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ABSTRACT
A new method for estimating the parameters of the normal

ogive three-parameter model for multiple choice test items, the

normalized direct (NDIR) procedure, is examined and compared to a

more commonly-used estimation procedure, Lord's LOGIST, using computer

simulations.

The NDIR procedure uses the normalized (mid percentile) z

score as the ability score as opposed to the conventional raw

score (linear z score), maximum likelihood, or Bayesian modal

ability score. Thus it is not necessary to use an iterative

procedure for estimating the person parameter (ability);

corrections for scale errors can be made before the item function

fitting is completed.

The item function fitting is accomplished using a minimum chi

square procedure. Input to the chi square procedure includes

biserial correlations corrected for guessing and attenuation. The

attenuation correction uses a reliability index based on the item

set information index. Normalized z scores corrected for

attenuation using the KR20 index are also inputted to the chi

square procedure.

The normalized direct procedure was more accurate than LOGIST

and required considerably less computer cpu time.
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The normalized direct (NDIR) procedure is a new method for

estimating the parameters of the normal ogive three-parameter

model for multiple choice test items. Unlike Lord's LOGIST

program which uses iterative procedures to compute a person's

ability parameter from item score pattern likelihoods based on

rough initial parameter estimate values, the NDIR procedure uses

normalized z scores (referred to as z' in this paper) as person

parameter estimates.

In LOGIST, the initial item parameters are usually based

upon linear z transformation of raw scores. In the NOIR

procedure, the normalization is based upon the initial raw score

distribution. It computes the person parameters directly from the

raw score frequencies using the midpercentile z of the raw scores

(z') instead of the raw scores themselves. Thus scaling errors

due to skewness may be greatly reduced, i.e., it converts

distributions to approximately normal form "... thus precluding

the errors in correlation matrices which arise from disparity of

shape" (Carroll, 1961, p. 359).

As will be demonstrated, the true scale versus estimated

scale errors do not change sign as readily with the midpercentile

z scores when guessing increases as with linear z scores. Thus

corrections for attenuation (error in the scale) can be made

5
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before the item function fitting is completed. That is, the

estimated ability scale can be brought to more nearly approximate

the true ability scale. It is not necessary to estimate the

guessing parameter from the number of item alternatives, and there

is virtually no limit on the number of examinees that may be

processed at one time.

The Model

The three-parameter model is a mathematical function that

yields the probability value of examinees who would obtain an item

score of 1 (get the item right) at a given ability score scale

point. The ability (0) scale usually ranges from minus infinity

to plus infinity, but it is rare for ability distributions to fall

outside the range -3.0 to + 3.0. The function 1121 an "a"

parameter for item discrimination, a "b" parameter for the item

difficulty (scale point of peak item functioning), and a "c"

parameter for item guessing (the probability that those who do not

know the item will respond correctly by guessing).

Currently there are two forms of the three-parameter

function: (1) the normal ogive and (2) the logistic model (often

called the Birnbaum three-parameter model). The normal ogive

version uses the unit standard normal curve. The probability of

6
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examinees getting an item score of 1 (correct answer) at an

ability point, 0, before guessing, is the area, p(G), under the

normal curve from the base scale point to the upper end. The plot

of the function (normal ogive or logistic) is called an item

characteristic curve (ICC). An ICC is a curve plotted on the

points representing the probabilities of examines getting the item

right at various e level points. The actual normal distribution

formula is

1/(2701/2 f 0-02

""a(9b)

and the logistic function approximates the normal ogive function

using the formula

p(8) =1 / {1 + e-1.71"9 b)}

According to Lord and Novick (1968, p. 399) the logistic function

differs from the normal by less than .01 for all 0. Many

psychometricians prefer the logistic form because, mathematically,

it is simpler.

Illustration of the Three-Parameter Normal Ogive Model

The three-parameter normal ogive model is depicted in

o"
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Figure 1. The assumption is made that the hypothetical

[Insert Figure 1 about here]

distributions underlying the item scores of 0 or 1 (Distribution 2

on the vertical axis of Figure 1) and that of the ability trait

(test trait denoted by Distribution 1 on the horizontal axis of

Figure 1) are normal. The test is assumed to be measuring one

trait (unifactor) and the response to one item not dependent on

any other item (locally independent). These two axes with the

distribution density axis perpendicular to them represent a

bivariate surface, a three dimensional figure which has been

collapsed on the ordinate axis and then on the abscissa. The

regression line has as its slope ple, the correlation (biserial

corrected for guessing and attenuation) between the 0 trait and

the item. The unconditional probability of a correct answer to an

item (average difficulty or p-value) is represented as the shaded

area under the 0_ unit standard normal distribution (Distribution

2) of Figure 1. Figure 1 might represent an item for which the

unconditional probability of a correct response is .85.

P Value for an Item at a 0 Point

The fixed point on the OI scale representing the shaded area

point of cut in Distribution 2 is defined as T. A line extended

across the bivariate surface at that fixed point and parallel to

8



A Normalized Direct Approach
7

the 0-axis will intersect all possible 0 slices (conditional OI

distributions) of the bivariate surface. The probability, p(0),

of passing the item ct any va'ae 8 is represented by the portion

of the 0 distribution at that point 7 to the upper end

(see distributions 3 and 4 in Figure 1). Distributions 3 and 4

represent slices of the bivariate surface at values of

0 (conditional 0 distributions). Distribution 3 represents the

slice of the bivariate at e = b and Distribution 4 represents a

slice of the bivariate surface at any given point of 0.

The b Parameter

The difficulty parameter b for a specified item is defined as

that value of 0 where p(e) = .50. The b value is, therefore, on

the same scale as the ability scores. It is also the 0 value

corresponding to the item score mean (P value). In addition to

being the slice of the bivariate surface at 0 = b, it is the 0

coordinate for the point of intersection of the line y = 7 and the

regression line, or

b TIPIO

The a Parameter

(1)

The point where the line y = 7 intersects Distribution 4 of

9
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Figure 1 would have the value p1e(0 - b) on the AI scale. To

convert this into a value on the Distribution 4 scale, it is

necessary to divide it by the standard deviation of Distribution

4. Its standard deviation is

(1 P2ie )"2

When 7 is taken as a point on the baseline of Distribution 4, the

following is true:

= (b - 0) PIO/(1 PTe )1/2

As noted in Lord and Novick (1968, p. 378):

a = p I8/(1.0 - p
2

16
)

1/2
(2)

Equation 2 represents the item-ability scale correlation

coefficient divided by the regression line standard deviation.

The 7 poiTi.i then becomes -a(A - b) anC p(0) is the area from that

value to the upper end (shaded in Distribution 4).

A unit standard normal table can be consulted to obtain the

area. The programs developed for this study use the normal ogive
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form of the model. The IBM (1968) subroutines are easy to use and

are accurate to more than three decimal places, so it is

unnecessary to use the loc,istic form to approximate the normal

ogive model.

The c Parameter

When guessing is involved, the proportion of examinees who

score '1' on the item exceeds the expected P-value (P) in the

total group (and p(0) at a given 0 point). The probability that

examinees who do not know an item get the item correct through

successful guessing is c. That is, when there is guessing, c(1 -

P) more examinees would get the item right and the total would be

P + c(1 - P) or conditionally, p(0) + c(1 - p(0)) at a given

point. Taking P' to be the guessing-present total, q(8) = 1 -

p(0), and p'(0) the 0 point probabilities of getting th. item

right, the following formulae can then be written:

P = P' - c(1 P) (3)

or pt(0) = p(8) + cq(0) (4)

and
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p(e) = p'(e) cq(0) (5)

Thus p(0) in Equation 5 can be obtained by removing from p'(0) the

proportion due to guessing. The c parameter Is also the lower

asymptote of the ICC.

The c parameter is not an explanation of how .examinees guess.

It simply acknowledges that they guess. As the ability level of

examinees increases, the number of those that guess declines since

it can be assumed that people who guess come from among those who

do not know the answer. The parameter c thus may be described as

a noise parameter added to the two-parameter model.

Consequences of Guessing

As will be shown, guessing tends to make normal distributions

of raw scores appear non-normal. When guessing is ignored severe

inaccuracies can ,sult in computations using the item score or

the total raw score. As noted, p10 is needed in Equations 1 and 2

to compute both the a and b parameters. 7 is computed from the

proportion passing the item with guessing absent and is used in

Equation 1 to compute the b parameter. Correcting for guessing is

important (see Guilford, 1954, p. 421). That is, when .10 of

a population know an item, and of the remaining .90 only .20 get it

correct through successful guessing, the observed P-value (P') is

12
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.28 (2.8 times as high as it should be).

Easy items, however, are not affected as severely by guessing

as are the hard ones. For example, if those who know the item

constitute a proportion of .90 and, .20 of the remaining .10 is

added to that proportion, the observed P' would be .92 or only

1.02 times as high as it should be (instead of 2.8 as observed

above on the other end of the scale).

The population value pIe is also severely attenuated by

guessing (see e.g., Urry, 1977; Ashler, 1979). The value 1/k,

where k is the number of item alternatives, traditionally has been

used as if it were an efficient estimator of the c parameter.

However, evidence cited in Rowley and Traub (1977) indicates that

equations using 1/k are generally not appropriate for unspeeded

tests.

The Ability Score Problem

Procedures like LOGIST that estimate the item parameters

require estimates of the person parameter 9. Only two ways of

estimating 0 have been proposed that do not require fallible

starting estimates of the item parameters. These are the z and z'

methods. All other techniques use probilities of pattern scores.

How close to the true 9 values do z and z' come? Can appropriate

adjustments be done to make meaningful improvements? Table 1

13
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was computed to investigate these questions.

Table 1 was created from a larger matrix that has chosen 0

values from 0 = -4.5 to 0 = 4.5 with increments of .1. At each 0

step the likelihood of each score pattern of 0's and l's was

computed using the normal ogive three-parameter model and the item

parameters given on page 22. The likelihood value (combines

product of the p'(0) an' q'(0) values) of the vector was

multiplied by the normal distribution frequency at the 0 point.

Thus a 0 by raw scare matrix was created. The mean 0 value was

computed at each raw score, as indicated in Table 1.

[Insert Table 1 about here]

Table 1 is based on a 40-item test with a known distribution

of item parameters and a known unit standard normal 0

distribution. The a and b parameters are those used for later

simulations and, as mentioned, are on page 22. Three levels of

assumed guessing are compared. For each possible raw score (X)

the expected frequency was computed, the 0 mean of all 0,1

response patterns giving a particular expected X, z score from the

expected X, and the z' from the expected cumulative frequency at

the middle of the interval.

In Table 1 the first distribution is reported for the set of

40 items with no guessing; the second is for the same item set with

14
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all guessing parameters set to .10; and the third is the same set

with guessing set to .20.

Raw scores (X) are given in column 1, Distribution 1 (no

guessing) in columns 2-5, Distribution 2 (guessing = .10) in

columns 6-9, and Distribution 3 (guessing = .20) in columns 10-13.

The person parameter is normally distributed. The likelihood

probability response vectors associated with each raw score are

generated using the normal ability values and the established item

a, b, and c parameters. Thus it is possible to construct an

expected frequency distribution for any sample and also to observe

the internal distribution of A's for any raw score level. For,

example, for Distribution 1 (no guessing) a raw score of 25 has a

proportion point .039 (column 2), which means that in a sample of

1,000 subjects 39 people are expected to have a score of 25. The

average A of these 39 persons is expected to be .55 (column 3).

the raw score of 25 corresponds to a linear z of .61 (column 4)

and a z' of .57 (column 5). The mean raw score of the 40 items is

expected to be 20 and the standard deviation 8.24. The table thus

provides a theoretical picture of the relationship of the raw

score distribution and its transformations to the underlying

distribution.

Table 2 presents the discrepancies between the z and z'

15
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values and the.0 mean for each score level.

[Insert Table 2 about here]

Note that the z' - 0 mean discrepancies in each set are less than

the corresponding z - 0 mean discrepancies at the high frequency

points of the scale, and the discrepancies for z' (attenuation)

tend to be all in the same direction (away from the middle of the

distribution). The direction of the linear z errors, on the other

hand, tends to vary, especially as guessing increases.

Note in Table 2 that when c = 0 the discrepancies are

positive over the range 0 to 4 then negative in the range 5 to 19

and negative again at 37 and above. When c = .10 the

discrepancies are negative for the ranges 0 to 20 and 37 to 40,

etc. It is not always possible to tell where the

discrepancies will be negative or positive. Since the extent of

guessing varies from item to item and is not known, it is

extremely difficult to make adequate corrections for the error

caused by the linear z. This may introduce fluctuating bias (as

well as some possible random error) into initial pattern

probabilities and ability score estimates that may never be

overcome in later parameterization stages or cycles. That Is, as

noted in Baker (1987), "there is a common thread that runs through

all the available estimation methods. As a result they share the

16
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limitations, such as the need for good initial estimators and

well-conditioned matrices, of the Newton-Raphson technique" (p.

138).

The Normalized Direct Procedure

Nota in Table 1 that the shape of the z' distribution is

always normal in form. The shape of the initial ability

distribution does not shift considerably when different amounts of

examinee guessing occurs as does the z distribution. Yet little

research has been done on the applicability of the z' scale to

item parameterization, in spite of the fact that Johnson's (1951)

U-L (Upper-Lower 27%) index (influenced by Kelly's (1939)

frequency work) has been in use for many years.

If the item-score biserial is computed using z' scores

instead of raw scores, both the item and raw score distributions

are normal in form. This happens because the biserial already

requires the item score mean be converted to unit standard normal

values. Hence some serious problems with estimating the biserial

are avoided; as noted in Carroll (1961, p. 359), the

transformation of distributions to an approximately normal form is

a common way to improve estimates of correlations. Guilford and

Fruchter (1978, pp. 307, 478-484), note that grave errors such as

biserials in excess of 1.0 can result when the raw score
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distribution is left in a very skewed form.

As noted in Schmidt (1977), an attenuation correction can be

applied to pIe before the a and b parameters are computed.

Evidence presented in Tables 1 and 2 suggests that z' errors can

be appreciably reduced using a reliability coefficient correction

similar to the one suggested by Schmidt since the 0 - z' errors

tend to be of the same sign whether or not there is guessing. When

a successful correction is made before the function fitting

process is completed, less error would be expected in the item

parameter estimates. This would be expected to show up when

computer simulations are done with estimated values compared

against known values and the LOGIST procedure.

Steps of the Procedure

The procedure entails: (a) Scoring of the test and storage of

item-test data, (b) Choosing and using provisional (trial)

guessing values for steps to follow and using guessing corrected

item-raw score biserials to estimate a and b parameters, (c)

Fitting trial item characteristic curves to the data item

characteristic curves using a chi square procedure to determine

the best c parameter estimate and the corresponding a and b

parameter estimates, (d) Using the a, b and c estimates to compute

a correction for attenuation to pIe which is used with a

18
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correction to z' based on KR20 as steps 2 and 3 are repeated to

yield final estimates.

Scoring and Storage

Examinees' 0,1 item scores are summed to obtain raw scores.

An item by score matrix of frequencies is created and stored for

the two fitting cycles. Then, from the total group frequency

distribution of all examinees, z' scores are computed from each

point on the test score distribution. All item statistics are

computed with all the other 'item scores included in the total score

but not the score of the item itself. The z' scores (8 estimates)

are also stored for first and second cycle use. Two IBM (1968)

subroutines (NDTRI and INGRAT) are used to convert areas under the

normal curve to baseline values and vice versa.

Using Trial Guessing Values and Computing First Parameters

The stored z' values and frequencies are used to compute the

item-raw score biserial correlation coefficients. For each item,

provisional (trial) c values between .000 and .320 are used. This

is done in the following manner. First, computations (which will

be explained) are made using c = 0, then .04. .08, .12, .16, .20,

.24, .28, and .32. Then, as determined by the computations,

smaller steps are used between two of these values until the

computational criteria are satisfied. The a parameter comes from

19
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an item-raw score biserial corrected for guessing using the

respective trial c value. Equation 3 is used to remove the effect

of guessing in the P-value which is then converted to 7 and 0

values for the biserial and also the b parameter.

When the biserial with guessing present is computed, it is

assumed that examinees who guess (as mentioned earlier) come from

among those who do not know the item. Their mean true ability is

the same as that of those who do not know the answer. It is

assumed that for each examinee, success in guessing an item is

independent of success on any other item. Then the

guessing-corrected biserial is

r
bc = p' (X' - 540(1 c)(a 0)] (6)

where X is the mean z' score of all who took the test, X' is the

mean z' score of the observed number of examinees obtaining the

correct answer, o
sx

is the total group standard deviation, and 0 is

the height of the ordinate (corresponding to the area under the

normal curve for the corrected proportion obtaining the correct

answer). In Figure 1, Distribution 2, 0 is the height of the

curve above 7 on the base. It is obtained using Equation 5 and

the unit standard normal tables (See also Ashler, 1979). The

20
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score means in Equation 6 are assumed to be continuous. The z'

score conversion converts the score distribution to a normal form.

Thus both the item and test score distribution behave as if they

are continuous. The biserial should have a continuum on both the

item score distribution and the test score distribution. (see Lord,

1980, p. 33).

Fitting the ICC to the Data

A minumum chi square estimation routine is now employed that

uses the item-by-z' score matrix of frequencies, each trial c value

and the corresponding a and b values. This chi square routine has

been used by a number of psychometricians, especially Urry (1976,

p. 17). The chi square (sum of squares fit or SSFit) formula may

be given in the form:

m-i

SSFit =
iE0

In' - t
i
p'(z'))

2
/Et

i
P'W)Ce(e)]

=
(7)

where j represents the test score, m the total number of items,

n'' the number of cases obtaining the right answer on the item at

the score, j, t, the number of people at the score j, and p'(z')

is the expected (computed) proportion passing the item at the

ability level.

A fitting sequence goes as follows. A trial value of the c
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parameter is chosen. Equation 5 h used to compute P, which in turn

is used to get 7 and 0. Then Equation 6 is used to compute rbc,

which in turn is used in Equations 1 and 2 to get the b and a

parameter estimates, respectively. Next, with a and b values

corresponding to the trial c value, Equation 7 is used. However,

first a p'(z') must be calculated for each z' using -a(z' b),

its corresponding probability from the normal table, and Equation

4. Then the SSFit value is compute. using Equation 7. This

process is repeated for each trial c value. The a, b, and c

values yielding the smallest SSlit are chosen as the best

estimates.

Repeat of Steps 2 and 3

Since pie requires true parameter values, it is necessary to

first get estimates of the three parametersoin the first ICC

fitting cycle prior to any-correcting. Then in the second ICC

fitting, the z' values entered into the SSFit subroutine are

multiplied by the square root of KR20 to reduce the discrepancies

shown in Table 2; r
bc

is corrected for attenuation to

produce an estimate of p
le

using the equation:

PIO rbl(r82)1/2

.22

(8)
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The attenuation correction, r'
Oz,

is based on the information

function at the item b value, and will be explained in the next

section.

The Scale Variance

A variance for the estimates of ability for (0,1) scoring at

an ability point 0 is given in Lord and Novick (1968, p. 453-457)

as the inverse of the information function, i(e). Lord and

Novick's upper bound 1(0) may be written as

1(0) =
1E 1

lim [(Ap'(0)/A0)
2
/(p'(0)q'(0))

=
A040

(9)

That is, information at an ability point is equal to the sum,

across all m test items, of the squared changes in the proportion

passing the item at the ability point (squared derivative of p'(0)

divided by the respective item variance at the ability point).

(The AO slices used are (0 - .005) and (0 + .005).)

Point Reliability Formula

When the reciprocal of Equation 9 is entered into the

equation for the usual reliability coefficient, the 0-point

reliability follows. That is,

r'
Oz
= 1/(1+1/(

1
E

1
lim [(Ap1(0)/A0)

2
/(p'(0)q'(0)))) (10)=

Ae40

23
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Since the b parameter is also the regression point

corresponding to the item P-value (item score mean), the point

reliability provides a reliability index at the 0 item difficulty

point. Evidence suggests that it is a better index for correcting

the item biserial for attenuation than the KR20 suggested by

Schmidt (1977). Therefore, NDIR corrects the z' values through

multiplication by the square root of the KR20 reliability index

before entry into the SSFit equation.

Computer Evaluation of the Procedure

Computer simulations were used to evaluate the item parameter

estimate accuracy, since such controlled conditions allow

estimation results to be compared to starting (known) conditions.

Research-determined item parameters were fed into an item vector

response generator. For the item response generator, a random

value of 0 was obtained for each simulated examinee by summing

twelve random numbers in the range .00 to 1.00 from a uniform

(rectangular) distribution and subtracting 6 from the sum.

According to Morrison (1967, pp. 4-9), the resulting number is

normally distributed with a mean of zero and a standard deviation

of one. A vector of item responses was then created using this 0,

the chosen (known) item parameters, and p'(6). This was done by

computing the p'(6) value for each item. For each item, -a(6-b)
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(Distribution 4 baseline value in Figure 1) was computed and

converted to p(8) (shaded area of Distribution 4 in Figure 1)

using PVAL (adjusted form of the IBM (1968) INGRAT routine); p(8)

in turn was converted to p'(8) using Equation 4 (p. 13).

An equivalent method would be to obtain, from the unit standard

normal table, the area under the curve from z (when z = -a(8-b))

to the upper end. Then for each item a different number between

0.0 and 1.0 can be drawn from the uniform distribution. If the

number drawn for the item is larger then 1.0 - p'(8), the item is

scored "1"; otherwise it is scored "0".

Item Parameters Selected for Simulation

Psychometricians generally prefer item difficulties from -2.0

to 2.0 because this difficulty range covers most ranges involved

in testing. For this study the b-values were spread in equal

intervals (steps) across that range.

The a, b, and c parameters of items to be simulated in the

study were:

(1) .60 -2.00 .12; (2) .60 -1.56 .05; (3) .60 -1.11 .07;

(4) .60 -.67 .11; (5) .60 -.22 .00; (6) .60 .22 .19;

(7) .60 .67 .01; (8) .60 1.11 .17; (9) .60 1.56 .24;

(10) .60 2.00 .23; (11) 1.07 -2.00 .01; (12) 1.07 -1.56 .09;

(13) 1.07 -1.11 .02; (14) 1.07 -.67 .10; (15) 1.07 -.22 .05;

215
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(16) 1.07 .22 .12; (17) 1.07 .67 .14; (18) 1.07 1.11 .08;

(19) 1.07 1.56 .08; (20) 1.07 2.00 .13; (21) 1.53 -2.00 .15;

(22) 1.53 -1.56 .11; (23) 1.53 -1.11 .01; (24) 1.53 -.67 .10;

(25) 1.53 -.22 .13; (26) 1.53 .22 .14; (27) 1.53 .67 .14;

(28) 1.53 1.11 .15; (29) 1.53 1.56 .23; (30) 1.53 2.00 .11;

(31) 2.00 -2.00 .14; (32) 2.00 -1.56 .13; (33) 2.00 -1.11 .07;

(34) 2.00 -.67 .07; (35) 2.00 -.22 .11 (36) 2.00 .22 .02;

(37) 2.00 .67 .11; (38) 2.00 1.11 .07; (39) 2.00 1.56 .16;

(40) 2.00 2.00 .03

This 40-item set is repeated to obtain the 80 -item set.

Item and Subject Sample Size

A normal ogive generator (see Gugel, 1988, Appendix 2) was

used to generate three samples ,f 40- and 80-item tests each in

sets of 1,000, 2,000, and 3,000 cases for a total of 18 sets. The

two programs were run on each set -- NDIR and LOGIST. LOGIST was

allowed 40 stages for convergence with number of item alternatives

set to 4.

The Hulin ICC Recovery Measure

After the item response vectors are entered through the item

parameter estimation programs, accuracy of results can be

ascertained through comparison with the starting parameter data.

Hulin et al. (1982) have provided a very good way of accomplishing



A Normalized Direct Approach
25

this. Since most measurement applications involve p'(0) in the 0

range -3.0 to +3.0, they provide the following item root mean

square error index (RMSE) for each item:

31

RMSE = {
j
E

i
[p'(9 ) - p"(9 )]

2
/31 /

1/2
=

where j is the number of increments, p'(0 ) is computed from the

item parameters going into the generator, and p"(0 ) from the

parameter estimates coming out of an estimation program (i.e. NDIR

or LOGIST). The 31 0 increments are each .2 (i.e., the 9 values

are -3.0, -2.8, ... +2.8, +3.0).

Hulin et al. (1982) compute a RMSE for each item and then

report a RMSE mean and standard deviation for the item sets.

Since the most important e ranges are used, this index is a more

meaningful item parameter accuracy measure than the earlier method

which will be discussed later.

The estimation programs were compared using the Hulin index

(1982) and independent parameter recoveries.

The Generator. Output

The normal ogive vector generator (Program NOVGEN, Gugel,

1987, Appendix 2) was run with the item a, b, and cyalues given.

Starting seven digit generator seed numbers were chosen randomly.
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ICC Recovery - Hulin Index

As noted, the Hulin index is an ICC recovery measure. A

total of 31 9 points in steps of between -3 and +3 were used.

At each point conditional probabilities were computed using the

item parameters entered into the item response generator at the

start and the corresponding estimated values from NDIR and LOGIST.

Each item RMSE was based on the discrepancies between the 31 ICC

points. Then a mean and standard deviation based on the item RMSE

values in the test was computed. Table 3 contains the mean RMSE

values and their standard deviations for each sample and each

parameterization method in this study.

[Insert Table 3 about here]

LOGIST had a lower Hulin index in Table 3 in only one of the

18 samples - the first (40 items and 1,000 cases). At 40 items

an increase in number of cases seemed to reduce the mean error faster

in NDIR than LOGIST (.030 to .023 as opposed to .032 to .031). At

80 items LOGIST dropped from .033 to .023 while NDIR dropped from

.027 to .019.

Hulin et al. (1982) reported mean item root mean square

errors for LOGIST of .048 at 30 items and 1,000 cases; .043 at 30

items and 2,000 cases; .038 at 60 items and 1,000 cases; and .032

at 60 items and 2,000 cases. The 1,000 and 2,000 case 40-item



A Normalized Direct Approach
27

means of .032 and .031 for LOGIST in Table 3 appear to be slightly

smaller than what they found. They also found magnitude of errors

less as number of items increased.

Individual Parameter Recoveries

Item set root mean square errors (RMSE 's) were computed for

the individual item paramerters using the equation:

m

RMSE = [ E (k e)2/m]1/2
p i=1 (12)

These are given in Table 4. At 40 items all the cell error means

[Insert Table 4 about here]

are lower for NDIR on all three parameters. At 80 items they are

about the same on the a parameter but lower on both the b and c

parameters.

Correlations of Recovered Item Paramaeters

Table 5 provides the correlations between the starting

parameter values and the corresponding estimated parameters from

each technique. The mean correlation for the known versus

estimated a parameter was .948 for NDIR and .950 for LOGIST; .994

[Insert Table 5 about here]

versus .992 for the b parameter; and .608 versus .514 for the c

.29
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parameter. On the c parameter, unlike the other two, NDIR was

best on all nine cell means.

Run Time

Computer cpu times are given in Table 6. The differences in

-cpu time between the two programs were considerable. NDIR required

about 8% of the cpu time of LOGIST.

[insert Table 6 about here]

Conclusions

The normalized direct procedure fares quite well when

compared with LOGIST. It differs from LOGIST in that it not only

estimates examinee ability scores directly from total raw score

frequency distributions using midpercentile z' scores but also

applies a correction for measurement scale attenuation to
pIe

before the final a, b, c parameters are computed. The correction

is based on a reliability coefficient computed from the test

information function using first cycle parameters that are

corrected only for guessing. This correction process helps

correct for the fact that z' is not a perfect replacement for A.

The findings of this study suggest that LOGIST with more

complicated and more costly 0 routines may not be doing as good a

job at estimating parameters of the three-parameter model when

compared to the NDIR procedure. However, as stated in Green et

30
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al. (1982), "...when considering a new procedure, the sample size

requirements must be reevaluated using both simulation and live

data... Several differentsample sizes should be produced so that

the effect on calibration can be determined" (p. 41).

As mentioned, this study was done in strict accordance with

normality assumptions. The effects of non-normality may vary from

application to application. The ease of use and cost

effectiveness of the procedure make it possible to do simulation

studies for many different possible applications. Researchers

can easily set up simulation studies that represent their

individual applications. When severely distorted distributions

occur, further adjustments can be made. For example, if a

distribution is skewed due to missing cases below or above a given

ability range, the midpercentile values could be adjusted to take

this into account. Routines for omitted and not reached items

could also be written into the program. Percentage scores could

even be used to compute the z' scores.
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Figure 1

Two Bivariate Surface Slices (3 & 4) With Ability (1) and
Item (2) Marginal (Total Group) Distributions
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TABLE 1

Three Synthetic Test Administrations With Raw Scores (X) Associated With
Underlying 9, Their Expected Freq. Prop., 9 Mean, z/X, and z'/X for a set
of Item Para esters That Vary Only on the Guessing Parameter

X Freq
No Guessing
0 Mn z/X z'/X

Guessing
Freq

= .10
0 Mn z/X z'/X

Guessing = .20
Freq 0 Mn z/X z'/Z

0 .002 -2.85 -2.43 -3.13 .000 --- --- .000 ---
1 .004 -2.56 -2.31 -2.68 .000 .000
2 .006 -2.32 -2.18 -2.39 .001 -2.64 -2.66 -3.28 .000 ---
3 .008 -2.12 -2.06 -2.17 .002 -',!.51 -2.52 -2.95 .000 - --

4 .009 -1.94 -1.94 -1.99 003 -2.38 -2.39 -2.67 .000
5 .012 -1.78 -1.82 -1.83 .005 -2.23 -2.26 -2.43 .001 -2.48 -2.78 -3.21
6 .014 -1.64 -1.70 -1.68 .007 -2.08 -2.12 -2.22 .001 -2.38 -2.64 -2.94

'7 .016 -1.50 -1.58 -1.54 .009 -1.93 -1.99 -2.03 .002 -2.27 -2.49 -2.70
8 .019 -1.37 -1.46 -1.41 .012 -1.78 -1.86 -1.86 .004 -2.16 -7.34 -2.47
9 .022 -1.25 -1.34 -1.28 .014 -1.64 -1.73 -1.70 .006 -2.03 -2.20 -2.25
10 .025 -1.21 -1.16 .017 -1.49 -1.59 -1.55 .009 -1.90 -2.05 -2.07
11 .028--1.01 -1.09 -1.04 .020 -1.36 -1.46 -1.41 .012 -1.76 -1.90 -1.90
12 .031 -.90 -.97 -.92 .024 -1.23 -1.33 -1.27 .015 -1.62 -1.76 -1.73
13 .034 -.78 -.85 -.80 .027 -1.10 -1.20 -1.14 .018 -1.48 -1.61 -1.57
14 .036 -.67 -.73 -.68 .031 -.97 -1.06 -1.01 .022 -1.34 -1.46 -1.41
15 .039 -.55 -.61 -.57 .035 -.85 -.93 -.88 .026 -1.20 -1.32 -1.26
16 .041 -.44 -.49 -.45 .038 -.73 -.80 -.75 .030 -1.06 -1.17 -1.12
17 .043 -.33 -.36 -.34 .041 -.61 -.66 -.63 .035 -.93 -1.02 -.98
18 .044 -.22 -.24 -.23 .044 -.49 -.53 -.50 .039 -.80 -.88 -.84
19 .045 -.11 -.12 -.11 .046 -.37 -.40 -.38 .043 -.67 -.73 -.70
20 .045 .00 .00 .00 .048 -.25 -.26 -.25 .047 -.54 -.59 -.56
21 .045 .11 .12 .11 .049 -.13 -.13 -.13 .050 -.41 -.44 -.42
22 .044 .22 .24 .23 ,050 -.01 -.00 -.01 .052 -.28 -.29 -.29
23 .043 .33 .36 .34 .049 .11 .13 .12 .054 -.15 -.15 -.15
24 .041 .44 .49 .45 .048 .23 .26 .24 .055 -.02 .00 -.01
25 .039 .55 .61 .57 .047 .35 .40 .37 .055 .11 .15 .12
26 .036 .67 .73 .68 .045 .47 .53 .49 .054 .24 .29 .26
27 .034 .78 .85 .80 .042 '.59 .66 .62 .051 .37 .44 .40
28 .031 .90 .97 .92 .039 .72 .80 .75 .048 .51 .59 .54
29 .028 1.01 1.09 1.04 .035 .84 .93 .88 .045 .64 .73 .68
30 .025 1.13 1.21 1.16 .032 .97 1.06 1.01 .041 .78 .88 .83
31 .022 1.25 1.34 1.28 .028 1.10 1.20 1.14 .037 .92 1.02 .97
32 .019 1.37 1.46 1.41 .024 1.23 1.33 1.28 .032 1.06 1.17 1.12
33 .016 1.50 1.58 1.54 .021 1.37 1.46 1.42 .028 1.21 1.32 1.28
34 .014 1.64 1.70 1.68 .018 1.52 1.59 1.57 .023 1.37 1.46 1.44
35 .012 1.78 1.82 1.83 .015 1.67 1.73 1.72 .019 1.53 1.61 1.60
36 .009 1.94 1.94 1.99 .012 1.83 1.86 1.90 .015 1.71 1.76 1.78
37 .008 2.12 2.06 2.17 .009 2.02 1.99 2.09 .012 1.90 1.90 1.99
38 .006 2.32 2.18 2.39 .007 2.23 2.12 2.31 .009 2.13 2.05 2.22
39 .004 2.56 2.31 2.68 .005 2.48 2.26 2.61 .006 2.39 2.20 2.53
40 .002 2.85 2.43 3.13 .002 2.78 2.39 3.06 .003 2.71 2.34 2.99

Mean 20.00 22.00 24.00
S. D. 8.24 7.53 6.83
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Table 2

Discrepancies of z/X and z'/X Values in Table 1 From the Corresponding e
Means

X
No Guessing

Freq z Diff z' Diff
Guessing = .10

Freq z Diff z' Diff
Guessing = .20

Freq z Diff z' Diff
0 .002 .42 -.28 .000 - -- .000
1 .004 .25 -.12 .000 .000 - --
2 .006 .14 -.07 .001 -.02 -.64 .000 - --
3 .008 .06 -.05 .002 -.01 -.44 .000 - --
4 .009 .00 -.05 .003 -.01 -.29 .000
5 .012 -.04 -.OS .005 -.03 -.20 .001 -.30 -.73
6 .014 -.06 -.04 .007 -.04 -.14 .001 -.26 -.56
'7 .016 -.08 -.04 .009 -.06 -.10 .002 -.23 -.43
8 .019 -.09 -.04 .012 -.08 -.08 .004 -.18 -.31
9 .022 -.09 -.03 .014 -.09 -.06 .006 -.17 -.22
10 .025 -.08 -.03 .017 -.10 -.06 .009 -.15 -.17
11 .028 -.08 -.03 .020 -.10 -.05 .012 -.14 -.14
12 .031 -.07 -.02 .024 -.10 -.04 .015 -.14 -.11
13 .034 -.07 -.02 .027 -.04 -.04 .018 -.13 -.09
14 .036 -.06 -.01 .031 -.09 -.04 .022 -.12 -.07
15 .039 -.06 -.02 .035 -.08 -.03 .026 -.12 -.06
16 .041 -.05 -.01 .038 -.07 -.02 .030 -.11 -.06
17 .043 -.03 -.01 .041 -.05 -.02 .035 -.09 -.05
18 .044 -.02 -.01 .044 -.04 -.01 .039 -.08 -.04
19 .045 -.01 .00 .046 -.03 -.01 .043 -.06 -.03
20 .045 .00 .00 .048 -.01 .00 .047 -.05 -.02
21 .045 .01 .00 .049 .00 .00 .050 -.03 -.01
22 .044 .02 .01 .050 .01 .00 .052 -.01 -.01
23 .043 .03 .01 .049 .02 .01 .054 .00 .00
24 .041 .05 .01 .048 .03 .01 .055 .02 .01
25 .039 .06 .02 .047 .05 .02 .055 .04 .01
26 .036 .06 .01 .045 .06 .02 .054 .05 .02
27 .034 .07 .02 .042 .07 .03 .051 .07 .03
28 .031 .07 .02 .039 .08 .03 .048 .08 .oa
29 .028 .08 .03 .035 .09 .04 .045 .09 .04
30 .025 .08 .03 .032 .09 .04 .041 .10 .05
31 .022 .09 .03 .028 .10 .04 .037 .10 .05
32 .019 .09 .04 .024 .10 .05 .032 .11 .06
33 .016 .08 .04 .021 .09 .05 .028 .11 .07
34 .014 .06 .04 .018 .07 .05 .023 .09 .07
35 .012 .04 .05 .015 .06 .05 .019 .08 .07
36 .009 .00 .05 .012 .03 .07 .015 .05 .07
37 .008 -.06 .05 .009 -.03 .07 .012 .00 .09
38 .006 -.14. .05 .007 -.11 .08 .009 -.08 .09
39 .004 -.25 .1- .005 -.22 .13 .006 -.19 .14
40 .002 -.42 .28 .002 -.39 .28 .003 -.37 .28
Mean AD .0014 .0005 .0015 .0008 .0020 .0012
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TABLE 3

ICC Recovery RMSE Values
Cases Items Run NDIR

Mean S. D.
LOGIST
Mean S. D.

1,000 40 1 .032 (.021) .028 (.019)
2 .029 (.013) .038 (.023)
3 .029 (.010 .030 (.016)

Mean .030 (.016) .032 (.019)

2,000 40 1 .021 (.011) .030 (.020)
2 .023 (.011) .032 (.026)

3 .023 (.016) .030 (.020)
Mean .022 (.013) .031 (.022)

3,000 40 1 .020 (.010) .033 (.019)
2 .024 (.014) .030 (.017)
3 .024 (.017) .030 (.021)

Mean .023 (.014) .031 (.019)

1,000 80 1 .028 (.013) .034 (.021)
2 .028 (.016) .031 (.022)
3 .025 (.0161 .033 (.021)

Mean .027 (.015) .033 (.021)

2,000 80 1 .022 (.009) .029 (.018)
2 .018 (.009) .027 (.017)
3 .020 (.013) .023 (.013)

Mean .020 (.010) .026 (.016)

3,000 80 1 .020 (.011) .022 (.012)
2 .018 (.010) .022 (.014)
3 .018 (.010) .024 (.016)

Mean .019 (.010) .023 (.014)
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Table 4

Item Parameter Recovery Rmsep Values

A Normalized Direct Approach

Cases It Run
a

NDIR
b c

LOGIST
a

1,000 40 1 .285 .186 .070 .266 .204 :070
2 .203 .161 .060 .272 .233 .091
3 .228 .148 .058 .213 .178 .080

Mean .239 .165 .063 .250 .205 .080

2,000 40 1 .178 .150 .071 .227 .161 .082
2 .208 .105 .061 .246 .186 .070
3 .206 .173 .064 .211 .196 .088

Mean .197 .143 .065 .228 .181 .080

3,000 40 1 .163 .148 .068 .226 .194 .099
2 .212 .136 .070 .170 .151 .078
3 .227 .188 .078 .242 .188 .098

Mean .201 .157 .072 .213 .178 .092

1,000 80 1 .199 .155 .074 .229 .178 .089
2 .197 .174 .067 .198 .188 .066
3 .214 .142 .065 .219 .166 .087

Mean .203 .157 .069 .215 .177 .081

2,000 80 1 .176 .127 .053 .124 .126 .060
2 .155 .124 .047 .180 .178 .074
3 .166 .140 .057 .178 .160 .074

Mean .166 .130 .052 .161 .155 .069

3,000 80 1 .151 .134 .055 .156 .160 .074
2 .148 .131 .063 .152 .128 .063
3 .147 .129 .056 .123 .151 .070

Mean .149 .131 .058 .144 .146 .069

Grand Mean .192 .147 .063 .202 .174 .078
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Table 5

Item Parameter Correlations of Known vs Estimated Parameters
Cases It Run

a
NDIR
b c

LOGIST
a

1,000 40 1 .859 .990 .554 .917 .990 .623
2 .929 .993 .620 .910 .934 .380
3 .923 .994 .623 .937 .992 .384

Mean .908 .992 .600 .922 .988 .471

2,000 40 1 .959 .993 .478 .940 .992 .496
2 .940 .998 .706 .925 .989 .605
3 .941 .992 .574 :950 .989 .444

Mean .947 .994 .594 .938 .990 .518

3,000 40 1 .971 .994 .549 .945 .990 .391
2 .949 .995 .537 .972 .993 .529
3 .934 .990 .379 .948 .991 .407

Mean .954 .993 .492 .956 .991 .444

1,000 80 1 .930 .994 .506 .924 .991 .429
2 .934 .992 .631 .937 .990 .640
3 .916 .994 .575 .926 .992 .425

Mean .926 .993 .572 .929 .990 .506

2,000 80 1 .954 .997 .728 .976 .996 .629
2 .962 .996 .742 .956 .991 .496
3 .950 .994 .666 .960 .994 .499

Mean .956 .996 .714 .965 .994 .544

3,000 80 1 .965 .995 .667 .969 .994 .548
2 .969 .995 .609 .970 .996 .661
3 .974 .995 .670 .978 .993 .556

Mean .969 .995 .650 .972 .994 .590

Grand Mean .948 .994 .608 .950 .992 .514

Weighted means obtained using Fisher's r to z transformation
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Table 6

Cpu Time in Seconds Per Run

A Normalized Direct Approach

Cases It Run
NDIR

Seconds
LOGIST

Seconds
1,000 40 1 5.964 71.663

2 5.972 77.663
3 6.045 75.914

2,000 40 1 6.938 122.588
2 7.059 125.921
3 6.958 123.305

3,000 40 1 7.846 171.281
2 7.973 174.189
3 7.974 169.171

1,000 80 1 19.924 166.702
2 20.008 157.851
3 19.769 146.628

2,000 80 1 22.375 238.114
2 22.189 252.827
3 21.384 253.089

3,000 80 1 24.461 338.804
2 23.987 343.425
3 24.301 320.434
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