DOCUMENT RESUME

ED 331 468 IR 014 646

AUTHOR Yoder, Sharon; Moursund, David

TITLE Introduction to LogoWriter and Problem Solving for
Educators.

INSTITUTION Internatinonal Society for Technology in Education,
Eugene, OR.

REPORT NO 1SBN-0-924667-72~9

PUB DATE 90

NOTE 113p.

AVAILABLE FROM International Society for Technology in Education,
1787 Agate Street, Eugene, OR 97403-9905.

PUB TYPE Guides - Non-Classroom Use (055)
EDRS PRICE MFO1l Plus Postage. PC Not Available from EDRS.
DESCRIPTORS »Computer Assisted Instruction; *Computer Software;

Elementary Secondary Education; »Inservice Teacher

Education; Microcomputers; Postsecondary Education;

»Preservice Teacher Education; *Problem Solving;

»Programing; Programing Languages; Vlord Processing
IDENTIFIERS +*LOGO Programing Language

ABSTRACT

This book about Logo programming and problem solving
is designed to introduce preservice and inservice teachers to problem
solving in a Logo programming environment. Such a unit of study can
be an important part of an introductory computers in education course
for educators. Although Logowriter--a version of Logo~-was developed
by Logo Computer Systems, Inc., primarily for use on the Apple II, MS
DOS (IBM compatible), and Commodore microcomputers, no specific
computer hardware or version of Logo is required to use the ideas
presented in this book. The following topics are discussed: (1)
getting started with Logowriter; (2) using REPEAT and turtle move
mode; (3) color and RANDOM, shapes and STAMP, FILL and SHADE; (4)
mixing text and graphics; (5) writing procedures and more than one
procedure; (6) designing programs; and (7) music. Appendices incluce
a description of Logowriter keys, keyboard stickers, and a 1list of
quick word references. (34 references) (DB)

* Reproductions supplied by FDRS are the best that can be made *

* from the original document. *
ARARARARRARR AR AR AR AR A RN RN AR AR AR RN RN NN AR R ANNNAANANRRNRARRNNARARR

U 8. DEPARTMENT OF EDUCATION . -
Othice of Educational Research and improvement
EDUCATIONAL RESOURCES INFORMATION L '
‘o . CENTER (ERIC) . :
. This document has been reproduced as
. Yecmved lrom the person of organization
ongnatng
[* Minot Changes have heen made to improve
reproduction quahty

- s
\) v
\
’

ED331468

® Pointg of view of opinions stated inthis docu-
mant do not necessanly reprasent othcial
OE RI posthon 01 policy

“PERMISSION TO REPRODUCE THIS

MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

David Moursund

. ‘ TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

LogoWriter for Educators:

D

- - = ,

.

-

i\ Problem Solving Approach

<

© BESTCOPYAVAMABLE

& | .
Publicatioms By Sharon Yoder and Dave Moursund

ERI

Aruitoxt provided by Eic: . s

 About the Authors

Dave Moursund has been teaching ana #riting in the field of computers in education since 1963, He is a professor at the
University of Oregon in the College of Education. There he teaches in and helps direct both a master’s degree program
and a doctoral program in computers in education.

Some of Dr. Moursund'’s major accomplishments include:
@ Author or co-author of about 25 books and numerous articles,

Chairman of the Department of Computer Science, University of Oregon, 1969-1975,

.

B Chairman of the Association for Computing Machinery's Elementary and Secondary School Subcommittee
1978 - 1982,

»

Founder, International Council for Computers in Education, ICCE) 1979. The name of this organization was changed
to Intenational Society for Technology in Education (ISTE) in 1989 when it was merged with the
International Assoctation for Computing in Education.

B Chief Executive Officer, ICCE, 1979-1989,
B Executive Officer, ISTE, 1989-present.

Sharon Yoder has taught mathematics and computer science at the junior high and high school level for 15 years. Her most

recent public school experience was as a secondary computar science teacher and a computer coordinator involved in

developing system-wide computer curriculum and in planning 'teachu inservice training,
In addition, she has taught mathematics, computer science, and computer education at a number of universities in northeastern

Ohio, including Kent State University, the University of Akron, and Cleveland State University. She has worked closely with
the College of Education of Cleveland State University in developing their computer programming courses for teachers.

After a year as an Education Specialist for Logo Computer Systems, Inc., Sharon has returned to teaching. She is currently
at the University of Oregon, where she teachers computer education courses.

For the past several years, she has conducted workshops and presented papers at conferences nation-wide, and has been
involved in anumber of book publishing projects, including the Nudges series. In addition, she has been a frequent contributor
to The Computing Teacher and the Logo Exchange. She is currently editor of the Logo Exchange and a column editor for The
Logo Center in The Computing Teacher.

Project Editors: Anita Best, Ellen Siegel, Neal Strudler
Cover Design: Percy Franklin
Production: Tamara Kidd

For Ordering and a complete catalog contact:

INTERNATIONAL SOCIETY FOR
TECHNOLOGY IN EDUCATION
University of Oregon
1787 Agate Street
Eugene, Oregon 97403-9905
503/346-4414
CompuServe: 70014,2117 BITNET: ISTE@Oregon

ISBN 0-924667-72-9
© 1990 International Society for Technology in Education

(N Ep O aE A S B o A oF oy O A By T B Bl o e

PE— G $ TSE—— e O GEEn PN WS Wy WIS O wgew | ey

Introduction to
LogoWriter and Problem
Solving for Educators

Sharon Yoder

Dave Moursund

International Society for Technology in Education
1787 Agate Street
Eugene, Qregon 97403-9905

© 1990 ISTE

—— — — — E—— —-———— — —— — ——

Contents
ProfaCe. ... it e s e e b i
Chapter 1: Computers and Computer Programmingccceevueererrenneeneinenrerneennens 1
Chapter 2: Keeping a JOUMNALuivuieiiiirerinnreiieererernernnienneesierinerereosneeseesnes 5
Chapter 3: Getting Started With LOGOWTItEr.. ..ec.uivunienieireiiiinerrineronerierrreerieesserens 9
Chapter 4: Using REPEAT and Turtle MOVE MOGE........cvvuneermiieernniernnennescresennnns 19
Chapter 5: Color and RANAOMuuuuiuueiunieernnernneernereneeruneerunerseeessersenseensssnens 27
Chapter 6: Shapes and STAMPivuiieiiiiiiiirerrnereeinerrneerieiesseressseeensnnnssnees 35
Chapter 7: Defining New Shapesceeiviiiierieensieerniiieeerueineerrenersessonieerenes 43
Chapter 8: FILL and SHADEcccciuiiiiireeiereneeieernernneenieensseniosnsreenssnnesnnses 49
Chapter 9: Mixing Text and GraphiCscceeevueeerrneerineerenererrensssessesernseessnnnes 55
Chapter 10: WIiting PrOCEAUIES ..u...evvvreeriunieerunierrieerrnerersnsesseesssnssessnssnsssnns 63
Chapter 11: More Than One ProcedUIe............evuueirunererneerunerseseeeennserenncnessnnne 71
Chapter 12: A Word About Designing PrOgramsuuvueerieeererneereeessnneneess 81
Chapter 13: MUSIC. . evvvvevverevreeeeseeanesenesensassssssssenssssessssssessessosseseseeeeeseseno 87
APPENAICES ..o eeeiiiiiieniiiiiiiiiiiiiiiessieeeieeeeeeernttteesseeeeeeerreeretnsreenennannnns 97
| REfEIENCES. ..ieviii ittt iiiierrree et aebireeeeesssssssnennnnesesesneens 109
INAEX. . ettt e e e e e e bratr e e e e e ssaebaaeeenarennes 111
ERIC 5

Preface

The Logo programming language was designed for children. Logo can be used to help create a
fun, excitinkq, stimulating learning environment. Children of all ages, both youngsters and oldsters,
enjoy working with Logo. Moreover, a Lo¥o environment gives a window into the world of
computers, computer programming, and problem solving using computers.

This short book is about Logo programming and problem solving. It is designed to introduce
preservice and inservice teachers to problem solving in a Logo programming environment. Such a
unit of study can be an important part of an introductory computers in education course for
educators.

Computers and computer-related technology are having a a;}rofound impact on our society and
have the potential to strongly affect education. There is general agreement that all teachers should
have a functional level of knowledge of the roles computers pla{ in the teaching and learning
process. Many teacher training institutions now require all preservice teachers to take a course on
computers in education. Many school districts are working to help all of their inservice teachers
acquire a functional level of computer knowledge and skills.

The overall field of instructional use of computers can be divided into three main parts:
1. Computer science, computer programming, and the associated underlying theories.

2. Computer assisted instruction, computer managed instruction, and other aspects of using a
computer system to help teach.

3. Productivity tools for use by students and teachers, such as a word processor, database, or
gradebook program.

These three major categories are not distinct. A single piece of computer software or a single
) computer idea may fall into all three categories. Today's versions of Logo, as well as problem
solving as a computer-related idea, each fall into all three categories. However, Logo falls most
strongly into the computer science/computer programming category. This book focuses mainly on
programming in Logo and those aspects of problem solving that fit well into discussions of Logo
programming and of problem solving in a Logo environment.

Logo is a computer (Programming language that was specifically designed for use in schools.

When Logo was first developed in the late 1960s, there were no microcomputers. The early

versions of Logo contained none of the graphics capabilities common to all versions of Logo

today. Interactive computer graphics was very expensive and had not yet come into common use,

l Computer use in elementary schools was mainly limited to drill and practice &rograms that focused
a.

on helping students to acquire basic skills. Thus, Logo was a revolutionary i

Over the years, Logo has changed immenseg. Undoubtedly the greatest breakthrough was the
late 1970s implementation of a graphics-oriented version of Logo that could run on an inexpensive
microcomguter. Since then a variety of versions of Logo have been developed for microcomputers
and have been widely distributed. Logo has been used with millions of students at all levels,
ran&ing from preschool to graduate school. Logo has been the focus of hundreds of research
studies, Seymour Papert's book (1980) has been a best seller for many years. In total, Logo has
had and continues to have a major impact on the field of instructional use of computers.

ERIC 6

Full Tt Provided by ERIC.

This book provides a brief introduction to one particular version of Logo, called LogoWriter.,
This version of Logo was developed by Logo Computer Systems, Incorporated (LCSI). It is
available for the Apple II series of computers, MS DOS (IBM compatible) computers, and
Commodore computers. However, most of the ideas presented in this book are independent of any
particular computer hardware or version of Logo.

This book can be used in a short, stand-alone course to introduce educators to some of the key
ideas of Logo and problem solving. Alternatively, the material in this book might be covered in a
two to three week part of a three credit course covering the fundamentals of computers in
education. Such a course should have problem solving as a central and unifying theme. Keep in
mind that the main reason computers are used throughout the world of business, industry, and
government is that they are a very useful aid to problem solving. They are an aid to the human
mind, Computers are a powerful mind tool.

Computers are important in education because they are a unique and powerful new aid to
problem solving in every academic field. The literature on problem solving and the literature on
Logo are both quite large. This short book does not attempt to be comprehensive in either field.
Rather, it is intended to introduce a few of the underlying and unifying ideas in these fields, and to
provide a methodology for studying them. This book draws heavily from previous works of the
authors. Educators interested in a more comprehensive introduction to LogoWriter may want to
read Yoder (1990), and those wanting a more comprehensive introduction to computers and
problem solving may want to read Moursund (1990). A number of other sources of information
are given in the References section. Readers seeking a continuing source of new ideas on the use
of Logo in education should consider subscribing to the Logo Exchange, a periodical published by
the International Society for Technology in Education.

Sharon Yoder and Dave Moursund
July 1990

Chapter 1
Computers and Computer Programming

Did you read the Preface? If you didn't, please go back and browse through it. The Preface is
like an advance organizer. It helps orient you to thinking along the same lines as the authors are
thinking,

A computer is a machine designed to rapidly and automatically carry out a detailed, step-by-
step set of instructions. Such a step-by-step set of instructions is called a computer program.
People write computer programs to help themselves and others solve certain types of problems.

The ideas involved in using the computer to write programs to solve particular kinds of
problems are a central part of the objectives of this book. These objectives are:

1. To increase your understanding of the capabilities and limitations of a computer as an aid to
solving problems.

2. To give you a brief introduction *o the topic of "computer programming" and the process of
writing computer programs to solve problems.

3. To help you learn the rudiments of writing computer programs in LogoWriter, a specific
version of the Logo programming language.

However, these are actually secondary objectives. Logo was designed to bring a new
dimension to education. The overriding objective of this book is to introduce you to a unique
co?il?uteﬁbased learning environment and to give you opportunities to practice working in this
environment.

This book assumes that you, the reader, are a person who plans to become a teacher or is
already a teacher. The book will help you to learn some key ideas about problem solving, computer

programming, and the log?vFrogramming language. Many of the ideas will be useful to you even
when you are not working with computers.

The assumption is that many of the ideas we will cover will be relatively new to you. Thus you
will have the opportunity both to learn some new ideas and to practice learning to learn. Learning
to learn, and learning more specifically about how you learn, is fun, exciting, and critical to being a
successful life-long learner.

In recent years there has been a lot of research on the value of learners keeping a journal and
writing in the journal as they study a subject (Specht, 1990). As you use this book, you will want
to introspect. You will want to carefully examine your own learning processes. You will want to
keep a record of this introspection process in a journal. In the future, if you use Logo when
working with children, you will find it helpful and rewarding to have ther: keep a journal.

-—— e— evaser o GGy e ey O Weeess S UGSy O O UESET G WSS WS

Learning and Knowing

Have }"qu ever asked yourself what it means to "know" something or to have learned
something? Think of some small part of an academic area you know quite well. How do you know
that you know it? How can someone else tell that you know it?

ERIC

Full Tt Provided by ERIC.

One answer is that you can make use of the knowledge. You can demonstrate to yourself and
others that you can use the knowledge for personal purposes, accomplishing specific tasks, for
helping other people, and so on. Learning and doing, or making use of one's knowledge, are
closely intertwined. Indeed, we know that most students learn best by doing. For them, a good
instructional environment is one that includes substantial opportunity to practice using what they
are learning,

However, an equally important aspect of a good learning environment is feedback. The
feedback can come from the learner, For example, consider a student who has written a poem. The
student might say, "I really feel good about this poem. When I read it to myself, it brings a smile to
my face. However, the thyme scheme still doesn't sound quite right, and I want to say more about
the cat.”

Of course, the student can also get feedback from a teacher or from fellow classmates. Such
external feedback is often very important. A teacher needs to be skilled in providing appropriate
feedback to students.

Feedback While Doing Computer Programming

A computer environment adds an important new dimension to learning. A computer can help

vide feedback to the learner. This book will help you to learn to write Logo programs. As you
earn to write programs, you will get feedback from yourself, from other people, and from the
computer you are programming. Programming means writing instructions to tell a computer what
to do. As you attempt to write a program, you will have in mind what task you want the computer
to accomplish. You will observe what the computer actually does (and/or fails to do). You and the
computer together will provide feedback to yourself.

Sometimes this feedback will be positive and very rewarding, for example, "I wanted to tell the
computer how to draw a picture of a house with smoke coming out of a chimney. My program
works just exactly like I wanted it to."

At other times the feedback will be mixed or negative. "I wanted to have the computer draw a
plane flying in a cloudy sky. Right now my plane looks more like a car and my clouds seems to be
sitting on the ground. I'm making progress, but it's clear I've still got some problems with my

progmm‘"

Errors (Bugs) in Computer Programs

Computer programmers call an error in a computer program a bug. This goes back to a time
when a computer failed to function properly because a real insect (a "bug") got stuck in the
circuitry. The process of removing errors from a program (removing bugs) is called debugging.

The metaphor of finding bugs and doing debugging, or detecting and correcting errors in one's
work, is applicable both in comFuter programmin% and in many other endeavors. It is an important
metaphor applicable in all problem solving tasks. It is ve?' casy to learn and practice this metaphor
when programming a computer, and this is one of the unic}::ne aspects of the computer
programmg; environment. However, it is important to ask if the knowledge and skills you gain
about debugging in a computer programming environment transfer to other areas.

Transfer of Learning

Very few peotlg make a living writing Logo i)rograms. For most people, the main reason for
learning to write Logo programs is to gain knowledge, skills, and attitudes that transfer to other

©

ERIC

Aruitoxt provided by Eic:

S A am A

situations. For example, you might become quite skilled at detecting and correcting bugs in your
Logo programs. Does this help Kou to get better at detecting and correcting errors in some other
activity that you do? The research suggests "Maybe."

Research on problem solving indicates that self-confidence and self-esteem in problem solving
transfer among different problem solving domains (subject areas). For example, suppose that you
are successful in learning to write Logo programs and feel good about your ability to do so. Quite
likely this will help you as you work to learn another programming language. Seymour Papert
(1980), who is considered to be the father of Logo, argues that there is considerable transfer of
self-confidence and self-esteem from leaming Logo to learning math.

—— L L W L]
o

Early researchers into problem solving in a computer programming environment were
confident that they would find a great deal of transfer from this domain to other problem solving
domains. They expected that the types of thinking needed to write computer programs would
readily transfer to solving problems in science, mathematics, and the social sciences. They were
disappointed. Teaching a child to write computer programs does not automatically produce
sigmrln’cant gains in problem solving in other fields of endeavor.

There has been a great deal of research on transfer of learning. Here are a few things we know:

1. In near transfer, a person automatically (with little or no conscious thought) uses knowledge
and skills gained in one situation to help solve a problem that occurs in a different .ituation.
Every student is capable of doing near transfer. However, what is near transfer for one student
may not be near transfer for another student. The nearness or farmess of transfer is mainly
dependent on the student rather than on what is being transferred.

2. The amount of transfer and the famess of transfer that occur can be increased by careful
introspection, talking and thinking about transfer, and attempuing to make transfers. Thus, a
teacher can “teach for transfer" and a leamer can consciously and actively "learn for transfer."

I Every teacher and every student should have a good, conscious understanding of the latter

point. Think of yourself as a learner, studying Logo J)rogramming and problem solving in a
computer programming environment. The nature and extent that trunsfer occurs for you is
dependent manly on you. It will occur if you carefully and consciously work to help it ‘occur.
Similarly, if you teach Logo to your students, transfer will be substantiaily increased if you help
your students work towards learning to transfer the ideas they learn. Each chapter of the book
contains a specific discussion on problem solving designed to help increase transfer.

Summary

This book provides a brief introduction to writing Logo programs to solve problems. The
overriding goal is to help provide an environment in which you can practice learning to learn.
Secondary objectives include learning more about coraputers, problem solving, and the process of
writing computer programs to solve problems.

i Q ,LO
ERIC

Aruitoxt provided by Eic:

Chapter 2
Keeping a Journal

Throughout this book, you will be encouraged to think about your own thinking, to
metacognate. As indicated earlier, the key focus of your work with Logo is to give you experience
in a particular learning environment: one in which you can explore, experiment, and receive
feedback on an ongoing basis. As you work with Logo, you will have moments of frustration and
moments of success. A journal is an excellent way to record your learning process and to keep a
written trail as you think about your own thinking.

You should nl%et a separate notebook that you always keep with you as you work at the
computer or think about Logo programming, In it you should record your thoughts and feelings.
Since a journal is a personal document, it can be quite informal. Your journal will vecome a record
of your learning. It will help you document your progress. Further, it will help you see your
successes at moments when you are feeling like a failure,

Here are some examples of typical journal entries.

"Tc;(liay I started working with Logo. Much to my surprise, I was able to move the turtle quite
easily.”

"This is the third time 1 1a.e tried to figure out how to draw a triangle. I am VERY
frustrated...”

"What a wonderful insight I had...I understand my own thinking so much better..."

"Logo really makes me think. The debugging process, while frustrating, forces me to examine
my own reasoning."”

"I intended to draw this:

...but it came out like this:

What happened?”
"At last I understand how procedures work....I think!"
"I'm beginning to understand Logo error messages. They really do provide useful feedback."

"I thought you had to be a brain to write computer programs. I'm doing really well, and I'm
proud of myself."

"Mumble...mumble...mumble...dumb computers...dumb programming language."

Start each session entry with a date and time. Put down what you are thinking and take some
time at the end of each session to reflect on what you have written and what you are thinking and
learning. Make a conscious effort to tie in your work with Logo with the ideas you are learning
about problem solving.

There are some suggested exercises and activities at the end of each chapter of this book. Some
of them will ask you to make use of your journal. As you work on other activities, you will no
doubt want to use your journal to document your progress.

Thinking and Metacognition

The human brain is very complex and contains a huge number of neurons. Think of a neuron
as a long, very thin cell that may be closely interconnected with thousands of other neurons. When
you are learning, you are building and strengthening interconnections among neurons. When you
are thinking, many millions of neurons may be engaged. You do not consciously control all these
neurons. Almost all your thinking activity occurs at a subconscious level.

However, by conscious effort, you can direct your thinking toward a specific topic or proolen,
Such thinking may seem like talking silently to yourself, creating pictures in your head, or creat:ng
sounds, smells, and feelings in your head.

Research on thinking indicates that we can all get better at thinking through study and practice.
One way to do this is through metacognition-thinking about thinking. Another way is by carefully
monitoring the outcomes of our own thinking processes. Become consciously aware of your more
effective thinking processes and your less effective thinking processes. Then use this increased
understanding of yourself tc get to be a better thinker.

Research on metacognition indicates that even primary school students can learn to monitor
their own thinking efforts and can use this activity to improve their thinking skills. Thus, teachers
who work with Logo in elementary schools should be encouraged to have their students do
metacognition. In a Logo environment, journaling can be a useful aid to metacognition. Research
?gs ingicalt;go t;mt journaling can be effectively used with children even at the primary school level

pecht, :

Activities

Before you actually start on Logo programming, you may want to capture a snapshot of some
of your current feelings and understanding about computer programming and problem solving in
your journal. Here are some possible topics you might want to address.

1. IWhaEI do I already know about computer programming, and what new things do I expect to
earn

2
3
4
5

. What is "problem solving" and what do I really know about problem solving?
. Will studying Logo and problem solving help me to be a better teacher?
. How do I really feel about the idea of learning to write computer programs?

. What are examples of some types of problems that computers cannot solve?

Chapter 3
Getting Started With LogoWriter

Starting LogoWriter

The easiest way to get started usin% LogoWriter is to have someone show you how to get
started. The details of what to do at the beginning vary with the computer system and version of
Lo§oWriter you are using. If you are using a computer system with a floppy disk drive then you
will need two disks to hegin:

» A disk containing the LogoWriter language.
» A LogoWriter Scrapbook disk (this is a "files" disk).

It is assumed that your course instructor will provide you with these disks. (If you are using a
networked LogoWriter system, the LogoWriter language will be a file on a hard disk rather than on
a separate floppy disk. Other details about getting started will be different than what is described in
' these next few paragraphs.)

Begin by putting the disk containing the LogoWriter language in the disk drive of the computer
and then start the system. The specific keys to press depend on the kind of computer you are
using. It is assumed that your course instructor has provided you with instructions for the specific
hardware and version of LogoWriter you are using.

The disk drive will whir and buzz, and then you will see a screen containing the word
"LogoWriter" written in large letters.

I Take out the disk containing the LogoWriter language und put it away. It is needed only when
you are starting LogoWriter. Put in your Scrapbook disk, and press the Return/Enter key. You
then see the Contents page, which shows a list of pages (files) that are on your disk.

r

- saxitonts 7)
Use up and down arrows to choose & page
and press Return

NEW PAGE
SHAPES

HELP

Ao ¥
(SN

o
\E C

Full Tt Provided by ERIC.

To select a page from the Scrapbook disk, use the arrow keys to move the small square, called the
cursor. When the cursor is on the yage name you wish to use, press Return/Enter. To get started,
select NEW PAGE and press Retum/%,, nter.

Note: LogoWriter comes with "keyboard stickers" to help you remember what keys to use for
various activities. You can find copies of these stickers along with a list of the various key strokes
that are used with several different versions of LogoWriter in the Appendix of this book.

It is assumed that as you read the sections of this book, you will have access to a computer so
that you can try out new ideas as they are presented, You will understand the material much better
if you become actively involved. At the same time, you should have your journal close at hand.
You can note discoveries you make as you explore. You can jot down questions that arise so that
you can seek answers at a later time.

" Itt;g'ou started LogoWriter correctly and selected a new page, then your screen should now look
e this;

This is the 3age.
(NG 277--)

L //‘)
This is the Command Center.

This is a blank LogoWriter screen for you to work with, The area above the dark line is called the
Page. The area below the dark line is called the Command Center. You will use the Turtle to draw.

Whenever you get a new page, it is a good idea to give it a name. To do this, you must type

NAMEPAGE "name.you.want (Return/Enter)

or use the abbreviated form

NP "name.you.want (Return/Enter)

10 75

in the Conrmand Center. Note that name.you.want is the word you want to use to name your page.
Be sure to put a space after NAMEPAGE. Put a " (quotation mark) before the name. Do not leave a
space after the quotation mark.

For example, you might type

NP "PICTURE.l1 (Return/Enter)

The name you choose
appears gere.
4 4 ' ™
=) PICTURE. !
I%HEPAB}: "PICTURE.1
D)

The cursor is ﬂashing.

If you select a name that is more than one word long, use a period between the words. Do not
leave blank spaces between the words. You can name your page almost anything you wish.
LogoWriter displays a message telling you if you use illegal characters or if your name is too long.
The name you type appears at the top of the page in place of 777,

If you muke a typing error and detect it before you do a Return/Enter, you can correct it by
using the Delete/Backspace key. Often when you make a mistake in typing, Logo will respond
with a message such as

I don't know how to ...

Simply try again, paying particular attention to the spaces. The "I don't know how to ..." is an
that you will see frequently, for example when you make a keyboarding error. Right now would
be a good time to deliberately make an error so that you begin to get used to dealing with this
message. (Does the idea of deliberately making an error bother you? If so, write about these
feelings in your journal.)

Like any other programming language, Logo has a number of specific rules that you must learn
in order to use the language well. At first many of these rules will seem arbitrary. Why, for
example, must there be only one quotation mark before a page name? Why must a page name be a
single word with no blank spaces in it? As you learn more about the structure of the Logo
language, you will begin to see reasons for these rules.

11

ERIC

Full Tt Provided by ERIC.

Drawing With the Turtle
Now you are ready to start drawing with the turtle. The turtle holds a pen that draws lines as

the turtle moves. Try typing
FORWARD 50 (Return/Enter)
or use the abbreviated form

FD 50 (Return/Enter)
Be sure you type a zero (0), not the letter O ("oh"). The turtle moves forward 50 "turtle steps.”

Next type

RIGHT 90 (Return/Enter)

or use the abbreviated form

RT 90 (Return/Enter)

Notice how the turtle turns 90 degrees to the right. Using the up arrow key, move the cursor that is

at the bottom of the screen until it is on the "FORWARD" line. Press Return/Enter. Does your
turtle drawing look like this?

e “
n PICTURE. 1

'——r-:»

W

L. , , 3 _

Do you see that you don't have to retype an instruction to use it again? Can you finish drawing the
square without typing any more commands?

Primitives and Instructions

You have now learned three LogoWriter commands: NAMEPAGE, FORWARD, and RIGHT.
Words that LogoWriter "understands” are called primitives. A command is one kind of primitive.
You will learn about a second type of primitive, reporters, later in the book.

12

The word instruction is used to describe a line of Logo code. A correctly written instruction
always consists of a command along with the inputs (if any) to that command. Thus, while
FOR%VARD is a command, FOWARD 50 is an instruction. It is important that you learn the
meaning of these three terms: command, primitive, and instruction. They will be used frequently
throughout this book.

Now try typing
CG (Return/Enter)

—_—— A L —— L

to clear the screen. CG stands for Clear Graphics.
What happens if you"type
F(.DRWARD
and press Return/Enter? You see
forward needs more inputs
Logo is telling you that you must put » number after FORWARD to tell the turtle how far forward

to move. Logo usually gives you b pful messages when you make a mistake. Read them
carefully!

Below is a list of some of the commands that the turtle understands:

FORWARD number BACK number
L FD number BK number

RIGHT number LEFT number
‘ RT number LT number

PU PD

(Pen Up) (Pen Down)

(8¢

(Clear Graphics)

Experiment with these commands to see how each one works. Remember to press Return/Enter
after each instruction. Use your journal to record ideas on what your are learning and your feelings
about learning by experimentation. After you have experimented for awhile, decide on a design or
drawing to make. If you make mistakes you can use CQ to clear the page and start again,
Remember that the commands you used are still available at the bottom of your screen in the
Command Center.

Saving and/or Printing a Page

Whenever you have something on the screen you want to keep, press the Esc key. Esc causes
LogoWriter to make your page a part of your Scrz;glbook. That is, it puts the page on your
Scrapbook disk, using the name you have given it. Recall that the term "ggfe" in LogoWriter refers
to the part of the screen above the solid line; the instructions you typed below that solid line are in
the Command Center. The Command Center is not saved with the pa..e. You will learn how to
save groups of instructions later in this book (Chapter 10).

1378
LS

ERIC

Aruitoxt provided by Eic:

When you press Esc to save a page, LogoWriter automatically takes you to the Contents page.
To continue working with the page you have saved, simply select your page from the Contents
page and you will see that it looks exactly as it did when you left it. If you haven't already done so,
try saving your page right now.

If your computer is attached to a printer, you can print a copy of a page. To print the page, first
be sure your page has been saved. At that time you will see the Contents page on the screen. Select
the page you want to print and then type

PRINTSCREEN (Return/Enter)

Note: Your disk containing the LogoWriter language must be configured for use with the printer
you are uii:g. It is assumed that your course instructor has provided you with a disk that is

properly configured for the printer you are using.

Frequently Asked Questions
In this and the remaining chapters we include a section on Frequently Asked Questions. These
?l!leththe htypes of questions that beginners frequently ask when studying the material being presented
e chapter.

1. When I type FORWARD and a number, the turtle moves up the screen. Why doesn't it move
to the right when I type RIGHT and a number?

Answer: Beginners sometimes find the differences between the commands FORWARD and
BACK, and the commands RIGHT and LEFT, difficult to understand. FORWARD and
BACK are movement commands. They cause the turtle to take "turtle steps." RIGHT and
LEFT are turn commands. The turtle doesn't move at all. Instead it turns about its middle, like
a ballet dancer spinning on her toe. The number you give is the number of degrees in the turn.

2. Iknow that if I draw a line I don't want in my picture I can always start over by using CG or
by getting a new page. Sometimes I want just to correct the work I have done so far. Is there a
way to erase an unwanted line?

Answer: It is not unusual to want to erase lines you draw by accident. It is possible to do this
using PE (Pen Erase). You type PE and go back over the line you don't want. Then you must
type PD to continue to draw. Unless you erase a line immediately after drawing it, it can be
very difficult to erase it completely because it is tricky to place the pen exactly on top of where
you have previously drawn. Generally it is better to start over rather than to try to fix several
small errors on a drawing,

3. I worked really hard on a picture, but it was gone when I next tried to use my Scrapbook disk.
What happened?

Answer: Most likely you didn't save your page before you turned off the computer. Recall that
pressing Esc saves your page. When you are finished working with LogoWriter, always be
sure that you see the Contents page on your screen before you turn off the computer or let
someone else use it. Since you must press Esc to get to the Contents page, any work you have
done is saved. (You can always erase unwanted work at a later time.) When you save a page
using Esc, only the graphics and letters above the solid line are saved. Text in the Command
Center is not saved when you press Esc.

4, What are the important points that I need to remember about using spaces in LogoWriter?

14

19

Answer: Spaces are very important in LogoWriter, They are used to separate the parts of an
instruction line in Logo. Thus, you must have a space between a command like FORWARD
and the number after it. You also need a space after NAMEPAGE and before the page name.
On the other hand, there must not be a space after the quotation mark (") in the name of a page.
If you get error messages that you don't understand, look carefully at the spacing in what you
typed. The problem may simply be in your spacing.

5. How do I delete a page I no longer want?

Answer: Go to the Contents page. Move the cursor to the page tyou want to remove. Use the
Erase to End of Line key combination. (See the Appendix for the keys to use on your
computer.) Caution: A page deleted from the Contents page cannot be recovered.

Bugs and Debugging: Learning to Make Mistakes Through Logo

Every computer programmer makes errors. Even the very best of professional computer
programmers write programs that contain bugs. The program writing process is one of striving to
write bug-free programs, learning to detect bugs, and learning to correct bugs. You cannot be a
successful programmer unless you can function well in an environment full of bugs needing

debugging.

Think about yourself and others you know. Do you know people who seem almost deathly
afraid of making a mistake? For example, do you know students who won't give an answer out
loud in class for fear of being wrong? Do you know students who have trouble writing because
they don't like to have erased spots where they have corrected errors? (A word processor certainly
helps such people!)

Ve? young children are not afraid of making mistakes. They learn through trial and crror as a
result of appropriate feedback. It is natural to make mistakes. Mistakes are an essential part of the
learning process. The nature of children's learning experiences gradually shars how they learn,
‘ Some young people eventually “learn” that it is better to not try than to face the consequences of

failure. This can be a major handicap to learning. Writing and debugging Logo programs is one
way to become more comfortable with making errors and correcting these errors.

One way to find the source of a bug is to "play turtle.” Children learning Logo are taught to
move like a turtle. They walk around the floor, g the turns and taking the turtle steps just as
if they were a computer turtle. They learn to picture their bodies as being like the screen turtle, This
is a powerful aid to debugging and to learing. Try it-it works for adults as well as for children!

As you work with Logo, you will find that there are two major categories of bugs you will
encounter over and over again:

1. Errors the computer can detect. These are errors that cause the computer to produce an error
message, such as "I don't know how to..." Often this results from an error in keyboarding, an
error in the spacing in an instruction, an error in the punctuation or in the spelling of words in
an instruction, or a misunderstanding of the details of how a specific command must be
written. Such errors in the "grammar" of Logo are usually called syntax errors.

2. Errors the computer cannot detect. These errors do not result in an error message, but they
uce an incorrect result. It is easy to keyboard FORWARD 50 when you actually meant
ORWARD 60. The computer has no way of knowing what you had in mind. It is easy to use
LEFT 90 when what is really needed is RIGHT 90. Again, the computer has no way of

15

ERIC

Full Tt Provided by ERIC.

knowing what is needed. However, you can look at the results produced on the screen and
detect your error. We will call these errors in meaning logic errors.

You may want to deliberately make some programming errors so you can gain increased skill in
detecting and correcting them. For example, try FORWARD NTY or RIGHT30. You may
want to write in your journial some personal feelings about what it is like to make a mistake. How
do you detect "bugs" in your thinking and problem solving activities in school and outside of
school. What could you do to get better at this process?

Computers and Problem Solving: Logo and Learning New Things

One of the key ideas in problem solving is domain specificity. This is a fancy way of saying
that you must know a great deal about a specific problem area in order to solve problems in that
area. Suppose you are going to use Logo to solve an art problem. You must know about two
domains—Logo and art.

Think about domain specificity as you learn Logo. Initially you know very little about the Logo
language and the Logo programming environment. You have no way of knowing that FORWARD
refers to moving a "turtle” up the screen a certain number of turtle steps. You have no way of
knowing that RIGHT refers to turning the turtle to the right a certain number of degrees. The
words FORWARD and RIGHT already have meaning to you in other domains, and now you are
learning their meaning in a new problem solving domain.

Much of your initial learning is a sequence of trial-and-error efforts. You are being asked to
learn a large number of new vocabulary words and ideas in a very short period of time. You may
frequently reread portions of this text. The smallest error in your memory in following instructions
or in keyboarding, is apt to produce a wrong result. Sometimes Logo gives you an error message
and leaves you to figure out what you did incorrectly. At other times the pattern you have produced
on the screen is not what you had in mind. You provide your own error message ("That doesn't
look right.") and then attempt to figure out what you did wrong. You may be tempted to ask your
course instructor or your fellow students for help each time something doesn't work as you
expected. Eventually, however, you will become more self-sufficient.

Activities
1. Practice using the commands in this chapter. You might try drawing:

¢ a rectangle that is twice as wide as it is high

¢ an equilateral triangle (all three sides are the same length)
* your initials

+ a border around the page

¢ a line of dashes

¢ a Morse code message

+ a bolt of lightning

Use your imagination and feel free to change your mind as you work. You will find that, when
working with Logo, you often start out with one goal and end up working towards another.
For example, perhaps you begin making a letter M. Your drawing doesn't look much like an
M, but it does look like a bolt of lightning. So you change your goal and work towards making
a bolt of lightning. Keeping a journal of your progress, including changes in focus, may be
help you examine your own learning style when working with Logo.

16 21

2. Think back over your first session with Logo. Be aware of how many new things you were
being asked to learn in a relatively short Eeriod of time. What aspects of the book and the
a

teaching/learning situation helped you? What aspects could have been improved? Write your
reactions in your journal.

3. Discuss the questions in activity 2 with several other people in your class. Draw on journal
entries such as you made in activity 1. To what extent are your classmates' responses the
same? To what extent do they differ? People have differing learning styles. The authors of this
book, the instructor of your class, and you may have differing learning styles. When your
learning style differs from that of the book or the instructor, a dissonance results. This
dissonance may hinder your learning. However, it provides you with an excellent chance to
learn about learning and to learn more about teaching. Write your reactions to the these ideas
about learning style in your journal.

7 o2

ERIC

Full Tt Provided by ERIC.

Chapter 4
Using REPEAT and Turtle Move Mode

I You have learned how to make pictures with the turtle. You have also learned how to save

pages on your Scrapbook disk. You have an initial level of confidence in your ability to function in
a Logo learning environment. Hopefully you have had some fun with Logo. Now you can begin
adding more Logo commands to your new vocabulary and increasing the scope of the types of
problems you can solve using Logo.

Each new command that you learn gives you more power. It allows you to accomplish things
that you could not previously accomplish or that were previously quite difficult to accomplish. The

REPEAT command is particularly useful. It gives you the power to tell the computer to do
something over and over again.

Using REPEAT

Get a new page, name it, and then type

FORWARD 50
RIGHT 90

Remember to press Return/Enter after each line. If you want to make a square, you can repeat each
of these two commands three more times. One way to do this is to use the up arrow and the
Return/Enter key. However, there is an easier way for you to have Logo repeat actions. Type

CG
REPEAT 4 [FORWARD 50 RIGHT 90]

What happens?

REPEAT is a new command. It must be followed by a number and then a list of instructions
enclosed in square brackets. Try the following.

CcG
REPEAT 90 [FORWARD 80 RIGHT 178]

Don't forget to press Return/Enter. You get a "fluffy" ball.

19

O
Co

[2?7 A

I;E?EM.‘ 90 [FORWARD S0 RIGHT 178]

How about

CG
REPEAT 18 [FORWARD 20 RIGHT 45 BACK 10 LEFT 25)

CcG
REPEAT 360 [(FORWARD 1 RIGHT 1]

Take some time to try each of these examples as well as some ideas of your own.

Wrapping
Have you discovered what happens when the turtle goes past the edge of the page? If you type

CG
RIGHT 80
FORWARD 300

you see that when the turtle goes off the page on the right, it reappears again on the left at the same
distance from the bottom of the page. This is called wrapping.

20 24

-=27?

\ v
If you type
CG
RIGHT 10
FORWARD 200
(77)

_ J

you see that the turtle wraps around the top and bottom of ths page as well.
If a design you make would look better without the turtle showing, you can type
HT

21

9
e 4

for Hide Turtle. When you want to see the turtle again, you can type

ST
for Show Turtle.

Take some time to expcriment with REPEAT and with wrapping. You can get some fascinating
patterns and designs. Keep a record of your discoveries, as well as your thinking, as you work.

Renaming A Page

What if you save a design on your page by pressing Esc and then you change what is on the
page and want to keep that new design as well? If you press Esc, the newest design will erase the
previous one. Esc always saves the current page using the name at the top of the page. You can
solve this problem by renaming the page.

For example, suppose you create page PICTURE.1 and press Esc. Then, if you select
PICTURE.1 from the Contents page again and change the design on the page to something you
want to keep, you must change the name of the page in order to save both the old and the new

design. Type
NAMEPAGE "PICTURE.2

You will see the new name at the top of the screen change. Next, press Esc to save the new page.
When the Contents page appears, you see the names of both pages. You can then choose
PICTURE.1, PICTURE.2, or a new page.

Turtle Move

You have been moving the turtle using the FORWARD, BACK, LEFT, and RIGHT
commands. There is another way to move the turtle on the page. Hold down the Turtle Move keys.
(See the Appendix for the specific keys to use with your computer.)

22 6

This cursor is not flashing.

fi_lz/ My.Page

The turtle can now
o be moved with the
arrow keys.

BN ,

This cursor is missing or is not flashing.

Now use the arrow keys to move the turtle away from the center of the page. To leave Turtle
Move, press Esc. When the cursor is again flashing in the Command Center, type

REPEAT 4 [FORWARD 50 RIGHT 90]

You now have a square that is not in the center of the page. You can use Turide Move to place
designs wherever you want on the page.

Frtmlently Asked Questions
1. at happens if I use the parentheses (and) or braces { and } instead of the square brackets [
and] in a REPEAT command?

Answer: This is the sort of question you should answer for yourself. Try it and see what
happens. Parenthesis and square brackets have special meaning in Logo. Be careful to
distinguish between them when you learn new Logo commands.

2. Tlost my cursor. Where is it? Where am I working?

Answer: It is easy to get confused as to which mode you are in. When you are in Turtle Move
Mode, there is a cursor in the upper left hand corner of the page and it is not flashing. (You
will learn about that cursor later.) In some versions of LogoWriter, the cursor in the Command
Center is missing; in others it is there but not flashing. To get back to the flashing cursor in the
Command Center, press Esc. Esc exits Turtle Move Mode.

Don't worry that you might press Esc too often. If you have named your page, LogoWriter
will simply save your work and put you on the Contents page. Select the page you were
working on and continue your work. If you have not named your page, LogoWriter will ask
you to name it. If you wish, you can ignore this message and continue your work.

2;)7'

Buﬁz and Debugging: Learning Logo Becomes More Complex

the initial stages of learning a programming language like Logo, it is relatively easy to detect
and correct bugs. This is because the initial learning focuses on learning the syntax and meaning of
a number of commands and how to use them in Logo instruction lines. In essence, you are
learning some vocabulary and how to write the very simplest of sentences using the vocabulary. It
is easy to correc: the types of errors you make when using one word or very short sentences
written with very few words.

However, LogoWriter contains over 200 primitives (vocabulary words). Moreover, as you
proceed in learning Logo, you will find that the primitives can be combined into more and more
complex instructions. Furthermore, sequences of instructions can be grouped together in order to
solve increasingly complex problems.

Thus, you will see a gradual shift in the types of bugs that you create. As you learn more
primitives, you will sometimes forget some of the relevant details. For example, instead of using
CG for Clear Graphics you might use CS, thinking that what you want to do is Clear Screen. But
there is no CS primitive in Lc goWriter. A good memory for such naminf details is helpful but is
certainly not necessary. You can aid your memory b{ keeping a written list of the primitives you
have learned. You might make a copy of the Quick Reference in the Appendix of this book, and
then highlight new primitives as you learn them.

Later on in your learning, you will begin to write longer instruction lines to attack more
complex problems. You will make more and more logical errors that don't produce the results you
want. In early stages of learning Logo, almost every instruction you write produces a result you
can see on the screen. If you continually check the screen results against what you expected to
produce, you will be able to detect these types of bugs immediately.

Later in this book you will learn how to write long sequences of instructions that the computer
carries out only after you have completed writing the entire sequence. At that time you will be faced
with the task of finding bugs that may be due to a variety of errors of different types. Furthermore,
the errors may interact with each other to produce some very strange results. Determining the
source of such errors can be very challenging,

Computers and Problem Solving: REPEAT and Human Thinking

A computer is a very fast machine. Even an inexpensive microcomputer can multiply two big
numbers together in less than a thousandth of a second. The very fastest of modern computers can
carry out more than a billion arithmetic operations in a second.

Suppose that the idea of repetition did not exist in comfuter programming. Then a computer
program would be a linear sequence of instructions. It would take a very long program to keep a
computer busy for even a few seconds. It is easy to see why the idea of repetition is very important
in computer programming. Most computer programs involve having a computer do a great deal of
repetition, perhaps with small modifications between repetitions.

This also points out a major difference between humans and computers. The human mind is
not good at doing the same task over and over again quickly and without error. The mind soon
becomes bored! However, a comguter can do the same task over and over again hour after hour. It
can do this without error, and without getting bored.

This ability of computers brings a new dimension to problem solving. This is a challenge to
teachers and to-students. Where in your schooling did you learn to think about the possibility of

24 2§

repeating a certain action many thousands of times in order to solve a problem? Are there certain
types of problems that can be solved that way? Is the basic nature of solving problems by trial and
error changed by computers?

Every computer programming language contains provisions for telling the computer to do
something over and over again. Different languages contain different provisions for this. The
REPEAT command in Logo is but one of several ways to cause repetition to occur in Logo.

Activities

1. Create a drawing that is not in the center of the page. When you are satisfied with your
drawing, press Esc to save it and then type PRINTSCREEN to Frint it using the printer. If you
can't think of anything else, use REPEAT to make a fluffy ball in the upper left corner of the
page and a star in the lower right corner of the page.

2. Using REPEAT, create a flower blossom. Use Turtle Move to create a garden of flowers all
over the page.

3. Students often become fascinated with the wrapping feature of Logo and spend many hours
making "plaids." Experiment with instructions like

REPEAT 20 (FORWARD 1000 RIGHT 17)

ERIC

Full Tt Provided by ERIC.

What kinds of instructions produce patterns that look like this first picture?

_ o .‘A\Q’l-}‘ X ‘if‘% S
ot i il an
Z \NIF 2R ST "N

\ , y,

\ , . . Y,

What is so fascinating about these designs? Can you find interesting patterns? Can you thiak of
curric;ulum;lrelated activities that would use this wrapping phenomenon? Write your th.oughts in
your journal.

. Think about the idea of repetition in education. When you were in school, did you learn to
think about repeating a certain action many thousands of times in order to solve a problem?
How many times did you practice this approach to groblem solving while you were in school?
Think of examples of problems that might be solvable by extensiv4 repetition or extensive trial
and error. Does the computer change the way we should teach problem solving? Spend some
time writing in your journal about these ideas.

26

30

Chapter §
Color and Random

Drawing in Color

So far you have created drawings with the turtle that did not make use of color. The turtle can
also draw in colors if you have a color monitor. Try this series of instructions and watch carefully
what happens. (You might also want to jot down the six numbers you use and the colors they
represent.)

l SETC 2
FORWARD 30
l RIGHT 60
SETC 3 <— Use arrow keys to move up and the Delete key to change the number from above,
FORWARD 30 Use the arrow keys so you don't have to retype the FORWARD and RIGHT commands.
RIGHT 60
l SETC 4
FORWARD 30
RIGHT 60
l SETC 5
FORWARD 30
RIGHT 60
SETC 0
I FORWARD 30
' RIGHT 60
SETC 1
' FORWARD 30
RIGHT 60

Did you notice that the turtle changes to the color of the pen it is carrying? What is the color
number for white? What is the color number for black? What happens if the turtle turns black?
What other color numbers did you discover? How many colors are available on the computer you
are using? (You may need to do some experimentation to answer this question. The number of
available colors varies with the type of computer system being used.) Keep in mind that the color

g:' the turtle represents the color of the pen it is carrying and thus the color of the line the turtle will
aw.

NOTE: If you are using a monochrome screen and change the color of the turtle, thr, wrtle will
appear to have stripes and the lines that are drawn will be broken,

27

31

Colored lines appear as broken
lines on a monochrome screen.
(- 777 £. '
& h
- .~ e
I' ' The turtle appears
. to have stripes on
A a monochrome
screen.
FORWARD 30
GEQMPGO
\ = J

Changing the Background Color
Not onzly can you change the color of the pen using SETC, you can also change the color of the
background. For example,

SETBG 3
changes the color of the entire page. Experiment with different background colors.

On some computers, you will discover that when you draw on a colored background with a
colored pen, you occasionally get some odd effects. The colors aren't what you expect them to be.
That is not something you are doing wrong. It has to do with how color is represented inside your
computer. For best results you will want to use black or white pens on colored backgrounds and
use colored pens only on black or white backgrounds.

Using RANDOM

Everything you have told the turtle to do so far has been exact and totally predictable: "go
forward 50 steps,” "turn left 57 degrees," or "draw in pen color 3." It is also possible to have the
turtle behave in ways that you cannot totally predict. You can use Logo to create random numbers
and you can use instructions that contain random numbers, Random numbers are numbers that
have no apparent pattern to them. Think about rolling a die. This produces a random outcome
betrveen 1 and 6. Think about flipping a coin to produce a random number which isaQor a 1,
with heads standing for a 0 and tails standing for a 1.

The Logo primitive RANDOM is used to create random numbers. We can us2 another new
primitive, P%%IIE’I‘, to see the results of using RANDOM. Try, for example

PRINT RANDOM 10

You see a number on the page. Use the arrow keys to repeat this instruction or type

28

REPEAT 20 (PRINT RANDOM 10)

Twenty random numbers appear on the page. (You can type CT for Clear Text to remove numbers
z‘ou don't want.) Experiment with this instruction. Do you see that when you use the number 10 as
put to RANDOM, you get numbers from 0 to 9?

RANDOM and PRINT are both primitives. They are, however, two different types of
primitives. PRINT is a command, like FORWARD and RIGHT. It causes an immediate effect-
putting text on the page. You must provide an input to PRINT or you will get an error message.
On the other hand, OMis a reg)orter. (We will say more about this later in the chapter.) It
produces a number and reports it in a form that can serve as an input to a command.

Next try

CG
FORWARD RANDOM 50

Repeat these two instructions a number of times. Do you see that the turtle moves different
amounts at different times? RANDOM reports to FORWARD some number from 0 to 49 and then
the turtle moves forward that number of turtle steps. That is, if RANDOM 50 reports the number

37, then the turtle follows the instruction FORWARD 37. If RANDOM 50 reports 11, then the
turtle moves forward 11 turtle steps.

What happens if you try (0 make a square, but use random length sides? Try it!

CG
REPEAT 4 [FORWARD RANDOM 50 RIGHT 90]

You can send the turtle on a random walk by typing something like

REPEAT 50 [FORWARD RANDOM 20 RIGHT RANDOM 90]
Did your design look anything like this?

(277)

\, - —— . — —

ERIC

Full Tt Provided by ERIC.

RANDOM is different from the Logo primitives you have seen so far. If you type

RANDOM 50
LogoWriter responds with

I don't know what to do with some,number

This message appears because RANDOM is a reporter. It produces a value and reports it back to
Logo.

To use the RANDOM reporter, you must always tell Logo what to do with the number it
produces, Our previous examples show that the computer can report the value to a movement
command, such as FORWARD, or a turn command, such as RIGHT. You also saw that you could
use a PRINT statement to see the results produced by RANDOM.

Take time to experiment with RANDOM. Can you get some other interesting effects using
RANDOM? How about picking random colors? That ce nli' is possible. Recall that the colors are
numbered beginning with zero. So, if you use RANDOM 6, it will report a number between 0 and
5, which is exactly what you want if you are using a computer with six colors. You can change the
background color each time the turtle draws a line. Try this:

CG
SETC 1
REPEAT 4 [SETBG RANDOM 6 FORWARD 50 RIGHT 90]

What about random pen colors? You can get some beautiful patterns by simply changing the
pen color randomly each time you move the turtle. For example,

CG
REPEAT 90 [SETC RANDOM 6 FORWARD 80 RIGHT 178)

You can get flashy effects by typing:
REPEAT 10 [SETBG RANDOM 6 WAIT 5]
Note that we have introduced a new command called WAIT without an explanation. Can you
fvi\fm out what it does? Try some experiments to see if you can determine what the number after

AIT represents. Think about the problem solving strategies that you might use to answer this

question. Perhaps you'll want to record your observations in your journal.

When you are working with color, the easiest way to reset the screen is to use
RG

The Reset Graphics command puts the turtle in the center of the page, sets the background to
black, and the pen color to white.

0 34

Frequently Asked Questions
1. How canItell if I have a color monitor?

Answer: If you try several different numbers after SETBG and don't get different colors, then
you are using a monochrome screen or the color is turned off on your color display monitor.
There is no way to get color on a monochrome monitor.

2. Why d%es RANDOM 6 report one of the integers 0, 1,..., 5 rather than an integer in the range
of 1to 67

Answer: This is an "arbitrary" decision that was made by the creators of LogoWriter. In many
cases, mathematicians seem to like to start counting at 0 rather than at 1, This has carried over
into a number of different programming languages. Note that 1 + RANDOM 6 will be a
random integer in the range of 1 t0 6.

3. Whatis the time unit used with the WAIT primitive?

Answer: It is 1/20 of a second. WAIT 10 specifies a wait of 10/20, or 1/2 second. WAIT 60
specifies a wait of three seconds.

4. Why do I get the same sequence of random numbers if I use the statement REPEAT 20
[PRINT RANDOM 10] immediately after turning on the computer?

In some versions of LogoWriter, when the computer is turned on using Logo, the sequence of
random numbers is always the same. There are a number of ways to solve this problem that
you will learn if you continue your work with Logo.

Bugs and Debugging: Random Bugs Are Harder to Find

The idea of a reporter adds a new level of complexity to your Logo learning. A reporter, all by
itself, does not produce a result that shows as part of a drawing you are making. Raiher, it
produces a result that is then used in conjunction with another primitive to make an instruction that
can contribute to what appears on the page.

The reporter RANDOM also adds another debugging difficulty. Up to this point you have been
able to have an exact picture in your "mind's eye" of what you expect a drawing to look like. You
were able to detect errors easily because the screen display did not look like what you had in mind.
It is much harder to get a good picture in your mind's eye of the types of results that will be
produced when you make use of RANDOM. Thus, you might well have made an error in
programming logic and be unaware of it.

There is no easy solution to this new error detection groblem. You will want to think very
carefully about what you want to produce with the instructions you are writing. You will want to
write these instructions (often using pencil and paper) and think carefully about them. Are the
really what you want? Will they produce the results you have in mind? You will want to thinﬁ
about ways of testing whether the results you have produced are correct. These are all important
aspects of computer programming,

Computers and Problem Solving: Modeling Using RANDOM

One of the most important ideas in using a computer to help solve problems is figuring out
ways to represent a J)roblem on a computer. Logo is particularly powerful as an aid to representing
graphically oriented problems. You can draw a picture on the screen, look at it to see if it is what
you had in mind, and then easily change the picture.

©

ERIC

Aruitoxt provided by Eic:

When we represent a problem on a comggter, we say we are developing a computer model for
the problem. A computer model is different from a scale model or a paper-and-pencil model.

The primitive RANDOM is quite useful in developing computer modeling for certain types of
problems. Suppose you are w g with a class of 24 students and you want to select a student at
random in r to ask that student a question. You can write each student's name on a slip of
paper, put the slips of paper in a box, shake up the box, and draw out one slip of paper.

Here is a way to create a computer model of the slips-of-paper process. Number the students in
your class with the numbers 0, 1, 2, ..., 23. When you want to select a random student, use

PRINT RANDOM 24

Now you have constructed a computer model of the process of drawing numbers out of a l«t to
select a student at random.

Maybe you think it is unnatural to number your students starting with 0. Instead, you want to
number your students 1, 2, 3, ..., 24. Then use

PRINT 1 + RANDOM 24

Notice that RANDOM 24 will produce a random integer in the range of 0 to 23. Adding 1 to the
result produces a random integer in the range of 1 to 24,

We have just developed two somewhat similar computer models for the process of selecting a
student at random. Perhaps one seems more natural or better to you. There are many different
models that can be developed for a problem. Generally, each has certain advantages and certain
disadvantages. The study of computer modeling is a very important part of learning to use a
computer to solve problems.

Think about the problem of designing a house and having it built. Here is a short list of some
of the types of models that might be useful in this overall process:

1. Blueprints, to be used by the builder.

A drawing of the house and landscape, to be used by the landscaper.
A wiring diagram, to be used by the electrician.

A plumbing diagram.

th & W N

A list of the amount and type of insulation and the nature of the building materials, to be used
in an energy efficiency audit.

6. A financial analysis of your savings, income, and monthly payments you feel you can afford,
to be used in obtaining a bank loan.

The list can easily be extended. Each type of model is useful in helping to solve some particular
aspect of the groblem of designing and building a house. Notice that it is possible to develop a
computer 1 for each item on the list.

32

Computer modeling is very important for two reasons. First, computer models are often much
easier to change than scale models or paper-and-pencil models. Second, a computer can often be
used to help do part of the work involved in using a model. For example, suppose that we have a
computerized energy audit for our house, and we decide to use bricks in place of wooden siding.
With a computer model, we might produce a new energy audit in a few seconds.

Architects now make routine use of computer models. Programs have been developed that help
an architect to design a building and then view pictures of it from different directions. This ty{:e of
computer assisted design software is a powerful aid to solving architectural problems. As you learn
more Logo you may want to try a simpler problem. Develop a computer model of a room
arrangement, showing the windows, doorways, and furniture. Develop your computer model so
that it is easy to make changes.

You might start thinking about this problem right now. Do you know enough Logo to
effectively solve the problem? What are you lacking? Keep this problem in mind as you learn more
Logo primitives. Eventually you will know enough Logo to develop a useful computer model for
the room arrangement problem.

Activities
1. Create a page using color and RANDOM. You might

* Send the turtle on a random walk with a random pen color at each move.
+ Draw geometric figures with flashing random background colors.
« Fill the screen with randomly colored stars.
2. Experiment with repeatedly using each of the following:
PRINT 1 + RANDOM 6 + 1 + RANDOM 6
PRINT 1 + RANDOM 12
Explain the similarities and differences between these two instructions in terms of the type of
output you expect them to produce. Think of a non-computer model for each of them and
discuss your thinking in your journal.

3. Design a simple model using Logo. Think about the advantages and disadvantages of using
Logo versus other methods to create your model. Use your journal to jot down your thoughts.

4. Think of courses that you have taken where it would have been appropriate for the teacher to
talk a;bout cailifferent types of modeling. Was computer modeling mentioned? Write about this in
your journal.

33

ERIC

Full Tt Provided by ERIC.

Chapter 6
Shapes and STAMP

Changing the Shape of the Turtle

Have you noticed the page Shapes in the list of pages on the Contents pafe? Maybe you even
looked at it! If not, select Shapes and you will see a screen filled with small pictures. If you are
using the Intermediate version of LogoWriter, your screen looks like this:

shapes

1 2 3 4 5 6 7 8 9 10

12 13 14 15 17 18 19 20

HO oD 2 4 m

21 22 23 24 25 26 27 28 29 30

TS EMme @S I

|
_ y,

Numbers 1 - 10 each contain only a dot. Numbers 11 - 30 are a variety of shapes. (If you are using
the Primary version of LogoWriter, numbers 1 - 25 are a variety of shapes while 26 - 30 are each a
dot. See the Appendix for pictures of all of the shapes.) Is there one shape that you particularly
like? Remember its number. Press Esc to leave the Shapes page and then get a new page.

Once you see the turtle on the screen, type
SETSH number.you.picked

Surprise! The turtle is no longer a turtle, Try another number. And another. The turtle can be

"gostumed" in any of the shapes shown on the Shapes page. Note that SETSH stands for "set
shape."

If you want the turtle shape back, type

SETSH 0

to return it to the original turtle shape.

ERIC

Full Tt Provided by ERIC.

Next, with the turtle wearing a costume other than its familiar turtle shape, type

CG

FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90

(. 177?)

0
FORWARD 50

RIGHT 90
NI

Do you notice anythi.ig unexpected? If not, type

CG

SETSH 0
FORWARD 50
RIGHT 90
FORWARD 50
RIGHT 90

(-27?)

FORFARD S0
GHT 90

36 ~
R w

and compare the movement of the turtle shape and the other shapes. Do you see that the turtle
shape turns to face in the direction that it is moving, but the other shapes do not? That c2u be a
problem when you are trying to draw with the turtle and forget which way it is facing. Of course,
you can always use

SETSH 0

to see where the turtle is facing. Generally, it is a good idea to leave the turtle in its normal "turtle
costume" until you get a shape placed where you want it on the page.

Stamping the Turtle Shage
Not only can the turtle draw, but it can behave like the rubber stamps that people use to stamp
dates or mark packages. The turtle can stamp only its current shape. Try this.

CG
SETSH number.of.your.choilce
PD
STAMP
PU
FORWARD 20
tiy.Pa -
(. y.Page
%
=
FORWARD 20
\. Y,

You should now have two "copies” of the turtle shape. Which one is the actual turtle that is
carrying the pen? Type

FORWARD 20
and you will see that one of the turtles moves and the other stays put. Another technique for
discovering which turtle is active and which is a stamped copy is to use HT. The active turtle will

disappear and the stamp will not change. You can then see the active turtle again by typing ST. As
you can see, the stamp of the turtle shape will remain on the screen until you type CG.

3 40

Take note of the sequence of commands to get a stamped copy of the turtle:

+ Put the pen down.

» STAMP the shape.

+ Lift the pen (so there is no trail).

» Move the turtle (so you can see the stamped copy).

You can stamp any number of shapes in any number of places on the screen. Try it!

Fr
1.

e‘gﬁnently Asked Questions
y does the turtle shape turn when I use a turn primitive, but the other shapes do not turn?

Answer: LogoWriter has stored in the memory of the computer many pictures of the turtle
facing in different directions. As you rotate the turtle-shaped turtle, LogoWriter uses the
appropriate picture. To store many different versions of each LogoWriter shape would take
much more memory than is available on the smaller computers used to run LogoWriter.
How can I tell which way the turtle is facing when I am using a turtle shape to draw?
You can always find out which way the turtle is facing by typing

SETSH 0
In fact, when you are drawing with the turtle, it it a good idea to always use the regular turtle

shape and then change to the costume you want to appear on the page just at the time you are
ready to STAMP it.

. STAMP is broken. What am I doing wrong?

Answer: If STAMP does not seem to work, you probably forgot to put the pen down. Get into
the habit of using the sequence

PD
STAMP
PU

so that STAMP works correctly and you don't accidentally draw lines after you stamp a shape.
Occasionally STAMP won't work because of the turtle's position on the screen. This occurs

because of the way the screen image is stored in the memory of some kinds of computers.
Should this happen to you, simply move the turtle a few turtle steps and try again,

. My turtle disappeared? Where is it?

In some versions of LogoWriter, if you stamp a turtle on top of an already stamped turtle shape
or move the turtle on top of a stamped turtle shape, both may disappear. Don't panic. Just
move the turtle.

If moving the wurtle doesn't work, try typing

ST

w 1

If the turtle is still missing, use SETC to change the color of turtle so that it is different from the
color of the background.

5. How can I erase a shape I have stamped without erasing the entire screen?

Answer: You can erase a stamped turtle shape by settin tl:;ipcn color to the background color
and stamping on top of the shz:lpe you don't want. It can be difficult to get a shape in exactly the
right place, however. Sometimes it is easier to use the square shape (number 11 in the
Intermediate version of LogoWriter). You might type

SETSH 11

then use Turtle Move to place the turtle, set the pen color to the same color as the background,
and then stamp the shape.

SETC BG
PD
STAMP
PU

These steps can be confusing because you can't see the turtle after you type SETC BG. When
you have finished typing PU, be sure to set the pen color (SETC) to some other color, such as
white. Incidentally, this same technique can be used to remove lines you no longer want in
your drawing.

Bugs and Debugging: Turtle Shapes and Mental Models

n the previous ¢ a:g;er you encountered the reporter RANDOM that contributes to debugging
problems. Part of the difficulty is that there may be a difference between what you have in your
mind's eye and what the compucer display actually looks like. This chapter adds a somewhat
similar difficulty.

In this chapter you have learned about shapes and how to give the turtle a different costume.
Unfortunately, you do not see the turtle with a new costume rotate on the screen when you make
use of the RIGHT and LEFT commands. That is, the direction the turtle is facing (called the
heading) changes, but the actual display of the costumed turtle does not change. In your mind you
think of the costumed turtle as having a particular heading. However, on the screen the actual
costumed turtle is not likely to appear to have that heading.

Clearly this contributes to confusion. One way to deal with this was suggested earlier in the
chapter. Do all of your drawing using the standard turtle shape, until you are ready to stamp a
gstumzmrﬂm:ﬁ Change to the desired shape, stamp the costumed turtle, and then change back to

e stan e.

This illustrates a very important idea in computer programming. You, your textbook authors, and
your teacher can anticipate in advance some of the types of bugs you may produce. You can learn
programming techniques that avoid the bugs, or make them less likely. In your journal you may
want to keep track of the bugs you make most often. Gradually you will develop techniques for
avoiding these bugs.

Comaguters and Problem Solving: Building on the Work of Others
Take another look at some of the shapes you have stamped. These are carefully drawn figures.
You can use these shapes even if you don't have the artistic talent or the time to draw them

39

,EC 42

Full Tt Provided by ERIC.

yourself. It doesn't take very long to learn how to use Logo shapes, and they can be very useful in
producing pictures that are pleasing to you.

This illustrates a very important idea in problem solving—Ileamn to build on the previous work
that other people have done. This is one of the reasons that computers are so important. Sup_Fose
there is some problem that comes up quite often and that a computer can solve or help solve. Then
someone can write a ii):'ogram to solve or help solve the problem. Other people can use the
program. They can build on the work of the original programmer even if they don't know how to
write computer programs themselves.

You might ask how this differs from just writing a book about how to solve the problem. In
some ways writing a book on how to solve a problem is quite a bit like writing a computer
rogram to solve a problem. In both cases the goal is to g?serve and make available the
owledge about how to solve a particular type of problem. In both cases the goal is to help other
people solve the problem. The difference is in the amount of leamin% and effort needed by the
user. It takes a lot of time and effort to read a book and to learn what it says well enough so that
you can do it yourself. If the same information is in a computer program, it may take very little
time and effort to learn to use the ~omputer program. Instead of learning to do all of the work to
solve the problem by hand, you merely learn to tell the computer to solve the problem. The
computer solves the problem by following the instructions in the computer program.

This is a simple idea, but it is the foundation for a revolution in education. If a computer can
solve a type of problem that we currently teach students to solve by hand, what should we be
teaching students about solvin%‘this type of problem? This is a very difficult question with no
simple answer. However, there have already been major changes in some curriculum areas based
on computers. Students are taught methods for solving certain problems "by computer,” and are no
longer taught methods for solving the same problems "by hand."

The areas of graphics design and mechanical drawing provide excellent examples. The ability
to use different shapes for the turtle in Logo gives a hint of some of the computer's power to aid in
doing gra&hic art work. Such computer aids are now routinely used in the world of business and
industry. Many high school and college courses used to teach mechanical drawing and graphics
design using only pencil and paper have been drastically changed because of computers.

Activities
1. By combining designs made with the turtle and stamped shapes, you can create a variety of
interesting pages. For example, you might create a

¢ Postcard with a picture.
¢ Valentine's card Lordered with hearts.

40

Yalentine

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢

»
»
¥
¥
¥
¥
¥
¥

t¢setess

LA A A A A A A A

Happy Valentine's Day!

 Cover for a report.

+ Design for a campaign poster.

* Decoration to go on the locker of a friend.

* An overhead to be used for class or for a report.

2. Try combining what you know about REPEAT with what you know about stamping shapes to
create a page with a border of shapes around the edge. How many REPEAT statements did you
need to use? How did you decide on the spacing of the shapes? Keep a record in your journal
as you work. What problem -olving strategies did you employ?

3. Have you been keeping track of the bugs you have encountered in your work with Logo? Take
some time to look back through your journal. Do {gu see patterns in the kinds of problems you
have? Are you finding your work with Logo to be getting easier? Harder? About the same?
How do you think you can learn to manage your own debugging process better?

4. Think about the "by hand" methods we now teach students to use in schools. How do you
think the comButer might change what we now teach? Do you think theses changes are positive
or negative? Do you have an area of "by hand" expertise where computers are now routinel
being used? If so, what are your feelings about the time you spent in learning to do it by hand
Write your thoughts in your journal.

a1
44

ERIC

Full Tt Provided by ERIC.

Chapter 7
Defining New Shapes

When you were working with the Shapes page in the last chapter, did you wonder why part of
the shapes were just dots? In this chapter you will get the answer,

Go to the Shapes page and use the Flip keys to flip to the back of the Shapes page. (See the
Atppendix for the keys used on your computer.) The "back" of the page shows you an enlargement
of shape 1. For the Intermediate version of LogoWriter it will look something like this:

/ ‘ =

I sbhepes HENNNNNEIID Side]

S e dede de dede de dede dode de dedede dedede de de i

* *
* *
* *
* *
* ¥
: :
shape | &] M
* L 3
* »*
* *
* ¥
* L 3
* ¥
H i
PP T T TP PP PP TPy

r o J

Use the Next Screen and Previous Screen keys to move from shape to shape (see the Appendix).
Take a look at all the shapes.

Go to a shape that contains just a dot, Use the arrow keys (Up, Down, Right, and Left) to
move around within the shape. How many "blocks" across is the shape? How many up and down?

Next, Fress the space bar. If you are on a "colored in" block, it disappears. If you are not on a
block, a block appears. See if you can make one of your initials in the shape grid.

When you have finished your initial, flip the page back. Do gou see that your drawing appears
on the front of the Shapes page now? Remember the number of the new shape you have created.
Press Esc to leave the Shapes page, get a new page, and type

SETSH number.of.shape.you.created

The turtle is now the shape you created! Your new shape has become part of the Shapes page.
Name your page, then type

SHAPES

43

ERIC 45

Full Tt Provided by ERIC.

to go back to the Shapes page. Pick one of the predefined shapes and change it. Perhaps you
would like to change the way the kitten looks or make the car a bit more sporty. When you are
finished, flip the rage to see your revised shape. When you press Esc, LogoWriter returns you to
the page you just named. Try using your revised shape.

Restoring a Shapes Page

You can change any or all of the shapes on the Shapes page to whatever you want, However,
you must remember that when you replace a shape with the new one, the old one is lost. Think
carefully before you press Esc after changing shapes!

If you accidentally destroy the shapes that came with your version of LogoWriter, you can
restore them using another LogoWriter disk with the correct Shapes page. The directions on how
to do this are given below. Be very careful when you copy an entire Shapes page; it is easy to
accidentally destroy the Shapes page you want to keep.

First, be sure you are on the Contents page.

1. Put the disk with the correct Shapes page in the disk drive.
Select the Shapes page.

Remove the disk with the correct Shapes page.

bl

Put the disk onto which you want to copy the correct Shapes page in the disk drive. (This is the
one with the "wrong" Shapes page on it.)

5. Press Esc.

Both disks now contain identical Shapes pages.

Frequently Asked Questions
1. CanImake a shape larger than the shape grid shown on the screen?

Answer: No. However, you can make up several different shapes and stamp them next to each
other. This produces the appearance of a larger shape.

2. CanI start with a shape such as the helicopter, and easily modify it?

Answer: Yes. Here is how to do it:

1. Go to the Flip side of the Shapes page.

2. Go to the shape you want to modify.

3. Press the Copy Keys (see the Appendix for the correct keys to use with your machine).

4. Goto a blank shape.

5. Press the Paste Keys (see the Appendix for the correct keys to use with your machine).
6

. Now modify this shape as desired.

44 46

ak Al S SEh o e e A A D B B e 2 = A I EaE e

3. Is there an easy way to get rid of a shape I no longer want to use?
Answer: Yes: Here's how:
1. Goto the Flip side of the Shapes page.
2. Goto the shape you want to get rid of,

3. Press the Cut Keys (see the Appendix for the correct keys to use with your machine).

Bugs and Debugging: Potential Problems When Saving Shapes

ost people are not good at readinf%a complex set of instructions and following them without
making a single mistake. (It is very difficult to write directions so that people can read and follow
them without error.) In many computer programming situations the results of an error are not
disastrous. You write some instructions and produce an incorrect result. So, what's the big deal?
You merely detect the errors and correct them,

This chapter gives you a major new capability-the ability to develop your own shapes. Along
with this comes the possibility of making mistakes that will have far reaching consequences,
mistakes that are not so easy to correct. You have learned a way in which you can really make a
mess of thindgs. For example, you can completely destroy the Shapes page on your LogoWriter
Scrapbook disk. As you attempt to correct this, you can make a mess of the Shapes page on
someone else's LogoWriter Scrapbook or Master disk.

This means that you want to be very careful as you change your Shapes page. If you do mess
this up, your next "line of defense" is copying someone else's Shape page. In this process, if you
make a mistake, you may mess up their shape page. At some stage you may want to seek help
from a more experienced Logo user. This is a key idea in debuggfng. An outside expert may be
ve?' helpful, and may indeed be necessary. You want to come to understand your own capabilities
and limitations. You want to become self-sufficient. However, at times you will need outside help.

Computers and Problem Solving: Building on Your Own Work

In the previous chapter we talked about learning to build on the work of others and how this is
a key idea in problem solving. Computers are very important in problem solving because they are a
unique new aid to building on the previous work others have done. Often a computer can save you
a lot of learning time as well as a lot of work in actually solving a problem.

Another very imf)ortant idea in problem solving is building on your own previous work. You
do this all the time. It took you a great deal of time and effort to learn how to read. Now you read
with little effort-building on your previous learning. When you are writing a term paper, perhaps
you begin by going to the library and making a set of note cards containing relevant information.
Later, as you actually write the paper, you build on the work you have previously done and
“stored" on these note cards.

Computers bring a new dimension to the idea of building on your own earlier work. When you
save and later reuse a Logo page, you are building on your previous work. When you develop a
new shape and later use it, you are building on your previous work. In both cases the computer
contributes significantly to your ability to use your earlier work. It stores the results of your work
in a form that is convenient for reuse.

45

Now you can begin to see one reason why many people want to learn how to write computer
programs. Many of the problems you encounter are unique to your interests, abilities, knowledge,
and experience. Nobody else has ever viewed the world in quite the way that you view it. Some of
the "personally unique” problems you encounter can be solved by computer. However, it is likely
that no one else has encountered the problems in just the same way you have. Thus, it may well be
that nobody has ever written a computer program to solve these problems.

A computer provides a unique new way of storing the procedures and information needed to
solve certain types of problems. This obviously is important in education. Procedures can be
memorized and practiced until you can carry them out rapidly and accurately by hand. However,
this can take a great deal of time and may well take abilities you do not have. (Do you have the
hand-eye coordination to be a "by-hand" graphic artist?) Quite a bit of our current educational
process is oriented toward teaching students to master by-hand grocedures that computers can also
carry out. An alternative would be to place much more emphasis on helping students learn to
develop new procedures and to become more effective in solving problems using procedures they
have learned or developed. This type of procedural thinking is a new idea in education, and it is
gradually gaining strong acceptance as schools place more emphasis on students gaining higher-
order thinking skills.

Activities
1. Now that you can create any shapes you want, try a project from the previous chapter but use

your own shapes. For example, you can make

i
%% -

+ Signs made up of special symbols.
» Wallpaper-like patterns.

.z. +e

¢ A map showing locations of interest.
¢ Cartoons.

As your are developing your project, don't forget to use your journal to document your
thoughts, successes, and frustrations.

46

©

ERIC

Aruitoxt provided by Eic:

2. In an earlier chapter you learned how to use RANDOM., Can you use RANDOM to pick a
shape? How about picking a random shape, using a random color on it, and placing it on a
random-colored background?

3. You can produce animation by using a shape, waiting for a short time, switching to a slightly
changed shape, and then repeating the process. For example, you might type

l REPEAT [SETSH 1 WAIT 2 SETSH 2 WAIT 2]

Try it, How would you make the animation appear to move? Document your experiments in
I your journal.
4. Think about the computer's ability to provide some people with skills they are not necessarily
b able to do "by hand."” Do you see the computer as a tool that can aid you in some way? How
| does this new tool affect society? How should it affect education? Jot down your thoughts and
observations in your journal.

47 49

Chapter 8
FILL and SHADE

Would you like to make a "solid" rectangle that is all one color? This is easy in LogoWriter.
) With Lo&oWriter you can fill in areas on the page with the current pen color, and you ca.: also fill
areas of the page with turtle shapes—even with shapes you have created!

Clear your page and type

REPEAT 4 [FORWARD 50 RIGHT 90]

l to draw a square on the screen. Next type

PU

RIGHT 45
FORWARD 20
PD

The turtle is now inside the square!

r ™

277--

RIGKT 45
PgRMMM)ZO

4
_fLLL J

Now type
FILL

The square fills with color.

5

Type

CG
SETC S

Use the arrow keys to move up to the REPEAT line you used to draw the square. Press
Return/Enter to run each line below the REPEAT. Now the turtle uses the color corresponding to
SETC 5 to draw a colored square and fill it with color.

Notice that the pen was lifted before moving the turtle into the square. If you leave the pen
down, move the turtle and then type FILL, nothing happens. This is because the turtle "senses”
that it is already on top of a colored spot. Always be sure to lift the pen before moving the turtle
into an area to be filled.

You can fill any closed area with whatever color you want. Be careful, however, that the area
really is closed. Otherwise the color may "ieak out” all over the page! Try this. Make a figure that
is not quite closed,

CG
REPEAT 3 [FORWARD 50 RIGHT 90])
FORWARD 45

move the turtle "inside" this figure, and then type FILL. What happens?

Occasionally FILL does not work as you expect when you are quite sure you have the turtle
placed inside a closed figure and you typed FILL. In this case, move the turtle just a few turtle-
steps and then try again. Remember, keep the pen up when moving the turtle; put the pen down
when you are ready to fill.

Next, make another square with the turtle inside.

CG

REPEAT 4 [FORWARD 80 RIGHT 90]
PU

RIGHT 45

FORWARD 20

PD

Now type
SETSH 29

(Here we are assuming you are using the Intermediate version of LogoWriter and have a shape of
small bricks. If you are using the Primary version of LogoWriter, use shape 19.)

Then type
SHADE
and finally

HT

S0 51

) N GMSE M wad §

) - S S —

I X T ¥ T ¥
llllll

SETSH 29
SHADE
¥ _ J

Now you see a square filled with bricks. Use the arrow keys to draw the square again and repeat
this sequence, but use a different turtle shape. The square will fill with whatever shape you select.
Try filling a figure with kittens.

You need to remember to use the same steps when working with SHADE that you use with
FILL. Lift the pen when moving the turtle, put the pen down before shading, and move the turtle
just a few steps if you have difficulty.

FILL and SHADE can be used to create interesting effects in drawings. Spend some time

experimenting with them. Keep track of your work in your journal. What was particularly

| interesti;lg?) at ideas might you use in the future? Which of your results make you think of other
neat projects

Frequently Asked Questions
1. Sometimes FILL and SHADE don't work. Is there something I am doing wrong?

Answer: If either FILL or SHADE don't work J)ro ly, it is most likely because you don't
have the pen down or the turtle's pen is over a dot that is already filled or shaded. First, type
PD and try again. If that doesn't work, then the turtle is positioned so that LogoWriter thinks
the area is already filled or shaded. Lift the pen. Move the turtle a small distance. Put the pen
down and try again.

2. I'messed up a very complex picture when I used FILL. It took me a long time to redo the
picture. How can I avoid this problem?

Answer: Since shading and filling areas make major changes on your page, it is a good idea to
save your page before you type SHADE or FILL. Suppose your page is named MY .PAGE.
First save the page and then get it from the Contents page again. Then do your filling or

shading. If the doesn't work right, rename the page. For example, you might type
NP "JUNK
\
PO
51 V&

ERIC

Full Tt Provided by ERIC.

Press Esc. This saves the page "JUNK." Then get the page MY.PAGE from the Contents page
and try again,

3. Do FILL and SHADE work exactly the same in all versions of LogoWriter?

Answer: No. The kinds of problems you might encounter with FILL or SHADE may differ
from one brand of computer to another, just as the colors available differ from from one kind
of computer to another.

Bugs and Debugging: Is Logo Wrong?
As you work with LogoWriter—or any very complex computer software—you may get some
unexgected results where you are absolutely positive you have not done anything wrong. It is

possible you have encountered a bug in the software you are using.
LogoWriter itself is a very complex . Earlier in this chapter, we indicated that FILL
occasionally doesn't work correctly. The command is a small part of LogoWriter, but it is an

unexpectedly complex part. A rule of thumb is that every complex computer program contains
bugs. When a complex program is being written, a great deal of effort zoes into detecting and
correcting bugs. On such a very large project there may be a number of people hired just to test the
program, looking for bugs. The program may be sent out to a number of test sites so that a variety
of people who may want to purchase the program can try it out and look for bugs.

Even with all this testing and debugging, there will be undetected bugs, or bugs that were
detected but were not considered important enough to fix, Thus, when you use a complex program
such as LogoWriter, it is possible that you will discover an error in the program. However, don't
be too quick to jump to the conclusion that you have discovered a bug in LogoWriter just because
you are not able to exglain an incorrect result in any other way. It is not uncommon for beginners
to assume that the problems they encounter are problems in the hardware or software. You need to
be aware that it is much more likely that the bug is yours rather than LogoWriter’s.

If you discover a supposed bug in LogoWriter, you will want to carefully document your find.
That is, you will want to write detailed notes in your journal that te11 exactly how to make the bug
reappear. Then you can share the bug with your course instructor or with the company that created
LogoWriter. Some bugs are so complex that you cannot readily make them reappear. In such a
case you may never know whether the bug is in LogoWriter or due to something you did wrong.

Computers and Problem Solving: "I Can't Do Logo."
Many students experience considerable difficulty in dealing with FILL. and SHADE at this

stage of using this book. It isn't that these two primitives are particularlz difficult. Rather, it's that
these two new primitives tend to be the straw that breaks the camel's back.

This is an important idea in problem solving and in dealing with iearning. It is easy to learn one
new thing, such as one new primitive. You learn it and you use it. Not much can go wrong. Then
you learn a second primitive, a third primitive, and so on. Several difficulties begin to arise:

1. You begin to get new primitives confused with ones you have used previously. You make
small mistakes in using a primitive learned on a previous day, perhaps because something
about it is nearly the same as a part of a new primitive.

2. You begin to try to solve more complex problems. These require that a whole sequence of
instructions be specified. However, you have not yet learned how to effectively develop a long

52

T
(I

sequence of instructions, and the methods that you make up for yourself prove inadequate.
Eventually you attempt problems that are just too hard for your current level of knowledge and
skill.

3. You have not developed appropriate skills for determining what you are doing wrong and how
to correct your mistakes,

Think about learning to add, subtract, multiply, and divide whole numbers, fractions, decimal
fractions, and negative numbers, Do the above three ideas apply there? For many students they do!
Thct:h result is often a feeling of "I can't do math” and a withdrawal from further attempts to learn
mathematics.

Let's assume you have now reached a stage in your study of Logo where you are frequently
getting stuck and are spending a lot of time in rather fruitless trial and error. Great! You have now
encountered a very valuable learning environment. What do you do when you can't figure out what
to do? (Be aware that some students at this stage say, "I can't do Logo programming" and
withdraw from further attempts to learn it.) This is an excellent topic to write about in your journal.
What roles can a book or a teacher play in helping a student deal with this type of frustrating
situation? What does it mean when a person says, "I can't do math" or "I can't do Logo?"

Activities

1. Create a number of closed polygons on the screen. Use Turtle Move to place the turtle before
drawing each design. Then again use Turtle Move to get the turtle inside each design to fill it.
Can you create some interesting artistic effects using filled areas? What happens when the

polygons overlap? What kinds of problems did you encounter? How did you solve them? Keep
a record in your journal.

2. Use SHADE to create patterns that are part of a greeting card. For example, you might place
lines so that the edges of the page are filled with a shape of your choice. You might even want
to design a turtle shape of your own to personalize the card.

3. Design the graphics for a sign announcing some school or community activity. Use a
combination of filling, shading, and turtle moves to make your sign.

4. Use the LogoWriter techniques you have learned so far to create the cover for a report. You
could create a turtle shape appropriate to the subject of the report.

x|
[eeS

53

.-Trees)

" v v ¥ B oW

¥ ¥ ¥ ¥ " ¥

5. Address the question "What do you do when you can't figure out what to do?" in your journal.
How do you solve such groblems when working with Logo? How do you solve such
problems in other domains? As a teacher, how can you help your students learn to work with
such "unsolvable" problems?

54

Chapfer 9
Mixing Text and Graphics

So far you have been primarily using graphics on the LogoWriter page. The text in the
Command Center at the bottom of the screen is not part of the page. It is not saved when you save
the page. In this chapter you will learn more about putting letters and numbers on the page so that
they can be saved along with the graphics when you press Esc.

Start LogoWriter and get a new page. Name your page by typing

‘ NAMEPAGE "page.name.you.choose
Hide the turtle by typing
HT

and then press the Up keys. (Check the Appendix for the keys to use for your particular machine.)
Notice that the cursor is now flashing at the top of the page. You are now in a word processor
mode. As you type, you will be using the word processor that is built into LogoWriter. It works
much like an ordinary word processor.

Yo/ur page name appears here.

Pressing Up (“ -)
makes tiis -l nY.page
cursor flash.

This cursor is |
not flashing.—p* ®

— J/

Begin typing. The words appear on the Page instead of in the Command Center. Continue typing.
Do not press Return/Enter when you get to the end of a line,

35 [94 F

ERIC

Full Tt Provided by ERIC.

Don't press Return/Enter at the end of lines.

-

my .page

This is some sample text that I can type
Use Return/Enter on the page.
to end a paragraph
or create a blank 7
line. I can leave blank lines by pressing
Return/Enter.
The Tab key » I can indent using the Tab key or
moves the cursor uwsing the space bar.H
S spaces; the
space bar can be
used tomake any | |
number of]
spaces.

\, /

Complete words automatically jump to the next line. This is called word wrap and is a standard
feature in word processors.

Now that you have some text on the page, press the Down keys (again check the Appendix) to
activate the cursor in the Command Center. Next type

CG

Nothing happens. That is because the words you have typed onto the page are in text mode instead
of graphics mode. To clear the text from the page, you must type

cT

for Clear Text.

To explore how the LogoWriter word processor works, clear the page (CT), hide the turtle

(HT), press the Up keys, and type the following text as shown. Use the space bar and Tab key to
indent the lines in the second paragraph.

56

T
-7

Do not press Return/Enter at the end

of each line ip this top block of text,

(v my .page)

This is an exemple that shows how text

on the LogoWriter page behaves. You

i can continue to type without pressing
Return/Enter and the text automatically

wraps.

i However, you can Dlace words
wherever
you want
them by
using the
space bar and Return key.

ce
CT
a

\, J/

Press Rétum/Enter after each of the
lines in this second block of text.

Printing Text
You already know that PRINTSCREEN will print the page on the printer. This works with
graphics, text, or a combination of the two on a single page.

Sometimes you will want to print just the text you put on the page using LogoWriter just as a
word processor. Type

PRINTTEXT

The words a;:reat on the printer in the same places that they are on the page and in regular sized
type. In addition, there are margins at the left, top, and bottom of the page. If you want double
spacing, you can use DSPACE. Use SSPACE to get back to single spacing.

Finally, type
PRINTTEXT80

and the text is printed using 60 columns (unless you pressed Return/Enter after each line) with
margins at the left, right, top, and bottom of the page.

Take a few moments to be sure you understand how each of these commands for printing text
works. Note that PRINTSCREEN 1_Prints all the text and graphics that appear on the page.
PRINTTEXT and PRINTTEXTSO0 print only text.

57 ‘l‘) 8
Q

ERIC

JAruitoxt provided by ERic

Note: This book assumes that your instructor will make you aware of any necessary details for
using the equipment available to you for printing. However, there are a few differences among
versions of LogoWriter you may need to be aware of.

« If you are using LogoWriter version 1.0, there are no marzins on the Eg%e.

o If you are using LogoWriter version 1.1, you will need to type an SSPACE before typing
PRINTTEXT.
¢ If you are usi&IBM Version 1.1, you must use SINGLESPACE instead of SSPACE;
UBLESPACE instead of DSPACE.

* PRINTTEXTSO is set up for 10 characters per inch (Pica type). If your printer is set for
some other tyfpe sgle, the text may not go all the way across the page. Sometimes turning
your printer off and then on again will reset your printer to 10 characters per inch.

Combining Graphics and Text

You have now learned how to put text on the page, and in previous chapters you learned how
to put é:aphics on the page. Using LogoWriter, you can combine graphics and text on the same
page. Get a new page and try this:

REPEAT 4 [FORWARD 50 RIGHT 90]

Now use the Up keys to get into text mode. "The turtle can draw wherever you tell it to
draw."” Then use the Return/Enter key, the Tab key and the Space bar to put "This is my Square"
on the page so that it looks approximately like this:

r Y N ‘
2??

The turtle can draw wherever you tell it
to draw.

This is my Square

— L
REFEAT 4 [FORWARD S0 RIGHT 90)

. - " w,

Next, press Esc to save the page. Get the page and again type
CG

What happens? Do you see why?

-
1
~ -

58
ERIC

Full Tt Provided by ERIC.

Now type
CT
What happens? Do you see why?

l When you are working on a project that contains both text and graphics, you can correct the
parts separately or even start one part over without erasing the other. This can be very handy when
working on a more complex project.

Frequently Asked Questions
1. Is the LogoWriter word processor a "full-featured" word processor?

Answer: No. If you have experience with other word processors, you may wonder how you
can accomplish such tasks as centering text, setting margins, or underlinini:ords. None of
these features is available in the LogoWriter word processor. However, the LogoWriter word
processor has its own advantages. It is very easy to use. There are no elaborate menus or key
combinations to learn. In addition, you will soon learn that you can easily insert graphics into
your text. If you want to do simple desktop publishing, then LogoWriter is an excellent tool. If
you want to write long papers, you probably want to use another word processor. Don't try to
make the LogoWriter word processor meet all your word processing needs.

2. Taccidentally pressed CT and it erased everything I had typed. Can I get it back?

Answer: If you type CT, all the text on the page disappears. If typing CT was an accident, it is
possible to get your text back. Before you press any other keys, type

UNDO

in the C-mmand Center and your text will reappear. (Note: UNDO is not available in
LogoWriter Versions 1.0 and 1.1).

3. “t{hat'skt‘}?w best way to avoid the frustration of a major error or a power failure wiping out a lot
of wor

Answer: Make it a habit to save your work every 10 - 15 minutes. Better yet, save it every time
you complete a major change on your page. The time taken to save your work will pay off later
if you make a major mistake or there is a power failure.

4. CanlI put text so that it is on top of a picture?

Qnswer: This is the type of question you should answer for yourself. Try it, and see what
appens.

Bu%: and Debugging: Dealing With Complexity

e original versions of Logo did not contain a word essor. In most earlg versions of
Logo for microcomputers, you could only put text at the bottom of the screen. If you wanted
words with yc *» rictures, you had to have the turtle draw each letter-a tedious task at best. With

thesehfarly ver . it was certainly not convenient to use Logo to write a story and illustrate it with
graphics.

59 GU

A uitoxt provided by ERic

The word processor in LogoWriter adds still another dimension to the level of complexity you
face as you learn the language. In addition, it allows you to attack still more complex problems,
Thus, you may be experiencing more and more frustration as you work with Logo. If so, here are
a few suggestions:

1. Make a list of the primitives that have been covered so far. In your list, include an example of
correct use of the primitive and/or a short explanation of how it works. Keep this list at hand as
you write programs,

2. Practice creating new materials in the context of older materials that you are certain you
understand. For example, suppose that you are quite confident of your ability to draw a square,
but you are not too sure how to put text exactly where you want it on a page. Draw a square (a
familiar task) and practice putting text at various locations relative to the square. Similarly, if
you are not sure how the FILL and SHADE primitives work, practice them using a simple
square,

3. Have you found yourself "thrashing around" when Logo won't seem to do what you want? Do

ou tlgct upset? Angry? Do you begin to enter commands randomly? Are you debugging only

y trial and error, not really knowing what you are doing? If so, then do some deep breathing

exercises, get up and walk around for awhile, or do something else to help you to overcome
the panic or upset. View the situation as an important learning experience.

Computers and Problem Solving: Problem Solving Styles

To solve problems, a person needs to have an appropriate combination of lower-order skills,
higher-order skills, knowledge of the problem field, perseverance, and so on. As you learn Logo,
you can examine what works best for you. Are you really good at learning the primitives and
writing isolated instructions? Or does this bore {ou? Are you good at envisioning a complex Logo
drawing task and carrying it out, or do you feel overwhelmed by such a task? Do you have good
persistence, or are you easily distracted?

The Logo environment provides a good place for self-examination and/or for research into
problem solving. How do children learn to solve problems in a Logo environment? Is this the same
way adults learn? Do all children learn in the same way? What role should the teacher play when
working with children in a Logo problem solving environment? What should students be expected
to discover for themselves, what should they teach each other, and what ideas should the teacher
suggest? These are all questions that can be researched. Answers gained in a Logo research
environment may give us insights into teaching in other environments.

The teacher needs to decide the goals for having students work in a Logo environment.
Suppose the goal is to learn to solve multistep Logo problems. Suppose that essentially all the
instruction and all the practice exercises are lower-order types of activities involving single steps or
just a few steps. Will this type of instruction and practice help adequately prepare you to solve

{nore cg}mplex problems? Is this the most effective approach, and is it equally effective for all
earners

As you think about this, be aware that many people argue that it is essential to master the
"basics" before proceeding with more difficult tasks. However, there are strong arguments on the
other side, and educational research is lending credence to these arguments. Many schools now use
a combination of process writing and whole language experience to teach writing. They do not get
the students bogged down on details of spelling and grammar as they are working to express ideas
in writing, Similarly, process math and process science are increasingly gaining acceptance. Many
Logo leaders believe in using a process-oriented, discovery-based approach to helping students

©

ERIC

Aruitoxt provided by Eic:

learn Logo. They argue strongly against the approach that it is necessary to master the basics
before beginning to work on harder problems.

Activities .
1. Now that you know how to place both text and pictures on the screen, you can use this

i capability to do a variety of things.

» Make a sign or a poster (printed using PRINTSCREEN). .
+ Write a friend a letter describing a picture you drew using the turtle, and include the picture.
» Create a greeting card or invitation,

p)
Greeting
e Come oD
o o to owr " nies ¢
orT Patio -
T Party! —
Tord This Saturdey, 3:00 p.m. FTm

(W T D S N NI FMED N N GG SNy ENY WD M AN SIS SN M e MM SoE i G Sl s
| Ga GeA SN A NN SED ERG GU N GER SR MG S MAS S ENN EUR SN MmN e S S G A Sl

. y,

» Do a short report for another class, combining text and pictures.

» Write a poem and illustrate it with pictures,

» Make a design or picture using letters, numbers, and other keyboard symbols. (Pictures such
as this used to be called "typewriter t%ilcmres.")

¢ Create new shapes and use them to fill areas with interesting designs or pattemns.

As your work on your project, continue to examine your own thinking and your own problem
solving skills. Keep a record in your journal.

2. Write in your journal about how you feel on the need to master the basics before proceeding to
solving problems requiring higher-order cognitive skills. Focus specifically on your own
learning of Logo and your knowledge of how young students learn.

3. Compare and contrast process writing with "process Logo." Do some subjects lend themselves
better than others to the process approach in learning/doing?

4. Think about the frustrations you have experienced in your work with Logo? Look over your
journal entries to see how you have dealt with those frustrations. How can you transfer what
ly;ou have learned so far about dealing with the frustration of solving hard problems to solvin

ard problems you will encounter in the future? How can you teach your students to deal wi
frustration in a problem solving environment?

61

[[62

A ruitoxt provided by ERic

Chapter 10
Writing Procedures

All the pages you have created so far have been done by typing instructions in the Command
Center. When you saved, everything you created was dgut on your disk exactly as it agpeared on
the page. This is called programming in Immediare Mode. The computer does exactly what you tell
it to do immediately after you issue the instruction. In this chapter you will learn about a different
mode-one in which you can type a long sequence of instructions and then have the computer carry
out these instructions.

Have you ever created a neat graphics design that you would like to use as part of another
page? Perhaps you remembered the instructions you used to make it, perhaps not. Without a list of
the instructions you used, it can be hard to recreate a graphics design. You have already seen that
the instructions in the Command Center are not saved. If you start LogoWriter at another time and
get your page, the instructions you used to create it are not there.

There is a way to save instructions that you have used to create pages in Logo. Recall that you
could flip the Shapes page to see magnified copies of the shadp‘es. You can also flip ihe page on
which you have put graphics. Try it. Use the Flip keys (see the Ap&endix) to sce the back of a
page containing a graphics design. Notice that it says "Flip Side" at the top of the screen and that
the Commar. { Center is still visible. Use Flip to go back to the front of the page. Notice the
location of the flashing cursor. Where is it when you are on the front of the page? Where is it when
you are on the back of the page?

4 ™
This cursor_’_ tty . Page HEEENTTIP Tidel
is flashing. u

This cursor is | N

NOT flashing, T ®

\ J/

Now try this. Start on the front of the page. Flip the page and use the Down keys to get to the
Command Center. Notice that the cursor is flashing in the Command Center. Use the %Jp keys.
What happens? Practice using the Down and Up keys while you are on the Flip side of the page,
so that you are confident that you can move between the cursor in the Command Center and the
cursor on the Flip side of the page.

63

R3

With the cursor flashing at the top of the Flip side of the page, type the lines shown below.
(Remember that you can correct keyboarding errors and can move the cursor around on the screen
using the same keys you use to move around in the Command Center.)

4 \

IR 1y . Pege IENENNNITII Tide]
TO SQUARE

Co

REPEAT 4 [FORWARD 50 RIGHT 90]

B

— /

Flip to the front of the page and type
SQUARE

What happens? You have just written and run your first Logo procedure!

A procedure is a collection of Logo commands. Procedures must begin with the word TO and
end with the word END. The structure of a procedure is as follows:

TO name.of.procedure <-itle line
Instructions go here <--body of the procedure

END

tl;rocedures must be written on the Flip side of the page. They are then (automatically) saved with
e page.

Continue the above activity by typing
CG

so the square is erased, and then save your page. Now select the page that you just saved, and
notice that there is no picture of a square on the page. Type

SQUARE

What happens? You have just made use of a procedure that you have saved!

64 k4

While the mechanics of procedure writing are rather simple, the idea embodied in procedure
writing is profound. When you create a series of instructions to complete a particular task and then
put them into a named procedure, you have "taught" Logo a new word. This new word behaves
exactly as if it were a ?rimitive. If you don't look on the Flip side of the page, you have no way of
knowing whether the instructions you type in th: Command Center consist of primitives or user-
defined procedures. The fact that you can easily create procedures that function exactly like
primitives is what makes Logo an easily extensible language.

The Flip side of the LogoWriter page can contain as many procedures as the memory of the
computer and/or the version of LogoWriter you are using allows. Each of these procedures must
have a unique name. Each new name becomes part of the LogoWriter vocabulary available when

ou use the page. All of the primitives you have learned so far can be used in writing procedures.
ere are a few examples of procedures you may find quite useful.

You can move the turtle around.

TO PLACE.TURTLE
CG

EU

FORWARD 20
RIGHT 690
FORWARD 30

PD

END

You can change the shape of the turtle and the color of its pen.

TO CHANGE.TURTLE
ST

SETSH 25

SETC 3

END

You can stamp turtle shapes.

TO STAMP.IT
SETSH 15

PD

STAMP

PU

FORWARD 20
END

You can even put both text and graphics on the page.

TO LABEL.A.SQUARE

REPEAT 4 (FORWARD 60 RIGHT 90)
PRINT [This is my square.)
END

Take some time now to experiment with writing a procedure. Notice as you experiment how
powerful this idea of procedure writing is. Now you are teaching Logo how to do new things. The
computer is now under your control.

65

65

Try writing and running a procedure, and then changing the procedure and running it again.
You edit a procedure just the way you edit any other text. You can insert and delete lines, or make
corrections, exactly as you do in the Command Center or as you did in the previous chapter when
you were using the word é)rocessor. If you want to erase all the procedures on the Flip side of the
&ai e&jyou can go to the Command Center (using the Down keys) and type CT. The procedures

sappear.

Two Kinds of Computer Programming

Computer programming "tells a computer what to do" using a general purpose programming
language such as Logo. However, you have now seen two different forms of computer
programming. Prior to this chapter, each instruction you typed was carried out immediately. In this
chapter, you have learned to write a sequence of instructions (a procedure) that is not carried out
un :l later time. We talk about programming in the Immediate Mode and programming using
procedures.

Some programming languages, such as early versions of Pascal for microcomputers, only
allow aﬂmedmal programming. Other programming environments, such as simple spreadsheets,
only allow you to give instructions one at a time, in immediate mode. Logo allows both. Thus, you
mt;gte l?:dde which to use when working to solve a particular problem. Here are some rough
gu es:

1. If the task to be accomplished requires only a small number of steps and you only need to carry
out the task once, use the Immediate Mode.

2. If the task to be accomplished requires a large number of steps, write a procedure or
procedures.

3. If the task to be accomplished needs to be done more than once, write a procedure or
procedures.

Frequently Asked Questions
1. I'mconfused by all of the different "sides" and cursor positions. How can I tell where I am as
I move among different LogoWriter features?

Answer: When you begin using the Flip side of the page to write procedures, it is easy to get
lost. Learn to look at the screen carefully.

. f{\m y;m on the front of the page or the Flip side? "You see "Flip $ide" if you are not on the
ront.

o Where is the cursor flashing?
Not at all? You are in Turtle Move mode on the front of the page.
At the bottom of the screen? You are in the Command Center.
At the top of the screen, no Flip Side? You are in the word processor.
At the top of the screen and it says Flip Side? You are ready to write procedures.

2. My procedures disappeared? What did I do wrong?

Answer: Earlier you learned that the Command Center is visible on both sides of the page.
Now you have discovered that the same text editor is used on both sides of the page. The

(6

©

ERIC

Aruitoxt provided by Eic:

(clear text) command erases all the text on whichever side of the page that is visible when the
command is typed. A common way that procedures get lost is the following:

Use CT to clear the front of the page

Flip the page.

Move the cursor to the Command Center

Use the arrow keys to move the cursor to the CT command.

Press Return/Enter

Usually this happensg accident. You must be careful that the Flip side of the page is not
visible when you use CT. (Remember, if you accidentally erase text on either side of the page,
you can type UNDO immediately to restore that text.)

3. Sometimes I don't want to erase all of the procedures on the page. Removing a procedure one
line at a time is tedious. Is there an easier way?

Answer: You can erase one line of text by using the Erase to End of Line keys (see the
Appendix). This key combination removes characters from the current location of the cursor to
the next place you pressed the Return/Enter key.

Incidentally, the Erase to End of Line key combination can be used on the Contents page to
erase a page you no longer want. Place the cursor on the gage to be erased from the Contents
page and press the Erase to End of Line key combination. Be careful, though. Once you erase a
page from the Contents list, there is no way to get it back again.

4. Ican see my procedure on the Flip side of the page, but when I type the name of the procedure,
Logo responds with "I don't know how to..." Why won't my procedure work?

Answer: First, check to be sure that you have spelled the name of the procedure correctly. If
you accidentally name your procedure SQAURE and then type SQUARE in the Command
Center, Logo responds with the "I don't know how to..." message since it only understands
the procedure "SQAURE."

Each edure must begin with TO and end with END. If you have two procedures on the
Flip side of the page and you omit the END statement on the first one, then Logo will not see
the second procedure. It is a good idea to leave a blank line between the END of one procedure
and the title line of the next. This helps you avoid errors such as missing END instructions.

Bugs and Debugging: Procedures and Playing Turtle

edure Mode programming is much more likely to cause difficulties than Immediate Mode
programming because it allows you to attack much more difficult problems and because you do not
immediately see the results of each instruction you write. Instead, you must imagine the results of
these steps in your mind's eye.

Debugging a procedure begins at the time you first start thinking of creating a procedure. You
imagine in your mind's eye what you want the procedure to accomplish. Perhaps you sketch a
gawt}lng of tllxw result you want. Perhaps you write the instructions by hand before entering them

to the machine.

Next, you write the procedure and run it. Your procedure may contain one or more syntax
errors and one or more errors in logic. All errors need to be detected and corrected in order for the
procedure to produce the results you want. You will find that you frequently end up reading and
rereading a procedure, looking for errors.

67

67

©

ERIC

Aruitoxt provided by Eic:

Initially most people find it difficult to read a procedure and to "see" in their mind's eye what
the procedure does. They can read the words and understand the meaning of each individual
instruction. However, they do not readily comprehend the overall "meaning" of the sequence of
instructions in the procedure.

Itis very im t to learn to read a procedure and hand trace it-that is, carry out the steps in
your head and/or with use of pencil and paper. This is a standard technique in debugging
procedures. You will get better at it with practice. One way to practice is to explain a procedure to a
friend. That is, if you have a procedure that is producing incorrect results, carefully explain each
instruction line in the procedure to a friend. This type of talking out loud to yourself or to someone
else will often help you to more fully understand a procedure. Indeed, it will often help you to
discover your own bugs. Often your problems with Logo occur because the turtle is not moving
the way you think you told it to move. A form of hand tracing in Logo is called "playing turtle." To
glay turtle, you physically walk through the steps that you told the turtle to take. This can be very

elpful if done wnz a friend and is particularly powerful when used with children.

Computers and Problem Solving: Procedures as Building Blocks
Each primitive in a programming language is a building block. The building blocks in a
Eznicular programming language are chosen to help solve certain kinds of problems. For example,
go includes a number of graphics primitives useful in drawing pictures. COBOL contains
primitives useful in solving business problems. BASIC contains primitives useful in solving math
problems. PASCAL was specifically designed to help computer science students learn some of the
most important ideas of computer programming,

Logo is an extensible language. This means that it contains particularly good provisions for
adding commands and reporters that are needed. You can personalize Logo to be particularly useful
in solving the types of problems that are of most interest to you. In essence, you can create your
own personal programming language by writing appropriate procedures to fit your specific needs.

This adds a new dimension to problem solving. Think about some overall problem solving
task, such as designing a house. What are the commands that would be most useful? It is clear that
it takes a great deal of understanding of architectural desig: to answer this question. That is,
domain specificity is an issue in the design of your own programming language. If you don't
know much about architectural design, it is not likely that you will figure out what to add to Logo
to help you solve architectural design problems.

This analysis suggests a major trend in education that will emerge during the next decade.
Within each academic discipline a set of computer tools is being developed specifically to meet the
needs of professionals in the discipline. This developmental work is being done by a combination
of professionals in each field and professional computer programmers, Eventually, instruction in
the use of a discipline's computer tools will become a routine part of instruction within that

discipline. We already see this in fields such as architecture, business, graphic arts, and
publishing.

Activities

1. Write a procedure to make a small design. Flip to the front side of the page, and then use a
combination of Turtle Move and your procedure to place J'our design in various places on the
page. What kind of projects does this activity bring to mind? Write in your journal.

2. Write a procedure to stamp several different shapes on the page.

68

©

ERIC Ry

Aruitoxt provided by Eic:

3. Write a procedure to stamp a short row of shapes on the l1;age. Flip to the front side of the page
and use a combination of turtle move commands, REPEAT, Turtle Move mode, and your
procedure to make a border of shapes around the edge of the page. What kind of problem
§olvi:;f strategies did you use to complete this activity? Document your thinking in your
journal,

4. Write a procedure to make an elaborate graphics design using the turtle. Flip to the front side,
use your procedure to make the design, and then use the word processor (press the Up keys) to
add a description of your design on the screen.

5. Create a shape of your own and then write a procedure to stamp your shape in a pattern on the
page. Add some text.

6. Write a procedure that draws a graphics design and changes the pen color randomly with: cach
line i:ie draws. You might use something like the fluffy ball created in Chapter 4. Put a title on
your design.

7. Do some journaling on the idea of domain specificity in problem solving as it relates to
developing your own procedures (extensions of LogoWriter) to solve protlems of interest to
you.

8. How many times have you written the instructions to draw a square in Logo? Perhaps
SQUARE should be built in to Logo, at least for your uses. Think of other "tool" procedures
you might write that would be useful to you in your work with Logo. Write your thoughts in
your journal. Then, perhaps you'll want to begin writing your own tool page that contains
useful procedures.

69 e

ERIC

Full Tt Provided by ERIC.

Chapter 11
More Than One Procedure

You now know how to write a procedure using the Flip side of the page. As mentioned in the
last chapter, you can write as many procedures as you want on the Flip side of the page, as long as
there is space in the memory of the computer. This allows you to create a number of procedures
that, when appropriately put together, can solve a complex problem.

Carefully follow the example given below. It shows you how to write a number of procedures
and put them together into a rather complex computer program.

Suppose you wanted to have the turtle draw a house on the page and then put a "For Sale” sign
next to it. The house is to consist of a square with a triangle on top for the roof.

4 A
7
o

For Sale

\)

You can, of course, do this from the Command Center. However, if you do it with procedures,
Lhen you can easily make a number of identical houses. Or you can easily make changes to the
ouse.

To begin, you will want to create a procedure for a square and a procedure for a triangle. Flip
the page and write these procedures for drawing a square and a triangle.

TO SQUARE
REPEAT 4 (FORWARD 40 RIGHT 90]
END

TO TRIANGLE
REPEAT 3 [FORWARD 40 RIGHT 120]
END

n
Q

ERIC v

Aruitoxt provided by Eic:

Flip the page back to the front. Type

SQUARE
TRIANGLE

This draws a square and a triangle. Will the picture look like a house?

(777 A

I

\ —

You see the parts of the house, but they are not in the right place. The triangle needs to sit on top of
the square to make the house. Type CG and see if you can figure out the instructions needed to get
the roof in the right place. These instructions should become part of a procedure to get to the roof.
Remember to flip the page to enter your procedure.

One solution for placing the roof after having drawn the square might be

TO GET.TO.ROOF
FORWARD 40
RIGHT 30

END

Now flip the page to the front and type

CG

SQUARE
GET.TO.ROOF
TRIANGLE

HT

Does the house look the way dyou want it to? If not, modify the procedures until l-:’you are satisfied
with your house. These procedures you have created can become part of a HOUSE procedure:

7 71

s Sk Sk S Ak Sk A AR AR A aam B A B Ak A D AR A

TO HOUSE
SET.UP
SQUARE
GET.TO.ROOF
TRIANGLE
END

TO SET.UP
CcG

CcT

HT

END

Now, you can type HOUSE from the Command Center and see your house. Notice that a SET.UP
edure was added to prepare the page for the house drawing. Why do you suppose the CT
struction is included in this procedure?

Using PRINT and INSERT
In Chapter 5 you leamned that PRINT could be used to print out numbers on the page. It can
also be used to print text. Try typing

PRINT [For Sale]

You see

(77 h

For Sale
[|

-
— ,)

The text to be printed is in square brackets. After the printing has occurred, the cursor moves to
the next line below the text that was printed, Now l=you need to learn how to position the "For Sale"
sign correctly on the page. This takes two steps. First you need to learn to move the cursor down
the page using PRINT. Second, you need to learn how to move text to the right on the page.

7 '723

ERIC

Full Tt Provided by ERIC.

Begin by typing

PRINT []
PRINT ()
PRINT []
PRINT (For Sale]

You have printed three blank lines above your "For Sale" message. This illustrates how to do
vertical spacing of text.

Now you can begin writing your SIGN procedure. Flip the page and type

TO SIGN

REPEAT 5 ([PRINT (]]
PRINT (For Sale]
END

Be careful. One set of square brackets are needed after PRINT to get a blank line. Another set of
brackets are needed after REPEAT to enclose the list of instructions.

The sign isn't yet where you want it. How can you write a procedure that acts like the space
bar? To accomplish that task, you need a new command called INSERT. Flip to the front of the

page and try typing

CT
INSERT ([For Sale]

The cursor is after the words "For Sale" and on the same line. When you use PRINT, the cursor
always moves to the next line. (Try it!)

The next task is to use INSERT to put blank spaces in front of "For Sale." Try typing

INSERT CHAR 32
INSERT CHAR 32
INSERT CHAR 32

The cursor moves three spaces to the right. The number 32 is the ASCII code that represents the

space bar. (ASCII is a common code used by computers to represent the keys you type on your

ltx}:siyboard.)bCl-IAlank R is a reporter that returns the character associated with the number to Logo, in
S case a .

Now you are ready to complete your procedure to make your sign. Go to the Flip side of the
page. Type

TO SIGN

REPEAT S5 [PRINT ()]

REPEAT 28 [INSERT CHAR 32)
PRINT [For Sale]

END

With a little trial and error you can position the sign exactly where you want it.

Now try typing

74 75

HOUSE
SIGN

The house appears along with its sign. Now you can put this all together in one procedure. Flip the
page, move the cursor to the top of the page, and type

TO HOUSE.AND.SIGN
HOUSE

SIGN

END

Now, type HOUSE.AND.SIGN in the Command Center and you see the picture that was
plann:ld at the beginning of this chapter. You have written a complex set of interconnected
procedures.

When you are writing a program with a number of procedures, it is a good idea to include a
description of th;]?rogram. On the Flip side of the page, move the cursor to the top and type a
description. You might type something like

<<The following program draws a house with a "For Sale" sign. Type
HOUSE.AND.SIGN to run the program.>>

The "<<" and ">>" symbols are to set off the description or set of directions from the procedures
themselves. You can put almost any text you want on the Flip side of the page. Simply be careful
to follow two rules.

1. Be sure to put any text that is not part of procedures after any ENDs and before any TOs.
Otherwise, Logo will think the text is part of a procedure.

2. Don't begin any line of text that is not part of a procedure with the word "to.” The word "to" is
reserved to tell Logo that a new procedure is contained in the text that follows.

A Procedure Tree

The procedure HOUSE.AND.SIGN is the main procedure, or top-level procedure. It uses a
number of other procedures. These procedures are called subprocedures of }fOUSE.AND.SIGN.
A good way to visualize the relationships among procedures is by using a procedure tree. In a
procedure tree, a subprocedure is drawn below the procedure that uses it. For example, the
procedure tree for HOUSE.AND.SIGN looks like this:

HOUSE.AND.SIGN

HOUSE SIGN

SETUP SQUARE GET.TO.ROOF TRIANGLE

15

74

ERIC

Full Tt Provided by ERIC.

Notice that the HOUSE procedure, which is a subprocedure of HOUSE.AND.SIGN, has four
subprocedures of its own.

The word superprocedure is also commonly used to describe relationships among procedures.
For example, HOUSE.AND.SIGN is a superprocedure of SIGN.

To summarize:

» HOUSE.AND.SIGN is the main, or top-level procedure.

» HOUSE and SIGN are subprocedures.

» HOUSE.AND.SIGN is a superprocedure of SIGN.

» HOUSE.AND.SIGN is a stgerprocedure of HOUSE.

» SETUP, SQUARE, GET.TO.ROOF, and TRIANGLE are subprocedures of HOUSE.
» HOUSE is a superprocedure of SETUP, SQUARE, GET.TO.ROOF, and TRIANGLE.

Notice how easy it is to see the relationships among procedures using a procedure tree. The written
list of the relationships is harder to follow. The procedure tree gives you a visual image of the
structure of your program. You should always draw a procedure tree when you are working with
more than two or three procedures.

There are some "rules of thumb" that you should remember when you are drawing a procedure
tree.

1. The name of the prolgam (the procedure name you type to run the program) is at the top of the
procedure tree on a line by itself.

2. Each subprocedure of the main procedure is listed on the next level (or line). These
subprocedures are listed left to right as they occur in the main program. That is, the first
subprocedure is listed on the left, the next subprocedure is listed to the right of the first, and so
on.

3. Aline connects each procedure with its subprocedure(s).

4. Each procedure in the program along with its subprocedures is represented using the rules
given in step 2,

5. If a procedure is a subprocedure of more than one procedure, it should appear "under" each
procedure from which it is called,

6. If a procedure "calls itself" (that is, includes itself, which is an idea not covered in this book
but covered in more extensive Logo books), then the name of the procedure appears below the
name of the procedure connected by a line just like any other subprocedure.

7. All "user defined" procedures (those that you write) should appear in the procedure tree.

8. No primitives (such as CG, FORWARD, or REPEAT) are listed in the procedure tree.

When you have completed your procedure tree, you should be able to tell exactly which procedures

are called from any given procedure. You should be able to tell what procedures call any

subprocedure. A carefully drawn procedure tree can be very helpful in solving many debugging
problems you may have with your program.

76

ERIC

Full Tt Provided by ERIC.

Fre%uently Asked Questions
1. Idon't see the sense in having a lot of subprocedures. Why not just write one big procedure?

Answer: As you work on more complex problems, you will discover lots of answers to this
question. One answer is that you can test a subprocedure by itself, and then fully debug it
without dealing with the complexities of the whole program. A second is that use of
subprocedures "modularizes" a problem-breaks it into chunks that your mind can deal with. A
third answer is that it makes the overall program easier to read and to modify. Imagine writing
an English composition without breaking it into paragraphs!

2. Is there some rule about how long a procedure should be?

Answer: A procedure can be quite long—you are limited only by computer memory space.
However, it is a mistake to write such long procedures because they are hard to read and hard
to debug. As a rule of thumb, never write a procedure is longer than one page on the display
screen.

3. Can I put more than one instruction on a line?

Answer: Logo allows you to put many instructions on one line. However, writing more than
one instruction on a line usually makes your procedures hard to read and dchug. Resist the
temptation to put several instructions on a line "just this once" because before you know it you
will have procedures that are quite difficult to read and debug.

4. What names should I give the procedures I write?

Answer: Give your procedures meaningful names that describe exactly what each procedure
does. It is easy to find yourself adding more and more commands to a procedure. Soon you
have a very long procedure that is hard to debug. Perhaps the name of the procedure no longer
describes the function of the procedure. Take time to subdivide and rename procedures as you
work. It will save a lot of time later when you are debugging.

5. My program doesn't work, and I am having trouble figuring out what it does. I get lost within
all of the different subprocedures. Help!

Answer: Draw a procedure tree. It can be very helpful in seeing the overall structure of the
program. Then mentally, using paper and pencil as an aid, follow through the instructions of
each procedure one line at a time. Remember that ?'ou can hand trace or play turtle to help
debug your program. It is often quite helpful to do this hand tracing with a friend. Often you or
your friend will easily spot bugs that you couldn't find by yourself,

Buﬁ and Debugging: Breaking a Problem Into Small Parts

e use of superprocedures and subprocedures adds still another level of complexity to
programming. You now have the power to attack really complex probiems, and you now have the
power to create really complex bugs that are difficult to find. With little effort you can create a
"mess" of intertwined procedures full of bugs and nearly impossible to debug.

It is easy to conceptualize a project whose details overwhelm your mind. If the house example
is not complex enough, add a chimney, a door, some windows, a person's face in the window,
some trees, some flowers, some clouds, and so on. The overall concept of a picture of a house is
simple, but the number of details you might add to the program is very large.

m
ERIC | ‘6

JAruitoxt provided by Eic

The way to attack a complex problem is to break it into many small pieces. Write a
subprocedure for each small piece, test each subprocedure to eliminate bugs, and then begin to put
the pieces together. This requires a verly systematic approach, quite a bit of paper-and-pencil work,
andbvery careful attention to details. It also requires skill in breaking big problems into smaller
problems.

For example, suppose that you want your house picture to include a number of trees and a
number of flowers. You might imagine this as being accomplished by a LANDSCAPE procedure.
The LANDSCAPE procedure contains a TREES procedure and a FLOWERS procedure. Will all
of the trees be the same? If so, you will want a procedure that draws one tree, and the trees
procedure will make repeated use of it. You should use a similar method for your flowers.

Each subprocedure should be of a size that you can easily hold in mind and that you can easily
debug. A procedure tree shows the way the subprocedures fit together and thus indicates how to
test groups of subprocedures. As you dput the procedures together, start with the bottommost
subprocedures and test them first. Gradually work your way up the procedure tree to the main

procedure.

Computers and Problem Solving: Procedures to Solve Problems
This chapter illustrates several really important ideas in writing programs to solve problems:

1. Give a lot of thought to how you are going to attack a problem before you actually start to write

a program. You may want to make use of pencil and paper as you conceptualize the problem
and work toward a clear set of goals.

2. Learn to break a big problem into chunks of a size your mind can easily handle. Give the mind-
sized chunks names that help you recall what each is designed to accomplish.

3. Test each sub&rocedure all by itself so that you are quite sure no subprocedure contains an
error. Start with the procedures at the "bottom" of the procedure tree and work toward the top.

It is evident that each of these ideas is also quite im t in solving problems without the use
of a computer. George Polya (1957) made major contributions to the field of problem solving. He
suggested a four-sttl?) approach that is useful in attacking almost any problem. Polya's four-step
plan contains the following ideas.

1. Understand the problem. (What are you trying to accomplish? What is the goal? How can you
tell if you have solved the problem?)

2. Develop a procedure you feel will solve the problem, or find a procedure through appropriate
use of reference materials.

3. Carry out the steps in the procedure, paying careful attention to avoiding errors.

4. Carefully examine the final results. Has the original problem been solved? If not, remember

that you may have used an incorrect procedure or you may have made a mistake in carrying out
the steps of the procedure,

Activities

1. Now that you know how to write multiple procedures, plan a picture of your choice and write
the procedures to create it. Move along step by step like the example in this chapter. Draw a

78
Q 7 7
ERIC

Aruitoxt provided by Eic:

procedure tree as you go. Be sure to keetg the individual procedures short. You should not have
any procedures longer than 20 lines, with one instruction on each line. If you put too much into
a procedure, it becomes hard to find errors. Here are some suggestions:

* Add to the HOUSE.AND.SIGN project begun in this chapter.

» Write a program to draw a greeting card with a border around the edge and a greeting in the
middle.

 Write a program to place polygons on the screen filled with different shapes or colors.

» Write a program that places randomly colored "stars" all over the screen. Perhaps include a
row of houses "below" the sky.

+ Develop a set of procedures useful in designing the layout of a room.

As you work on your project, document your thinking in your journal. What programmin
%}e do dyou use? How does the approach you take to your project affect the final outcome”
at did you learn as you worked on your project?

. Write a program that displays "paced" text. That is, you might write

TO START.POEM
PRINT [The fog comes]
WAIT 10

INSERT (On little]
INSERT CHAR 32
WAIT S

INSERT [cat]
INSERT CHAR 32
WAIT 5

PRINT [feet]

WAIT 10

END

Adjust the "timing" to suit your interpretation of the text you choose. Perhaps you'll even want
to include some graphics.

. Experiment with anim.ation. That is, you can make the turtle appear to move by typing

PU
REPEAT 20 [FORWARD 2 WAIT 1]

Write a program that includes animation. Perhaps you'll want a background with a shape of
your choice moving across it—maybe a helicopter can fly by or a kitten can run across the
screen.

. Polya developed the four-step approach to problem solving before people began to use
computers. Examine the steps carefully. Can you think of a problem where these ideas do not
apply? Are they applicable in writing computer programs? That is, does Polya’s four-step plan
contribute to transfer of learning between problem solving with and without computers?

'78

79

Chapter 12
A Word About Designing Programs

There are a number of ways to go about creating programs. Different people prefer different
approaches. Different computer languages lend themselves to different methods. Now that you are
beginning to write programs containing a number of procedures, (ou should spend some time
thinking about the ways to design a program. You should be examining your own programming to
see which method(s) suit your particular learning style and problem solving style.

To|1)_ Down Programming
op down design refers to writing a program "from the top." Think about the
HOUSE.AND.SIGN program from the previous chapter. If you use a top down approach, the
first procedure you write would be

TO HOUSE.AND,SIGN
HOUSE

SIGN

END

Next you would write the HOUSE procedure.

TO HOUSE
SET.UP
SQUARE
GET.TO.ROOF
TRIANGLE
END

Then you would write SET.UP, SQUARE, GET.TO.ROOF, and TRIANGLE. Finally, you
would write SIGN.

With this method, you plan the whole and then write ever smaller parts. This is a very
regimented and structured approach to problem solving. You must do a lot of planning in advance.
You need to know exactly what you want to accomplish before you even begin. This approach
allows little room for exploration as you go along.

It has another difficulty. You cannot see what each procedure does as you write it. If you have
written just HOUSE.AND.SIGN and try to run it, you get the message

I don't know how to HOUSE in HOUSE.AND.SIGN

This tells you that the procedure HOUSE.AND.SION at least begins to work right, but it doesn't
show you any meaningful results. However, top down programming is a very powerful approach
to solving problems in a computer environment. In some programming lan&:ages, th» top down
approach is the easiest to use. As a novice Logo programmer, you will most likely find that you are
more comfortable using a bottom up approach,

st 79

©

ERIC

Aruitoxt provided by Eic:

Bottom Up Programming .

In bottom up pro%roamming, you start with small pieces and build them up into a complete
program. If you used bottom up programming in the HOUSE.AND.SIGN program, you wouldn't
start with a complete plan. Instead you might start with a general idea of what Yyou wanted to
accomplish and an idea of how to make some progress on some major pieces. You might first
create the YQUARE procedure and then the NGLE procedure. After some fiddling with
these, you might discover that, when put together, they make a nice house. That might lead to the
HOUS%:‘. procedure.

You might be experimenting with the PRINT command and get the idea to write a procedure to
ut a sign next to the house. Next would come some experimenting to create the SIGN procedure.
East of all, the HOUSE.AND.SIGN procedure would be written.

With this method, there is less advance planning. You play with an idea, turn it into a
procedure, and let that idea lead you to another. You may have little or no idea where you are going
as you begin. You are like an artist, being led along by your own creation and creativity. Logu
lends itself to the bottom up style of programming better than most programming languages.

Much of what is written about Logo implies that the only "right" way to fprogram in Logo is
bottom up. This emphasis on bottom up style grows out of the philosophy of discovery learning
that is closely allied with Logo. It is assumed that the Logo programmer will experiment with an
idea and then use that idea as part of a larger project.

However, in the first part of this chapter, &%l; saw how one might write a program using a top
down approach to problem solving in Logo. Professional programmers usually use a combination
of top down and bottom up techniques. Both are taught in a modern computer science department.

Middle Out Programming

Very few people actually program either in a true top down or bottom up style. Most people
use some combination of methods for writing programs, which might be described as "middle
out." Middle out is the method that was actually used for writing the HOUSE.AND.SIGN
program. There was an initial idea of what the program should do. Then small parts were written.
Finally all the pieces were put together. Some things were done top down, other things bottom up,
but most things were done from the middle, working both towards the top and the bottom.

Polishing Your Program

The tprogramming style you use to do a project should be adapted to your capabilities and the
nature of the problem. However, it is best if the fina_lrgm looks structured and well organized,
much as if it had been done in a top down manner. That Is, there should be a main procedure with
a title that describes the entire program. This main procedure should be made up primarily of
procedure calls whose titles describe the subparts of the &rogram. Many of the subprocedures in
the program may also be made up of procedure calls that describe even smaller parts of the
program.

Both the programming process and the final product are important in any programming project.
During the development of a project, you probably focus on writing the code and on debuggping the
results. However, when you have finished a program in Logo, it should be polished for

"publication,” just as you polish your final draft of a written report before you turn it in to a teacher
or employer.

82 80

What is the "correct" style to use when writing a Logo procedure? Are there "rules” that you
should follow? The issue of programming style is one for which there is very little agreement
within the Logo community. At one end of the spectrum are those who feel that to impose any
rules for writing procedures is inappropriate. They feel that such rules will interfere with creativity
and exploration.

The authors of this book suggest an apé)roach nearer the other end of the spectrum. For
example, we suggest that an individual procedure should not exceed one screen in length and that
you should not write more than one instruction on a line. It took professional programmers many
years to discover that these are very useful guidelines. It is unreasonable to expect beginners to
discover them for themselves.

Any Logo programs you write should be polished for publication, presentation, and
preservation no matter who is going to see them. Polishing the final product makes it more
readable both to yourself and to others. You will be surprised how quickly you can forget the
details of a program you spent many hours writing. Only weeks later, a poorly written program
can be very hard to untangle.

Here are some guidelines to help you begin developing a readable programming style.

1. Procedures should have meaningful names. That is, the name of the procedure should describe
exactly what happens in that procedure,

2. There should be no more than one instruction per line.

3. No procedure should be longer than 20 lines (approximately the number of lines that fit on the
page at one time).

4, The main or top level procedure should contain only user-defined procedure names. That is,
you should not use a LogoWriter primitive in the main procedure. (This is an artficial rule that
may be unnecessarily strong. Experience suggests that by keeping the numer of primitives in
the main procedure small, good modular style is encouraged.)

5. If an instruction is longer than one line, you should indent the second and subsequent parts of
the line in a logical and readable manner.

6. If you continue your work with Logo beyond the content of this book, you will learn about
procedure inputs and variables. When you reach that stage of learning, it 1s important that you
use meaningful names for inputs and variables that describe their function, just as you use
meaningful names for procedures.

These rules are perhaps unnecessarily rigid for your long-term work with Logo programming.
However, they are designed to give you specific guidelines to follow from the outset that will help
ou in del;u%g?g your future, more complex pggframs. As you continue your work with Logo
yond this book, you will no doubt relax or modify these rules in ways that are comfortable for
you.

Programs written using the above guidelines are much easier to work with. Other people can
easily tell what each gart does. You can more easily make changes in your own work at a later
date. Most importantly though, is that following these style guidelines contributes to ease in
debugging. Sometimes the bugs are easy to find, sometimes they aren't. If the program is written
well, then the debugging process takes less time.

83 8]

ERIC

Full Tt Provided by ERIC.

Buﬁz and Debugging: Good Programming Style Helps '

the early history of computer programming the problems that were being attacked were
rather simple programming tasks. The computers being used had relatively small memory capacity,
and the programs that were written were modest in size and complexity.

Gradually the complexity of problems being attacked grew, as did the speed and memory
capacity of computers. Teams of pro ers began to work together to attack problems too big
for a single programmer. This led to the problem of errors in one part of a program, written by one
g;fo er, messing up results produced in a different part of the program being written by a

srent programmer. Needless to say, it became a programming and debugging nightmare.

Out of these circumstances a discipline of computer programming slowly began to emerge. The
need for a caretul top down analysis and very careful modularization of large tasks became
apparent. Programs needed to be carefully structured if they were going to be easy to debug and
easy to modify as the need arose. Programming languages were developed that supported such an
approach to programming. Computer science departments began to teach structured programming,

As computers began to become common in precollege education, the issue arose of the needed
qualifications to teach computer programming. It was evident that anyone who knew a little
gogrammin could teach programmmg However, it also became evident that usually a person

owing only a little programming did a very poor job of teaching the key ideas of top down
analysis, structured programming, and writing bug-free programs that were being taught in college
computer science departments.

This short book has placed considerable emphasis on key ideas for preventing, detecting, and
correcting bugs. At some future date you may find yourself helping students to learn to write Logo
grograms. We hope that you will place considerable emphasis on helping your students learn about

ugs gaind debugging as well as using good programming techniques and problem solving
strategies.

Computers and Problem Solving: Programming and Problem Solving

Strategies

A strategy is a plan of action that might be helpful in attacking a certain type of problem. This
chapter mentions three programming strategies: tog down, bottom up, and middle out. The
previous chapter mentioned Polya's four-step strategy for attacking almost any problem.

There are many strategies that are useful in writing computer programs to solve problems. For
example, the strategy of testing procedures, working from the bottom up, is often quite useful in
debugging a main procedure. The strategy of giving procedures names that are meaningful in the
context of the problem to be solved will often help you write a more easily readable program, and
thus write a program that is easier to debug,

Once you start thinking about it, Lgou wil! discover that you know lots of strategies that you
routinely use. Here is an example. Is there some particular day of the week when you do laundry?
Is there some particular filling station where you usually buy gas for your car? Think of routine
decisions you automatically make, often with little conscious thought. In each case you make use
of a strategy of "do what worked before."

What is your strategy for studying for a test? What is your strategy foi getting a term project
done on time? What is your strategy for making new friends? What is your strategy for cfe ing
with hard problems—for example, with when you are stuck on a Logo problem?

Research on Kroblem solving strongly supports the idea that students should learn about
strategies. They should learn to recognize the types of strategies they are using. They should gain
skill in recognizing when a particular strategy is effective and when it isn't. These ideas can all be
taught in a Logo programming environment. However, the goal is to help students transfer such
knowledge of strategies to other fields. This requires the examination of lots of different strategies
and their possible use in a variety of fields. It requires having students think about, talk about,
write about, and practice using a variety of strategies.

The research literature on problem solving strongly supports the idea of helping students
understand the strategies they use and helping them to gain more strategies. However, the literature
is not so clear on the best approach to use. Some educators feel that the best approach is a
discovery learning approach. Students should be put in environments in which they will discover
useful strategies. Then the teacher can help make these discoveries more explicit. A substantially
different approach is to give students explicit direct instruction on the strategies you want them to
learn. Most leaders in the Logo community advocate the former approach.

Activities

1. Select a project that involves writing a number of procedures. As you are working on it,
examine your own programming style. Which of the styles mentioned above best describes the
way you prefer writing programs? Be sure your final program is polished for publication.

2. It is sometimes suggested that artists usually use a bottom up strategy in solving problems
while mathematicians use a top down approach. The ideas of inductive and deductive logic
seem related to this. What do you feel about his? Write about it in your journal.

3. Spend some time jotting down problem solving strategies in your journal. Then share your list
with other members of the class. Did your classmates think of strategies you did not have on
your list? Do other people use strategies you never use? What strategies seem most universal
among people in your class? Are there some strategies that are more important to teach to
students than others?

4, Notice that mani of the programming assignments in this book are quite open ended. In
essence, they ask you to create a problem and then solve it. How does this instructional
strategy compare with instructional strategies you have encountered in other courses? Do some
journal writing on advantages and disadvantages of each of these instructional strategies. Be
awi:ire that "problem posing"” is considered to be a very important part of the field of problem
solving,

85 X3

ERIC

Full Tt Provided by ERIC.

Chapter 13
Music

The preceding chapters introduced you to the rudiments of LogoWriter. There are many
features of LogoWriter we have not discussed. There is also much more to be learned about
programming. Should you choose to continue rour work with Logo, you will no doubt explore
many of these. However, we are going to conclude this book with a section on music. Writing a
program to create music is an excellent way to practice some of the new programming techniques
you have learned in the last two chapters.

Try typing
TONE 440 50
You hear a musical note. Try changing the numbers after TONE. What does each one do?

Did you discover that the first number is the pitch of the note? The bigger the number, the
higher the note. The second number is the length or duration of the note. The bigger the number,
the longer the note.

The duration of a note is measured in twentieths of a second. That is,

TONE 440 20 playsfor 1 second
TONE 440 60 plays for 3 seconds
TONE 440 10 plays for 1/2 second

To compute the length of a note, multiply the second input to TONE by 1/20.

The frequencies of the notes are the actual frequencies given in vibrations per second. The table
below gives the values for a number of octaves:

OCTAVES NOTES

c[c#| D] D#] E| F rnl e|?e;t gﬁm{ B

1 37| 89| 41| 44| 46| 49| s2| ss| s ez
2 | es| e9] 73] 78] e2] o7 92| 98| 104 110] 117 123
3 | 131] 139] 147 156| 165| 175| 1e8] 196] 208| 220] 233| 247
4 |v262| 277| 294| 311] 330| 249 370| as2l 41| 440| 466 494
s | s23| s34| se7| e22| 59| ¢98| 740| 784 830] 881 932| 988
6 |1047|1109]1176|1244]1319]1398]1480] 1566|1663 1761] 1864] 1973]
?

2095{2213]2346 2495

2637

2797]2959]3142]3327|3510| 3743 3946

+This is Middle C

81 R4

Using the above chart, you would play a C scale (the white notes on the piano) for the octave
starting with middle C using these commands:

TONE 262 10
TONE 294 10
TONE 330 10
TONE 349 10
TONE 392 10
TONE 440 10
TONE 494 10
TONE 523 10

There are no flats in this scale. If you have music that uses flats, you need to know, for
example, that A sharp is the same note as B flat. (Black notes on a piano are used to play sharps
and flats.) You then use the chart accordingly.

Suppose you want to write a program to play a simple tune. You can write a procedure for each
line of the song. For example, to have LogoWriter play "Three Blind Mice," you can begin with

TO THREE.BLIND
TONE 330 10
TONE 294 10
TONE 262 20
END

This phrase is repeated twice, so you can write

TO LINE1l
REPEAT 2 [THREE.BLIND]
END

Similarly, the second line can be written as follows:

TO LINE2
REPEAT 2 [SEE.HOW)
END

TO SEE.HOW
TONE 392 10
TONE 349 5
TONE 349 5
TONE 330 20
END

Can you finish this song? The procedure tree might look like this:

THREE.MICE

LINE.1 LINE2 LINE3 THREE.BLIND

\

THREE.BLIND SEE.HOW THEY.ALL

Using some words from the song helps you keep track of what procedures play what part of
the song. In each of the "LINE" procedures above, a phrase of music is repeated, sometimes with
the same words, sometimes with different words.

Even if you are not "musical” you can write music using LogoWriter. With some simple sheet
music and a chart to translate the symbols on a musical staff into frequencies, you too can be a
music performer and composer!

Some Sound Effects
The TONE command can be used for sound effects as well as music. Experiment with different
numbers for the frequency. Try small numbers to get buzzes

TONE 40 10
and large numbers to get squeaks

TONE 9000 20

and slowly changing numbers for an interesting effect

TONE 100
TONE 105
TONE 110
TONE 120
TONE 125

S Y)

The sounds you can make using the TONE command can be quite varied.

Are You "Musical?"

Many people say "Oh, I'm not musical. I can't use Logo to make music." In fact, it is much
easier to use a computer to make music than it is to play the piano or most instruments. To get
started, find some beginning instrumental music. You might ask the music department in your

scl:lhool for some beginning music in the key of C. Match the notes on the music with the following
chart,

- 89 213
ERIC

A ruitoxt provided by ERic

?ﬁ? F T# 6 G4 A

~ ~JOWUN
RN
[T N |
oW ®

When you have identified the notes by name (A, B, C, etc.), use the chart to write the
frequencies next to each note. You will want to experiment with the length of a "quarter note," but
the following chart shows you the relationship among notes.

Note Name Duration
J) Eighth note 8
J Quarter note 16

J Dotted quarter note 24

J Halfnote 32

J Dotted half note 48

Then you are ready to enter any song for which you have music.

Frequently Asked Questions
1. en I type the TONE command, I hear nothing even though I tried a number of different
inputs for the frequency and duration. What's wrong?

Answer: Check the computer system you have. Does it have a volume control? Be sure that it is
not turned off. Does it have an earphone jack? Unplug (or use) any earphones plugged in to the
computer. Does the computer "beep” when you start LogoWriter? If not, perhaps the speaker
in your computer is broken or disconnected.

90 ﬂ, Py
ERIC

Full Tt Provided by ERIC.

2. I'want to play more than one note at a time. How can I do that?

Answer: Even if your computer system has "multiple voices," current versions of Logo only
allow you to play one note at a time. Sometimes people try putting the melody of a song on one
computer and the harmony on another and try to run them at the same time. Generally this does
not work well because of the slight differences of speed of two different computer systems and
possible differences of the information stored in the memory of Logo.

3. I'want to play music and have a shape move at the same time. How do I accomplish this?

Answer: The answer to this question is not simple. You cun't simply write a MOVE procedure
and a PLAY procedure because if you type

MOVE
PLAY

your shape will move, and after it has stopped your music will play. You must instead,
alternate notes and movement. For example.

TO PLAY.AND.MOVE
TONE 330 10
FORWARD 5

TONE 294 10
YORWARD 5

TONE 262 10
FORWARD 5

END

While this approach works fairly well, it is particularly easy to end up writing long programs
that are difficult to debug. Think carefully about what you want to put in each procedure.

4. The music I create using LogoWriter sounds off pitch. What am I doing wrong?

Answer: Many ccmauters on which versions of Logo run were not designed to produce
sophisticated sound. Generally, Logo does not access the more sophisticated sound capabilities
available on newer computer systems. Thus, it is not unusual for Logo music to sound off-
pitch in the upper and lower pitch ranges. It is generally best to use the middle range of notes to
create music.

Bugse and Debugging: Working With Sound

bugging programs involving sound require a different set of skills than you have previously
used with Logo. You must listen to a procedure to be able to tell if it is working correctly. Often
nothing :Epears on the screen. There is no graphics and there is no text. You must hold the sounds
in your mind and then adjust your program accordingly. It is particularly important that you design
your musical programs modularly. If each individual procedure is short, you can debug each one
separately much more easily.

Music is a natural environment for making use of modularity. Music itself is divided into notes,
measure, lines, and pages. Use these natural subdivisions to plan your procedures. If your music
has words, making use of the words for procedure names can often speed the debugging.

91 RS

ERIC

Aruitoxt provided by Eic:

Computers and Problem Solving: Music and Domain Specificity . .

At several previous spots in this book we have talked about the idea of domain specificity in
problem solving. We have suggested that the computer is a tool useful in helping to solve problems
in many different domains.

The music examples in this chapter allow you to explore domain specificity in relation to using
a very general-purpose tool as you attempt to solve some problems in music. Suppose, for
example, that you did not know how to play any musical instrument or know any musical notation.
Would it still be possible for you to compose some music? How could a computer help?

It turns out that you know quite a bit about music even if you don't play any musical
instruments and have never composed any music. This is because you have been exposed to music
throughout your life. Your brain has processed a great deal of music and "knows" what sounds
right.

The computer can be used both as an aid to composing and as an aid to performing music. The
composing can be done in the simple Lotﬁo programming notation illustrated in this chapter. The
performance is done automatically by the computer. With the Logo NOTE command and the
computer performance capabilities, you can compose and perform music.

You should realize, of course, that there are much more sophisticated computer musical
notation systems and much better computer music performance systems. It is now common for
professional composers to make use of these aids to composition. However, even with an
inexpensive microcomputer and Logo PLUS it is possible to introduce young children to
composing with the aid of a computer. This certainly brings a new dimension to the elementary
school music curriculum.

Computers and Problem Solving: Society, Education, and the Future

The invention of reading and writing profoundly changed the societies of our world. Reading
and writing are tools of the human mind. They expand its capabilities to solve complex problems.
They make it easier to share intellectual progress-to preserve and pass on knowledge from one
generation to the next. They contribute greatly to building on the previous work of other people as
well as on one's own previous work.

It is interesting to compare use of pencil, paper, and books with the computer. ‘They share
many characteristics. For example, they are all aids to the human mind and provide ways to build
on previous work of others. Each has certain advantages and certain disadvantages. For example,
pencil, paper, and books are cheaper and more portable than a computer. However, writing done
on a computer is more easily edited than writing done using paper and pencil. In addition, a
computer can make use of an automatic spelling checker. (And you should keep in mind that
pencil, paper, and books do not contain an analogue to the animated graphics and sound
capabilities of computers. Clearly, computers bring a new dimension to the storage, processing,
and retrieval of information.)

From your earliest childhood you have been ‘;:‘posed to books, pencil, and paper. Much of
your education has focused on leaming to read, write, and solve problems in this environment.
You have been functioning in this environment for so long that you probably are not even
consciously aware of how you use these facilities to help you solve problems.

_As you develop your computer skills, you are working both on learning specific details of
using a computer and the harder problem of learning to think and solve problems in a computer

environment. It may take you years of using a computer before you become as comfortable with it
as you are with pencil and paper.

Computers are gradually becoming commonplace, even in elementary schools. Many children
are grow& up in household environments where they begin to use computers simultaneously with
or even before they begin to use pencil and paper. It seems clear that such children will have a
different view of computers than people who are first introduced to this tool as adults.

Reading and writing were invented many thousands of years ago. It took many thousands of
years for people to develop the technology to mass produce books cheapg. It took thousands of
years for educational systems to develop that could adequately address the issue of helping all
children to become literate, Even now we do not have a 100 percent success rate. Many students
experience considerable difficulty in leaming to read and write.

From an historical perspective, we are at the very beginning of the development of computer
use. The capabilities of computers are continuing to grow tﬂinite rapidly. Our knowledge of how to
help children learn to make effective use of computers is still quite limited. Very few children have
grolvlvn up in computer-rich environments, surrounded by adults who use computers freely and
easily.

It seems clear that computers are changing our society. Their impact on our educational system
is just barely beginning to be felt. The impact will be cumulative as we learn more about computers
in education, as computer facilities become better and more readily available, and as more children
grow up in a computer-rich environment. This will be a continuing challenge to current educators!

This book has provided you with a very brief introduction to one particular computer
programming language. However, many of the ideas that have been presented are independent of
any particular programming language or computer hardware. Thus, you have a solid foundation on
which to build your future computer knowledge. The authors of this book wish you the best of
luck in your future computer studies and your use of computers.

Activities

1. If you are involved with music outside of this class, pick a piece of music that you have sung
or played and "teach” LogoWriter to play it!

2. Writing music in LogoWriter is an excellent way to practice writing modular programs. Select a
piece of music and spend some time dividing either the written musical score or the words into
small, meaningful sections. Each section then be a procedure. Draw a procedure tree for
your song. Then, when you write your song you will have an easy-to-debug program because
you can check each part of the song as you go. (Note that this is usin%(a strict top down
a{)proach to solving the problem of writing your song in LogoWriter.) Keep track of your
planning style in your journal.

3. Try adding music to a page you have previously created. For example, you might have a
birthday greeting card that plays "Happy %irthday." Py 8

4. Try writing a am that plays the music of a song as it displays the words. Hint: You'll
need to use P, » INSERT, and WAIT interspersed with your TONE commands. Be careful
to subdivide your program in a meaningful way.

5. Expesiment with "sound effects” using TONE. See if you can get some interesting sounds that
you can then put into a larger program, Note that your exploration with TONE is likely to be

93

30

bottom up. Be sure to kec.;) some notes in your journal. How can you describe the sounds you
make by just using words

6. Do some journal writing on similarities and differences between the book and the computer.
Brainstorm on how computers might eventually contribute to major changes in our educational
system.

7. Some people argue that all children should learn something about computer programming,
while others argue that computer applications software, such as word processors,
spreadsheets, and databases, have obviated the need to learn about computer programming.
What is your personal opinion? Discuss this in your journal.

Q
o4 9]

ERIC

Full Tt Provided by ERIC.

| APPENDIX

o | 9o

DESCRIPTION OF LOGOWRITER KEYS

APPLE

IBM

COMMODORE

General Purpose Keys

FlipP.iieieseeestoresecnssesccsesss Apple=-F
Flips a page over

UD ' veetsnssesssnsnsnsssssssssssssss Apple=U
Moves the cursor up from
Command Center

DOWN.tveevrssssesesasessssssnsssss Apple=D
Moves cursor down into
the Command Center

27 1o O T
Used to leave a page
or a special mode

SO P i itetteesersasssssssssessanses Apple-S
Stops program or instruction;
returns to Command Center
(See also Esc.)

Help.iieeervenesoessssnssensseesss Apple-0
Gets the Help page

OOOQOQEsc

Esc

Ctrl=-Break

Commodore=~F

Commodore=U

Commodore-D

Esc

Commodore=-S

Commodore~-0

Up and DOWNn ArrowS....cccecseesoee.Up & DOWn
Moves cursor up and down Arrows
through page names that are
in the scrapbook

TOP Of PAG@. ..t eesvscrsnsescesses Apple=-
Moves the cursor to the top up arrow
of the Contents list

Bottom of Page.....cvceveveseessq. .Apple=-
Moves the cursor to the last down arrow
page name in the Contents
list

Return Enter....eieeeveeeeeeseses. .Return

Chooses the page that the

cursor is on.

to end of Line.....vcvv......Apple-6

Erases the page named on the

line that the cursor is on

-= permanently!

Erase

Up & Down
Arrows

Home

End

Enter

Fn-6

Up & Down
Arrows

Commodore
up arrow

Commodore
down arrow

Return

Commodore-6

Turtle=Move. .c.cccveerrierseeseesses Apple=-9
Makes it possible to move the
turtle with the arrow keys;
Esc to leave
Label..iiiciiiiiereeeenessssesesss Apple~-8
Text typed is added to the
picture; use arrow keys to
move; Esc to leave

97

Fn-8

Commodore=-9

Commodore-8

Word Processing Keys

SBleCt .. ittt rttrtrtrssnreeressens APPle~1 Fn-1 Commodore-1
Starts select mode; use
arrows to select

CUt . ietrnrcrnssncsnsnssesssnseesss Apple-2 Fn-2 Commodore-2
Removes selected text:;
puts on the clipboard

COPY ettt rensnesensenssnsscsessss APple=3 Fn-3 Commodore-3
Puts copy of selected text
on the clipboard

PaSte. . .icettsessnsnssesssnssnsss APpple-4 Fn-4 Commodore-4
Puts contents of the
clipboard at the cursor
position

Erase to End of Line.......c.v.....Apple-6 Fn-6 Commodore=-6
Erases all text cursor from
cursor to the end of line

Next SCreen......ceeceeveeeeesecesss.apple -> Pg-Dn Commodore->
Displays the next screen full
of text

Previous Screen........cce000ee....Apple <- Pg-Up Commodore<-~-
Displays the previous screen
of text

Top Of Pag@....cvc0veuvsvseseeses Apple-Up Home Commodore-
Moves the cursor to the arrow up arrow
beginning of the text on
the page

Bottom Of Page......vcvveeseeeeese..Apple- ond Commodore-
Moves cursor to the end down arrow down arrow
of the text on the page

Beginning of Line..................Apple-B Ctrl <- Commodore-B

Moves the cursor to
beginning of the line the
cursor is on
End of Line........cve0evveveeee...Apple-E Ctrl -> Commodore-E
Moves the cursor to the end
of the line; to where the
next Return Enter was typed
Open @ line@.....ccvvvvveeveceeees . .Apple-0 Insert Commodore=0
Opens new line after current
cursor position
Delete to the right................Control-D
Deletes the character under
the cursor

98

- — — — o T W w OFD W W S S W S S S G S G G WD D G G SN P S D SN G P S G G NS SN GND G GNP G GND SN NP Gmp D G NP G P D Gmp WS NP NP Gmp P Gmp VI SN wmp WU > e

Returns you to where you were
when Shapes was chosen
0 15 1 < Apple-F Ctrl-F Commodore-F
) Switches between the front
(all shapes) and individual
shapes

On the flip side of the page only:

Next SCreen........ccceeeeeesssnnns Apple -> Pg-Dn Commodore~->
i Displays the next shape for
editing
Previous SCreen......cceeeeveceenss Apple <- Pg-Up Commodore<-

Displays the previous
shape for editing

Arrow KeyS.....ccoeeetesseecosscnans Arrow keys Arrow keys Arrow keys
Moves the shape cursor
around the shape

Space Bar......iceeceesecacscnscnas Space bar Space bar Space bar
Empties or £fills a space
within a shape

CUL . ittt eetacseasoncroonsnsnnsosesss Apple-2 Fn-2 Commodore=-2
Clears a shape and stores it
in memory
I COPY e cttesassrnnssrasesssasencnssos Apple-3 Fn-3 Commodore-3
' Stores =z copy in memory

without erasing it.
Paste.....cciteterennonrtancecsnonne Apple-4 Fn-4 Commodore=-4
Puts a shape that been placed
in memory into the shape that
is displayed
L] A T Apple~-$ Ctrl-Break Commodore-S
Cancels editing; restores to
shape there before editing
began

99 a5

SUMMARY OF KEYS: APPLE Ile/IIc

- G e D e e S S S S S D G mmy G G D B Gy G G D D) mmy S SO S WD AN D G G S S D mm GED G D G N VEY W GUD G G G IO NG S S e

FliPeeseeesesososesososiossssssseseasseseses Apple-F
UP eesesososssossssssssssssssssssessssassses Apple-U
DOWN et eeoeosssosscssossesssssssssscscssscssss APpple-D
Quit, leave PAgC .ccteesserssscsscsssseesses BSC

SEOP tsesesesessossssssssssssssssssssssessss Apple-S
HelpP ittt iternerseeossssesscsssssosesasssessss Apple-0

SeleCt ittt eresersscsssccscsssscsscccssess Apple~1

CUL tsvsesessssssssssssssssssssassasasesesss Apple-2

COPY st esssessesssessessssssscssssssssescsss Apple~3

PaASE@ . cetseersssrssscssccssssssessssessecsss APPle-4

Erase to End of Line..cvveseevessessesses s Apple-6

NexXt Screen...ccsseessccsscsscsssscssseesss APple -=>
Previous SCreen..isisesecsesssscsscessssss Apple <--

TOp Of PaAg@.uvsvsesonsosonsssnssssessesess Apple-Up Arrow
BOottom Of Pag@.cecsesvseccscssesssssssesss Apple-Down Arrow
Beginning of Line...icviveeeercesceseseess Apple-B

End of Lin€..sesivesesesssscesssessencsesss Apple-E

Open a line..seieesesoscsssessssesssecesesss Apple=0

Delete right .iiveeereresseseescessssensess COntrol-D

G G I T D G D G G GV G GFR D D GBI G b G G G Y D D G O ¢ G G GFR GUD GED N GUD G\ D T G Gib GES S GMD GMD GED Gmt Em GES G NN OGN S S mm e G S

QUit, leave PaAgC .ctctcescesscssecssesessssss ESC
FliPeeeesessosesssosnsssssssssssssssnsseeess Apple-F
On the flip side of the page only:

Next Screen (Next Shape) «iiveseeeeceeseses Apple -->
Previous Screen (Previous Shape) .eveeee....Apple <--
Up, Down, Left, Right....ciivvveseeseees. s Arrow keys
CUb i ivvetvesseesessosnssnsssnsscssscscssees Apple~2
COPY ¢ttt vessoosssoncsssnssssssssssssescees Apple=3
Paste.iiiiiesesesesescnsnssessnnensenseses Apple-4
Make Or Erase BloCK..iseesssesssseesssssss Space Bar

Turtle-Move ® 0 06 06 06 06 0 06 06 06 06 06 0 0600 00 0600 000 0 00 060 0 o Apple-g
Label ® O 060 06 006 06 060 06 06 06 0 06 0606 006 0600 060 06000 006060000 [N) Apple-a
ILeave Label or Turtle=MovVe ..i.cceeeesceeecs s BESC

---------- D et D S s D S G D G U GFD PR GED GED SIS D GED U AN - 0 A BB Gy D G AU WS G D e GRE G GmD e VD G W D G U N GED WD GED G s Sum

Contents Keays

Top Of Page ® 6 6.0 0606 060606 060 006 0 00 006 06000 000000000 Apple-Up Arrow
Bottom Of Page ® 6 06 006 060 06 006 0 000 006006000 000 0000 Apple-Down Arrow
Remove a Page (Erase to end of line)......Apple-6

100 6

- *- _ _ C- -
\‘- — .

A B Oy A =R

A B E S S xS

r SUMMARY OF KEYS: IBM

i General Purpose Keys
l 0 5 < Ceerereeene Control-F
, UPeeineennns N et eeeens vese.0.Control-U
DOWN ... it iteeeennnnens ceeeesaen o ++...CoOntrol-D
Quit, leave PAgC ¢ttt etteorttioesnscencsonns Esc
5] ol o)« T Gttt ettt Control-Break
7 1= Fn-0
; Word Processing Keys
Select. Ceee e Ce ittt e... Fn-1
03 Cers e Fn-2
COPY ettt ettosresnesnsonssssonnses Ceeesan Fn-3
Paste...... et e it ettt . Certeeeeae Fn-4
Erase to End of Line...... Ceecereeentaannnn Fn-6
Next Screen.....e.eeeu.e Cseesstessssnaene e PgDn
Previous Screen......evse.. Ceessieeseensan PgUp
TOP Of PAGg@ ... iieivionontenteennononcons . » Home
Bottom of Page........ ettt ittt enneans End
Beginning of Line...... Che e et et sesens e Control <-
End of Line..... e esescesosassossossans ... Control ->
D Open a line....c.ceieiintnecnennns e eenne Insert
Shapes Page Keys
l Quit, leave PAgC .vcectesecococnnnns Ceenan Esc
! 1 T Control-F
On the flip side of the page only:
Next Screen (Mext Shape) «e.e.veens Cees s PgDn
Previous Screen (Previous Shape) PgUp
Up, Down, Left, Right......ccivevv.n ++s0s.. Arrow keys
Cut....cev0 et ee e e e s e st ettt et es e se00nas Fn-2
l COPY ¢ ttenenonnonnans teiesacicsersnssens «o. Fn=-3
= 0] o Ceeecens Fn-4
Make or Erase Block...... veeaen tessa e Space Bar
9 Graphics Keys
Turtle-Move...... Ceeceearssosens teseaesnes Fn-9
| Label it ittt ioinennnenns et iasanns vesaen Fn-8
Leave Label or Turtle- Move Esc

S 5 S M R SR SIS I D MRS 60 S0 MR IR D D SRS G aes G Gnil W VL e S S S S S S S A ASS S SED e S S S e e S WA SN NS e M M S N S S S . e

Top of Page. Gt e ettt tenens i ertaeseens Home
Bottom of Page.. ce.ee. End
Remove a Page (Erase to erd of line)...... Fn-6

101

SUMMARY OF KEYS: COMMODORE

. T P D s WD ED A LM GED s S s M Gt Gee WS GED EED R e GER GD Gov PG TEY MR GED BE S G GED GED D ED GED G0 S D G Gb GED P €U GED S SN SES M) SN GED My G SRS SN GS S GER iw e ewe

" - S SN EEY WIS GED S NG GED D s AED G GED AN NN GED GED GED MY G SR SEU SN NS GED P GED GED ME GRS GED GED GG SED GED SRS D G G SED SED GED GED GED GED SN SED 47 0 S G G M @4 e GED el G wmm S

Flip.oieeiiiieieionisnessonanonosonnennns Commodore-F

10 2 e eeesanen s Commodore-U

15037) Commodore-D
Quit, leave PaAge....titeveesssannnn ESC

S OP . ittt ntsneensnssnnssssssssansnnes Commodore-S Help
....................................... Commodore-0

SeleCt .. ittt ittt osaonas ceeeeen Commodore-1
CUL vt e ettt eeeeeeessocssoessssnosaassas Commodore-2
COPY v sevonssontasssenssssssssssssssnas Commodore-3
== ol = S Commodore-4
Erase to End of Line....evveviieeeeenns Commodore-6
NeXt SCreeNivveeeesttseensonssasnssns Commodore -->
Previous SCreen....eceeeeeesneascne «+.. Commodore <--
Top of Page...... S 4ss s ssentasacsnrane Commodore-Up Arrow
Bottom O0f Page@ ...t iviveninnnececennnnsns Commodore-Down
Arrow

Beginning of Line.......oiiviviienennns Commodore-B
End of Line....vtvivieoteeteeasnannnnas Commodore-E

Quit, leave PAgC . ..ot tvsseestsaonsssons Esc

2 e 1 R Commodore-F
On the flip side of the page only:

Next Screen (Next Shape) ...c.cieeveesn. Commodore -->

Previous Screen (Previous Shape) Commodore <--

Up, Down, Left, Right....¢c..tcieviecenn Arrow keys

00 o Commodore-2

(070} =3¢ Commodore-3

= B o = Commodore=-4

Make or Erase BloCK...:iieevesonnnnnesns Space Bar

N et D B G e SER B G SN e D M mad GED SN GED EEP AN D G G G S G G G W00 G Goh G GED GED MED GED D SE GED e) Ghb GED GG D SN GED SEp GEP SEP GED SN SED MED GEA GES Ale M SN Gma S S

UL lEe=MOVE ¢t vt vt e vonesoonnecasse e e eaen Commodore-9
7Y o 1= Commodore-8
Leave Label or Turtle~MovVevsceeeese Esc

RS LR s G D NS D S EEP e SR D EER S GED SR GmA e GED EE S MED EE GED SR SEp G FM EE SR SED GED G SR ARG G S SN GED SED SN Wme D SED SED SES EED G Gmd GEP e She SRV EED G EED GED Gan G Gma S

Top of Page..... Ceeececiseseseanans «... Commodore-Up Arrow
Bottom 0f Page .. .ivivevinnenncnnnnnnens Commodore-Down
Arrow

Remove a Page (Erase to end of line) ... Commodore-6

102 Q

"

2

A S s 2

s A muh s S O

KFYBOARD STICKERS

COMMODORE 64 @ (2 25 &
sty < DRl S

FuP PA Fl viQUS

QG CRSR«

@@‘@@@ T BEE |

PY P, MOVE M
cuT co ASTE sm; 1;8 A LABEL TURTLE-MOVE ELP ESCAPE

Q@» Tt Wm0 0 cuts Curiy Pquo PgOn W

3
]
X:
1
L}
3

™ ad ({ REK3
«® N LK IWN FUP T PAEVIOUS NEXT

@ Gumpty O s vy, W
[1] [1] [[£9 [4L) 7
p m =) -
/ »
| N A (2
cur copY PASTE LABEL TURTLE-MQVE MELP

IBM PC jr @» fn 8 Cin 0 cnf cnu IR

sT0P OOwWN fLP up PREVIQUS NEXT

SCA AEEN
[TX] Fn & En § [ZX] En 0
Y G
- N 3 (=
T pY PAST RASE T ABEL TURTLE-MOVE NHELP
SELECT cu Co STE Es‘o gﬁt '85 LABEL €-MQ J

Apple IIe and IIc @ S5 S

%mmw * 110 ° g i ° 3 @ [:Z: Q Fu; U" pg%’ §£§ EEN _/

m;‘:-“"::- d\d [(X (1) €0 \
EFEL & =E

SELECT CuT COPY PASTE ERASE TO LAGEL TUATLE-MOVE WELP)

These keyboard stickers are available for Logo Computer Systems, Inc.
Call the sales office at 1-800-321-566 for information on how to order.

103
a4

SHAPES PAGES

11 13 14 15 16 17 18 19 2@
.. <wRrR=2L A

22 23 24 23 26

wﬁ%%%9&%%%

INTERMEDIATE

1 2 3 4 S5 6 7 8 95 1@
PrEillwsg S vwHiMmSs
11 12 13 14 15 16 17 18 19 20

- R xS

22 23 24 25 26 27 28 29 39
@@%%

PRIMARY

104

100

Y— P - “——

—— — “— ——

QUICK REFERENCE

LogoWriter Primitives and Special Words

Screen

CC - Clear Command center
CG - Clear Graphics

CP - Clear Page

CT - Clear Text

Scrapbook

CLEARTOOLS

CONTENTS

DOS (IBM only)

ERPAGE pagename - ERase Page
FLIP

FRONT?

GETPAGE (GP) pagename
GETSHAPES
GETTOOLS pagename
LAST PAGE
LEAVEPAGE

LOAD pagename

LOCK

NAMEPAGE (NP) pagename
NEWPAGE

PAGELIST

RESTORE

SAVEPAGE

SHAPES

TOOLLIST

UNDO

UNLOCK

Workspace
RECYCLE
SPACE

Pausing
WAIT nunber

Sound
TONE frequency time

Input

BUTTON? button number
KEY?

PADDLE nwumnber
READCHAR

READLIST (RL)
READLISTCC (RLCC)

105
101

Assigning
CLEARNAME wordlist
CLEARNAMES

MAKE name word!list
NAME wordl/list name
NAME? word
PRINTNAMES
SHOWNAMES

THING namnes

Disk

DISK
SETDISK letter

Events

CLEAREVENTS
WHEN lerter list to run

Printer Commands
DSPACE ~ Double SPACE
PRINTSCREEN
PRINTTEST
PRINTTEXTS0

SSPACE - Sincle SPACE

Special Words
END

FALSE
STARTUP
TO

TRUE

Math (Note: all are reporters)

/
<

IV %4

ARCTAN number
COS degrees

INT number
RANDOM number
ROUND number
SIN degrees

SQRT number

* % 3= & &

* # % & #

Flow of Control/Logic
AND truelfalsel truelfalse2

IF truelfalse list to run

IFELSE truelfalse list.to.run 1 list.to.run2
NOT true/faise

OR truelfalsel truelfalse2
OUTPUT (OP) wordilist

REPEAT number list.to.run

RUN list.to.run

STOP

STOPALL

Graphics

ALL

ASK turtleiturtle list list.to.run
BACK (BK) number

BG

CHANGECOLOR numbers
list of three numbers (GS version)

CHARUNDER - CHARacter UNDER

CLEAN

COLOR

COLORUNDER

COLORVALUE number (GS version)

CURSORPOS

DISTANCE list of two numbers (GS/IBM)

EACH list.to.run

FILL

FORWARD (FD) nwnber

HEADING

HOME

HT - Hide Turtle

LABEL word/list

LEFT (LT) number

PD - Pen Down

PE - Pen Erase

POS

PU - Pen Up

PX - Pen Reverse

RESETCOLORS (GS version)

RG - Reset Graphics

RIGHT (RT) number

SETBG number

SETC number

SETH number

SETPOS [xy)

SETSH number

SETX number

SETY number

SHADE

SHAPE

SLOWTURTLE (GS version)

ST - Show Turtle

STAMP

TELL turtle/turtle.list

TOWARDS list*

WHO

XCOR

YCOR

* # # & #

% # % # &

Text Editing/Words and Lists

ASCI char

BOTTOM

BUTFIRST (BF) word/list
BUTLAST (BL) word/list
CB - Cursor Back

CD - Cursor Down

CF - Cursor Forward
CHAR

CLIPBOARD

COPY

COUNT

CU - Cursor Up

cur

DELETE

EMPTY? word/list

EOL

EQUAL? word/list! word!list2
FIRST word/list

FOUND?

FPUT word/list list
IDENTICAL? word/list] word/list2
INSERT word/list

ITEM number word/list
LAST word/list

LIST word/list! word!lisi2
LIST? word/list

LPUT word/list list
MEMBER? wordilist! word)list2
NEXTSCREEN
NUMBER?

PARSE word

PASTE

PRESCREEN

PRINT (PR) wordilist
REPLACE word! word2
SEARCH word

SELECT

SELECTED

SENTENCE (SE) word/list! word!list2
SETEXTPOS number
SETTC number (GS version)
SHOW wordilist

SOL - Start Of Line

TAB

TC (GS version)
TEXTLEN

TEXTPOS

TOP

TYPE wordlist
UNSELECT

WORD word! word2
WORD? word/list

Sl Ak ams

mis S S S e Ssss e S

TEP— ey —

L]

ProDos Primitives

BYE

COPYFILE name/pathnamel namelpathname?2
CREATEDIR pathname

DIRECTORIES

ERASEFILE name/pathname

FILELIST

LOADPIC name/pathname

LOADTEXT nameipathname

ONLINE

PREFIX

RENAME name/pathnamel namelpathname2
SAVEPIC name/pathname

SAVETEXT

SETPREFIX pathname

SETSLOT

SLOT

.VERSION

System Modifying Primitives
BLOAD name/pathname address
BSAVE namel/pathrame address length
CALL address

.DEPOSIT address byte

EXAMINE address

IBM DOS Primitives

CHDIR name/pathname

COPYFILE name/pathnamel name/pathname2
CURRENTDIR

DIRECTORIES

DOS

ERASEFILE name/pathname

FILELIST

LOADPIC name/pathname

LOADTEXT name/pathname

MKDIR pathname

RENAMEpathname name/pathnamel name/pathname2
RMDIR

SAVEPIC name/pathname

SAVETEXT

.VERSION

* Primitive is a reporter (Operation).
Primitive is either a command or a reporter.

T S Je——— SpEm—— S We—

REFERENCES

Abelson, Harold and diSessa, Andrea. (1980). Turtle geometry. MIT Press: Cambridge,
Massachusetts.

Beyer, B. K. (1983). "Common sense about teaching thinking skills." Educational Leadership,
41, (November), pp. 44-49.

Beyer, B. K. (April 1984). "Improving thinking skills: Practical approaches." Phi Delta Kappan,
556-560.

Beyer, B. K. (March 1984). "Improving thinking skills: Defining the problem." Phi Delta Kappan,
486-490.

Birch, Alison. (1986). The Logo project book: Exploring words and lists. Terrapin, Inc.,
Cambridge, Massachusetts.

Clayson, James. (1988). Visual modeling with Logo: A structured approach to seeing. MIT Press:
Cambridge, Massachusetts.

Cory, Sheila and Walker, Margie et. al. (1985). LogoWorks: Lessons in Logo. Terrapin, Inc.,
Cambridge, Massachusetts.

de Bono, E. (1973). Lateral thinking: Creativity step by step: Harper Colophan Books, Harper
and Row: New York.

ERIC. (December 1984). "Improving students’ thinking skills." The best of ERIC: ERIC
Clearinghouse on Educational Management, University of Oregon: Eugene, Oregon.

Fredericksen, N. (1984). "Implications of cognitive theory for instruction in problem solving."
Review of educational research, 54 , 363-407.

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences: Basic Books: New
York.

Gardner, Howard and Hatch, Thomas. (November 1989). "Multiple intelligences go to school:

Educational implications of the theory of multiple intelligences." Educational researcher, 18,
Number 8, 4-10.

Glatthorn, A. A. and Baron, J. J. (1985). "The good thinker." In Arthur Costa, ed., Developing
minds: A resource book for teaching thinking. 49-53. ASCD.

Goldenberg, E. Paul and Feurzeig, Wallace. (1987). Exploring language with logo. MIT Press:
Cambridge, Massachusetts.

Harvey, Brian. (1984). Computer science Logo style: Volume 1: Intermediate programming MIT
Press: Cambridge, Massachusetts.

Harvey, Brian. (1986). Computer science Logo style: Volume 2: Projects, styles, and techniques.
MIT Press: Cambridge, Massachusetts.

109 1 0 L;

Harvey, Brian. (1987). Computer science Logo style: Volume 3. Advanced :opics. MIT Press:
Cambridge, Massachusetts.

Mayer, R.E. (1977). Thinking and problem solving.: An introduction to human cognition and
learning. Scott, Foresman, and Company.

Moursund, David G. (1990). Getting smarter at solving problems. International Society for
Technology in Education: Eugene, Oregon. An extensive Teacher’s Manual is also available.

Papert, Seymour. (1980). Mindstorms: Children, computers and powerful ideas. Basic Books,
Inc.: New York.

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton University
Press.

Rubinstein, M. F. (1986). Tools for thinking and problem solving. Prentice-Hall.

Specht, Jim. (1990). "Mathematics and writing-another look."” The Writing Notebook.

Steinberg, E. R., Baskin, A. B. & Hofer, E. (1986). "Organizational/memory tools: A technique
for improving problem solving skills." Journal of educational computing research, 2 (2), pp.
169-87.

Sternberg, Robert. J. (1988). The triarchic mind: A new theory of human intelligence: Penguin
Books.

Sternberg, Robert. J. (1990). "Thinking styles: keys to understanding student performance." Phi
delta kappan, Volume 71 Number 5, pp. 366-371.

Torrance, E. P., & Torrance, J. P. (1972). Is creativity teachable? Phi Delta Kappa educational
foundation: Bloomington, Indiana.

Turkle, Sherry. (1985). The second self: Computers and the human spirit. Simon and Shuster,
Inc.: New York.

Watt, Daniel. (1984). Learning with Apple Logo. McGraw-Hill, Inc.: New York.

Watt, Molly & Watt, Daniel. (1986). Teaching with Logo: Building blocks for learning. Addison-
Wesley Publishing Company: Menlo Park, CA.

Weir, Sylvia. (1987). Cultivating minds: A Logo casebook. Harper & Row: New York.

Whimbey, A. (1984). "The key to higher-order thinking is precise processing." Educational
Leadership, 42, (September), pp. 66-70.

Wickelgren, W.A. (1974). How to solve problems: Elements of a theory of problems and problem
solving. W.H. Freeman and Company.

Yoder, Sharon K. (1990). Ir.troduction to programming in Logo using LogoWriter. International
Society for Technology in Education: Eugene, Oregon.

110 -
1 4 v

() e e sressenee 23
[o 23
[e sesessresnen 23
ASCIL c.oooiiirinrcrcnrnernrennennesnesnesnens 74
BACKioiiininiennnnanninnssnesnsssssesnones 13
Background

COLOT Of ...oveverrriireesinressnesnnrenennees 28
BK oo ere s 13
Blank lines.......ccccoceevvnnevnnencnnerensneecnenne 74
Blank Spacesc.cvverisesiinenins 11,74
Bottom up programmingcceevveenes 82
Bracesccccvvviinniininnninninnnnescnennneennes 23
Brackets

SQUATEcocvrvurirnnnenreenrssnssenssossessses 23
Brainccoovveenenneenennennne e 6
Breaking a problem into small parts ...77

UES corveiiireernaeersneessaensaressannnssssassssns 2,15

Building on the work of others............ 39
Building on your own work 45
CG it 13
CHARooovvrririrerneninnnresesesresesses 74
Clear TexXtcoceveevrnruenenrersuereensecsuerese 29
COlLOT ..oviiiiiiiiiiniineensteneeseesneesseessesnns 27

backgroundcccevevrenreveerenennenne 28

none visiblecccoeeverrenrenininnenne 31
Command centerceeeereenennnes 10, 14
Commands.......ccovvennieecniensnennneennesnes 12
COMPULETcovvviriinnintinnresennseenrensennens 1
Computer modelcocoevrrecrrevenrenne 32
Computers

as problem solving tools................ 24
COntents Pagec.ccveverrerverrenrerrenrensennens 9
COITeCting eITOorScccevvreerverreernervenens 14
CT e sesae e 29,56
CUTSOT ..cvvivveriinienrenrenenresseensessensenne 10, 63

how to distinguish mode 66

1OSE ..eeerrecerrecinreecre e nne e 23
Dealing with complexity 59
Debuggingccovevvvervennrenrivenrenen 2,15
Delete

PALE .ooiirriiiiinriinnenneenstenneesneennees 15
Domain specifiCityccoerrvervrrerenns 16

ANd MUSIC...ccovvrrrrnrerenrnrerverneniereennens 2
DOWN KEYS ...ceereirririnreenneerennieeveenennes 56
Drawing in Color......ceevviveivvivenrersrennens 27
Drawing with the turtleccoeuiveee. 12
DSPACE.......ccccovnrnrernnrerennrenerenenne 57

INDEX

111

END ...ccovvtiviinrnieninrennenenneenesesneeesesnens 64
Erase toend of line.....c.cccvecnveveennnenne 67
Errors
COITECHNE ..covureerrrerrrrescrnescrnessnnesnns 14
in computer programs.........c.cceveeveene 2
10GIC c.ovviviiiiiiiiiiiiiie 15
317 117 >, SRR 15
that the computer can detect.......... 15
that the computer cannot detect.....15
ESCKY .ooviririnrinrenrenrnnnnnesesssisiesnennes 13
Far transfercccvvevvnniennnnennnnneninne 3
FD ovotiiiitinenenireeensensensessnensessessessones 12
Feedback while doing computer
Programmingcceeveveerervessereerenes 2
Lt et sresnesnenees 49
probleras withcc.cceeeerenene 50,51
FLIP KEYS ..oveivrenreiienieereneenes veeenens 43, 63
FORWARDcccoovvininininenensnnennes 12
Front of the pagecccccevverververcnnnns 63
Graphics
mixing text and..........coceervevrernerennes 55
Hand tracecocvvevneene wvvveneenenenenne 67
Headingccccovvvvvees evverrvenneneenvenvenenn, 39
Hide Turtleccovveveeveeneenneeneneennennes 21
HT oooriiiiininecnnenenennnnennennensensennens 21
Idon't know how to.......cceceverenreennen. 11
Immediate modec.coevvrvenrenns 63, 66
INSERTocoovrivrrenrernnenrenenesenrennnnenee 74
INSITUCHONS ..vevveverereerrenreecreenneereernennense 12
number per line.........c.cecerevernrrerenee 77
Intermediate LogoWriter.........cccvvee. 35
Journalcccovveiviiniennneniiinnennnnee e 5
ENTIES .vovvevrerreerrenrerreersrnessesseosseraesons 5
Journaling
as an aid to metacognition 6
Keyboard stickersccceevuenrerreenuennens 10
KNOW coiiiiiiiiiennreccrrcnieccneecsnecsanes 1
KNOWINE ...ccvvvriiiiiiniiriinenieisseesseessenns 1
Learningc.ccovvevvneennneennneeennneenneennnees 1
trial and erTorccccveeeervevenerennennas 15
LEFT ...oooiiinineninenenenenecnnennennennnone 13
LOZIC CITOTSceovvvvrreenienrenieceeeeennen 15
L0ogo Exchange.............ccovveeveervnnneinnnes ii

1ng

LogoWriter ii

Intermediateccocvevviinicciinniiinnnn 35

Primaryccocovvvnnnninneninennenninnen 35
LOSt WOTK ...covererrrenriisnnnssnesneniennennnes 14
LT crereecrenreneennenesnesssnessssnesssssessesses 13
Main procedureccevneinneinnennnee 75
Mental modelsccccoeeivveniencninnecnnnes 39
MELaCOENALEcccevrerrerenisenensisenennenn 5
Metacognition.........co.cevviiiininineninnenn, 6
Middle out programmingec..... 82
Mistakes

as part of learningcoovevneninnens 15
Mixing text and graphics.........ccccevvenne. 55
Modelingccovvevvenninnnenninenniinnienennes 32
MUSIC c.oveirinniiniiiinienieinsinesneenees 87

chart of NOtescevvervinerivessvnnennns 90
NAMEPAGE........c.cccconnnnennnenninensnennes 10
Near transfer,cooevneinnneninnecinniinn, 3
NEW PAGEcccocvvinrinninnnnnennennnsenne 10
Next SCreencevviniinnineiniinnneinnen 43
Notes

Chart Ofcccovverevveerreennennernencnneninens 90
NP e e esesnenns 10
Page ..ccvevverrirrerreniis e e 10
Page, renamingcccovvenennneiseennnnnns 22
Pages...cccovviirinriennirnnrienienieessne e s nnee 9

CIASINE cvverervrernresossiessienseessenssesssness 67
Pages, SAVINEcccovevrerrinrenrenrenenassens 14
Papert.......ccovmiiiiinninin 3
Parenthesesccovvvvieiiinennerivensinnnnnes 23
PD ittt snessesans 13
PE .ot sessessessens 14
PeN ittt 12

TUTHIE .oooverrinrenierrenresesrenseessessenanens 10
Pitch

problems withccceceeververiveennnens 01
Playing turtleccccevvevveerveennenne 15, 67
Polishing your program..........ccceeveunene 82
POLYa...ocorintininncininrenianenennesennnn, 78, 84

four-step plan.........ccccevvrvnvervennnanen 78
Previous Screencoceevevvivvniennnenenne 43
Primary LogoWTitercccocnininnennnns 35
Primitivesccccccemvvevenreneneneeneenncnens 12

number ofcccovevirnnienrenrenienenne 23
PRINT ...oviviniiniinnienenieneneereinens 29,73
Printingcccovevvevvenvenreneeneneneneenionnes 13
Printing textcovevrenenrenennrenrnerennenne 57
PRINTSCREENcccconvvrierinrnens 14, 57
PRINTTEXTcccoovverenenenenenvensonnes 57
PRINTTEXT80ccoevvrremerenrerrrrennenes 57
Problem solving strategiesoovennen 84

112

Problem solving Stylesccccvvvisivennes 60
Procedurecocvvenieinninneninienicnnennnennes 64
LSt cvverereenrenrenressnenessnesnnesesnesneenne 76
INAIN .veveerereenrenenesnssesessnesessassaens 75
SUD- cvrreicrrerrecner e eesnessnees 75
{1) 01 IR 76
top-levelcovinniiniiininniineniinie e 75
Procedure tree.........c.ocevvueverenvenenvenennens 75
rules for drawingc.cccoeveeennenne 76
Procedures
CTASINE ..oeovvverrenrneeenrteneennenseeesssennne 67
lengthofcocvvviiiinnnnnniinnnenens 77
more than ONecceveivieeaisneissonnens 71
NAMINEoovvveirerenreeereenreenseessesnesnes 77
not recognized by Logo................. 67
Procedures as building blocks 68
Procedures to solve problems.............. 78
Program
POLShINgcoovirvrenreniiienenensiennens 82
Publishingccoceevvivveniinnneneninens 83
Program design..........ccccovevrenrecnnnnnesnanne 81
Programming
in immediate modecoceeruenenn 66
using procedures...........covvinneiinenns 66
Programming stylecccvvennineionn 82
TUIES fOr .ovevvenrenrennnnninnennennnsnensennens 83
Programs........coccvviinninnninnininienen 1
PU oererenenennesssnssessessessnssnens 13
Quotation markcceevveerenernnenrenennes 11
RANDOMccviirirninninrineeneesnnens 28
Random numbers..........ccccevevininnirinnenns 28
Renaming a pagecoceevvervvenrerieneenne 22
REPEATcocovviimnirinniinienninnnnnnensesnes 19
Repetition
in computer programs..............e..... 24
REPOIETcoviii i iiisiiiicsinenssres snens 30
REPOTTELS ...ovvvveriiinieieniienieninensiennenennns 12
Reset GraphiCs..........coceevvivvivninneveennennes 30
ReEStOrING teXtvvereeerrererveenenveensnennens 59
RG .ot 30
RIGHTcovvviviniinnieneeneneneeneennensens 12
RT et sresresseenennes 12
SAVINE ...oooeiiiiienreneinniinenessereesaaenees 13
PAZES e vvririiinires ettt ssnens 14
Procedures forovvviveneenvenirennens 59
Scraphook diskceevvevevrerecrennneneenens 9,13
SETBG ..ccovvevrerererenrenrineieesseeeseesens 28
SETC ..cnvrviiiirnrieneneneenesesseesseenns 27
SETSH..cooviiniiiiinienennenenenesienssennens 35
SHADE........cconmninnnnnninenenesnnmenvenens 49
problems withcccccevvverernvennne. 51
107

' Shape Thinkingcoovvviriinniininiciiinerinni v 6
ETAINE .vvevveerreeneneenreesseeseesereesossnes 39 TO et s 64
111 { [XSO 35 TONE ..ooovvriiiniinnnnnnnnsisinnneenn 87
‘ Shapes....ccoeiriviviniernineneninieneeenees 35,43 Top down programming........ceeeevereenes 81
making COPIeS.......cccevruereerunsuesunnens 44 Text
1018101411117 SRR 38 mixing graphics andcccocevvune. 55
N SiZe....ocunen et ebtsan 44 on the flip sideocevvineiviniiinnens 75
Shapes DAcccvrereeriisisnimesnones 35, 43 TECOVETINE ...evvvnrriririrerissesvensosnsionens 59
013102 11 TR 44 Top-level procedurecouerevenene. 15
' ShOW TUTLIE c.vevvevvesecrereseessresserenesssens 22 Transfer
Sound effectscoccvirininiininiiiinennas 89 7.1 OO R PR 3
SPACES ..ovvviriinirireniiine s 14 NEAT ..ovvvvererventnrassssesnsssssessoissosnoressons 3
blankcocoevvnininininiiiieniinieinne, 11 Transfer of leamningcoccevvevinennes e
l PrNtNgEcovvverererrnrenenerisenrnssennns 74 TUIHE veoveereereerenreerrnrerenessnesnsssesnes sesess 12
Square bracketsccceevviniiiiinieienes 23 disappearingc.cccovrrerninrennen. 38
SSPACE ..o 57 PlAYING ...coveriviieririnrineniiii s 15
ST 22 Turtle MOVEccovevveevinnnnicnniniesiiinens 22
STAMP ...ttt 35 JEAVING ..oovevienicniiie e 23
problems withccceveevennnn reereeans 38 Turtle move modeccoveveevreverennenne 19
Stamping Turtle shapeccovvineninieniinnnnn. 35
commands 0 USEcceevrererrererrennns 38 Turtle SEPS ...oevvverrrerrnrernrenissesnessenene 14
Stamping the turtle shape 37
Starting LogoWTitercocevvvvenvennennnnns 9 UNDO ..oovirierirenrenrenesressessennnen cvonas 59
Subproceduresocoiiiinniiiiniininen, 75 UP KEYS ..oovvierrirreinrcsisensinieninnieneonnes 55
WHY USE ...veveiinvinnnniinioinnnenissnessnsnes 77
Superprocedure..........cooevvinvenninneniiinnens 76 WALT ..ooiirenrenrnreneneesrensresennes 3, 31
SYNLAX EITOTS ..vvevvnverirircresisisiisieresenes 15 WOrd ProCessorcoeevunrerener oo vunene 55
) featurescoevevveeereniiiinens s 59
WOrd Wrapccceeeeneiimnniinessimnenennnas 56
WIAPPING ...oovvviviiiinriiiisnennisnennessessns 20
l Writing Procedures..........co..... e 63
#
113

108

Add another brick to your Logo base.

ISTE's Special Interest Group for Logo Educators (SIGLogo)
provides you with a broad Logo foundation.

e

Build your knowledge with the latest information on Logo
research, resources, and methods. Expand your Logo alter-
natives through the exchange of ideas, concepts, and tech-
niques.

FEeee—— SE——

Both novice and experienced Logo users will find ccnstruc-
tive uses in their SIGLogo membership.

Join SIGLogo now. Membership includes eight issues of
logo Exchange, the SIGLogo journal. Members are invited
to participate in local, regional, and national meetings and
to contribute to the flow of ideas through the Logo Exchange.
For more information about SIGLogo, contact ISTE.

ISTE, University of Oregon, 1787 Agate St., Eugene, OR 97403-9905, ph. 503/346-4414.

We've taken the first step for you. Randy Boone pulls together the best research, position
papers, product reviews and lesson plans for teaching writing.

Recent articles from, The Computing Teacher and The Writing Notebook will take you yet
another step closer to understanding the issues, problems, and soluticns surrounding the writing
process.

Use Teaching Process Writing with Computers in your university classes, inservice work-
shops, and K-12 classrooms. Your students will make great strides.

For pricing or to order, contact: ISTE, University of Oregon, 1787 Agate St., Eugene, OR
97403; ph. 503/346-4414.

Teach process writing—step by step.

10¢

Works users—seek help.

Practical and useful support is what you'll Microsoft Works for the Macintosh: A Work-
find in Microsoft Works fur the Macintosh: A book for Educators is available for both ver-
Workbook for Educators by Keith Wetzel, Step- sion 1.1 and 2.0. Please specify which version
by-step instructions thoroughly cover all the you need when ordering.
capabilities of MS Works including macros,
spelichecking, and multiple column text and For pricing information or to order, contact:
labels for Version 2.0. While you are learning, ISTE, University of Oregon, 1787 Agate St.,
you'll create usable transparencies, letter- Eugene, OR 97403-9905; ph. 503/346-4414.
head, and other templates for use in your
classroom or at home.

Get help today. Microsaft Works for the Macintosh: A Workbook for Educators from ISTE.

L oy snines. Tanew We've polished up a proven favorite!
edition has been nded t \ R ANA
-t N 1 Y7777

+ mail merge \\\\\=
« integration activities N"F
+ aglossary, and \ 3
+ software applications. ' 3 -
\\\ E: BEGINNING _ . ,k@
Each section provides step-by- = 2V \1 1@
step instructions. Beginning and = egl_ ,
intermediate AppleWorks®users ~ —— = 1 22,
lean word processing, database =3 ‘]P iy
and spreadsheet management, and — = =T o
rinter options. -
printer options —3 S T
Your copy includes adata diskof ’ WORKBOOK
working examples. Add Apple- -
Works for Educatorsto your class- _~ =
room and watch your students *
shine. 7%
,/ // = iade Ratdls
1 %%nfct:rlsg& léniversity 3;? Or;gon. /7 *
ate St., Eugene, 97403, N
ph. 503346-4414, = AT T T AN NN

1y

Look at our
Logo list!

Introduction to Programming
in Logo Using LogoWriter

Introduction to Programming
in Logo Using Logo PLUS

LogoWriter for Educators:
A Problem Solving Approach

Logo PLUS for Educators:
A Problem Solving Approach

Logo users at all levels benefit Irom these
ISTE selections.

The Introduction to Programming books.
written by Sharon Yoder. provide beginners
with a Logo base to build on and experienced
users with a reference to rely on. Both are
excellent resources for teacher training or
introductory computer science classes.

New from ISTE. LogoWriter (Logo PLUS) for
Educators: A Problem Solving Approach takes
Logo learning to new depths. The focus is
entirely on learning and practicing general
problem solving skills while using Logo. Great
for beginning programming experience.
Appendices include keystroke summaries.
turtle shape pictures. and a quick reference
card. Written by Sharon Yoderand Dave
Moursund.

To order. contact: ISTE. University of Oregon.
1787 Agate St.. Eugene. OR 97403-9905: ph.
503/346-4414.

\

Telecommunications: Make the connection.

Whether you want to hook up with a teacher in
Kenya., or a teacher across town. ISTE's Telecommu-
nications in the Classroom will help you make the
connection.

Authors Chris Clark, Barbara Kurshan. Sharon
Yoder, and teachers around the world have done your
homework in Telecommunications in the Classroom.
The book details what telecommunications is how to
l apply it in your classroom. what hardware and

software you'll need. and what services are available.
Telecommunications in the Classroom also includes a
glossary of telecommunications terms and exemplary
lesson plans from K-12 teachers.

Telecommunications in the Classroomis an
[affordabte, informative resource for workshops.
classes, and personal use.

Telecommunicatic s in the Classroom

l Make your connection today with ISTE's

ISTE. University of Oregon. 1787 Agate St.,
L Eugene. OR 97403-9905; ph. 503/346-4414

Finally, a long distance relationship that
won’t brgak your heart.

ISTE offers ten Independent Study courses that get to the heart of learning.
Each course thoroughly covers the title material and is designed to provide staff development and
leadership training. You correspond directly with the course’s instructor by mail, and can receive
graduate credit through the Oregon State System of Higher Education.

Classes offered this year are:
+ Introduction to Logo for Educators
(available for LogoWriter or Logo PLUS)

+ Fundamentals of Computers in Education

* Long Range Planning for Computers in
Schools

« Computers in Mathematics Education

+ Computers and Problem Solving

» Introduction to AppleWorks for Educators
+ Computers in Composition

+ Effective Inservice for Instructional Use of
Computers in Education

« Computer Applications for Educators: An
Introduction to Microsoft Works

+ Telecommunication and Information Access
in Education

Register for classes independently or with a
group. Districts enrolling six or more teachers
receive a fee reduction for each person en-
rolled.

Courses range in price for 3-4 quarter-hours
of graduate credit. You have one year to com-
plete your course.

Start a great long distance relationship today
with an ISTE /ndependent Study Course.

Request an /ndependent Study course
brochure. Write or call:
ISTE, Independent Study CnurseDept..
University of Oregon, 1787 Agate St.,
Eugene, OR 97403-9905
ph. 503/346-2412

1ig

s Jdhas aas S S Ak S et S s e oy AmE B

LOGOWRITER FOR EDUCATORS:

A PROBLEM SOLVING APPROACH

These innovative texts allow educators to approach programming as an arena for learning and
practicing general problem solving skills. Designed as part of a course for inservice/preservice
teachers, they provide a solid introduction to Logo and problem solving for any beginning pro-
grammer. Carefully sequenced instructions ensure a successful beginning programming expe-
rience. New programming ideas are tied to important problem solving concepts. Practical tips
include answers to questions frequently asked by beginning Logo programmers, debugging
advice to help diagnose and problem-solve programming errors, and suggested activities in both
Logo and problem solving. Appendices include summaries of key strokes, pictures of available
turtle shapes, and a quick reference card.

LogoWriter for Educators: A Problem Solving Approach
By Sharon Yoder and Dave Moursund

113 pages, 1990

ISBN 0-924667-72-9

Also Avialable—Logo PI1.US for Educators: A Problem Solving Approach

.

The International Society for Technology in Education touches all corners uf the world. As the
largest international non-profit professional organization serving computer using educators, we
are dedicated to the improvement of education through the use and integration of technology.

Drawing from the resources of commit- Basic one year membership includes

ted professionals worldwide, ISTE eight issues each of the Update newsletter
provides information that is alwayvs and The Computing Teacner, full voting
up-to-date, compelling, and relevant to privileges, and a 10% discount off ISTE
your educational responsibilities. books and courseware.

Periodicals, books and courseware,
Special Interest Groups, Independent Study ~ Professional one year membership

courses, professional committees, and includes eight issues each of the Update
the Private Sector Council all strive to newsletter and The Computing Teacher,
help enhance the quality of information four issues of the Journal of Research on
you receive. Computing in Education, full voting

privileges, and a 10% discount off ISTE
It's a big world, but with the joint efforts books and courseware.
of educators like yourself, ISTE brings it
closer. Be a part of the international
sharing of educational ideas and Join today, and discover how ISTE puts
technology. join ISTE. you in touch with the world.

ISTE, University of Oregon,
1787 Agate St., Eugene, OR 97403-9905.
ph. 503/346-4414

f-f
10

