This study examined the relationship between the ability to think critically and the academic performance of undergraduate students. Male (N=107) and female (N=130) undergraduates completed a consent form, demographic sheet, and the Watson-Glaser Critical Thinking Appraisal (WGCTA), which consists of five subtests (Inference, Recognition of Assumptions, Deduction, Interpretation, and Evaluation of Arguments). In general, the results showed that students who obtained higher total WGCTA scores also had higher cumulative grade point averages (GPAs). The results seem to indicate the not all aspects of the ability to think critically contribute equally to overall academic performance. Although the abilities to accurately infer, interpret, and evaluate arguments were found to significantly correlate with cumulative GPA, only the abilities to infer and evaluate arguments significantly and uniquely contributed to 9.2% of the variance within cumulative GPA. Gender differences were also found. Findings appear to indicate that proficiency in only one skill (inference) associated with critical thinking was required for higher male student academic achievement, while proficiency in both deduction and evaluation of arguments was required for higher female student academic achievement. These findings suggest that what is required for a male student to succeed academically is quite different from what is required for a female student to achieve, even in cases where ability levels are quite similar. (NB)
An Examination of the Relationship Between Critical Thinking and Academic Success on a University Campus
Robbie Steward, Yousef Al-Abdulla
University of Kansas, 1989
Introduction

Thinking is a mental umbrella where critical thinking is one aspect of it (Byrne and Johnstone, 1987). The ability to think critically, typically encompasses four higher level thinking skills: information analysis, information synthesis, application of material processed and information evaluation (Wilson, 1988). Having been perceived as one of the oldest and most generally recognized approach to skills links to intelligence (Begg, 1987; Petulla, 1985; Donald, 1985; O'Reilley, 1985), it is no surprise that several authors purport that diminished ability in this area directly influences the capacity for individuals to advance in effectively applying the information to which they have been exposed (Glaser, 1985; Primack, 1985-86). Ryder (1986) stated that only individuals who are proficient in such skills have the capacity for continued growth. Many consider the teaching of such skills to be imperative during this Information Age characterized with its knowledge explosion (Caissy, 1986; Keeley and Browne, 1978). For our future’s sake, it would seem important to not only learn to think critically (Proefriedt, 1978), but to teach critical thinking to others as well (Beyer, 1987b; Brown, 1987; Gough, 1979; Straphan, 1986; Wilson, 1988).
As a result of the current emphasis on this acquired ability, critical thinking is also considered as an educational ideal or the central ideal of all educational endeavors (Browne and Litwin, 1987; Harris, 1986; Nelson, 1986; Norris 1985; Siegal, 1980; Siegal, 1987). Such consideration is supported by the research findings indicating a direct link between critical thinking and the following: reflective thinking and the ability to empathize (Garver, 1986); the ability to accurately evaluate situations/information (Tanner, 1986); self-fulfilling and morally satisfying life (Sharp, 1987); awareness and personal meaning (Vandergrift, 1987); and the ability to problem-solve (Wolf, 1987). The necessity of acquiring such skills would seem imperative at all levels of education, from elementary to higher education (Annis and Annes, 1979; Blair, 1987; Fiere, 1987; Furedy and Furedy, 1979; Morante and Ulesky, 1984; Walters, 1987).

The purpose of the present study is to examine the relationship between the ability to think critically and the academic performance (as indicated by current cumulative GPA) of undergraduate students at a large midwestern state university. Gender differences will also be considered in the analysis of the data.
METHODS

Participants:
The participants of this study are 237 predominantly white male (n=107) and female (n=130) undergraduate students participating voluntarily drawn from the University of Kansas in Lawrence (Kansas) population (n=26,804), a Midwestern University. The selection of college students to participate in this study is due to the following reasons. The first reason is that the Watson and Glaser Critical Thinking Appraisal has been normed on a variety of population among them were college students. The second reason is that college education as an avenue toward the world of work is highly valued globally. Therefore, it is considered very important in the academic and occupational environment. This supported by Watson and Glaser (1980) who stated that: "The ability to think critically is generally regarded as a major goal of academic instruction. It is also known to play an important role in many kinds of occupations, particularly those in which careful, analytical thinking is an essential part of the job" (p. 1). A third reason is that since critical thinking skills and techniques are highly demanded in the American research as it has been indicated earlier, the researcher believed that it
is best to assess it at the university level rather than lower educational levels due to being considered as a high cognitive and social ability. Furthermore, the assessment of this construct at the college level might have an implication for developing this ability early in the educational program of children so that they could develop these critical thinking skills for their college education and life skills.

Instruments:

The instrument that is employed in this study is the WGCTA, along with the identification of current cumulative GPA, and a host of other demographical measures (including sex, academic status, and racial/ethnicity status).

The WGCTA was designed by Goodwin Watson and Edward M. Glaser (Watson and Glaser, 1980) and is considered to be "the most widely used measure of critical thinking abilities, at least in terms of the citations in the professional literature" (Landis and Michael, 1981, p. 1156). The test is a pencil-and-paper objective instrument and has been normed on students from the ninth grade through the senior year in college (Landis and Michael, 1981). The test has two Forms A and B. "These new forms, like their predecessors Am, Ym, and Zm, measure some of the important abilities involved in critical thinking" (Watson and Glaser, 1980, p. 1).
Forms A and B are revisions of Forms Ym and Zm and differ from them in the following aspects: "Whereas Forms Ym and Zm are the earlier edition, since they relate to passages drawn from Forms Ym and Zm, there are 26 items accompanied with their passages have not been derived in any sense from Ym or Zm. In fact, they were part of a pool of items that were prestandardized or tried out in prestandardization testing. "All passages and items, whether derived from previous forms or entirely new, were thoroughly examined for reading difficulty using three indices: The Dale-Chall, the Fly, and the Flesch. Sections of the test that exceeded a ninth-grade reading level were either modified or were eliminated. As a result, Forms A and B are deemed appropriate, in terms of reading difficulty, for use with most persons who have the equivalent of a ninth-grade education" (Watson and Glaser, 1980, p. 1).

Form A of the WGCTA will be used in this study. It consisted of five subtests:

Test 1. Inference. Discriminating among degrees of truth or falsity of inferences drawn from given data.

Test 2. Recognition of Assumptions. Recognizing unstated assumptions of presupposition in given statements or assertions.
Test 3. **Deduction.** Determining whether certain conclusions necessarily follow from information in given statements or premises.

Test 4. **Interpretation.** Weighing evidence and deciding if generalizations or conclusion based on given data are warranted.

Test 5. **Evaluation of Arguments.** Distinguishing between arguments that are strong and relevant and those that are weak and irrelevant to a particular question at issue (Watson and Glaser, 1980, p. 2).

These five subtests were presented in an exercise-format which include problems, statements of arguments, and interpretations of data similar to those encountered at work, in the classroom, and newspapers and magazine articles on a daily basis. The WGCTA requires responses to different types of item content. Items having neutral content addressed topics such as the weather, scientific facts or experiments, and other subject matter about which people generally do not have strong feelings or prejudices. Items having controversial content, although approximately parallel in logic structure to neutral items, addressed political, economic, and social issues that frequently provoke very strong feelings" (Watson and Glaser, 1980, p. 2).
A demographic sheet requested participants' GPA, gender, academic status, and race/ethnicity.

Procedure:

The participants in this study were contacted through the psychology and communication departments in which they were drawn from research participation pools.

The investigator hung sign-up sheet(s) in places identified by both departments where participants signed up voluntarily. The sign-up sheets included such items as the time of testing, the place of testing, and the duration of testing.

Each participant received a research packet which included: a consent form, a demographic sheet and the WGCTA. The WGCTA (a paper-pencil instrument), included five scales. All data was kept confidential and safely stored.

Methods of Analysis

Several items on the WGCTA were reversed in order to maintain consistency of direction with the rest of the scale. Criterion for acceptance of a significant result was set at .05 probability level.

Stepwise multiple regression was used to identify which of the five critical thinking subscales (components or tests) best predicted GPA. Furthermore, the Pearson correlation coefficients were calculated to examine first order relationships among variables.
Results

The sample of this study consisted of 237 participants, 45.1% (N=107) males and 54.9% (N=130) females. Participants were enrolled in undergraduate course in both the departments of communication and psychology in a large midwestern state university. The mean age was years old and consisted of 210 Caucasian, 10 African Americans (4.3%), 3 Asian American, 4 American Indian (1.7%), 7 Hispanic American, and 0 International students.

Table 1 presents the composition of the sample by race/ethnicity, gender, and academic status. Most of the students were Caucasian and freshmen.

Table 2 presents a correlation matrix indicating the relationships between WGCTA subscale scores and cumulative GPA and gender. To calculate correlation coefficients with gender males were coded as 1 and females as 2. Cumulative GPA was found to significantly (p<.05) correlate with the following: Test 1 (the ability to make accurate inferences) (r=.2755); Test 4 (the ability to make accurate interpretations) (r=.1780); Test 5 (the ability to accurately evaluate arguments) (r=.1285); and the total WGCTA score (the overall ability to think critically) (r=.2625). Results indicate that those students who are able to make
accurate inferences, interpretations, and evaluate arguments also had higher cumulative GPAs. Overall, those students who obtained higher total WGCTA scores also had higher cumulative GPAs. It would appear that those who were better able to think critically had also obtained higher GPAs.

Gender was found to be significantly (p<.05) and negatively correlated with Test 4 (the ability to make accurate interpretations) (r=-.1788) indicating that males had higher ability in this area than females. Table 3 shows the results of multiple regression analysis with cumulative GPA as the dependent variable and the WGCTA sub-scale scores as independent variables. Test 1 (inference) and Test 5 (evaluation of arguments) were found to be the only significant predictors of cumulative GPA (F=11.25; p=.0000). The ability to infer and to evaluate arguments were found to account for 9.2% of the variance in cumulative GPA.

Table 4 presents the results of a multiple regression analysis with the males' cumulative GPA as the dependent variable and the WGCTA subscale scores as the dependent variables. Test 1 (inference) was found to be the only significant predictor of cumulative GPA for males (F=13.45; p=.0004). The ability to infer was found to account for 11.9% of the variance in cumulative GPA for male students.
Table 5 presents the results of the multiple regression analysis with females' cumulative GPA as the dependent variable and the WGCTA subscale scores as the independent variables. Test 3 (the ability to make accurate deductions) and Test 5 (evaluation of arguments) were found to be the only significant predictors of cumulative GPA for females (F=7.67; p=.0007). The abilities to make accurate deductions and evaluate arguments were found to account for 11.26% of the variance found in cumulative GPA for female students.

Discussion

The findings of the present study appear to be supported by the majority of earlier studies in the literature linking critical thinking ability with academic performance (Cabrera, 1982; Elrod, 1979; Garett, 1978; Garett and Wulf, 1978; Little, 1972; McKinnon, 1987; Sperry, 1976; Steele-Hanson, 1986; Tilson, 1986; Young, 1986). Most importantly several of those studies have found significant relationships between the WGCTA and academic performance. Wilson and Wagner (1981) found WGCTA scores to be significantly correlated with the grades of undergraduate university students enrolled in a specially designed physics course. Kehler (1982) found significant differences between high and low critical thinkers and all areas of
academic achievement and ability. Most recently, Sattler (1987) did a study using WGCTA on students ranging between 18-56 years of age. This study found a significant and positive relationship between WGCTA scores and overall cumulative GPA of university undergraduate students. There appears to be substantial support for the present findings.

In direct contrast, a smaller body of research findings have indicated no significant relationship between critical thinking ability and academic performance. Arand and Harding (1967) conducted a study on 81 students enrolled in a baccalaureate program in physical therapy at a midwestern medical school, using the WGCTA. No significant relationship was found between the two. Other studies found the same to be true (Perkins, 1985; Rosen, 1986; and Williams, 1981).

One possible reason for this discrepancy in the literature might be attributed to design differences. Some designs addressed the relationships between WGCTA scores and an overall cumulative GPA, while others appear to address only the relationship with the grade in a specific course. Significant relationships between WGCTA scores and cumulative GPA would represent a broader experience of instructor teaching and testing strategies, while those with a one course GPA would indicate an unique instructor teaching and testing
strategy. Given that coursework will require varying levels and different aspects of critical thinking ability upon the teaching and testing strategies of individual instructors, the reason for the discrepancy in the literature becomes quite apparent.

Until this study, no previous studies were found that examined the contribution of each of the specific WGCTA subscales to overall cumulative GPA. The results seem to indicate that not all aspects of the ability to think critically contribute equally to overall academic performance. Although the abilities to accurately infer (Test 1), interpret (Test 4), and evaluate arguments were found to significantly correlate with cumulative GPA, only the abilities to infer (Test 1) and evaluate arguments (Test 5) were found to significantly (p=.0000) and uniquely contribute to 9.2% of the variance within cumulative GPA.

It is also important to note the gender differences which were found to exist in the present study. Findings appear to indicate that proficiency in only one skill (inference) associated with critical thinking is required for higher male student academic achievement, while proficiency in two different skills (deduction and evaluation of arguments) are required for higher female student academic achievement. Chong (1969) found similar results, however, only when academic status was
held constant. Simon and Ward (1974) reported a significantly higher performance on WGCTA for college males than females. In the present study, males only scored significantly higher than females on Test 4 (interpretation). These findings are more similar to the findings of the majority of research in the literature (Crawford, 1976; Curtis, 1980a; Gurfein, 1977; Harmon, 1983; Moll and Allen, 1982; Rocha, 1985; Sattler, 1987). Gender differences do not apparently exist to a significant extent in the most current writings addressing levels of ability in critical thinking. However, these findings do indicate that what is required for a male student to succeed academically is quite different than what is required for the female student, even in cases where ability levels are quite similar.

Implications

These findings clearly support the importance of instruction in critical thinking skills to increase the probability of academic success for all university students. However, results indicate that the ability to think critically is certainly not the only answer to academic achievement, given that only 9.2% of the variance within GPA can be attributed to critical thinking abilities. GPA is definitely influenced by more than one factor (i.e. motivation, goals and
personal skills) (Zimmermann, Goldstein, and Gadzella, 1977). It would appear important that instruction modules addressing the ability to think critically be at least included in student retention programs at all levels of education. Given that attrition for the overall university student population has remained consistent (50%) for the last two decades, it would seem that the addition of this intervention might increase the effectiveness of current retention programs.

Recommendation for Future Research

The present researchers have several recommendations to make for future research endeavors. First, longitudinal designs are encouraged. All freshmen would be given the WJCTA and subsequently at the beginning of each following year until graduation. Semester, annual, and cumulative GPAs and enrollment status would be noted throughout student tenure at the university. This strategy would address both academic performance and persistence. It would also assist in obtaining some understanding of the impact of university life upon the development of the ability to think critically.

Second, given the increase of cultural diversity within the population in this country, it would seem important that WGCTA scores be examined across cultures with GPA and persistence. If gender differences do
exist, there well may be racial/ethnic differences in skills to think critically that would significantly impact academic performance.

Conclusion

In today's society, the ability to think critically is considered important for individuals to become active and productive citizens. It is a way of enhancing a correct appropriate decision and of correcting errors and redirecting decisions. The study revealed results important to educators, program designers, evaluators, and counselors who are aiming and targeting the preparation of students, clients, or consumers to become citizens who will be prepared to develop a better future for tomorrow's world.
Table 1

<table>
<thead>
<tr>
<th>Racial/Ethnicity Status</th>
<th># of Participants</th>
<th>Percentages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>94</td>
<td>116</td>
<td>89.5</td>
</tr>
<tr>
<td>African American</td>
<td>3</td>
<td>7</td>
<td>2.9</td>
</tr>
<tr>
<td>Asian American</td>
<td>3</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>American Indian</td>
<td>3</td>
<td>1</td>
<td>2.9</td>
</tr>
<tr>
<td>Hispanic American</td>
<td>5</td>
<td>2</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Status</th>
<th># of Participants</th>
<th>Percentages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male%</td>
</tr>
<tr>
<td>Freshman</td>
<td>65</td>
<td>83</td>
<td>61.3</td>
</tr>
<tr>
<td>Sophomore</td>
<td>21</td>
<td>34</td>
<td>19.8</td>
</tr>
<tr>
<td>Junior</td>
<td>12</td>
<td>11</td>
<td>11.3</td>
</tr>
<tr>
<td>Senior</td>
<td>8</td>
<td>2</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Table 2

Correlation Coefficients of Both the Overall Ability of Critical Thinking and its Components with Demographic Variable

<table>
<thead>
<tr>
<th></th>
<th>Sex</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTEST 1</td>
<td>-.0073</td>
<td>.2755*</td>
</tr>
<tr>
<td>CTTEST 2</td>
<td>-.0410</td>
<td>.0613</td>
</tr>
<tr>
<td>CTTEST 3</td>
<td>-.0782</td>
<td>.2148</td>
</tr>
<tr>
<td>CTTEST 4</td>
<td>-.1788*</td>
<td>.1780*</td>
</tr>
<tr>
<td>CTTEST 5</td>
<td>.0281</td>
<td>.1285*</td>
</tr>
<tr>
<td>CT-ALL</td>
<td>-.0787</td>
<td>.2625*</td>
</tr>
</tbody>
</table>

* at .05 level of significance

Table 3

Multiple Regression with GPA as a Dependent Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Multiple R</th>
<th>R square</th>
<th>Overall F change</th>
<th>Overall F</th>
<th>Significant F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTEST 1</td>
<td>.3033</td>
<td>.09202</td>
<td>3.94</td>
<td>11.25</td>
<td>.0000</td>
</tr>
<tr>
<td>CTTEST 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTTEST 2 (recognition of Assumptions, CTTEST 3 (deduction) and CTTEST 4 (interpretation) did not account for significant amount of the variance in GPA.
Table 4

Multiple Regression with GPA as a Dependent Variable for Males

<table>
<thead>
<tr>
<th>Variable</th>
<th>Multiple R</th>
<th>R square</th>
<th>F change</th>
<th>Overall F</th>
<th>Significant F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTEST 1</td>
<td>.346</td>
<td>.119</td>
<td>13.45</td>
<td>13.45</td>
<td>.0004</td>
</tr>
</tbody>
</table>

CTTEST 2 (recognition of assumptions, CTTEST 3 (deduction) and CTTEST 4 (interpretation), and CTTEST 5 (evaluation of arguments) were not fit and to be significant predictors of GPA.

Table 5

Multiple Regression with GPA as a Dependent Variable for Females

<table>
<thead>
<tr>
<th>Variable</th>
<th>Multiple R</th>
<th>R square</th>
<th>F change</th>
<th>Overall F</th>
<th>Significant F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTEST 5</td>
<td>.3355</td>
<td>.1126</td>
<td>4.37</td>
<td>7.67</td>
<td>.0007</td>
</tr>
<tr>
<td>CTTEST 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CTTEST 1 (inference), 2 (recognition of assumptions), and 4 (interpretation) did not contribute to the variance accounted for in GPA.
References

Elrod, Janelle Abercrombie. (1979). A study of teachers' frequency of oral expression of logic and
critical thinking ability and their relationship to students' geometry achievement and critical thinking ability. (Doctoral Dissertation, Auburn University). Dissertation Abstracts International, 39, n. 12, 7202-A.

Kehler, Marietta Triece. (1982). The effects of a program for gifted high school students on critical thinking and the association of this variable to intelligence, sex, academic achievement, and teachers' ratings of behavioral characteristics.
Dissertation Abstracts International, 43, n. 3, 756-A.

Little, Thomas Lee. (1972). The relations of critical thinking ability to intelligence, personality factors and academic achievement. (Doctorate Dissertation, Memphis State University).

Dissertation Abstracts International, 33, 5544-A.

Dissertation Abstracts International, 48, n. 6, 1441-A.

Tilson, Elwin R. (1986). The effect of computers enhanced skill training in critical thinking and cognitive monitoring on learning and development of critical thinking in undergraduate family nursing courses. (Doctoral Dissertation, University of

Academic Connections.

Young, Mildred Crymes. (1986). An elementary literature program: A design for enhancing reading achievement. *Doctorate Dissertation*, University of Georgia.