instruction. It is important that you learn the
meaning of these three terms: command, primitive, and instruction. They will be used frequently
throughout this book.

Now try typing

CG (Return/Enter)

to clear the screen. CG stands for Clear Graphics.

What happens if you type

FORWARD

and press Return/Enter? You see

forward needs more inputs

Logo is telling you that you must put q number after FORWARD to tell the turtle how far forward
to move. Logo usually gives you h pful messages when you make a mistake. Read them
carefUlly!

Below is a list of some of the commands that the turtle understands:

FORWARD number BACK number
FD number BK number

RIGHT number
RT number

LEFT number
LT number

PU PD
(Pen Up) (Pen Down)

CG
(Clear Graphics)

Experiment with these commands to see how each one works. Remember to press Return/Enter
after each instruction. Use your journal to record ideas on what your are learning and your feelings
about learning by experimentation. After you have experimenteci for awhile, decide on a design or
drawing to make. If you make mistakes you can use CG to clear the page and start again.
Remember that the commands you used are still available at the bottom of your screen in the
Command Center.

Saving and/or Printing a Page
Whenever you have something on the screen you want to keep, press the Esc key. Esc causes

Logo Writer to make your page a part of your Scrapbook. That ls, it puts the page on your
Scrapbook disk, using the name you have given it. Recall that the term "page" in Logo Writer refers
to the part of the screen above the solid line; the instructions you typed below that solid line are in
the Command Center. The Command Center is not saved with the pa,;e. You will learn how to
save groups of instructions later in this book (Chapter 10).

13 8

When you press Esc to save a page, Logo Writer automatically takes you to the Contents page.
To continue working with the page you have saved, simply select your page from the Contents
page and you will see that it looks exactly as it did when you left it. If you haven't already done so,
try saving your page right now.

If your computer is attached to a printer, you can print a copy of a page. To print the page, first
be sure your page has been saved. At that time you will see the Contents page on the screen. Select
the page you want to print and then type

PRINTSCREEN (Return/Enter)

Note: Your disk containing the LogoWriter language must be configured for use with the printer
you are using. It is assumed that your course instructor has provided you with a disk that is
properly configured for the printer you are using.

Frequently Asked Questions
In this and the remaining chapters we include a section on Frequently Asked Questions. These

are the types of questions that beginners frequently ask when studying the material being presented
in the chapter.

1. When I type FORWARD and a number, the turtle moves up the screen. Why doesn't it move
to the right when I type RIGHT and a number?

Answer: Beginners sometimes find the differences between the commands FORWARD and
BACK, and the commands RIGHT and LEFT, difficult to understand. FORWARD and
BACK are movement commands. They cause the turtle to take "turtle steps." RIGHT and
LEFT are turn commands. The turtle doesn't move at all. Instead it turns about its middle, like
a ballet dancer spinning on her toe. The number you give is the number of degrees in the turn.

2. I know that if I draw a line I don't want in my picture I can always start over by using CG or
by getting a new page. Sometimes I want just to correct the work I have done so far. Is there a
way to erase an unwanted line?

Answer: It is not unusual to want to erase lines you draw by accident. It is possible to do this
using PE (Pen Erase). You type PE and go back over the line you don't want. Then you must
type PD to continue to draw. Unless you erase a line immediately after drawing it, it can be
very difficult to erase it completely because it is tricky to place the pen exactly on top of where
you have previously drawn. Generally it is better to start over rather than to try to fix several
small errors on a drawing.

3. I worked really hard on a picture, but it was gone when I next tried to use my Scrapbook disk.
What happened?

Answer: Most likely you didn't save your page before you turned off the computer. Recall that
pressing Esc saves your page. When you are finished working with LogoWriter, always be
sure that you see the Contents page on your screen before you turn off the computer or let
someone else use it. Since you must press Esc to get to the Contents page, any work you have
done is saved. (You can always erase unwanted work at a later time.) When you save a page
using Esc, only the graphics and letters above the solid line are saved. Text in the Command
Center is not saved when you press Esc.

4. What are the important points that I need to remember about using spaces in LogoWriter?

14

9

Answer: Spaces are very important in Logo Writer. They are used to separate the parts of an
instruction line in Logo. Thus, you must have a space between a command like FORWARD
and the number after it. You also need a space after NAMEPAGE and before the page name.
On the other hand, there must not be a space after the quotation mark (") in the name of a page.
If you get error messages that you don't understand, look carefully at the spacing in what you
typed. The problem may simply be in your spacing.

5. How do I delete a page I no longer want?

Answer: Go to the Contents page. Move the cursor to the page you want to remove. Use the
Erase to End of Line key combination. (See the Appendix for the keys to use on your
computer.) Caution: A page deleted from the Contents page cannot be recovered.

Bugs and Debugging: Learning to Make Mistakes Through Logo
Every computer programmer makes errors. Even the very best of professional computer

programmers write programs that contain bugs. The program writing process is one of striving to
write bug-free programs, learning to detect bugs, and learning to correct bugs. You cannot be a
successful programmer unless you can function well in an environment full of bugs needing
debugging.

Think about yourself and others you know. Do you know people who seem almost deathly
afraid of maldng a mistake? For example, do you know students who won't give an answer out
loud in class for fear of being wrong? Do you know students who have trouble writing because
they don't like to have erased spots where they have corrected errors? (A word processor certainly
helps such people!)

Very young children are not afraid of making mistakes. They learn through trial andcrror as a
result of appropriate feedback. It is natural to make mistakes. Mistakes are an essential part of the
learning process. The nature of children's learning experiences gradually shapes how they learn.
Some young people eventually "learn" that it is better to not try than to face the consequences of
failure. This can be a major handicap to learning. Writing and, debugging Logoprograms is one
way to become more comfortable with making errors and correcting these errors.

One way to find the source of a bug is to "play turtle." Children learning Logo are taught to
move like a turtle. They walk around the floor, maldng the turns and taking the turtle steps just as
if they were a computer turtle. They learn to picture their bodies as being like the men turtle. This
is a powerful aid to debugging and to learning. Try itit wolics for adults as well as for children!

As you work with Logo, you will find that there are two major categories of bugs you will
encounter over and over again:

1. Errors the computer can detect. These are errors that cause the computer to produce an error
message, such as "I don't know how to..." Often this results from an error in keyboarding, an
error in the spacing in an instruction, an error in the punctuation or in the spelling of words in
an instruction, or a misunderstanding of the details of how a specific command must be
written. Such errors in the "grammar" of Logo are usually calledsyntax errors.

2. Errors the computer cannot detect. These errors do not result in an error message, but they
Foduce an incorrect result. It is easy to keyboard FORWARD SO when you actually meant
FORWARD 60. The computer has no way of knowing what you had in mind. It is easy to use
LEFT 90 when what is really needed is RIGHT 90. Again, the computer has no way of

knowing what is needed. However, you can look at the results produced on the screen and
detect your error. We will call these errors in meaning logic errors.

You may want to deliberately make some programming errors so you can gain increased skill in
detecting and correcting them. For example, try FORVVARD TWENTY or RIGHT30. You may
want to write in 3rour journal some personal feelings about what it is like to make a mistake. How
do you detect "bugs" in your thinking and problem solving activities in school and outside of
school. What could you do to get better at this process?

Computers and Problem Solving: Logo and Learning New Things
One of the key ideas in problem solving is domain specificity. This is a fancy way of saying

that you must know a great deal about a specific problem area in order to solve problems in that
area. Suppose you are going to use Logo to solve an art problem. You must know about two
domainsLogo and art.

Think about domain specificity as you learn Logo. Initially you know very little about the Logo
language and the Logo programming environment. You have no way of knowing that FORWARD
refers to moving a "turtle" up the screen a certain number of turtle steps. You have no way of
knowing that RIGHT refers to turning the turtle to the right a certain number of degrees. The
words FORWARD and RIGHT already have meaning to you in other domains, and now you are
learning their meaning in a new problem solving domain.

Much of your initial learning is a sequence of trial-and-error efforts. You are being asked to
learn a large number of new vocabulary words and ideas in a very short period of time. You may
frequently reread portions of this text. The smallest error in your memory in following instructions
or in keyboarding, is apt to produce a wrong result. Sometimes Logo gives you an error message
and leaves you to figure out what you did incorrectly. At other times the pattern you have produced
on the screen is not what you had in mind. You provide your own error message ("That doesn't
look right.") and then attempt to figure out what you did wrong. You may be tempted to ask your
course instructor or your fellow students for help each time something doesn't work as you
expected. Eventually, however, you will become more self-sufficient.

Activities
1. Practice using the commands in this chapter. You might try drawing:

a rectangle that is twice as wide as it is high
an equilateral triangle (all three sides are the same length)
your initials
a border around the page
a line of dashes
a Morse code message
a bolt of lightning

Use your imagination and feel free to change your mind as you work. You will find that, when
working with Logo, you often start out with one goal and end up working towards another.
For example, perhaps you begin making a letter M. Your drawing doesn't look much like an
M, but it does look like a bolt of lightning. So you change your goal and work towards making
a bolt of lightning. Keeping a journal of your progress, including changes in focus, may be
help you examine your own learning style when working with Logo.

2. Think back over your first session with Logo. Be aware of how many new things you were
being asked to learn in a relatively short period of time. What aspects of the book and the
teaching/learning situation helped you? What aspects could have been improved? Write your
reactions in your journal.

3. Discuss the questions in activity 2 with several other people in your class. Draw on journal
entries such as you made in activity 1. To what extent are your classmates' responses the
same? To what extent do they differ? People have differing learning styles. The authors of this
book, the instructor of your class, and you may have differing learning styles. When your
learning style differs from that of the book or the instructor, a dissonance results. This
dissonance may hinder your learning. However, it provides you with an excellent chance to
learn about learning and to learn more about teaching. Write your reactions to the these ideas
about learning style in your journal.

17

Chapter 4
Using REPEAT and Turtle Move Mode

You have learned how to make pictures with the turtle. You have also learned how to save
pages on your Scrapbook disk. You have an initial level of confidence in your ability to flinction in
a Logo learning environment. Hopefully you have had some fun with Logo. Now you can begin
adding more Logo commands to your new vocabulary and increasing the scope of the types of
problems you can solve using Logo.

Each new command that you learn gives you more power. It allows you to accomplish things
that you could not previously accomplish or that were previously quite difficult to accomplish. The
REPEAT command is particularly useful. It gives you the power to tell the computer to do
something over and over again.

Using REPEAT
Get a new page, name it, and then type

FORWARD 50
RIGHT 90

Remember to press Return/Enter after each line. If you want to make a square, you can repeat each
of these two commands three more times. One way to do this is to use the up arrow and the
Return/Enter key. However, there is an easier way for you to have Logo repeat actions. Type

CG
REPEAT 4 [FORWARD 50 RIGHT 90]

What happens?

REPEAT is a new command. It must be followed by a number and then a list of instructions
enclosed in square brackets. Try the following.

CG
REPEAT 90 [FORWARD 80 RIGHT 178]

Don't forget to press Return/Enter. You get a "fluffy" ball.

REPEAT 90 (FORWAU 50 MET 1791

How about

CG
REPEAT 18 [FORWARD 20 RIGHT 45 BACK 10 LEFT 25]

or

CG
REPEAT 360 [FORWARD 1 RIGHT 1]

Take some time to try each of these examples as well as some ideas of your own.

Wrapping
Have you discovered what happens when the turtle goes past the edge of the page? If you type

CG
RIGHT 80
FORWARD 30 0

you see that when the turtle goes off the pap on the right, it reappears again on the left at the same
distance from the bottom of the page. This is called wrapping.

If you type

CG
RIGHT 10
FORWARD 200

you see that the turtle wraps around the top and bottom of the page as well.

If a design you make would look better without the turtle showing, you can type

HT

21

for Hide Turtle. When you want to see the turtle again, you can type

ST

for Show Turtle.

Take some time to experiment with REPEAT and with wrapping. You can get some fascinating
patterns and designs. Keep a record of your discoveries, as well as your thinking, as you work.

Renaming A Page
What if you save a design on your page by pressing Esc and then you change what is on the

page and want to keep that new design as well? If you press Esc, the newest design will erase the
previous one. Esc always saves the current page using the name at the top of the page. You can
solve this problem by renaming the page.

For example, suppose you create page PICTURE.1 and press Esc. Then, if you select
PICTURE.1 from the Contents page again and change the design on the page to something you
want to keep, you must change the name of the page in order to save both the old and the new
design. Type

NAMEPAGE "P I CTURE . 2

You will see the new name at the top of the screen change. Next, press Esc to save the new page.
When the Contents page appears, you see the names of both pages. You can then choose
PICTURE.1, PICTURE.2, or a new page.

Turtle Move
You have been moving the turtle using the FORWARD, BACK, LEFT, and RIGHT

commands. There is another way to move the turtle on the page. Hold down the Turtle Move keys.
(See the Appendix for the specific keys to use with your computer.)

This cursor is not flashing.

17 My.Page

This cursor is missing or is not flashing.

The turtle can now
be moved with the
arrow keys.

Now use the arrow keys to move the turtle away from the center of the page. To leave Turtle
Move, press Esc. When the cursor is again flashing in the Command Center, type

REPEAT 4 [FORWARD 50 RIGHT 90]

You now have a square that is not in the center of the page. You can use Turde Move to place
designs wherever you want on the page.

Frequently Asked Questions
1. What happens if I use the parentheses (and) or braces (and } instead of the square brackets [

and] in a 'REPEAT command?

Answer: This is the sort of question you should answer for yourself. Try it and see what
happens. Parenthesis and square brackets have special meaning in Logo. Be careful to
distinguish between them when you learn new Logo commands.

2. I lost my cursor. Where is it? Where am I working?

Answer: It is easy to get confused as to which mode you are in. When you are in Turtle Move
Mode, there is a cursor in the upper left hand corner of the page and it is not flashing. (You
will learn about that cursor later.) In some versions of LogoWriter, the cursor in the Command
Center is missing; in others it is there but not flashing. To get back to the flashing cursor in the
Command Center, press Esc. Esc exits Turtle Move Mode.

Don't worry that you might press Esc too often. If you have named your page, LogoWriter
will simply save your work and put you on the Contents page. Select the page you were
working on and continue your work. If you have not named your page, LogoWriter will ask
you to name it. If you wish, you can ignore this message and continue your work.

2p7

Bugs and Debugging: Learning Logo Becomes More Complex
In the initial stages of learning a proFamming language like Logo, it is relatively easy to detect

and correct bugs. This is because the initial learning focuses on learning the syntax and meaning of
a number of commands and how to use them in Logo instruction lines. In essence, vou are
learning some vocabulary and how to write the very simplest of sentences using the vocabulary. It
is easy to correct the types of errors you make when using one word or very short sentences
written with very few words.

However, Logo Writer contains over 200 primitives (vocabulary words). Moreover, as you
proceed in learning Logo, you will find that the primitives can be combined into more and more
complex instructions. Furthermore, sequences of instructions can be grouped together in order to
solve increasingly complex problems.

Thus, you will see a gradual shift in the types of bugs that you create. As you learn more
primitives, you will sometimes forget some of the relevant details. For example, instead of using
CG for Clear Graphics you might use CS, thinldng that what you want to do is Clear Screen. But
there is no CS primitive in Lc goWriter. A good memory for such naming details is helpful but is
certainly not necessary. You can aid your memory by keeping a written list of the primitives you
have learned. You might make a copy of the Quick Reference in the Appendix of this book, and
then highlight new primitives as you learn them.

Later on in your learning, you will begin to write longer instruction lines to attack more
complex problems. You will make more and more logical errors that don't produce the results you
want. In early stages of learning Logo, almost every instruction you write produces a result you
can see on the screen. If you continually check the screen results against what you expected to
produce, you will be able to detect these types of bugs immediately.

Later in this book you will learn how to write long sequences of instructions that the computer
carries out only after you have completed writing the entire sequence. At that time you will be faced
with the task of finding bugs that may be due to a variety of errors of different types. Furthermore,
the errors may interact with each other to produce some very strange results. Determining the
source of such errors can be very challenging.

Computers and Problem Solving: REPEAT and Human Thinking
A computer is a very fast machine. Even an inexpensive microcomputer can multiply two big

numbers together in less than a thousandth of a second. The very fastest of modern computers can
carry out more than a billion arithmetic operations in a second.

Suppose that the idea of repetition did not exist in computer programming. Then a computer
program would be a linear sequence of instructions. It would take a very long program to keep a
computer busy for even a few seconds. It is easy to see why the idea of repetition is very important
in computer programming. Most computer programs involve having a computer do a great deal of
repetition, perhaps with small modifications between repetitions.

This also points out a major difference between humans and computers. The human mind is
not good at doing the same task over and over apin quickly and without error. The mind soon
becomes bored! However, a computer can do the same task over and over again hour after hour. It
can do this without error, and without getting bored.

This ability of computers brings a new dimension to problem solving. This is a challenge to
teachers and to .students. Where in your schooling did you learn to think about the possibility of

24 Ps

repeating a certain action many thousands of times in order to solve a problem? Are there certain
types of problems that can be solved that way? Is the basic nature of solving problems by trial and
error changed by computers?

Every computer programming language contains provisions for telling the computer to do
something over and over again. Different languages contain different provisions for this. The
REPEAT command in Logo is but one of several ways to cause repetition to occur in Logo.

Activities
1. Create a drawing that is not in the center of the page. When you are satisfied with your

drawing, press Esc to save it and then type PRINTSCREEN to print it using the printer. If you
can't think of anything else, use REPEAT to make a fluffy ball in the upper left corner of the
page and a star in the lower right corner of the page.

2. Using REPEAT, create a flower blossom. Use Turtle Move to create a garden of flowers all
over the page.

3. Students often become fascinated with the wrapping feature of Logo and spend many hours
making "plaids." Experiment with instructions like

REPEAT 20 (FORWARD 1000 RIGHT 17]

25

What kinds of instructions produce patterns that look like this first picture?

Can you produce designs that look like this second picture with a single REPEAT instruction?

tfia441 -%--dvilizicr, 0,174ti 4:44:1-11 I; -.4.-c.",i,,, ,

2:7:7:fl,,,,,,,
.... sit

4 7 ,."14411"liZ)1;614.74411:iit"
24;7,

\tir, kflz.4"via rfitiri b".6.7.::I 10:!att

irft;,:lisiZanilie

araftlillriaili:464(wArLIOR4V,S4,11i Z141,,t,411P14.--,sk. ,-
---.41, igiiik,4 i., azy lib sow- ,,,.....71,i5iregi Vo "Iii &II,

ir, ,%10 Zut % .11°P. fflogii-.1(k '4".11Wiri 1 V /I 4;7 1 'Z'llati Mei
.m.ft- 4 1.444 air at .0111%

\ atir:Cji,-ft";"Itli.: tli, eft lgra 1.421.14ti
) 111%,....1401,.._ au ,:ar MP-14/0 -w4)-""111114,4' 11111 -111%.--". i" _4giff -- 4 \ ie.

I 11-1"It4:7 * -°7-111i,""galat!7IZAIRI "7. lift 111%:ell'it

What is so fascinating about these designs? Can you find interesting patterns? Can you think of
curriculum-related activities that would use this wrapping phenomenon? Write your thoughts in
your journal.

4. Think about the idea of repetition in education. When you were in school, did you learn to
think about repeating a certain action many thousands of times in order to solve a problem?
How many times did you practice this approach to problem solving while you were in school?
Think of examples of problems that might be solvable by extensive repetition or extensive trial
and error. Does the computer change the way we should teach problem solving? Spend some
time writing in your journal about these ideas.

26

3

Chapter 5
Color and Random

Drawing in Color
So far you have created drawings with the turtle that did not make use of color. The turtle can

also draw in colors if you have a color monitor. Try this series of instructions and watch carefully
what happens. (You might also want to jot down the six numbers you use and the colors they
represent.)

SETC 2
FORWARD 30
RIGHT 60
SETC 3 < Use arrow keys to move up and the Delete key to change the number from above.
FORWARD 30 Use the arrow keys so you don't have to retype the FORWARD and RIGHT commands.
RIGHT 60
SETC 4
FORWARD 30
RIGHT 60
SETC 5
FORWARD 30
RIGHT 60
SETC 0
FORWARD 30
RIGHT 60
SETC 1
FORWARD 30
RIGHT 60

Did you notice that the turtle changes to the color of the pen it is carrying? What is the color
number for white? What is the color number for black? What happens if the turtle turns black?
What other color numbers did you discover? How many colors are available on the computer you
are using? (You may need to do some experimentation to answer this question. The number of
available colors varies with the type of computer system being used.) Keep in mind that the color
of the turtle represents the color of the pen it is carrying and thus the color of the line the turtle will
draw.

NOTE: If you are using a monochrome screen and change the color of the turtle, thr, curtle will
appear to have stripes and the lines that are drawn will be broken.

FORWARD 30gen 60

???

Colored lines appear as broken
lines on a monochrome screen.

)1
The turtle appears
to have stripes on
a monochrome
screen.

Changing Che Ekuimlnind Oflor
Not only can you change the color of the pen using SETC, you can also change the color of the

background. For example,

SETBG 3

changes the color of the entire page. Experiment with different background colors.

On some computers, you will discover that when you draw on a colored background with a
colored pen, you occasiontilly get some odd effects. The colors aren't what you expect them to be.
That is not something you are cioing wrong. It has to do with how color is represented inside your
computer. For best results you will want to use black or white pens on colored backgrounds and
use colored pens only on black or white backgrounds.

Using RANDOM
Everything you have told the turtle to do so far has been exact and totally predictable: "go

fonvard 50 steps," "turn left 57 degrees," or "draw in pen color 3." It is also possible to have the
turtle behave in ways that you cannot totally predict. You can use Logo to create random numbers
and you can use instructions that contain random numbers. Random numbers are numbers that
have no apparent pattern to them. Think about rolling a die. This produces a random outcome
bett.yeen 1 and 6. Think about flipping a coin to produce a random number which is a 0 or a 1,
with heads standing for a 0 and tafls standing for a 1.

The Logo primitive RANDOM is used to create random numbers. We can Use another new
primitive, PRNT, to see the results of using RANDOM. Try, for example

PRINT RANDOM 10

You see a number on the page. Use the arrow keys to repeat this instruction or type

28

REPEAT 20 [PRINT RANDOM 10]

Twenty random numbers appear on the page. (You can type CT for Clear Text to remove numbers
you don't want.) Experiment with this instruction. Do you see that when you use the number 10 as
input to RANDOM, you get numbers from 0 to 9?

RANDOM and PRINT are both primitives. They are, however, two different types of
primitives. PRINT is a command, like FORWARD and RIGHT. It causes an immediate effect
putting text on the page. You must provide an input to PRINT or you will get an error message.
On the other hand, RANDOM is a reporter. (We will say more about this later in the chapter.) It
produces a number and reports it in a form that can serve as an input to a command.

Next try

CG
FORWARD RANDOM 50

Repeat these two instructions a number of times. Do you see that the turtle moves different
amounts at different times? RANDOM reports to FORWARD some number from 0 to 49 and then
the turtle moves forward that number of turtle steps. That is, if RANDOM 50 reports the number
37, then the turtle follows the instruction FORWARD 37. If RANDOM 50 reports 11, then the
turtle moves forward 11 turtle steps.

What happens if you try co make a square, but use random length sides? Try it!

CG
REPEAT 4 [FORWARD RANDOM 50 RIGHT 90]

You can send the turtle on a random walk by typing something like

REPEAT 50 [FORWARD RANDOM 20 RIGHT RANDOM 90]

Did your design look anything like this?

???

MEAT 50 fFORWARD RANDOM 20 MIT
RANDOM 901

RANDOM is different from the Logo primitives you have seen so far. If you type

RANDOM 50

Logo Writer responds with

I don't know what to do with dome.number

This message appears because RANDOM is a reporter. It produces a value and reports it back to
Logo.

To use the RANDOM reporter, you must always tell Logo what to do with the number it
produces. Our previous examples show that the computer can report the value to a movement
command, such as FORWARD, or a turn command, such as RIGHT. You also saw that you could
use a PRINT statement to see the results produced by RANDOM.

Take time to experiment with RANDOM. Can you get some other interesting effects using
RANDOM? How about picking random colors? That certainly is possible. Recall that the colors are
numbered beginning with zero. So, if you use RANDOM 6, it will report a number between 0 and
5, which is exactly what you want if you are using a computer with six colors. You can change the
background color each dme the turtle draws a line. Try this:

CG
SETC 1
REPEAT 4 [SETBG RANDOM 6 FORWARD 50 RIGHT 90]

What about random pen colors? You can get some beautiful patterns by simply changing the
pen color randomly each dme you move the turtle. For example,

CG
REPEAT 90 [SETC RANDOM 6 FORWARD 80 RIGHT 178]

You can get flashy effects by typing:

REPEAT 10 [SETBG RANDOM 6 WAIT 5]

Note that we have introduced a new command called WAIT without an explanation. Can you
figure out what it does? Try some experiments to see if you can determine what the number after
WAIT represents. Think about the problem solving strategies that you might use to answer this
question. Perhaps you'll want to record your observations in your journal.

When you are working with color, the easiest way to reset the screen is to use

RG

The Reset Graphics command puts the turtle in the center of the page, sets the background to
black, and the pen color to white.

30 :1 4

Frequently Asked Questions
1. How can I tell if I have a color monitor?

Answer: If you try several different numbers after SETBG and don't get different colors, then
you are using a monochrome screen or the color is turned off on your color display monitor.
There is no way to get color on a monochrome monitor.

2. Why does RANDOM 6 report one of the integers 0, 1,..., 5 rather than an integer in the range
of 1 to 6?

Answer: This is an "arbitrary" decision that was made by the creators of Logo Writer. In many
cases, mathematicians seem to like to start counting at 0 rather than at 1. This has carded over
into a number of different programming languages. Note that 1 + RANDOM 6 will be a
random integer in the range of 1 to 6.

3. What is the time unit used with the WAIT primitive?

Answer: It is 1/20 of a second. WAIT 10 specifies a wait of 10/20, or 1/2 second. WAIT 60
specifies a wait of three seconds.

4. Why do I get the same sequence of random numbers if I use the statement REPEAT 20
[PRINT RANDOM 101 immediately after turning on the computer?

In some versions of Logo Writer, when the computer is turned on using Logo, the sequence of
random numbers is always the same. There are a number of ways to solve this problem that
you will learn if you continue your work with Logo.

Bugs and Debugging: Random Bugs Are Harder to Find
The idea of a reporter adds a new level of complexity to your Logo learning. A reporter, all by

itself, does not produce a result that shows as part of a drawing you are making. Rather, it
produces a result that is then used in conjunction with another primitive to make an instruction that
can contribute to what appears on the page.

The reporter RANDOM also adds another debugging difficulty. Up to this point you have been
able to have an exact picture in your "mind's eye" of what you expect a drawing to look like. You
were able to detect effors easily because the screen display did not look like what you had in mind.
It is much harder to get a good picture in your mind's eye of the types of results that will be
produced when you make use of RANDOM. Thus, you might well have made an error in
programming logic and be unaware of it.

There is no easy solution to this new error detection problem. You will want to think very
carefully about what you want to produce with the instructions you are writing. You will want to
write these instructions (often using pencil and paper) and think carefully about them. Are they
really what you want? Will they produce the results you have in mind? You will want to think
about ways of testing whether the results you have produced are correct. These are all important
aspects of computer programming.

Computers and Problem Solving: Modeling Using RANDOM
One of the most important ideas in using a computer to help solve problems is figuring out

ways to represent a problem on a computer. Logo is particularly powerful as an aid to representing
graphically oriented problems. You can draw a picture on the screen, look at it to see if it is what
you had in mind, and then easily change the picture.

31
f.v:5

When we represent a problem on a computer, we say we are developing a computer model for
the problem. A computer model is different from a scale model or a paper-and-pencil model.

The primitive RANDOM is quite useful in developing computer modeling for certain types of
problems. Suppose you are working with a class of 24 students and you want to select a student at
random in or to ask that student a question. You can write each student's name on a slip of
paper, put the slips of paper in a box, shake up the box, and draw out one slip of paper.

Here is a way to create a computer model of the slips-of-paper process. Number the students in
your class with the numbers 0, 1, 2, ..., 23. When you want to select a random student, use

PRINT RANDOM 24

Now you have constructed a computer model of the process of drawing numbers out of a hat to
select a student at random.

Maybe you think it is unnatural to number your students starting with 0. Instead, you want to
number your students 1, 2, 3, , 24. Then use

PR/NT 1 + RANDOM 24

Notice that RANDOM 24 will produce a random integer in the range of 0 to 23. Adding 1 to the
result produces a random integer in the range of 1 to 24.

We have just developed two somewhat similar computer models for the process of selecting a
student at random. Perhaps one seems more natural or better to you. There are many different
models that can be developed for a problem. Generally, each has certain advantages and certain
disadvantages. The study of computer modeling is a very important part of learning to use a
computer to solve problems.

Think about the problem of designing a house and having it built. Here is a short list of some
of the types of models that might be useful in this overall process:

1. Blueprints, to be used by the builder.

2. A drawing of the house and landscape, to be used by the landscaper.

3. A wiring diagram, to be used by the electrician.

4. A plumbing diagram.

5. A list of the amount and type of insulation and the nature of the building materials, to be used
in an energy efficiency audit.

6. A financial analysis of your savings, income, and monthly payments you feel you can afford,
to be used in obtaining a bank loan.

The list can easily be extended Each type of model is useful in helping to solve some particular
aspect of the problem of designing and building a house. Notice that it is possible to develop a
computer moM for each item on the list.

32

6

Computer modeling is very important for two reasons. First, computer models are often much
easier to change than scale models or paper-and-pencil models. Second, a computer can often be
used to help do part of the work involved, in using a model. For example, suppose that we have a
computerized energy audit for our house, and we decide to use bricks in place of wooden siding.
With a computer model, we might produce a new energy audit in a few seconds.

Aivhitects now make routine use of computer models. Programs have been developed that help
an architect to desip a building and then view pictures of it from different directions. This type of
computer assisted design software is a powerful aid to solving architectural problems. As you learn
more Logo you may want to try a simpler problem. Develop a computer model of a room
arrangement, showing the windows, doonvays, and furniture. Develop your computer model so
that it is easy to make changes.

You might start thinking about this problem right now. Do you know enough Logo to
effectively solve the problem? What are you lacking? Keep this problem in mindas you learn more
Logo primitives. Eventually you will know enough Logo to develop a useful computer model for
the room arrangement problem.

Activities
1. Create a page using color and RANDOM. You might

Send the turtle on a random walk with a random pen color at each move.
Draw geometric figures with flashing random background colors.
Fill the screen with randomly colored stars.

2. Experiment with repeatedly using each of the following:

PRINT 1 + RANDOM 6 + 1 + RANDOM 6

PRINT 1 + RANDOM 12

Explain the similarities and differences between these two instructions in terms of the type of
output you expect them to produce. Think of a non-computer model for each of them and
discuss your thinking in your journal.

3. Design a simple model using Logo. Think about the advantages and disadvantages of using
Logo versus other methods to create your model. Use your journal to jot down your thoughts.

4. Think of courses that you have taken where it would have been appropriate for the teacher to
talk about different types of modeling. Was computer modeling mentioned? Write about this in
your journal.

;1 7
33

Chapter 6
Shapes and STAMP

Changing the Shape of the Turtle
Have you noticed the page Shapes in the list of pages on the Contents page? Maybe you even

looked at it! If not, select Shapes and you will see a screen filled with small pictures. If you are
using the Intermediate version of Logo Writer, your screen looks like this:

shapes

1 2 3 4 5

11 12 13 14 15

6 7 8 9 10

16 17 18 19 20

-<" 4Peti 144.1e
21 22 23 24 25 26 27 28 29 30

wo ft off 4§ 101 11111

Numbers 1 - 10 each contain only a dot Numbers 11 - 30 are a variety of shapes. (If you are using
the Primary version of LogoWriter, numbers 1 - 25 are a variety of shapes while 26 - 30 are each a
dot. See the Appendix for pictures of all of the shapes.) Is there one shape that you particularly
like? Remember its number. Press Esc to leave the Shapes page and then get a new page.

Once you see the turtle on the screen, type

SETSH number.you.picked

Surprise! The turtle is no longer a turtle. Try another number. And another. The turtle can be
"costumed" in any of the shapes shown on the Shapes page. Note that SETSH stands for "set
shape."

If you want the turtle shape back, type

SETSH 0

to return it to the original turtle shape.

Next, with the turtle wearing a costume other than its familiar turtle shape, type

CG
FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90

11111111/1r
FORWARD 50
RIGHT 90

???

Do you notice anythiag unexpected? If not, type

CG
SETSH 0
FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90

???

miltmEmminitimmo
FORWOD 50If 90

36

and compare the movement of the turtle shape and the other shapes. Do you see that the turtle
shape turns to face in the direction that it is moving, but the other shapes do not? That can be a
problem when you are trying to draw with the turtle and forget which way it is facing. Of course,
you can always use

SETSH 0

to see where the turtle is facing. Generally, it is a good idea to leave the turtle in its normal "turtle
costume" until you get a shape placed where you want it on the page.

Stamping the Turtle Shape
Not only can the turtle draw, but it can behave like the rubber stamps that people use to stamp

dates or mark packages. The turtle can stamp only its current shape. Try this.

CG
SETSH number.of.your.choice
PD
STAMP
PU
FORWARD 20

My.Page

prINIMMMINNIIIMMEN
FORWARD 20

You should now have two "copies" of the turtle shape. Which one is the actual turtle that is
carrying the pen? Type

FORWARD 20

and you will see that one of the turtles moves and the other stays put. Another technique for
discovering which turtle is active and which is a stamped copy is to use HT. The active turtle will
disappear and the stamp will not change. You can then see the active turtle again by typing ST. As
you can see, the stamp of the turtle shape will remain on the screen until you type CO.

37

Take note of the sequence of commands to get a stamped copy of the turtle:

Put the pen down.
STAMP the shape.
Lift the pen (so there is no trail).
Move the turtle (so you can see the stamped copy).

You can stamp any number of shapes in any number of places on the screen. Try it!

Frequently Asked Questions
1. Why does the turtle shape turn when I use a turn primitive, but the other shapes do not turn?

Answer: Logo Writer has stored in the memory of the computer many pictures of the turtle
facing in different directions. As you rotate the turtle-shaped turtle, Logo Writer uses the
appropriate picture. To store many different versions of each Logo Writer shape would take
much more memory than is available on the smaller computers used to run Logo Writer.

2. How can I tell which way the turtle is facing when I am using a turtle shape to draw?

You can always find out which way the turtle is facing by typing

SETSH 0

In fact, when you are drawing with the turtle, it it a good idea to always use the regular turtle
shape and then change to the costume you want to appear on the page just at the time you are
ready to STAMP it.

3. STAMP is broken. What am I doing wrong?

Answer: If STAMP does not seem to work, you probably forgot to put the pen down. Get into
the habit of using the sequence

PD
STAMP
PU

so that STAMP works correctly and you don't accidentally draw lines after you stamp a shape.

Occasionally STAMP won't work because of the turtle's position on the screen. This occurs
because of the way the screen image is stored in the memory of some kinds of computers.
Should this happen to you, simply move the turtle a few turtle steps and try again.

4. My turtle disappeared? Where is it?

In some versions of LogoWriter, if you stamp a turtle on top of an already stamped turtle shape
or move the turtle on top of a stamped turtle shape, both may disappear. Don't panic. Just
move the turtle.

If moving the turtle doesn't work, try typing

ST

38
41

If the turtle is still missing, use SETC to change the color of turtle so that it is different from the
color of the background.

5 . How can I erase a shape I have stamped without erasing the entire screen?

Answer You can erase a stamped turtle shape by setting the pen color to the background color
and stamping on top of the shape you don't want. It can be difficult to get a shape in exactly the
right place, however. Sometitnes it is easier to use the square shape (number 11 in the
Intermediate version of LogoWriter). You might type

SETSH 11

then use Turtle Move to place the turtle, set the pen color to the same color as the background,
and then stamp the shape.

SETC BG
PD
STAMP
PU

These steps can be confusing because you can't see the turtle after you type SETC BG. When
you have finished typing PU, be sure to set the pen color (SETC) to some other color, such as
white. Incidentally, this same technique can be used to remove lines you no longer want in
your drawing.

Bugs and Debugging: Turtle Shapes and Mental Models
In the previous chapter you encountered the reporter RANDOM that contributes to debugging

problems. Part of the difficulty is that there may be a difference between what you have in your
mind's eye and what the compucer display actually looks like. This chapter adds a somewhat
similar difficulty.

In this chapter you have learned about shapes and how to give the turtle a different costume.
Unfortunately, you do not see the turtle with a new costume rotate on the screen when you make
use of the RIGHT and LEFT commands. That is, the direction the turtle is facing (called the
heading) changes, but the actual display of the costumed turtle does not change. In your mind you
think of the costumed turtle as having a particular heading. However, on the screen the actual
costumed turtle is not likely to appear to have that heading.

Clearly this contributes to confusion. One way to deal with this was suggested earlier in the
chapter. Do all of your drawing using the standard turtle shape, until you are ready to stamp a
costumed turtle. Change to the desired shape, stamp the costumed turtle, and then change back to
the standard turtle.

This illustrates a very important idea in computer programming. You, your textbook authors, and
your teacher can anticipate in advance some of the types of bugs you may produce. You can learn
programming techniques that avoid the bugs, or make them less likely. In your journal you may
want to keep track of the bugs you make most often. Gradually you will develop techniques for
avoiding these bugs.

Computers and Problem Solving: Building on the Work of Others
Take another look at some of the shapes you have stamped. These are carefully drawn figures.

You can use these shapes even if you don't have the artistic talent or the time to draw them

39

4 2

yourself. It doesn't take very long to learn how to use Logo shapes, and they can be very useful in
producing pictures that are pleasing to you.

This illustrates a very important idea in problem solvinglearn to build on the previous work
that other people have done. 'this is one of the reasons that computers are so important. Suppose
there is some problem that comes up quite often and that a computer can solve or help solve. Then
someone can write a program to solve or help solve the problem. Other people can use the
program. They can build on the work of the original programmer even if they don't know how to
write computer programs themselves.

You might ask how this differs from just writing a book about how to solve the problem. In
some ways writing a book on how to solve a problem is quite a bit like writing a computer
program to solve a problem. In both cases the goal is to preserve and make available the
howledge about how to solve a particular type of problem. In both cases the goal is to help other
people solve the problem. The difference is in the amount of learning and effort needed by the
user. It takes a lot of time and effort to read a book and to learn what it says well enough so that
you can do it yourself. If the smut information is in a computer program, it may take very little
time and effort to learn to use tht. ,.;omputer program. Instead of learning to do all of the work to
solve the problem by hand, you merely learn to tell the computer to solve the problem. The
computer solves the problem by following the instructions in the computer program.

This is a simple idea, but it is the foundation for a revolution in education. If a computer can
solve a type of problem that we currently teach students to solve by hand, what should we be
teaching students about solving this type of problem? This is a very difficult question with no
simple answer. However, there have already been major changes in some curriculum areas based
on computers. Students are taught methods for solving certain problems "by computer," and are no
longer taught methods for solving the same problems "by hand."

The areas of graphics design and mechanical drawing provide excellent examples. The ability
to use different shapes for the turtle in Logo gives a hint of some of the computer's power to aid in
doing graphic art work. Such computer aids are now routinely used in the world of business and
industry. Many high school and college courses used to teach mechanical drawing and graphics
design using only pencil and paper have been drastically changed because of computers.

Activities
1. By combining designs made with the turtle and stamped shapes, you can create a variety of

interesting pages. For example, you might create a

Postcard with a picture.
Valentine's card 6ordered with hearts.

40

Cover for a report.
Design for a campaign poster.
Decoration to go on the locker of a friend.
An overhead to be used for class or for a report.

2. Try combining what you know about REPEAT with what you know about stamping shapes to
create a page with a border of shapes around the edge. How many REPEAT statements did you
need to use? How did you decide on the spacing of the shapes? Keep a record in your journal
as you work. What problem -olving strategies did you employ?

3. Have you been keeping track of the bugs you have encountered in your work with Logo? Take
some time to look back through your Journal. Do you see patterns in the kinds of problems you
have? Are you finding your work with Logo to be getting easier? Harder? About the same?
How do you think you can learn to manage your own debugging process better?

4. Think about the "by hand" methods we now teach students to use in schools. How do you
think the computm might change what we now teach? Do you think theses changes are positive
or negative? Do you have an area of "by hand" expertise where computers are now routinely
being used? If so, what are your feelings about the time you spent in learning to do it by hand?
Write your thoughts in your ,journal.

41

Chapter 7
Defining New Shapes

When you were working with the Shapes page in the last chapter, did you wonder why part of
the shapes were just dots? In this chapter you will get the answer.

Go to the Shapes page and use the Flip keys to flip to the back of the Shapes page. (See the
Appendix for the keys used on your computer.) The "back" of the page shows you an enlargement
of shape 1. For the Intermediate version of LogoWriter it will look something like this:

:harm MINECOMMEI

Use the Next Screen and Previous Screen keys to move from shape to shape (see the Appendix).
Take a look at all the shapes.

Go to a shape that contains just a dot. Use the arrow keys (Up, Down, Right, and Left) to
move around within the shape. How many "blocks" across is the shape? How many up and down?

Next, press the space bar. If you are on a "colored in" block, it disappears. If you are not on a
block, a block appears. See if you can make one of your initials in the shape grid.

When you have finished your initial, flip the page back. Do you see that your drawing appears
on the front of the Shapes page now? Remember the number of the new shape you have created.
Press Esc to leave the Shapes page, get a new page, and type

SETSH number.of.shape.you.created

The turtle is now the shape you created! Your new shape has become part of the Shapes page.
Name your page, then type

SHAPES

43

to go back to the Shapes page. Pick one of the predefined shapes and change it. Perhaps you
would like to change the way the kitten looks or make the car a bit more sporty. When you are
finished, flip the nage to see your revised shape. When you press Esc, Logo Writer returns you to
the page you just named. Try using your revised shape.

Restoring a Shapes Page
You can change any or all of the shapes on the Shapes page to whatever you want. However,

you must remember that when you replace a shape with the new one, the old one is lost. Think
carefully before you press Esc after changing shapes!

If you accidentally destroy the shapes that came with your version of Logo Writer, you can
restore them using another Logo Writer disk with the correct Shapes page. The directions on how
to do this are given below. Be very careful when you copy an entire Shapes page; it is easy to
accidentally destroy the Shapes page you want to keep.

First, be sure you are on the Contents page.

1. Put the disk with the correct Shapes page in the disk drive.

2. Select the Shapes page.

3. Remove the disk with the correct Shapes page.

4. Put the disk onto which you want to copy the correct Shapes page in the disk drive. (This is the
one with the "wrong" Shapes page on it.)

5. Press Esc.

Both disks now contain identical Shapes pages.

Frequently Asked Questions
1. Can I make a shape larger than the shape grid shown on the screen?

Answer: No. However, you can make up several different shapes and stamp them next to each
other. This produces the appearance of a larger shape.

2. Can I start with a shape such as the helicopter, and easily modify it?

Answer: Yes. Here is how to do it:

1. Go to the Flip side of the Shapes page.

2. Go to the shape you want to modify.

3. Press the Copy Keys (see the Appendix for the correct keys to use with your machine).

4. Go to a blank shape.

5. Press the Paste Keys (see the Appendix for the correct keys to use with your machine).

6. Now modify this shape as desired.

3. Is there an easy way to get rid of a shape I no longer want to use?

Answer: Yes: Here's how:

1. Go to the Flip side of the Shapes page.

2. Go to the shape you want to get rid of.

3. Press the Cut Keys (see the Appendix for the correct keys to use with your machine).

Bugs and Debugging: Potential Problems When Saving Shapes
Most people are not good at reading a complex set of instructions and following them without

making a single mistake. (It is very difficult to write directions so that people can read and follow
them without error.) In many computer programming situations the results of an error are not
disastrous. You write some instructions and produce an incorrect result. So, what's the big deal?
You merely detect the errors and correct them.

This chapter gives you a major new capabilitythe ability to develop your own shapes. Along
with this comes the possibility of making mistakes that will have far reaching consequences,
mistakes that are not so easy to correct. You have learned a way in which you can really make a
mess of things. For example, you can completely destroy the Shapes page on your Logo Writer
Scrapbook disk. As you attempt to correct this, you can make a mess of the Shapes page on
someone else's Logo Writer Scrapbook or Master disk.

This means that you want to be very careful as you change your Shapes page. If you do mess
this up, your next "line of defense" is copying someone else's Shape page. In this process, if you
make a mistake, you may mess up their shape page. At some stage you may want to seek help
from a more experienced Logo user. This is a key idea in debugging. An outside expert may be
very helpful, and may indeed be necessary. You want to come to understand your own capabilities
and limitations. You want to become self-sufficient. However, at times you will need outside help.

Computers and Problem Solving: Building on Your Own Work
In the previous chapter we talked about learning to build on the work of others and how this is

a key idea in problem solving. Computers are very important in problem solving because they are a
unique new aid to building on the previous work others have done. Often a computer can save you
a lot of learning dme as well as a lot of work in actually solving a problem.

Another very important idea in problem solving is building on your own previous work. You
do this all the time. It took you a great deal of time and effort to learn how to read. Now you read
with little effortbuilding on your previous learning. When you are writing a term paper, perhaps
you begin by going to the library and making a set of note cards containing relevant information.
Later, as you actually write the paper, you build on the work you have previously done and
"stored" on these note cards.

Computers bring a new dimension to the idea of building on your own earlier work. When you
save and later reuse a Logo page, you are building on your previous work. When you develop a
new shape and later use it, you are building on your previous work. In both cases the computer
contributes significantly to your ability to use your earlier work. It stores the results of your work
in a form that is convenient for reuse.

45
4 7

Now you can begin to see one reason why many people want to learn how to write computer
programs. Many of the problems you encounter are unique to your interests, abilities, knowledge,
and, experience. Nobody else has ever viewed the world in quite the way that you view it. Some of
the "personally unique" problems you encounter can be solved by computer. However, it is likely
that no one else has encountered the problems in just the same way you have. Thus, it may well be
that nobody has ever written a computer program to solve these problems.

A computer provides a unique new way of storing the procedures and information needed to
solve certain types of problems. This obviously is important in education. Procedures can be
memorized and practiced until you can carry them out rapidly and accurately by hand. However,
this can take a rat deal of time and may well take abilities you do not have. (Do you have the
hand-eye coordination to be a "by-hand" graphic artist?) Quite a bit of our current educational
process is oriented toward teaching students to master by-hand procedures that computers can also
carry out. An alternative would be to place much more emphasis on helping students learn to
develop new procedures and to become more effective in solving problems using procedures they
have learned or developed. This type of procedural thinldng is a new idea in education, and it is
gradually gaining strong acceptance as schools place more emphasis on students gaining higher-
order thinking skills.

Activities
1. Now that you can create any shapes you want, try a project from the previous chapter but use

your own shapes. For example, you can make

Signs made up of special symbols.
Wallpaper-Wm patterns.

A map showing locations of interest.
Cartoons.

As your are developing your project, don't forget to use your journal to document your
thoughts, successes, and frustrations.

46

4 S

2. In an earlier chapter you learned how to use RANDOM. Can you use RANDOM to pick a
shape? How about picking a random shape, using a random color on it, and placing it on a
random-colored background?

3 . You can produce animation by using a shape, waiting for a short time, switching to a slightly
changed shape, and then repeating the process. For example, you might type

REPEAT [SETSH 1 WAIT 2 SETSH 2 WAIT 2]

Try it. How would you make the animation appear to move? Document your experiments in
your journal.

4. Think about the computer's ability to provide some people with skills they are not necessarily
able to do "by hand." Do you see the computer as a tool that can aid you in some way? How
does this new tool affect society? How should it affect education? Jot down your thoughts and
observations in your journal.

Chapter 8
FILL and SHADE

Would you like to make a "solid" rectangle that is all one color? This is easy in Logo Writer.
With Logo Writer you can fill in areas on the page with the current pen color, and you ca :. also fill
areas of the page with turtle shapeseven with shapes you have created!

Clear your page and type

REPEAT 4 [FORWARD 50 RIGHT 90]

to draw a square on the screen. Next type

PU
RIGHT 45
FORWARD 20
PD

The turtle is now inside the square!

Now type

F ILL

The square fills with color.

Type

CG
SETC 5

Use the arrow keys to move up to the REPEAT line you used to draw the square. Press
Return/Enter to run each line below the REPEAT. Now the turtle uses the color corresponding to
SETC 5 to draw a colored square and fill it with color.

Notice that the pen was lifted before moving the turtle into the square. If you leave the pen
down, move the turtle and then type FML, nothing happens. This is because the turtle "senses"
that it is already on top of a colored spot. Always be sure to lift the pen before moving the turtle
into an area to be filled.

You can fill any closed area with whatever color you want. Be careful, however, that the area
really is closed. Otherwise the color may "leak out" all over the page! Try this. Make a figure that
is not quite closed,

CG
REPEAT 3 [FORWARD 50 RIGHT 90]
FORWARD 45

move the turtle "inside" this figure, and then type FILL. What happens?

Occasionally FILL does not work as you expect when you are quite sure you have the turtle
placed inside a closed figure and you typed FILL. In this case, move the turtle just a few turtle-
steps and then try again. Remember, keep the pen up when moving the turtle; put the pen down
when you are ready to fill.

Next, make another square with the turtle inside.

CG
REPEAT 4 [FORWARD 80 RIGHT 90]
PU
RIGHT 45
FORWARD 20
PD

Now type

SETSH 2 9

(Here we are assuming you are using the Intermediate version of LogoWriter and have a shape of
small bricks. If you are using the Primary version of LogoWriter, use shape 19.)

Then type

SHADE

and finally

HT

50

IM1 !MN 1.
MO MN MN NM =I NM

MY OM MOM NMI EMI NM
MEM WIN MI1 am.

MI ME. MMil
ON MY MO NM IM

.1 mi. ammo MEM MY
11 11=1 I11

11.1 NNW 1 IMIl
NM WM anIM 1../. EMI

INS
M. MMI l

SETSH 29
SHADE

Now you see a square filled with bricks. Use the arrow keys to draw the square again and repeat
this sequence, but use a different turtle shape. The square will fill with whatever shape you select.
Try filling a figure with kittens.

You need to remember to use the same steps when working with SHADE that you use with
FILL. Lift the pen when moving the turtle, put the pen down before shading, and move the turtle
just a few steps if you have difficulty.

FILL and SHADE can be used to create interesting effects in drawings. Spend some time
experimenting with them. Keep track of your work in your journal. What was particularly
interesting? What ideas might you use in the future? Which ofyour results make you think of other
neat projects?

Frequently Asked Questions
1. Sometimes FILL and SHADE don't work. Is there something I am doing wrong?

Answer: If either FILL or SHADE don't work properly, it is most likely because you don't
have the pen down or the turtle's pen is over a dot that is already filled or shaded. First, type
PD and try again. If that doesn't work, then the turtle is positioned so that Logo Writer thinks
the area is already filled or shaded. Lift the pen. Move the turtle a small distance. Put the pen
down and try again.

2. I messed up a very complex picture when I used FILL. It took me a long time to redo the
picture. How can I avoid this problem?

Answer: Since shading and filling areas make major changes on your page, it is a good idea to
save your page before you type SHADE or FILL. Suppose your page is named MY.PAGE.
First save the page and then get it from the Contents page again. Then do your filling or
shading. If the Fill doesn't work right, rename the page. For example, you might type

NP "JUNK

51
r

Press Esc. This saves the page "JUNK." Then get the page MY.PAGE from the Contents page
and try again.

3. Do FILL and SHADE work exactly the same in all versions of Logo Writer?

Answer: No. The kinds of problems you might encounter with FILL or SHADE may differ
from one brand of computer to another, just as the colors available differ from from one kind
of computer to another.

Bugs and Debugging: Is Logo Wrong?
As you work with LogoWriteror any very complex computer softwareyou may get some

unexpected results where you are absolutely positive you have not done anything wrong. It is
possible you have encountered a bug in the software you are using.

LogoWriter itself is a very complex . Earlier in this chapter, we indicated that FILL
occasionally doesn't work correctly. The rLtracno'mmand is a small part of LogoWriter, but it is an
unexpectedly complex part. A rule of thumb is that every complex computer program contains
bugs. When a complex program is being written, a great deal of effort 3oes into detecting and
correcting bugs. On such a very large project there may be a number of people hired just to test the
program, looking for bugs. The program may be sent out to a number of test sites so that a variety
of people who may want to purchase the program can try it out and look for bugs.

Even with all this testing and debugging, there will be undetected bugs, or bugs that were
detected but were not considered important enough to fix. Thus, when you use a complex program
such as LogoWriter, it is possible that you will discover an error in the program. However, don't
be too quick to jump to the conclusion that you have discovered a bug in LogoWriter just because
you are not able to explain an incorrect result in any other way. It is not uncommon for beginners
to assume that the problems they encounter are problems in the hardware or software. You need to
be aware that it is much more likely that the bug is yours rather than LogoWriter's.

If you discover a supposed bug in LogoWriter, you will want to carefully document your find.
That is, you will want to write detailed notes in your journal that tell exactly how to make the bug
reappear. Then you can share the bug with your course instructor or with the company that created
LogoWriter. Some bugs are so complex that you cannot readily make them reappear. In such a
case you may never know whether the bug is in LogoWriter or due to something you did wrong.

Computers and Problem Solving: "I Can't Do Logo."
Many students experience considerable difficulty in dealing with FILL and SHADE at this

stage of using this book. It isn't that these two primitives are particularly difficult. Rather, it's that
these two new primitives tend to be the straw that breaks the camel's back.

This is an important idea in problem solving and in dealing with learning. It is easy to learnone
new thing, such as one new primitive. You learn it and you use it. Not much can go wrong. Then
you learn a second primitive, a third primitive, and so on. Several difficulties begin to arise:

1. You begin to get new primitives confused with ones you have used previously. You make
small mistakes in using a primitive learned on a previous day, perhaps because something
about it is nearly the same as a part of a new primitive.

2. You begin to try to solve more complex problems. These require that a whole sequence of
instructions be specified. However, you have not yet learned how to effectively develop a long

52

sequence of instructions, and the methods that you make up for yourself prove inadequate.
Eventually you attempt problems that are just too hard for your current level of knowledge and
skill.

3. You have not developed appropriate skills for determining what you are doing wrong and how
to correct your mistakes.

Think about learning to add, subtzact, multiply, and divide whole numbers, fractions, decimal
fractions, and negative numbers. Do the above three ideas apply there? For many students they do!
The result is often a feeling of "I can't do math" and a withdrawal from further attempts to learn
mathematics.

Let's assume you have now reached a stage in your study of Logo where you are frequently
getting stuck and are spending a lot of time in rather fruitless trial and error. Great! You have now
encountered a very valuable learning environment. What do you do when you can't figure out what
to do? (Be aware that some students at this stage say, "I can't do Logo programming" and
withdraw from further attempts to learn it.) This is an excellent topic to write about in your journal.
What roles can a book or a teacher play in helping a student deal with this type of frustrating
situation? What does it mean when a person says, "I can't do math" or "I can't do Logo?"

Activities
1. Create a number of closed polygons on the screen. Use Turtle Move to place the turtle before

drawing each design. Then again use Turtle Move to get the turtle inside each design to fill it.
Can you create some interesting artistic effects using filled areas? What happens when the
polygons overlap? What kinds of problems did you encounter? How did you solve them? Keep
a record in your journal.

2. Use SHADE to create patterns that are part of a greeting card. For example, you might place
lines so that the edges of the page are filled with a shape of your choice. You might even want
to design a turtle shape of your own to personalize the card.

3. Design the graphics for a sign announcing some school or community activity. Use a
combination of filling, shading, and turtle moves to make your sign.

4. Use the LogoWriter techniques you have learned so far to create the cover for a report. You
could create a turtle shape appropriate to the subject of the report.

53

5. Address the question "What do you do when you can't figure out what to do?" in your journal.
How do you solve such problems when working with Logo? How do you solve such
problems in other domains? As a teacher, how can you help your students learn to work with
such "unsolvable" problems?

54

Chapter 9
Mixing Text and Graphics

So far you have been primarily using graphics on the Logo Writer page. The text in the
Command Center at the bottom of the screen is not part of the page. It is not saved when you save
the page. In this chapter you will learn more about putting letters and numbers on the page so that
they can be saved along with the graphics when you press Esc.

Start LogoWriter and get a new page. Name your page by typing

NAMEPAGE "page . name. you . choose

Hide the turtle by typing

HT

and then press the Up keys. (Check the Appendix for the keys to use for your particular machine.)
Notice that the cursor is now flashing at the top of the page. You are now in a word processor
mode. As you type, you will be using the word processor that is built into LogoWriter. It works
much like an ordinary word processor.

Pressing Up
makes this
cursor flash.

This cursor is
not flashing.

Your page name appears here.

my .Pmgm

Begin typing. The words appear on the Page instead of in the Command Center. Continue typing.
Do not press Return/Enter when you get to the end of a line.

Use Return/Enter 11
to end a paragraph
or create a blank /
line.

The Tab key
moves the cursor
5 spaces; the
space bar can be
used to make any
number of
spaces.

Don't press Return/Enter at the end of lines.

my .Page
This is some sample text that I can type
on the page.

I can leave blank lines by pressing
Return/Enter.

I can indent using the Tab key or
using the space bar.11

Complete words automatically jump to the next line. This is called word wrap and is a standard
feature in word processors.

Now that you have some text on the page, press the Down keys (again check the Appendix) to
activate the cursor in the Command Center. Next type

CG

Nothing happens. That is because the words you have typed onto the page are in text mode instead
of graphics mode. To clear the text from the page, you must type

CT

for Clear Text.

To explore how the Logo Writer word processor works, clear the page (cr), hide the turtle
(HT), press the Up keys, and type the following text as shown. Use the space bar and Tab key to
indent the lines in the second paragraph.

56

Do not press Return/Enter at the end
of each line in this top block of text.

my .Page
This is an example that shows how text
on the LogoWriter pap behaves. You
can continue to type without pressing
Return/Enter and the text automatically
wraps.

However, you can place words
wherever

you want
them by

using the
space bar and Return key.

CO
CT

Press Return/Enter after each of the
lines in this second block of text.

Printing Text
You already know that PRINTSCREEN will print the page on the printer. This works with

graphics, text, or a combination of the two on a single page.

Sometimes you will want to print just the text you put on the page using LogoWriter just as a
word processor. Type

PRINTTEXT

The words appear on the printer in the same places that they are on the page and in regular sized
type. In addidon, there are margins at the left, top, and bottom of the page. If you want double
spacing, you can use DSPACE. Use SSPACE to get back to single spacing.

Finally, type

PRINTTEXT80

and the text is printed using 60 columns (unless you pressed Return/Enter after each line) with
margins at the left, right, top, and bottom of the page.

Take a few moments to be sure you understand how each of these commands for printing text
works. Note that PRINTSCREEN prints all the text and graphics that appear on the page.
PRINTTEXT and PRINWEXT80 print only text.

57

Note: This book assumes that your instructor will make you aware of any necessary details for
using the equipment available to you for printing. However, there are a few differences among
versions of Logo Writer you may need to be aware of.

If you arc using Logo Writer version 1.0, there are no margins on the page.
If you are using Logo Writer version 1.1, you will need to type an SSPACE before typing
PRINTTEXT.
If you are using IBM Version 1.1, you must use SINGLESPACE instead of SSPACE;
DOUBLESPAC'E instead of DSPACE.
PRINTTEXT80 is set up for 10 characters per inch (Pica type). If your printer is set for
some other type style, the text may not go all the way across the page. Sometimes turning
your printer off and then on again will reset your printer to 10 characters per inch.

Combining Graphics and Text
You have now learned how to put text on the page, and in previous chapters you learned how

to put gTaphics on the page. Using Logo Writer, you can combine graphics and text on the same
page. Get a new page and try this:

REPEAT 4 (FORWARD 50 RIGHT 90]

Now use the Up keys to get into text mode. Type "The turtle can draw wherever you tell it to
draw." Then use the Return/Enter key, the Tab key and the Space bar to put "This is my Square"
on the page so that it looks approximately like this:

???-

The turtle can draw wherever you tell it
to draw.

This is my Square

IIIMIII111111.1.1111111111111111111
MEAT 4 (FORURD 50 RIGHT 90]

Next, press Esc to save the page. Get the page and again type

CG

What happens? Do you see why?

58

Now type

CT

What happens? Do you see why?

When you are working on a project that contains both text and graphics, you can correct the
parts separately or even start one part over without erasing the other. This can be very handy when
working on a more complex project.

Frequently Asked Questions
1. Is the Logo Writer word processor a "full-featured" word processor?

Answer: No. If you have experience with other word processors, you may wonder how you
can accomplish such tasks as centering text, setting margins, or underlining words. None of
these features is available in the Logo Writer word processor. However, the LogoWriter word
processor has its own advantars. It is very easy to use. There are no elaborate menus or key
combinations to learn. In addition, you will soon learn that you can easily insert graphics into
your text. If you want to do simple desktop publishing, then LogoWriter is an excellent tool. If
you want to write long papers, you probably want to use another word processor. Don't try to
make the LogoWriter word processor meet all your word processing needs.

2. I accidentally pressed CT and it erased everything I had typed. Can I get it back?

Answer: If you type CT, all the text on the page disappears. If typing CT was an accident, it is
possible to get your text back. BefOre you press any other keys, type

UNDO

in the C-mmand Center and your text will reappear. (Note: UNDO is not available in
LogoWriter Versions 1.0 and 1.1).

3 . What's the best way to avoid the frustration of a major error or a power failure wiping out a lot
of work?

Answer: Make it a habit to save your work every 10 - 15 minutes. Better yet, save it every time
you complete a major change on your page. The time taken to save your work will pay off later
if you make a major mistake or there is a power failure.

4. Can I put text so that it is on top of a picture?

Answer: This is the type of question you should answer for yourself. Try it, and see what
happens.

Bugs and Debugging: Dealing With Complexity
The original versions of Logo did not contain a word processor. In most early versions of

Logo for microcomputers, you could only put text at the bottom of the screen. If you wanted
words with yc toctures, you had to have the turtle draw each lettera tedious task at best. With
these early vet .is it was certainly not convenient to use Logo to write a story and illustrate it with
graphics.

59 Cu

The word processor in Logo Writer adds still another dimension to the level of complexity you
face as you learn the language. In addition, it allows you to attack still more complex problems.
Thus, you may be experiencing more and more frustration as you work with Logo. If so, here are
a few suggestions:

1 . Make a list of the primitives that have been covered so far. In your list, include an example of
correct use of the primitive and/or a short explanation of how it works. Keep this list at hand as
you write programs.

2. Practice creating new materials in the context of older materials that you are certain you
understand. For example, suppose that you are quite confident of your ability to draw a square,
but you are not too sure how to put text exactly where you want it on a page. Draw a square (a
familiar task) and practice putting text at various locations relative to the square. Similarly, if
you are not sure how the FII.,L and SHADE primitives work, practice them using a simple
square.

3. Have you found yourself "thrashing around" when Logo won't seem to do what you want? Do
you get upset? Angry? Do you begin to enter commands randomly? Are you debugging only
by trial and error, not really knowing what you are doing? If so, then do some deep breathing
exercises, get up and walk around for awhile, or do something else to help you to overcome
the panic or upset. View the situation as an important learning experience.

Computers and Problem Solving: Problem Solving Styles
To solve problems, a person needs to have an appropriate combination of lower-order skills,

higher-order skills, knowledge of the problem field, perseverance, and so on. As you learn Logo,
you can examine what worIcs best for you. Are you really good at learning the primitives and
writing isolated instructions? Or does this bore you? Are you good at envisioning a complex Logo
drawing task and carrying it out, or do you feel overwhelmed, by such a task? Do you have good
persistence, or are you easily distracted?

The Logo environment provides a good place for self-examination and/or for research into
problem solving. How do children learn to solve problems in a Logo environment? Is this the same
way adults learn? Do all children learn in the same way? What role should the teacher play when
working with children in a Logo problem solving environment? What should students be expected
to discover for themselves, what should they teach each other, and what ideas should the teacher
suggest? These are all questions that can be researched. Answers gained in a Logo research
environment may give us insights into teaching in other environments.

The teacher needs to decide the goals for having students work in a Logo environment.
Suppose the goal is to learn to solve multistep Logo problems. Suppose that essentially all the
instruction and all the practice exercises are lower-order types of activities involving single steps or
just a few steps. Will this type of instruction and practice help adequately prepare you to solve
more complex problems? Is this the most effective approach, and is it equally effective for all
learners?

As you think about this, be aware that many people argue that it is essential to master the
"basics" before proceeding with more difficult tasks. However, there are strong arguments on the
other side, and educational research is lending credence to these arguments. Many schools now use
a combination of process writing and whole language experience to teach writing. They do not get
the students bogged down on details of spelling and grammar as they are working toexpress ideas
in writing. Similarly, process math and process science are increasingly gaining acceptance. Many
Logo leaders believe in using a process-oriented, discovery-based approach to helping students

60

learn Logo. They argue strongly against the approach that it is necessary to master the basics
before beginning to work on harder problems.

Activities
1. Now that you know how to place both text and pictures on the screen, you can use this

capability to do a variety of things.

Make a sign or a poster (printed using PRINTSCREEN).
Write a friend a letter describing a picnue you drew using the turtle, and include the picture.
Create a greeting card or invitation.

°rotting

Com.
to our

Patio
Party!

This Saturday, 3:00 p.m.

1= 1=1
Mil Hi MIisNo

Do a short report for another class, combining text and pictures.
Write a poem and illustiute it with pictures.
Make a design or picture using letters, numbers, and other keyboard symbols. (Pictures such
as this used to be called "typewriter pictures.")
Create new shapes and use them to fill areas with interesting designs or patterns.

As your work on your project, continue to examine your own thinking and your own problem
solving skills. Keep a record in your journal.

2. Write in your journal about how you feel on the need to master the basics before proceeding to
solving problems requiring higher-order cognitive skills. Focus specifically on your own
learning of Logo and your knowledge of how young students learn.

3. Compare and contrast process writing with "process Logo." Do some subjects lend themselves
better than others to the process approach in learninWdoing?

4. Think about the frustrations you have experienced in your work with Logo? Look over your
journal entries to see how you have dealt with those frustrations. How can you transfer what
you have learned so far about dealing with the frustration of solving hard problems to solving
hard problems you will encounter in the future? How can you teach your students to deal with
frustration in a problem solving environment?

61

Chapter 10
Writing Procedures

All the pages you have created so far have been done by typing instructions in the Command
Center. When you saved, everything you created was put on your disk exactly as it appeared on
the page. This is called programming in Immediate Mode. The computer does exactly what you tell
it to do immediately after you issue the instruction. In this chapter you will learn about a different
modeone in which you can type a long sequence of instructions and then have the computer carry
out these instructions.

Have you ever created a neat graphics design that you would like to use as part of another
page? Perhaps you remembered the instructions you used to make it, perhaps not. Without a list of
the instructions you used, it can be hard to recreate a graphics design. You have already seen that
the instructions in the Command Center are not saved. If you start LogoWriter at another time and
get your page, the instructions you used to create it are not there.

There is a way to save instructions that you have used to create pages in Logo. Recall that you
could flip the Shapes page to see magnified copies of the shapes. You can also flip Lhe page on
which you have put graphics. Try it. Use the Flip keys (see the Appendix) to see the back of a
page containing a graphics design. Notice that it says "Flip Side" at the top of the screen and that
the Commak I Center is still visible. Use Flip to go back to the front of the page. Notice the
location of the flashing cursor. Where is it when you are on the front of the page? Where is it when
you are on the back of the page?

This cursor".
is flashing.'m

This cursor is
NOT flashing.

Hy.Pag. la4 p n

Now try this. Start on the front of the page. Flip the page and use the Down keys to get to the
Command Center. Notice that the cursor is flashing in the Command Center. Use the Up keys.
What happens? Practice using the Down and Up keys while you are on the Flip side of the page,
so that you are confident that you can move between the cursor in the Command Center and the
cursor on the Flip side of the page.

With the cursor flashing at the top of the Flip side of the page, type the lines shown below.
(Remember that you can correct keyboarding errors and can move the cursor around on the screen
using the same keys you use to move around in the Command Center.)

Flip to the front of the page and type

SQUARE

What happens? You have just written and run your first Logo procedure!

A procedure is a collection of Logo commands. Procedures must begin with the word TO and
end with the word END. The structure of a procedure is as follows:

TO name. of. procedure <--title line

Instructions go here <--body of the procedure

END

Procedures must be written on the Flip side of the page. They are then (automatically) saved with
the page.

Continue the above activity by typing

CG

so the square is erased, and then save your page. Now select the page that you just saved, and
notice that there is no picture of a square on the page. Type

SQUARE

What happens? You have just made use of a procedure that you have saved!

64 4

While the mechanics of procedure writing are rather simple, the idea embodied in procedure
writing is profound. When you create a series of instructions to complete a particular task and then
put them into a named procedure, you have "taught" Logo a new word. This new word behaves
exactly as if it were a primitive. If you don't look on the Flip side of the page, you have no way of
knowing whether the instructions you type in ths) Command Center consist of primitives or user-
defined procedures. The fact that you can easily create procedures that function exactly like
primitives is what makes Logo an easily extensible language.

The Flip side of the Logo Writer page can contain as many procedures as the memory of the
computer and/or the version of Logo Writer you are using allows. Each of these procedures must
have a unique name. Each new name becomes part of the Logo Writer vocabulary available when
you use the page. All of the primitives you have learned so far can be used in writing procedures.
Here are a few examples of procedures you may find quite useful.

You can move the turtle around.

TO PLACE.TURTLE
CG
EU
FORWARD 20
RIGHT GO
FORWARD 30
PD
END

You can change the shape of the turtle and the color of its pen.

TO CHANGE.TURTLE
ST
SETSH 25
SETC 3
END

You can stamp turtle shapes.

TO STAMP.IT
SETSH 15
PD
STANP
PU
FORWARD 20
END

You can even put both text and graphics on the page.

TO LABEL.A.SQUARE
REPEAT 4 [FORWARD 60 RIGHT 90]
PRINT [This is my square.]
END

Take some time now to experiment with writing a procedure. Notice as you experiment how
powerful this idea of procedure writing is. Now you are teaching Logo how to do new things. The
computer is now under your control.

Try writing and running a procedure, and then changing the procedure and running it again.
You edit a procedure just the way you edit any other text. You can insert and delete lines, or make
corrections, exactly as you do in the Command Center or as you did in the previous chapter when
you were using the word processor. If you want to erase all the procedures on the Flip side of the
page, you can go to the Command Center (using the Down keys) and type CT. The procedures
will disappear.

Two Kinds of Computer Programming
Computer programming "tells a computer what to do" using a general purpose programming

language such as Logo. However, you have now seen two different forms of computer
programming. Prior to this chapter, each instruction you typed was carried out immediately. In this
chapter, you have learned to write a sequence of instructions (a procedure) that is not carried out
until a later time. We talk about programming in the Immediate Mode and programming using
procedures.

Some programming languages, such as early versions of Pascal for microcomputers, only
allow procedural programming. Other programming environments, such as simple spreadsheets,
only allow you to give instructions one at a dine, in immediate mode. Logo allows both. Thus, you
must decide which to use when working to solve a particular problem. Here are some rough
guidelines:

1. If the task to be accomplished requires only a small number of steps and you only need to carry
out the task once, use the Immediate Mode.

2. If the task to be accomplished requires a large number of steps, write a procedure or
procedures.

3. If the task to be accomplished needs to be done more than once, write a procedure or
procedures.

Frequently Asked Questions
1. I'm confused by all of the different "sides" and cursor positions. How can I tell where I am as

I move among different LogoWriter features?

Answer: When you begin using the Flip side of the page to write procedures, it is easy to get
lost. Learn to look at the screen carefully.

Are you on the front of the page or the Flip side? 'You see "Flip Side" if you are not on the
front.)

Where is the cursor flashing?
Not at all? You are in Turtle Move mode on the front of the page.
At the bottom of the screen? You are in the Command Center.
At the top of the screen, no Flip Side? You are in the word processor.
At the top of the screen and it says Flip Side? You are ready to write procedures.

2. My procedures disappeared? What did I do wrong?

Answer: Earlier you learned that the Command Center is visible on both sides of the page.
Now you have discovered that the same text editor is used on both sides of the page. The CT

66

6

(clear text) command erases all the text on whichever side of the page that is visible when the
command is typed. A common way that procedures get lost is the following:
Use CT to clear the front of the page
Flip the page.
Move the cursor to the Command Center
Use the arrow keys to move the cursor to the CT command.
Press Return/Enter

Usually this happens by accident. You must be careful that the Flip side of the page is not
visible when you use CT. (Remember, if you accidentally erase text on either side of the page,
you can type UNDO immediately to restore that text.)

3. Sometimes I don't want to erase all of the procedures on the page. Removing a procedure one
line at a time is tedious. Is there an easier way?

Answer: You can erase one line of text by using the Erase to End of Line keys (see the
Appendix). This key combination removes characters from the cuirent location of the cursor to
the next place you pressed the Return/Enter key.

Incidentally, the Erase to End of Line key combination can be used on the Contents page to
erase a page you no longer want. Place the cursor on the page to be erased from the Contents
page and press the Erase to End of Line key combination. Be careful, though. Once you erase a
page from the Contents list, there is no way to get it back again.

4. I can see my procedure on the Flip side of the page, but when I type the name of the procedure,
Logo responds with "I don't know how to..." Why won't my procedure work?

Answer: First, check to be sure that you have spelled the name of the procedure correctly. If
you accidentally name your procedure SQAURE and then type SQUARE in the Command
Center, Logo responds with the "I don't know how to..." message since it only understands
the procedure "SQAURE."

Each procedure must begin with TO and end with END. If you have two procedures on the
Flip side of the page and you omit the END statement on the first one, then Logo will not see
the second procedure. It is a good idea to leave a blank line between the END of one procedure
and the title line of the next. This helps you avoid errors such as missing END instructions.

Bugs and Debugging: Procedures and Playing Turtle
Procedure Mode programming is much more likely to cause difficulties than Immediate Mode

programming because it allows you to attack much more difficult problems and because you do not
immediately see the results of each instruction you write. Instead, you must imagine the results of
these steps in your mind's eye.

Debugging a procedure begins at the time you first start thinking of creating a procedure. You
imagine in your mind's eye what you want the procedure to accomplish. Perhaps you sketch a
drawing of the result you want. Perhaps you write the instructions by hand before entering them
into the machine.

Next, you write the procedure and run it. Your procedure may contain one or more syntax
errors and one or more errors in logic. All errors need to be detected and corrected in order for the
procedure to produce the results you want. You will find that you frequently end up reading and
rereading a procedure, looking for errors.

Initially most people find it difficult to read a procedure and to "see" in their mind's eye what
the procedure does. They can read the words anii understand the meaning of each individual
instruction. However, they do not readily comprehend the overall "meaning" of the sequence of
instructions in the procedure.

It is very important to learn to read a procedure and hand trace itthat is, carry out the steps in
your head and/or with use of pencil and paper. This is a standard technique in debugging
procedures. You will get better at it with practice. One way to practice is to explain a procedure to a
friend. That is, if you have a procedure that is producing incorrect results, carefully explain each
instruction line in the procedure to a friend. This type of talking out loud to yourself or to someone
else will often help you to more fully understand a procedure. Indeed, it will often help you to
discover your own bugs. Often your problems with Logo occur because the turtle is not moving
the way you think you told it to move. A form of hand tracing in Logo is called "playing turtle." To
play turtle, you physically walk through the steps that you told the turtle to take. This can be very
helpful if done with a friend and is particularly powerful when used with children.

Computers and Problem Solving: Procedures as Building Blocks
Each primitive in a programming langua .ge is a building block. The building blocks in a

particular programming language are chosen to help solve certain kinds of problems. For example,
Logo includes a number of graphics primitives useful in drawing pictures. COBOL contains
primitives useful in solving business problems. BASIC contains primitives useful in solving math
problems. PASCAL was specifically designed to help computer science students learn some of the
most important ideas of computer programming.

Logo is an extensible language. This means that it contains particularly good provisions for
adding commands and reporters that are needed. You can personalize Logo to be particularly useful
in solving the types of problems that are of most interest to you. In essence, you can create your
own personal programming language by writing appropriate procedures to fit your specific needs.

This adds a new dimension to problem solving. Think about some overall problem solving
task, such as designing a house. What are the commands that would be most useful? It is clear that
it takes a great deal of understanding of architectural design to answer this question. That is,
domain specificity is an issue in the design of your own programming language. If you don't
know much about architectural design, it is not likely that you will figure out what to add to Logo
to help you solve architectural design problems.

This analysis suggests a major trend in education that will emerge during; the next decade.
Within each academic discipline a set of computer tools is being developed swifically to meet the
needs of professionals in the discipline. This developmental work is being done by a combination
of professionals in each field and professional computer programmers. Eventually, instruction in
the use of a discipline's computer tools will become a routine part of instruction within that
discipline. We already see this in fields such as architecture, business, graphic arts, and
publishing.

Activities
1. Write a procedure to make a small design. Flip to the front side of the page, and then use a

combination of Turtle Move and your procedure to place your design in various places on the
page. What kind of projects does this activity bring to mind? Write in your journal.

2. Write a procedure to stamp several different shapes on the page.

68

3. Write a procedure to stamp a short row of shapes on the page. Flip to the front side of the page
and use a combination of turtle move commands, REPEAT, Turtle Move mode, and your
procedure to make a border of shapes around the edge of the page. What kind of problem
solving strategies did you use to complete this activity? Document your thinking in your
journal.

4. Write a procedure to make an elaborate graphics design using the turtle. Flip to the front side,
use your procedure to make the design, and then use the word processor (press the Up keys) to
add a description of your design on the screen.

5. Create a shape of your own and then write a procedure to stamp your shape in a pattern on the
page. Add some text.

6. Write a procedure that draws a graphics design and changes the pen color randomly with ach
line it draws. You might use something like the fluffy ball created in Chapter 4. Put a title on
your design.

7. Do some journaling on the idea of domain specificity in problem solving as it relates to
developing your own procedures (extensions of Logo Writer) to solve problems of interest to
you.

8. How many times have you written the instructions to draw a square in Logo? Perhaps
SQUARE should be built in to Logo, at least for your uses. Think of other "tool" procedures
you might write that would be useful to you in your work with Logo. Write your thoughts in
your journal. Then, perhaps you'll want to begin writing your own tool page that contains
useful procedures.

69 89

Chapter 11
More Than One Procedure

You now know how to write a procedure using the Flip side of the page. As mentioned in the
last chapter, you can write as many procedures as you want on the Flip side of the page, as long as
there is space in the memory of the computer. This allows you to create a number of procedures
that, when appropriately put together, can solve a complex problem.

Carefully follow the example given below. It shows you how to write a number of procedures
and put them together into a rather complex computer program.

Suppose you wanted to have the turtle draw a house on the page and then put a "For Sale" sign
next to it. The house is to consist of a square with a triangle on top for the roof.

You can, of course, do this from the Command Center. However, if you do it with procedures,
then you can easily make a number of identical houses. Or you can easily make changes to the
house.

To begin, you will want to create a procedure for a square and a procedure for a triangle. Flip
the page and write these procedures for drawing a square and a triangle.

TO SQUARE
REPEAT 4 [FORWARD 40 RIGHT 90]
END

TO TRIANGLE
REPEAT 3 [FORWARD 40 RIGHT 120]
END

71

u

Flip the page back to the front. Type

SQUARE
TRIANGLE

This draws a square and a triangle. Will the picture look like a house?

You see the parts of the house, but they are not in the right place. The triangle needs to sit on top of
the square to make the house. Type CO and see if you can figure out the instructions needed to get
the roof in the right place. These instructions should become part of a procedure to get to the roof.
Remember to flip the page to enter your procedure.

One solution for placing the roof after having drawn the square might be

TO GET.TO.ROOF
FORWARD 40
RIGHT 30
END

Now flip the page to the front and type

CG
SQUARE
GET.TO.ROOF
TRIANGLE
HT

Does the house look the way you want it to? If not, modify the procedures until you are satisfied
with your house. These procedures you have created can become part of a HOUSE procedure:

72

TO HOUSE
SET.UP
SQUARE
GET.TO.ROOF
TRIANGLE
END

TO SET.UP
CG
CT
HT
END

Now, you can type HOUSE from the Command Center and see your house. Notice that a SET.UP
procedure was added to prepare the page for the house drawing. Why do you suppose the CT
instruction is included in this procedure?

Using PRINT and INSERT
In Chapter 5 you learned that PRINT could be used to print out numbers on the page. It can

also be used to print text. Try typing

PRINT [For Sale]

You see

The text to be printed is in square brackets. After the printing has occurred, thecursor moves to
the next line below the text that was printed. Now you need to learn how to position the "For Sale"
sign correctly on the page. This takes two steps. First you need to learn to move the cursor down
the page using PRDIT. Second, you need to learn how to move text to the righton the page.

Begin by typing

PRINT c]
PRINT []
PRINT []
PRINT [For Sale]

You have printed three blank lines above your "For Sale" message. This illustrates how to do
vertical spacing of text.

Now you can begin writing your SIGN procedure. Flip the page and type

TO SIGN
REPEAT 5 [PRINT []]
PRINT [For Sale]
END

Be careful. One set of square brackets are needed after RUNT to get a blank line. Another set of
brackets are needed after REPEAT to enclose the list of instructions.

The sign isn't yet where you want it. How can you write a procedure that acts like the space
bar? To accomplish that task, you need a new command called INSERT. Flip to the front of the
page and tly typing

CT
INSERT [For Sale]

The cursor is after the words "For Sale" and on the same line. When you use PRINT, the cursor
always moves to the next line. (Try it!)

The next task is to use INSERT to put blank spaces in front of "For Sale." Try typing

INSERT CHAR 32
INSERT CHAR 32
INSERT CHAR 32

The cursor moves three spaces to the right. The number 32 is the ASCII code that represents the
space bar. (ASCII is a common code used by computers to represent the keys you type on your
keyboard.) CHAR is a reporter that returns the character associated with the number to Logo, in
this case a blank.

Now you are ready to complete your procedure to make your sign. Go to the Flip side of the
page. Type

TO SIGN
REPEAT 5 [PRINT [1]
REPEAT 28 [INSERT CHAR 32]
PRINT [For Sale]
END

With a little trial and error you can position the sign exactly where you want it.

Now try typing

74 '7t3

HOUSE
SIGN

The house appears along with its sign. Now you can put this all together in one procedure. Flip the
page, move the cursor to the top of the page, and type

TO HOUSE . AND . SIGN
HOUSE
SIGN
END

Now, type HOUSEIAND.SIGN in the Command Center and you see the picture that was
planned at the beginning of this chapter. You have written a complex set of interconnected
procedures.

When you are writing a program with a number of procedures, it is a good idea to include a
description of the program. On the Flip side of the page, move the cursor to the top and type a
description. You might type something hke

<<The following program draws a house with a "For Sale" sign. Type
HOUSE.AND.SIGN to run the program.»

The "<<" and ">>" symbols are to set off the description or set of directions from the procedures
themselves. You can put almost any text you want on the Flip side of the page. Simply be careful
to follow two rules.

1. Be sure to put any text that is not part of procedures after any ENDs and before any TOs.
Otherwise, Logo will think the text is part of a procedure.

2. Don't begin any line of text that is not part of a procedure with the word "to." The word "to" is
reserved to tell Logo that a new procedure is contained in the text that follows.

A Procedure Tree
The procedure HOUSE.AND.SIGN is the main procedure, or top-level procedure. It uses a

number of other procedures. These procedures are called subprocedures of HOUSE.AND.SIGN.
A good way to visualize the relationships among procedures is by using a procedure tree. In a
procedure tree, a subprocedure is drawn below the procedure that uses it. For example, the
procedure tree for HOUSE.AND.SIGN looks like this:

HOUSE.AND.SIGN

HOUSE SIGN

SET.UP SQUARE GET.TO.ROOF TRIANGLE

Notice that the HOUSE procedure, which is a subprocedure of HOUSE.AND.SIGN, has four
subprocedures of its own.

The word superprocedure is also commonly used to describe relationships among procedures.
For example, HOUSE.AND.SIGN is a superprocedure of SIGN.

To summarize:
HOUSE.AND.SIGN is the main, or top-level procedure.
HOUSE and SIGN are subproceduies.
HOUSE.AND.SIGN is a superprocedure of SIGN.
HOUSE.AND.SIGN is a superprocedure of HOUSE.
SETUP, SQUARE, GET.TO.R.00F, and TRIANGLE are subprocedures of HOUSE.
HOUSE is a superprocedure of SETUP, SQUARE, GET.TO.ROOF, and TRIANGLE.

Notice how easy it is to see the relationships among procedures using a procedure tree. The written
list of the relationships is harder to follow. The procedure tree gives you a visual image of the
structure of your program. You should always draw a procedure tree when you are working with
more than two or three procedures.

There are some "rules of thumb" that you should remember when you are drawing a procedure
tree.

1. The name of the program (the procedure name you type to run the program) is at the top of the
procedure tree on a line by itself.

2. Each subprocedure of the main procedure is listed on the next level (or line). These
subprocedures are listed left to right as they occur in the main program. That is, the first
subprocedure is listed on the left, the next subprocedure is listed to the right of the first, and so
on.

3. A line connects each procedure with its subprocedure(s).

4. Each procedure in the program along with its subprocedures is represented using the rules
given in step 2.

5. If a procedure is a subprocedure of more than one procedure, it should appear "under" each
procedure from which it is called.

6. If a procedure "calls itself' (that is, includes itself, which is an idea not covered in this book
but covered in more extensive Logo books), then the name of the procedure appears below the
name of the procedure connected by a line just like any other subprocedure.

7. All "user defined" procedures (those that you write) should appear in the procedure tree.

8. No primitives (such as CG, FORWARD, or REPEAT) are listed in the procedure tree.

When you have completed your procedure tree, you should be able to tell exactly which procedures
are called from any given procedure. You should be able to tell what procedures call any
subprocedure. A carefully drawn procedure tree can be very helpful in solving many debugging
problems you may have with your program.

76
7.

Frequently Asked Questions
1. I don't see the sense in having a lot of subprocedures. Why not just write one big procedure?

Answer: As you work on more complex problems, you will discover lots of answers to this
question. One answer is that you can test a subprocedure by itself, and then fully debug it
without dealing with the complexities of the whole program. A second is that use of
subprocedures "modularizes" a problembreaks it into chunks that your mind can deal with. A
third answer is that it makes the overall program easier to read and to modify. Imagine writing
an English composition without brealdng it into paragraphs!

2. Is there some rule about how long a procedure should be?

However, it is a mistake to write such long procedures because they are hard to read and hard
Answer: A procedure can be quite longyou are limited only by computer memory space.

to debug. As a rule of thumb, never write a procedure is longer than one page on the display
screen.

3. Can I put more than one insuuction on a line?

Answer: Logo allows you to put many instructions on one line. However, writing more than
one instruction on a line usually makes your procedures hard to read and dcbug. Resist the
temptation to put several instructions on a line ".just this once" because before you know it you
will have procedures that are quite difficult to read and debug.

4. What names should I give the procedures I write?

procedures meaningful nGive yoAnswer: ur ames that describe exactly what each procedure
does. It is easy to find yourself adding more and more commands to a procedure. Soon you
have a very long procedure that is hard to debug. Perhaps the name of the procedure no longer
describes the function of the procedure. Take time to subdivide and rename procedures as you
work. It will save a lot of time later when you are debugging.

5. My program doesn't work, and I am having trouble figuring out what it does. I get lost within
all of the different subprocedures. Help!

Answer: Draw a procedure tree. It can be very helpful in seeing the overall structure of the
program. Then mentally, using paper and pencil as an aid, follow through the instructions of
each procedure one line at a dme. Remember that you can hand trace or play turtle to help
debug your program. It is often quite helpful to do this hand tracing with a friend. Often you or
your friend will easily spot bugs that you couldn't fmd by yourself.

Bugs and Debugging: Breaking a Problem Into Small Parts
The use of superprocedures and subprocedures adds still another level of complexity to

programming. You now have the power to attack really complex proMems, and you now have the
power to create really complex bugs that are difficult to fmd. With little effort you can create a
"mess" of intertwined procedures full of bugs and nearly impossible to debug.

It is easy to conceptualize a project whose details overwhelm your mind. If the house example
is not complex enough, add a chimney, a door, some windows, a person's face in the window,
some trees, some flowers, some clouds, and so on. The overall concept of a picture of a house is
simple, but the number of details you might add to the program is very large.

The way to attack a complex problem is to break it into many small pieces. Write a
subprocedure for each small piece, test each subprocedure to eliminate bugs, and then begin to put
the pieces together. This requires a very systematic approach, quite a bit of paper-and-pencil work,
and very careful attention to details. It also requires skill in breaking big problems into smaller
problems.

For example, suppose that you want your house picture to include a number of trees and a
number of flowers. You might imagine this as being accomplished by a LANDSCAPE procedure.
The LANDSCAPE procedure contains a TREES procedure and a FLOWERS procedure. Will all
of the trees be the same? If so, you will want a procedure that draws one tree, and the trees
procedure will make repeated use of it. You should use a similar method for your flowers.

Each subprocedure should be of a size that you can easily hold in mind and that you can easily
debug. A procedure tree shows the way the subprocedures flt together and thus indicates how to
test groups of subprocedures. As you put the procedures together, start with the bottommost
subprocedures and test them first. Gradually work your way up the procedure tree to the main
procedure.

Computers and Problem Solving: Procedures to Solve Problems
This chapter illustrates several really important ideas in writing programs to solve problems:

1. Give a lot of thought to how you are going to attack a problem before you actually start to write
a program. You may want to make use of pencil and paper as you conceptualize the problem
and work toward a clear set of goals.

2. Learn to break a big problem into chunks of a size your mind can easily handle. Give the mind-
sized chunks names that help you recall what each is designed to accomplish.

3. Test each subprocedure all by itself so that you are quite sure no subprocedure contains an
error. Start with the procedures at the "bottom" of the procedure nee and work toward the top.

It is evident that each of these ideas is also quite important in solving problems without the use
of a computer. George Polya (1957) made major contributions to the field of problem solving. He
suggested a four-step approach that is useful in attacking almost any problem. Polya's four-step
plan contains the following ideas.

1. Understand the problem. (What are you trying to accomplish? What is the goal? How can you
tell if you have solved the problem?)

2. Develop a procedure you feel will solve the problem, or find a procedure through appropriate
use of reference materials.

3. Carry out the steps in the procedure, paying careful attention to avoiding errors.

4. Carefully examine the final results. Has the original problem been solved? If not, remember
that you may have used an incorrect procedure or you may have made a mistake in carrying out
the steps of the procedure.

Activities
1. Now that you know how to write multiple procedures, plan a picture of your choice and write

the procedures to create it. Move along step by step like the example in this chapter. Draw a

78

''171

procedure tree as you go. Be sure to keep the individual procedures short. You should not have
any procedures longer than 20 lines, with one instruction on each line. If you put too much into
a procedure, it becomes hard to find errors. Here are some suggestions:

Add to the HOUSE.AND.SIGN project begun in this chapter.
Write a program to draw a greeting card with a border around the edge and a greeting in the
middle.
Write a program to place polygons on the screen filled with different shapes or colors.
Write a program that places randomly colored "stars" all over the screen. Perhaps include a
row of houses "below" the sky.
Develop a set of procedures useful in designing the layout of a room.

As you work on your project, document your thinking in your journal. What programming
style do you use? How does the approach you take to your project affect the final outcome?
Miat did you learn as you worked on your project?

2. Write a program that displays "paced" text. That is, you might write

TO START.POEM
PRINT (The fog comes]
WAIT 10
INSERT (On little]
INSERT CHAR 32
WAIT 5
INSERT (cat]
INSERT CHAR 32
WAIT 5
PRINT [feet]
WAIT 10
END

Adjust the "timing" to suit your interpretation of the text you choose. Perhaps you'll even want
to include some graphics.

3. Experiment with animation. That is, you can make the turtle appear to move by typing

PU
REPEAT 20 [FORWARD 2 WAIT 1]

Write a program that includes animation. Perhaps you'll want a background with a shape of
your choice moving across itmaybe a helicopter can fly by or a kitten can run across the
screen.

4. Polya developed the four-step approach to problem solving before people began to use
computers. Examine the steps carefully. Can you think of a problem where these ideas do not
apply? Are they applicable in writing computer prograpis? That is, does Polya's four-step plan
contribute to transfer of learning between problem solving with and without computers?

78
79

Chapter 12
A Word About Designing Programs

There are a number of ways to go about creating programs. Different people prefer different
approaches. Different computer languages lend themselves to different methods. Now that you are
beginning to write programs containing a number of procedures, you should spend some time
thinldng about the ways to design a program. You should be examining your own programming to
see which method(s) suit your particular learning style and problem solving style.

Top Down Programming
Top down design refers to writing a program "from the top." Think about the

HOUSE.AND.SIGN program from the previous chapter. If you use a top down approach, the
first procedure you write would be

TO HOUSE.AND.SIGN
HOUSE
SIGN
END

Next you would write the HOUSE procedure.

TO HOUSE
SET.UP
SQUARE
GET.TO.ROOF
TRIANGLE
END

Then you would write SET.UP, SQUARE, GET.TO.ROOF, and TRIANGLE. Finally, you
would write SIGN.

With this method, ynu plan the whole and then write ever smaller parts. This is a very
regimented and structured approach to problem solving. You must do a lot of planning in advance.
You need to know exactly what you want to accomplish before you even begin. This approach
allows little room for exploration as you go along.

It has another difficulty. You cannot see what each procedure does as you write it. If you have
written just HOUSE.AND.SIGN and try to run it, you get the message

I don't know how to HOUSE in HOUSE.AND.SIGN

This tells you that the procedure HOUSE.AND.SIGN at least be*ins to work right, but it doesn't
show you any meaningful results. However, top down programming is a very powerful approach
to solving problems in a computer environment. In some programming languages, tiv. top down
approach is the easiest to use. As a novice Logo programmer, you will most likely find that you are
molt comfortable using a bottom up approach.

Bottom Up Programming
In bottom up programming, you start with small pieces and build them up into a complete

program. If you used bottom up programming in the IRDUSE.AND.SIGN program, you wouldn't
start whh a complete plan. Instead you might start with a general idea of what you wanted to
accomplish and an idea of how to make some progress on some major pieces. You might first
create the SQUARE procedure and then the TRIANGLE procedure. After some fiddling with
these, you might discover that, when put together, they make a nice house. That might lead to the
HOUSE procedure.

You might be experimenting with the PRINT command and get the idea to write a procedure to
put a sign next to the house. Next would come some experimenting to create the SIGN procedure.
Last of all, the HOUSE.AND.SIGN procedure would be written.

With this method, there is less advance planning. You play with an idea, turn it into a
procedure, and let that idea lead you to another. You may have little or no idea where you are going
as you begin. You are like an artist, being led along by your own creation and creativity. Logo
lencls itself to the bottom up style of programming better than most programming languages.

Much of what is written about Logo implies that the only "right" way to program in Logo is
bottom up. This emphasis on bottom up style grows out of the philosophy of discovery learning
that is closely allied with Logo. It is assumed that the Logo programmer will experiment with an
idea and then use that idea as part of a larger project.

However, in the first part of this chapter, you saw how one might write a program using a top
down approach to problem solving in Logo. Rofessional programmers usually use a combination
of top down and bottom up techniques. Both are taught in a modern computer science department.

Middle Out Programming
Very few people actually program either in a true top down or bottom up style. Most people

use some combination of methods for writing programs, which might be described as "middle
out." Middle out is the method that was actually used for writing the HOUSE.AND.SIGN
program. There was an initial idea of what the program should do. Then small parts were written.
Finally all the pieces were put together. Some things were done top down, other things bottom up,
but most things were done from the middle, working both towanis the top and the bottom.

Polishing Your Program
The programming style you use to do a project should be adapted to your capabilities and the

nature of the problem. However, it is best if the fmal program looks structured and well organized,
much as if it had been done in a top down manner. That is, there should be a main procedure with
a title that describes the entire program. This main procedure should be made up primarily of
procedure calls whose titles describe the subparts of the program. Many of the subprocedures in
the program may also be made up of procedure calls that describe even smaller parts of the
program.

Both the programming process and the final iroduct are important in any programming project.
During the development of a project, you probably focus on writing the code and on debugging the
results. However, when you have finished a program in Logo, it should be polished for
"publication," just as you polish your final draft of a written report before you turn it in to a teacher
or employer.

82 SLi

What is the "correct" style to use when writing a Logo procedure? Are there "rules" that you
should follow? The issue of programming style is one for which there is very little agreement
within the Logo community. At one end of the spectrum are those who feel that to impose any
rules for writing procedures is inappropriate. They feel that such rules will interfere with creativity
and exploration.

The authors of this book suggest an approach nearer the other end of the spectrum. For
example, we suggest that an individual procedure should not exceed one screen in length and that
you should not write more than one instruction on a line. It took professional programmers many
years to discover that these are very useful guidelines. It is unreasonable to expect beginners to
discover them for themselves.

Any Logo programs you write should be polished for publication, presentation, and
preservation no matter who is going to see them. Polishing the final product makes it more
readable both to yourself and to others. You will be surprised how quickly you can forget the
details of a program you spent many hours writing. Only weeks later, a poorly written program
can be very hard to untangle.

Here are some guidelines to help you begin developing a readable programming style.

1. Procedures should have meaningful names. That is, the name of the procedure should describe
exactly what happens in that procedure.

2. There should be no more than one instruction per line.

3. No procedure should be longer than 20 lines (approximately the number of lines that fit on the
page at one time).

4. The main or top level procedure should contain only user-defined procedure names. That is,
you should not use a LogoWriter primitive in the main procedure. (This is an artificial rule that
may be unnecessarily strong. Experience suggests that by keeping the numer of primitives in
the main procedure small, good modular style is encouraged.)

5. If an instruction is longer than one line, you should indent the second and subsequent parts of
the line in a logical and readable manner.

6. If you continue your work with Logo beyond the content of this book, you will learn about
procedure inputs and variables. When you reach that stage of learning, it is important that you
use meaningful names for inputs and variables that describe their function, just as you use
meaningful names for procedures.

These rules are perhaps unnecessarily rigid for your long-term work with Logo programming.
However, they are designed to give you specific guidelines to follow from the outset that will help
you in debugging your future, more complex propiams. As you continue your work with Logo
beyond this book, you will no doubt relax or modify these rules in ways that are comfortable for
you.

Programs written using the above guidelines are much easier to work with. Other people can
easily tell what each part does. You can more easily make changes in your own work at a later
date. Most importantly though, is that following these style guidelines contributes to ease in
debugging. Sometimes the bugs are easy to find, sometimes they aren't. If the program is written
well, then the debugging process takes less time.

83 81

Bugs and Debugging: Good Programming Style Helps
In the early history of computer programming the problems that were being attacked were

rather simple programming tasks. The computers being used had relatively small memory capacity,
and the programs that were written were modest in size and complexity.

Gradually the complexity of problems being attacked vew, as did the speed and memory
capacity of computers. Teams of programmers began to work together to attack problems too big
for a single programmer. This led to the problem of errors in one part of a program, written by one
programmer, messing up results produced in a different part of the program being written by a
clifferent programmer. Needless to say, it became a programming and debugging nightmare.

Out of these circumstances a discipline of computer programming slowly began to emerge. The
need for a careful top down analysis and very careful modularization of large tasks became
apparent. Provams needed to be carefully structured if they were going to be easy to debug and
easy to modify as the need arose. Programming languages were developed that supported such an
approach to programming. Computer science departments began to teach structured programming.

As computers began to become common in precollege education, the issue arose of the needed
qualifications to teach computer programming. It was evident that anyone who knew a little
wogramming could teach programming. However, it also became evident that usually a person
knowing only a little programming did a very poor job of teaching the key ideas of top down
analysis, structured programming, and writing bug-free programs that were being taught in college
computer science departments.

This short book has placed considerable emphasis on key ideas for preventing, detecting, and
conecting bugs. At some future date you may fmd yourself helping students to learn to write Logo
programs. We hope that you will place considerable emphasis on helping your students learn about
bugs and debugging as well as using good programming techniques and problem solving
strategies.

Computers and Problem Solving: Programming and Problem Solving
Strategies

A strategy is a plan of action that might be helpful in attacking a certain type of problem. This
chapter mentions three programming strategies: top down, bottom up, and middle out. The
previous chapter mentioned Polya's four-step strategy for attacking almost any problem.

There are many strategies that are useful in writing computer programs to solve problems. For
example, the strategy of testing procedures, working from the bottom up, is often quite useful in
debugging a main procedure. The strategy of giving procedures names that are meaningful in the
context of the problem to be solved will often help you write a more easily readable program, and
thus write a program that is easier to debug.

Once you start thinking about it, you will discover that you know lots of strategies that you
routinely use. Here is an example. Is there some particular day of the week when you do laundry?
Is there some particular filling station where you usually buy gas for your car? Think of routine
decisions you automatically make, often with little conscious thought. In each case you make use
of a strategy of "do what worked before."

What is your strategy for studying for a test? What is your strategy foi getting a term project
done on time? What is your strategy for making new friends? What is your strategy for dealing
with hard problemsfor example, with when you are stuck on a Logo problem?

84
FQ2

Research on problem solving strongly supports the idea that students should learn about
strategies. They should learn to recognize the types of strategies they are using. They should gain
skill in recognizing when a particular strategy is effective and when it isn't. These ideas can all be
taught in a Logo programming environment. However, the goal is to help students transfer such
knowledge of strategies to other fields. This requires the examination of lots of different strategies
and their possible use in a variety of fields. It requires hav:ng students think about, talk about,
write about, and practice using a variety of strategies.

The research literature on problem solving strongly supports the idea of helping students
understand the strategies they use and helping them to gain more strategies. However, the literature
is not so clear on the best approach to use. Some educators feel that the best approach is a
discovery learning approach. Students should be put in environments in which they will discover
useful strategies. Then the teacher can help make these discoveries more explicit. A substantially
different approach is to give students explicit direct instruction on the strategies you want them to
learn. Most leaders in the Logo community advocate the former approach.

Activities
1. Select a project that involves writing a number of procedures. As you are working on it,

examine your own programming style. Which of the styles mentioned above best describes the
way you prefer writing programs? Be sure your final program is polished for publication.

2. It is sometimes suggested that artists usually use a bottom up strategy in solving problems
while mathematicians use a top down approach. The ideas of inductive and deductive logic
seem related to this. What do you feel about his? Write about it in your journal.

3. Spend some time jotting down problem solving strategies in your journal. Then share your list
with other members of the class. Did your classmates think of strategies you did not have on
your list? Do other people use strategies you never use? What strategies seem most universal
among people in your class? Are there some strategies that are more important to teach to
students than others?

4. Notice that many of the programming assignments in this book are quite open ended. In
essence, they ask you to create a problem and then solve it. How does this instructional
strategy compare with instructional strategies you have encountered in other courses? Do some
journal writing on advantages and disadvantages of each of these instructional strategies. Be
aware that "problem posing" is considered to be a very important part of the field of problem
solving.

Chapter 13
Music

The preceding chapters introduced you to the rudiments of LogoWriter. There are many
features of LogoWriter we have not discussed. There is also much more to be learned about
programming. Should you choose to continue your work with Logo, you will no doubt explore
many of these. However, we are going to conclude this book with a section on music. Writing a
program to create music is an excellent way to practice some of the new programming techniques
you have learned in the last two chapters.

Try typing

TONE 440 50

You hear a musical note. Try changing the numbers after Ton. What does each one do?

Did you discover that the first number is the pitch of the note? The bigger the number, the
higher the note. The second number is the length or duration of the note. The bigger the number,
the longer the note.

The duration of a note is measured in twentieths of a second. That is,

TONE 440 20 plays for 1 second
TONE 440 60 plays for 3 seconds
TONE 440 10 plays for 1/2 second

To compute the length of a note, multiply the second input to TONE by 1/20.

The frequencies of the notes are the actual frequencies given in vibrations per second. The table
below gives the values for a number of octaves:

OCTAVES NOTES

C C# D D# E F F# 0 oil & Ail B

37 39 41 44 46 49- 52 55 58 62
65 69 73 78 82 87 921 98 104 110 117 123

131 139 1471 156 165 175 185 196 208 220 233 247

4 *262 277 2941 311 330 349 370 3921 415 440 466 494

5 523 554 587 622 659 698 740 784 830 881

I,

932 988

6 1047 1109 1176 1244 1319

EZEIZZIECEM
1398 1480 nmemormill

3510 3743 39467 2095 2213 2346 2495

*This is Middle C

87 R 4

Using the above chart, you would play a C scale (the white notes on the piano) for the octave
starting with middle C using these commands:

TONE 262 10
TONE 294 10
TONE 330 10
TONE 349 10
TONE 392 10
TONE 440 10
TONE 494 10
TONE 523 10

There are no flats in this scale. If you have music that uses flats, you need to know, for
example, that A sharp is the same note as B flat. (Black notes on a piano are used to play sharps
and flats.) You then use the chart accordingly.

Suppose you want to write a progam to play a simple tune. You can write a procedure for each
line of the song. For example, to have Logo Writer play "Three Blind Mice," you can begin with

TO THREE . BLIND
TONE 330 10
TONE 294 10
TONE 262 20
END

This phrase is repeated twice, so you can write

TO LINE1
REPEAT 2 [THREE . BLIND]
END

Similarly, the second line can be written as follows:

TO LINE2
REPEAT 2 [SEE . HOW]
END

TO SEE . HOW
TONE 392 10
TONE 349 5
TONE 349 5
TONE 330 20
END

Can you finish this song? The procedure tree might look like this:

THREE.MICE

LINEA LINE.2 LINE.3 THREE.BLIND/ 1 \
TIREE.BLIND SEE.HOW THEY.ALL

Using some words from the song helps you keep track of what procedures play what part of
the song. In each of the "LINE" procedures above, a phrase of music is repeated, sometimes with
the same words, sometimes with different words.

Even if you are not "musical" you can write music using Logo Writer. With some simple sheet
music and a chart to translate the symbols on a musical staff into frequencies, you too can be a
music performer and composer!

Some Sound Effects
The TONE command can be used for sound effects as well as music. Experiment with different

numbers for the frequency. Try small numbers to get buzzes

TONE 40 10

and large numbers to get squeaks

TONE 9000 20

and slowly changing numbers for an interesting effect

TONE 100 1
TONE 105 1
TONE 110 1
TONE 120 1
TONE 125 1

The sounds you can make using the TONE command can be quite varied.

Are You "Musical?"
Many people say "Oh, I'm not musical. I can't use Logo to make music." In fact, it is much

easier to use a computer to make music than it is to play the piano or most instruments. To get
started, find some beginning instrumental music. You might ask the music department in your
school for some beginning music in the key of C. Match the notes on the music with the following
chart.

C C# D D# E F F# O# B C Ce D D#E F Fe G*

11111111I III
-,4rj J 4J- .1 J JJEJJJ

4.41.ist T1111111111 11 I

2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 8 8
6 7 9 1347914692582
2 7 4 1 0 9 0 2 5 0 6 4 3 4 7 2 9

E F F*00*& C Ce D# E F Fe

1111H lit I III
A# B

r r r Irrrrrrni
8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
2 7 2 8 0 1 1 2 3 3 4 5 6 7 8 9 0 2 3 4 6

4 0 7 3 1 9 7 6 5 5 5 6 8 0 3 7 2

594838
S 0 4 0 0

GO A A# 1)

I

1 1 1 1 " " I I I II

When you have identified the notes by name (A, B, C, etc.), use the chart to write the
frequencies next to each note. You will want to experiment with the length of a "quarter note," but
the following chart shows you the relationship among notes.

Note Name Duration

Jae

Eighth note 8

Quarter note 16

Dotted quarter note 24

Half note 32

Dotted half note 48

Then you are ready to enter any song for which you have music.

Frequently Asked Questions
1. When I type the TONE command, I hear nothing even though I tried a number of different

inputs for the frequency and duration. What's wrong?

Answer: Check the computer system you have. Does it have a volume control? Be sure that it is
not turned off. Does it have an earphone jack? Unplug (or use) any earphones plugged in to the
computer. Does the computer "beep" when you start LogoWriter? If not, perhaps the speaker
in your computer is broken or disconnected

90

2. I want to play more than one note at a time. How can I do that?

Answer: Even if your computer system has "multiple voices," current versions of Logo only
allow you to play one note at a time. Sometimes people try putting the melody of a song on one
computer and the harmony on another and try to run them at the same time. Generally this does
not work well because of the slight differences of speed of two different computer systems and
possible differences of the information stored in the memory of Logo.

3. I want to play music and have a shape move at the same time. How do I accomplish this?

Answer: The answer to this question is not simple. You can't simply write a MOVE procedure
and a PLAY procedure because if you type

MOVE
P LAY

your shape will move, and after it has stopped your music will play. You must instead,
alternate notes and movement. For example.

TO P LAY . AND . MOVE
TONE 330 10
FORWARD 5
TONE 294 10
ifORWARD 5
TONE 262 10
FORWARD 5
END

While this approach works fairly well, it is particularly easy to end up writing long programs
that are difficult to debug. Think carefully about what you want to put in each procedure.

4. The music I create using LogoWriter sounds off pitch. What am I doing wrong?

Answer: Many computers on which versions of Logo run were not designed to produce
sophisticated sound. Generally, Logo does not access the more sophisticated sound capabilities
available on newer computer systems. Thus, it is not unusual for Logo music to sound off-
pitch in the upper and lower pitch ranges. It is generally best to use the middle range of notes to
create music.

Bugs and Debugging: Working With Sound
Debugging programs involving sound require a different set of skills than you have previously

used with Logo. You must listen to a procedure to be able to tell if it is working correctly. Often
nothing appears on the screen. There is no graphics and there is no text. You must hold the sounds
in your mind and then adjust yoty program accordhigly. It is particularly important that you design
your musical programs modularly. If each individual procedure is short, you can debug each one
separately much more easily.

Music is a natural environment for making use of modularity. Music itself is divided into notes,
measure, lines, and pages. Use these natural subdivisions to plan your procedures. If your music
has words, making use of the words for procedure names can often speed the debugging.

Computers and Problem Solving: Music and Domain Specificity
At several previous spots in this book we have talked about the idea of domain specificity in

problem solving. We have suggested that the computer is a tool useful in helping to solve problems
in many different domains.

The music examples in this chapter allow you to explore domain specificity in relation to using
a very general-purpose tool as you attempt to solve some problems in music. Suppose, for
example, that you did not know how to play any musical instrument or know any musical notation.
Would it still be possible for you to compose some music? How could a computer help?

It turns out that you know quite a bit about music even if you don't play any musical
instruments and have never composed any music. This is because .you have been exposed to music
throughout your life. Your brain has processed a great deal of music and "knows" what sounds
right.

The computer can be used both as an aid to composing and as an aid to performing music. The
composing can be done in the simple Logo programming notation illustrated in this chapter. The
performance is done automatically by the computer. With the Logo NOTE command and the
computer performance capabilities, you can compose and perform music.

You should realize, of course, that there are much more sophisticated computer musical
notation systems and much better computer music performance systems. It is now common for
professional composers to make use of these aids to composition. However, even with an
inexpensive microcomputer and Logo PLUS it is possible to introduce young children to
composing with the aid of a computer. This certainly brings a new dimension to the elementary
school music curriculum.

Computers and Problem Solving: Society, Education, and the Future
The invention of reading and writing profoundly changed the societies of our world. Reading

and writing are tools of the human mind. They expand its capabilities to solve complex problems.
They make it easier to share intellectual progressto preserve and pass on knowledge from one
generation to the next. They contribute greatly to building on the previous work of other people as
well as on one's own previous work.

It is interesting to compare use of pencil, paw, and books with the computer. They share
many characteristics. For example, they are all aids to the human mind and provide ways to build
on previous work of others. Each has certain advantages and certain disadvantages. For example,
pencil, paper, and books are cheaper and more portable than a computer. However, writing done
on a computer is more easily edited than writing done using paper and pencil. In addition, a
computer can make use of an automatic spelling checker. (And you should keep in mind that
pencil, paper, and books do not contain an analogue to the animated graphics and sound
capabilities of computers. Clearly, computers bring a new dimension to the storage, processing,
and retrieval of information.)

From your earliest childhood you have been exposed to books, pencil, and paper. Much of
your education has focused on learning to read, write, and solve problems in this environment.
You have been functioning in this environment for so long that you probably are not even
consciously aware of how you use these facilities to help you solve problems.

As you develop your computer skills, you are worldng both on learning specific details of
using a computer and the harder problem of learning to think and solve problems in a computer

92

environment. It may take you years of using a computer before you become as comfortable with it
as you are with pencil and paper.

Computers are gradually becoming commonplace, even in elementary schools. Many children
are growing up in hodsehold environments where they begin to use computers simultaneously with
or even before they begin to use pencil and paper. It seems clear that such children will have a
different view of computers than people who are first introduced to this tool as adults.

Reading and writing were invented many thousands of years ago. It took many thousands of
years for people to develop the technology to mass produce books cheaply. It took thousands of
years for educational systems to develop that could adequately address the issue of helping all
children to become literate. Even now we do not have a 100 percent success rate. Many students
experience considerable difficulty in learning to read and write.

From an historical perspective, we are at the very beginning of the development of computer
use. The capabilities of computers are continuing to grow quite rapidly. Our knowledge of how to
help children learn to make effecdve use of computers is sW1 quite limited. Very few children have
grown up in computer-rich environments, surrounded by adults who use computers freely and
easily.

It seems clear that computers are changing our society. Their impuct on our educational system
is just barely beginning to be felt. The impact will be cumulative as we learn more about computers
in education, as computer facilities become better and more readily available, and as more children
grow up in a computer-rich environment. This will be a continuing challenge to current educators!

This book has provided you with a very brief introduction to one particular computer
programming language. However, many of the ideas that have been presented are independent of
any particular programming language or computer hardware. Thus, you have a solid foundation on
which to build your future computer knowledge. The authors of this book wish you the best of
luck in yoirr future computer studies and your use of computers.

Activities
1. If you are involved with music outside of this class, pick a piece of music that you have sung

or played and "teach" LogoWriter to play it!

2. Writing music in LogoWriter is an excellent way to practice writing modular programs. Select a
piece of music and spend some time dividing either the written musical score or the words into
small, meaningful sections. Each section will then be a procedure. Draw a procedure tree for
your song. Then, when you write your song you will have an easy-to-debug provam because
you can check each part of the song as you go. (Note that this is using a strict top down
approach to solving the problem of writing your song in LogoWriter.) Keep track of your
planning style in your journal.

3. Try adding music to a page you have previously created. For example, you might have a
birthday greedng card that plays "Happy Birthday."

4. Try writing a progam that plays the music of a song as it displays the words. Hint: You'll
need to use PRDIT, INSERT, and WAIT interspersed with your TONE commands. Be careful
to subdivide your program in a meaningful way.

5. Expeliment with "sound effects" using TONE. See ifyou can get some interesting sounds that
you can then put into a larger program. Note that your exploration with TONE is likely to be

93
90

bottom up. Be sure to keep some notes in your journal. How can you describe the sounds you
make by just using words?

6. Do some journal writing on similarities and differences between the book and the computer.
Brainstorm on how computers might eventually contribute to major changes in our educational
system.

7. Some people argue that all children should learn something about computer programming,
while others argue that computer applications software, such as word processors,
spreadsheets, and databases, have obviated the need to learn about computer programming.
What is your personal opinion? Discuss this in your journal.

94
91

APPENDIX

92

DESCRIPTION OF LOGOWRITER KEYS
APPLE

General Purpose

IBM

Keys

COMMODORE

Flip Apple-F Ctrl-F Commodore -F
Flips a page over

Up Apple-U Ctrl-U Commodore-U
Moves the cursor up from
Command Center

Down Apple-D Ctrl-D Commodore-D
Moves cursor down into
the Command Center

Esc Esc Esc Esc
Used to leave a page
or a special mode

Stop Apple-S Ctrl-Break Commodore-S
Stops program or instruction;
returns to Command Center
(See also Esc.)

Help Apple-0 Fn-10 Commodore-0
Gets the Help page

Contents Pag Keys

Up and Down Arrows
Moves cursor up and down
through page names that are
in the scrapbook

Top of Page
Moves the cursor to the top
of the Contents list

Bottom of Page
Moves the cursor to the last
page name in the Contents
list

Return Enter
Chooses the page that the
cursor is on.

Erase to end of Line
Erases the page named on the
line that the cursor is on
-- permanently!

Up & Down
Arrows

Apple-
up arrow

Apple- End
down arrow

Return

Apple-6

Up & Down Up & Down
Arrows Arrows

Home Commodore
up arrow

Commodore
down arrow

Enter Return

Fn-6 Commodore-6

Graphics Keys

Turtle-Move Apple-9
Makes it possible to move the
turtle with the arrow keys;
Esc to leave

Label Apple-8
Text typed is added to the
picture; use arrow keys to
move; Esc to leave

Fn-9

Fn-8

Commodore-9

Commodore-8

Word Processing Keys

Select Apple-1 Fn-1 Commodore-I
Starts select mode; use
arrows to select

Cut Apple-2 Fn-2 Commodore-2
Removes selected text;
puts on the clipboard

Copy Apple-3 Fn-3 Commodore-3
Puts copy of selected text
on the clipboard

Paste Apple-4 Fn-4 Commodore-4
Puts contents of the
clipboard at the cursor
position

Erase to End of Line Apple-6 Fn-6 Commodore-6
Erases all text cursor from
cursor to the end of line

Next Screen Apple -> Pg-Dn Commodore->
Displays the next screen full
of text

Previous Screen Apple <- Pg-Up Commodore<-
Displays the previous screen
of text

Top of Page Apple-Up Home Commodore-
Moves the cursor to the arrow up arrow
beginning of the text on
the page

Bottom of Page Apple- Lnd Commodore-
Moves cursor to the end down arrow down arrow
of the text on the page

Beginning of Line Apple-B Ctrl <- Commodore-B
Moves the cursor to
beginning of the line the
cursor is on

End of Line Apple-E Ctrl -> Commodore-E
Moves the cursor to the end
of the line; to where the
next Return Enter was typed

Open a line Apple-0 Insert Commodore-0
Opens new line after current
cursor position

Delete to the right Control-D
Deletes the character under
the cursor

98

Shapes Page Kays

Esc ESC Esc Esc
Returns you to where you were
when Shapes was chosen

Flip Apple-F Ctrl-F Commodore-F
Switches between the front
(all shapes) and individual
shapes

On the flip side of the page only:

Next Screen Apple -> Pg-Dn Commodore->
Displays the next shape for
editing

Previous Screen Apple <- Pg-Up Commodore<-
Displays the previous
shape for editing

Arrow keys Arrow keys Arrow keys Arrow keys
Moves the shape cursor
around the shape

Space Bar Space bar Space bar Space bar
Empties or fills a space
within a shape

Cut Apple-2 Fn-2 Commodore-2
Clears a shape and stores it
in memory

Copy Apple-3 Fn-3 Commodore-3
Stores a copy in memory
without erasing it.

Paste Apple-4 Fn-4 Commodore-4
Puts a shape that been placed
in memory into the shape that
is displayed

Stop Apple-S Ctrl-Break Commodore-S
Cancels editing; restores to
shape there before editing
began

SUMMARY OF KEYS: APPLE IIe/He

General Purpose Kays

Flip Apple-F
Up Apple-U
Down Apple-D
Quit, leave page Esc
Stop Apple-S
Help Apple-0

Word 10%,ocessing Keys

Select Apple-1
Cut Apple-2
Copy Apple-3
Paste Apple-4
Erase to End of Line Apple-6
Next Screen Apple -->
Previous Screen Apple <--
Top of Page Apple-Up Arrow
Bottom of Page Apple-Down Arrow
Beginning of Line Apple-B
End of Line Apple-E
Open a line Apple-0
Delete right Control-D

Shapes Page Keys

Quit, leave page Esc
Flip Apple-F

On the flip side of the page only:
Next Screen (Next Shape) Apple -->
Previous Screen (Previous Shape) Apple <--
Up, Down, Left, Right Arrow keys
Cut Apple-2
Copy Apple-3
Paste Apple-4
Make or Erase Block Space Bar

Graphics Keys

Turtle-Move Apple-9
Label Apple-8
Leave Label or Turtle-Move Esc

Contents Keys

Top of Page Apple-Up Arrow
Bottom of Page Apple-Down Arrow
Remove a Page (Erase to end of line) Apple-6

100

SUMMARY OF KEYS: IBM

General Purpose Keys

Flip Control-F
Up Control-U
Down Control-D
Quit, leave page Esc
Stop Control-Break
Help Fn-0

Word Processing Keys

Select Fn-1
Cut Fn-2
Copy Fn-3
Paste Fn-4
Erase to End of Line Fn-6
Next Screen PgDn
Previous Screen PgUp
Top of Page Home
Bottom of Page End
Beginning of Line Control <-
End of Line Control ->
Open a line Insert

Shapes Page Keys

Quit, leave page Esc
Flip Control-F

On the flip side of the page only:
Next Screen (Next Shape) PgDn
Previous Screen (Previous Shape) PgUp
Up, Down, Left, Right Arrow keys
Cut Fn-2
Copy Fn-3
Paste Fn-4
Make or Erase Block . Space Bar

Graphics Keys

Turtle-Move Fn-9
Label Fn-8
Leave Label or Turtle-Move Esc

Contents Keys

Top of Page Home
Bottom of Page End
Remove a Page (Erase to exid of line) Fn-6

SUMMARY OF KEYS: COMMODORE

General Purpose Keys

Flip
Up
Down
Quit,
Stop

Commodore-F
Commodore-U
Commodore-D

leave page Esc
Commodore-S Help
Commodore-0

Word Processing Keys

Select
Cut
Copy
Paste
Erase to End of Line
Next Screen
Previous Screen
Top of Page
Bottom of Page
Arrow
Beginning of Line
End of Line

Commodore-1
Commodore-2
Commodore-3
Commodore-4
Commodore-6
Commodore -->
Commodore <--
Commodore-Up Arrow
Commodore-Down

Commodore-B
Commodore-E

Shapes Page Keys

Quit, leave page
Flip

On the flip side of the page only:
Next Screen (Next Shape)
Previous Screen (Previous Shape)
Up, Down, Left, Right
Cut
Copy
Paste
Make or Erase Block

Esc
Commodore-F

Commodore
Commodore <--
Arrow keys
Commodore-2
Commodore-3
Commodore-4
Space Bar

Graphics Keys

Turtle-Move
Label
Leave Label or Turtle-Move

Commodore-9
Commodore-8
Esc

Contents Keys

Top of Page
Bottom of Page
Arrow
Remove a Page

Commodore-Up Arrow
Commodore-Down

(Erase to end of line) ... Commodore-6

102

KFYBOARD STICKERS

COMMODORE 64 ®'

/AC .
Foe me COMMODORE 64

itk
2 3

1.11 FEZ

taleGamir illsommow

SELECT CUT COPY

(as

STOP DowN PUP UP PREVIOUS NEXT
1CREN SCREEN ./

PASTE ERAss TO
ENO Or UNE

LABEL TURTIA0403VE HELP

I

ESC

ESCAPE

IBM PC
;:.1:2te t0.1

'.**4/1°°1,000

oftnanterinomie nia

L Utas LI, I U

1E1MEI
I IONN f UP

Cuo.0 Pg Uo Pq On

a 7 Cr7
ua PREVIOUS NEXT

SCREEN SCREEN 0/

Ft F2

SELECT CUT

113

role
COPY

1 J

PASTE
EWAIMLTIPIE

FS

i!=!

Fl
EA

Fl 0

LAIJEL TURTLI.MOVE HELP

IBM PC jr

.. SELECT CUT COPY PAVE

FM 9z
STOP

cm 0

°OWN

FnF CIII U Fry

M CT 17
u"WgW sNliNFLIP

Apple IIe and He
.../1 °S4..",1**"".j...,,

For th41 Atele* 111 *no He

Lao cam.

'00k
2

SELECT CUT

El 3

COPY

4(;)

A

PASTE

FM 6

ERAS; TO
E NO OF i,INJ

PA I On F 0

2,7;7

Lan TURTLE.MOVE MELP

EMU TO
ENO OF UNE

,LASIL1

LASEL TURTLE440VE Hap

These keyboard stickers are available for Logo Computer Systems, Inc.
Call the sales office at 1-800-321-5646 for information on how to order.

103

SHAPES PAGES

2 3 4 5 6 7 8 9 10
. a S .

11 12 13 14 15 16 17 18 19 20

IP 11

1 2 3 4 5 6 7 8 9 10

Ma S

21 22 23 24

IV 4r
25 26 27 28 29 30

N.13: be 11111

INTERMEDIATE

11 12 13 14. 15 16 17 18 19 20

Pre- 45;bi eiCa'

21 22 23 24 25 26 27 28 29 30

qr. Qh- "ae S

PRIMARY

104

QUICK REFERENCE

LogoWriter Primitives and Special Words

Screen
cc - Clear Command center
CG - Clear Graphics
CP - Clear Page
CT - Clear Text

Scrapbook
CLEARTOOLS
CONTENTS
DOS (IBM only)
ERPAGE pagename ERase Page
FLIP
FRONT?
GETPAGE (GP) pagename
GETSHAPES
GETTOOLS pagename
LAST PAGE
LEAVEPAGE
LOAD pagenanw
LOCK
NAMEPAGE (NP) pagename
NEWPAGE

* PAGELIST
RESTORE
SAVEPAGE
SHAPES

* TOOLLIST
UNDO
UMOCK

Workspace
RECYCLE

* SPACE

Pausing
WAIT nwnber

Sound
TONE frequency time

Input
BUTTON? button number
KEY?
PADDLE number
READCHAR
READLIST (RL)
READLISTCC (RLCC)

Assigning
CLEARNAME wordl list
CLEARNAMES
MAKE name word, list
NAME wordl list name

* NAME? word
PRINTNAMES
SHOWNAMES
THING names

Disk
DISK
SEMISK letter

105

101

Events
CLEAREVENTS
WHEN letter list to run

Printer Commands
DSPACE Double SPACE
PRINTSCREEN
PRINTTEST
PRINTTEXT80
SSPACE Sincle SPACE

Special Words
END
FALSE
STARTUP

TRUE

Math (Note: all are reporters)

ARCTAN number
COS degrees
INT number
RANDOM munber
ROUND number
SIN degrees
SQRT 'umber

Flow of Control/Logic
AND truelfalse1 truelfalse2
IF truelfalse list to run

IFELSE truelfalse list.to.run 1 list.to.run2
NOT truelfalse
OR truelfalsel truelfalse2
OUTPUT (OP) wordllist
REPEAT number list.to.run
RUN list.to.run
STOP
STOPALL

Graphics
ALL

ASK turtlelturtle.list list.to.run
BACK (BK) nwnber
BG
CHANGECOLOR nwnbers

list of three numbers (GS version)
CHARUNDER - CHARacter UNDER
CLEAN
COLOR
COLORUNDER
COLORVALUE number (GS version)
CURSORPOS
DISTANCE list of two numbers (GS/IBM)
EACH list.to.run
FILL
FORWARD (FD) number
HEADING
HOME
HT - Hide Turtle
LABEL wordllist
LEFT (LT) number
PD - Pen Down
PE - Pen Erase
POS
PU - Pen Up
PX - Pen Reverse
RESETCOLORS (GS version)
RG - Reset Graphics
RIGHT (RT) number
SETBO number
SETC number
SETH number
SETPOS /x y]
SETSH number
SETX number
SUY number
SHADE
SHAPE
SLOWTURTLE (GS version)
ST - Show Turtle
STAMP
TELL turtlelturtle.list
TOWARDS list*
WHO
XCOR
YCOR

106

Text Editing/Words and Lists
ASCII char
BOTTOM
BUTFIRST (BF) wordllist
BUTLAST (BL) wordllist
CB - Cursor Back
CD - Cursor Down
CF - Cursor Forward
CHAR
CLIPBOARD
COPY
COUNT
CU - Cursor Up
air
DELETE
EMPTY? wordl list
EOL
EQUAL? wordllistl wordllist2
FIRST wordIlist
FOUND?
FPUT wordllist list
IDENTICAL? wordllistl wordllist2
INSERT wordl list
ITEM number wordllist
LAST wordllist
LIST word/Is:al wordllist2
LIST? wordllist
LPUT wordl list list
MEMBER? wordllistl wordllist2
NEXTSCREEN
NUMBER?
PARSE word
PASTE
PRESCREEN
PRINT (PR) wordllist
REPLACE wordl word2
SEARCH word
SELECT
SELECTED
SENTENCE (SE) wordl list! wortillist2
SETEXTPOS number
SETTC number (GS version)
SHOW wordllist
SOL - Start Of Line
TAB
TC (GS version)
TEXTLEN
TEXTPOS
TOP
TYPE wordl list
UNSELECT
WORD wordl word2
WORD? wordllist

ProDos Primitives

BYE
COPYFILE namelpathnamel namelpathname2
CREATEDIR pathname

* DIRECTORIES
ERASEFILE namelpathname

* FILELIST
LOADPIC namelpathname
LOADTEXT namelpathname

* ONLINE
* PREFIX

RENAME namelpathnamel name/ pathname2
SAVEPIC namelpathname
SAVETEXT
SETPREFIX pathname
SETSLOT

* SLOT
* .VERSION

System Modifying Primitives
.BLOAD namelpathname address
.BSAVE namelpathnante address length
cm". address
.DEPOSIT address byte

* EXAMINE address

CHDIR namelpathname
COPYFILE namelpathnamel

* CURRENTDIR
* DIRECTORIES

DOS
ERASEFILE namelpathname

* FILELIST
LOADPIC namelpathname
LOADTEXT namelpathname
MKDIR pathname
RENAMEpathname namelpathnamel
RMDIR
SAVEPIC name/pathname
SAVETEXT

IBM DOS Primitives

namelpat hname2

.VERSION

namelpathname2

* Primitive is a reporter (Operation).
Primitive is either a command or a reporter.

107
1 0

REFERENCES

Abelson, Harold and diSessa, Andrea. (1980). Turtle geometry. MIT Press: Cambridge,
Massachusetts.

Beyer, B. K. (1983). "Common sense about teaching thinking skills." Educational Leadership,
41, (November), pp. 44-49.

Beyer, B. K. (April 1984). "Improving thinking skills: Practical approaches." Phi Delta Kappan,
556-560.

Beyer, B. K. (March 1984). "Improving thinking skills: Defining the problem." Phi Delta Kappan,
486-490.

Birch, Alison. (1986). The Logo project book: Exploring words and lists. Terrapin, Inc.,
Cambridge, Massachusetts.

Clayson, James. (1988). Visual modeling with Logo: A structured approach to seeing. MIT Press:
Cambridge, Massachusetts.

Cory, Sheila and Walker, Margie et. al. (1985). Logo Works: Lessons in Logo. Terrapin, Inc.,
Cambridge, Massachusetts.

de Bono, E. (1973). Lateral thinking: Creativity step by step: Harper Colophan Books, Harper
and Row: New York.

ERIC. (December 1984). "Improving students' thinking skills." The best of ERIC: ERIC
Clearinghouse on Educational Management, University of Oregon: Eugene, Oregon.

Fredericksen, N. (1984). "Implications of cognitive theory for instruction in problem solving."
Review of educational research, 54 , 363-407.

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences: Basic Books: New
York.

Gardner, Howard and Hatch, Thomas. (November 1989). "Multiple intelligences go to school:
Educational implications of the theory of multiple intelligences." Educational researcher, 18,
Number 8, 4-10.

Glatthorn, A. A. and Baron, J. J. (1985). "The good thinker." In Arthur Costa, ed., Developing
minds: A resource book for teaching thinking. 49-53. ASCD.

Goldenberg, E. Paul and Feurzeig, Wallace. (1987). Exploring language with logo. MIT Press:
Cambridge, Massachusetts.

Harvey, Brian. (1984). Computer science Logo style: Volume 1: Intermediate programming MIT
Press: Cambridge, Massachusetts.

Harvey, Brian. (1986). Computer science Logo style: Volume 2: Projects, styles, and techniques.
MIT Press: Cambridge, Massachusetts.

109 .1 0

Harvey, Brian. (1987). Computer science Logo style: Volume 3 : Advanced :opics. MIT Press:
Cambridge, Massachusetts.

Mayer, R.E. (1977). Thinking and problem solving: An introduction to human cognition and
learning. Scott, Foresman, and Company.

Moursund, David G. (1990). Getting smarter at solving problems. International Society for
Technology in Education: Eugene, Oregon. An extensive Teacher's Manual is also available.

Papert, Seymour. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books,
Inc.: New York.

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton University
Press.

Rubinstein, M. F. (1986). Tools for thinking and problem solving. Prentice-Hall.

Specht, Jim. (1990). "Mathematics and writinganother look." The Writing Notebook.

Steinberg, E. R., Baskin, A. B. & Hofer, E. (1986). "Organizational/memory tools: A technique
for improving problem solving skills." Journal of educational computing research, 2 (2), pp.
169-87.

Sternberg, Robert. J. (1988). The triarchic mind: A new theory of human intelligence: Penguin
Books.

Sternberg, Robert. J. (1990). "Thinking styles: keys to understanding student performance." Phi
delta kappan, Volume 71 Number 5, pp. 366-371.

Torrance, E. P., & Torrance, J. P. (1973). Is creativity teachable? Phi Delta Kappa educational
foundation: Bloomington, Indiana.

Turkle, Sherry. (1985). The second self: Computers and the human spirit. Simon and Shuster,
Inc.: New York.

Watt, Daniel. (1984). Learning with Apple Logo. McGraw-Hill, Inc.: New York.

Watt, Molly & Watt, Daniel. (1986). Teaching with Logo: Building blocks for learning. Addison-
Wesley Publishing Company: Menlo Park, CA.

Weir, Sylvia. (1987). Cultivating minds: A Logo casebook. Harper & Row: New York.

Whimbey, A. (1984). "The key to higher-order thinking is precise processing." Educational
Leadership, 42 , (September), pp. 66-70.

Wickelgren, W.A. (1974). How to solve problems: Elements of a theory of problems and problem
solving. W.H. Freeman and Company.

Yoder, Sharon K. (1990). Introduction to programming in Logo using LogoWriter. International
Society for Technology in Education: Eugene, Oregon.

110 1 r
41.

0

ASCII

BACK
Background

color of
BK
Blank lines
Blank spaces
Bottom up programming
Braces
Brackets

square
Brain

11,

23
23
23
74

13

28
13
74
74
82
23

23
6

Brealdng a problem into small parts ...77
Bugs 2, 15
Building on the work of others 39
Building on your own work 45

CG 13
CHAR 74
Clear Text 29
Color 27

background 28
none visible 31

Command center 10, 14
Commands 12
Computer 1

Computer model 32
Computers

as problem solving tools 24
Contents page 9
Correcting errors 14
cr 29, 56
Cursor 10, 63

how to distinguish mode 66
lost 23

Dealing with complexity 59
Debugging 2, 15
Delete

page 15
Domain specificity 16

and music 2
Down keys 56
Drawing in color 27
Drawing with the turtle 12
DSPACE 57

INDEX

111

END 64
Erase to end of line 67
Errors

correcting 14
in computer programs 2
logic 15
syntax 15
that the computer can detect 15
that the computer cannot detect 15

Esc key 13

Far transfer 3
FD 12
Feedback while doing computer

programming 2
FILL 49

problems with 50, 51
Flip keys 43, 63
FORWARD 12
Front of the page 63

Graphics
mixing text and 55

Hand trace 67
Heading 39
Hide Turtle 21
HT 21

I don't know how to 11
Immediate mode 63, 66
INSERT 74
Instructions 12

number per line 77
Intermediate LogoWriter 35

Journal 5
entries 5

Journaling
as an aid to metacognition 6

Keyboard stickers 10
Know 1

Knowing 1

Learning 1

trial and error 15
LEFT 13
Logic errors 15
Logo Exchange ii

I 66

Logo Writer ii Problem solving styles 60
Intermediate 35 Procedure 64
Primary 35 list 76

Lost work 14 main 75
LT 13 sub- 75

super- 76
Main procedure 75 top-level 75
Mental models 39 Procedure tree 75
Metacognate 5 rules for drawing 76
Metacognition 6 Procedures
Middle out programming 82 erasing 67
Mistakes length of 77

as part of learning 15 more than one 71
Mixing text and graphics 55 naming 77
Modeling 32 not recognized by Logo 67
Music 87 Procedures as building blocks 68

chart of notes 90 Procedures to solve problems 78
Program

NAMEPAGE 10 polishing 82
Near transfer, 3 publishing 83
NEW PAGE 10 Program design 81
Next Screen 43 Programming
Notes in immediate mode 66

chart of 90 using procedures 66
NP 10 Programming style 82

rules for 83
Page 10 Programs 1

Page, renaming 22 PU 13
Pages 9

erasing 67 Quotation mark 11
Pages, saving 14
Papert 3 RANDOM 28
Parentheses 23 Random numbers 28
PD 13 Renaming a page 22
PE 14 REPEAT 19
Pen 12 Repetition

turtle 10 in computer programs 24
Pitch Reporter 30

problems with 01 Reporters 12
Playing turtle 15, 67 Reset Graphics 30
Polishing your program 82 Restoring text 59
Polya 78, 84 RG 30

four-step plan 78 RIGHT 12
Previous Screen 43 RT 12
Primary LogoWriter 35
Primitives 12 Saving 13

number of 23 pageg 14
PRINT 29, 73 procedures for 59
Printing 13 Scrapbook disk 9, 13
Printing text 57 SETBG 28
PRINTSCREEN 14, 57 SETC 27
PRINTTEXT 57 SETSH 35
PRINTTEXT80 57 S HADE 49
Problem solving strategies 84 problems with 51

112

Shape Thinking 6

era:.ing 39 TO 64
turtle 35 TONE 87

Shapes 35, 43 Top down programming 81

making copies 44 Text
not turning 38 mixing graphics and 55
size 44 on the flip side 75

Shapes page 35, 43 recovering 59
restoring 44 Top-level procedure 75

Show Turtle 22 Transfer
Sound effects 89 far 3

Spaces 14 near 3

blank 11 Transfer of learning 2

printing 74 Turtle 12
Square brackets 23 disappearing 38
SSPACE 57 playing 15

ST 22 Turtle move 12
STAMP 35 ieaving 23

problems with 38 Turtle move mode 19
Stamping Turtle shape 35

commands to use 38 Turtle steps 14
Stamping the turtle shape 37
Starting Logo Writer 9 UNDO 59
Subprocedures 75 Up keys 55

why use 77
Superprocedure 76 WAIT 30, 31
Syntax errors 15 Word processor 55

features 59
Word wrap 56
Wrapping 20
Writing Procedures 63

113

Add another brick to your Logo base.

ISTE's Special Interest Group for Logo Educators (SIGLogo)
provides you with a broad Logo foundation.

Build your knowledge with the latest information on Logo
research, resources, and methods. Expand your Lino alter-
natives through the exchange of ideas, concepts, and tech-
niques.

Both novice and experienced Logo users will find construc-
tive uses in their SIGLogo membership.

Join SIGLogo now. Membership includes eight issues of
Logo Exchange, the SIGLogo journal. Members are invited
to participate in local, regional, and national meetings and
to contribute to the flow of ideas through the Logo Exchange.
For more information about SIGLogo, contact ISTE.

1STE, University of Oregon, 1787 Agate St., Eugene, OR 97403-9905 ; ph. 503/346-4414.

We've taken the first step for you. Randy Boone pulls together the best research, position
papers, product reviews and lesson plans for teaching writing.

Recent articles from,The Computing Teacher and The Writing Notebook will take you yet
another step closer to understanding the issues, problems, and solutions surrounding the writing
process.

Use Teaching Process Writing with Computers in your university classes, inservice work-
shops, and K-12 classrooms. Your students will make great strides.

For pricing or to order, contact: ISTE, University of Oregon, 1787 Agate St., Eugene, OR
97403; ph. 503/346-4414.

7\N
Teach process writing step by step.

Works users--seek help.
Practical and useful support is what you'll

find in Microsoft Works fur the Macintosh: A
Workbook for Educators by Keith Wetzel. Step-
by-step instructions thoroughly cover all the
capabilities of MS Works including macros,
spellchecking, and multiple column text and
labels for Version 2.0. While you are learning,
you'll create usable transparencies, letter-
head, and other templates for use in your
classroom or at home.

Microsoft Works for the Macintosh: A Work-
book for Educators is available for both ver-
sion 1.1 and 2.0. Please specify which version
you need when ordering.

For pricing information or to order, contact:
ISTE. University of Oregon, 1787 Agate St.,
Eugene, OR 97403-9905; ph. 503/346-4414.

Get help today. Microsoft Works for the Macintosh: A Workbook for Educators from ISTE.

AppleWorks for Educators by
Linda Rathie really shines. The new
edition has been expanded to
include sections for:

mail merge
integration activities NNN E
a glossary, and
software applications.

We'r polished

\\\\\\\\\\\\ 1

Each section provides step-by-
step instructions. Beginning and
intermediate AppieWorks users -----
learn word processing, database
and spreadsheet management, and
printer options.

Your copy includes a data disk of ---
working examples. Add Apple-
Works for Educators to your class- =
room and watch your students
shine.

Contact: ISTE, University of Oregon, /,/
1787 Agate St., Eugene, OR 97403; /7? ,

ph. 503/348-4414. // // // ///

A

up a proven favorite!

bI)//14

4.1.11=11111M1101

INTERMEDIATE

WORKBOOK

l!oakfa

Look at our
Logo list!

Introduction to Programming
in Logo Using LogoWriter

Introduction to Programming
in Logo Using Logo PLUS

LogoWriter for Educators:
A Problem Solving Approach

Logo PLUS for Educators:
A Problem Solving Approach

Logo users at all levels benefit from these
ISTE selections.

The Introduction to Programming books.
written by Sharon Yoder. provide beginners
with a Logo base to build on and experienced
users with a reference to rely on. Both are
excellent resources for teacher training or
introductory computer science classes.

New from 1ST& LogoWriter (Logo PLUS).*
Educators: A Problem Solving Approach takes
Logo learning to new depths. The focus is
entirely on learning and practicing general
problem solving skills while using Logo. Great
for beginning programming experience.
Appendices include keystroke summaries.
turtle shape pictures. and a quick reference
card. Written by Sharon Yoder and Dave
Moursund.

To order, contact: ISTE. University of Oregon.
1787 Agate St.. Eugene. OR 97403-9905: ph.
503/346-4414.

Telecommunications: Make the connection.
Whether you want to hook up with a teacher in

Kenya. or a teacher across town. ISTE's Telecommu-
nications in the Classroom will help you make the
connection.

Authors Chris Clark. Barbara Kurshan. Sharon
Yoder. and teachers around the world have done your
homework in Telecommunications in the Classroom.
The book details what telecommunications is how to
apply it in your classroom, what hardware and
software you'll need. and what services are available.
Telecommunications in the Classroom also includes a
glossary of telecommunications terms and exemplary
lesson plans from K-12 teachers.

Telecommunications in the Classroom is an
affordable, informative resource for workshops.
classes, and personal use.

Make your connection today with ISTE's
Telecommunications in the Classroom

ISTE, University of Oregon. 1787 Agate St..
Eugene. OR 97403-9905: ph. 503/346-4414

IYINNO

iLl

Finally, a long distance relationship that
won't break your heart.

/6441--

gitax-.1 wiwe,tieL

sal

ISTE offers ten Independent Study courses that get to the heart of learning.
Each course thoroughly covers the title material and is designed to provide staff development and

leadership training. You correspond directly with the course's instructor by mail, and can receive
graduate credit through the Oregon State System of Higher Education.

Classes offered this year are:
Introduction to Logo for Educators
(available for Logo Writer or Logo PLUS)

Fundamentals of Computers in Education

Long Range Planning for Computers in
Schools

Computers in Mathematics Education

Computers and Problem Solving

Introduction to Apple Works for Educators

Computers in Composition

Effective Inservice for Instructional Use of
Computers in Education

Computer Applications for Educators: An
Introduction to Microsoft Works

Telecommunication and Information Access
in Education

Register for classes independently or with a
group. Districts enrolling six or more teachers
receive a fee reduction for each person en-
rolled.

Courses range in price for 3-4 quarter-hours
of graduate credit. You have one year to com-
plete your course.

Start a great long distance relationship today
with an ISTE Independent Study Course.

Request an Independent Study course
brochure. Write or call:

ISTE, Independent Study Course Dept.,
University of Oregon, 1787 Agate St.,
Eugene, OR 97403-9905
ph. 503/346-2412

L G OWR IT ER 111 ;R EMI('ATO R

A PROBLEM SO LV ING A PPR OACII

These innovative texts allow educators to approach programming as an arena for learning and
practicing general problem solving skills. Designed as part of a course for inservice/preservice
teachers, they provide a solid introduction to Logo and problem solving for any beginning pro-
grammer. Carefully sequenced instructions ensure a successful beginning programming expe-
rience. New programming ideas are tied to important problem solving concepts. Practical tips
include answers to questions frequently asked by beginning Logo programmers, debugging
advice to help diagnose and problem-solve programming errors, and suggested activities in both
Logo and problem solving. Appendices include summaries of key strokes, pictures of available
turtle shapes, and a quick reference card.

LogoWriter for Educators: A Problem Solving Approach
By Sharon Yoder and Dave Moursund
113 pages, 1990
ISBN 0-924667-72-9

A /so A rialableLogo PLUS .fOr Educators: A Problem olving Approach

The International Society for Technology in Education touches all corners uf the world. As the
largest international non-profit professional organization serving computer using educators, we
are dedicated to the improvement of education through the use and integration of technology.

Drawing from the resources of commit-
ted professionals worldwide, ISTE
provides information that is always
up-to-date, compelling, and relevant to
your educational reSponsibilities.
Periodicals, books and courseware,
Special Interest Groups, Independent Study
courses, professional committees, and
the Private Sector Council all strive to
help enhance the quality of information
you receive.

It's a big world, but with the joint efforts
of educators like yourself, ISTE brings it
closer. Be a part of the international
sharing of educational ideas and
technology. Join ISTE.

Basic one year membership includes
eight issues each of the Update newsletter
and The Computing Teacher, full voting
privileges, and a 10% discount off 1STE
books and courseware.

Professional one year membership
includes eight issues each of the Update
newsletter and The Computing Teacher,
four issues of the journal of Research on
Computing in Education, full voting
privileges, and a 10% discount off ISTE
books and courseware.

Join today, and discover how ISTE puts
you in touch with the world.

ISTE, University of Oregon,
1787 Agate St., Eugene, OR 97403-9905.

ph. 503/346-4414

1

