This module is one of a series of instructional guides developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees whose basic technical skills are in need of upgrading. The module is a 27-hour overview course on workplace integration intended to develop competencies in the following skill areas: identifying the basic elements that make up an integrated environment; understanding the hardware/software solutions currently in use; understanding the importance of the human resource in an integrated environment; and analyzing the role of integration in today’s workplace. The six units cover the following topics: introduction to a changing world in manufacturing; the business enterprise in four areas—marketing, engineering and research, production management, and production; and strategy, planning, and implementation of integration. The manual serves as a student outline and as an instructor guide. It includes information sheets, role-playing exercises, fill-in forms, and other learning activities. (KC)
PROJECT T.E.A.M.
(Technical Education Advancement Modules)
FUNDAMENTALS OF WORK PLACE INTEGRATION

GREENVILLE TECHNICAL COLLEGE

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)"
PROJECT TEAM
TECHNICAL EDUCATION ADVANCEMENT MODULES

INSTRUCTIONAL MODULE:
FUNDAMENTALS OF WORK PLACE INTEGRATION

Developed by:
Vicki Kraeling

Funded by:
Cooperative Demonstration Program CFDA No. 84.199A
U.S. Department of Education
1989-1990
(Federal share $280,345 [75%]; College share $133,650 [25%])
Introduction:

The purpose of this manual is to serve as an instructional guide for the TEAM Grant module Fundamentals of Work Place Integration.

Fundamentals of Work Place Integration is a twenty-seven hour overview course intended to develop competencies in the following skill areas:

- Identifying the Basic Elements that make up an Integrated Environment
- Understanding the Hardware/Software Solution Currently in Use
- Understanding the Importance of the Human Resource in an Integrated Environment
- Analyzing the Role of Integration in Today’s Work Place

Overview of Project TEAM:

Project TEAM (Technical Education Advancement Modules) is a program targeted toward the unemployed, underemployed, and existing industrial employees who are in need of upgrading basic technical competencies. The program seeks to give adequate preparatory educational opportunities in generic technical skill areas and to create a public awareness of the need for these basic skills. Curriculum content was determined by an assessment team of local industrial employers. Their evaluation resulted in the development of 15 instructional modules; some of which may be industry specific, but most of which are applicable in and necessary to a majority of industrial settings. The modules may be used collectively or as a separate curriculum for a specific course or courses. The material contained in each manual will serve as a student outline and as an instructor guide which may be used selectively or in its entirety.
COURSE OUTLINE

I. INTRODUCTION TO A CHANGING WORLD IN MANUFACTURING

II. THE BUSINESS ENTERPRISE—MARKETING

III. THE BUSINESS ENTERPRISE—ENGINEERING AND RESEARCH

IV. THE BUSINESS ENTERPRISE—PRODUCTION MANAGEMENT

V. THE BUSINESS ENTERPRISE—PRODUCTION

VI. STRATEGY, PLANNING AND IMPLEMENTATION FOR INTEGRATION.
FUNDAMENTALS OF INTEGRATION IN THE WORKPLACE

MODULE I

INTRODUCTION TO A CHANGING WORLD IN MANUFACTURING

TIME REQUIRED: 6 HOURS

TEXT REFERENCE: INTEGRATED MANUFACTURING, ERIC GERELLE AND JOHN STARK, PP. 1-26.
A CIM MODEL, ROBERT M. THACKER, PP. 1-7/

OBJECTIVES: UPON COMPLETION OF THIS UNIT, THE STUDENT WILL BE ABLE TO:

IDENTIFY A MODERN MANUFACTURING ENVIRONMENT.

DESCRIBE THE DIFFERENCES BETWEEN A TRADITIONAL MANUFACTURING ENVIRONMENT AND AN INTEGRATED ENVIRONMENT.

EXPLAIN HOW CHANGE IS AFFECTING THE PRESENT MANUFACTURING ENVIRONMENT.

RELATE THE CONCEPT OF CHANGE TO PRACTICAL SITUATIONS IN THE WORKPLACE.

LEARNING ACTIVITIES: VIEW VIDEO PART II -CIM IMPERATIVE, A STUDY OF THE IBM PLANTS 20:20 MIN.

GROUP DISCUSSION TOPIC: HOW IS CHANGE AFFECTING YOU IN YOUR WORKPLACE?

READ CHAPTER I INTEGRATED MANUFACTURING
MODULE I OUTLINE

INTRODUCTION TO A CHANGING WORLD IN MANUFACTURING

I. OUR CHANGING WORLD
 A. CAUSES OF CHANGE
 B. EFFECTS OF CHANGE
 C. RESPONSES TO CHANGE

II. TRADITIONAL MANUFACTURING ENVIRONMENTS
 A. PAST PRACTICES (1950-1960)
 B. PRESENT MANAGEMENT PRACTICES
 C. IMPLICATIONS FOR TODAY
III. THE INTEGRATED ENTERPRISE

A. ORGANIZATION CONCEPTS

B. LEADERSHIP

C. IMPLICATIONS

STUDENT NOTES:
TODAY'S MANUFACTURERS FACE MANY CHALLENGES.

INCREASED COMPETITION BOTH DOMESTIC AND INTERNATIONAL.

SHORTER PRODUCT LIFE CYCLES.

RISING LABOR AND RAW MATERIAL COST.

NEW TECHNOLOGIES.

ORGANIZATIONAL CHANGES.

and many other challenges in the manufacturing sector.

In order to meet these challenges, companies must seek new ways to respond more quickly to the market place with quality products. Industry needs new ways to reduce product costs, to shorten lead time, and to reduce inventories. In the past, the traditional way to achieve this was AUTOMATION. Today many companies use automation on the plant floor through CAD/CAM, CNC and other computer aided tools. However, companies now realize that the total operation needs to communicate and share information. Integrating the workplace includes not only the functional areas of a company, but the areas that support these functions. Sharing information requires systems that enable the different elements of enterprise to work as if they "were in the same room".
CIM A Very Old Concept

Earliest Approach To Manufacturing:
- Wholly Integrated Approach
- Craftsman Performed all Task
- Tool Used to Accomplish Integration was Craftsman's Mind

Late 1700's – 1800's Technological Advances
- Led to Specialization
- Led to Demise of Integration
- Led To Quality Control
- Led to Production Control
- Remains the Norm in Manufacturing

Mid 1980's Computer Integrated Manufacturing
- New Version of Total Integration
- Computer Allows Total Integration Rather than Craftsman's Mind
General definition of CIM is:

Any computerized manufacturing system in which numerically controlled machines are joined together and connected by some form of automated material handling system

- Human Involvement with CIM system
 - Loading
 - Unloading
 - Changing tools
 - Setting tools
 - Continuous maintenance
 - Occasional repair
Types of CIM Systems
Types of CIM Systems

Special Systems

Flexible Manufacturing Systems

Manufacturing Cells

Least Flexible
Most Volume

Most Flexible
Least Volume

South Carolina CIM Consortium

Introduction to CIM
WHAT IS CIM?

"IT'S LIKE WE'RE ALL WORKING IN THE SAME ROOM".............

Computer Integrated Manufacturing simply means manufacturing is based on a common database. In a computer integrated system, the database used for designing or machining is also used for planning the process and creating the bill of materials, materials requirement planning (MRP), scheduling, and many other functions necessary to get the product out the door. The database is shared throughout the organization and is easily exchanged. All the functions are interdependent and their interaction is continuous. Any change or revision to one of the functions automatically affects every other element within the organization.

All areas have up-to-the-minute information on every aspect of the manufacturing process.
THE KEY PROBLEMS IN MANUFACTURING TODAY.

SHORT TERM THINKING/NO FORWARD VISABILITY
(merger mentality)

ALWAYS BEHIND
(sales promises/behind schedule purchases and mfg. orders)

CRISIS MANAGEMENT
(Too little planning/reaction is a way of life)

TOO MANY BUFFERS
(just-in-case vrs. just-in-time)

BAD DATA
(No interaction between functions)

NO REWARDS FOR THE TEAM PLAYER
(climbing up and over someone mentality)

STUDENT NOTES:
CIM = COMPUTER INTEGRATED MANUFACTURING

The integrated use of computers in all phases of the business enterprise.

JIT = JUST IN TIME

A philosophy of eliminating all waste (inventories) etc. in the manufacturing operation.

TQC = TOTAL QUALITY CONTROL

Continuous improvement from idea to action in the enterprise. Quality is inherent in the process—not inspected in at the final step.

MRP II MANUFACTURING RESOURCE PLANNING

The total MRP system (material requirements planning), includes strategic and financial planning.

STUDENT NOTES:
INTEGRATING THE WORKPLACE: MAJOR OBJECTIVES

. FLEXIBILITY—REDUCED LEAD TIME OR CYCLE TIME
. IMPROVED USE OF RESOURCES ... FROM DESIGN TO CUSTOMER

SUPPORTING INTEGRATION OBJECTIVES

. SHORTEN DESIGN CHANGE TIME
. SHORTEN PROCUREMENT/MANUFACTURING TIME
. LOWER PRODUCTION COSTS
 MACHINES
 PEOPLE
 OVERHEAD/SUPPORT
. IMPROVE ASSET PERFORMANCE
 PEOPLE
 INVENTORIES
 WCRK IN PROCESS
 EQUIPMENT/PLANT
. TOTAL QUALITY IMPROVEMENT
. CUSTOMER SERVICE IMPROVEMENT/MARKETING RESEARCH
. LONG TERM COST/PROFIT EMPHASIS
. ORGANIZATIONAL CHANGES ENABLE CREATIVITY
WHY INVEST IN INTEGRATION?

RAW MATERIALS ----> FACTORY <----- FINISHED PRODUCT

ADDING VALUE
(MANUFACTURING)

COSTS OF ADDING VALUE

DIRECT

. STORAGE
. SCRAP LEVELS

INDIRECT

. HIGH INVENTORY
. SPACE UTILIZATION

TIME WAITING

. CONVENTIONAL JOB SHOP - 95%
 . TIME LOST TO VACATIONS ETC. - 33%
 . TIME LOST TO INCOMPLETE USE OF SECOND AND THIRD SHIFTS - 44%
 . TIME IDLE - 2%
 . TIME LOST FOR SETUPS, LOADING GAGING - 12%
 . TIME LOST FOR CUTTING CONDITIONS - 2%
STRATEGIES FOR MANUFACTURING

1960 SAFETY STOCK

1970 MRP

1980 JIT

1990 CIM

2000 WORLD CLASS MANUFACTURING........CIE........CIE.............

"IT'S LIKE WE'RE ALL WORKING IN THE SAME ROOM".
FUNDAMENTALS OF INTEGRATION IN THE WORKPLACE

MODULE II

THE BUSINESS ENTERPRISE-MARKETING

TIME REQUIRED: 6 HOURS

TEXT REFERENCE: INTEGRATED MANUFACTURING, ERIC GERELLE AND JOHN STARK, PP. 29-30, AND PP. 81-104.

OBJECTIVES: UPON COMPLETION OF THIS MODULE, THE STUDENT WILL BE ABLE TO:

EXPLAIN WHAT THE FUNCTIONS OF MARKETING ARE IN A BUSINESS ENTERPRISE.

DESCRIBE HOW INTEGRATION CAN LINK THE COMPANY'S MARKETING OBJECTIVES WITH THE OBJECTIVES CONCERNED WITH MAKING PRODUCTS.

LEARNING ACTIVITIES: READ THE TEAM MODULE MATERIAL

PARTICIPATE IN GROUP DISCUSSION

BEGIN THE UNIT PROJECT CHART

VIEW THE CIM DEMO/MARKETING FUNCTION.
MODULE II OUTLINE

THE BUSINESS ENTERPRISE - MARKETING

I. A BROAD DEFINITION OF MARKETING

II. MARKETING OBJECTIVE
 A. EXTERNAL CUSTOMER
 B. INTERNAL CUSTOMER

III. FUNCTIONS
 A. MARKET RESEARCH
 B. FORECASTING
 C. SALES
 D. CUSTOMER SERVICE
 E. PERFORMANCE TRACKING
 F. SALES ANALYSIS
 G. ADVERTISING AND PROMOTION
 H. SALES CHANNELS AND DISTRIBUTION
IV. DATA FLOW-MARKETING
A. INPUT FROM BUSINESS MANAGEMENT
B. INPUT FROM CUSTOMER
C. OUTPUT TO CUSTOMER
D. OUTPUT TO PRODUCT DEVELOPMENT
E. OUTPUT TO CUSTOMER SERVICE ORDERING
F. OUTPUT TO MASTER PRODUCTION PLANNING

V. CUSTOMER ORDER SERVICING
A. ENTERING, TRACKING AND SHIPPING SALES ORDERS
B. PRODUCT QUOTES
C. CREDIT CHECKING
D. PRICING
E. ALLOCATING ORDER QUANTITIES
F. DISTRIBUTION SHIPMENT GUIDELINES

VI. DATA FLOW CUSTOMER ORDER SERVICING
A. INPUT FROM ORDER AND FORECASTING
B. INPUT FROM CUSTOMER
C. INPUT FROM PRODUCTION PLANNING
D. OUTPUT TO ORDER ALLOCATIONS
E. OUTPUT TO CUSTOMER
F. OUTPUT TO SHIPPING
G. OUTPUT TO PRODUCTION ENGINEERING
VII. INFORMATION TECHNOLOGY IN MARKETING

A. TRADITIONAL APPLICATIONS

B. MEASURING COSTS AND BENEFITS

C. TECHNICAL APPROACH VRS. END-USER
CIM ENTERPRIZE WHEEL

THIS MODEL OR WHEEL WAS DEVELOPED BY CASA/SME TECHNICAL COUNCIL AND IS MADE UP OF FIVE FUNDAMENTAL DIMENSIONS.

1. GENERAL BUSINESS MANAGEMENT
2. PRODUCT AND PROCESS DEFINITION
3. MANUFACTURING PLANNING AND CONTROL
4. FACTORY AUTOMATION
5. INFORMATION RESOURCE
GENERAL BUSINESS SEGMENTS

MANUFACTURING MANAGEMENT
& HUMAN RESOURCE MANAGEMENT

FINANCE

MARKETING

STRATEGIC PLANNING
INFORMATION RESOURCE MGMT. & COMMUNICATIONS

COMMON DATA
MARKETING

I. CREATE CUSTOMER

II. FUNCTIONS

- SALES
- CUSTOMER SERVICE
- ADVERTIZING
- FORECASTING
- RESEARCH & DEVELOPMENT
- PRICING & PACKAGING
- PUBLIC RELATIONS
- DISTRIBUTION

A. MARKETING FUNCTION

PUBLIC RELATIONS -
BUILD CORP. IMAGE, DEAL WITH MEDIA

RESEARCH & DEVELOPMENT -
SEEKS NEW PRODUCT IDEAS, DETERMINING CUSTOMER TASTE & NEEDS, PROTOTYPES CREATED FOR CUSTOMER TESTING.

DISTRIBUTION -
DETERMINES THE MOST EFFECTIVE CHANNEL A PRODUCT TAKES TO REACH A CUSTOMER - CONSIDER THE PRODUCT, COST, MARKET & CUSTOMER

BRAND MANAGEMENT -
DEVELOPS A NAME, DESIGN, AND SYMBOL WHICH IDENTIFIES A PARTICULAR PRODUCT TO A COMPANY & DIFFERENTIATES IT FROM THOSE OF COMPETITION.
FORECASTING -
ESTIMATES FUTURE DEMAND OF PRODUCTS BY ANTICIPATING MARKET TRENDS, CONSUMER SPENDING, INTEREST RATES, ETC.

ADVERTISING -
PROMOTES PRODUCTS THROUGH VARIOUS MEDIA & PROVIDES CUSTOMER INFORMATION

CUSTOMER ORDER SERVICING -
TRACKS CUSTOMER ORDERS, MONITORS CHANGES AND DISTRIBUTES INFORMATION TO APPROPRIATE DEPARTMENTS - HANDLES CUSTOMER QUESTIONS & COMPLAINTS

PACKAGING -
DESIGNS THE CONTAINER OR WRAPPING OF THE PRODUCT.

PRICING -
SETS PRICE FOR THE PRODUCT BY ESTIMATING PRODUCT COST, DETERMINING CUSTOMER DEMAND AND PERCEIVED VALUE AND ANALYZING COMPETITIVE PRICES.

SALES -
SHORT TERM ORIENTED - MARKETING IS LONG TERM STRATEGY

FORECASTING -
PROVIDES INPUT FOR PLANNING PRODUCTION RESOURCES - LABOR - MATERIALS - MACHINE

PREPARING OPERATING BUDGETS
III. CUSTOMER ORDER SERVICING FUNCTIONS

ORDER RECEIPT & ENTRY
ORDER CHANGES
ORDER SHIPPING & BILLING
DISTRIBUTION OF ORDER INFORMATION

A. ORDER ENTRY & RECEIPT

ORDERS RECEIVED BY
DIRECTLY
CUSTOMER, MAIL, PHONE
INDIRECTLY
SALES REPRESENTATIVE, DISTRIBUTOR, OTHER PLANTS

B. ORDER CHANGES

INVOLVE PRODUCT SPECIFICATIONS, QUANTITY & SHIPMENT DATA
WHO SHOULD BE CONTACTED:
BILLING
SHIPPING
CUSTOMER-SALES REP
INVENTORY
PROD. CONT.
ENGINEERING - IF DESIGN CHANGES

C. SHIPPING & BILLING

ONCE ORDERS RECEIVED, DOCUMENTED AND PROCESSED THE
FINAL STEPS ARE:
SHIP THE GOODS
BILL THE CUSTOMER
UPDATE INVENTORY
INFORM SALES REP. THAT ORDER IS SHIPPED
D. DISTRIBUTION -

SHOWING CUSTOMER ORDER INFORMATION ENSURES THAT RIGHT ITEM IS SHIPPED AT RIGHT TIME - BILLED PROPERLY AND INVENTORY IS RESTOCKED AS REQUIRED

CUSTOMER -
TO ACKNOWLEDGE ORDER RECEIPT & SHIPMENT

ACCOUNTING -
BILL CUSTOMER, ETC., & SALES TAXES, COMMISSIONS, SHIPPING COST

MATL. MGMT. -
UPDATE INVENTORY & PURCHASE RECORDS

FINANCE -
SUMMARIZE SALES TO ESTIMATE CASH FLOW, FUTURE SALES STRATEGIES.

INVENTORY -
UPDATE INVENTORY NEED

PRODUCTION -
TO PLAN EFFECTIVE WORK SCHEDULES

SALES REP. -
MONITOR & UPDATE ORDER STATUS

SHIPPING -
DISTRIBUTION INFORMATION AND SPECIAL HANDLING INSTRUCTIONS
IV. RELATIONSHIPS TO MARKETING

ENGINEERING
LONG DESIGN TIME
FEW MODELS
STANDARD COMPONENTS

MARKETING
SHORT DESIGN TIME
MANY MODELS
CUSTOM COMPONENTS

FINANCE
STRICT BUDGET
PRICED TO COVER COST

MARKETING
FLEXIBLE BUDGETS TO MEET CHANGING NEEDS
PRICING TO INCREASE MARKET DEVELOPMENT

ACCOUNTING
STANDARD TRANSACTION
FEW REPORTS
LOW CREDIT RISK
TOUGH CREDIT TERMS

ACCOUNTING
STANDARD TRANSACTION
FEW REPORTS
LOW CREDIT RISK
TOUGH CREDIT TERMS

MARKETING
SPECIAL TERMS & DISCOUNTS
MANY INQUIRIES
MEDIUM CREDIT RISK
EASY CREDIT TERMS

MATERIALS MANAGEMENT
NARROW PROD. LINE
STANDARD PARTS
LOW COST MATERIAL
ECONOMICAL LOT SIZES
PURCHASING AT IN FREQUENT INTERVALS
MARKETING
 BROAD PROD. LINE
 NON-STANDARD PARTS
 HIGH QUALITY OF MATERIALS
 LARGE LOT SIZES TO AVOID STOCK OUTAGES
 IMMEDIATE PURCHASING FOR BUYER NEEDS

PRODUCTION CONTROL
 LONG PRODUCTION LEAD TIME
 LONG RUNS WITH FEW MODELS
 NO MODEL CHANGE
 STANDARD ORDERS

MARKETING
 SHORT PRODUCTION LEAD TIME
 SHORT RUNS WITH MANY MODELS
 FREQUENT MODEL CHANGES
 CUSTOM ORDERS
FUNDAMENTALS OF INTEGRATION IN THE WORKPLACE

MODULE III

THE BUSINESS ENTERPRISE-ENGINEERING

TIME REQUIRED: 6 HOURS

TEXT REFERENCE: COMPUTER AUTOMATED MANUFACTURING, JOHN H. POWERS JR., PP. 112-162.

TEAM MANUAL

OBJECTIVES: UPON COMPLETION OF THIS MODULE, THE STUDENT WILL BE ABLE TO:

DEFINE ENGINEERING

DESCRIBE THE STEPS IN PRODUCT DESIGN AND RELEASE

DEFINE CAD, CAM AND CAE.

EXPLAIN THE ADVANTAGES OF COMPUTER APPLICATIONS FOR THE ENGINEERING FUNCTION WITHIN THE ORGANIZATION.

LEARNING ACTIVITIES: READ THE TEAM MODULE MATERIAL.

PARTicipate in group discussion

VIEW THE CIM DEMO/PART TO MACHINE

DISCUSS THE REVIEW QUESTIONS.
REVIEW QUESTIONS FOR DISCUSSION:

1. WHAT IS COMPUTER GRAPHICS AND HOW IS IT USED IN MANUFACTURING?

2. DISCUSS SOME OF THE MAJOR APPLICATIONS FOR CAD IN INDUSTRY.

3. HOW DOES THE ENGINEERING FUNCTION INTERACT WITH PURCHASING?
MODULE III OUTLINE

THE BUSINESS ENTERPRISE—ENGINEERING

I. DEFINITION OF ENGINEERING

II. FUNCTIONS OF ENGINEERING
 A. RESEARCH
 B. PRODUCT DEVELOPMENT
 C. MANUFACTURING PROCESS DEVELOPMENT
 D. FACILITIES ENGINEERING AND MANAGEMENT
 E. ENGINEERING RELEASE

III. RESEARCH
 A. INVESTIGATING AND DEVELOPING NEW MATERIALS, PRODUCTS AND PROCESSES.
 B. INPUT FROM RESEARCH SOURCES
 C. OUTPUT TO PRODUCT DEVELOPMENT
 D. OUTPUT TO PROCESS DEVELOPMENT
 E. OUTPUT TO FACILITIES ENGINEERING
IV. PRODUCT DEVELOPMENT
A. PRODUCT DESIGN
B. PRODUCT ANALYSIS
C. PRODUCT MODELING
E. PRODUCT SPECIFICATION AND PROCESSING REQUIREMENTS
 (DRAWINGS, MATERIALS, PARTS LISTS AND BILL OF MATERIAL)
F. ENGINEERING CHANGES
G. DATA INPUT FROM MARKETING
H. DATA INPUT FROM RESEARCH
I. DATA INPUT FROM PLANT OPERATIONS
J. DATA OUTPUT TO PROCESS DEVELOPMENT
 (SPCS, MANUFACTURING CONTROL REQUIREMENT, DRAWING, TEXTS AND MAIL)

V. PROCESS DEVELOPMENT
A. DEVELOPMENT OF METHODS AND TOOLS FOR MANUFACTURING
B. PROCESS CONTROL SPECIFICATIONS
C. ROUTINGS
D. QUALITY TESTS AND SPC CONTROLS
E. NC PROGRAMMING REQUIREMENTS
F. EXPERT SYSTEM DEVELOPMENT AS A TOOL
G. DATA INPUT FROM RESEARCH AND PRODUCT DEVELOPMENT
H. DATA INPUT (SPC) FROM PLANT OPERATIONS
I. DATA OUTPUT TO PLANT OPERATIONS (ROUTINGS, PROCESS CONTROL, MACHINE PROGRAMMING VIA ENGINEERING RELEASE)
VI. FACILITIES ENGINEERING
A. PLANT LAYOUT AND FACILITIES
B. AUTOMATION PLANNING
C. PLANT MAINTENANCE
D. MATERIALS HANDLING
E. DATA INPUT FROM RESEARCH
F. DATA INPUT FROM PROCESS DEVELOPMENT
G. DATA OUTPUT TO PLANT OPERATIONS

VII. ENGINEERING RELEASE CONTROL
A. COORDINATION OF RELEASE OF NEW PRODUCTS, PROCESSES, TOOLS AND ENGINEERING CHANGES TO MANUFACTURING.
B. DATA INPUT FROM PRODUCT AND PROCESS DEVELOPMENT
C. DATA OUTPUT TO PRODUCTION PLANNING
D. DATA OUTPUT TO PLANT OPERATIONS

VIII. ENGINEERING MANAGEMENT

XIV. COMPUTER AIDED DESIGN DEFINITION

X. COMPUTER AIDED MANUFACTURING DEFINITION

XI. COMPUTER AIDED ENGINEERING DEFINITION

XII. INFORMATION FLOW BETWEEN THE ENGINEERING FUNCTIONS
A. THE TRADITIONAL APPROACH
B. AN INTEGRATED APPROACH
PRODUCT DESIGN AND ANALYSIS

PRODUCT REQUIREMENTS

--ENGINEERING--

DESIGN AND MANUFACTURING ENGINEERING

STUDENT NOTES:

CORPORATE BUSINESS STRATEGY

PRODUCTION SPECIFICATIONS

PROCESS PLANNING AND PARTS PROGRAMMING
ENGINEERING

COMPUTER AIDED ENGINEERING

COMPUTER AIDED DESIGN

COMPUTER AIDED DRAFTING

WHAT IS ENGINEERING:

. WEBSTER'S
APPLICATION OF SCIENTIFIC AND MATHEMATICAL PRINCIPLES TO PRACTICAL ENDS SUCH AS THE DESIGN, CONSTRUCTION, AND OPERATION OF EFFICIENT AND ECONOMICAL STRUCTURES, EQUIPMENT, AND SYSTEMS.

. AN ENGINEER'S
TAKING AN IDEA AND MAKING IT A REALITY

. A MARKETING MAJOR
SOME OF MY BEST FRIEND'S ARE ENGINEERS. . ."

IN TODAY'S ENGINEERING SCHOOLS, MORE EMPHASIS IS BEING PLACED ON THE ABILITY TO COMMUNICATE. NO LONGER IS ENGINEERING REMOVED FROM THE REALITY OF THE SHOP FLOOR. INTEGRATION IS ENABLING THE ENGINEER TO DESIGN IN REALITY.

QUESTION: DO YOU AGREE THAT ENGINEERING IS CHANGING AND WHY?
PRODUCT DEVELOPMENT

PHASE I. RESEARCH

PHASE II. DESIGN ENGINEERING/PRODUCT DEVELOPMENT

PHASE III. MANUFACTURING PROCESS DEVELOPMENT

PHASE IV. FACILITIES ENGINEERING AND MANAGEMENT

PHASE V. RELEASE CONTROL

TERMS TO KNOW:

CONCURRENT ENGINEERING

CAD

CAM

CAE

2-D

3-D

SOLID MODELING

FINITE ELEMENT ANALYSIS

SIMULATIONS

KINEMATICS
TYPES OF COMPUTERS

SUPERCOMPUTERS
APPLICATIONS FOR IRS, RESEARCH LABS, THE NATIONAL WEATHER BUREAU, LARGE AIRLINES, GOVERNMENT DEFENSE, AND OTHER APPLICATIONS NEEDING EXCEPTIONAL MEMORY, SPEED, AND WORD SIZE.

MAINFRAME COMPUTERS
LARGEST COMPUTER MOST COMMONLY USED. THESE ARE OFTEN REFERRED TO AS THE "HOST" COMPUTER. THE LEADING VENDORS OF MAINFRAME COMPUTERS ARE IBM, DIGITAL, AND HEWLETT-PACKARD.

MINICOMPUTERS
NO CLEAR-CUT DEFINITION, BUT USED TO DESCRIBE A SCALED-DOWN VERSION OF A MAINFRAME COMPUTER. THESE ARE USUALLY A MACHINE THAT CONTAINER ALL THE PROCESSING AND STORAGE FUNCTIONS IN ONE PACKAGE. THEY CAN PROVIDE COMPUTER POWER TO INDIVIDUALS OR CONTROL OTHER MACHINES.

MICROCOMPUTERS
EVOLVED FROM THE DEVELOPMENT OF THE MICROPROCESSOR AND IS RESPONSIBLE FOR THE GROWTH IN PORTABLE, PERSONAL, COMPACT COMPUTERS AND CONTROLLERS USED TODAY.
BASIC ELEMENTS OF A DIGITAL COMPUTER

CENTRAL PROCESSING UNIT

<--------> INPUTS AND OUTPUTS

CONTROL UNIT

ARITHMETIC UNIT

<--------> MEMORY

LOGIC UNIT

ELEMENTS OF A COMPUTER SYSTEM

STORAGE DEVICES

E.G. TAPES, DISKS

<--- MAIN COMPUTER ---->

OUTPUT DEVICES

E.G. PRINTERS.

SATELLITE COMPUTERS AND TERMINALS
DEFINITIONS:

HARDWARE-ELECTRONIC EQUIPMENT THAT CAN BE SEEN

SOFTWARE-COMPUTER "PROGRAMS" OR A SET OF CODED INSTRUCTIONS THAT TELLS THE COMPUTER TO DO A SPECIFIC TASK.

LANGUAGES-COMPUTER PROGRAMS ARE WRITTEN IN LANGUAGES THAT COMMUNICATE WITH THE COMPUTER LOGIC THROUGH THE USE OF A SYMBOLIC CODE. THE MOST ELEMENTARY CODE IS "ASSEMBLY" LANGUAGE OR "MACHINE" LANGUAGE. HIGH LEVEL LANGUAGES USE SIMPLER CODES SIMILAR TO NORMAL SPEECH TO COMMUNICATE COMPLEX INSTRUCTIONS.

COBOLT IS AN ASSEMBLY LANGUAGE.

"C" IS A HIGHER LEVEL LANGUAGE.

STUDENT NOTES:
ENGINEERING MANAGEMENT ENVIRONMENT

I. CONCEPTUAL DESIGN

II. ENGINEERING DEVELOPMENT

III. PRODUCT DEFINITION

IV. ENGINEERING RELEASE

I. REQUEST FOR ENG. ACTION

ENVIRONMENTAL CHARACTERISTICS

- POCKETS OF AUTOMATION
- EXCESSIVE CYCLE TIMES
- MANUAL/PAPER PROCESSES
- FEW ENFORCEABLE STANDARDS
- SYSTEM SOLUTIONS ARE ORGANIZATIONALLY BOUND
- HIGH PRODUCT COSTS
- RIGID SYSTEMS

VII. BUSINESS AND PRODUCTION PLANNING

VIII. PLANT OPERATIONS

PLANT ACTIVITY CONTROL

V. MANUFACTURING DEFINITION

VI. MANUFACTURING PROCESS

V. MANUFACTURING RELEASE

I. MANUFACTURING DB

II. MANUFACTURING DB

III. MANUFACTURING DB

IV. MANUFACTURING DB
STEPS IN PRODUCT DEVELOPMENT

AND RELEASE

1 -> 2 -> 3 -> 4 -> 5 -> PRODUCTION

1. RESEARCH
2. DESIGN ENGINEERING/PRODUCT DEVELOPING
3. MANUFACTURING PROCESS DEVELOPMENT
4. FACILITIES ENGINEERING AND MANAGEMENT
5. RELEASE CONTROL

THESE ARE THE "FUNCTIONAL AREAS" OF ENGINEERING.
DEFINITION

CAD - COMPUTER ASSISTED DESIGN AND /OR DRAFTING. USUALLY ASSOCIATED WITH FUNCTIONS PREVIOUSLY DONE ON THE DRAWING BOARD. THE REAL ADVANTAGE OF CAD OVER THE DRAWING BOARD IS WHEN CHANGES ARE MADE IN THE DESIGN.

CAM - COMPUTER ASSISTED MANUFACTURING. PROGRAMMING THE AUTOMATION EQUIPMENT ON THE PLANT FLOOR. TECHNOLOGY THAT ALLOWS DESIGN FILES TO BE DOWNLOADED DIRECT TO MACHINES.

CAE - COMPUTER ASSISTED ENGINEERING. ENABLES THE ENGINEER TO CREATE PROTOTYPES AND DO COMPLEX ANALYSIS MORE EASILY.

2D - 2 DIMENSIONAL DRAWING IS THE TRADITIONAL WAY OF CREATING AN ENGINEERING DRAWING. IT SHOWS THREE SIDES OF AN OBJECT. THESE ARE THE TOP VIEW, FRONT VIEW, AND ONE SIDE VIEW.

3D - 3 DIMENSIONAL REPRESENTATION HAS DEPTH TO IT. IT CANNOT BE DONE ON A SHEET OF PAPER. A 3 D MODEL ON A CAD SYSTEM CAN BE ROTATED TO VIEW AT ANY ANGLE.

SOLID MODELING - A DESIGN TECHNIQUE WHICH ALLOWS VISUALIZATION OF A PRODUCT AS IT WILL LOOK AND ALLOWS FOR ANALYSIS OF THE PRODUCT BEFORE IT IS ACTUALLY BUILD. VOLUME CALCULATIONS AND INTERFERENCE CHECKING IS POSSIBLE, BUT THIS REQUIRES COMPUTER POWER MUCH MORE INTENSIVE THAT 2D. THIS IS WHY WORKSTATIONS ARE BEING DEVELOPED TO PROVIDE MORE COMPUTING POWER AT THE ENGINEER'S DESK.

FINITE ELEMENT MODELING - THE MATHEMATICAL MODEL OF AN OBJECT DIVIDED FOR STRUCTURAL ANALYSIS INTO A GROUP OF DISCRETE ELEMENTS.

FINITE ELEMENT ANALYSIS - THIS USES THEFINITE ELEMENT MODEL AND IS USED TO CHECK THE DESIGN PERFORMANCE. EG. MOLD FLOW. THIS IS VERY COMPUTER INTENSIVE.

COMPUTER SIMULATIONS - THESE ARE PROGRAMS WRITTEN BY ENGINEERS TO SIMULATE PRODUCT TESTING AND/OR FUNCTION. AN EXAMPLE WOULD BE A MOLD DESIGN AND HOW THE MATERIALS FLOW.

KINEMATICS - THIS REFERS TO THE ABILITY TO SIMULATE THE MOTION OF A MECHANICAL ASSEMBLY. THIS ALLOWS FOR PRODUCT DESIGN TO BE TESTED FOR CLEARANCES ETC.
MODULE IV OUTLINE

THE BUSINESS ENTERPRISE - PRODUCTION MANAGEMENT

I. A BROAD DEFINITION OF PRODUCTION MANAGEMENT

II. PRODUCTION MANAGEMENT OBJECTIVE

III. FUNCTIONS
 A. MASTER PRODUCTION PLANNING
 B. MATERIAL PLANNING AND RESOURCE PLANNING
 C. PROCUREMENT
 D. PLAN RELEASE

IV. MASTER PRODUCTION PLANNING
 A. DATA INPUT FROM CUSTOMER ORDER FORECAST
 B. DATA INPUT FROM DISTRIBUTION CENTERS
 C. DATA INPUT FROM OUTSIDE PLANTS
 D. DATA OUTPUT TO MATERIAL PLANNING
 E. DATA OUTPUT TO ASSEMBLY PLANT OPERATIONS
V. MATERIAL PLANNING AND RESOURCE PLANNING
 A. DEFINITION OF MRP
 B. INPUT FROM ENGINEERING
 C. OUTPUT TO PLANT OPERATIONS
 D. OUTPUT TO PROCUREMENT

VI. PROCUREMENT
 A. DEFINITION OF PROCUREMENT
 B. DEFINITION OF JUST IN TIME
 C. DATA INPUT FROM MATERIAL PLANNING
 D. DATA INPUT FROM PLANT OPERATIONS
 E. DATA INPUT FROM DISTRIBUTION
 F. DATA OUTPUT TO SUPPLIERS
 G. EDI RELATIONSHIP WITH VENDORS

VII. PLAN RELEASE
 A. DEFINITION OF PLAN RELEASE
 B. TYPE OF MANUFACTURING
 C. DATA INPUT FROM MATERIAL PLANNING
 D. DATA OUTPUT TO PLANT OPERATIONS FOR SCHEDULING

STUDENT NOTES:
PRODUCTION

MATERIALS AND RESOURCE PLANNING

PRODUCT REQUIREMENTS

---PRODUCTION MANAGEMENT---

PLANNERS AND DISPATCHERS

INVENTORY AND PRODUCTION CONTROL

CUSTOMER ORDERS

PRODUCTION SCHEDULE

STUDENT NOTES:
MANUFACTURING PLANNING AND CONTROL
JUST IN TIME

JUST IN TIME STRATEGY

1. MAKE TO ORDER OR PRODUCE TO EXACT DEMAND
2. ELIMINATE WASTE
3. PRODUCE ONE-AT-A TIME
4. MAKE TOTAL QUALITY IMPROVEMENT YOUR GOAL
5. VALUE PEOPLE AS YOUR MOST IMPORTANT ASSET
6. ALLOW FOR NO BUFFERS (ELIMINATE THE JUST-IN-CASE MENTALITY)
7. ALWAYS THINK LONG-TERM

JUST IN TIME PHILOSOPHY

PROBLEMS ARE HIDDEN BY INVENTORY BUFFERS.

BUFFERS EG.

. POOR QUALITY (KEEP MORE INVENTORY TO COVER REJECTS)
. VENDOR UNRELIABILITY (SCHEDULE ORDERS EARLIER THAN NEEDED TO COVER VENDOR "MISTAKES".)
. LACK OF FORECAST (SAFETY STOCK BUFFER)
. SET UP COSTS (PRODUCE LARGE LOT SIZE BECAUSE OF HIGH SET UP COSTS)
. DELIVERY COSTS (BUY TRUCKLOAD LOTS TO SAVE COST)
. LONG LEAD TIMES AND HIGH WORK IN PROGRESS INVENTORY (LACK OF FLEXIBILITY AND NEED TO BE RESPONSIVE TO CUSTOMER)

STUDENT NOTES:

53
REMEMBER..

JIT, MRP, CIM, TQC ARE NOT COMPETITORS IN THE WORKPLACE,

BUT SHOULD BE IMPLEMENTED AS PART OF A FULLY INTEGRATED MANUFACTURING STRATEGY THAT COMBINES EACH PHILOSOPHY IN A LOGICAL WAY.
SIMPLIFIED BLOCK DIAGRAM

THE BUSINESS CONTROL SYSTEM FOR MANUFACTURING & PROCESS ENTERPRISES

- CUSTOMER ORDER SERVICING
- SALES FORECASTING
- PRODUCT DATA MANAGEMENT
- PRODUCT COSTING
- MASTER PRODUCTION SCHEDULE PLANNING
- INVENTORY ACCOUNTING
- LOCATION / LOT CONTROL
- MATERIAL REQUIREMENTS PLANNING
- CAPACITY REQUIREMENTS PLANNING
- PURCHASING CONTROL
- PURCHASE ACCOUNTING
- PRODUCTION ACTIVITY CONTROL
- PRODUCTION COSTING

South Carolina CIM Consortium

CIM Overview
THE INTERIM/INITIAL CONTROL SYSTEM

1. INVENTORY MANAGEMENT, PRODUCT DATA MANAGEMENT

2. PURCHASING AND PRODUCTION CONTROL

ADVANTAGES:
- EARLIER PAYBACK AND CONTROL
- SUPPORTING SUB-SYSTEMS IN PLACE FOR EFFECTIVE MRP
- TIME TO ESTABLISH FORECASTS AND REALISTIC MASTER SCHEDULING
THE MAJOR ELEMENTS OF “ZERO INVENTORY”

HOUSEKEEPING - Physical organization and discipline

“MAKE IT RIGHT THE FIRST TIME” - Elimination of defects, quality processes

SET UP REDUCTION - Flexible changeover approaches

UNIFORM PLANT LOAD - Leveling as a control mechanism

BALANCED FLOW - Organizing flow scheduling throughout

SKILL DIVERSIFICATION - Multifunctional workers

CONTROL BY VISIBILITY - Communication media for activity

PREVENTIVE MAINTENANCE - Flawless running/no defects

FITNESS FOR USE - “Produceability” design through process

COMPACT PLANT LAYOUT - Streamlining and smoothing

SUPPLIER NETWORKS - Extension of the factory

FOCUSED WORKER INVOLVEMENT - Small group involvement activities (QC circles)

CELLULAR MANUFACTURING - Production methods for flow

PULL SYSTEM - Signal replenishment/resupply systems
PRODUCTION ACTIVITY CONTROL & COSTING

FUNCTIONS

Shop documentation
Process activity transactions
Priorities communicated to plant
Provide production status
Control WIP and lead times
Validation of bills and routings
Accumulate costs; variance reporting

INTERFACES TO

Inventory Management (order status)
Plant floor (foremen)
Product data (validation of standards)

INTERFACES FROM

Inventory Accounting & Order Release
Product data (bills, routings, w/centers)
Data collection equipment/system
Accounts Payable (costs)

BUSINESS IMPACT

Reduced WIP and lead times
Accurate/timely status for customer service
Improves basic data accuracy
Timely, accurate costing for margins/correction

IMPLEMENTATION ISSUES

Activity reporting: method and education
Error resolution
Management education: what to use and when
CAPACITY REQUIREMENTS PLANNING

FUNCTIONS
Simulate load of material plan
Help plan workcenter/resource level

INTERFACES TO
Production planning & control department

INTERFACES FROM
Production control status (open order)
Material Requirements Planning (planned orders)
Product data: routings

BUSINESS IMPACT
Less overtime/premium
Fewer bottlenecks, shorter lead times
Validation of materials plan and master schedule

IMPLEMENTATION ISSUES
None

NOTE:
CAPACITY PLANNING
- Probably 1st application for assembler
- May be prior to purchasing for fabricator
MATERIAL REQUIREMENTS PLANNING

FUNCTIONS
- Calculate net requirements for components
- Plan and release of new orders
- Suggest schedule changes to existing orders

INTERFACES TO
- Purchasing
- Production Control

INTERFACES FROM
- MPSP - Finished goods plan
- Inventory: Accurate availability (on-hand and order)
- Purchasing & PC - Reasonable lead time estimates

BUSINESS IMPACT
- Reduced component inventory
- Improved delivery schedule (20-40%)
- Increased direct employee productivity (5-15%)
- Reduced expediting
- Improved quality: Less rushed production

IMPLEMENTATION ISSUES
- Train planners
- Feedback on problems (Purchasing & Plant)
PURCHASING CONTROL & ACCOUNTING

FUNCTIONS

- Provide requisition control
- Assist in vendor selection/control
- Print purchase order and revisions
- Track receipt, dock-to-stock
- Compare Invoice to "contract" and results
- Analyze vendor performance
- Accommodate Indirect purchases

INTERFACES TO

- Accounts payable - (validate amount due)
- IM - (New orders and receipts)

INTERFACES FROM

- MRP - (Requisitions)
- Departmental Indirect requisitions
- PDM - (Dock-to-Stock routings)
- IM - (Open order status)

BUSINESS IMPACT

- Lower cost of purchased material
- Fewer late, over/under shipments
- Less clerical effort
- Fewer errors in material acquisition cycle

IMPLEMENTATION ISSUES

- Education
- Which facilities (at start and "growing")
- Purchase routings
SALES FORECASTING

FUNCTIONS
- Project demand (future requirements)
- Calculate safety stock (and order point)
- Input to master scheduling

INTERFACES TO
- Master Schedule
- Inventory Management

INTERFACES FROM
- Customer Order Servicing (demand)

BUSINESS IMPACT
- Reduced Inventory (safety buffers)
- Planning system Improved
- Improved customer service

IMPLEMENTATION ISSUES
- Management understanding and commitment
- Marketing forecast error measurement
- Can appear complex

NOTE:
THE MOST DIFFICULT AREA
(with master scheduling)
MASTER PRODUCTION SCHEDULE PLANNING

FUNCTIONS

- Business ('production') planning
- Build plan ('master schedule')
- Resource requirements
- Finished goods: availability to promise

INTERFACES TO

- Material requirements planning
- Budgets and financial planning

INTERFACES FROM

- Forecasting (demand)
- Customer Order Servicing (backlog)
- Inventory (availability)

BUSINESS IMPACT

- Control of finished goods
- Service level Increase
- Objective for the entire business

IMPLEMENTATION ISSUES

- Expediting = normal operation
- Management understanding and commitment

NOTE:
THE MOST DIFFICULT AREA WITH FORECASTING INTERFACE
PRODUCT DATA MANAGEMENT

FUNCTIONS
- Establish/maintain four base files
 - Descriptive data
 - Product structure or bill of material ("usage")
 - Routings (sequence and standard times)
 - Work center (rates, capacity, performance)

INTERFACES TO
Almost all systems

INTERFACES FROM
- Plant and Engineering - Labor Standards/Estimates
- Purchasing - Prices
- Stockroom - Bill of Material Discrepancies
- Accounting - Standard Rates

BUSINESS IMPACT
- One set of data for all
- Control of engineering changes
- Reduced maintenance and filing costs
- Increased accuracy

IMPLEMENTATION ISSUES
- Bill/Material structuring and accuracy
- Work center structuring
- Routing accuracy

*NOTE:
Third most difficult
PRODUCT COSTING

FUNCTIONS
 Estimate costs of production

INTERFACES TO
 Customer Order Servicing - margin analysis
 Production Costing: Standards
 Purchasing: Variances

INTERFACES FROM
 Same as Product Data Management

BUSINESS IMPACT
 Pricing and bidding strategies
 Basis for cost control

IMPLEMENTATION ISSUES
 Data accuracy
 Overhead definition
INVENTORY ACCOUNTING AND LOCATION/LOT CONTROL

FUNCTIONS
- Process transactions
- Maintain an accurate availability statement:
 - on hand
 - on order (purchase and manufacturing)
- Physical Inventory and cycle counting
- Status and valuation reporting
- Lot and location control/traceability

INTERFACES TO
- Customer Order Servicing: availability
- Master Production Schedule
- Master Requirements Planning

INTERFACES FROM
- Purchasing (New orders and changes)
- Production control

BUSINESS IMPACT
- Clerical productivity
- Easier physical Inventory
- Accuracy reduces shortages and "buffers"

IMPLEMENTATION ISSUES
- Limited access to stockrooms
- Attitude change: 95% accuracy is key
- Ongoing measurements: cycle counts

NOTE:
SECOND MOST DIFFICULT AREA
CUSTOMER ORDER SERVICING

FUNCTIONS

- Entry of orders, pricing, terms, etc.
- Process shipment transactions
- Maintain order status
- Print invoice
- Margin analysis

INTERFACES TO

- Receivables (by due date)
- Sales analysis (shipments)
- Forecasting (shipments and other demand)
- Inventory: picking, acts and allocations
- Master production schedule (backlog)

INTERFACES FROM

- Inventory: shipments
- Receivables: customer status/credit

BUSINESS IMPACT

- Clerical productivity
- Reduced order entry “lead time”
- Improved control (less “lost” orders)
LOWER LEVEL MEASUREMENTS AND GOALS

SALES
- AVERAGE FORECAST ERROR

MANUFACTURING MANAGEMENT
- % OF MPS PRODUCED ON TIME
- PRODUCTIVITY BY DEPARTMENT

PURCHASING
- % OF PURCHASE ORDERS RELEASED AND RECEIVED ON TIME
- REDUCTION IN LEAD TIMES
- REDUCTION IN COST
- INCREASED QUALITY

PRODUCTION CONTROL
- % OF MANUFACTURING ORDERS ON TIME - RELEASED AND COMPLETED
- AMOUNT OF OVERTIME USED
- LABOR/MACHINE UTILIZATION
- REDUCTION IN LEAD TIME

MATERIALS MANAGEMENT
- INVENTORY ACCURACY & $ LEVEL BY PLANNER
- # OF SHORT ITEMS/WEEK

COST ACCOUNTING
- TIMELINESS OF STANDARDS/CURRENT COSTS, CHANGES
- ACCURACY OF COSTS
ENGINEERING
- ACCURACY OF BILLS & ROUTINGS
- ENGINEERING CHANGES CO-ORDINATED PROPERLY
- RESPONSE TO CUSTOMER ESTIMATE REQUESTS

SHOP FOREMEN
- ACTIVITY REPORTING ERROR DATE
- PRIORITY SEQUENCE ACHIEVEMENT
- STANDARD VS ACTUAL HOURS

STOCK ROOM
- INVENTORY ACCURACY (BY ITEM CLASS)
- TRANSACTION ERROR RATE
- RECEIVING "LEAD TIME"

NOTE:
What are the costs for not measuring and controlling these?
WHAT MUST BE ACHIEVED FOR THE SYSTEM TO WORK

BILL OF MATERIALS: PROPERLY STRUCTURED
- To reflect "as used in production"

COMPONENT USAGE: MUST BE 99 +% ACCURATE
- Must have all components to ship product

INVENTORY ON-HAND BALANCE: MUST BE 95 +% ACCURATE
- MRP is "staging" on paper and it must be trusted to be used

ON-ORDER BALANCES: ACCURATE QUANTITY AND ARRIVAL DATE
- MRP "stages" over a period of time and schedules arrival of replenishment just before stockout (just in time).

COMMUNICATION SYSTEM MUST BE IN PLACE TO ENSURE THAT THE PLAN'S PRIORITIES ARE BEING IMPLEMENTED ON THE SHOP FLOOR AND IN PURCHASING

THE MASTER PRODUCTION SCHEDULE MUST BE A REASONABLE STATEMENT OF WHAT IS EXPECTED TO BE PRODUCED
THE MOST IMPORTANT ISSUES AFFECTING THE DEGREE OF SUCCESS

CHIEF OPERATING OFFICER COMMITMENT

EDUCATION - IMPLEMENTORS AND USERS

PROJECT TEAM APPROACH

STRONG, CAPABLE PROJECT LEADER

CONDITIONING PERSONNEL TO ACCEPT CHANGE

BUSINESS CASE - TIME-PHASED BENEFITS AND COSTS

DOCUMENTED IMPLEMENTATION PLAN - WHICH IS MAINTAINED

PROGRESS REVIEWS BY TOP MANAGEMENT

80% OF THE IMPLEMENTATION PROBLEMS OCCUR IN THESE AREAS AND ARE MANAGEMENT ISSUES
Evolution of MRP
• Production planning and control systems evolved from a fundamental problem in manufacturing

 • Managing what’s needed and when.

• In the past we ran our manufacturing operations by using the “informal system” of shortages lists and hot tags.

• Today we have tools to help with all aspects of the company, from production scheduling inventory, distribution, and finance, and it includes support for marketing and engineering while improving product quality and customer service.
MRP BASED SYSTEMS

NET POSITION - IMPACT

DIRECT WORKER PRODUCTIVITY: UP 5 TO 15%

ON-TIME DELIVERY TO CUSTOMER UP 90% OR MORE

INVENTORIES REDUCED:
- Finished Goods: 5 - 10%
- Components: 20 - 40%
- Work-In-Process: 30 - 40%

EXPEDITING COSTS GREATLY REDUCED

REALISTIC MARGINS: MORE EFFECTIVE MARKETING

NO INCREASE IN PERSONNEL
Manufacturing Resource Planning (MRPII)

- The elements of MRPII include all the aspects of closed-loop MRP plus financial planning, simulation, and teamwork.

- Financial planning
 - Inventory valuations and projections
 - Work in progress (WIP)
 - Cash flow projections
 - Cash receipts
 - Make or buy decisions
- Executing capacity plans

 - Input/output control is used to compare the actual hours completed against the plan.

- Finite loading Vs. infinite loading

 - CRP (Capacity Requirements Planning) often mistakenly referred to as infinite loading.

 - Infinite loading ignores capacity and loads all orders in the time period in which they are required.

 - Infinite loading the computer makes decisions to prevent the capacity loads from exceeding the work center capacity.

 - CRP shows the problems to people and lets people solve them.
Teamwork

- Teamwork improves dramatically because the whole company operates from a single set of numbers.

- U.S., one man, one vote

- Japan, the educational system develops a culture in which everyone work together.

- With MRPII, everyone has realistic goals that they're able to achieve.

- Improved quality of work life—less finger pointing.
• Simulation

• With MRP II we can do detailed simulations and see exactly what the impact on the business will be.

• Capacity plans

• Material plans

• Cash flows

• Inventory
EXAMPLE

- Inventory 1,000 Units
- Need to increase inventory to 2000 units

Inventory 1,000 Units

To increase inventory to 2000 1,000 Units
Sales forecast 5,000 Units
Production Plan for month 6,000 Units
Make-to-Stock Business

- Plan is determined by:
 - Looking at the current inventory.
 - Deciding if we want to increase or decrease what we have on the shelf.
 - And adding that to, or subtracting it from, the sales forecast.
- The production plan is top management's handle on the business.
- A set of numbers which drives the rest of the business.
- Becomes the input to the next level in the process, the master production schedule.
Master production schedule (MPS)

- Takes the production plan and breaks it down into more detail.

- The next stop in taking the plans made by top management and translating them into what can be accomplished in the factory.

- The anticipated build schedule.

- When there are many different final configurations such as different model 30 pumps available (30-01, 30-02, etc.) master scheduling is done at the next level (Bill of materials)

- The master schedule must be accurate, it can not be a wish list because the materials and capacity plans are driven by it.
Excuting material plans

- Once a plan exists, there has to be a way to communicate it and monitor the planned Vs. actual completion of it.

- Shop floor—daily dispatch list

- Bar coding—to track the movement of shop orders through the factory

- Micro—tab

- Vendor schedules—purchased part delivery report

- Monitoring of planned Vs. actual deliveries.
Capacity requirements planning. (CRP)

- Answers the question "What does it take to make it"?
- "What" is the capacity of the work centers and the people in the shop.
- Information from the material requirements planning can be used to plan capacity. (i.e. items, due dates, and quantities of material)
- The system will highlight any potential problem areas and give people visibility into future capacity problems.
Production Planning

- The production plan reflects production rates for product families.
- Set by the general manager and his staff.
- Answers the question "How many"
- Make to Order Business
 - Plan is established by looking at the current backlog of orders and comparing it to the desired backlog. The forecast of what we expect to sell is then added to determine the overall production rate.
EXAMPLE:

- Model 30 Pumps
- Backlog 500 Units
- Decrease in backlog to 250 units in order to provide better customer service.

<table>
<thead>
<tr>
<th>Marketing Forecast</th>
<th>250 Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Plan Per Month</td>
<td>500 Units</td>
</tr>
<tr>
<td></td>
<td>750 Units</td>
</tr>
</tbody>
</table>
• The master production schedule answers the question what are we going to make.

• The bill of materials tell us what it takes to make it.

• The inventory records tell us what we already have on hand.
- In a plant change is constant and volume is high.
- With MRP we can see months in advance by projecting our needs for every single item and reprojecting them as things change.

- Closed-Loop MRP
 - A set of functions that are needed to represent a valid simulation of reality in a manufacturing company.
 - A way to measure how well we are doing against the plan.
Priority Planning

- Priority planning is where material requirements planning (MRP) comes in.

 - What are we going to make?
 - What does it take to make it?
 - What do we have to get?
- Kan ban system
 - A variation of the two-bin system
 - Two types of cards, requisition card and a production card.
 - Suffers from all the problems of an order point system.
- Two-bin system
 - Two locations where material is stored. The primary is used first, when the second is started, it is time to reorder.

- Visual review
 - A person looks at the inventory on hand and determines what to order by noting what is low.
Order Point and Variations

- Order point was the first method used to answer "when to order."
 - Average use
 - Projected lead time
 - Safety factor
- This system looked backwards.
FUNDAMENTALS OF INTEGRATION IN THE WORKPLACE

MODULE V

THE BUSINESS ENTERPRISE-
PRODUCTION

TIME REQUIRED: 6 HOURS

TEXT REFERENCE: INTEGRATED MANUFACTURING, ERIC GERELLE AND JOHN STARK, PP. 90.

TEAM MANUAL

OBJECTIVES: UPON COMPLETION OF THIS MODULE THE STUDENT WILL BE ABLE TO:

EXPLAIN THE FUNCTIONS OF PRODUCTION.

DESCRIBE HOW INTEGRATION CAN LINK PRODUCTION WITH THE BUSINESS FUNCTION.

DEFINE CAM, CNC, NC, AND FMS/CIM

EXPLAIN WHY CIM IS MUST INCLUDE THE WHOLE ENTERPRISE.

LEARNING ACTIVITIES: VIEW THE SHOP FLOOR CIM DEMO

READ THE TEAM MODULE

PARTICIPATE IN GROUP DISCUSSION

TOPIC: USING ROBOTS TODAY AND WHY?
MODULE V OUTLINE

THE BUSINESS ENTERPRISE - PRODUCTION

I. A BROAD DEFINITION OF PRODUCTION

II. PRODUCTION OBJECTIVES

III. FUNCTIONS
 A. PRODUCTION MANAGEMENT
 B. MATERIALS RECEIVING
 C. STORAGE
 D. PRODUCTION PROCESS
 E. INSPECTION/QUALITY TEST
 F. MATERIAL TRANSFER
 G. PRODUCT SHIPPING
 H. PLANT MAINTENANCE
 I. PLANT SITE SERVICES

VI. PRODUCTION MANAGEMENT
 A. DEFINITION
 B. DATA INPUT FROM PRODUCTION PLANNING
 C. DATA FLOW TO PLANT OPERATIONS
VII. MATERIAL RECEIVING
A. DEFINITION
B. DATA INPUT FROM OUTSIDE VENDORS
C. DATA OUTPUT TO ACCOUNTING
D. DATA OUTPUT TO PROCUREMENT
E. DATA OUTPUT TO PRODUCTION MANAGEMENT

VIII. STORAGE
A. DEFINITION
B. DATA INPUT FROM PRODUCTION MANAGEMENT
C. DATA OUTPUT TO PRODUCTION MANAGEMENT AND ACCOUNTING

IX. PRODUCTION PROCESS
A. DEFINITION
B. DATA INPUT FROM PRODUCTION MANAGEMENT
C. DATA INPUT FROM NC PRODUCTION MANAGEMENT
D. DATA OUTPUT TO PRODUCTION MANAGEMENT
E. DATA OUTPUT TO PROCESS MANAGEMENT

X. QUALITY TEST AND INSPECTION
A. DEFINITION
B. DATA OUTPUT FROM ENGINEERING
C. DATA OUTPUT TO PROCUREMENT
D. DATA OUTPUT TO PRODUCTION PROCESS
E. DATA OUTPUT TO PRODUCTION MANAGEMENT
XI. MATERIAL TRANSFER
 A. DEFINITION
 B. DATA INPUT FROM SYSTEM OR MANUAL
 C. DATA OUTPUT TO PRODUCTION MANAGEMENT

XII. PRODUCT SHIPPING
 A. DEFINITION
 B. DATA INPUT FROM CUSTOMER ORDER SHIPPING
 C. DATA OUTPUT TO MARKETING

XIII. PLANT MAINTENANCE
 A. DEFINITION
 B. DATA INPUT FROM PLANT OPERATIONS—SHOP FLOOR
 C. DATA INPUT FROM SOFTWARE/PREVENTATIVE MAINT.
 D. DATA INPUT FROM INSPECTION
 E. DATA OUTPUT TO PROCUREMENT
 F. DATA OUTPUT TO PRODUCTION MANAGEMENT
 G. DATA OUTPUT TO FACILITIES ENGINEERING
 H. DATA OUTPUT TO MARKETING (COST ACCOUNTING)

XIV. PLANT SITE SERVICES
 A. DEFINITION
 B. DATA INPUT FROM PLANT OPERATIONS
FACTORY AUTOMATION

FACTORY AUTOMATION
ASSEMBLY
MATERIALS HANDLING
MATERIALS PROCESSING
INSPECTION/TEST
CIM OVERVIEW

SOFTWARE

HARDWARE

BUSINESS PLAN
PAYROLL
ACCOUNTS PAYABLE/RECEIVABLE
GENERAL LEDGER

INVENTORY CONTROL

STRATEGIC AND TACTICAL EXECUTION

PRODUCT DATABASE

STRATEGIC AND TACTICAL CONTROL

SALES ANALYSIS/FORECAST
CAP/CAM/CAE
CAPACITY/PRODUCTION PLANNING

MPS

MAINTENANCE SCHEDULING
DIRECT AND INDIRECT REQUIREMENTS

TOOLING REQUIREMENTS

AUTOMATION

CNC PROCESSING MACHINES
FMS

AUTOMATIC LOAD/UNLOAD MACHINES
AUTOMATED GUIDED VEHICLES

TOOL CHANGERS

AUTOMATIC TESTING SESSIONS

AS/RS

BEST COPY AVAILABLE
CIM ENTERPRISE WHEEL

This model or wheel was developed by CASA/SME Technical Council and is made up of five fundamental dimensions.

1. General Business Management
2. Product and Process Definition
3. Manufacturing Planning and Control
4. Factory Automation
5. Information Resource
Definitions

- Computer Integrated Manufacturing (CIM) is the most modern, most automated form of production.

- It involves tying different phases of production together into one wholly INTEGRATED system.

- Flexible Manufacturing System (FMS) is one type of CIM system designed for:
 - Medium range production volumes
 - Moderate flexibility
Typical Performance Benefits Experienced with Modern Flexible Manufacturing Systems

Nonquantified benefits

Improved quality

Higher accuracy and reproducibility

Lower rework costs, scrap rates, and quality assurance costs

Closer adherence to production schedules

No order chasing

Improved working conditions

Decreased accident risk and physical labor

Increased challenge

Increased flexibility

Increased independence of batch size, types of parts, and production quantities
The FMS, as a microcosm of the future computer integrated factory demonstrates:

- Reduced capital investment in FMS workstations (due to the much smaller number required because of greatly increased utilization when compared to stand-alone, unintegrated workstations.)

- The drastic reduction of work-in-process inventory and stock waiting to be assembled. (Virtually to zero because of the capability of these flexible systems to produce just whatever mix of parts is required for immediate assembly.)
Typical Performance Benefits Experienced with Modern Flexible Manufacturing Systems

<table>
<thead>
<tr>
<th>Quantified benefits</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in:</td>
<td></td>
</tr>
<tr>
<td>Lead time for product</td>
<td>40</td>
</tr>
<tr>
<td>Lead time for parts</td>
<td>53-75</td>
</tr>
<tr>
<td>Required number of machine tools</td>
<td>53-81</td>
</tr>
<tr>
<td>Required personnel</td>
<td>53-92</td>
</tr>
<tr>
<td>Labor costs per part</td>
<td>90</td>
</tr>
<tr>
<td>Required machining hours</td>
<td>65</td>
</tr>
<tr>
<td>Required floor space</td>
<td>42</td>
</tr>
<tr>
<td>Tooling Costs</td>
<td>30</td>
</tr>
<tr>
<td>Total annual costs</td>
<td>24</td>
</tr>
<tr>
<td>Capital investment cost</td>
<td>10</td>
</tr>
<tr>
<td>Inventory of work in progress</td>
<td>90</td>
</tr>
</tbody>
</table>
Robot applications

- Arc welding
- MIG welding
- TIG welding
- Palletizing
- Stacking and unstacking
- Assembly
- Loading and unloading of manufacturing machines
- Grinding
- Deburring
- Painting
- Gluing
- Parts handling
- Movement of dangerous or toxic materials
- Loading and unloading
- Drilling
- Milling
- Cutting
Robot terms and phrases

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Accuracy is a measure of how close a robot arm is able to come to the coordinates specified. There is always some difference between the actual and the desired point. The degree of difference is the accuracy of the robot.</td>
</tr>
<tr>
<td>Actuator</td>
<td>Any device in a robot system which converts electrical hydraulic, or pneumatic energy into mechanical energy or motion.</td>
</tr>
<tr>
<td>Continuous Path</td>
<td>A servo-driven robot that provides absolute control along an entire path of arm motion, but with certain restrictions with regard to the degree of difficulty in changing the program.</td>
</tr>
<tr>
<td>Controlled Path</td>
<td>A servo-driven robot with a control system with specifies the location and orientation of all robot axes. A control-path robot moves in a straight line between programmed points.</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>The number of degrees of freedom of a robot is the number of movable axes on the robot's arm. A robot with four movable joints has four degrees of freedom.</td>
</tr>
<tr>
<td>End Effector</td>
<td>An end-of-arm tool which is attached to the robot's manipulator and actually performs the robot's work.</td>
</tr>
<tr>
<td>Fixture</td>
<td>A special device used to hold a workpiece in the proper position as it is being tooled.</td>
</tr>
<tr>
<td>Flexible Automation</td>
<td>An all-encompassing term which describes the flexibility, adaptability, and reprogrammable nature of modern industrial robots.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Limited Sequence</td>
<td>A simple, non-servo type of robot, sometimes called a "bang-bang" robot. Movement of a limited sequence robot is controlled by a series of stop switches.</td>
</tr>
<tr>
<td>Manipulator</td>
<td>Another name for the arm of the robot. It encompasses basic axes which control wrist movements for robots. The three basic axes are referred to as pitch, yaw, and roll.</td>
</tr>
<tr>
<td>Payload</td>
<td>The maximum weight a robot is able to carry at normal speeds.</td>
</tr>
<tr>
<td>Pitch</td>
<td>Up-and-down motion along an axis.</td>
</tr>
<tr>
<td>Point to Point</td>
<td>A robot with a control system for programming a series of points without regard to coordination axes.</td>
</tr>
<tr>
<td>Repeatability</td>
<td>The degree to which a robot is able to return the tool center point repeatedly to the same position.</td>
</tr>
<tr>
<td>Roll</td>
<td>Circular motion along an axis.</td>
</tr>
<tr>
<td>Servo-Mechanism</td>
<td>An automatic feedback control system for mechanical motion.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Speed</td>
<td>The rate, in inches per second or millimeters per second, that the robot is able to move the tool center point.</td>
</tr>
<tr>
<td>Teach Pendant</td>
<td>A special control box which an operator uses to guide a robot through the motions required to perform a specific task.</td>
</tr>
<tr>
<td>Tool Center Point</td>
<td>A given point at the tool level around which the robot is programmed for performing specific tasks.</td>
</tr>
<tr>
<td>Work Envelope</td>
<td>The operating range, or reach capability, of a robot.</td>
</tr>
<tr>
<td>Yaw</td>
<td>Side-to-side motion along an axis.</td>
</tr>
</tbody>
</table>
FUNDAMENTALS OF INTEGRATION IN THE WORKPLACE

MODULE VI

STRATEGY, PLANNING AND IMPLEMENTATION FOR INTEGRATION

TIME REQUIRED: 6 HOURS

TEXT REFERENCE:

A JUMPSTART TO WORLD CLASS PERFORMANCE, DAVE GARWOOD AND MICHAEL BANE.

INTEGRATED MANUFACTURING, ERIC GERELLE AND JOHN STARK, PP. 105-213.

TEAM MANUAL

OBJECTIVES:

UPON COMPLETION OF THE MODULE, THE STUDENT WILL BE ABLE TO:

DEMONSTRATE AN AWARENESS OF HOW AN INTEGRATION STRATEGY SHOULD EVOLVE AND WHAT ARE THE ROLES OF THE PEOPLE RESPONSIBLE FOR THE PLANNING AND IMPLEMENTATION.

UNDERSTAND THE CONCEPT OF INTEGRATION.

LIST THE FUNCTIONS WITHIN AN ORGANIZATION AND EXPLAIN HOW INTEGRATION BENEFITS THE ORGANIZATION.

EXPLAIN WHY THE HUMAN FACTOR IS CRITICAL TO THE INTEGRATION PLAN.

DESCRIBE HOW A COMPANY JUSTIFIES THE COST OF INTRODUCING NEW TECHNOLOGY.
LEARNING ACTIVITIES:

VIEW VIDEO PART I - CIM, A DIFFERENT PERSPECTIVE.

COMPLETE PROJECT CHART

PARTicipate IN GROUP DISCUSSION

VIEW SIMULATION DEMO
MODULE VI OUTLINE

STRATEGY, PLANNING AND IMPLEMENTATION OF INTEGRATION

I. COMPUTER INTEGRATION
 A. DEFINITION
 B. REASONS TO IMPLEMENT
 C. PLANNING FOR IMPLEMENTATION
 D. GOAL OF INTEGRATION

II. HISTORY OF INTEGRATION
 A. 1950-1960 TRADITIONAL METHODS
 B. 1970 MATERIALS RESOURCE PLANNING
 C. 1980 JUST IN TIME--JAPANESE MANAGEMENT
 D. 1990 COMPUTER INTEGRATED MANUFACTURING
 E. 2000 INTEGRATED BUSINESS

III. OVERVIEW OF AN INTEGRATED SYSTEM
 A. BUSINESS CONTROL SYSTEMS
 B. ENGINEERING CONTROL SYSTEMS
 C. PRODUCTION CONTROL SYSTEMS
 D. HARDWARE REQUIREMENTS
 E. SOFTWARE REQUIREMENTS
 F. HUMAN RESOURCE REQUIREMENTS
IV. COST JUSTIFICATION
 A. ADDED VALUE
 B. COSTS OF ADDING VALUE
 C. COSTS OF TIME WAITING
 D. ADVANTAGES OF INTEGRATION
 E. DISADVANTAGES OF INTEGRATION
 F. COST ACCOUNTING SHORT TERM VRS. LONG TERM
 G. DIFFICULTIES IN QUANTIFYING INTEGRATION

V. IMPLEMENTING INTEGRATION
 A. MANAGEMENT SUPPORT
 B. HUMAN ASPECT
 C. HUMAN RESOURCES
 D. CHANGES IN PRODUCTION
 E. CHANGES IN ENGINEERING
 F. CHANGES IN MARKETING
 G. CHANGES IN MIS

VI. CONCLUSION
 A. NON-CLOSURE
 B. TRAINING CONCERNS
INTEGRATION PROVIDES US WITH AN EXCELLENT OPPORTUNITY TO LOOK AT THE PEOPLE PARTS OF AN ORGANIZATION,

...AND IN DOING SO, WE CAN LOOK AT CREATING AN ORGANIZATIONAL FRAMEWORK THAT CAN VALUE THE INDIVIDUAL.

QUESTION: DO YOU AGREE WITH THIS STATEMENT. HOW DOES THIS FIT WITH THE CONCEPT OF TEAM BUILDING?
EXCERPTS FROM AN EDITORIAL:

"TECHNOLOGY FOR DOING MOST OF WHAT YOU WANT CAN BE BOUGHT 'OFF THE SHELF' TODAY."

"BUT PEOPLE ARE HOLDING UP THE PROGRESS, BECAUSE THEY DON'T SEE THEMSELVES IN THE BEAUTIFUL VISION OF CIM. SO THEY RESIST CHANGES IN LITTLE WAYS, LEADING THE COMPANY IN DIRECTIONS IN WHICH IT DIDN'T EXPECT TO GO. PEOPLE ARE AFRAID OF CHANGE. THEY HAVE DIFFICULTY SEEING WHAT THEIR NEW ROLES ARE TO BE IN THE NEW ORDER OF THINGS, AND THEY MUST BE CONVINCED THAT THEY WILL BE NO WORSE OFF, BEFORE THEY WILL TAKE AN ACTIVE ROLE IN MAKING CHANGE HAPPEN."

QUESTION? WHAT ARE SOME WAYS THAT A COMPANY CAN SPREAD THE MESSAGE OF INTEGRATION WITHIN AN ORGANIZATION?

NOTES:
A CIM PARTNERSHIP

CUSTOMER RESOURCES
- President, CEO
- Functional VP
- General Managers
- CIM Architect
- Functional Directors
- Functional Managers
- Operations Integrator
- Operations Managers
- System Implementors
- End Users

EXTERNAL RESOURCES
- Computer Companies
- Governmental Agencies
- Universities
- Research Institutions
- Consultants
- Industrial Specialists
- Consulting Specialists
- System Integrators
- Contract Engineers
- Software Programmers
- Contractors

CONCEPTUAL PLAN
LOGICAL PLAN
PHYSICAL PLAN

CIM MODEL
COMPUTER INTEGRATED MANUFACTURING CIM

COMPUTER INTEGRATED MANAGEMENT CIM

COMPUTER INTEGRATED ENTERPRISE CIE

COMPUTER INTEGRATED BUSINESS CIB

..........ARE NAMES USED FOR THE PHILOSOPHY OF
INTEGRATING "THE WORKPLACE".

THE GOAL IS TO REDUCE MANUFACTURING INEFFECTIVENESS.
STRATEGIES FOR MANUFACTURING

1960 SAFETY STOCK

1970 MRP

1980 JIT

1990 CIM

2000 WORLD CLASS MANUFACTURING........CIE........CIE............

"IT'S LIKE WE'RE ALL WORKING IN THE SAME ROOM".
CIM ENTERPRISE WHEEL

This model or wheel was developed by CASA/SME Technical Council and is made up of five fundamental dimensions.

1. General Business Management
2. Product and Process Definition
3. Manufacturing Planning and Control
4. Factory Automation
5. Information Resource
COST ACCOUNTING JUSTIFIES COSTS ON:

. INTERNAL RATE OF RETURN IR?
. NE\ PRESENT VALUE NPV
. PAYBACK

THE PROBLEM TODAY IS THAT TRADITIONAL ACCOUNTING METHODS ARE BASED ON QUANTITATIVE RESULTS OVER PERIODS OF TIME. THE ROI OR RATE OF RETURN ON COMPUTER INTEGRATION SUCH AS CIM OR FMS MAY NEVER BE ACCEPTABLE WHEN COMPARED AGAINST OTHER "SHORT RANGE" PROJECTS.

THE GREATEST BENEFITS OF INTEGRATING THE WORKPLACE ARE NOT EASILY MEASURED.

MANAGERS MUST EITHER ACCOUNT FOR NON-MEASUREABLE BENEFITS OR ACCEPT THE RISK IN ORDER TO MEET COMPETITION, BUT ALL DECISIONS MUST BE BASED ON LONG TERM PLANS - THE VISION OF THE ORGANIZATION.
Savings Through Scrap Reduction Scenario

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Value Added</th>
<th>Product Cost (inc FC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.00</td>
<td>$9.00</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

Let's say: Production is 100,000 units per year and the scrap rate is 25%

Scrap Cost = 25,000 x $10.00/unit = $250,000/year

123
WITHOUT THE VISION, SUPPORT AND CONTROL FROM THE TOP MANAGEMENT INTEGRATION IN THE WORKPLACE, IS DOOMED TO FAIL.

WITHOUT A CLEAR STRATEGY, THE INTEGRATION PLAN ONLY CREATES MORE ISLANDS!

EDUCATION
PLANNING --------> INTEGRATION <--------IMPLEMENTATION

EDUCATION
THE HUMAN ASPECT

- Automation is perceived to cause a reduction in jobs

- Generates hostility toward automation by workers

- Direct labor decreases while indirect labor increases such that the company may find itself short of skilled automation technicians.

- Union membership may drop unless they become involved in training

- Line supervisors and managers see it as a threat to their power base

- Departmental information boundaries will have to be erased
HUMAN RESOURCES

- Should lead with full support of top management
- Foster employee loyalty in the company
- Convince employees that every job is important and must be done correctly
- Should not be conducted as a "scare" tactic to coerce cooperation
Human Resources / Continuous Improvement Cycle

Feedback on meeting Customer expectations

Continuous Improvement

Cryovac: Mission, Goals, Philosophies
Warner & Powers Robertson, Watt, & Young Three Internal Customers

Steering Committee

Process, Mission, Goals (To be Developed)

Human Resources Function

Measures of Customer Satisfaction (To be determined)

External Customers
Grace Community Schools/Universities Government Associations Vendors/Consultants

Other Products:
- Community Relations
- Government Relations
- Media Relations
- Grace Relations
- Compliance

Products

Major Customers

Major Products:
- Delivering Candidates for Employment
- Training/Development of Employees
- Issue Paychecks
- Administer Benefits
- Management Information
- Counseling
- Mediation
- Consulting

Measures of Customer Satisfaction (To be determined)

Internal Customers

All Employees All Managers with Supervising Resp. All Employees with Hiring Resp.

Internal Customers

Human Resources Function

Products

Major Customers

Major Products:
- Delivering Candidates for Employment
- Training/Development of Employees
- Issue Paychecks
- Administer Benefits
- Management Information
- Counseling
- Mediation
- Consulting

Feedback on meeting Customer expectations

Continuous Improvement

Cryovac: Mission, Goals, Philosophies
Warner & Powers Robertson, Watt, & Young Three Internal Customers

Steering Committee

Process, Mission, Goals (To be Developed)

Human Resources Function

Measures of Customer Satisfaction (To be determined)
TOP MANAGEMENT SHOULD

. Implement Integration in phases beginning with inventory control and flexible manufacturing systems.

. Establish a design and INTEGRATION TEAM made up of:
 . Production
 . Human Resources
 . Product Engineering
 . Marketing
 . MIS
 . Management

. Support the project through all phases.

. USE IT!