The MDT multi-digit technique, a development in testing technology, is described; and its application to science classrooms is discussed. Some actual materials for use in a cell biology class are included. The primary characteristic of an MDT multi-digit test is a long list of possible responses, with each term marked with a three-digit number that can be marked on the response grid or on a computer-scored sheet. Up to 1,000 alternative answers may appear on a single sheet. A single list can often be sufficient for an entire course because it is the "answer blank" for thousands of questions. The MDT method has been used in university courses with over 6,000 students in a number of disciplines. More than half the students found the method as desirable as or more desirable than other testing methods. A sample test for cell biology is provided, and instructions are given for making an answer key for hand scoring. A software system for machine-scoring has recently become available, and software under development will address issues of higher order thinking more fully. The MDT method has considerable potential for analysis, feedback, academic rigor in testing, and time savings for teachers. Two figures illustrate test application. (SLD)
The MDT multi-digit technique was first conceptualized in the Fall of 1982 by Paul S. Anderson for use in his courses at Illinois State University (ISU). The primary characteristic of an MDT multi-digit test is a long list of possible responses. As an example, a list for cell biology is shown in the sample test provided.

Each term in the list is labeled with a three-digit number which can be marked in a response grid on the test itself or on a computer-scored sheet. Response grids on the sample test are designed for manual scoring, while those shown in Figure 1 are designed for computer scoring. The three-digit response capability means that up to one-thousand alternative answers (labeled 000-999) may appear on a single list. When a list is very short, the method is similar to matching. On the other hand, when a list contains several hundred terms, the method approximates a fill-in-the-blank test because there are far too many alternatives to permit searching for and recognizing correct answers. The terms in an MDT list are sorted alphabetically, which allows students to quickly find the three-digit labels for their responses.

A single list is often sufficient for the testing needs of an entire course since it literally the "answer bank" for many thousands of questions. The list for the sample test contains only 100 terms, though most lists contain many more. MDT-style tests can also accommodate numeric answers from calculations (up to three digits) and answers from labeled diagrams (see questions 8 and 9 of the sample test). Peggy Fortune, an ISU instructor in Criminal Justice Sciences, states, "Using the MDT method, I can put a test together in half the amount of time. I just ask the question. There's no need to come up with four distractors for each question."

The MDT method has been used in university courses totaling more than 6,000 student enrollments. The disciplines include home economics, political science, English, history, military science, art, computer science, mathematics, biology, chemistry, and earth science. More than half of the students questioned find the method to be as desirable or more desirable than other forms of testing. Written comments contain statements like, "good test method"..."provides a much more accurate score"..."will raise retention and lower unearned grades"..."contains the best aspects of both the multiple-choice and fill-in-the-blank testing methods."

A Sample Test For Manual Scoring

A complete, ready-to-use MDT multi-digit test for cell biology is provided as a sample test. Depending on the grade level of the student, some questions may be too difficult or too easy. The first page contains test
Test Questions for Cell Biology

1. In what part of the nucleus are genes found?

2. Name the special type of cell found in the human body which is distinguished by its transmission of electrical impulses.

3. Most plants manufacture their own carbohydrates by the process of ______.

4. In 1665, cells were first identified and given their name by whom?

5. Name the discipline of cell biology which is the study of structure and function of the parts of the cell.

Note: Normally you would block out any unused response grids.

For questions 6-9, refer to Figure "A", "Schematic Diagram of a Cell."

6. Name the part of the cell pointed to by label 201.

7. Name the part of the cell pointed to by label 205.

8. What label on Figure "A" points to the Nuclear Membrane?

9. What label on Figure "A" points to a Lysosome?

10. Fermentation is a type of respiration known as ______.

11. A cell's living matter is made up largely of carbon, hydrogen, oxygen, and nitrogen. What is the common term for this living matter?

12. In cells with nuclei, an important step in cell division is the division of the nucleus. Name the process by which the nucleus (except in sex cells) divides.

13. Give the biological term for sex cells.

14. Sex cells are produced by a special type of cell division. This is called ______.

15. Give the name for the network of fine membranes which extends throughout the cytoplasm. These membranes form canals or channels which are believed to be avenues of communication between the cytoplasm and the exterior of the cell.

Although copyrighted material, permission is granted to educators to reproduce unaltered (except for the questions) this particular answer sheet format for non-commercial purposes.
MDT List for Cell Biology

<table>
<thead>
<tr>
<th>MDT Number</th>
<th>Term</th>
<th>MDT Number</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Adenosine</td>
<td>134</td>
<td>Cytokinesis</td>
</tr>
<tr>
<td></td>
<td>Triphosphate</td>
<td>135</td>
<td>Cytology</td>
</tr>
<tr>
<td>102</td>
<td>Aerobic Respiration</td>
<td>136</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>103</td>
<td>Alpha</td>
<td>137</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>104</td>
<td>Amino Acid</td>
<td>138</td>
<td>DNA</td>
</tr>
<tr>
<td>105</td>
<td>Amoeba</td>
<td>139</td>
<td>Dura Mater</td>
</tr>
<tr>
<td>106</td>
<td>Anaerobic Respiration</td>
<td>140</td>
<td>Embryos</td>
</tr>
<tr>
<td>107</td>
<td>Anaphase</td>
<td>141</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>108</td>
<td>Antibodies</td>
<td>142</td>
<td>Enzyme</td>
</tr>
<tr>
<td>109</td>
<td>Arachnoid</td>
<td>143</td>
<td>Excretion</td>
</tr>
<tr>
<td>110</td>
<td>ATP</td>
<td>144</td>
<td>Fat</td>
</tr>
<tr>
<td>111</td>
<td>Bacteria</td>
<td>145</td>
<td>Fermentation</td>
</tr>
<tr>
<td>112</td>
<td>Beta</td>
<td>146</td>
<td>Gametes</td>
</tr>
<tr>
<td>113</td>
<td>Biochemistry</td>
<td>147</td>
<td>Gamma</td>
</tr>
<tr>
<td>114</td>
<td>Biology</td>
<td>148</td>
<td>Gas</td>
</tr>
<tr>
<td>115</td>
<td>Blood</td>
<td>149</td>
<td>Genes</td>
</tr>
<tr>
<td>116</td>
<td>Carbohydrate</td>
<td>150</td>
<td>Genetics</td>
</tr>
<tr>
<td>117</td>
<td>Carbon</td>
<td>151</td>
<td>Golgi Body</td>
</tr>
<tr>
<td>118</td>
<td>Cell</td>
<td>152</td>
<td>Heisenberg, H.</td>
</tr>
<tr>
<td>119</td>
<td>Cell Division</td>
<td>153</td>
<td>Heredity</td>
</tr>
<tr>
<td>120</td>
<td>Cell Membrane</td>
<td>154</td>
<td>Hooke, R.</td>
</tr>
<tr>
<td>121</td>
<td>Cell Wall</td>
<td>155</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>122</td>
<td>Cellular Respiration</td>
<td>156</td>
<td>Hypothalamus</td>
</tr>
<tr>
<td>123</td>
<td>Cellulose</td>
<td>157</td>
<td>Interphase</td>
</tr>
<tr>
<td>124</td>
<td>Centriole</td>
<td>158</td>
<td>Ion</td>
</tr>
<tr>
<td>125</td>
<td>Centromere</td>
<td>159</td>
<td>Lysosome</td>
</tr>
<tr>
<td>126</td>
<td>Cerebellum</td>
<td>160</td>
<td>Medulla</td>
</tr>
<tr>
<td>127</td>
<td>Cerebral Cortex</td>
<td>161</td>
<td>Melosis</td>
</tr>
<tr>
<td>128</td>
<td>Chadwick, J.</td>
<td>162</td>
<td>Metaphase</td>
</tr>
<tr>
<td>129</td>
<td>Chloroplasts</td>
<td>163</td>
<td>Miscible</td>
</tr>
<tr>
<td>130</td>
<td>Chromatids</td>
<td>164</td>
<td>Mitochondria</td>
</tr>
<tr>
<td>131</td>
<td>Chromosomes</td>
<td>165</td>
<td>Mitosis</td>
</tr>
<tr>
<td>132</td>
<td>Corpus Callosum</td>
<td>166</td>
<td>Nerve</td>
</tr>
<tr>
<td>133</td>
<td>Currie, H.</td>
<td>167</td>
<td>Newton, I.</td>
</tr>
<tr>
<td>169</td>
<td>Nuclear Membrane</td>
<td>170</td>
<td>Nucleic Acid</td>
</tr>
<tr>
<td>171</td>
<td>Nucleolus</td>
<td>172</td>
<td>Nucleus</td>
</tr>
<tr>
<td>173</td>
<td>Olfactory</td>
<td>174</td>
<td>Organelle</td>
</tr>
<tr>
<td>175</td>
<td>Organism</td>
<td>176</td>
<td>Osmosis</td>
</tr>
<tr>
<td>177</td>
<td>Oxidation</td>
<td>178</td>
<td>Photosynthesis</td>
</tr>
<tr>
<td>179</td>
<td>Oxygen</td>
<td>180</td>
<td>Pia Mater</td>
</tr>
<tr>
<td>181</td>
<td>Plasma</td>
<td>182</td>
<td>Plastids</td>
</tr>
<tr>
<td>183</td>
<td>Polymer</td>
<td>184</td>
<td>Pons</td>
</tr>
<tr>
<td>185</td>
<td>Prophase</td>
<td>186</td>
<td>Protein</td>
</tr>
<tr>
<td>187</td>
<td>Protoplasm</td>
<td>188</td>
<td>Protozoa</td>
</tr>
<tr>
<td>189</td>
<td>Ribonucleic Acid</td>
<td>190</td>
<td>Riboisomes</td>
</tr>
<tr>
<td>191</td>
<td>RNA</td>
<td>192</td>
<td>Schleiden, H.</td>
</tr>
<tr>
<td>193</td>
<td>Schwann, T.</td>
<td>194</td>
<td>Spindle Fiber</td>
</tr>
<tr>
<td>195</td>
<td>Synthesis</td>
<td>196</td>
<td>Telophase</td>
</tr>
<tr>
<td>197</td>
<td>Thalamus</td>
<td>198</td>
<td>Tracheid</td>
</tr>
<tr>
<td>199</td>
<td>Vacuole</td>
<td>200</td>
<td>Virus</td>
</tr>
</tbody>
</table>

Schematic Diagram of a CELL

Figure A.

(greatly enlarged)
questions adjacent to response grids (or "bubbles") where the three-digit response labels are to be recorded. The second page contains a labeled cell diagram and a list of 100 biological terms. The sample test may be reproduced and/or modified for use in your classroom. To write your own MDT test, create a clean master answer sheet by covering the cell biology questions with a blank sheet of paper. (Other formats for manual scoring have varying grid arrangements and sizes. They are available from the MDT Corporation, as are sheets and software for machine scoring.)

To make an answer key for hand scoring, use a single-hole paper punch. Simply place the punched answer key over each test to be scored; then mark incorrect responses through the holes onto the student sheets. Special punches for smaller holes and longer reach are available.

Machine Scoring Of MDT Multi-Digit Tests

The features of the MDT technique are most striking when the method is accompanied by machine scanning of the answer sheets. An elaborate software system for that purpose has recently become available for mainframe and IBM PC-compatible computers. The complete MDT Educational System software (available separately) includes a test scoring package, a computerized grade book, the MDT list maker (special purpose word processor), and report generator. Reports which can be printed include statistical analyses, histograms, item analysis, listing of scores by name or identification number, and individual sheets for feedback to students. On the item analysis and individual sheets, a unique and highly beneficial capability is the printing of the actual word responses used by the students. An example of item analysis is shown in Figure 2.

Pedagogical Issues

Science education uses the full range of the hierarchy of learning. At the higher end, the MDT technique is applicable if the result of evaluation and synthesis is either a discrete term/concept or a calculated numerical value. As Peggy Fortune states, "with analysis questions, the students have to understand, think, and then draw logical conclusions without gigantic hints." Software development already underway will address more fully the issue of higher order learning.

At the lower end, the power and superiority of the multi-digit technique is clearly evident. Essays and short answer sentences are not the best way to determine if the students have mastered the factual information essential to firmly grasp a given subject. To determine that knowledge, teachers commonly utilize multiple-choice or fill-in-the-blank tests. The multiple-choice method has the obvious disadvantage of encouraging recognition, the elimination of alternatives, and outright guessing. It is difficult to imagine that a student would not pick out the term Right Triangle from a selection of five names for "a triangle containing a 90 degree angle." Furthermore, the onus is on the teacher to think

Figure 2: Example of MDT Item Analysis with Printed Word Responses for Geography

of the four wrong answers (foils) that are intended to have a reasonable likelihood of being selected if the student does not recognize the correct answer. It is doubtful that all teachers have the time to refine their foils to the desirable accuracy. The result is that students frequently avoid full learning of essential factual information because they are skilled in the recognition and elimination of foils.

One alternative to this situation is to utilize fill-in-the-blank questions. Without any suggestive foils, students must rely on recall rather than recognition and elimination. Recall requires better learning of the tested material. Although the questions are actually easier to write than those of multiple-choice testing (because no alternative answers need be generated), the major difficulty with fill-in-the-blank testing is the amount of time it takes to score such tests. It would be useful to have a computer-scored fill-in-the-blank test for terms and concepts that could be quickly generated and graded so that essential learning is evaluated without the often excessive time commitment required of the teacher. The Multi-Digit testing procedure is designed exactly for that purpose.

The power for analysis, feedback, academic rigor in testing, and savings of time for teachers is tremendous. An entirely new dimension in educational testing is now available to every aspect of science education in virtually every school nationwide.

Bibliography

About the Authors

Paul S. Anderson, Ph.D., is an Associate Professor of Geograpgy at Illinois State University. His education includes study as a Fulbright-Hayes scholar, with degrees from Augustana College, the University of California at Berkeley, and the Australian National University.

James S. Schoner is the lead software designer for Multi-Digit Technologies Corporation. He is a Phi Beta Kappa graduate of Purdue University with degrees in Mathematics and Computer Science.