These teacher's materials for a seven-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the communication industries. The seven units include an overview of energy and power, principles of energy and power, power production and conversion, power transmission and storage, transportation systems, transportation technical subsystems, and future projections.

The first section is designed to teach teachers how to use the materials and includes an explanation of instructional elements, an instructional-task analysis for each unit, and a list of 24 references. The instructional elements for the units include objectives, suggested activities, information sheets, transparency masters, assignment sheets, job sheets, tests, and test answers. Some elements, such as the information sheets, include photographs, diagrams, and line drawings.
Exploring Energy, Power, and Transportation Technology

Mid-America Vocational Curriculum Consortium (MAVCC)
EXPLORING ENERGY, POWER, AND TRANSPORTATION TECHNOLOGY

Written by
Donovan Bowers
and
Mary Kellum

Project Coordinated by
Mary Kellum

Developed by
The Mid-America Vocational Curriculum Consortium, Inc.

Board of Directors
Harley Schlichting, Missouri, Chairman
Larry Lyngstad, South Dakota, Vice Chairman
Ron Mehrer, North Dakota, Parliamentarian
James Dasher, Arkansas
Bob Wilmoth, Colorado
John Van Ast, Iowa
Les Abel, Kansas
David Poston, Louisiana
Ann Masters, Nebraska
Joyce Sawatsky, Oklahoma
Robert Patterson, Texas

Greg Pierce, Executive Director
EXPLORING ENERGY, POWER, AND TRANSPORTATION TECHNOLOGY

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Overview of Energy and Power</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Principles of Energy and Power</td>
<td>55</td>
</tr>
<tr>
<td>III</td>
<td>Power Production and Conversion</td>
<td>117</td>
</tr>
<tr>
<td>IV</td>
<td>Power Transmission and Storage</td>
<td>181</td>
</tr>
<tr>
<td>V</td>
<td>Transportation Systems</td>
<td>243</td>
</tr>
<tr>
<td>VI</td>
<td>Transportation Technical Subsystems</td>
<td>301</td>
</tr>
<tr>
<td>VII</td>
<td>Future Projections and Environmental Impact</td>
<td>339</td>
</tr>
</tbody>
</table>
FOREWORD

Technology education/industrial arts instructors are being asked to make radical changes in their programs to reflect the radical changes in our technological society. Rapid change and the current clamor for educational reform have made it evident that improvements must be made to meet the needs of students who will compete in a world quite different from the one they are experiencing in the classrooms and laboratories.

We are at the point where we need to overhaul traditional industrial arts programs and bring new and emerging technologies into the curriculum. However, the lack of instructional materials to support this new curriculum effort has made it extremely difficult. Hopefully, the new MAVCC Technology Education Series will aid teachers in updating and revitalizing their programs.

The series begins with Exploring Technology Education, Level I, which is followed by four Level II books which individually explore the technology systems of communication, construction, manufacturing, and energy, power, and transportation.

The book you are holding, Exploring Energy, Power, and Transportation Technology, is one of the Level II publications in this series. It has been developed to give students technological literacy, career exploration, and problem-solving skills dealing with the energy, power, and transportation industries.

Every effort has been made to make this publication basic, readable, and by all means, usable. Three vital parts of instruction have been intentionally omitted from the publication: motivation, personalization, and localization. These areas are left to the individual instructors who should capitalize on them. Only then will these publications become a vital part of the teaching-learning process.

Harley Schlichting, Chairman
Board of Directors
Mid-America Vocational
Curriculum Consortium

Greg Pierce
Executive Director
Mid-America Vocational
Curriculum Consortium
ACKNOWLEDGEMENTS

Appreciation is extended to those individuals who contributed their time and talents in the development of Exploring Energy, Power, and Transportation Technology.

The contents of this publication were planned and reviewed by the following members of the Mid-America Vocational Curriculum Consortium technology education committee:

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Myron Bender</td>
<td>Grand Forks, North Dakota</td>
</tr>
<tr>
<td>Mr. Donovan Bowers</td>
<td>Fairview, Oklahoma</td>
</tr>
<tr>
<td>Mr. Steve Coffman</td>
<td>Jefferson City, Missouri</td>
</tr>
<tr>
<td>Dr. John Dugger</td>
<td>Ames, Iowa</td>
</tr>
<tr>
<td>Dr. Thomas Eppler</td>
<td>Natchitoches, Louisiana</td>
</tr>
<tr>
<td>Dr. John Iley</td>
<td>Pittsburg, Kansas</td>
</tr>
<tr>
<td>Mr. Wayne Lang</td>
<td>Rapid City, South Dakota</td>
</tr>
<tr>
<td>Mr. William McCallister</td>
<td>Omaha, Nebraska</td>
</tr>
<tr>
<td>Ms. Jean McEntire</td>
<td>Little Rock, Arkansas</td>
</tr>
<tr>
<td>Dr. Don Mitchell</td>
<td>Weatherford, Oklahoma</td>
</tr>
<tr>
<td>Dr. Billy Windham</td>
<td>San Marcos, Texas</td>
</tr>
<tr>
<td>Ms. Jimmie Wood</td>
<td>Stillwater, Oklahoma</td>
</tr>
<tr>
<td>Mr. Gordon Young</td>
<td>Aurora, Colorado</td>
</tr>
</tbody>
</table>

Special appreciation is extended to Dr. Kendall Starkweather of Reston, Virginia for representing the International Technology Education Association (ITEA) on this committee.

Gratitude is expressed to the employees of the Graphics Division of the Oklahoma State Department of Vocational-Technical Education for their assistance with the phototypesetting, artwork, pasteup, and printing of this text.

Thanks are also extended to Mary Kellum, MAVCC Publication Specialist, for her assistance with the editing of this book, as well as the coordination of the entire project.
USE OF THIS PUBLICATION

Instructional Units

Exploring Energy, Power, and Transportation Technology contains seven units of instruction. Each instructional unit includes some or all of the basic components of a unit of instruction: performance objectives, suggested activities for teachers and students, information sheets, assignment sheets, job sheets, visual aids, tests, and answers to the tests. Units are planned for more than one lesson or class period of instruction.

Careful study of each instructional unit by the teacher will help to determine:

A. The amount of material that can be covered in each class period
B. The skills which must be demonstrated
 1. Supplies needed
 2. Equipment needed
 3. Amount of practice needed
 4. Amount of class time needed for demonstrations
C. Supplementary materials such as pamphlets or filmstrips that must be ordered
D. Resource people who must be contacted

Objectives

Each unit of instruction is based on performance objectives. These objectives state the goals of the course, thus providing a sense of direction and accomplishment for the student.

Performance objectives are stated in two forms: unit objectives, stating the subject matter to be covered in a unit of instruction; and specific objectives, stating the student performance necessary to reach the unit objective.

Since the objectives of the unit provide direction for the teaching-learning process, it is important for the teacher and students to have a common understanding of the intent of the objectives. A limited number of performance terms have been used in the objectives for this curriculum to assist in promoting the effectiveness of the communication among all individuals using the materials.

Reading of the objectives by the student should be followed by a class discussion to answer any questions concerning performance requirements for each instructional unit.

Teachers should feel free to add objectives which will fit the material to the needs of the students and community. When teachers add objectives, they should remember to supply the needed information, assignment and/or job sheets, and criterion tests.
Suggested Activities for the Instructor

Each unit of instruction has a suggested activities sheet outlining steps to follow in accomplishing specific objectives. Duties of instructors will vary according to the particular unit; however, for best use of the material they should include the following: provide students with objective sheet, information sheet, assignment sheets, and job sheets; pr view filmstrips, make transparencies, and arrange for resource materials and people; discuss unit and specific objectives and information sheet; give test. Teachers are encouraged to use any additional instructional activities and teaching methods to aid students in accomplishing the objectives.

Information Sheets

Information sheets provide content essential for meeting the cognitive (knowledge) objectives in the unit. The teacher will find that the information sheets serve as an excellent guide for presenting the background knowledge necessary to develop the skill specified in the unit objective.

Students should read the information sheets before the information is discussed in class. Students may take additional notes on the information sheets.

Transparency Masters

Transparency masters provide information in a special way. The students may see as well as hear the material being presented, thus reinforcing the learning process. Transparencies may present new information or they may reinforce information presented in the information sheets. They are particularly effective when identification is necessary.

Transparencies should be made and placed in the notebook where they will be immediately available for use. Transparencies direct the class's attention to the topic of discussion. They should be left on the screen only when topics shown are under discussion.

Assignment Sheets

Assignment sheets give direction to study and furnish practice for paper and pencil activities to develop the knowledge which is a necessary prerequisite to skill development. These may be given to the student for completion in class or used for homework assignments. Answer sheets are provided which may be used by the student and/or teacher for checking student progress.

Job Sheets

Job sheets are an important segment of each unit. The instructor should be able to demonstrate the skills outlined in the job sheets. Procedures outlined in the job sheets give direction to the skill being taught and allow both student and teacher to check student progress toward the accomplishment of the skill. Job sheets provide a ready outline for students to follow if they have missed a demonstration. Job sheets also furnish potential employers with a picture of the skills being taught and the performances which might reasonably be expected from a person who has had this training.
Test and Evaluation

Paper-pencil and performance tests have been constructed to measure student achievement of each objective listed in the unit of instruction. Individual test items may be pulled out and used as a short test to determine student achievement of a particular objective. This kind of testing may be used as a daily quiz and will help the teacher spot difficulties being encountered by students in their efforts to accomplish the unit objective. Test items for objectives added by the teacher should be constructed and added to the test.

Test Answers

Test answers are provided for each unit. These may be used by the teacher and/or student for checking student achievement of the objectives.
UNIT I: OVERVIEW OF ENERGY AND POWER

1. Terms and definitions
2. Forms of energy
3. Classifications of energy sources
4. Early uses of energy
5. Present day uses of energy
6. Early sources of power
7. Simple machines
8. Complex machines
9. Conservation of resources
10. Reading a gas or electric meter
11. Read sample meters
12. Read home meter
13. Perform an energy audit
PRACTICAL APPLICATION: What The Student Should Be Able To Do (Psychomotor)

UNIT II: PRINCIPLES OF ENERGY AND POWER
1. Terms and definitions
2. Types of power systems
3. Stages of power systems
4. Basic measuring systems
5. Basic units of measurement
6. Prefixes for changing metric base units
7. Units for measuring energy and power
8. Terms and definitions related to measuring mechanical power
9. Terms and definitions related to measuring electrical power
10. Ohm’s law in letter formula
11. Ohm’s law in triangle expression
12. Calculate problems using the formula for work
13. Calculate problems using the formula for horsepower
14. Calculate problems using the formula for torque
15. Solve problems using Ohm’s law
16. Build and test a simple, low pressure steam turbine
17. Construct a wind rotor
18. Build an electric generator
PRACTICAL APPLICATION: What The Student Should Be Able To Do
(Psychomotor)

RELATED INFORMATION: What the Student Should Know
(Cognitive)

UNIT III: POWER PRODUCTION AND CONVERSION

1. Terms and definitions
2. Types of conversions
3. Common direct conversion systems
4. Common methods of converting energy
5. Conversion of electrical power
6. Classifications of engines
7. Types of external combustion engines
8. Types of internal combustion engines
9. Operations of two-stroke and four-stroke cycle gasoline engines
10. Parts of a basic internal combustion engine
11. Systems of an engine and their functions and parts
12. Safety rules to follow when working with engines
13. Check engine components for wear
14. Disassemble and reassemble a four cycle, one cylinder engine
15. Construct a solar battery
UNIT IV: POWER TRANSMISSION AND STORAGE

1. Terms and definitions
2. Types of power systems
3. Devices for control and transmission of mechanical power
4. Transmission of electrical power
5. Devices for control of electrical power
6. Principles of hydraulics
7. Parts of a hydraulic system
8. Steps in the operation of hydraulics
9. Applications of hydraulic transmissions
10. Advantages of hydraulic systems
11. Connectors used in fluid power systems
12. Laws defining the principles of pneumatics
13. Parts of a pneumatic system
14. Applications of pneumatics
15. Terms and definitions related to robotics
16. Major categories of jobs in industry that are well suited for robots
17. Principles of lasers
18. Classes of lasers
PRACTICAL APPLICATION: What The Student Should Be Able To Do (Psychomotor)

RELATED INFORMATION: What the Student Should Know (Cognitive)

19. Applications of lasers

20. Types of energy and their storage devices

21. Determine gear rotation

22. Design and build a robotic arm

23. Build a "big track" robot

24. Build a lemon battery

UNIT V: TRANSPORTATION SYSTEMS

1. Terms and definitions

2. Basic modes of transportation

3. Types of intermodal transportation

4. Types of on-site transportation

5. Highway transportation

6. Rail transportation

7. Types of railway vehicles

8. Types of commercial airlines

9. Basic types of airplanes

10. Parts of an airplane

11. Space transportation

12. U.S. space projects

13. Characteristics of the space shuttle

14. Basic vessels for water transportation

15. Basic parts of a ship

16. Uses of computers for transportation systems
17. Select modes of transportation for given situations

18. Set up and operate a pipeline simulation

UNIT VI: TRANSPORTATION TECHNICAL SUBSYSTEMS

1. Terms and definitions

2. Types of transportation technical subsystems

3. Elements of propulsion

4. Types of suspension systems

5. Types of control systems

6. Guidance systems

7. Structural systems

8. Support systems

9. Identify technical subsystems

10. Design a model racer

11. Build a model racer

UNIT VII: FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT

1. Terms and definitions

2. Types of pollution

3. Pollution from fossil fuels

4. Other energy sources and their pollutions and environmental impacts

5. Ways to control pollution

6. Energy conservation measures
PRACTICAL APPLICATION: What The Student Should Be Able To Do (Psychomotor)

9. Research trends in energy usage

10. Write a scenario of energy use in the 2500

11. Discuss the effect of a total absence of fossil fuels

12. Construct a model maglev train

RELATED INFORMATION: What the Student Should Know (Cognitive)

7. Emerging transmission systems

8. Advances in transportation
REFERENCES

Q. Pershing, Rex W. *Energy and Power*. Des Moines, IA: Department of Public Instruction, Career Education Division, 1980.

OVERVIEW OF ENERGY AND POWER
UNIT I

UNIT OBJECTIVE

After completion of this unit, the student should be able to identify simple and complex machines, read meters, and perform an energy audit. Competencies will be demonstrated by correctly performing the procedures in the assignment and job sheets and by scoring a minimum of 85 percent on the written test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to energy and power with the correct definitions.
2. Match forms of energy with the correct descriptions.
3. Select true statements concerning the classifications of energy sources.
4. Discuss early uses of energy.
5. List present day uses of energy.
6. List three early sources of power.
7. Identify simple machines.
8. Identify complex machines.
9. Discuss conservation of resources within the technology systems.
10. Complete statements concerning reading a gas or electric meter.
11. Read sample meters. (Assignment Sheet #1)
OBJECTIVE SHEET

12. Read home meter. (Assignment Sheet #2)

13. Demonstrate the ability to perform an energy audit. (Job Sheet #1)
OVERVIEW OF ENERGY AND POWER
UNIT I

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included with this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

(NOTE: Use the transparencies to enhance the information as needed.)

G. Provide students with job sheet.

H. Discuss and demonstrate the procedure outlined in the job sheet.

I. Integrate the following activities throughout the teaching of this unit:

1. Use films listed on the following page to reinforce conservation.

2. Have students build simple solar projects. Possible resources for project ideas are included on the following pages.

3. Invite professionals from local utility companies to discuss careers and energy use.

4. Visit local facilities for generating electricity and local use of alternative energies.

5. Demonstrate the simple machines shown in the Information Sheet, Section VII.

6. Make a display board of complex machines used today.

7. Discuss energy needs from a historical perspective.

8. Contact local power companies for slides and/or other audio-visual materials dealing with sources of energy and power for your area as well as new and alternative energy sources.

9. Obtain and show pictures of heat losses from public service companies. Discuss ways to prevent or lessen heat loss.
REFERENCES USED IN DEVELOPING THIS UNIT

10. Discuss R-values of different materials such as glass, concrete, and wood, and compare their values.

11. Discuss differences in energy loss between insulated and uninsulated glass, doors, and walls.

12. Conduct a survey of the school to determine the amount of electricity used (in kilowatt hours). Check for wattage of lights, number of lights and hours used daily, and price per kilowatt hour; then calculate the amount of money spent on lighting the building and then for total electricity.

13. Discuss the advantages and disadvantages of the different energy sources. Discuss both environmental issues and economic issues.

14. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

J. Give test.

K. Evaluate test.

L. Reteach if necessary.

REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

A. Films:

1. Energy: Critical Choices Ahead (27 min. color)
 Free Loan — Texas Power and Light, Public Service Dept.
 P.O. Box 226331, Dallas, TX 75266
SUGGESTED SUPPLEMENTAL RESOURCES

2. *Energy: The American Experience* (28 min. color) #0507
 Free Loan — ERDA Film Library, Technical Education Center
 P.O. Box 62, Oak Ridge, TN 37830

3. *Energy: New Sources* (20 min. color)
 University of Illinois, Visual Aids Service
 1325 South Oak Street, Champaign, IL 61820

4. *A Question of Balance* (28 min. color)
 Free Loan — Modern Talking Pictures
 1212 Avenue of the Americas, New York, NY 10036

B. Books and pamphlets

OVERVIEW OF ENERGY AND POWER
UNIT I

INFORMATION SHEET

I. Terms and definitions
 A. Effort — Force applied to the machine
 B. Energy — The ability to do work, or the capacity to produce motion, heat, or light
 C. Four-stroke cycle engine — An engine that requires four strokes of the piston to produce a single power stroke
 (NOTE: The four strokes are intake, compression, power, and exhaust.)
 D. Mechanical advantage (MA) — The increase in force that you gain from using a machine
 \[MA = \frac{\text{Resistance}}{\text{Effort}} \]
 E. Power — Energy or work per unit of time, or work accomplished in a given period of time
 F. Radiant energy — A form of energy traveling as wave motion, such as rays from the sun
 (NOTE: Radiant energy is a combination of heat and light energy. Radiant energy changes to heat when it strikes a solid object.)
 G. Resistance — Force overcome by the machine
 H. R-value — A rating given a material’s resistance to passage of heat
 (NOTE: A material with a high R-value is a good thermal insulator and is energy efficient.)
 I. Turbine — Rotating device driven by wind or water that is used to provide power
 J. Two-stroke cycle engine — A heat engine that requires two piston strokes to produce a single power stroke
 (NOTE: The two strokes are compression and power.)

II. Forms of energy (Transparency 1)
 A. Mechanical energy — The energy of motion
 (NOTE: This is the most visible and common form of energy.)
INFORMATION SHEET

B. Heat (thermal) energy — The motion of molecules
 (NOTE: Heat is present whenever there is motion.)

C. Light energy — The visible part of radiant energy

D. Chemical energy — Energy produced by chemical changes
 (NOTE: It is the source of energy for all living things.)

E. Electrical energy — The motion of electrons

F. Nuclear energy — Energy produced by reactions in the nuclei of atoms

III. Classifications of energy sources (Transparency 2)

A. Nonrenewable — Energy sources that cannot be replaced once they are used

1. Fossil fuels (hydrocarbons)
 a. These are fuels that are derived from fossilized living things deposited millions of years ago.
 b. Examples include natural gas, coal, and oil.
 1) Natural gas (ethane, propane, butane, and methane) is used for heating, cooling, cooking, and generating electricity. It is the cleanest fossil fuel.
 2) Coal can be burned for heating and as fuel for electrical power plants.
 3) Oil is primarily used for transportation fuels (gasoline, diesel) and for heating and generating electricity.

2. Uranium
 a. Tremendous amounts of energy are released when the nucleus of uranium atoms are split.
INFORMATION SHEET

b. This energy is used in nuclear power plants to generate electricity for consumer use.

B. Renewable — Energy sources that can be used indefinitely if they are properly managed and maintained.

(Note: Most of the following energy sources are also referred to as alternative energies. They are being studied and developed as supplements and possible replacements for conventional energies such as fossil fuels. Although many applications have been developed, most are still not economically feasible for large scale use in all areas.)

1. Sun
 a. Used in passive and active solar applications to heat homes and businesses and for natural sunlight.
 b. Photovoltaic cells (solar cells) absorb sunlight and turn it directly into electricity.

2. Wind
 a. Used naturally for sailing and drying and in windmills to mechanically grind grain and pump water.
b. Presently being used in areas with steady winds to generate electricity through modern wind machines.

Types of Wind Machines

Vertical Axis

Horizontal Axis

3. Water (Hydro) — Primarily used to generate electricity. There are several forms of hydro energy.

a. Hydroelectric power — The force of falling or flowing water in a river or stream is directed through a turbine, causing the turbine to spin. That rotates the generator which produces electricity. Often a dam is built across the river to build up the water supply and enable the power plant to generate even more electricity.

(NOTE: Hydroelectric power plants are very common in the U.S. and generate 1/3 of all electricity produced here.)

Ocean tides — The differences between high tide and low tide can be used to turn turbines and generate electricity in limited areas.

(NOTE: Ocean wave power caused by wind driving the water to the shore is also a possible source of energy in the future.)
4. Geothermal
 a. Heat generated by natural processes beneath the earth's surface can be used for heat and for generating electric power.
 b. Natural examples of geothermal energy are volcanoes, hot springs, and geysers such as "Old Faithful" in Yellowstone National Park.
 c. The largest commercial geothermal electric power plant complex is The Geysers in northern California. Other plants are currently in operation or under development in the western U.S. where geothermal reservoirs are found close to the earth's surface.

5. Plants and waste products (biomass conversion)
 a. Trees, plants, farm crops, manure, seaweed, algae, sewage, and garbage can all be used as sources of energy.
 b. These products can be burned and used as direct heat (trees) or converted into fuels such as alcohol, oil, and methane (waste products and trash) which can be used for transportation or to generate electricity.

IV. Early uses of energy
 A. Fire — Used for heating, cooking, and tool making
INFORMATION SHEET

B. Wind — Used for sailing and windmills

C. Water — Used in water wheels and turbines to grind grain and irrigate crops

D. Sun — Used for light and heat

V. Present day uses of energy (Transparency 3)

A. Residential and commercial
 1. Lighting
 2. Heating and cooling
 3. Cooking
 4. Operating appliances and equipment

B. Industrial
 1. Mining
 2. Processing
3. Manufacturing materials into products

4. Generating electricity

C. Transportation — For fuel and movement

VI. Early sources of power

A. Humans — Depend upon their own muscles to hunt, provide shelter, and protect themselves from their enemies

B. Animals — Some species could be tamed to provide another source of power to perform work

Examples: Oxen, horses, dogs

C. Simple machines — The earliest devices that enabled humans to do work that was difficult or impossible with muscle power alone
VII. Simple machines

(NOTE: The use of machines gives mechanical advantage over doing the task without the machine.)

A. Lever — Bar resting on a pivot point or fulcrum

1. First class

![First class lever diagram]

```
Resistance (Load)  125 lbs
500 lbs
1' Fulcrum
4'
```

MA = 4:1

2. Second class

![Second class lever diagram]

```
Effort
500 lbs
```

3. Third class

![Third class lever diagram]

```
Resistance (Load)  500 lbs
Effort
500 lbs
```

B. Wheel and axle — Operates on the same principle as the lever: radius of the wheel acts as the lever, the center of the axle is the fulcrum.

![Wheel and axle diagram]

```
Wheel
Axle
1" Radius
3" Radius
MA = 3:1
```

(NOTE: The mechanical advantage of the wheel and axle is the ratio between the two lever arms. The mechanical advantage shown in the figure above is 3 to 1.)
C. Pulley — A wheel that turns on an axis

D. Inclined plane — Tapered surface along which something moves

Force = 150 lbs.

E. Screw — Spiral-shaped inclined plane wrapped around a rod

Force = 50 lbs.
F. **Wedge** — Made up of two inclined planes placed so that the sloping sides come together at a point.

![Splitting Wedge and Nail Diagram]

VIII. Complex machines

(NOTE: All complex machines use the principles of the simple machines singularly or in various combinations. The use of these machines helped bring about the Industrial Revolution.)

A. **Waterwheel**

1. **Undershot waterwheel** — The first type of waterwheel to be used.

![Undershot Waterwheel Diagram]

2. **Overshot waterwheel** — Used both the weight and the movement of water to produce power.

![Overshot Waterwheel Diagram]
INFORMATION SHEET

B. Water turbine — More efficient machine than the waterwheel, with increased power output

C. Windmills — Use the wind for power

Wind turns propeller wheel, small gears on shaft turn larger ones, increasing power.

Connecting rods from large gears move pump rod up and down as wind wheel revolves.
D. Engines

1. External combustion — Heat engine that uses heat and pressure produced outside of the engine.

 Examples: Steam engine, steam turbine, stirling cycle engine

 ![External Combustion Engine (Steam Engine)]

2. Internal combustion — A heat engine in which the heat and pressure are produced inside the engine.

 Examples: Gasoline piston (two-stroke and four-stroke cycle), diesel, rotary, diesel-electric, jet, rocket

 ![Internal Combustion Engine (Gasoline)]
IX. Conservation of resources within the technology systems

(NOTE: When learning about energy, power, and transportation technology, it is important to understand the problems as well as the benefits of the technology. One of the problems is that most common fuels are limited and exhaustible and must be conserved.)

A. Transportation
 1. Design and use more efficient engines.
 2. Use alternative fuels.
 3. Use lightweight materials for vehicle design (so less fuel is needed).

B. Production (manufacturing and construction)
 1. Utilize waste heat.
 2. Use more efficient furnaces.
 3. Practice worker conservation.
 Examples: Employees can limit engine and utility use. Employees can develop a “conservation attitude”.
 4. Develop more energy efficient residences and businesses.
 5. Use alternative energy sources.

C. Communication
 1. Utilize alternative energy sources.
 Example: Solar
 2. Develop more efficient methods.
INFORMATION SHEET

X. Reading a gas or electric meter

A. Electric meter — Measures the amount of electricity used in a unit called kilowatt-hours

(NOTE: A kilowatt-hour (kWh) is 1000 watts of electricity flowing for one hour. Each kWh of electricity will cost a specific amount.)

1. Four dial meter — Multiply the reading by ten
2. Five dial meter — Read direct; do not multiply by ten

B. Natural gas meter — Reads the same way as electric meters, except they measure in thousand cubic feet of gas. You must multiply the reading by 1000 (add three zeros to the reading).

(NOTE: A gas billing may read 6.8 mcf, 1000 cubic feet, or 68 ccf, cubic feet.)

1. Always read the set of dials from Right to Left.
2. Notice the direction of the arrows.
INFORMATION SHEET

3. Read the smaller number when the pointer is between arrows.

4. Reread the dial to the right when the pointer is aimed directly at a number.

5. Write down the number indicated by the pointer if the pointer on the right has passed 0.

6. Write down the number next lowest to the number indicated on the first dial if the dial pointer on the right has not passed 0.

7. Calculate energy use. Subtract this reading from the previous month's reading as shown below.

\[
\begin{array}{cccc}
\text{Dial Four} & \text{Dial Three} & \text{Dial Two} & \text{Dial One} \\
5 & 9 & 6 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Dial Four} & \text{Dial Three} & \text{Dial Two} & \text{Dial One} \\
5 & 9 & 1 & 1 \\
\end{array}
\]

5964 This month's reading
5911 Last month's reading
53 would be 5.3 mcf or 53 ccf of gas or 530 kwh of electricity
Forms of Energy

- Mechanical
- Heat
- Light
- Chemical
- Electrical
- Nuclear
Classifications of Energy Sources

Fossil Fuels

Uranium

Nonrenewable

Sun

Wind

Water

Geothermal

Plants and Waste Products (Biomass Conversion)

Renewable
Use of Energy in the U.S.

- Residential and Commercial: 34%
- Industrial: 40%
- Transportation: 26%
This map is reasonably accurate for most parts of the United States but is necessarily highly generalized, and consequently not too accurate in mountainous regions, particularly in the Rockies.

RECOMMENDED INSULATION R VALUES

<table>
<thead>
<tr>
<th>DEGREE DAYS</th>
<th>CEILINGS</th>
<th>WALLS</th>
<th>FLOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 7000</td>
<td>38</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>5001-7000</td>
<td>38 (30F)</td>
<td>17 (12F)</td>
<td>19 (11F)</td>
</tr>
<tr>
<td>4501-6000</td>
<td>30</td>
<td>17 (12F)</td>
<td>19 (11F)</td>
</tr>
<tr>
<td>3501-4500</td>
<td>30</td>
<td>12 (17E)</td>
<td>11 (19E)</td>
</tr>
<tr>
<td>2501-3000</td>
<td>22 (30E)</td>
<td>11 (17E)</td>
<td>0 (11E)</td>
</tr>
<tr>
<td>1001-2500</td>
<td>19 (22E)</td>
<td>11 (12E)</td>
<td>0</td>
</tr>
<tr>
<td>1000 and under</td>
<td>19</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Fossil fuel (gas & oil) = F
Electric resistance heat = E
Heat pumps with electric heat = H
R Values apply to all unless otherwise shown.

These insulation "R" values are recommended to meet the FHA Minimum Property Standards for thermal resistance. The R value shown for walls can be met with any combination of sheathing and cavity wall insulation, or blanket insulation alone. For additional information, refer to Owens-Corning Pub. No. 5-BL-9233-A.
HANDOUT #1

RESISTANCE OF VARIOUS INSULATING MATERIALS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>R VALUE PER IN.</th>
<th>R-11</th>
<th>R-19</th>
<th>R-22</th>
<th>R-34</th>
<th>R-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batts/Blankets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglass</td>
<td>3.14</td>
<td>3.5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>3.14</td>
<td>3.5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>Loose/Machine Blown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>2.25</td>
<td>5</td>
<td>8.5</td>
<td>10</td>
<td>15.5</td>
<td>17</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>3.125</td>
<td>3.5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>Cellulose</td>
<td>3.75</td>
<td>3</td>
<td>5.5</td>
<td>6</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Hand Poured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loose Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>3.7</td>
<td>3</td>
<td>5.5</td>
<td>6</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>3.125</td>
<td>3.5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>2.25</td>
<td>5</td>
<td>8.5</td>
<td>10</td>
<td>15.5</td>
<td>17</td>
</tr>
<tr>
<td>Vermiculite</td>
<td>2.1</td>
<td>5.5</td>
<td>9</td>
<td>10.5</td>
<td>16.5</td>
<td>18</td>
</tr>
<tr>
<td>Rigid Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>3.6</td>
<td>3</td>
<td>5.5</td>
<td>6.5</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Beadboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polystyrene</td>
<td>5.41</td>
<td>3</td>
<td>5</td>
<td>5.5</td>
<td>8.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Urethane</td>
<td>6.2</td>
<td>2</td>
<td>3</td>
<td>3.5</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5.5</td>
<td>8.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>
OVERVIEW OF ENERGY AND POWER
UNIT I

ASSIGNMENT SHEET #1 — READ SAMPLE METERS

NAME _______________________________ SCORE __________

Directions: Shown below are several sets of dials. Record the correct reading in the space provided below each dial. Refer to Information Sheet, Section X if you need assistance.

1.

DIAL FOUR DIAL THREE DIAL TWO DIAL ONE

--- --- --- ---

2.

DIAL FOUR DIAL THREE DIAL TWO DIAL ONE

--- --- --- ---

3.

DIAL FOUR DIAL THREE DIAL TWO DIAL ONE

--- --- --- ---
(NOTE: Follow your instructor's directions and calculate energy use.)
OVERVIEW OF ENERGY AND POWER
UNIT I

ASSIGNMENT SHEET #2 — READ HOME METER

NAME ____________________________ SCORE __________

Directions: Read your home meter for seven days and record those readings in the blanks below.

1. Make the reading at the same time each day.
2. Draw the positions of the hands of the meter on the dials below.
3. Write the number in the space below each dial.
4. If your meter does not have dials, just put the number under each drawing.
5. If your meter has only four dials, do not use the last one.

DAY 1

Meter Reading Day 1 __________________________

DAY 2

Reading Day 2 __________________________
Reading Day 1 __________________________
kwh/mcf used __________________________
ASSIGNMENT SHEET #2

DAY 3

Reading Day 3
Reading Day 2
kwh/mcf used

DAY 4

Reading Day 4
Reading Day 3
ekwh/mcf used

DAY 5

Reading Day 5
Reading Day 4
kwh/mcf used
ASSIGNMENT SHEET #2

DAY 6

Reading Day 6
Reading Day 5
kwh/mcf used

DAY 7

Reading Day 7
Reading Day 6
kwh/mcf used

Now, calculate the amount of energy you and your family consumed in one week.

Reading on Day 7

minus

Reading on Day 1

equals

Total Weekly Use
OVERVIEW OF ENERGY AND POWER
UNIT I

ANSWERS TO ASSIGNMENT SHEETS

Assignment Sheet #1

1. 4 6 2 1
2. 3 7 5 0
3. 5 6 9 8
4. 5 0 3 7
5. 9 8 6 4
6. 5 7 5 9

(NOTE: Instructor may also wish to provide a previous reading for the readings above and have students calculate kwh or mcf or ccf used.)

Assignment Sheet #2 — Evaluated to the satisfaction of the instructor
OVERVIEW OF ENERGY AND POWER
UNIT I

JOB SHEET #1 — PERFORM AN ENERGY AUDIT

A. Tools and materials
 1. Thermometer (which will read 180°F)
 2. Immersion thermometer
 3. ½" dowel rod
 4. 6" x 6" light tissue or plastic wrap
 5. Masking tape

B. Procedure
 1. Attach 6" x 6" paper to dowel rod with masking tape to make draft indicator.
 2. Take notes on forms as you proceed using your inspection form.
 3. Perform outside inspection on doors.
 a. Does house have storm doors? __________
 b. Do doors have weatherstripping? __________
 c. Are doors properly caulked? __________
 d. How many layers of glass are there in the doors?
 □ single pane
 □ double pane
 □ triple pane
 4. Perform outside inspection on windows.
 a. Do windows close tightly? __________
 b. Are window frames properly caulked? __________
 c. Are there any broken windows? __________
d. How many layers of glass are there in the windows?
 - single pane
 - double pane
 - triple pane

e. Are storm windows used during cold winter months? __________

f. What kind of frames do the windows have? (wood, metal, some of each) ________________

5. Inspect home exterior.
 a. Is re-caulking needed? __________
 b. Are other repairs needed to prevent heat loss? __________
 c. Are plumbing entries tightly sealed? __________
 d. Are crawl-space entries sealed? __________
 e. Are mail-slots closing tightly? __________
 f. Are dryer outlets sealed? __________
 g. Are air-conditioning outlets sealed? __________
 h. Are other exhaust outlets sealed? __________

6. Perform inside inspection for airleaks.
 a. Shut off forced-air furnace (if used in your home) and using draft indicator check doors. Are there air leaks? __________
 b. Are there leaks around windows? __________
 c. Are there leaks around corners to exterior walls? __________
 d. Are there leaks around floor and floor boards? __________
 e. Are there leaks around plumbing entries under sinks along exterior walls? __________
 f. Are there leaks around electrical outlets on exterior walls? __________
 g. Turn heat back on if you turned it off in Step 6a.
JOB SHEET #1

7. Perform inside inspection of windows.
 a. How are windows covered to control light and prevent heat loss and gain?
 Blinds _______ Drapes _______
 Shutters _______ Reflective coating ______
 Shades _______ Other ______
 Curtains _______ None ______
 b. How many windows are located on each outside wall?
 North _______ South _______
 East _______ West ______

8. Inspect insulation and find out what kind of insulation the home has.
 a. Is there blown-in or blanket insulation in the attic or ceiling area?
 _______ What thickness? _______ What R-value? _______
 b. Is there insulation in the walls?
 c. Is there insulation in the floors/foundation?
 d. Complete the following chart if the information is available.

FIGURE 1

<table>
<thead>
<tr>
<th>Area</th>
<th>Recommended R-value</th>
<th>Insulation</th>
<th>R-value of Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling/Roof</td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors/Foundation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
JOB SHEET #1

9. Inspect lighting.
 a. Are lights left on in rooms or areas when not in use? ____________
 b. Are fluorescent bulbs used in lights and fixtures whenever possible? ____________
 c. Are walls a light color for good reflection? ____________
 d. What kind of natural lighting is used? (windows, skylights) ____________

10. Inspect fireplace if the home has one.
 a. Is the vent closed when not in use? ____________
 b. Does fireplace have glass doors to prevent heat loss? ____________
 c. Does fireplace have a method of circulating air and heat? ____________

11. Inspect hot water heater.
 a. Check water temperature with thermometer.
 b. Record temperature. ____________
 c. Are hot water pipes and water heater insulated? ____________
 d. Are any hot water faucets leaking? ____________
 e. Are the clothes washer and dishwasher used only with full loads? ____________
 f. Are flow restrictors used on shower heads and sink faucets? ____________
JOB SHEET #1

12. Check heating, ventilation, and air conditioning.
 a. Complete the following table (change names to fit rooms in the home.)

<table>
<thead>
<tr>
<th>Room</th>
<th>Actual Temp.</th>
<th>Heat or Air Cond. Register</th>
<th>Thermostat In Room</th>
<th>Thermostat Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Open</td>
<td>Closed</td>
<td>Yes</td>
</tr>
<tr>
<td>Living</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedroom 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedroom 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Is the thermostat set back to a lower temperature at night?

 c. Is the thermostat set at 65°F or lower in the heating season and 78°F or higher in the cooling season?

 d. Is the heating system forced air or a convection system?

 e. Are heating and cooking vents clean and unblocked?

 f. Are there filters on air conditioners and furnaces?

 g. Are filters clean and unclogged?

 h. Are air ducts insulated?

 i. Are hot water pipes insulated?

 j. Are kitchen and bathroom exhaust fans turned off when not needed?

13. Make recommendations for improvements by filling in the chart below.

<table>
<thead>
<tr>
<th>LOW COST RECOMMENDATIONS</th>
<th>HIGH COST RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERVIEW OF ENERGY AND POWER
UNIT I

PRACTICAL TEST
JOB SHEET #1 — PERFORM AN ENERGY AUDIT

STUDENT'S NAME ___________________________ DATE _________

EVALUATOR'S NAME ________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under "Process Evaluation" must receive a "Yes" for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the "Yes" or "No" blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student: YES NO

1. Checked out proper tools and materials. ______ ______
2. Made draft indicator. ______ ______
3. Performed and noted outside inspections on doors. ______ ______
4. Performed and noted outside inspections on windows. ______ ______
5. Inspected home exterior and made notes. ______ ______
6. Performed and noted inside inspection for air leaks. ______ ______
7. Inspected insulation and made notes. ______ ______
8. Inspected lighting and made notes. ______ ______
9. Inspected fireplace (if home has one) and made notes. ______ ______
10. Inspected hot water heater and made notes. ______ ______
11. Checked and noted heating. ______ ______
12. Checked and noted ventilation. ______ ______
13. Checked and noted air conditioner. ______ ______
14. Made recommendations for improvements. ______ ______
15. Performed steps in a timely manner (____hrs. ____min. ____sec.) ______ ______
16. Practiced safety rules throughout procedure. ______ ______
17. Provided satisfactory responses to questions asked. ______ ______

EVALUATOR'S COMMENTS: __

JOB SHEET #1 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a "3" for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft Indicator</td>
<td>Meets Requirements</td>
<td>Minor Adjustment</td>
<td>Major Adjustment</td>
<td>Redo</td>
</tr>
<tr>
<td>Audit</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Forms</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

4 — Skilled — Can perform job with no additional training.

3 — Moderately skilled — Has performed job during training program; limited additional training may be required.

2 — Limited skill — Has performed job during training program; additional training is required to develop skill.

1 — Unskilled — Is familiar with process, but is unable to perform job.

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in "Product Evaluation" and divide by the total number of criteria.)
OVERVIEW OF ENERGY AND POWER
UNIT 1

NAME ____________________________ SCORE ____________________________

TEST

1. Match the terms on the right with the correct definitions.

_____a. Heat engine that requires two piston strokes to produce a single power stroke

_____b. A form of energy traveling as wave motion, such as rays from the sun

_____c. The increase in force that you gain from using a machine

_____d. Rotating device driven by wind or water that is used to provide power

_____e. The ability to do work, or the capacity to produce motion, heat, or light

_____f. Force applied to the machine

_____g. A rating given a material's resistance to passage of heat

_____h. Energy or work per unit of time, or work accomplished in a given period of time

_____i. An engine that requires four strokes of the piston to produce a single power stroke

2. Match the forms of energy on the right with the correct definitions.

_____a. The energy of motion

_____b. The visible part of radiant energy

_____c. The motion of electrons

_____d. Energy produced by reactions in the nuclei of atoms

_____e. Energy produced by chemical changes

1. Radiant energy

2. Two-stroke cycle engine

3. Power

4. R-value

5. Energy

6. Effort

7. Four-stroke cycle engine

8. Mechanical advantage

9. Turbine

10. Resistance

1. Nuclear energy

2. Chemical energy

3. Electrical energy

4. Heat energy

5. Mechanical energy

6. Light energy
3. Select true statements concerning the classifications of energy sources by placing an "X" next to the true statements. Leave false statements blank.

_____a. Nonrenewable energy sources can be used indefinitely if properly managed.

_____b. Fossil fuels were originally deposited millions of years ago.

_____c. Wind can be used to generate electricity through modern wind machines.

_____d. Photovoltaic cells absorb sunlight and turn it directly into chemical energy.

_____e. The differences between high tide and low tide can be used to turn turbines and generate electricity.

_____f. Natural examples of geothermal energy are trees and farm crops.

_____g. Geothermal energy can be applied everywhere in the U.S. because all geothermal reservoirs are very close to the earth's surface.

_____h. Falling or flowing water can be used to generate electricity.

_____i. Examples of fossil fuels are natural gas, coal, and oil.

_____j. Uranium is primarily used for heating and cooling homes.

_____k. Fossil fuels and uranium are renewable energy sources.

_____l. Wind, sun, water, and trees are renewable energy sources.

_____m. A product of biomass conversion is methane.

_____n. The largest commercial geothermal electric power plant complex is The Geysers in northern California.

_____o. Tremendous amounts of energy are released when the nucleus of uranium atoms are split.

4. Discuss how fire, wind, water, and the sun were used as early energy sources.

a. Fire

b. Wind

c. Water

d. Sun
5. List two present day uses of energy.
 a. Residential and commercial areas —
 b. Industrial areas —

6. List three early sources of power.
 a.
 b.
 c.

7. Identify the following simple machines.
 a.
 b.
 c.
 d.

Diagram:
- Axle
- Wheel
- Force = 50 lbs.
- 250 lbs.
- 10 ft.
- 2 ft.
- 1" Radius
- 3" Radius
8. Identify the following complex machines.

a.

(b.

c.

d.

e.

9. Discuss ways to conserve energy resources within the following technology systems:

a. Transportation

b. Production (manufacturing and construction) __

__

__

__

c. Communication ___

__

__

__

10. a. Natural gas meters measure fuel use in __________ unit of measure.

b. Electric meters measure electrical use in __________ unit of measure.

c. Always read meter dials __________ to __________.

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

11. Read sample meters. (Assignment Sheet #1)

12. Read home meter. (Assignment Sheet #2)

13. Demonstrate the ability to perform an energy audit. (Job Sheet #1)
OVERVIEW OF ENERGY AND POWER
UNIT I

ANSWERS TO TEST

1. a. 2 f. 6
b. 1 g. 4
c. 8 h. 3
d. 9 i. 7
e. 5

2. a. 5 d. 1
b. 6 e. 2
c. 3

3. b, c, e, h, i, l, m, n, o

4. Answers should include the following information:
a. Fire — Used for heating, cooking, and tool making
b. Wind — Used for sailing and windmills
c. Water — Used in water wheels and turbines to grind grain and irrigate crops
d. Sun — Used for light and heat

5. Answer should include two for each of the following:
a. Residential and commercial areas
 1) Lighting
 2) Heating and cooling
 3) Cooking
 4) Operating appliances and equipment
b. Industrial areas
 1) Mining
 2) Processing
 3) Manufacturing materials into products
 4) Generating electricity

6. a. Human
 b. Animals
 c. Simple machines

7. a. Wedge
 b. Inclined plane
 c. Wheel and axle
 d. Pulley

8. a. Internal combustion engine
 b. Water turbine
 c. Windmill
 d. Waterwheel
 e. External combustion engine
ANSWERS TO TEST

9. Answer should include the following:
 a. Transportation
 1) Design and use more efficient engines.
 2) Use alternative fuels.
 3) Use lightweight materials for vehicle design.
 b. Production (manufacturing and construction)
 1) Utilize waste heat.
 2) Use more efficient furnaces.
 3) Practice worker conservation.
 4) Develop more energy efficient residences and businesses.
 5) Use alternative energy sources.
 c. Communication
 1) Utilize alternative energy sources.
 2) Develop more efficient methods.

10. a. Cubic feet
 b. Kilowatt-hours
 c. Right to left

11.12. Evaluated to the satisfaction of the instructor

13. Performance skills evaluated to the satisfaction of the instructor
PRINCIPLES OF ENERGY AND POWER
UNIT II

UNIT OBJECTIVE

After completion of this unit, the student should be able to measure mechanical and electrical power, and build a steam turbine, a wind rotor, and an electric generator. Competencies will be demonstrated by completing the assignment sheets, job sheets, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to principles of energy and power with the correct definitions.
2. List the types of power systems.
3. Arrange in order the stages of power systems.
4. Distinguish between the basic measuring systems.
5. Complete a chart of basic units of measurement.
6. Use prefixes for changing metric base units.
7. State units for measuring energy and power.
8. Match terms related to measuring mechanical power with the correct definitions.
9. Calculate problems using the formula for work. (Assignment Sheet #1)
10. Calculate problems using the formula for horsepower. (Assignment Sheet #2)
11. Calculate problems using the formula for torque. (Assignment Sheet #3)
OBJECTIVE SHEET

12. Match terms related to measuring electrical power with the correct definitions.

13. State Ohm's law in letter formula for calculating voltage, current, and resistance.

15. Solve problems using Ohm's law. (Assignment Sheet #4)

16. Demonstrate the ability to:
 a. Build and test a simple, low pressure steam turbine. (Job Sheet #1)
 b. Construct a wind rotor. (Job Sheet #2)
 c. Build an electric generator. (Job Sheet #3)
PRINCIPLES OF ENERGY AND POWER
UNIT II

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included with this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

(NOTE: Use the transparencies to enhance the information as needed.)

G. Provide students with job sheets.

H. Discuss and demonstrate the procedures outlined in the job sheets.

I. Integrate the following activities throughout the teaching of this unit:

1. Show films which demonstrate the principles of energy and power.

2. Combine steam turbine (Job Sheet #1) by pulley to electric generator (Job Sheet #3) and measure electricity produced.

3. Vary rotor design of the blades on a steam turbine (Job Sheet #1) and measure the differences in energy produced. Determine the most efficient design.

4. Have students apply Ohm's Law to Job Sheet #3.

5. Practical application of horsepower and torque will be demonstrated in the next unit.

6. Conduct various experiments which demonstrate the principles of energy and power.

7. Show examples of the various meters used for measuring electricity's voltage, current, and resistance.

8. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.
SUGGESTED ACTIVITIES

J. Give test.
K. Evaluate test.
L. Reteach if necessary.

REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

A. Films

1. *Energy, Steam, and Progress* (26 min. color)
 Babcock and Wilcox. 1964; #07665, available from University of Wisconsin at Madison (608-262-1644) or write P.O. Box 2093, Madison, Wisconsin 53701-2093

2. *Energy and Work* (11 min. color)
 EBE, 1961; #05859; available from University of Wisconsin at Madison (608-262-1644) or write P.O. Box 2093, Madison, Wisconsin 53701-2093

3. *Great Search: Man's Need for Power and Energy* (13 min. color)
 Disney, 1972, #09475, available from University of Wisconsin at Madison (608-262-1644) or write P.O. Box 2093, Madison, Wisconsin 53701-2093

B. *Principles of Technology* Teacher and student guides and videocassettes (14 units). Available from your state curriculum lab or the Agency for Instructional Technology, Box A, Bloomington, IN 47402-0120. or call 812-339-2203 or 800-457-4509.

1. Force
2. Work
3. Rate
4. Resistance
5. Energy
6. Power
PRINCIPLES OF ENERGY AND POWER
UNIT II

INFORMATION SHEET

I. Terms and definitions

A. Ammeter — An instrument used to measure the amount of current in a circuit

B. Ampere — Unit of measure for electrical current

C. Efficiency — The percentage of available energy converted into usable energy

D. Energy conversion — The process of changing energy from one of its six forms into another

![Diagram showing energy forms]

E. Friction — The resistance to motion produced when two objects rub against each other

(Note: Friction produces heat energy.)

F. Kinetic energy — Energy in motion

![Diagram of kinetic energy]
INFORMATION SHEET

G. Law of conservation of energy — The amount of energy in the universe is fixed; it cannot be created or destroyed

H. Multimeter — A meter that can measure different values such as voltage, current, and resistance

I. Ohm — Standard unit of measuring resistance to current flow

J. Ohmmeter — An instrument used to measure resistance to current flow

K. Potential energy — Stored or available energy

(NOTE: When used, potential energy becomes kinetic energy.)

types: Fossil fuels, uranium, food, water behind a dam

Potential Energy

L. Voltmeter — An instrument used to measure the amount of voltage in a circuit

II. Types of power systems

A. Mechanical power — Utilizes simple and complex machines to control and transmit motion.
B. Electrical power — Utilizes and controls the motion of electrons through conductive materials to transmit electricity.

C. Fluid power — Utilizes gases or liquids to control and transmit motion.

III. Stages of the basic power theory (Transparency 1)

A. Input
B. Conversion and control
C. Transmission and control
D. Output

IV. Basic measuring systems

A. English — Measuring system traditionally used in the United States; basic units are the foot, the pound, and degree Fahrenheit

B. Metric — Measuring system used by most of the industrial countries of the world; basic units are the meter, the liter, and degree Celsius

(Note: This system is formally called the International System of Unit, abbreviated as SI.)
V. Basic units of measurement — Metric and English

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Metric Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Length</td>
<td>millimeters</td>
<td>inches</td>
</tr>
<tr>
<td></td>
<td>centimeters</td>
<td>feet</td>
</tr>
<tr>
<td></td>
<td>meters</td>
<td>yards</td>
</tr>
<tr>
<td></td>
<td>kilometers</td>
<td>miles</td>
</tr>
<tr>
<td>B. Weight</td>
<td>grams</td>
<td>ounces</td>
</tr>
<tr>
<td></td>
<td>kilograms</td>
<td>pounds</td>
</tr>
<tr>
<td></td>
<td>metric tons</td>
<td>tons</td>
</tr>
<tr>
<td>C. Volume</td>
<td>milliliters</td>
<td>ounces</td>
</tr>
<tr>
<td></td>
<td>liters</td>
<td>cups</td>
</tr>
<tr>
<td></td>
<td>cubic</td>
<td>pints</td>
</tr>
<tr>
<td></td>
<td>centimeters</td>
<td>quarts</td>
</tr>
<tr>
<td>D. Area</td>
<td>square</td>
<td>square inches</td>
</tr>
<tr>
<td></td>
<td>centimeters</td>
<td>square feet</td>
</tr>
<tr>
<td></td>
<td>square meters</td>
<td>square yards</td>
</tr>
<tr>
<td>E. Temperature</td>
<td>degrees Celsius</td>
<td>degrees Fahrenheit</td>
</tr>
<tr>
<td>F. Speed</td>
<td>kilometers</td>
<td>miles per hour</td>
</tr>
<tr>
<td></td>
<td>per hour</td>
<td></td>
</tr>
<tr>
<td>G. Force</td>
<td>newtons</td>
<td>pounds</td>
</tr>
<tr>
<td>H. Torque</td>
<td>newton-meters</td>
<td>pound-feet</td>
</tr>
<tr>
<td>I. Pressure</td>
<td>pascals</td>
<td>pounds per sq.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch (psi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inches of mercury</td>
</tr>
</tbody>
</table>
VI. Prefixes for changing metric base units

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Base Unit</th>
<th>Metric term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>milli- (m)</td>
<td>meter (m)</td>
<td>millimeter (mm)</td>
<td>1/1000th of base unit</td>
</tr>
<tr>
<td></td>
<td>liter (l)</td>
<td>milliliter (ml)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gram (g)</td>
<td>milligram (mg)</td>
<td></td>
</tr>
<tr>
<td>centi- (c)</td>
<td>meter</td>
<td>centimeter (cm)</td>
<td>1/100th of base unit</td>
</tr>
<tr>
<td></td>
<td>liter</td>
<td>centiliter (cl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gram</td>
<td>centigram (cg)</td>
<td></td>
</tr>
<tr>
<td>kilo- (k)</td>
<td>meter</td>
<td>kilometer (km)</td>
<td>1000 base units</td>
</tr>
<tr>
<td></td>
<td>liter</td>
<td>kiloliter (kl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gram</td>
<td>kilogram (kg)</td>
<td></td>
</tr>
</tbody>
</table>

VII. Units for measuring energy and power

<table>
<thead>
<tr>
<th>A. Energy</th>
<th>Metric Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mechanical</td>
<td>joules</td>
<td>foot-pounds</td>
</tr>
<tr>
<td>2. Heat</td>
<td>joules, cal</td>
<td>British thermal units</td>
</tr>
<tr>
<td>3. Electrical</td>
<td>joules</td>
<td>joules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Power</th>
<th>Metric Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mechanical</td>
<td>watts</td>
<td>horsepower</td>
</tr>
<tr>
<td>2. Heat</td>
<td>watts</td>
<td>BTUs per second</td>
</tr>
<tr>
<td>3. Electrical</td>
<td>watts</td>
<td>watts</td>
</tr>
</tbody>
</table>
VIII. Terms and definitions related to measuring mechanical power

A. Work — Measurement of useful motion (mechanical energy); measured in foot-pounds.

B. Power — Work per unit of time; measured in horsepower.

C. Force (F) — Any push or pull on an object; measured in pounds and newtons.

(Note: The term "force" should be used in all calculations of work except for those involving simple lifting when the term weight is used.)
INFORMATION SHEET

D. Torque — Turning or twisting effort; measured in pound-feet (lb-ft) or newton-meters.

(NOTE: We use torque whenever we turn a wheel, tighten a bolt, or pedal a bicycle.)

E. Pressure — Force per unit of area; measured in pascals or in pounds per square inch (psi) or inches of mercury (for atmospheric pressure).

IX. Formula for measuring work (Assignment Sheet #1)

Work = Force x Distance

Example: How much work is accomplished if it takes 80 pounds of force to move a 300 pound box 50 ft?

W = F x D

W = 80 x 50

W = 4000 ft-lbs.
INFORMATION SHEET

X. Formula for measuring horsepower (Assignment Sheet #2)

Horsepower = \(\frac{\text{Force (or weight) \times Distance}}{\text{Time (sec) \times 550}} \) or \(\frac{\text{Force (or weight) \times Distance}}{\text{Time (min) \times 33,000}} \)

Example: A 180 pound man climbs a 10 foot flight of stairs in 5 seconds. How much horsepower does he develop?

\[\text{HP} = \frac{W \times D}{\text{Time (sec) \times 550}} \]

\[\text{HP} = \frac{180 \times 10}{5 \times 550} \]

\[\text{HP} = \frac{1800}{2750} \]

\[\text{HP} = .65 \text{ horsepower} \]

XI. Formula for measuring torque (Assignment Sheet #3)

Torque = Force \times Radius

Example: If 25 pounds of force is applied to a wrench 2 feet long, what is the torque?

\[T = F \times R \]

\[T = 25 \times 2 \]

\[T = 50 \text{ lb.-ft.} \]

XII. Terms and definitions related to measuring electrical power (Transparency 2)

(NOTE: Electricity can be measured by finding the number of electrons moved from one place to another. Electrons are small and an enormous number is needed to generate a small amount of electricity. The basic unit of measurement for electricity is the coulomb. One coulomb is equal to 6,280,000,000,000,000,000 [or 6.28 \times 10^{18}] electrons.)

A. Amperage

1. The rate at which current flows through a conductor
2. One "amp" is equal to one coulomb of electricity passing a given point in one second.
INFORMATION SHEET

3. In calculations, the sign for amperage is I.

Example: Compare amperage to the rate at which water flows through a water line.

- **Amperes (Electrons per Second)**
- **Rate (Gallons per Second)**

B. **Voltage**

1. The pressure pushing the current through the conductor

2. One "volt" is the pressure that moves one coulomb of electricity through a resistance of one ohm in one second.

3. In calculations, the sign for voltage is E.

C. **Resistance**

1. The opposition to current flow through a conductor

2. Measured in "ohms"

3. In calculations, the sign for resistance is R.

XIII. **Ohm's Law in letter formula** (Transparency 3 and Assignment Sheet #4)

A. For calculating voltage: \(E = I \times R \) or Volts = Amps \times Ohms

B. For calculating amperage: \(I = \frac{E}{R} \) or Amps = Volts + Ohms

C. For calculating resistance: \(R = \frac{E}{I} \) or Ohms = Volts + Amps
XIV. Ohm's Law in triangle expression (Transparency 4)

(NOTE: A reminder for the E.I.R. formula is the phrase "Even I Remember.")
Stages of Power Theory
(Example of Electrical Power Shown)

Input
- Coal

Conversion
- Turbine
- Generator

Transmission
- Power Lines

Output
- Light
Measurement of Electricity

Amperage (I)

Voltage (E)

Resistance (R)

Wattage (W)
Ohm's Law in Letter Formula

Electromotive Force = Current × Resistance
Volts = Amperes × Ohms

\[E = I \times R \]

Current = \frac{Electromotive Force}{Resistance}

Amperes = \frac{Volts}{Ohms}

\[I = \frac{E}{R} \]

Resistance = \frac{Electromotive Force}{Current}

Ohms = \frac{Volts}{Amperes}

\[R = \frac{E}{I} \]
Ohm's Law in Triangle Expression

\[E = \text{Volts} \]
\[I = \text{Amps} \]
\[R = \text{Resistance} \]

NOTE: Solve for Volts, Amps, or Resistance by Covering the Unknown

Example:
- Cover \(E \), then \(E = I \times R \)
- Cover \(I \), then \(I = E \div R \)
- Cover \(R \), then \(R = E \div I \)
PRINCIPLES OF ENERGY AND POWER
UNIT II

ASSIGNMENT SHEET #1 — CALCULATE WORK

NAME _________________________________ SCORE _________

Directions: Calculate the following problems using the formula for work:

Work = Force x Distance

1. One man pushes a 200 pound weight a distance of 60 feet along a warehouse floor. The force necessary to slide the weight is 100 pounds. How much work is accomplished?

Answer: _________________________________

How much work is accomplished if it takes 75 pounds of force to move a 350 pound object 50 feet?

Answer: _________________________________

3. It takes 78 pounds of force to move a 230 pound box 40 feet across the floor. How much work is accomplished?

Answer: _________________________________
PRINCIPLES OF ENERGY AND POWER
UNIT II

ASSIGNMENT SHEET #2 — CALCULATE HORSEPOWER

NAME ___________________________ SCORE __________

Directions: Calculate the following problems using the formula for horsepower:

\[HP = \frac{F \times D}{\text{Time (sec)} \times 550} \text{ or } \frac{F \times D}{\text{Time (min)} \times 33,000} \]

1. A 100 pound woman climbs a 40 foot flight of stairs in 20 seconds. How much horsepower does she develop performing the task?
 Answer: __

2. A 1000 pound weight is moved a distance of 50 feet across the floor. The force necessary to move the weight is 190 pounds and the time required is one minute. How much horsepower is required to perform this task?
 Answer: __

3. A 500 pound weight is moved a distance of 10 feet along a loading dock. The force required to move the weight is 500 pounds. The task is completed in 5 seconds. How much horsepower is produced?
 Answer: __

(NOTE: Practical application for calculating horsepower can be applied in Job Sheet #1, Unit III.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

ASSIGNMENT SHEET #3 — CALCULATE TORQUE

NAME _______________________________ SCORE ________

Directions: Calculate the following problems using the formula for torque:

Torque = Force \times \text{Radius}

1. If a mechanic uses a wrench 10 inches long and applies a 20 pound force to the wrench handle, what is the torque on the bolt?
 Answer: ________________________________

2. If 15 pounds of force is applied to a wrench 8 inches long, how much is the torque?
 Answer: ________________________________

3. What is the torque if a force of 10 pounds is applied to a wrench 1 foot long?
 Answer: ________________________________

(NOTE: Practical application of calculating torque can be applied in Job Sheet #1, Unit III.)
NAME ________________ _______________ CODE ________________

Directions: Read the problems and use the triangle expression of Ohm's law to solve for the unknown value in each problem.

Example: Cover the unknown in the triangle and solve. Show your work on each problem.

(NOTE: E = Voltage; I = Amperes; R = Resistance)

1. A current of 5 amperes is needed to operate a certain light bulb having a resistance of 4 ohms. What voltage is required?

Answer: __

2. If it takes 10 volts to produce a current of 10 amperes, how many ohms of resistance are present?

Answer: __

3. An electric horn requires 12 volts. The resistance is 20 ohms. What current does the horn take?

Answer: __

(NOTE: Practical application of using Ohm's Law can be applied in Job Sheet #3 of this unit.)
ASSIGNMENT SHEET #4

(NOTE: The electrical energy consumed in any resistance appears as heat. There is a definite relation between the power consumed and the heat produced. This is in accordance with the principle that energy cannot be destroyed.)

4. A light bulb having a resistance of 5 ohms uses 2 amperes of current while in operation. What is the voltage applied to the circuit?

Answer: ____________________________

5. A horn connected to a 12 volt battery uses 3 amperes of current for its operation. What is the resistance of the horn?

Answer: ____________________________
PRINCIPLES OF ENERGY AND POWER
UNIT II

ANSWERS TO ASSIGNMENT SHEETS

Assignment Sheet #1
1. 6000 foot pounds
2. 3750 foot pounds
3. 3120 foot pounds

Assignment Sheet #2
1. .3636 or approx. 9/10 horsepower
2. .2878 or approximately 9/10 horsepower
3. 1.818 or 1.82 horsepower or 1 9/10 hp

Assignment Sheet #3
1. 200 pound-inches
2. 120 pound-inches
3. 10 pound-feet (120 pound-inches)

Assignment Sheet #4
1. 20 volts
2. 1 ohm
3. .3 amperes.
4. 10 volts
5. 4 ohms.
PRINCIPLES OF ENERGY AND POWER
UNIT II

JOB SHEET #1 — BUILD AND TEST A
SIMPLE, LOW PRESSURE STEAM TURBINE

A. Tools and materials

1. Tools
 a. Propane torch
 b. Tinner snips
 c. Soldering iron
 d. Hand drill and bits

2. Materials
 a. Metal can with "pop lid"
 Example: Cocoa can
 b. Steel or brass tubing (¼" diameter)
 c. Metal disc, 8 cm in diameter
 Example: The end of a food can
 d. Metal strip, 30 cm in length, 2 cm wide
 e. Stiff wire, 15 cm in length
 f. Wood or metal block (2 cm × 20 cm × 20 cm)
 g. Miscellaneous hardware
 Example: screws
 h. Epoxy cement
 i. Solder, acid core
B. Procedure

1. Study carefully the drawing of boiler and turbine. (Figure 1)

2. Check the lid on the boiler can to be sure it's not pressed on too tightly.

 (NOTE: The lid will act as a safety valve and pop open if the pressure in the boiler gets too high. A chain may be attached to keep the lid from flying when steam pressure builds.)

3. Scrape the can around the area where the hole will be made and tube inserted.

 (NOTE: This removes any coating that would prevent solder from sticking.)

4. Drill hole in can the size of the tubing.

5. Insert tube.

6. Solder tube to can.

7. Check nozzle for blockage.

 a. Fill boiler about one-third full of water.

 b. Heat gradually the side of the can using the flame from a propane torch until steam comes out. A bunsen burner or other source of heat is an option if the base is metal.

 (NOTE: Steam can cause severe burns. DO NOT stand directly over can while heating. If the lid should pop off, steam and hot water may splash out.)
8. Set boiler aside to cool if all works properly. If not:
 a. Empty water.
 b. Cool with cold water.
 c. Clear tube.
 d. Check solder to assure weld is not broken.
 e. Repeat step 7.

 (NOTE: Stop at this point if this job sheet is to be combined with Job Sheets #2 and 3, and continue with Job Sheet #2.)

9. Drill hole in center of metal disc just large enough for rod to pass through.

10. Cut turbine blades from metal disc using tinner snips.

 FIGURE 2

11. Bend blades with needlenose pliers into "scoops."

 (CAUTION: The cut edges of tin are very sharp, so handle carefully!)

12. Insert rod through turbine blades.

13. Solder rod to blade at center point.

14. Bend metal strip for blade bracket.

15. Drill holes in both ends of bracket so that rod holding turbine blades can turn freely.
16. Slide a short piece of tubing on either side of the shaft to keep turbine blade in line with steam nozzle.

(NOTE: This should be a loose fit to allow free turning.)

17. Mount boiler can and blade bracket to base using wood screws if base is wood or epoxy if base is metal. Boiler nozzle must be positioned so the steam produced is directed into the turbine blades. (Figure 1)

18. Test turbine.
A. Tools and materials

1. Tools
 a. Tinner snips
 b. Soldering Iron
 c. Hand drill and bits
 d. Needle nose pliers

2. Materials
 a. Wood base (2 cm x 20 cm x 20 cm)
b. Metal disc for rotor (the end of a food can, 8 cm)
c. Metal rod for shaft, 5 mm diameter (all threaded rod)
d. Miscellaneous hardware (screws, lock-nuts)
e. Acid core solder
f. Soldering flux
g. Rivets
h. Metal strip for bracket
i. Pulley

B. Procedure

1. Choose design and mark blades. (Figure 2)
2. Cut rotor blades with tinner snips.
 (CAUTION: The cut edges of tin are very sharp. Work CAREFULLY!)

FIGURE 2

Rotor Blade Designs

Cut metal with tin snips and bend into vanes
Cut and fold rotor vanes to give pitch
Bend vanes to give pitch

Rivet or solder vanes to center disc

3. Bend blades with needlenose pliers or attach separate blades with rivets or solder (depending on design).
4. Drill hole in middle of rotor (5 mm diameter).
5. Mount rotor on shaft.
6. Place lock nut on either side of rotor to hold it to the shaft.
7. Bend metal strip for bracket.
8. Drill holes for shaft and mounting.
9. Mount rotor and shaft on bracket.
10. Mount bracket on base.
11. Mount pulley on shaft.
12. Test wind rotor outside or with a fan for a constant air supply.
 (NOTE: Compressed air can be used if necessary)
13. Vary blade designs to improve efficiency.
14. Check efficiency by measuring changes in rotor speed.
15. Hook up pulley to electric generator (Job Sheet #3).
16. Are you generating electricity?
 (NOTE: When the wind rotor is combined with the electric generator, additional
 experiments can be performed to measure voltage and amperage.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

JOB SHEET #3 — BUILD AN ELECTRIC GENERATOR

Generator
FIGURE 1

Commutator
Brush

Armature
shaft

Electrical tape
Field coil

Generator frame
Armature

Wood base
Field coil housing

Battery

A. Tools and materials

1. Tools
 a. Soldering iron (may use metal base epoxy)
 b. Hand drill and bits
 c. Sheet metal tools (shear and barfold) if available
 d. Tinner snips

2. Materials
 a. Aluminum sheet (14 to 18 gauge)
 b. 16d nail
 c. #24 coated magnet wire
JOB SHEET #3

d. Copper foil
e. Copper or brass strip (6mm wide)
f. Solder — rosin core
g. Electrician's tape
h. Wood base (2 cm x 10 cm x 10 cm)
i. Round head wood screws
j. Battery
k. Household cement/epoxy
l. Galvanized sheet steel (24 to 28 gauge)

B. Procedure

1. Cut and shape metal parts as shown in the Illustrations. (Figures 2-5)

a. Bend generator frame and drill for bearing. (Figure 2)

(NOTE: Hole for bearing should be smaller than diameter of shaft.)

FIGURE 2

Drill for bearing

5 cm

GENERATOR FRAME

14 to 18 gauge aluminum
JOB SHEET #3

b. Cut and bend field coil core. (Figure 3)

FIGURE 3

```
FIELD COIL
CORE
24 to 28 gauge
galvanized
sheet iron
```

1.5 cm

0.6 cm

5 cm

1.5 cm

5 cm

1.5 cm

5 cm

CUT 2 of each

c. Bend field coil housing and drill for bearing. (Figure 4)

FIGURE 4

```
FIELD COIL
HOUSING
14 to 18 gauge
aluminum
```

Drill for bearing

1.5 cm

5.2 cm

1.5 cm

8.4 cm

1.5 cm

1.5 cm

d. Cut, bend, and drill armature. (Figure 5)

FIGURE 5

```
ARMATURE
24 to 28 gauge
galvanized
sheet iron
```

Drill

0.8 cm

0.8 cm

5 cm

0.6 cm

0.6 cm

0.8 cm

0.8 cm

Cut 2
of each
2. Assemble field coil. (Figure 6)

FIGURE 6

- **a.** Remove sharp edges from all metal pieces.
- **b.** Assemble metal pieces and wrap with electric tape.
- **c.** Wrap five layers of enamel-coated wire over electric tape winding slowly, carefully, and in the same direction.
- **d.** Test completed field coil by attaching a dry cell to the two ends of the wire coil and checking with a compass. Does the compass needle line up with the length of the coil? If so, proceed.

3. Assemble armature.

- **a.** Remove sharp edges from metal pieces.
- **b.** Assemble pieces and wrap with electric tape.
- **c.** Place shaft in center of assembly.
- **d.** Wrap armature beginning at the center, leaving several centimeters of wire for later use.
- **e.** Wind carefully from the shaft to the end and back again to the center.
- **f.** Repeat, placing four layers of wire on the one side of the shaft.
- **g.** Cross over to the other side of the shaft without breaking the wire, and wind, going from center to end.
- **h.** Repeat, adding four layers of wire.
- **i.** Leave 2 cm of wire at the end for later use.
- **j.** Test armature.

100

(NOTE: Step 2d.)
4. Make commutator. (Figure 7)

FIGURE 7

Strip of brown wrapping paper

2 Copper or brass foil segments

Shaft made from 8d common nail

1 mm gap between the 2 segments

COMMITATOR

a. Wrap brown craft paper (1 cm wide) around the shaft until a cylinder about 7 mm in diameter is formed. Coat with household cement while wrapping.

(NOTE: This prevents paper from slipping and provides a firm surface for the brushes to run on.)

b. When the glue dries, add commutator segments made from copper foil shaped around a pencil.

c. Leave tabs where wires from the coil can be soldered.

5. Make brushes. (Figure 8)

FIGURE 8

This part of brush must be hammered to give taper and springiness

Trim to shape

Bend to this shape

BRUSHES
JOB SHEET #3

a. Cut 2 brushes from 22 or 24 gauge copper or brass according to pattern.
b. Hammer the tip of the brush to give taper and springiness.
c. Trim brushes to shape.
d. Bend brushes to shape.

6. Assemble armature assembly. (Figure 9)

FIGURE 9

a. Place the shaft of the commutator in the center of the armature.
b. Shaft must fit snugly. If it is necessary, solder or epoxy shaft to armature to prevent slippage.
c. Remove enamel coating from ends of wires.
d. Solder wires to commutator tabs.

7. Attach field coil to field coil housing. (See Figure 1)
8. Attach armature and generator frame to field coil housing.
9. Fasten total assembly to base. Spin the armature. If binding occurs, free pressure by bending frame so the top is moved off the shaft.
10. Clip brushes onto frame, placing electrical tape underneath for insulation, so that brushes rub lightly on commutator segments.
11. Connect field coil wires to dry cell.
12. Connect leads of an ammeter to brushes.
13. Is there any generation of electricity?

14. Spin the armature.

15. Why does electricity flow only when armature spins?

(NOTE: Additional experiments can be performed by attaching a pulley above the commutator on the generator and, using a rubber band as a belt, attach to pulleys on the wind turbine or steam turbine to produce electricity. Compressed air can be used instead of steam as a source of power. Measure the voltage and amperage produced by the generator.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

PRACTICAL TEST
JOB SHEET #1 — BUILD AND TEST A STEAM TURBINE

STUDENT'S NAME ___________________________ DATE __________

EVALUATOR'S NAME ___________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student: YES NO

1. Checked out proper tools and materials. ______ ______
2. Studied drawings of boiler and turbine. ______ ______
3. Scraped can around hole. ______ ______
4. Inserted tube and soldered to can. ______ ______
5. Checked to see that nozzle was not blocked. ______ ______
6. Set boiler aside to cool. ______ ______
7. Cut turbine blades. ______ ______
8. Bent blades with needle nose pliers. ______ ______
9. Jent metal strips for blade bracket. ______ ______
10. Drilled holes in bracket for turbine rod. ______ ______
11. Soldered rod to turbine blades. ______ ______
12. Assembled turbine blades and rod in bracket. ______ ______
13. Drilled holes for mounting boiler and turbine brackets. ______ ______
14. Mounted boiler can and turbine on wood block. ______ ______
15. Checked input away tools and materials. ______ ______
16. Cleaned the work area. ______ ______
17. Used proper tools correctly. ______ ______
18. Performed steps in a timely manner (____hrs. ____min. ____sec.) ______ ______
19. Practiced safety rules throughout procedure. ______ ______
20. Provided satisfactory responses to questions asked. ______ ______

EVALUATOR'S COMMENTS: __

__
PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

<table>
<thead>
<tr>
<th>Criteria:</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler</td>
<td>Cleaned and Soldered Neatly</td>
<td>Irregular Solder</td>
<td>Leakage Around Soldered Joint</td>
<td>Enlarged Hole/Improperly Soldered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine blades</td>
<td>Cut Accurately/Proper Curve</td>
<td>Out of Round</td>
<td>Cut of Balance</td>
<td>Redo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracket</td>
<td>Property Bent/Positioned Correctly</td>
<td>Improperly Mounted</td>
<td>Improperly Aligned Holes</td>
<td>Redo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>Meets Requirements</td>
<td>Too Thick</td>
<td>Too Thin</td>
<td>Redo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam Turbine</td>
<td>Operates Correctly</td>
<td>Needs Minor Adjustment</td>
<td>Needs Major Adjustment</td>
<td>Redo</td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

4	Skilled — Can perform job with no additional training.
3	Moderately skilled — Has performed job during training program; limited additional training may be required.
2	Limited skill — Has performed job during training program; additional training is required to develop skill.
1	Und — Is familiar with process, but is unable to perform job.

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

PRACTICAL TEST
JOB SHEET #2 — CONSTRUCT A WIND ROTOR

STUDENT'S NAME ____________________________ DATE ____________
EVALUATOR'S NAME ____________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under "Process Evaluation" must receive a "Yes" for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the "Yes" or "No" blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Checked out proper tools and materials.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Made rotor from metal disc.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Drilled hole in center of rotor and mounted on shaft.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Placed lock nut on both sides of rotor.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Bent metal strip for bracket, drilled holes.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Mounted bracket, rotor, and shaft on base.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Tested rotor.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Checked input away tools and materials.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Cleaned the work area.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Used proper tools correctly.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Performed steps in a timely manner (___hrs., ___min., ___sec.)</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Provided satisfactory responses to questions asked.</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS: __

PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Cut Accurately/Proper Curve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of Round</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rotor Correct Length/Spins Freely</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Too Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too Short</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor Properly Bent/Positioned Correctly</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Improperly Mounted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improperly Aligned Holes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracket Meet Requirements</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Too Thick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too Thin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Operates Correctly</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Needs Minor Adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needs Major Adjustment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR CTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

PRACTICAL TEST
JOB SHEET #3 — BUILD AN ELECTRIC GENERATOR

STUDENT’S NAME ___________________________ DATE ____________
EVALUATOR’S NAME ___________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student: YES NO

1. Checked out proper tools and materials. ______ ______
2. Cut and shaped metal parts. ______ ______
3. Assembled field coil. ______ ______
4. Wrapped wire around core. ______ ______
5. Tested completed field core. ______ ______
6. Assembled armature. ______ ______
7. Wound armature. ______ ______
8. Tested armature. ______ ______
9. Made commutator. ______ ______
10. Made brushes. ______ ______
11. Assembled armature assembly. ______ ______
12. Assembled field core, field core housing, generator frame, and armature. ______ ______
13. Connected brushes to ammeter. ______ ______
14. Connected field core to dry cell. ______ ______
15. Tested generator. ______ ______
16. Checked in/out away tools and materials. ______ ______
17. Cleaned the work area. ______ ______
18. Used proper tools correctly. ______ ______
19. Performed steps in a timely manner (___hrs. ___min. ___sec.) ______ ______
20. Practiced safety rules throughout procedure. ______ ______
21. Provided satisfactory responses to questions asked. ______ ______

EVALUATOR’S COMMENTS: __
PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Parts</td>
<td>Meet Specifications</td>
<td>Minor Adjustment</td>
<td>Major Adjustment</td>
<td>Replace Part</td>
</tr>
<tr>
<td>Field Coil</td>
<td>Operable</td>
<td>Minor Adjustment</td>
<td>Major Adjustment</td>
<td>Non-operable/ Redo</td>
</tr>
<tr>
<td>Armature</td>
<td>Operable</td>
<td>Minor Adjustment</td>
<td>Major Adjustment</td>
<td>Non-operable/ Redo</td>
</tr>
<tr>
<td>Motor</td>
<td>Operable</td>
<td>Minor Adjustment</td>
<td>Major Adjustment</td>
<td>Non-operable Redo</td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
PRINCIPLES OF ENERGY AND POWER
UNIT II

NAME ________________________ SCORE ________________________

TEST

1. Match the terms on the right with the correct definitions.

 a. The resistance to motion produced when two objects rub against each other
 b. A meter that can measure different values such as voltage, current, and resistance
 c. An instrument used to measure the amount of voltage in a circuit
 d. An instrument used to measure the amount of current in a circuit
 e. The process of changing energy from one of its six forms into another
 f. The percentage of available energy converted into usable energy
 g. Unit of measure for electrical current
 h. An instrument used to measure resistance to current flow
 i. Standard unit of measuring resistance to current flow
 j. Energy in motion
 k. The amount of energy in the universe is fixed; it cannot be created or destroyed

 1. Ammeter
 2. Ampere
 3. Efficiency
 4. Voltmeter
 5. Energy conversion
 6. Friction
 7. Kinetic energy
 8. Law of conservation of energy
 9. Multimeter
 10. Ohm
 11. Ohmmeter
 12. Potential energy

2. List two types of power systems.

 a. __
 b. __
3. Arrange in order the stages of power systems by placing the correct sequence numbers (1-4) in the appropriate blanks.

_____ a. Conversion and control
_____ b. Output
_____ c. Input
_____ d. Transmission and control

4. Distinguish between the basic measuring systems by writing "English" or "Metric" in front of the appropriate definition.

__________ a. Measuring system used by most of the industrial countries of the world; basic units are the meter, the liter, and degree Celsius

__________ b. Measuring system traditionally used in the United States; basic units are the foot, the pound, and degree Fahrenheit

5. Complete a chart of basic units of measurement by filling in the missing terms.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Metric Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>millimeters</td>
<td>inches</td>
</tr>
<tr>
<td></td>
<td>centimeters</td>
<td>feet</td>
</tr>
<tr>
<td></td>
<td>meters</td>
<td>yards</td>
</tr>
<tr>
<td></td>
<td>kilometers</td>
<td>miles</td>
</tr>
<tr>
<td>b. Weight</td>
<td>grams</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kilograms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>metric tons</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>milliliters</td>
<td>ounces</td>
</tr>
<tr>
<td></td>
<td>liters</td>
<td>cups</td>
</tr>
<tr>
<td></td>
<td>cubic centimeters</td>
<td>pints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quarts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gallons</td>
</tr>
<tr>
<td>d. Area</td>
<td>square centimeters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>square meters</td>
<td></td>
</tr>
<tr>
<td>e. Temperature</td>
<td></td>
<td>degrees Fahrenheit</td>
</tr>
<tr>
<td>f. Speed</td>
<td>kilometers per hour</td>
<td></td>
</tr>
</tbody>
</table>
TEST

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Metric Units</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.</td>
<td>newtons</td>
<td>pounds</td>
</tr>
<tr>
<td>h. Torque</td>
<td>newton-meters</td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td>pascals</td>
<td>pounds per square inch (psi) inches of mercury</td>
</tr>
</tbody>
</table>

6. Use the appropriate prefixes of milli-, kilo-, and centi- for changing metric base units.

a. 1000 meters = ___________ meters
b. 1/100 of a gram = ___________ gram
c. 1/1000th of a liter = ___________ liter

7. State the units for measuring energy and power.

<table>
<thead>
<tr>
<th>Metric Unit</th>
<th>English Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Mechanical energy</td>
<td>foot-pounds</td>
</tr>
<tr>
<td>b. Mechanical power</td>
<td>watts</td>
</tr>
<tr>
<td>c. Electrical energy</td>
<td>joules</td>
</tr>
<tr>
<td>d. Electrical power</td>
<td>watts</td>
</tr>
</tbody>
</table>

8. Match terms related to measuring mechanical power on the right with the correct definitions.

_____a. Measurement of useful motion (mechanical energy) 1. Power
_____b. Work per unit of time 2. Ohms
_____c. Any push or pull on an object 3. Force
_____d. Turning or twisting effort 4. Pressure
_____e. Force per unit of area 5. Torque

6. Work
TEST

9. Calculate the following problems using the formula for work.

\[\text{Work} = \text{force} \times \text{distance} \]

a. How much work is accomplished if it takes 60 pounds of force to move a 200 pound box 50 feet?

b. One man pushes a 250 pound weight 100 feet along a warehouse floor. The force necessary to slide the weight is 75 pounds. How much work is accomplished?

10. Calculate the following problems using the formula for horsepower.

\[\text{HP} = \frac{\text{Force} \times \text{Distance}}{\text{Time (sec)} \times 550} \]

a. How much horsepower is produced if it takes 20 seconds to slide a 200-pound box a distance of 20 feet using 55 pounds force?

b. How much horsepower is needed to move a 250-pound box a distance of 10 feet using 100 pounds of force in 10 seconds?

11. Calculate the following problems using the formula for torque:

\[\text{Torque} = \text{Force} \times \text{Radius (in feet)} \]

a. If 10 pounds is applied to a wrench 6 inches long, what is the torque?

b. What is the torque, if 20 pounds of force is applied to a wrench 1 ft. long?

12. Match the terms related to measuring electrical power on the right with the correct definitions.

_____a. The rate at which current flows through a conductor

____b. The opposition to current flow through a conductor

_____c. The pressure pushing the current through the conductor

1. Voltage

2. Amperage

3. Resistance
TEST

13. State Ohm's law in letter formula for calculating voltage, current, and resistance.
 a. For calculating voltage, _______ = ___________
 b. For calculating amperage, _______ = ___________
 c. For calculating resistance, _______ = ___________

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

15. Solve problems using Ohm's law. (Assignment Sheet #4)

16. Demonstrate the ability to:
 a. Build and test a simple, low pressure steam turbine. (Job Sheet #1)
 b. Construct a wind rotor. (Job Sheet #2)
 c. Build an electric generator. (Job Sheet #3)
PRINCIPLES OF ENERGY AND POWER
UNIT II

ANSWERS TO TEST

1. a. 6 e. 5 i. 10
 b. 9 f. 3 j. 7
 c. 4 g. 2 k. 8
 d. 1 h. 11

2. Any two of the following:
 a. Mechanical power
 b. Electrical power
 c. Fluid power

3. a. 2
 b. 4
 c. 1
 d. 3

4. a. Metric
 b. English

5. a. Length
 b. Ounces, pounds, tons
 c. Volume
 d. Square inches, square feet, square yards
 e. Degrees Celsius
 f. Miles per hour
 g. Force
 h. Pound-feet
 i. Pressure

6. a. Kilo
 b. Centi
 c. Milli

7. a. Joules
 b. Horsepower
 c. Joules
 d. Watts

8. a. 8
 b. 1
 c. 3
 d. 5
 e. 4

9. a. 3000 foot-pounds
 b. 7500 foot-pounds
ANSWERS TO TEST

10. a. 0.1 horsepower
 b. 0.18 horsepower

11. a. 5 pound-feet
 b. 20 pound-feet

12. a. 2
 b. 3
 c. 1

13. a. $E = I \times R$
 b. $I = E/R$
 c. $R = E/I$

15. Evaluated to the satisfaction of the instructor

16. Performance skills evaluated to the satisfaction of the instructor
POWER PRODUCTION AND CONVERSION
UNIT III

UNIT OBJECTIVE

After completion of this unit, the student should be able to distinguish between types of internal and external combustion engines, check engine components for wear, and disassemble and reassemble a four-stroke cycle, one cylinder engine. Competencies will be demonstrated by completing the assignment sheet, job sheets, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to power production and conversion with the correct definitions.
2. Distinguish between the types of conversions.
3. Select true statements concerning common direct conversion systems.
4. Match common methods of converting energy with the correct definitions.
5. Select true statements concerning the conversion of electrical power.
6. Distinguish between classifications of engines.
7. Complete statements concerning types of external combustion engines.
8. Match types of internal combustion engines with the correct descriptions.
9. Distinguish between the operations of two-stroke and four-stroke cycle gasoline engines.
10. Identify parts of a basic internal combustion engine.
OBJECTIVE SHEET

11. Match the systems of an engine with the correct functions and parts.

12. Complete statements concerning safety rules to follow when working with engines.

13. Check engine components for wear. (Assignment Sheet #1)

14. Demonstrate the ability to:

 a. Disassemble and reassemble a four cycle, one cylinder engine. (Job Sheet #1)

 b. Construct a solar battery. (Job Sheet #2)
POWER PRODUCTION AND CONVERSION
UNIT III

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included with this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

(NOTE: Use the transparency to enhance the information as needed.)

G. Provide students with job sheet.

H. Discuss and demonstrate the procedure outlined in the job sheet.

I. Integrate the following activities throughout the teaching of this unit:

1. Obtain manuals from manufacturers of small gas engines for a four cycle, one cylinder engine (Briggs & Stratton, etc.).

2. Obtain four cycle, one cylinder engines that can be used for assembly and disassembly.

(NOTE: New engines can be obtained by writing major manufacturers on official school stationery stating reasons for request.)

3. Calculate torque on a small gas engine using a torque wrench.

4. Students can substitute scale model engines for the assembly and disassembly of small gas engines in Assignment Sheet #1 and Job Sheet #1.

5. Explain sub-systems of an automobile using a real automobile as a teaching aid.

6. Use a dynamometer to test a small engine's horsepower.

7. Show examples of fuel cells, solar cells, small batteries, and automobile batteries.

8. Have students build other solar projects such as collectors and heaters in addition to Job Sheet #2.
SUGGESTED ACTIVITIES

9. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

J. Give test.

K. Evaluate test.

L. Reteach if necessary.

REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

Films:

A. The Atom: A Closer Look (30 min, color) Disney, 1982; #10543; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

B. Backyard Alternative Energy (26 min, color) Brumfield Kirby, 1978; #03751; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

C. Energy: New Sources (20 min, color) Churchill, 1974; #08241; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

D. Energy from the Sun (2nd Edition) (18 min, color) EBE, 1980; #10031; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

E. Energy in Perspective (21 min, color) BP North America, 1976; #02218; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.
SUGGESTED SUPPLEMENTAL RESOURCES

F. *Fusion, the Ultimate Fire* (14 min, color) BFA, 1976; #01434; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

G. *Geothermal Power (2nd Edition)* (16 min, color) AIA:IS, 1982; #10392; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

H. *Geysers and Hot Springs (Revised)* (10 min, color) Barr Films, 1969; #08619; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

I. *Gusts of Power* (14 min, color) National AV Center, 1979; #02543; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

J. *Modern Engines and Energy Conversion (Revised)* (12 min, color) Centron, 1978; #04837; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.

K. *Oil — From Fossil to Flame* (13 min., color) Centron 1976; to order phone (608) 262-1644; or write Bureau of Audio Visual Instruction, P.O. Box 2093, Madison, Wisconsin 53701-2093.
POWER PRODUCTION AND CONVERSION
UNIT III

INFORMATION SHEET

I. Terms and definitions

A. Alternating current (AC) — Current that alternately changes direction

![Diagram of Alternating Current Cycle]

B. Battery — A connected group of cells storing an electrical charge and capable of furnishing a current

![Image of 12-Volt Battery Containing 6 Cells in Series]

C. Cell — A container that holds electrodes and electrolytes for generating electricity by chemical action

![Cutaway of Carbon-Zinc Dry Cell]
D. Circuit — The complete path of an electric current

(NOTE: A circuit must have 4 parts — a source of power, a conductor, a switch, and a load. The following illustrations show these parts in an open circuit and in a closed circuit. An open circuit is usually broken by an open switch or a disconnected wire. A closed circuit is required for current flow.)

E. Combustion — Process of burning

F. Compression — Reducing the volume of air or air-fuel mixture by pressure

G. Conductor — A substance capable of transmitting electricity easily

Examples: Silver, copper, aluminum

H. Current — The movement of electrons through a conductor

I. Direct current (DC) — Current that flows through a conductor in only one direction

J. Insulator — A substance that does not allow the transmitting of electricity

Examples: Glass, dry wood, rubber

K. Reciprocating motion — Back and forth movement

L. Rotary motion — Circular motion

M. Stroke — The movement of a piston from one end of a cylinder to the other

N. Thrust — A forward push or force
II. Types of conversions

A. Direct conversion — When energy is used after only one conversion

Examples: Solar cells convert sunlight directly into electricity, quartz or similar crystals can convert mechanical energy into electrical energy (known as the piezo-electrical effect)

B. Indirect conversion — When several conversions must take place before the energy is in the right form to do work

Example: Automobile engines convert fuel (chemical energy) into heat energy for combustion then into mechanical energy to move gears and wheels; may also be converted to electrical energy and then to light energy by headlights

III. Common direct conversion systems

A. Fuel cells

1. Convert chemical energy (fuel) directly to electric energy.
2. Will provide a continuous flow of electric current as long as the fuel supply is continuous.
3. Differ from an ordinary battery in that the electrodes are not consumed as they are in a battery.
4. The most successful fuel cell is the Hydrox cell which is fueled by liquid hydrogen which mixes with liquid oxygen.
B. Solar cells

1. Are crystals (selenium or silicon) that convert solar energy directly into electricity.
2. Are relatively expensive and are not very efficient (about 11%).
3. Are most useful where weight is a factor and voltage demands are low.

Example: Solar calculators, solar light meters for cameras

IV. Common methods of converting energy (indirect conversion)
A. Generators — Convert mechanical (rotary) energy into electrical energy

B. Engines — Convert any form of energy into mechanical energy

Examples: Gasoline engine, steam engine, diesel engine

C. Turbines — Rotating devices driven by wind, steam, or water that are used to drive electric generators

D. Motors — An electrical- or fluid-operated device that converts energy to mechanical energy

V. Conversion of electrical power
A. Generators are used to convert mechanical energy to electrical energy.
B. There are two types of generators.

1. Direct current (DC) generators — Produce electric current that flows in only one direction

 ![Diagram of DC generator](image)

2. Alternating current generators — Produce electric current that reverses the direction of current flow many times each second.

 ![Diagram of AC generator](image)

 (NOTE: Alternating current is more widely used than direct current because it can be readily changed to high voltages for transmission over long distances by transformers.)

C. Generators vary in size. Large generators are used to provide electric power for cities.

D. Large generators are usually powered by steam turbines or hydroelectric power.

 (NOTE: About 80% of the electricity used in the United States is produced by steam turbine powered generators.)
VI. **Classifications of engines** (Transparency 1)

A. **Internal combustion engine**

Examples: Gasoline engine, diesel engine, jet engine

1. Produces power by the intermittent (not continuous) combustion of a fuel/air mixture in a combustion chamber in the engine.
2. Expanding hot gases in chamber produce work by pushing a piston, turning a turbine, or producing reaction propulsion (as in a rocket engine).

B. **External combustion engine**

Examples: Steam engine, steam turbine, Stirling engine

1. Produces power by the continuous combustion of a fuel source burned outside of the engine.
2. Burning fuel converts a working fluid (usually water) into a high-pressure vapor (steam) which is then delivered to the engine.

VII. **Types of external combustion engines**

A. **Steam engines** (Transparency 2)

1. Operation — A fuel source is burned and heats a boiler. Heat converts water to steam. Steam travels through pipes to the engine. Steam pressure inside engine drives pistons and produces motion.
2. Possible energy sources for steam engines include all fossil fuels as well as nuclear, radiant, and geothermal energy.

B. **Steam turbines**

1. Impulse type — High-pressure steam is directed against the turbine blades which causes the turbine wheel to rotate at high speeds.
INFORMATION SHEET

2. Reaction type — Steam escapes from nozzle on the turbine wheel; the action of the escaping steam creates an opposite reaction in the wheel that produces rotation.

C. Stirling engine (Transparency 2)

(NOTE: This engine was invented by Robert Stirling in 1816.)

1. Operation — Heat is applied to the outside of the engine cylinder which causes the gas inside the cylinder (usually hydrogen or helium) to expand. This increases the pressure which causes the piston to move down. Then the gas in the cylinder is cooled by an outside cooler which causes the gas to contract, pressure drops, and piston moves back up.

(NOTE: Modern Stirling engines use two pistons instead of one, the compression piston and the expansion piston.)

2. Potential and problems — Are more fuel-efficient and powerful than common internal combustion engines. Are hard to keep cool, and the working gases (hydrogen and helium) are difficult to contain at their high pressures. Leaks of the gas can be safety hazards since they are highly flammable.

VIII. Types of internal combustion engines (Transparencies 3 and 4)

A. Gasoline (piston) engines (Transparency 3)

1. Produce reciprocating motion by drawing a fuel-air mixture into a closed chamber (cylinder), compressing the mixture, and igniting it which creates pressure to drive a piston; cycle then repeats.

2. Cycle has four actions — Intake, compression, combustion (power), and exhaust.
INFORMATION SHEET

3. There are two basic types:
 a. 2-stroke cycle engine — Piston moves 2 strokes to complete a cycle.
 b. 4-stroke cycle engine — Piston moves 4 strokes to complete a cycle.

B. Diesel engines (Transparency 3)
 1. Are similar to gasoline engines in that they have cylinders and pistons and burn a liquid fuel.
 2. Are different from gasoline engines in that the air and fuel is mixed inside the cylinder, diesel fuel is used instead of gasoline, and there is no electrical spark to ignite the fuel. Ignition depends on the temperature and pressure of the fuel vapors.

C. Rotary engines (Transparency 3)
 (NOTE: The rotary engine is sometimes referred to as the Wankel engine named for its inventor.)
 1. Produce circular motion through a triangular-shaped rotor which spins inside a chamber (instead of a piston in a cylinder).
 a. The rotor has three equal faces and three working chambers.
 b. Each is separated in timing from the other faces and each provides a power impulse during one revolution of the rotor.
 2. Produces three power strokes for every rotor revolution.
 3. Are smaller and quieter than gasoline and diesel engines, but have low fuel efficiency and short seal life.

D. Jet and rocket engines — Produce linear motion through jet propulsion based on Newton's Third Law of Motion (For every action there is an equal and opposite reaction). The rearward expulsion of hot gases (force) creates an opposite reaction which propels the craft forward (thrust).
 1. Jet engines (Transparency 4)
 a. Draw their air for combustion from the outside atmosphere. (Therefore, they cannot be used in space where there is no air)
 b. Common types of jet engines include turbojet, ramjet, turbofan and turboprop engines.
2. Rocket engines (Transparency 4)
 a. Must carry their own supplies of oxygen. (Therefore, they can operate in space.)
 b. The two types of rocket engines are liquid propellant (fuel and oxygen) and solid propellant.

IX. Operation of two-stroke and four-stroke cycle gasoline engines (Transparency 5)

 (NOTE: The number of strokes refers to the number of times the piston moves up and down in the cylinder to complete one cycle of operation. Two-stroke cycle engines are commonly called two cycle engines, and four-stroke cycle engines are commonly called four cycle engines.)

A. Two-stroke cycle engines
 1. Compression stroke (intake and compression)
 a. When piston is at the bottom position (BDC), fuel-air mixture enters cylinder through ports in cylinder wall.
 b. Piston moves up cylinder and compresses fuel-air mixture.
 2. Power stroke (combustion and exhaust)
 a. Compressed fuel-air mixture is ignited. Pressure from expanding gases forces the piston downward.
 b. Exhaust gases are forced out the exhaust ports of the cylinder.

B. Four-stroke cycle engines
 1. Intake stroke
 a. Cycle starts with piston at uppermost position in cylinder (TDC) with intake valve open and exhaust valve closed.
 b. As the piston moves down the cylinder, it draws air-fuel mixture into the cylinder from the carburetor.
 c. When the piston reaches the bottom of the cylinder (BDC), the intake valve closes.
INFORMATION SHEET

2. Compression stroke
 a. Air-fuel mixture is compressed tightly as the piston moves up the cylinder.
 b. Compression of the fuel creates heat which prepares the fuel for instant ignition.

3. Power stroke
 a. As the piston reaches the top of the cylinder on compression stroke, a spark from the ignition system ignites the air-fuel mixture.
 b. Burning gases expand very rapidly and force the piston down the cylinder.

4. Exhaust stroke
 a. As the piston reaches the bottom of the cylinder on power stroke, the exhaust valve opens.
 b. Piston travels up the cylinder, forcing the burned gases out of the cylinder into the exhaust manifold.

(NOTE: The complete cycle takes two rotations of the crankshaft or 720 degrees of rotation. The crankshaft converts the reciprocating motion of the piston into rotary motion to operate the gears.)

X. Basic internal combustion engine parts (Transparency 6)

A. Cylinder block — Cylinder (middle part of engine) and crankcase (bottom part of engine)
B. Cylinder head — Top part of engine bolted to cylinder block
C. Piston — Moves up and down in cylinder
D. Connecting rod — Connects piston to crankshaft
E. Crankshaft — Provides mechanical power to run the engine
F. Camshaft — Shaft which contains lobes or cams to operate engine valves
G. Valves — Devices for alternately opening and closing a passage (such as for exhaust and intake)
H. Valve spring — Spring attached to a valve to return it to the seat
I. Valve lifter or tappet — Push rod or plunger used to transfer motion between the cam and the valve on an engine
XI. Systems of an engine

A. Mechanical system
 1. Function — Develops up-and-down motion and converts it into useful rotary motion
 2. Parts involved — Cylinder block and head, piston, connecting rod, crankshaft, camshaft, valves

B. Lubrication system
 1. Function — Lubricates (oils) engine parts to reduce friction and wear
 2. Parts involved — Oil pump and valves

 (NOTE: For a two-stroke engine the oil is mixed with the fuel before filling the fuel tank. Additional parts are not involved.)

C. Cooling system
 1. Function — Removes excess heat from the engine
 2. Parts involved — Cylinder block and head has fins to release heat when air cooled or a water jacket and pump when water cooled

D. Fuel system
 1. Function — Mixes air and fuel properly and delivers the mixture to the combustion chamber
 2. Parts involved — Air cleaner, fuel supply tank, valve, oil filter, carburetor (mixes air and fuel for combustion), governor (evens out changes in engine speed)

E. Ignition system
 1. Function — Produces the spark that ignites the fuel
 2. Parts involved (depending on type of system) — Armature, magnets, breaker points, condenser, spark plug, battery

F. Starting system
 1. Function — Sets the engine in motion
 2. Parts involved — Manual or electric starters
XII. Safety rules when working with engines (Transparency 7)

A. Wear safety glasses or goggles at all times. Remember that your eyes can't be replaced. Protect them.

B. Wear approved ear protectors while working with running engines. Some are very noisy and can permanently damage your hearing.

C. Store fuel in approved safety cans in the storage areas designated by your instructor.

D. Do not inhale fumes from fuel or solvent containers. The fumes can seriously damage your lungs.

E. Have adequate ventilation when running engines, or where fumes may be a hazard.

F. Keep all flammable liquids away from fire, heat sources, and sparks which could ignite the liquid.

G. Wash your hands thoroughly if fuel splashes on them. It is very harsh and usually contains additives that are poisonous when absorbed through the skin.

H. Never use fuel to clean parts; only use cleaning solvents.

I. Do not pour fuel into a hot or running engine fuel tank.

J. Wipe up any gasoline spills immediately.

K. Be careful when handling an engine battery; it contains acid which can ruin your clothes, burn your skin, and blind you if it gets in your eyes.
Classifications of Engines

Internal Combustion Engine

External Combustion Engine
External Combustion Engines

Steam Engine

Stirling Engine

From Energy, Power and Transportation Technology by Ralph C. Bohn, et. al. Reprinted with permission of Bennett & McKnight Publishing Company.
Internal Combustion Engines

Gasoline Engine

Air and Fuel →
From Carburetor
Combustion of Fuel
Cylinder
Crankshaft
Spark Plug
Piston

Diesel Engine

Air Only →
Fuel Injection Nozzle
Combustion of Fuel
Cylinder
Crankshaft
Piston

Rotary Engine

Intake
Compression
Power
Exhaust
Internal Combustion Engines
(Continued)

Turbojet

Ramjet

Jet Engines

Turboprop

Liquid-Propellant

Solid-Propellant

Rocket Engines

From Energy, Power and Transportation Technology by Ralph C. Bohn, et. al. Reprinted with permission of Bennett & McKnight Publishing Company.
Operation of Gasoline Engines

Two-Stroke Cycle Engine

Four-Stroke Cycle Engine
Basic Internal Combustion Engine Parts

- Spark Plug
- Valves
- Valve Spring
- Valve Lifter
- Camshaft
 - Cam Lobe
- Piston
- Cylinder Head
- Cylinder Block
- Connecting Rod
- Crankshaft
Use Care With Gasoline
ASSIGNMENT SHEET #1 — CHECK ENGINE COMPONENTS FOR WEAR

Directions: Complete this assignment after the engine is disassembled in Job Sheet #1. When examining engine, describe condition of parts and give dimensions as indicated. If parts are broken or cracked, mark location of break on drawing. Report condition of engine with check (√) mark where possible.

1. Air Cleaner
 Element
 __
 Dry
 Clean
 Dirty
 Mounting Gasket:
 Missing
 Worn
 Air Cleaner Stud:
 Bent
 Broken

2. Cylinder
 Fins: Clean
 Clogged
 Bore: Scored
 Worn
 *Bore Size:
 Top
 Center
 Bottom
 Contact Plunger Hole:
 OK
 Worn

3. Piston
 Scored
 Scratched
 Ring Groove: Worn
 Galled
 Broken

143
ASSIGNMENT SHEET #1

4. Piston rings
 Top Ring Gap ____________________
 Ctr. Ring Gap ____________________
 Oil Ring Gap ____________________

5. Connecting rod
 Discolor: ____________________
 Broken ____________________
 Bearing Scored ____________________
 Cap Screws Loose ____________________
 Dipper:
 Bent ____________________
 Broken ____________________

6. Oil Slinger
 Damage ____________________

7. Crankshaft
 Magneto Journal:
 Worn ______ Scored ______
 *Size ____________________
 Crankpin:
 Worn ______ Scored ______
 *Size ____________________
 Drive Journal:
 Worn ______ Scored ______
 *Size ____________________
 P.T.O.:
 Bent ______ Broken ______
ASSIGNMENT SHEET #1

8. **Main Bearings**
 - **Drive Side**
 - **Mag. Side**
 - Worn
 - Scored
 - *Size*

9. **Valves**
 - **Face Burned**
 - EX
 - INT
 - **Guide Worn?**
 - EX
 - INT
 - **Clearance**
 - INT
 - EX

Courtesy of Briggs and Stratton
POWER PRODUCTION AND CONVERSION
UNIT III

JOB SHEET #1 — DISASSEMBLE AND REASSEMBLE
A FOUR CYCLE, ONE CYLINDER ENGINE

A. Tools and materials

1. Gasoline container, for drained gasoline
2. Oil container, for drained oil
3. Metal pan to hold engine
4. Four cycle, one cylinder engine (Briggs and Stratton shown)
 (NOTE: Slight variations should be made in the procedure for other brands of engines.)
5. Parts cleaner pan
6. Penetrating oil
7. Pipe wrench
8. Flywheel holder
9. Clutch wrench
10. Parts cleaning brush
11. Feeler gauge
12. Wire gauge
13. Valve spring compressor tool
14. Flywheel puller
15. Ring compressor tool
16. Telescoping gauge
17. Torque wrench
18. Direct reading
19. Micrometer
20. Combination wrench set
21. Ring expander tool
JOB SHEET #1

22. Piston ring groove cleaner
23. Plug gauge
24. Reject gauge
25. Ring grooving tool

B. Procedure

(NOTE: Before starting this job sheet — read safety criteria in manufacturer's manual.)

1. Place engine in metal pan on workbench.
2. Disconnect spark plug wire from spark plug.
3. Drain gasoline tank into designated container.
4. Drain oil out of crankcase into designated container.
5. Obtain copy of manufacturer's manual for your engine from your lab library.
6. Follow procedure recommended by the manufacturer in disassembling your engine.
7. Record nameplate data:
 a. Manufacturer __
 b. Serial No. __
 c. Model No. __
 d. Horsepower ___
 e. No. of Cylinders ___
8. Remove air cleaner and clean parts, except filter, in the parts cleaner pan.
9. Fill in the information regarding condition of air cleaner.

AIR CLEANER ELEMENT

________ Dry ____________
________ Clean __________
________ Dirty __________

MOUNTING GASKET:

Missing ______ Worn ______

AIR CLEANER STUD:

Bent ______ Broken ______
JOB SHEET #1

10. Wipe air cleaner parts dry following removal from cleaner pan.

11. Remove muffler only to replace.
 a. Use penetrating oil, if badly rusted, on the threads.
 b. Allow it to soak until next day.
 c. Remove with a pipe wrench.

 (NOTE: Some engines have a locking nut on the muffler pipe. Be sure to loosen locking nut first.)

12. Remove fuel lines, filter (if provided), and connections between the fuel tank and carburetor.

13. Remove carburetor linkage after making a sketch for reassembling.

14. Remove breather pip.

 (NOTE: On some models this is located between the valve cover and carburetor)

15. Remove carburetor assembly.

16. DO NOT disassemble at this time.

 (NOTE: On suction fuel, be very careful not to bend brass tubes on the bottom of the carburetor)

17. Remove fuel tank.

 (NOTE: Some models may have fuel tank and blower housing spot welded together. If so, remove as a unit -- the tank and the blower housing)

18. Remove blower housing.

 (NOTE: This may be called flywheel guard)

19. Spin flywheel with rope or by hand to check compression.

20. Record results of the compression check:
 a. Good
 b. Fair
 c. Poor

 (NOTE: It should rebound sharply when turned quickly against compression to be considered good.)
JOB SHEET #1

21. Use feeler gauge and check air gap armature to fly wheel, both sides — left and right.
22. Record gap clearance for:
 a. Left side ____________
 b. Right side ____________
23. Remove spark plug.
24. Check gap with wire gauge.
25. Record spark plug gap.___________
27. Remove governor blade (air vane) CAREFULLY to prevent damage to blade.
28. Remove rope starter pulley using special tool to hold the flywheel.
29. Inspect the threaded end of the shaft to determine whether it is left or right threaded before loosening nut.
 (NOTE: Briggs & Stratton engines are usually left thread. If a recoil starter, remove clutch by turning clockwise.)
30. Remove valve cover plate CAREFULLY so as not to damage gasket.
31. Remove cylinder head being careful not to mar mating surface.
32. Check tappet clearance with feeler gauge and record.
 a. Valve clearance-intake — ________________________________
 b. Valve clearance-exhaust — ________________________________
 c. Manufacturer's recommended clearance — ________________
33. Remove valve springs, using valve spring compression tool.
 (NOTE: Do not lose the small washers in removal.)
34. Measure and record the following on both valves.
 a. Face ____________ Intake ____________ Exhaust ____________
 b. Margin ____________
 c. Stem ____________
 d. Guidr. ____________
35. Remove the fly wheel, using puller best suited for your model.
 (NOTE: Be sure to pick up the key.)
36. Remove breaker point cover.
37. Measure and record breaker point gap with feeler gauge.
 Breaker point gap
38. Remove breaker arm assembly and condenser taking care not to damage or lose the plunger or cam.
39. Remove ignition wire.
40. Check crankshaft and play.
41. Record wear on magneto journal, crankpin, and drive journal.

 Crankshaft
 Magneto Journal:
 Worn_____ Scored_____
 *Size
 Crankpin:
 Worn_____ Scored_____
 *Size
 Drive Journal:
 Worn_____ Scored_____
 *Size
 P.T.O.:
 Bent_____ Broken_____
42. Inspect crankshaft extension for burrs.
43. Remove all burrs with emery cloth or by filing.
44. Remove crankcase cover (starter plate).
45. Turn upside down, with vertical shaft, so camshaft will not fall out before timing can be noted.
46. Remove oil pump, dipper or slinger.
 Record any damage.
 Oil Slinger
 Describe damage
47. Inspect timing gears for timing marks.
48. Remove camshaft gear and tappets.
49. Remove connecting rod and piston assembly.
50. Check connecting rod and cap for mating marks before removing and record the following:
 a. Carb. side
 b. Intake side
 c. Exhaust side
 d. Flywheel side
 e. Connecting Rod
 Discolored
 Broken
 Bearing Scored
 Cap Screws Loose
 Dipper
 Bent
 Broken

51. Remove crankshaft assembly.
52. Measure the diameter of crankshaft journals and main bearings with micrometer.
 a. Main bearings
 DRIVE SIDE MAG. SIDE
 Worn
 Scored
 *Size

53. Disassemble connecting rod and piston.
54. Measure the diameter of the following:
 a. Crankpin bearing (on crankshaft)
 b. Crankpin journal
 c. Piston pin bearing or piston
 d. Piston pin journal
JOBSHEET #1

55. Measure and record clearance of rings on piston:

<table>
<thead>
<tr>
<th>Compression rings</th>
<th>Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Top No. 1</td>
<td></td>
</tr>
<tr>
<td>b. Top No. 2</td>
<td></td>
</tr>
<tr>
<td>c. Oil ring</td>
<td></td>
</tr>
</tbody>
</table>

56. Remove rings from piston with ring expander tool.

57. Clean the ring grooves with a ring grooving tool.

58. Record the following information:

<table>
<thead>
<tr>
<th>Piston Scored</th>
<th>Scratched</th>
<th>Ring Groove: Worn</th>
<th>Galled</th>
<th>Broken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

59. Measure the diameter of the cylinder at six points.

<table>
<thead>
<tr>
<th>a. Two, at top</th>
<th>b. Two, at middle</th>
<th>c. Two, at bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60. Measure diameter of the piston at four points.

<table>
<thead>
<tr>
<th>a. Two, at top</th>
<th>b. Two, at bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61. Measure and record ring gap of each ring by inserting the ring in the cylinder and measuring the gap with the feeler gauge.

(NOTE: Rings must be perfectly horizontal in the cylinder to get accurate measurement.)
JOB SHEET #1

62. Record compression ring gap.
 a. Top No. 1 __________
 b. Top No. 2 __________
 c. Oil ring __________

63. Clean all parts and inspect for wear.

64. Complete Assignment Sheet #1 at this point.

65. Replace parts which are worn beyond manufacturer’s recommended limits.

66. Make new gaskets, if required.

67. Dress down all mating surfaces which are scratched or marred before reassembling.

68. REASSEMBLE.
POWER PRODUCTION AND CONVERSION
UNIT III

JOB SHEET #2 — CONSTRUCT A SOLAR BATTERY

A. Tools and materials

1. Tools
 a. Voltmeter (0-1 and 0-10 volt range)
 b. Ammeter (0-1 and 0-10 ampere range)
 c. \(\frac{3}{4} " \) drill
 d. Square

2. Materials
 a. 1 - \(\frac{3}{4} " \times 8" \times 8" \) plywood or board
 b. 1 - \(\frac{3}{4} " \) dowel rod, 9" long
 c. Glue
 d. 1 - #49 lamp socket and bulb
 e. 6 - Photovoltaic cells, 400-500 MA (milliampere capacity)
 f. 14 - quick disconnect connectors
 g. 10 - bell wires*, 6" long (*#18-#22 gauge multiple-strand flexible insulated wire)
 h. 6 - bell wires*, 12" long
 i. 1 - \(\frac{3}{4} " \times 8" \times 12" \) plywood base
 j. 1 - \(\frac{3}{4} " \times 3" \times 3" \) plywood base
 k. Fasteners

B. Procedure

1. Drill a \(\frac{3}{4} " \) hole in the center of the 8" x 8" plywood or board.
2. Brush glue in all parts of the hole.
JOB SHEET #2

3. Insert dowel rod making sure it does not extend from the bottom.

4. Using a square, check the angle of the dowel rod and board to ensure a 90° angle is formed in all directions — BEFORE THE GLUE SETS. This is your “sun target.”

5. Arrange the six photovoltaic cells so that they are evenly spaced on the plywood base.

FIGURE 1

![Photovoltaic Cell Quick-Disconnect Electrical Connectors](image1)

6. Glue the cells to the base, and number them.

7. Connect each cell electrical lead to a quick disconnect and fasten them to the mounting board as shown in Figure 1.

8. Mount the lamp socket and bulb in the center of the base using an adhesive to secure it to the base.

FIGURE 2

![Lamp Socket and Bulb Base 3" x 3" Quick Disconnect Connectors](image2)

9. Connect the socket electrical leads to the quick disconnects and fasten them to the board. See Figure 2.
10. Test each cell one at a time using voltmeter.

 (NOTE: When placed in the sun each cell operates as a small source of electricity. The voltage of each cell will be approximately 0.45V, and the amperage up to the rated capacity of the cell. Cell output will also depend upon the available light.)

 FIGURE 3

11. Place cells in sunlight.

 (NOTE: A lamp or other light source may be used if sunlight is not available.)

12. Use sun target to position cells for maximum output.

 (NOTE: Point the dowel toward the sun so that NO shadow is cast by the dowel. The base is now at a right angle to the sun and is receiving maximum sunlight.)

13. Place base of target on cells and adjust until dowel casts NO shadow to ensure maximum sunlight. Remove sun target.

 (NOTE: Since photovoltaic cells convert radiant energy as it is received, you can see the output vary as you move the mounting board and cells.)

14. Read and record the voltage of each cell:

 Cell 1
 Cell 2
 Cell 3
 Cell 4
 Cell 5
 Cell 6
15. Connect the lamp, ammeter, and voltmeter to a single cell.

FIGURE 4

(NOTE: The ammeter is wired in series — all electricity passing through the lamp also passes through the ammeter. The voltmeter is wired in parallel — it measures electrical pressure and the circuit electricity does not pass through it.)

16. Record the voltage and amperage.

Voltage

Amperage

17. Describe the brightness of the lamp.

__

__

__

__
18. Add cells in series as shown in Figure 5.

(NOTE: Note that cells wired in series have all the electricity passing through each cell.)

FIGURE 5

19. Record voltage and amperage with 2, 4, 6 cells in series.

<table>
<thead>
<tr>
<th>Cells in Series</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amperage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Is voltage increased, decreased, or does it stay the same as cells are added?

21. Is amperage increased, decreased, or does it stay the same as cells are added?

22. Describe what happens to the brightness of the lamp.

POWER PRODUCTION AND CONVERSION
UNIT III
PRACTICAL TEST
JOB SHEET #1 — DISASSEMBLE AND REASSEMBLE A FOUR CYCLE, ONE CYLINDER ENGINE

<table>
<thead>
<tr>
<th>Student's Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluator's Name</th>
<th>Attempt No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

<table>
<thead>
<tr>
<th>Step</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluator’s Comments:

15:00
JOB SHEET #1 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a "3" for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Disassembled Engine</th>
<th>Major Components</th>
<th>Valves</th>
<th>Crankshaft/ Piston</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disassembled Properly</td>
<td>Muffler</td>
<td>Springs</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Cleaned parts</td>
<td>No Varnish/ Carbon Grease</td>
<td>Varnish and Carbon</td>
<td>Dirt and grease in Crevices</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Measured Required Parts</td>
<td>Accurate/ Complete</td>
<td>Piston Measurements Incorrect</td>
<td>Cylinder Incorrect</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Reassembled Motor</td>
<td>Complete/ Running Condition</td>
<td>Carburetor/ Ignition/ Coil</td>
<td>Motor Will Not Rotate</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

__

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
POWER PRODUCTION AND CONVERSION
UNIT III
PRACTICAL TEST
JOB SHEET #2 — CONSTRUCT A SOLAR BATTERY

STUDENT'S NAME __________________________ DATE __________

EVALUATOR'S NAME ________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

<table>
<thead>
<tr>
<th>No.</th>
<th>Task Description</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Checked out proper tools and materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Arranged, mounted, and numbered photovoltaic cells on base.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Connected each cell's lead to quick disconnect and fastened to mounting board.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Mounted #49 lamp to base and connected leads to quick disconnects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Tested cells with voltmeter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Used sun target to position cells in sunlight for maximum output.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Read and recorded voltage of each cell.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Connected lamp, ammeter, and voltmeter to single cell; recorded voltage and amperage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Described brightness of lamp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Added cells in series and recorded voltage and amperage with 2, 4, 6 cells.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Noted increase/decrease in amperage, voltage, and brightness of lamp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Checked in/put away tools and materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Cleaned the work area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Used proper tools correctly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Performed steps in a timely manner (____hrs. ____min. ____sec.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Practiced safety rules throughout procedure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Provided satisfactory responses to questions asked.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS: __
JOB SHEET #2 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Sun target</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowel 90° in all directions</td>
<td>Dowel flush with base on bottom</td>
<td>Dowel extends below base</td>
<td>Dowel not 90° with base</td>
<td></td>
</tr>
<tr>
<td>Photovoltaic cells and lamp mounted on bases</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mounted correctly</td>
<td>Connections attached correctly</td>
<td>Connections improperly installed</td>
<td>Solar cells do not function</td>
<td></td>
</tr>
<tr>
<td>Tested solar battery</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cells functioning to rated capacity</td>
<td>Weak or improper connections</td>
<td>Wiring not in series</td>
<td>No voltage or amperage registered</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS: __

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
POWER PRODUCTION AND CONVERSION
UNIT III

NAME ___________________________ SCORE ___________________________

TEST

1. Match the terms on the right with the correct definitions.

 _____a. A substance that does not allow the transmitting of electricity
 1. Alternating current (AC)

 _____b. Process of burning
 2. Battery

 _____c. A forward push or force
 3. Cell

 _____d. Current that flows through a conductor in only one direction
 4. Circuit

 _____e. A connected group of cells storing an electrical charge and capable of furnishing a current
 5. Combustion

 _____f. Back and forth movement
 6. Compression

 _____g. Reducing the volume of air or air-fuel mixture by pressure
 7. Conductor

 _____h. The movement of electrons through a conductor
 8. Current

 _____i. The movement of a piston from one end of a cylinder to the other
 9. Direct current (DC)

 _____j. The complete path of an electric current
 10. Insulator

 11. Reciprocating motion
 12. Rotary motion
 13. Stroke
 14. Thrust

2. Distinguish between direct and indirect conversion by placing an “X” next to the characteristic of direct conversion.

 _____a. When several conversions take place before the energy is in the right form to do work

 _____b. When energy is used after only one conversion
3. Select true statements concerning common direct conversion systems by placing an “X” in front of the true statements.

a. Fuel cells

_____1) Convert chemical energy (fuel) indirectly into electric energy.

_____2) Will provide a continuous flow of electric current as long as the fuel supply is continuous.

_____3) Differs from an ordinary battery in that the electrodes are NOT consumed as they are in a battery.

_____4) The most successful fuel cell is the Hydrox cell which is fueled by liquid nitrogen which mixes with liquid oxygen.

b. Solar cells

_____1) Are crystals (selenium or silicon) that convert solar energy directly into electricity

_____2) Are relatively inexpensive and are very efficient

_____3) Are most useful where weight is a factor and voltage demands are low

4. Match common methods of converting energy on the right with the correct definitions.

_____a. Convert any form of energy into mechanical energy 1. Generator

_____b. An electrical- or fluid-operated device that converts energy to mechanical energy 2. Engines

_____c. Convert mechanical (rotary) energy into electrical energy 3. Turbines

_____d. Rotating devices driven by wind, steam, or water that are used to drive electric generators 4. Motors

5. Select true statements concerning the conversion of electrical power by placing an “X” next to the true statements.

_____a. Generators are used to convert mechanical energy into electrical energy.

_____b. There are two types of generators, AC and BC.

_____c. Generators vary in size. Small generators are used to provide electric power for cities.

_____d. Large generators are usually powered by steam turbines or hydroelectric power.
6. Distinguish between the classifications of engines by placing an "E" in front of the characteristics of external combustion engines and an "I" in front of internal combustion engine characteristics.

_____a. Produces power by the continuous combustion of a fuel source burned outside of the engine.

_____b. Produces power by the intermittent (not continuous) combustion of a fuel/air mixture in a combustion chamber in the engine.

_____c. Expanding hot gases in chamber produce work by pushing a piston, turning a turbine, or producing reaction propulsion.

_____d. Burning fuel converts a working fluid (usually water) into a high pressure vapor which is then delivered to the engine.

7. Complete the following statements concerning the types of external combustion engines by circling the correct words.

a. Steam engines use (fuel combustion, steam pressure) to drive pistons and produce motion.

b. The type of steam turbine shown below is the (impulse type, reaction type).

[Diagram of steam turbine]

c. The Stirling engine commonly uses (gasoline, steam, hydrogen) for pressure to move the piston(s).

d. The Stirling engine is (more, less) fuel-efficient and powerful than an internal combustion engine.
TEST

8. Match types of internal combustion engines on the right with the correct descriptions.

_____a. The rearward expulsion of hot gases creates an opposite reaction which propels the craft forward.

_____b. Cycle has four actions — Intake, compression, combustion, and exhaust.

_____c. Produces three power strokes for every rotor revolution.

_____d. The air and the fuel is mixed inside the cylinder and there is no electrical spark to ignite the fuel.

9. Distinguish between the operations of a two-stroke and four-stroke cycle engine by placing a “2” in front of two-stroke engine operations and “4” in front of four-stroke engine operations.

_____a. Power stroke

1) As the piston reaches the top of the cylinder on compression stroke, a spark from the ignition system ignites the air-fuel mixture.
2) Burning gases expand very rapidly and force the piston down the cylinder.

_____b. Power stroke

1) Compressed fuel-air mixture is ignited. Pressure from expanding gases forces the piston downward.
2) Exhaust gases are forced out the exhaust ports of the cylinder.

_____c. Compression stroke

1) Fuel mixture is compressed tightly as the piston moves up the cylinder.
2) Compression of the fuel creates heat which prepares the fuel for instant ignition.

_____d. Exhaust stroke

1) When piston is at the bottom position (BDC), fuel-air mixture enters cylinder through ports in cylinder wall.
2) Piston moves up cylinder and compresses fuel-air mixture.

_____e. Compression stroke

1) When piston is at the bottom position (BDC), fuel-air mixture enters cylinder through ports in cylinder wall.
2) Piston moves up cylinder and compresses fuel-air mixture.
Intake stroke

1) Cycle starts with piston at uppermost position in cylinder (TDC) with intake valve open and exhaust valve closed.
2) As the piston moves down the cylinder, it draws air-fuel mixture into the cylinder from the carburetor.
3) When the piston reaches the bottom of the cylinder (BDC), the intake valve closes.

10. Identify the parts of an internal combustion engine. Choose your answers from the list at the right.

 1. Connecting rod
 2. Valve spring
 3. Cam lobe
 4. Cam shaft
 5. Piston
 6. Valves
 7. Cylinder head
 8. Spark plug
 9. Cylinder block
 10. Valve lifter
 11. Crankshaft
TEST

11. Match the systems of an engine on the left with the correct functions and parts.

_____a. 1) Function — Mixes air and fuel properly and delivers the mixture to the combustion chamber
2) Parts involved — Air cleaner, fuel supply tank, valve, oil filter, carburetor, governor

_____b. 1) Function — Removes excess heat from the engine
2) Parts involved — Cylinder block and head when air cooled or a water jacket and pump when water cooled

_____c. 1) Function — Sets the engine in motion
2) Parts involved — Manual or electric starters

_____d. 1) Function — Oils engine parts to reduce friction and wear
2) Parts involved — Oil pump and valves

_____e. 1) Function — Produces the spark that ignites the fuel
2) Parts involved (depending on type of system) — Armature, magnets, breaker points, condenser, spark plug, battery

_____f. 1) Function — Develops up-and-down motion and converts it into useful rotary motion
2) Parts involved — Cylinder block and head, piston, connecting rod, crankshaft, camshaft, valves

12. Complete statements concerning safety rules by placing the number of the appropriate word in the blank.

_____a. Wear ____________ or goggles at all times. Remember that your eyes can't be replaced. Protect them.

_____b. Wear approved ____________ while working with running engines. Some are very noisy and can permanently damage your hearing.

_____c. Store ____________ in approved safety cans in the storage areas designated by your instructor.
TEST

d. Do not inhale fumes from ___________ or solvent containers. The fumes can seriously damage your lungs.

e. Have adequate ventilation when running __________, or where fumes may be a hazard.

f. Wash your hands thoroughly if __________ splashes on them. It is very harsh and usually contains additives that are poisonous when absorbed through the skin.

g. Never use __________ to clean parts; only use cleaning solvents.

h. Wipe up any fuel spills __________.

i. Be careful when handling an engine __________. It contains acid which can ruin your clothes, burn your skin, and blind you if it gets in your eyes.

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

13. Check engine components for wear. (Assignment Sheet #1)

14. Demonstrate the ability to:

a. Disassemble and reassemble a four cycle, one cylinder engine. (Job Sheet #1)

b. Construct a solar battery. (Job Sheet #2)
POWER PRODUCTION AND CONVERSION
UNIT III

ANSWERS TO TEST

1. a. 10 f. 11
 b. 5 g. 6
 c. 14 h. 8
 d. 9 i. 13
 e. 2 j. 4

2. b

3. a. 2, 3
 b. 1, 3

4. a. 2
 b. 4
 c. 1
 d. 3

5. a. d

6. a. E
 b. 1
 c. 1
 d. E

7. a. Steam pressure
 b. Reaction type
 c. Hydrogen
 d. More

8. a. 4
 b. 1
 c. 3
 d. 2

9. a. 4
 b. 2
 c. 4
 d. 4
 e. 2
 f. 4

10. a. 8
 b. 5
 c. 7
 d. 9
 e. 1
 f. 11
 g. 4
ANSWERS TO TEST

11. a. 4 b. 3 c. 6 d. 2 e. 5 f. 1

12. a. 5 b. 4 c. 3 d. 3 e. 2 f. 3 g. 3 h. 1 i. 6

13. Evaluated to the satisfaction of the instructor

14. Performance skills evaluated to the satisfaction of the instructor
POWER TRANSMISSION AND STORAGE
UNIT IV

UNIT OBJECTIVE

After completion of this unit, the student should be able to distinguish between devices and operations of mechanical power, electrical power, and fluid power systems. The student should also be able to determine gear rotation, design and build a robotic arm, and build a "big track" robot. Competencies will be demonstrated by completing the assignment sheets, job sheets, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to power transmission and storage with the correct definitions.
2. Distinguish between the types of power systems.
3. Identify devices for control and transmission of mechanical power.
4. Complete statements concerning the transmission of electrical power.
5. Match devices for control of electrical power with the correct descriptions.
6. Select true statements concerning the principles of hydraulics.
7. Match the parts of a hydraulic system with the correct functions.
8. Arrange in order the steps in the operation of hydraulics.
9. List applications of hydraulic transmissions.
OBJECTIVE SHEET

10. Select advantages of hydraulic systems.
11. Identify connectors used in fluid power systems.
12. Distinguish between the two laws defining the principles of pneumatics.
13. Match parts of a pneumatic system with the correct functions.
14. List applications of pneumatics.
15. Match terms related to robotics with the correct definitions.
16. Distinguish between the two major categories of jobs in industry that are well suited for robots.
17. Complete statements concerning the principles of lasers.
18. Match classes of lasers with the correct descriptions
19. List applications of lasers.
20. Match types of energy with examples of their storage devices.
21. Determine gear rotation. (Assignment Sheet #1)
22. Design and build a robotic arm. (Assignment Sheet #2)
23. Demonstrate the ability to:
 a. Build a "big track" robot. (Job Sheet #1)
 b. Build a lemon battery. (Job Sheet #2)
POWER TRANSMISSION AND STORAGE
UNIT IV

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included with this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

(NOTE: Use the transparencies to enhance the information as needed.)

G. Provide students with job sheets.

H. Discuss and demonstrate the procedures outlined in the job sheets.

I. Integrate the following activities throughout the teaching of this unit:

1. Show films dealing with power transmission and storage. Suggested films are listed on the next page.

2. Arrange group tours to local manufacturing plants.

3. Build a 90¢ continuity tester.

4. Build a mousetrap vehicle to go along with gear rotation problems in Assignment Sheet #1.

5. Make a block diagram showing TV waves in a transmission system.

6. Add mechanical levers and/or electric motor to Assignment Sheet #2.

7. Determine mechanical advantage of gears and levers.

8. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

J. Give test.

K. Evaluate test.

L. Reteach if necessary.
REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

Films.

A. *Studying Fluid Behavior (Scientific Investigation Series)*; #04843; 16 min; color; (Journal). 1979: Bureau of Audiovisual Instruction: P.O. Box 2093: Madison, Wisconsin 53701-2093: or phone 608-262-1644.

B. *The Robot Revolution*; #11058; VHS; 58 min; Bureau of AV Instruction. Madison, Wisconsin 53701-2093: or phone 608-262-1644.

D. *Electricity from Chemicals*; #06559; 14 min; color: Coronet. 1966: Bureau of Audiovisual Instruction, Madison, Wisconsin 53701-2093: or phone 608-262-1644.

I. Terms and definitions

A. Accumulator — An auxiliary storage place for hydraulic fluid under pressure which is used to dampen out pulsations or pressure surges that cause vibrations and uneven operation of hydraulic devices

B. Actuator — A fluid power device that changes fluid power to either rotary, linear, or reciprocating motion

C. Hydraulics — The use of a liquid, usually oil, to transmit power

D. Laser (Light Amplification by Stimulated Emission of Radiation) — A device that generates a concentrated beam of light that travels in a very narrow straight path

E. Pneumatics — The use of compressed gases, usually air, to transmit power

F. Robot — Reprogrammable machine with an arm or hand that can pick up and move many things; may also be fitted with tools to perform other tasks

G. Solid state — Electronic circuits using semiconductor devices such as, transistors, diodes, and silicon-controlled rectifiers

H. Transformer — A device that transmits electrical power from one circuit to another

I. Voltage — The electromotive force which will cause current to flow

II. Types of power systems

A. Mechanical power — Uses gears, pulleys, and chains for control and transmission of mechanical energy

B. Electrical power — Uses switches, relays, transformers, conductors, transmitters, and air for control and transmission of electric energy

C. Fluid power — Uses liquids and gases under pressure for control and transmission of fluid energy
 1. Hydraulic — Fluid power using liquids (usually water or oil)
 2. Pneumatic — Fluid power using gases (usually air)
III. Devices for control and transmission of mechanical power (Transparency 1)

A. Gears — Are wheels that have teeth around their outside surface which mesh with the teeth of another gear.

(NOTE: The gear connected to the power source is called the drive gear. The second gear is called the driven gear.)

1. Spur gears — Simplest and most common type of gear. Teeth are cut parallel to shaft. Can provide changes in direction, force, or speed.

2. Helical gears — Similar to spur gears except that teeth are cut at an angle. Can change power direction. Pairs can be used in parallel or right-angle positions.
3. Bevel gears — Used to change direction of power input or to increase force or speed when two different sizes of gears are used. May have straight or spiral-shaped (helical) teeth.

(Plain Bevel) (Spiral Bevel)

(NOTE: Gears can increase or decrease the turning effort. They also may be used to change speed. When a slowdown is needed, reduction gears are used. Multiplying gears increases output speed.)

4. Miter gears — Can only provide changes in direction. Cannot change force or speed because both gears have the same number of teeth (gear ratio of 1:1). May have straight or spiral-shaped teeth.

(Straight Teeth) (Spiral Teeth)

(Miter Gear Sets)

5. Worm gears — A set consists of a worm and a worm gear. Worm gear rotates only one tooth each time the worm makes a full rotation. Can provide major changes in torque and speed or a change in direction.
6. Herringbone gears — Are double helical gears with balanced thrusts because the teeth angles are reversed on opposite sides.

7. Rack and pinion gears — Provide a special type of gear arrangement which transfers straight-line motion into rotary motion or rotary motion into straight-line motion.

B. Pulleys and belts — Pulleys are usually metal grooved discs that drive or are driven by flexible belts. Mainly used to change speed.
C. Sprockets and chains — Sprockets are similar to gears except that they drive or are driven by a chain instead of another gear. Can change force and speed. Do not change the direction of rotation as gears do.

D. Clutches — Devices that connect or disconnect the flow of power from one unit to another. May be several types such as friction clutches and centrifugal clutches.

E. Couplings — Permanent connections used to change directions or to connect lengths of shafts. May be rigid or flexible.

IV. Transmission of electrical power (Transparencies 2 and 3)

A. Transmission through solids — High voltage electricity generated at power plants is sent through transmission lines (conducting wires).

B. Transmission through air — Electromagnetic waves are sent through the air

Examples: Television signals, radio signals, microwaves
V. Devices for control of electrical power (Transparency 4)

A. On-Off control devices (switches)
 1. Manual switch — Most common electrical control device
 Example: Common on-off light switch
 2. Relays — Used to control a circuit from a remote location
 3. Transistors — Solid-state devices used for switching and/or amplifying the flow of electrons in a circuit

B. Directional and overload control devices
 1. Diodes — Permit current to flow in only one direction; solid state
 2. Fuses — Protect a circuit from dangerous overloads; must be replaced after use
 3. Circuit breakers — Have the same job as a fuse, but can be reset by hand after circuit is broken

C. Current and voltage control devices
 1. Transformers — Allow current to be stepped up or down
 2. Resistors — Reduce current flow and control voltage drop

VI. Principles of hydraulics

A. Pascal’s Law — Pressure set up in a confined liquid acts equally in all directions.

B. Liquid cannot be compressed.

C. Liquid can be used to transmit power.

D. Liquid can be used to multiply force.
E. Applications of these principles

1. If the input and output pistons have equal areas and equal pressures, the output force will be equal to the input force.

![Diagram showing equal area and equal pressure equaling equal force.]

\[\text{Force 1} = 100 \text{ Lbs.} \quad \text{Force 2} = 100 \text{ Lbs.} \]

\[\text{Piston 1} \quad 10 \text{ Sq. In.} \quad \text{Piston 2} \quad 10 \text{ Sq. In.} \]

\[\text{Pressure 10 Lbs. Per Sq. Inch} \]

\[\text{Equal Area + Equal Pressure = Equal Force} \]

2. If the input and output pistons have unequal areas and equal pressures, the input and output forces will be unequal.

![Diagram showing unequal area and equal pressure equaling unequal force.]

\[\text{Force 1} = 20 \text{ Lbs.} \quad \text{Force 2} = 200 \text{ Lbs.} \]

\[\text{Input Piston (1)} \quad 2 \text{ Sq. In.} \quad \text{Output Piston (2)} \quad 20 \text{ Sq. In.} \]

\[\text{Pressure 10 Lbs. Per Sq. Inch} \]

\[\text{Unequal Area + Equal Pressure = Unequal Force} \]

VII. Parts of a hydraulic system (Transparency 5)

A. Motor, turbine, or engine — Drives the pump

B. Pump — Supplies fluid under pressure to system

C. Reservoir or tank — Stores the fluid
INFORMATION SHEET

D. Filter — Cleans the fluid

E. Pressure relief valve — Opens to relieve excess pressure and to prevent damage to both the system and the surroundings

F. Control valve — Regulates fluid pressure, flow rate, and direction of flow

(NOTE: Most systems have several control valves, each with specific purposes.)

G. Cylinder — Transfers fluid pressure in system to piston which pushes load; changes fluid pressure into mechanical motion

VIII. Operation of hydraulics

A. Oil pump draws the oil from the reservoir.

B. Oil passes to the chambers of a control valve.

C. Oil is directed to double-acting cylinders.

D. Hydraulic pressure causes the piston to move and perform work.

IX. Applications of hydraulic transmissions

A. Automotive — Power brakes, power windows, automatic transmissions, power steering, shock absorbers

B. Manufacturing — Machine tools, food and chemical processors, plastics, presses, loaders

C. Aerospace — Aircraft, landing gears, helicopters, satellites

D. Agriculture — Automatic bale loaders, machinery hoists, tractors, grain beds, pickers, threshers

E. Construction — Road graders, shovels, rock crushers, bulldozers

X. Advantages of hydraulic systems

A. Are simple having no gears or levers

B. Require no lubrication

C. Liquids are not subject to wear or breakage.

D. Applied forces can be multiplied and transmitted in any direction and over considerable distance with little loss in efficiency.

E. Transmitted motion is smooth and consistent.

F. Closed or sealed system prevents entry of dirt and resulting wear.
XI. Connectors used in fluid power systems

(NOTE: Connectors are a very important part of transmission lines. They are used to join the different parts of a fluid system.)

A. Flared tube fitting

B. Compression sleeve fitting

C. Fitting with O-ring seal

D. Quick-disconnect fitting with barbed fasteners

XII. Principles of pneumatics

A. Boyle’s law — If the volume of air or gas in a cylinder is compressed to one-half of its original volume, its pressure will double.

B. Charles’ law — When the volume of a gas remains constant and its temperature increases, the pressure increases proportionally.

Example: A sealed can will explode if it is heated sufficiently.
XIII. Parts of a pneumatic system (Transparency 5)

A. Motor or engine — Drives the air compressor
B. Air compressor — Increases the pressure of the air or gas
C. Pressure relief valve — Opens to relieve excess pressure
D. Filter — Removes dirt from the air
E. Regulator — Monitors and controls the desired air pressure in the line
F. Lubricator — Adds some oil to the air passing through and reduces friction between sliding surfaces
G. Control valves — Regulate flow rate and direction of air
H. Cylinder or other actuator — Converts pressure into mechanical motion

XIV. Applications of pneumatics

(NOTE: These are just a few of the many applications of pneumatics.)

A. Aerosol-powered liquids — Spray paint
B. Die casting — Forcing molten metal into molds
C. Forging — Shaping hard-to-work metal
D. Aerospace — Engine control units to correct yaw and pitch
E. Transportation — Tires and brake systems
F. Pneumatic tools — Air drills, staplers, riveting guns
INFORMATION SHEET

XV. Robotics terminology (Transparency 6)

A. Axes — The number of rotary center points on which motion is performed; may have 1-6 axes

B. Controller — Part of the robot that directs the motion of the robot's manipulator

C. Envelope — The working area of the robot

D. **Gripper** — A handlike, pinching device that holds the part being moved or worked on or the tools doing the work

![Gripper Diagram]

E. **Manipulator (arm)** — Part of the robot that is programmed to move and to pick up and place parts or hold tools for work procedures

F. **Power supply** — Supplies hydraulic, pneumatic, or electric power to move the manipulator

XVI. Jobs well suited for robots

A. **Hazardous jobs** — Tasks that are dangerous or harmful to humans because of toxic fumes, temperature or weight of the material being handled, high levels of radiation, or danger working near rotating machinery

B. **Repetitive jobs** — Tasks that must be performed hundreds of times each day

(NOTE: A robot can perform these jobs without fatigue or boredom which helps to increase company productivity.)

XVII. Principles of lasers

A. Laser beams consist of electromagnetic waves at or near the wavelength of visible light.

B. The waves in a laser have almost identical lengths enabling it to travel in a straight line for miles with very little spreading.

C. Laser wavelengths are very short and are measured in millionths of an inch.

(NOTE: Radio wavelengths are measured in yards, and television wavelengths are measured in feet.)
XVIII. Classes of lasers

A. Class I — Produce low powered light; cannot cause damage to anyone or anything

B. Class II — Can damage the eye only if the eye is deliberately exposed to the beam for periods of time longer than the normal blinking of the eye

C. Class III — Can produce light of high enough intensity to injure a human eye before the eye can blink

D. Class IV — Are a potential hazard to the eye and to exposed skin; can produce enough light energy to burn any combustible material

XIX. Applications of lasers

A. In communications, lasers are used with fiberoptics to transmit telephone conversations.

B. In industry, lasers are used to drill holes and braze or weld metals.

C. In medicine, lasers are used to cut tissue and then seal tissues together so stitches are not needed.

D. In construction, lasers are used with surveying equipment for more accurate measurements of distances and elevations.

E. In consumer products, lasers are used to scan items in supermarket checkouts and video disks readers.

XX. Types of energy storage

A. Mechanical energy

1. Spring — The stored potential energy in a "loaded" spring (one that is stretched or compressed) can be recovered to do useful work.

2. Flywheel — A spinning flywheel stores energy that can be removed to do work.
INFORMATION SHEET

B. Electrical energy
 1. Capacitors — Store and discharge energy in an electrical system over long periods of time
 2. Inductor — Concentrate and store magnetic lines of force

C. Chemical energy
 1. Fossil fuels — Oil, coal, and natural gas are all chemicals or combinations of chemicals stored until released by burning.
 2. Battery — A device that converts stored chemical energy into electrical energy.

D. Fluid energy
 1. Air tank (compressed air) — Potential energy stored in compressed air can be released as kinetic energy to produce work.
 2. Accumulator (oil) — A sealed tank that holds fluid under pressure as potential energy which can be released on demand.
Mechanical Power Transmissions

Gears

Crankshaft Timing Gear
Camshaft Timing Gear

Sprocket and Chain
Pulleys and Belt
Electrical Power Transmission Through Solids

POWER PLANT

VOLTAGE INCREASE

TRANSMISSION

FIRST VOLTAGE REDUCTION

SECOND VOLTAGE REDUCTION

Customer or Industrial Customer

Transformer

Distribution Station

Electrical Power Transmission Through Solids
Electrical Power Transmission Through Air

Electrical Power Transmission Through Air

Diagram showing the process of transmitting electrical power through the air using cameras, transmitters, and television sets.
Electrical Power Control Devices

- Slide Switch
- Toggle Switch
- Transistors
- Diode
- Fuses
- Circuit Breaker
- Resistors
- Transformer (Iron Core)
Fluid Power Systems

Simple Hydraulic System

Simple Pneumatic System
Robotics Terminology

Power Supply

Controller

Manipulator (Arm)

ELBOW ROTATION

SHOULDER ROTATION

WAIST ROTATION

WRIST ROTATIONS

YAW

PITCH

ROLL

GRIPPER

BASE
Directions: In the illustrations below, the direction of rotation of gear "A" is given. Draw an arrow to indicate the direction of rotation of the other gears.

1.
2.
3.
4.
5.
6.
7.
This exercise demonstrates the principles of hydraulics using syringes and tubing.

Discuss the ways this system could be used to make a robot with one, two, three, four, or more axes.

Plan to use basic materials, traditional tools, and techniques to produce a well-designed robot that teaches math and science principles as well as craftsmanship.

There are no detailed plans with this activity in order to allow freedom of creativity.

The specific dimensions are not important.

Syringes used in robot construction are one to sixty cubic centimeters (cc).

Tubing is 1/8" tubing and can be purchased from local hardware store.

Look at the following pictures. Then sketch your ideas and plan your robotic arm.

In building this robotic arm, observe your lab/classroom's safety rules.

In designing your robotic arm, use different types of power systems: mechanical, electrical, and fluid.
ASSIGNMENT SHEET #2

Examples:
ASSIGNMENT SHEET #2
Assignment Sheet #1

1.

2.

3.

4.

5.

6.

7.

Assignment Sheet #2 — Evaluated to the satisfaction of the instructor
POWER TRANSMISSION AND STORAGE
UNIT IV

JOB SHEET #1 — BUILD A “BIG TRACK” ROBOT

A. Tools and materials

1. 2 - 1" sections of 8-32 threaded rod with nuts (to mount wheels)
2. 1 - 6-32 machine screw, nut, and washer (to mount battery switches)
 (NOTE: The length of screw needed will depend on the size of battery switches used.)
3. 1 - #8 x 1 1/2 inch RH wood screw (for negative battery terminal)
4. 4 - 4 penny finishing nails (for connection terminals)
5. 2 - % inch box nails (to connect skid block to strap)
6. 1 - 1/2 inch furniture glide (for skid)
7. 1 - 2 1/2 x 3/8 x 1/16 inch strap of metal or plastic (for skid block)
8. 1 - 1 1/4 x 3/8 x 0.005 inch brass shim (for battery switch)
9. 1 - 1 3/4 x 3/4 x 2 1/2 inch wood skid block
10. 1 - 1 1/4 inch diameter x 1 inch wood dowel (for battery holder bottom)
11. 1 - 1 1/8 inch inside diameter x 5 inch plastic tube (for battery holder)
12. 16 feet of #30 wire-wrap wire
13. Foam tape (for tires)
14. Masking tape (to make wire into cable)
15. 2 - Wheel discs between 3" and 5" diameter of plastic, wood, or metal
 (NOTE: Mini Frisbees or plastic coasters work well.)
16. 2 - DPDT momentary contact switches
17. Epoxy
18. 2 - “C” size dry cell batteries
19. "BIG TRACK" motor assembly

(NOTE: Known sources of supply are:

H & R Corporation
401 E. Erie Avenue
Philadelphia, PA 19134
(Surplus electrical and mechanical equipment, BIG TRACK motors)

Edmund Scientific Co.
101 E. Gloucester Pike
Barrington, NJ 08007
(Variety of supplies including some surplus BIG TRACK motors)

Marlin P. Jones & Associates
P.O. Box 12685
Lake Park, FL 33403
(Surplus electronics)

JERRYCO Inc.
601 Linden Place
Evanston, IL 60202
(Surplus electronic and mechanical equipment)

B. Procedure

1. Check motors and connections in BIG TRACK motor unit with a multimeter.
 (NOTE: The winding resistance is about 4 ohms. It may be necessary to rotate the motor shaft to get a true reading.)

2. Slip sections of 8-32 threaded rod inside tubing axles on BIG TRACK motor unit.
 (NOTE: If the inside diameter of the axle is too small, it can be enlarged with a \frac{11}{32} drill.)

3. Glue threaded rod into axle with epoxy.

4. Cut plywood disks if using wooden wheels, with a fly cutter.
 (NOTE: If wooden wheels are used, foam tape can be added to outer surface to provide better traction.)

5. Drill center holes in wheel disks.
 (NOTE: A corner jig on a drill press may make it easier for students to accurately center holes.)

6. Cut 1\frac{1}{8}" plastic tubing into 5" length.

7. Cut 1" wooden plug from 1\frac{1}{8}" dowel.

8. Drill hole in plug to pass wire through.

9. Drive brass screw into one end of plug, holding wire end under it.

10. Test connection with multimeter.
11. Push plug into the end of plastic tube.
12. Secure by driving two 1/2" nails in, taking care not to drive nails through wire.
13. Punch 1/8" hole in brass shim stock about 1/4" from the end.
14. Punch another 1/8" hole 1/4" from the end of the plastic tube.
15. Fasten together tube, shim stock, and wire with a 6-32 inch screw, nut, and washer.
16. Test connections with a multimeter.
17. Tape together wires from battery terminals about every 6 inches to form a cable.
18. Mark screw holes in strap for mid-line attachment at two screws nearest the motors.
19. Drill holes in strap.
20. File out side of strap to accommodate bulges in motor housing between screws.
21. Drill two holes in strap to nail strap to wooden block.
22. Drive furniture glide into one side of wooden block.
23. Mount connectors from motor wires to control cable on opposite side of wood block.
24. Drive in 4 penny finishing nails to connect motor wires to cable, in pattern that matches motor wires.
25. Cut off nail heads after driving them in.
27. Strip 1/2" of insulation from each end of four 5' pieces of wire-wrap wire.
28. Wrap one end of wire to each of four nails in skid assembly block.
29. Solder each wire to nail.
30. Attach motor leads to nails.
31. Mark each free end of wire attached to nail so it can be identified with motor lead to which it is attached.
32. Tape wires every 6" to form cable.
JOB SHEET #1

33. Check connections with multimeter.
34. Remove spring locks from (2) DPDT switches.
35. Connect switches as shown. (Figure 1)

FIGURE 1

36. Put 2 "C" dry cell batteries in case.
37. Test "Big Track" robot.
38. Field test robot by running it through an obstacle course.
POWER TRANSMISSION AND STORAGE
UNIT IV

JOB SHEET #2 — BUILD A LEMON BATTERY

A. Tools and materials
 1. Galvanometer
 2. Knife
 3. Lemon
 4. Penny
 5. Nickel or dime
 6. Fine abrasive paper
 7. Hookup wire

B. Procedure
 1. Make two small slits in the lemon (1 cm long, 1 cm deep, 2 cm apart).
 2. Clean both sides of the two coins thoroughly using the fine abrasive paper.
 3. Insert the two coins into the two slits so that both stick out a little bit.
 4. Attach one galvanometer lead to the dime.
 5. Read the meter. What does it read? __________
 6. Attach the other lead to the penny.
 7. Read the meter again. What does it read now? __________
POWER TRANSMISSION AND STORAGE
UNIT IV

PRACTICAL TEST
JOB SHEET #1 — BUILD A "BIG TRACK" ROBOT

STUDENT'S NAME ____________________________ DATE ________

EVALUATOR'S NAME ____________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under "Process Evaluation" must receive a "Yes" for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the "Yes" or "No" blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

1. Checked out proper tools and materials. ________ ________
2. Checked motors and connections on "Big Track" unit. ________ ________
3. Glued threaded rod into axles. ________ ________
4. Cut and drilled holes in wheels. ________ ________
5. Assembled battery case. ________ ________
6. Assembled skid and motor unit assembly. ________ ________
7. Assembled cable. ________ ________
8. Assembled switch. ________ ________
9. Checked in/put away tools and materials. ________ ________
10. Cleaned the work area. ________ ________
11. Used proper tools correctly. ________ ________
12. Performed steps in a timely manner (____hrs. ____min. ____sec.) ________ ________
13. Practiced safety rules throughout procedure. ________ ________
14. Provided satisfactory responses to questions asked. ________ ________

EVALUATOR'S COMMENTS: __

__
JOB SHEET #1 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axles</td>
<td>Glued securely accurately</td>
<td>Positioned satisfactorily</td>
<td>Not enough epoxy for secure fit</td>
<td>Too much epoxy/Wheels won't mount</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Wheels</td>
<td>Round/Center holes drilled accurately</td>
<td>Slightly out of round/center hole accurate</td>
<td>Out of round/center accurate</td>
<td>Out of round/center hole off</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Battery case</td>
<td>Proper length/Plug fits well</td>
<td>Proper length/Plug slightly off</td>
<td>Case too long/Plug slightly off</td>
<td>Case too short/Plug off</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Skid and Motor Unit</td>
<td>Skid attached properly to motor unit</td>
<td>Skid attachment needs minor adjustment</td>
<td>Skid attachment needs major adjustment</td>
<td>Attachment needs to be redone</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cable</td>
<td>Proper length/Connections check OK</td>
<td>Cable too long/Connections OK</td>
<td>Cable too short/Connections OK</td>
<td>Cable too short/Connections don't check out</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Switch</td>
<td>Work properly</td>
<td>Wiring needs minor adjustment</td>
<td>Wiring needs major adjustment</td>
<td>Switches won't work</td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
POWER TRANSMISSION AND STORAGE
UNIT IV

PRACTICAL TEST
JOB SHEET #2 — BUILD A LEMON BATTERY

STUDENT'S NAME __________________________ DATE ___________
EVALUATOR'S NAME ______________________ ATTEMPT NO. _____

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

1. Checked out proper tools and materials. YES NO
2. Made slits in the lemon. ____________
3. Cleaned both sides of the coin. ____________
4. Inserted the coins in the lemon. ____________
5. Attached one galvanometer lead to dime. ____________
6. Read meter. ____________
7. Attached other lead to the penny. ____________
8. Read meter. ____________
9. Checked in/out away tools and materials. ____________
10. Cleaned the work area. ____________
11. Used proper tools correctly. ____________
12. Performed steps in a timely manner (____hrs. ____min. ____sec.) ____________
13. Practiced safety rules throughout procedure. ____________
14. Provided satisfactory responses to questions asked. ____________

EVALUATOR'S COMMENTS: __

__
JOB SHEET #2 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a "3" for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut slits in lemon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct size slits</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Slits too small</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Slits too long</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slits too deep</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaned coins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaned thoroughly</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Some cleaning required</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Require more cleaning</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coins not cleaned</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inserted coins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inserted correctly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coins need minor adjustment</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Coins too shallow</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Coins below surface</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS: __

<table>
<thead>
<tr>
<th>PERFORMANCE EVALUATION KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 — Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3 — Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2 — Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1 — Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
POWER TRANSMISSION AND STORAGE
UNIT IV

TEST

1. Match the terms on the right with the correct definitions.

 _______a. A device that transmits electrical power from one circuit to another
 _______b. The electromotive force which will cause current to flow
 _______c. An auxiliary storage place for hydraulic fluid under pressure which is used to dampen out pulsations or pressure surges that cause vibrations and uneven operation of hydraulic devices
 _______d. Reprogrammable machine with an arm or hand that can pick up and move many things; may also be fitted with tools to perform other tasks
 _______e. A fluid power device that changes fluid power to either rotary, linear, or reciprocating motion
 _______f. Electronic circuits using semiconductor devices such as transistors, diodes, and silicon-controlled rectifiers
 _______g. The use of a liquid, usually oil, to transmit power
 _______h. A device that generates a concentrated beam of light that travels in a very narrow straight path

 1. Accumulator
 2. Actuator
 3. Hydraulics
 4. Laser
 5. Pneumatics
 6. Robot
 7. Solid state
 8. Transformer
 9. Voltage

2. Distinguish between types of power systems by placing an "E", "M", or "F" in front of the correct descriptions of electrical, mechanical, or fluid power systems.

 _______a. Uses gears, pulleys, and chains for control and transmission of energy
 _______b. Uses liquids and gases under pressure for control and transmission of energy
 _______c. Uses switches, relays, transformers, conductors, transmitters, and air for control and transmission of energy
3. Identify devices for control and transmission of mechanical power by placing the appropriate number beside each picture.

 a.

 b.

 c.

 d.

 1. Belt and pulley
 2. Bevel gear
 3. Chain and sprocket
 4. Clutch
 5. Couplings
 6. Helical gear
 7. Herringbone gear
 8. Miter gear
 9. Rack and pinion gear
 10. Spur gear
 11. Worm gear
4. Complete the following statements concerning the transmission of electrical power by circling the correct words.

a. Transmission through solids is (low, high) voltage electricity generated at power plants sent through transmission lines.

b. Transmission through air is electromagnetic waves sent through the air. An example of this type of transmission is (television, telegraph) signals.

5. Match devices for control of electrical power on the right with the correct descriptions.

_____a. Solid state devices used for switching and/or amplifying the flow of electrons in a circuit

1. Circuit breakers
2. Diodes
3. Fuses
4. Manual switch
5. Relays
6. Resistors
7. Transformers
8. Transistors

_____b. Used to control a circuit from a remote location

_____c. Most common electrical control device

_____d. Reduce current flow and control voltage drop

_____e. Have the same job as a fuse, but can be reset by hand after circuit is broken

_____f. Permit current to flow in only one direction; solid state

_____g. Allow current to be stepped up or down

_____h. Protect a circuit from dangerous overloads; must be replaced after use
6. Select true statements concerning the principles of hydraulics by placing a "T" or "F" in the appropriate blank.

_____a. Liquid can be compressed like a gas.
_____b. Pressure set up in a confined liquid acts equally in all directions.
_____c. If the input and output pistons have equal areas and equal pressures, the output force will be equal to the input force.

7. Match the parts of a hydraulic system on the right with the correct functions.

_____a. Drives the pump
_____b. Supplies fluid under pressure to system
_____c. Stores the fluid
_____d. Cleans the fluid
_____e. Opens to relieve excess pressure and to prevent damage to both the system and the surroundings
_____f. Regulates fluid pressure, flow rate, and direction of flow
_____g. Transfers fluid pressure in system to piston which pushes load; changes fluid pressure into mechanical motion

1. Control valve
2. Cylinder
3. Filter
4. Motor, turbine, or engine
5. Pressure relief valve
6. Pump
7. Reservoir or tank

8. Arrange in order the steps in the operation of hydraulics by placing numbers 1-4 in the correct sequence.

_____a. Hydraulic pressure causes the piston to move and perform work.
_____b. Oil pump draws the oil from the reservoir.
_____c. Oil is directed to double-acting cylinders.
_____d. Oil passes to the chambers of a control valve.

9. List two applications of hydraulic transmissions in each of the following areas.

a. Automotive — ________________________________
b. Manufacturing — ________________________________
c. Aerospace — ________________________________
d. Agriculture — ________________________________
e. Construction — ________________________________
TEST

10. Select advantages of a hydraulic system by placing an “A” in front of the appropriate statements.

 _____a. Liquids are not subject to wear or breakage.
 _____b. Require no lubrication
 _____c. Transmitted motion is smooth and consistent.
 _____d. Restricted to certain areas/conditions.
 _____e. Are simple having no gears or levers
 _____f. Closed or sealed system prevents entry of dirt and resulting wear.
 _____g. Require much lubrication

11. Identify connectors used in fluid power systems by placing the appropriate number in the blank.

 _____a. 1. Compression sleeve fitting
 2. Fitting with O-ring seal
 3. Flared tube fitting
 4. Quick-disconnect fitting with barbed fasteners
 _____b.
 _____c.
12. Distinguish between the two laws defining the principles of pneumatics by placing a "B" in front of Boyle's law and a "C" in front of Charles' law.

 a. If the volume of air or gas in a cylinder is compressed to one-half of its original volume, its pressure will double.

 b. When the volume of a gas remains constant and its temperature increases, the pressure increases proportionally.

13. Match parts of a pneumatic system on the right with the correct functions.

 a. Drives the air compressor
 b. Increases the pressure of the air or gas
 c. Opens to relieve excess pressure
 d. Removes dirt from the air
 e. Monitors and controls the desired air pressure in the line
 f. Adds some oil to the air passing through and reduces friction between sliding surfaces
 g. Regulates flow rate and direction of air
 h. Converts pressure into mechanical motion

14. List four applications of pneumatics.

 a.___
 b.__
 c.__
 d.__
15. Match terms related to robotics listed on the right with the correct definitions.

_____a. The working area of the robot
1. Axes

_____b. Supplies hydraulic, pneumatic, or electric power to move the manipulator
2. Controller

_____c. A handlike, pinching device that holds the part being moved or worked on or the tools doing the work
3. Envelope

_____d. The number of rotary center points on which motion is performed; may have 1-6 of these
4. Gripper

_____e. Part of the robot that is programmed to move and to pick up and place parts or hold tools for work procedures
5. Manipulator

_____f. Part of the robot that directs the motion of the robot's manipulator
6. ***or supply

16. Distinguish between the two major categories of jobs in industry well suited for robots by placing an "X" next to the description of repetitive jobs and an "O" next to the hazardous jobs.

_____a. Tasks that must be performed hundreds of times each day

_____b. Tasks that are dangerous or harmful to humans because of toxic fumes, high levels of radiation, etc.

17. Complete statements concerning the principles of lasers by circling the appropriate words.

a. Laser beams consist of (telegraphic, electromagnetic) waves at or near the wavelength of visible light.

b. The waves in a laser have almost identical lengths enabling it to travel in a straight line for miles with (a great deal of, very little) spreading.

c. Laser wavelengths are very (short, long).
TEST

18. Match classes of lasers on the right with the correct descriptions.

_____a. Are a potential hazard to the eye and to exposed skin; can produce enough light energy to burn any combustible material

1. Class I

2. Class II

_____b. Produce low powered light; cannot cause damage to anyone or anything

3. Class III

4. Class IV

_____c. Can damage the eye only if the eye is deliberately exposed to the beam for periods of time longer than the normal blinking of the eye

_____d. Can produce light of high enough intensity to injure a human eye before the eye can blink

19. List four applications of lasers.

a. __

b. __

c. __

d. __

20. Match types of energy on the right with the correct examples of storage devices.

_____a. Springs and flywheels

1. Fluid energy

_____b. Capacitors and inductors

2. Electrical energy

_____c. Fossil fuels

3. Mechanical energy

_____d. Air tanks and accumulators

4. Chemical energy

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

21. Determine gear rotation. (Assignment Sheet #1)

22. Design and build a robotic arm. (Assignment Sheet #2)

23. Demonstrate the ability to:

a. Build a “big track” robot. (Job Sheet #1)

b. Build a lemon battery. (Job Sheet #2)
POWER TRANSMISSION AND STORAGE
UNIT IV

ANSWERS TO TEST

1. a. 8 e. 2
b. 9 f. 7
c. 1 g. 3
d. 6 h. 4

2. a. M b. F
 c. E

3. a. 11 g. 8
 b. 2 h. 1
 c. 7 i. 3
 d. 6 j. 5
 e. 4 k. 9
 f. 10

4. a. High b. Television

5. a. 8 e. 1
 b. 5 f. 2
 c. 4 g. 7
 d. 6 h. 3

6. a. F b. T
 c. T

7. a. 4 e. 5
 b. 6 f. 1
 c. 7 g. 2
 d. 3

8. a. 4
 b. 1
 c. 3
 d. 2

9. Two applications for each of the following:
 a. Automotive — Power brakes, power windows, automatic transmissions, power steering, shock absorbers
 b. Manufacturing — Machine tools, food and chemical processors, plastics, presses, loaders
 c. Aerospace — Aircraft, landing gears, helicopters, satellites
ANSWERS TO TEST

d. Agriculture — Automatic bale loaders, machinery hoists, tractors, grain beds, pickers, threshers
e. Construction — Road graders, shovels, rock crushers, bulldozers

10. a. b. c. e. f

11. a. 2
 b. 3
 c. 1
 d. 4

12. a. B
 b. C

13. a. 6 e. 8
 b. 1 f. 5
 c. 7 g. 2
 d. 4 h. 3

14. Any four of the following:
 a. Aerosol-powered liquids — Spray paint
 b. Die casting — Forcing molten metal into molds
 c. Forging — Shaping hard-to-work metal
 d. Aerospace — Engine control units to correct yaw and pitch
 e. Transportation — Tires and brake systems
 f. Pneumatic tools — Air drills, staplers, riveting guns

15. a. 3
 b. 6
 c. 4
 d. 1
 e. 5
 f. 2

16. a. X
 b. O

17. a. Electromagnetic
 b. Very little
 c. Short

18. a. 4
 b. 1
 c. 2
 d. 3
ANSWERS TO TEST

19. Any four of the following:
 a. In communications, lasers are used with fiberoptics to transmit telephone conversations.
 b. In industry, lasers are used to drill holes and braze or weld metals.
 c. In medicine, lasers are used to cut tissue and then seal tissues together so stitches are not needed.
 d. In construction, lasers are used with surveying equipment for more accurate measurements of distances and elevations.
 e. In consumer products, lasers are used to scan items in supermarket checkouts and video disks readers.

20. a. 3
 b. 2
 c. 4
 d. 1

21.-22. Evaluated to the satisfaction of the instructor

23. Performance skills evaluated to the satisfaction of the instructor
TRANSPORTATION SYSTEMS
UNIT V

UNIT OBJECTIVE

After completion of this unit, the student should be able to distinguish between the modes of transportation, select appropriate modes of transportation for given situations, and set up and operate a pipeline simulation. Competencies will be demonstrated by completing the assignment sheet, job sheet, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to transportation systems with the correct definitions.
2. List the four basic modes of transportation.
3. Match types of intermodal transportation with their uses.
4. Complete statements concerning the types of on-site transportation.
5. Complete statements concerning highway transportation.
6. Complete statements concerning rail transportation.
7. Identify types of railway vehicles.
8. Match types of commercial airlines with the correct descriptions.
9. Distinguish between the basic types of airplanes.
10. Identify parts of an airplane.
11. Complete statements concerning space transportation.
OBJECTIVE SHEET

12. Match U.S. space projects with their contributions.
13. Complete statements concerning characteristics of the space shuttle.
14. Match basic vessels for water transportation with the correct descriptions.
15. Identify the basic parts of a ship.
16. List uses of computers for transportation systems.
17. Select modes of transportation for given situations. (Assignment Sheet #1)
18. Demonstrate the ability to set up and operate a pipeline simulation. (Job Sheet #1)
TRANSPORTATION SYSTEMS
UNIT V

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included with this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

(NOTE: Use the transparency to enhance the information as needed.)

G. Provide students with job sheet.

H. Discuss and demonstrate the procedure outlined in the job sheet.

I. Integrate the following activities throughout the teaching of this unit:

1. Show films on transportation. Suggested films are listed on the next page.

2. Invite a travel agent to present a discussion on air travel. Include cost, schedules, service, and airlines companies in the presentation.

3. Invite a representative from a local pipeline or utility company to discuss the operation of a pipeline system. Include planning, organization, and controlling the product as they travel through the lines.

4. Discuss the advantages and disadvantages of each mode of transportation. Consider economics, speed, and environmental factors.

5. Discuss the different kinds of city, state, and federal government vehicles that are used in your community.

6. Using local telephone books, have students locate and list the different small package express companies that serve your area.

7. Trace a consumable food product through the different types of transportation involved in getting that product from the fields to the table.
SUGGESTED ACTIVITIES

8. Discuss now products such as televisions, refrigerators, stoves, hair dryers, radios, and other household goods get from the manufacturers to retail stores to consumers.

9. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

J. Give test.

K. Evaluate test.

L. Reteach if necessary.

REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

Films:

A. *Ballad of the Iron Horse*; 1970 #08355; color; 30 min

B. *Quest for Flight*. 1976: #01976: color: 23 min

(Note: A and B are available from:
Bureau of Audiovisual Instruction
P.O. Box 2093
Madison, Wisconsin 53701-2093
608-262-1644)

C. *Blue Sky Below My Feet — Adventures in Space Technology*
National 4-H Council
7100 Connecticut Ave.
Chevy Chase, MD 20815
301-961-2880
SUGGESTED SUPPLEMENTAL RESOURCES

D. *The Transportation Revolution: Story of America's Growth;* #03547; 19 minutes; color
 OSU AudioVisual Center
 Stillwater, Oklahoma 74078
 (405) 624-7216

E. *American Transportation: Horseback to Jet* (#266)
 Life Filmstrips
 Time-Life Building
 Rockefeller Center
 New York, NY 10020

Pamphlets and Charts

A. *List of FAA Aviation Education Material and The Main Parts of an Airplane*
 Department of Transportation
 Federal Aviation Administration
 Washington, DC 20591

B. *America Runs on Wheels and Trucks and Buses Serve America* (wall chart)
 Motor Vehicle Manufacturer's Association of the U.S., Inc.
 300 New Center Building
 Detroit, Michigan 48202

C. *Who in the World Needs Railroads?*
 Public Relations Department
 Atchison, Topeka, and Santa Fe Railway
 80 E. Jackson Boulevard
 Chicago, IL 60604

D. *Plane Folder* (pictures of planes)
 Delta Airlines, Inc.
 Public Relations Department
 Hartsfield-Atlanta International Airport
 Atlanta, GA 30320

E. *Airports and Jets*
 Department of Airports
 Public Relations
 Los Angeles International Airport
 1 World Way
 Los Angeles, CA 90009

F. *Big Load Afloat*
 The American Waterways Operators, Inc.
 1600 Wilson Boulevard
 Suite 1101
 Arlington, VA 22209
SUGGESTED ACTIVITIES

G. United States Road Symbol Signs
 U.S. Department of Transportation
 Federal Highway Administration
 Office of Public Affairs (HPA-1)
 400 Seventh Street, S.W.
 Washington, DC 20590

NATIONAL AGENCIES OFFERING OTHER EDUCATIONAL RESOURCES

A. Department of Transportation
 400 Seventh Street SW
 Washington, D.C. 20590

B. Department of Energy
 1000 Independence Avenue SW
 Washington, D.C. 20585

C. Environmental Protection Agency
 401 M Street SW
 Washington, D.C. 20460

D. National Aeronautics and Space Administration
 400 Maryland Avenue SW
 Washington, D.C. 20546
TRANSPORTATION SYSTEMS
UNIT V

INFORMATION SHEET

I. Terms and definitions

A. Cargo/freight — Solid, liquid, or gaseous material being moved from one place to another

B. Intercity — Between cities

C. Intermodal transportation — Moving passengers or cargo using more than one mode or method

D. Interstate — Between states

E. Intracity — Within the city

Intrastate — Within the state

G. On-site transportation — Moving people and/or materials over short distances within one particular area or building

H. Passengers — People who are being transported from place to place

I. Terminals — The beginning and ending points for loading and unloading passengers and cargo

J. Transportation — The movement of people and material

K. Vehicles — Transportation devices

Examples: Buses, cars, trucks, airplanes, railroad cars

II. Basic modes of transportation (Transparency 1)

A. Land

B. Water

C. Air

D. Space
INFORMATION SHEET

III. Types of intermodal transportation

A. Containerization — Shipping goods in large boxes which can be filled at one location, transported via different modes, and delivered to its destination without rehandling the goods

B. Freight forwarders — The middle persons in transportation who collect small loads from shippers, consolidate them into a large load, and forward the large load to the next receiver

Examples: Mistletoe, Beaver Express

C. Small package express service — The delivery of packages or parcels in the fastest and most direct way possible

Examples: U.P.S., Federal Express, Air Express

IV. Types of on-site transportation (Transparency 2)

A. Materials handling — Movement of raw and finished products inside the building using conveyors, cranes and hoists, industrial trucks, and fork lifts

B. People moving — Movement of individuals inside the building using escalators, elevators, and moving sidewalks

V. Highway transportation (Transparency 3)

A. Highways are used to move people and materials.

1. Moving people

 a. Personal transportation — Automobiles and trucks are used to move people to and from their work places and for recreation activities.

 (NOTE: People may also use specialized vehicles such as recreational vehicles [RVs] for their own use.)
INFORMATION SHEET

b. Commercial and government transportation — Buses and taxis are primarily used to move people intracity, intercity, and interstate for commercial profit or public service.

2. Moving materials
 a. Personal transportation — Automobiles and trucks may be used to move materials for an individual's own use.
 Examples: Groceries, household purchases
 b. Commercial transportation — Trucks, vans, and tractor-trailer combinations are primarily used to haul materials for profit.
 Examples: Refrigerated trailers are used to transport food items that may spoil, vans are used by appliance repair firms, tankers are used to transport liquid freight

B. Highways form an elaborate network of local, state, and interstate highways which connect all locations of the nation.

 (NOTE: These interconnections make highway transportation a very flexible form of transportation. If you have a vehicle and a license to operate that vehicle, you can travel in the United States when and where you wish.)

VI. Rail transportation
 A. Primarily used for commercial transportation of passengers and freight over long distances.
 1. Examples of commercial passenger lines — Amtrak and rapid transit trains
 2. Examples of commercial freight lines — B & O, Santa Fe, and Union Pacific
B. Railway systems consist of the railways and the buildings and areas used to classify, schedule, and maintain vehicles.

1. A railway has four parts — Right-of-way land, ballast, ties (or cross-ties) and rails

2. Stations — For loading and unloading passengers

3. Freight terminals — For loading and unloading freight

4. Classification yards — Complexes of tracks for joining railroad cars or for breaking up and regrouping cars to make more efficient use of the railways

5. Control center — For monitoring the switching of trains and cars by dispatchers

6. Engine/car shops — For major repairs and maintenance work
VII. Types of railway vehicles

A. Locomotives — Power the train

1. Most locomotive engines today are diesel-electric which use diesel fuel to power generators that supply electricity to traction motors that drive the wheels.

2. Other types include steam engines, gas turbine engines, and all electric engines.

B. Passenger cars — Carry passengers

C. Freight cars — Carry various types of freight

1. Standard flat car

2. Standard gondola car
INFORMATION SHEET

3. Single deck livestock car
4. Standard refrigerator car

5. Box car
6. Hopper — open

VIII. Types of commercial airlines
A. Nonscheduled — Charter planes
B. Scheduled
 1. International — Fly between U.S. and other countries
 2. Domestic — Fly to and from major airports of the U.S.
 3. Regional — Fly only specific regions of the U.S.
 4. Commuter — Fly from smaller towns and cities to major airports in the U.S.

IX. Types of airplanes
A. Prop planes — Powered by an engine-driven propeller

(Note: Propeller engines are very efficient at speeds below 560 kph [350 mph]. As speed increases above that, efficiency drops off.)
INFORMATION SHEET

B. Jet planes — Powered by jet engines

(Note: Jet engines are more efficient at high speeds.)

X. Parts of an airplane (Transparency 4)

A. Fuselage — Body of the airplane; holds the passengers and/or cargo

B. Engine (piston or jet) — Powers the airplane

C. Wing assembly — Provides lift to keep airplane airborne
 1. Wings
 2. Flaps
 3. Ailerons

D. Tail assembly (empennage) — Controls direction of airplane
 1. Vertical stabilizer
 2. Rudder
 3. Horizontal stabilizer
 4. Elevator

E. Landing gear — Allows for physical contact with the ground
XI. Space transportation

A. Is an exploration of the region outside the earth's atmosphere

B. Use rocket engines which carry their own fuel and oxygen supplies.

C. Use large launch vehicles to place spacecraft into orbit.
D. Spacecraft are classified as manned or unmanned.

1. The first man-made satellite was put into orbit on October 4, 1957 by the U.S.S.R. It was called Sputnik.

2. Unmanned space vehicles are used for communication, weather forecasting, and military reconnaissance.

3. The first person in space was Russian cosmonaut Yuri Gagarin on April 12, 1961. He orbited the earth one time.

4. The United States followed closely after this with manned flights by American astronauts Alan Shepard, Virgil Grissom, and John Glenn.

XII. U.S. space projects (1961-present) (Transparency 5)

A. Mercury (1961-63) — Put first American in space; had six, one-manned flights

B. Gemini (1965-66) — Orbited astronauts around the earth; accomplished docking and rendezvous procedures; had ten, two-manned flights

C. Apollo (1967-1972) — Put first Americans on the moon (1969); had eleven three-manned flights; conducted lunar (moon) walks and experiments

D. Skylab (1973-1979) — Made transition from space exploration to space utilization; was a space station for experiments that stayed in orbit for more than 6 years; 4 manned missions were made to Skylab.

E. Space shuttle (1976-Present) — Developed a space vehicle that could be reused
XIII. Characteristics of the space shuttle

A. There are four major elements in the shuttle system.
 1. The orbiter (shuttle) — Reusable aircraft resembling a jetliner
 Examples: Enterprise, Columbia, Challenger
 2. External tank — Holds the liquid propellants for main engines
 3. Two solid rocket boosters — Recoverable and reusable

B. Shuttle is launched vertically as its own liquid fuel rocket engines fire with the solid rocket boosters.
 (NOTE: The boosters are dropped off and recovered for reuse.)

C. The shuttle can carry up to seven people into orbit and up to 65,000 lbs. of cargo such as satellites, replacement parts, and other equipment. It also has a manipulator arm that serves many functions, including retrieving satellites in need of repair.

D. The shuttle reenters the atmosphere and descends as a glider.

XIV. Basic vessels used for water transportation

A. Boats — Smaller watercraft propelled by oars, sails, or engines for recreational or commercial use
 Examples: Ski boats, fishing boats, tugboats
B. Ships — Larger watercraft propelled by engines for commercial transportation of people or cargo

Examples: Luxury ocean liners, freighters

C. Barges — Flat, commercial cargo vessels that are pushed or pulled by engine-driven vessels (tugboats or towboats)

D. Military vessels — Vessels used by U.S. armed forces (especially the Navy) for defense and service of the country

Examples: Aircraft carriers, patrol boats, submarines, battleships

E. Specialized craft — Hydrofoils and hovercrafts

1. Hydrofoils — Crafts supported on wings (foils) that create lift for the boat by deflecting water over their surfaces

2. Hovercrafts — Vehicles that rely on a cushion of air between the hull or body and the surfaces over which it operates; can travel over land or water
INFORMATION SHEET

XV. Basic parts of a ship (Transparency 6)

A. Hull — Shell or plating
B. Keel — Lowermost part running the length of the ship
C. Bow — Forward end
D. Stern — Back section
E. Bridge — Control room
F. Decks — Layers or levels; main deck is uppermost

XVI. Uses of computers in transportation systems

A. Highway transportation
 1. Vehicle production and assembly
 2. Computerized ignition systems
 3. Computerized diagnostic and test equipment
 4. Computer controlled traffic flow
 5. Law enforcement
 6. Trucking company recordkeeping

B. Rail transportation
 1. Customer billing
 2. Reservations on passengers trains
 3. Switching operations
 4. Car identification

C. Air transportation
 1. Airplane design
 2. Air traffic control
 3. Airplane gauges and controls
 4. Airline reservations
INFORMATION SHEET

D. Space transportation
 1. Tracking space vehicles
 2. On-board navigation guidance systems
 3. On-board communication systems
 4. Life support monitoring
 5. Launching operations
 (NOTE: Space travel would be impossible without computers.)

E. Water transportation
 1. Navigation
 2. Scheduling passengers or cargo

F. Stationary transportation
 1. Controlling speed and distribution of products for pipelines and conveyors
 2. Monitoring load requirements in elevators and escalators
Basic Modes of Transportation

Land

Water

Air

Space
Types of On-Site Transportation

Conveyor

Fork Lift

Materials Handling

Escalator

Moving Sidewalk

Elevator

People Moving
Highway Transportation
Parts of an Airplane

- Horizontal Stabilizer
- Vertical Stabilizer
- Rudder
- Elevator
- Alleron
- Flap
- Fuselage
- Engine
- Propeller
- Spinner
- Landing Gear
- Wing
U.S. Space Projects

Mercury

Gemini

Apollo

Space Shuttle

Skylab
Basic Parts of a Ship

- Bow
- Hull
- Deck
- Bridge
- Keel
- Stern
TRANSPORTATION SYSTEMS
UNIT V

ASSIGNMENT SHEET #1 — SELECT MODES OF TRANSPORTATION FOR GIVEN SITUATIONS

NAME__SCORE__________

A. Directions: There are many factors to consider when choosing the mode of transportation you will use to carry cargo. You will examine several of these factors, then make a decision regarding which mode to use in a given situation.

B. Problem: Assume that you have a one-and-one-half ton load of break bulk cargo that you need to move from New Orleans, Louisiana to New York City, New York. You may choose between four modes of commercial transportation. You call four different companies. They each quote you a price for their services and tell you how much time it will take. The shipping costs and times for each company are:

- Speedy Shipping — $78 per ton, 7 days
- Rapid Railroad — $156 per ton, 31/2 days
- Fast Trucking — $247 per ton, 35 hours
- Lightning Air Cargo — $2500 per ton, 21/2 hours

C. Procedure:

1. Calculate the cost for each mode. Write your answers in the proper spaces on Figure 1.

 FIGURE 1

<table>
<thead>
<tr>
<th>Mode</th>
<th>Route</th>
<th>Company</th>
<th>Cost</th>
<th>Time</th>
<th>Distance</th>
<th>Average Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship</td>
<td></td>
<td>Speedy Shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td></td>
<td>Rapid Railroad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck</td>
<td>********</td>
<td>Fast Trucking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>--------</td>
<td>Lightning Air Cargo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Calculate the time in hours for each mode. Write your answers on the same chart.

3. Measure each carrier's route and determine the distance in miles, using a ruler and the map, Figure 2. Write your answers on the chart.
ASSIGNMENT SHEET #1

4. Calculate the average speed of each mode using the formula:

 a. \[\text{Speed} = \frac{\text{Distance}}{\text{Time}} \]

 b. Write your answers on the chart. (Figure 1)

5. Study Figure 3. Think about each type of cargo, and decide which mode of transportation you would use to transport each type of cargo from your present community to New York City. Tell why you would use it. Write your answers in the proper spaces on the following chart.

 FIGURE 3

<table>
<thead>
<tr>
<th>Cargo To Be Shipped</th>
<th>Mode</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human heart for transplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New motorcycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children's clothing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRANSPORTATION SYSTEMS
UNIT V

ANSWERS TO ASSIGNMENT SHEET #1

FIGURE 1

<table>
<thead>
<tr>
<th>Mode</th>
<th>Route</th>
<th>Company</th>
<th>Cost</th>
<th>Time</th>
<th>Distance</th>
<th>Average Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship</td>
<td>----</td>
<td>Speedy Shipping</td>
<td>$117.00</td>
<td>7 days</td>
<td>2025</td>
<td>289.3 mpd</td>
</tr>
<tr>
<td>Rail</td>
<td>----</td>
<td>Rapid Railroad</td>
<td>$234.00</td>
<td>31/2 days</td>
<td>1500</td>
<td>428.5 mpd</td>
</tr>
<tr>
<td>Truck</td>
<td>****</td>
<td>Fast Trucking</td>
<td>$370.50</td>
<td>35 hrs.</td>
<td>1220</td>
<td>34.9 mph</td>
</tr>
<tr>
<td>Air</td>
<td>-----</td>
<td>Lightning Air Cargo</td>
<td>$3750.00</td>
<td>21/2 hrs.</td>
<td>1200</td>
<td>480 mph</td>
</tr>
</tbody>
</table>

FIGURE 3 — Answers will vary. All modes may not be feasible in your area. The human heart should be transported by air because of the need for speed in a life and death situation. The fresh fruits may also need to be sent by air depending on distance to New York. All other products should be sent by less expensive modes — truck, ship, or train, depending on access to these modes in your area.
TRANSPORTATION SYSTEMS
UNIT V

JOB SHEET #1 — SET UP AND OPERATE A PIPELINE SIMULATION

Different products are pumped through pipeline in "batches." Petroleum products in neighboring "batches" must have different viscosities (thicknesses). At the final destination the pure parts of each batch are ready to use, but the intermixed parts must be stored and allowed to settle. Then these can be separated and used. In this activity, you will simulate how batches of different petroleum products are shipped through a pipeline.

A. Tools and materials

1. 2 - 35 cc Injectors
2. 1 - Two port aquarium valve
3. 3 - Pieces of clear, flexible plastic tubing, aquarium air line (two short pieces, one long piece)
4. 3 - glass jars, small
5. Motor oil
6. Kerosene

SAFETY NOTE: Follow all rules of good safety!

B. Procedure

(NOTE: Pump two batches of liquid through a line and separate the pumped liquids into three separate storage tanks: one with pure motor oil, one with intermixed motor oil and kerosene, and one with pure kerosene.)

1. Set up the valve and tubing as shown in Figure 1.

FIGURE 1

Valve Closed

Short Pieces of Tubing

Valve Open

Long Piece of Tubing

Stopper or Plug

Valve and Tubing Setup

257
JOB SHEET #1

2. Fill one injector with 35 cc of motor oil.

3. Fill the other injector with 35 cc of kerosene.

4. Close both valves.

5. Connect each injector, carefully, to one of the short pieces of tubing as shown in Figure 2.

FIGURE 2
JOB SHEET #1

6. Complete setup as shown in Figure 3.

7. Place the open end of the long tube (pipeline) into the first jar.

8. Open the valve below the injector containing the motor oil.

9. Push down the plunger on the injector.

10. Close the valve when the plunger is as far down as it will go.

11. Open the valve below the injector containing kerosene.

12. Push down the plunger on the injector.

(CAUTION: Closely watch the material flowing through the tube.)

13. Move the tube from the first jar into the second jar, when the intermixed material reaches the end of the tube.

14. Switch the tube into the third jar as soon as you have pure kerosene flowing through the pipeline.
JOB SHEET #1

15. Observe the materials in the jars and answer the questions:

(NOTE: Consider the entire amount of liquid — both motor oil and kerosene — as 100%.)

a. Estimate the percentage of liquid that is pure motor oil (amount in the first jar). ________

b. Estimate the percentage that is pure kerosene (third jar). ________

c. Estimate the percentage that is intermixed material (second jar). ________

d. How long did it take for the material in the second jar to settle? ________

16. Clean, disassemble, and put away the equipment.

TRANSPORTATION SYSTEMS
UNIT V

PRACTICAL TEST
JOB SHEET #1 — SET UP AND OPERATE A PIPELINE SIMULATION

STUDENT'S NAME ___________________________ DATE ____________
EVALUATOR'S NAME _________________________ ATTEMPT NO. _____

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under "Process Evaluation" must receive a "Yes" for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the "Yes" or "No" blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

1. Checked out proper tools and materials. YES NO
2. Set up valves and tubing. YES NO
3. Filled injectors — 1 with kerosene, 1 with motor oil. YES NO
4. Closed valves. YES NO
5. Connected injectors to short tubing. YES NO
6. Put long tube end into first jar. YES NO
7. Opened valve to motor oil and pushed plunger. YES NO
8. Closed valve to motor oil. YES NO
9. Opened valve to kerosene. YES NO
10. Pushed plunger/moved tube to second jar when intermixed material reached end of tube. YES NO
11. Switched tube to third jar when pure kerosene began flowing through pipeline. YES NO
12. Noted observations. YES NO
13. Checked in/put away tools and materials. YES NO
14. Cleaned the work area. YES NO
15. Used proper tools correctly. YES NO
16. Performed steps in a timely manner (____hrs. ____min. ____sec.) YES NO
17. Practiced safety rules throughout procedure. YES NO
18. Provided satisfactory responses to questions asked. YES NO

EVALUATOR'S COMMENTS: ___
JOB SHEET #1 PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Consistent Tubes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup With Illustrated Example Wrong Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubes Too Short Missing Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syringe Filled Correctly/Performed in Correct Order</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment Performed in Proper Sequence Syringes in Wrong Order</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform Sequence Did Not Switch Tube</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To Proper Jars</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Recorded Neatly/Estimates Accurately</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noted Observations Estimates Acceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Acceptable Records Inaccurate/Unacceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR’S COMMENTS: ____________________________

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
TRANSPORTATION SYSTEMS
UNIT V

NAME ____________________________ SCORE ____________________________

TEST

1. Match the terms on the right with the correct definitions.

 _____a. Within the city
 _____b. Between states
 _____c. Solid, liquid, or gaseous material being moved from one place to another
 _____d. People who are being transported from place to place
 _____e. The beginning and ending points for loading and unloading passengers and cargo
 _____f. The movement of people and materials
 _____g. Transportation devices
 _____h. Moving passengers or cargo using more than one mode or method
 _____i. Moving people and/or materials over short distances within one particular area or building

 1. Vehicles
 2. Terminals
 3. Intrastate
 4. Interstate
 5. Cargo/freight
 6. Intercity
 7. Intracity
 8. Passengers
 9. Transportation
 10. On-site transportation
 11. Intermodal transportation

2. List the four basic modes of transportation.

 a. __
 b. __
 c. __
 d. __
3. Match types of intermodal transportation on the right with the correct uses.

 _______a. Shipping goods in large boxes, which can be filled at one location, transported via different modes, and delivered to its destination without rehandling the goods

 _______b. The middle persons in transportation who collect small loads from shippers, consolidate them into a large load, and send the large load to the next receiver

 _______c. The delivery of packages or parcels in the fastest and most direct way possible

4. Complete the following statements concerning types of on-site transportation by supplying appropriate word or words from the box on the right.

 a. People-moving — Movement of _______ _______ inside the building using _______ _______ and other equipment.

 b. Materials-handling — Movement of _______ _______ inside the building using _______ _______ and other equipment.

5. Complete the following statements concerning highway transportation by circling the correct words.

 a. Buses and taxis are primarily used for (personal, commercial) transportation of people.

 b. Automobiles are primarily used for (personal, commercial) transportation of people and materials.
TEST

6. Complete statements concerning rail transportation by supplying the correct word from the word box.

a. Rail transportation is primarily used for commercial transportation of passengers and freight over distances.

b. An example of a commercial passenger line is

c. An example of a commercial freight line is

d. A railway has four parts — Right-of-way land, ballast, ties (or cross-ties) and

e. Stations are for loading and unloading

f. Freight are for loading and unloading freight.

g. are complexes of tracks for joining railroad cars or for breaking up and regrouping cars to make more efficient use of the railways.

h. are for monitoring the switching of trains and cars by dispatchers.

i. Engine/car shops are for major and maintenance work.

7. Identify types of railway vehicles by placing the correct number in the appropriate blank.

____a.

1. Freight car
2. Locomotive
3. Passenger car
8. Match types of commercial airlines on the right with the correct descriptions.

_____a. Charter planes 1. Domestic
_____b. Fly between U.S. and other countries 2. International
_____c. Fly to and from major airports of the U.S. 3. Nonscheduled
_____d. Fly only specific regions of the U.S. 4. Regional
_____e. Fly from smaller towns and cities to major airports in the U.S. 5. Commuter
9. Distinguish between the basic types of airplanes by placing an "X" next to the illustration of a jet plane and an "O" next to the prop plane.

_____ a.

_____ b.
TEST

10. Identify parts of an airplane by placing the appropriate answers in the blanks. Choose your answers from the following: Aileron, elevator, engine, flap, fuselage, horizontal stabilizer, landing gear, rudder, vertical stabilizer, wing.

![Diagram of an airplane with labeled parts]

11. Complete statements concerning space transportation by circling the correct words.

a. Space transportation is an exploration of the region (inside, outside) the earth's atmosphere.

b. Use (jet, rocket) engines which carry their own fuel and oxygen supplies.

c. Use (small, large) launch vehicles to place spacecraft into orbit.

d. The first man-made satellite was put into orbit on October 4, (1957, 1967) by the U.S.S.R.

e. The first man-made satellite was called (Telstar, Sputnik).

f. Unmanned space vehicles are used for communication, (weather, political) forecasting, and military reconnaissance.

g. The first person in space, Russian cosmonaut Yuri Gagarin, orbited the earth (1 time, 10 times).

h. The United States followed closely after this with manned flights by American astronauts Alan Shepherd, Virgil Grissom, and (John Glenn, Glenn Ford).
12. Match U.S. space projects on the right with their correct contributions.

_____a. Orbited astronauts around the earth; had ten, two-manned flights
1. Apollo

_____b. Made transition from space exploration to space utilization; was a space station for experiments
2. Gemini

_____c. Put first Americans on the moon (1969)
3. Mercury

_____d. Developed a space vehicle that could be reused
4. Skylab

_____e. Put first American in space; had six, one-manned flights
5. Space shuttle

13. Complete statements concerning the characteristics of the space shuttle by circling the appropriate words.

a. The orbiter (is, is not) reusable.

b. The external tank holds the (liquid, solid) propellants for the main engines.

c. There are (2, 4) solid rocket boosters.

d. Shuttle is launched (horizontally, vertically).

e. The shuttle can carry up to (2, 7) people in orbit and up to 65,000 lbs. of cargo such as satellites, replacement parts, and other equipment. It also has a manipulator arm that serves many functions, including retrieving satellites in need of repair.

f. The shuttle reenters the atmosphere and lands (as a glider, in the ocean).

14. Match basic vessels for water transportation on the right with the correct descriptions.

_____a. Smaller watercraft propelled by oars, sails, or engines for recreational or commercial use
1. Barges

_____b. Hydrofoils and hovercrafts
2. Boats

_____c. Larger watercraft propelled by engines for commercial transportation of people or cargo
3. Military vessels

_____d. Flat, commercial cargo vessels that are pushed or pulled by engine-driven vessels (tugboats or towboats)
4. Ships

_____e. Vessels used by U.S. armed forces (especially the Navy) for defense and service of the country
5. Specialized craft
15. Identify the basic parts of a ship by placing the correct answers on the blanks provided. Select your answers from the following list: Bow, bridge, deck, hull, keel, port, starboard, stern

16. List two uses of computers for each of the following transportation systems.

a. Highway transportation
 1) __
 2) __

b. Rail transportation
 1) __
 2) __

c. Air transportation
 1) __
 2) __

d. Space transportation
 1) __
 2) __
a. Water transportation:
 1) ___
 2) ___

f. Stationary transportation
 1) ___
 2) ___

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

17. Select modes of transportation for given situations. (Assignment Sheet #1)

18. Demonstrate the ability to set up and operate a pipeline simulation. (Job Sheet #1)
TRANSPORTATION SYSTEMS
UNIT V

ANSWERS TO TEST

1. a. 7 b. 4 c. 5 d. 8 e. 2 f. 9 g. 1 h. 11 i. 10

2. a. Land b. Water c. Air d. Space

3. a. 2 b. 3 c. 1

4. a. Individuals, escalators b. Products, conveyors

5. a. Commercial b. Personal

7. a. 2 b. 3 c. 1

8. a. 3 b. 2 c. 1 d. 4 e. 5

9. a. O b. X
ANSWERS TO TEST

10. a. Engine
 b. Aileron
 c. Vertical stabilizer
 d. Flap
 e. Fuselage
 f. Landing gear
 g. Wing
 h. Horizontal stabilizer
 i. Rudder
 j. Elevator

11. a. Outside
 b. Rocket
 c. Large
 d. 1957
 e. Sputnik
 f. Weather
 g. 1 time
 h. John Glenn

12. a. 2
 b. 4
 c. 1
 d. 5
 e. 3

13. a. Is
 b. Liquid
 c. 2
 d. Vertically
 e. 7
 f. As a glider

14. a. 2
 b. 5
 c. 4
 d. 1
 e. 3

15. a. Keel
 b. Bow
 c. Hull
 d. Deck
 e. Bridge
 f. Stern
ANSWERS TO TEST

16. Any two uses from each of the following areas:
 a. Highway transportation
 1) Vehicle production and assembly
 2) Computerized ignition systems
 3) Computerized diagnostic and test equipment
 4) Computer controlled traffic flow
 5) Law enforcement
 6) Trucking company recordkeeping
 b. Rail transportation
 1) Customer billing
 2) Reservations on passengers trains
 3) Switching operations
 4) Car identification
 c. Air transportation
 1) Airplane design
 2) Air traffic control
 3) Airplane gauges and controls
 4) Airline reservations
 d. Space transportation
 1) Tracking space vehicles
 2) On-board navigation guidance systems
 3) On-board communication systems
 4) Life support monitoring
 5) Launching operations
 e. Water transportation
 1) Navigation
 2) Scheduling passengers or cargo
 f. Stationary transportation
 1) Controlling speed and distribution of products for pipelines and conveyors
 2) Monitoring load requirements in elevators and escalators

17. Evaluated to the satisfaction of the instructor

18. Performance skills evaluated to the satisfaction of the instructor
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

UNIT OBJECTIVE

After completion of this unit, the student should be able to distinguish between the six technical subsystems and design and build a model racer. Competencies will be demonstrated by completing the assignment sheets, job sheet, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to transportation technical subsystems with the correct definitions.
2. Match types of transportation technical subsystems with the correct descriptions.
3. Complete statements concerning the elements of propulsion.
4. Match types of suspension systems with the correct descriptions.
5. Complete statements concerning types of control systems.
6. Distinguish between guidance systems.
7. List considerations of structural systems.
8. Complete statements concerning support systems.
9. Identify technical subsystems. (Assignment Sheet #1)
10. Design a model racer. (Assignment Sheet #2)
11. Demonstrate the ability to build a model racer. (Job Sheet #1)
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Provide students with objective sheet.

C. Discuss unit and specific objectives.

D. Provide students with information and assignment sheets.

E. Discuss information and assignment sheets.

F. Provide students with job sheet.

G. Discuss and demonstrate the procedure outlined in the job sheet.

H. Integrate the following activities throughout the teaching of this unit:

1. Have students participate in the student organization activity to build 1/10 scale radio-controlled cars.

2. Have students compare the technical subsystems of the automobile and the bicycle for similarities and differences.

3. Discuss the authority and responsibilities of the many state and federal regulatory agencies for transportation.

 Examples: FAA, ICC, FRA

4. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

I. Give test.

J. Evaluate test.

K. Reteach if necessary.
REFERENCES USED IN DEVELOPING THIS UNIT

TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

INFORMATION SHEET

I. Terms and definitions
 A. Guidance — Directing a body's course of travel
 B. Guideways — Pathways for transportation vehicles
 C. Linear induction — A magnetic coil is attached to the vehicle and the "rotor" becomes the rails along which the train moves
 D. MagLev train — Magnetically levitated system where a magnetic force lifts the train above the track and then pushes it forward by another power source
 E. Propulsion — Moving a body forward
 F. Suspension — Support of a framework

II. Types of transportation technical subsystems (Transparency 1)
 A. Propulsion — Process of causing a body to move by exerting a natural or mechanical force
 B. Suspension — Methods employed to suspend a vehicle in or on a given environmental medium
 C. Control — Mechanical or automated procedures used to control a vehicle and/or vehicular system
 D. Guidance — Information required to operate a vehicle or vehicular system in a prescribed path
 E. Structure — Structural makeup and design of vehicles and other systems' physical components
 F. Support — Operation, maintenance, and regulation of total system

III. Elements of propulsion (Transparency 2)
 (NOTE: These elements work as a system to propel the transportation vehicle.)
 A. Energy sources — Chemical, electrical, heat, light, nuclear, mechanical
 B. Energy converters — Internal and external combustion engines, generators, motors
 C. Power converters and transmitters
 1. Mechanical power — Uses gears, belts, chains, and pulleys to transmit power
INFORMATION SHEET

2. Fluid power — Uses pressurized gases or liquids to transmit power through tubes and hoses

3. Electrical power — Uses conducting wires or air and electrical control devices to transmit power

IV. Types of suspension systems (Transparency 3)

A. Mechanical suspension — Uses mechanical devices for suspension

Examples: Wheels on rails, wheels on highways

B. Magnetic suspension — Uses permanent magnets or electromagnets for suspension

Example: MagLev Train

C. Fluid suspension — Uses air (aero) or water (hydro) systems for suspension

Examples: Hydrofoils, airplanes, hot air balloons

1. Aerostatic — Force exerted when gases are in equilibrium

2. Hydrostatic — Force exerted when liquids are in equilibrium

3. Hydrodynamic — Force exerted by liquids in motion

4. Aerodynamic — Forces exerted by gases in motion

V. Types of control systems (Transparency 4)

A. Vehicular controls

1. On-off (arresting) control devices — Examples include brakes, air flaps, and on-off switches.

2. Direction, force, and speed control devices — Examples include rudders, steering wheels, accelerators, and electronic monitors.

B. System controls

1. On-off control devices — Examples include clutches and brakes on mechanical systems, gate and globe valves on fluid systems, and switches on electrical systems.

2. Direction, force, and speed control devices — Examples include gears and pulleys on mechanical systems, check valves and control/relief valves on fluid systems, and diodes, fuses, and transformers on electrical systems.

(NOTE: Control devices may be manually or electronically activated from either local or remote locations.)
VI. Guidance systems (Transparency 5)

A. Physical guideways — Highways, rails, tubes, canals, and cables

B. On-board and external guidance devices and systems — Includes sensing devices, coding systems, signals, transmitting and receiving systems, and storage and retrieval systems.

1. On-board — Examples include radios, speedometers, gauges, electronic sensors, automatic pilot, radar, and computers.

2. External guidance — Examples include traffic lights, highway signs, water navigation markers, railroad signals, radar, and computers.

VII. Structural systems (Transparency 6)

A. Structure of vehicle

1. Materials used for constructing vehicle

 Examples: Steel, aluminum, fiberglass

2. Methods of constructing vehicle

 Examples: Welding, riveting, molding, forging

3. Design considerations

 Examples: Purpose of vehicle, performance, safety, cost

B. Structure of guideways

1. Materials used for constructing guideways

 Examples: Steel, concrete

2. Methods of constructing guideways

 Examples: Pouring concrete, welding, riveting

3. Design considerations

 Examples: Purpose of guideway, environmental impact, safety, cost
INFORMATION SHEET

VIII. Support systems (Transparency 7)

A. Physical service and maintenance facilities
 1. Terminals
 2. Repair shops
 3. Loading/unloading docks

B. Personnel — All employees involved in transportation industries including management and support personnel

C. Regulations — All state and federal regulatory agencies which issue the licenses and enforce the laws and regulations of transportation industries

Examples: Federal Aviation Administration (FAA), department of transportation (state and federal), U.S. Coast Guard, Army Corps of Engineers, Civil Aeronautics Board, Interstate Commerce Commission, Federal Highway Administration, Federal Railroad Administration
Transportation Technical Subsystems

- Propulsion
- Structure
- Suspension
- Control
- Guidance
- Support

Auto Repair Shop
State Dept. of Transportation
Elements of Propulsion

Mechanical
Heat
Chemical
Electrical
Nuclear
Light

Energy Sources

Energy Converters

Power Converters and Transmitters
Suspension Systems

Mechanical Suspension

Magnetic Suspension

Fluid Suspension
Control Devices

On-Off Control

Direction Control

Force and Speed Control
Guidance Systems

Physical Guideways

On-Board Guidance

External Guidance
Structural Systems

Structure of Vehicle

Structure of Guideways
Support Systems

Service and Maintenance Facilities

Personnel

Regulations
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

ASSIGNMENT SHEET #1 — IDENTIFY TECHNICAL SUBSYSTEMS

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directions: Choose a vehicle system and identify the technical subsystems used by that vehicle.

Vehicle System: __

1. **Propulsion system** (What are the energy sources used and how are they converted to power and transmitted?)

 __
 __
 __

2. **Suspension system** (What type of suspension system is used, what parts are involved?)

 __
 __
 __

3. **Control system** (What control devices are used in the vehicle and what control devices are used for the overall system?)

 __
 __
 __

4. **Guidance system** (What devices are used for physical, on-board, and external guidance?)

 __
 __
 __

 287
ASSIGNMENT SHEET #1

5. **Structural system** (What materials and methods were used to construct the vehicle and the guideways?)

6. **Support system** (What facilities, personnel, and regulations are used to support the vehicle system?)
ASSIGNMENT SHEET #2 — DESIGN A MODEL RACER

NAME ___________________________ SCORE ___________

Directions: Design a model racer using the specifications on the attached sheet for maximum and minimum dimensions.

(NOTE: This would be the appropriate time to decide whether to obtain a kit form or to do the complete process.)

1. Design the rough sketch.
2. Draw the final sketch.
3. Check for correct specifications.
ASSIGNMENT SHEET #2

Race Car Specifications

1. Maximum dimensions for Body Blank.
 A. Length — 305 mm.
 B. Front height — 20 mm.
 C. Rear height — 70 mm.
 D. Bottom to centerline of power plant chamber — 35 mm.
 E. Width — 42 mm.
 F. Power Plant Chamber — 20 mm diameter, 51 mm depth, and drilled parallel to bottom surface. A minimum of 3 mm thickness around power plant housing must be maintained on all race cars for safety purposes. The position of the power plant must be as shown in the drawing.
 G. The body of the model shall be one piece all-wood construction, and no parts (such as body strengtheners, fenders, plastic canopy, exhausts, or air foils) may be attached to or enclosed within the race cars. Bearings and lubricants may be used in construction.

2. Related dimensions.

<table>
<thead>
<tr>
<th></th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axles (diam.)</td>
<td>3 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>Axles (length)</td>
<td>70 mm</td>
<td>42 mm</td>
</tr>
<tr>
<td>Axles Bearing (diam.)</td>
<td>4.5 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>Axle Hole (diam.)</td>
<td>4.5 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>Axle Hole (position above body bottom)</td>
<td>9 mm</td>
<td>7 mm</td>
</tr>
<tr>
<td>Axle Hole (position from either end of body)</td>
<td>10 mm</td>
<td>9 mm</td>
</tr>
<tr>
<td>Brass Spacer Bearing (diam.)</td>
<td>9 mm</td>
<td>8 mm</td>
</tr>
<tr>
<td>Body (length)</td>
<td>305 mm</td>
<td>200 mm</td>
</tr>
<tr>
<td>Body (height at rear with wheels)</td>
<td>75 mm</td>
<td>56 mm</td>
</tr>
<tr>
<td>Body (mass with wheels)</td>
<td>170.10 g</td>
<td>30 g</td>
</tr>
<tr>
<td>Body (width at axles)</td>
<td>42 mm</td>
<td>35 mm</td>
</tr>
<tr>
<td>Power Plant Housing (diam.)</td>
<td>20 mm</td>
<td>19 mm</td>
</tr>
<tr>
<td>Power Plant C/L² (from body bottom)</td>
<td>35 mm</td>
<td>31 mm</td>
</tr>
<tr>
<td>Screw Eye (eyelit inside diam.)</td>
<td>5 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>Screw Eyes (2) on C/L² of bottom, distance apart</td>
<td>270 mm</td>
<td>155 mm</td>
</tr>
<tr>
<td>Wheels, Front (diam.)</td>
<td>37 mm</td>
<td>32 mm</td>
</tr>
<tr>
<td>Wheels, Front (width at greatest diam.)</td>
<td>5 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Wheels, Rear (diam.)</td>
<td>46 mm</td>
<td>36 mm</td>
</tr>
<tr>
<td>Wheels, Rear (width at greatest diam.)</td>
<td>18 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>270 mm</td>
<td>105 mm</td>
</tr>
</tbody>
</table>

1Assembled without CO₂ cartridge

2Centerline

3. Wheels are to be made entirely from plastic.
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT V!

JOB SHEET #1 — BUILD A MODEL RACER

A. Tools and materials

1. Wood block (1\%\%" x 2\%\%" x 12") or (42 mm x 70 mm x 300 mm)
2. Templates and carbon paper
3. Pencil
4. Masking tape
5. Rubber bands
6. 1 - half round cabinet file
7. Coarse, medium, and fine sandpaper
8. Pliers
9. Scratch awl
10. \%\%" twist bit
11. Half round wood rasp
12. C-clamps
13. Hand drill or drill press*
14. Scroll saw, coping saw, or bandsaw*

(NOTE: "If power tools are used, have your teacher explain the proper and safe use before going any further. BE CAREFUL and FOLLOW SAFETY PRECAUTIONS!")

15. \%\%" spade bit

(NOTE: Entire kit may be purchased from Pitsco, Inc., Box 1328, Pittsburg, KS 66762.)

16. Screw eyes (2)
17. Straw tubes
18. Washers (4)
19. Plastic wheels (2 front, 2 rear)
JOB SHEET #1

20. Axles (Two 1/8” metal rod axles)

FIGURE 1

Metal Rod Axles
4 Wheels
CO₂ Cartridge
2 Paper Tubes (Straws)
4 Washers
2 Screw Eyelets

B. Procedure

1. Complete Assignment Sheet #2 on designing the racer.

2. Make a rough sketch showing two views of your car.

3. Using a grid sheet, draw a full scale model of your car (top and side).

 (NOTE: Students should check drawings at this point for the following:

 □ Is the front axle in the correct position?
 □ Is rear axle in the correct position?
 □ Is there sufficient room for CO₂ cartridge to fit in correct position?
 □ Does design fit within the height, width, and length dimensions allowed in Assignment Sheet #2?

4. Place drawing and carbon paper together and cut out drawing and carbon paper with scissors.

 (NOTE: These are templates or pattern pieces.)

5. Tape side-view template onto wooden block and trace around template with pencil; remove template.

6. Tape the top-view template to the bottom of the block and trace around template with pencil; remove template.
Job Sheet #1

7. Mark axle locations.

8. Drill axle holes.
 (NOTE: Check limitations for correct position. Have instructor's approval before using any power equipment!)

 (NOTE: Check limitation guides for exact placement.)

10. Cut the patterns using coping saw or bandsaw.

11. Shape the top view using wood rasp and a file.

12. Smooth body by sanding.
 (NOTE: First use coarse (60 grit) sandpaper, then medium sandpaper (100 grit).)

13. Cut and install soda straw bearings.

14. Place washers in position.

15. Force wheels on axles.

16. Check wheels for secure attachment and to see that axles turn freely.

17. Determine exact location of screw eyes (see Figure 1).

18. Make holes using a scratch awl. Use pliers to insert and tighten screw eyes.

19. Look through screw eyes to check for interference.

20. Sand and smooth body (starting with 150 grit and finishing with 220 grit, after removing wheels, axles, and screw eyes).

21. When car feels smooth, paint with a fast drying spray paint, at least two coats.
 (NOTE: Car should be placed on a dowel rod, inserted in engine hole to allow free access.)

22. Check paint for flaws, and make repairs if needed.

23. Place decals and numerals in proper place.

24. Reinsert wheels, axles, and screw eyes.
 (NOTE: Check wheels for flaws. Use fine sandpaper to smooth any bumps or irregularities. Graphite may be rubbed along axle to allow faster turning.)

25. Test car.
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

PRACTICAL TEST
JOB SHEET #1 — BUILD A MODEL RACER

STUDENT'S NAME ___________________________ DATE ____________
EVALUATOR'S NAME ___________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

<table>
<thead>
<tr>
<th>The student:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Checked out proper tools and materials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Completed assignment sheet on designing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Made rough sketches and drawings (full scale) of car (two views).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Placed drawing and carbon together and cut out with scissors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Taped and traced side and top templates onto car.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Marked axle locations, and drilled axle holes and hole for CO₂ engine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Cut out car with coping or band saw.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Shaped top view with wood rasp and file and smoothed body by sanding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Cut and installed soda straw bearings, placed wheels in position, and forced wheels on axles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Checked wheels for secure attachment and free wheeling.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Determined and marked location for screw eyes, and made holes with scratch awl in screw eyes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Checked screw eyes for interference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Sanded and painted body, and placed decals and numerals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Reinserted wheels, axles, and screw eyes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Tested car.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Cleaned the work area.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS: __
PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a “3” for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designed within specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyelets too close</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axles incorrect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car too short</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axle/Power plant within specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too heavy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartridge housing below minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut into power plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finishing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth/No flaws</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealed and sanded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needs sanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needs filing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time/Performance OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axles require lubrication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheels out of balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyelets not secure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR'S COMMENTS:

PERFORMANCE EVALUATION KEY

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 — Skilled — Can perform job with no additional training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 — Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 — Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 — Unskilled — Is familiar with process, but is unable to perform job.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

NAME ___________________________ SCORE ___ ____________

TEST

1. Match the terms on the right with the correct definitions.
 _____a. Directing a body's course of travel
 1. MagLev train
 _____b. Pathways for transportation vehicles
 2. Suspension
 _____c. A magnetic coil is attached to the vehicle and the "rotor" becomes the rails along which the train moves
 3. Guideways
 _____d. Magnetically levitated system where a magnetic force lifts the train above the track and then pushes it forward by another power source
 4. Propulsion
 _____e. Moving a body forward
 5. Guidance
 _____f. Support of a framework
 6. Linear induction

2. Match the types of transportation technical subsystems on the right with the correct descriptions.
 _____a. Process of causing a body to move by exerting a natural or mechanical force
 1. Structure
 _____b. Methods employed to suspend a vehicle in or on a given environmental medium
 2. Guidance
 _____c. Mechanical or automated procedures used to control a vehicle and/or vehicular system
 3. Propulsion
 _____d. Information required to operate a vehicle or vehicular system in a prescribed path
 4. Suspension
 _____e. Structural makeup and design of vehicles and other systems' physical components
 5. Support
 _____f. Operation, maintenance, and regulation of total system
 6. Control
3. **Complete statements concerning the elements of propulsion by filling in the appropriate word(s) in the blanks.**

a. Energy ________ — Chemical, electrical, heat, light, nuclear, mechanical

b. Energy ________ — Internal and external combustion engines, generators, motors

c. ________ power — Uses gears, belts, chains, and pulleys to transmit power

d. ________ power — Uses pressurized gases or liquids to transmit power through tubes and hoses

e. ________ power — Uses conducting wires or air and electrical control devices to transmit power

Converters
1. **Electrical**
2. **Fluid**
3. **Mechanical**
Sources
Transmitters

4. **Match types of suspension systems on the right with their correct descriptions.**

 ______ a. Uses devices such as wheels and axles for suspension

 ______ b. Uses permanent magnets or electromagnets for suspension

 ______ c. Uses air or water systems for suspension

5. **Complete the following statements concerning types of control systems by circling the correct words.**

a. An example of an on-off control device on a vehicle is (brakes, steering wheels).

b. An example of a device for controlling direction on a vehicle is (air flaps, rudders).

c. An example of an on-off control device on a fluid power system is (fuses, globe valves).

d. Switches are used on electrical systems for (on-off, direction, force) control.

6. **Distinguish between guidance systems by writing a “P” for physical and “O/E” for onboard and external guidance systems in the appropriate blank.**

 ______ a. Highways, rails, tubes, canals, and cables

 ______ b. Sensing devices, coding systems, signals, transmitting and receiving systems, and storage and retrieval systems
TEST

7. List the three considerations for the structural systems of both vehicles and guideways.
 a.
 b.
 c.

8. Complete the following statements concerning support systems by correctly filling in the appropriate word(s) in the blank.
 a. Physical service and maintenance facilities used for support include __________, __________, and loading/unloading docks.

 b. __________ are all employees involved in transportation industries including management and support people.

 c. Regulations are all state and federal regulatory agencies which issue the __________ and enforce the __________ and regulations of transportation industries.

 (NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

9. Identify technical subsystems. (Assignment Sheet #1)

10. Design a model racer. (Assignment Sheet #2)

11. Demonstrate the ability to build a model racer. (Job Sheet #1)
TRANSPORTATION TECHNICAL SUBSYSTEMS
UNIT VI

ANSWERS TO TEST

1. a. 5
 b. 3
 c. 6
 d. 1
 e. 4
 f. 2

2. a. 3
 b. 4
 c. 6
 d. 2
 e. 1
 f. 5

3. a. Sources
 b. Converters
 c. Mechanical
 d. Fluid
 e. Electrical

4. a. 3
 b. 1
 c. 2

5. a. Brakes
 b. Rudders
 c. Globe valves
 d. On-off

6. a. P
 b. O/E

7. a. Materials
 b. Methods
 c. Design considerations

8. a. Terminals, repair shops
 b. Personnel
 c. Licenses, laws

9-10. Evaluated to the satisfaction of the instructor

11. Performance skills evaluated to the satisfaction of the instructor
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT

UNIT VII

UNIT OBJECTIVE

After completion of this unit, the student should be able to discuss types of pollution from various energy sources, list ways to control pollution and conserve energy, and construct a model maglev train. Competencies will be demonstrated by completing the assignment sheets, job sheet, and unit tests with a minimum of 85 percent.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to future projections and environmental impact of energy and transportation with the correct definitions.
2. Match types of pollution with the correct descriptions.
3. Complete statements concerning pollution from fossil fuels.
4. Match other energy sources with their correct pollutions and environmental impacts.
5. List ways to control pollution.
6. List energy conservation measures for areas of use.
7. Match emerging transmission systems with the correct descriptions.
8. Complete statements concerning advances in transportation.
9. Research trends in energy usage. (Assignment Sheet #1)
OBJECTIVE SHEET

10. Write a scenario of energy use in the year 2500. (Assignment Sheet #2)
11. Discuss the effect of a total absence of fossil fuels. (Assignment Sheet #3)
12. Demonstrate the ability to construct a model maglev train. (Job Sheet #1)
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACTS
UNIT VII

SUGGESTED ACTIVITIES

A. Obtain additional materials and/or invite resource people to class to supplement/reinforce information provided in this unit of instruction.

(NOTE: This activity should be completed prior to the teaching of this unit.)

B. Make transparencies from the transparency masters included in this unit.

C. Provide students with objective sheet.

D. Discuss unit and specific objectives.

E. Provide students with information and assignment sheets.

F. Discuss information and assignment sheets.

G. Provide students with job sheet.

H. Discuss and demonstrate the procedure outlined in the job sheet.

I. Integrate the following activities throughout the teaching of this unit:

 2. Discuss any environmental problems in your community and what can be done to prevent them in the future or lessen their effects.

 3. Contact state and national departments of energy and transportation for available materials on future projections and environmental impact of energy.

 4. Use local media to discuss trends affecting the environment.

 5. Discuss changes in cars to conserve energy and meet government regulations.

 6. Meet individually with students to evaluate their progress through this unit of instruction, and indicate to them possible areas for improvement.

J. Give test.

K. Evaluate test.

L. Reteach if necessary.
REFERENCES USED IN DEVELOPING THIS UNIT

SUGGESTED SUPPLEMENTAL RESOURCES

Films:

A. The following films are available from:

Bureau of Audio Visual Instruction
P.O. Box 2093
Madison, WI 53701-2092
(608) 262-1644

1. *High Energy Efficiency — An Imperative for Tomorrow*: #02149; 25 min; Monumental, 1977

2. *Reserve for Tomorrow: A National Oil Reservoir*: #02245; 15 min; color; National AV Center, 1978

3. *River Town*: 28 min; color; Bullfrog, 1983

4. *Boeing vs. the World*: #11071; 30 min, 1982

SUGGESTED SUPPLEMENTAL RESOURCES

6. The Robot Revolution, 1985; #11058; 58 minutes

7. Lasers: An Introduction, 1970; #10555; 14 min.

B. Reaching into Space, 1980 (#04217, #04220)
 Available from:
 National Geographic Society
 Washington, DC 20036

C. Dynamics of Energy Efficiency, 1980, 25 min., color
 Available from:
 Alliance to Save Energy
 1925 K. Street, NW, Suite 507
 Washington, D.C. 20006
 202/857-0666

Pamphlets

A. Saving Energy
 Motor Vehicle Manufacturers Association of the U.S., Inc.
 300 New Center Building
 Detroit, Michigan 48202

B. Energy and Transportation
 U.S. Department of Energy
 Technical Information Center
 P.O. Box 62
 Oak Ridge, TN 37830
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT
UNIT VII

INFORMATION SHEET

I. Terms and definitions

A. Acid rain — Rain containing sulfuric acid resulting from a combination of water vapor and sulfur oxides released by fossil fuel combustion

B. Combustion — The chemical process of burning which releases heat, light, and chemical by-products

(NOTE: Each time a fuel is burned in a combustion process, some type of pollutant is released into the air.)

C. Conservation — Efficient use of energy with minimal waste

D. Cryogenics — Science dealing with the properties of materials at extremely low temperatures

E. Ecology — Science concerned with interrelationship between living organisms (plants, animals, humans) and their environments

F. Environment — The circumstances, objects, and conditions that surround an organism

G. Greenhouse effect — Warming of the earth's surface caused by solar radiation passing through the earth's atmosphere and then being trapped by air particles and water vapor so that the heat builds up like in a greenhouse
INFORMATION SHEET

H. Heavy metal poisoning — Contamination from primarily mercury and lead which are highly poisonous and can affect the human nervous system

I. Hydrocarbons — Organic compounds often occurring in petroleum, natural gas, coal, and bitumens

J. Jet lag — A disruption of body rhythms caused by high speed jet travel

K. Particulates — Tiny particles of solid or liquid matter

L. Pollutant — Something that contaminates the environment

M. Pollution — Any undesirable change in the air, land, or water that harmfully affects living things

N. Smog — Dense, brownish-yellow mass of air resulting from a combination of sunlight, hydrocarbons, and nitrogen oxides given off by automobile engines

O. Thermal inversion — Occurs when a layer of warm air settles over a layer of cooler air that lies near the ground; the warm air holds down the cool air and prevents pollutants from rising and scattering

II. Types of pollution (Transparency 1)

A. Air pollution — Comes from all combustion processes such as furnaces in factories and homes, vehicle engines, and the burning of trash and wood

B. Water pollution — Comes from industrial chemical wastes, runoff from fertilizers and pesticides, animal wastes, and human sewage

C. Land pollution — Comes from overuse of farm lands which exhaust the soils' nutrients, erosion from careless farming or land development, and solid wastes from human trash and litter

D. Other types of pollution

1. Radiation — Comes from sunlight, nuclear weapons and waste products, and some electronic devices; exposure to large amounts of radiation can cause cancer and death; scientists are studying the effects of smaller exposures

2. Thermal pollution — The addition of heated water to a body of water; this is primarily from industries and power plants and can kill animals and plants that are used to living at lower temperatures
INFORMATION SHEET

3. Noise pollution — Loud sounds such as from jet engines, jackhammers, and vehicle engines cause discomfort in people and can damage hearing

<table>
<thead>
<tr>
<th>Sources</th>
<th>Decibels</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet airplane take-off at close range</td>
<td>160</td>
<td>Possibly damaging to hearing</td>
</tr>
<tr>
<td>Frequent exposure to rock music at close range</td>
<td>100</td>
<td>Annoying</td>
</tr>
<tr>
<td>Jackhammer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car horn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeway traffic</td>
<td>60</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Vacuum cleaner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential street traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average living room</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whispering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

III. Pollution from fossil fuels

(NOTE: Most sources of controlled energy produce pollution although some sources of pollution are worse than others. Pollution from fossil fuels is among the worst.)

A. Air pollution (Transparency 2)

1. Smog

 a. Forms when sunlight hits the hydrocarbons and nitrogen oxides given off by automobile engines

 b. Makes breathing difficult, irritates eyes, and can injure lungs as well as damage plants
INFORMATION SHEET

2. Carbon monoxide
 a. Produced by automobile engines
 b. Reduces the oxygen-carrying capacity of the blood; causes headaches and dizziness and can be fatal in large amounts

3. Particulates — Dust, smoke, fumes, ash, and other materials such as lead particles given off by fossil fuel combustion

4. Earth warming — Fossil fuel combustion gives off excess carbon dioxide which warms the atmosphere.

 (NOTE: Too much warming of the earth could seriously change the present climates of the earth.)

B. Water pollution — Primarily acid rain
 1. When coal and oil are burned, they release sulfur oxides into the air. When these sulfur oxides mix with water vapor in the air, the result is sulfuric acid. When it rains, the acid drops to earth.
 2. It is very harmful to all forms of life. The most noticeable effects now are reduced fish populations.

C. Thermal pollution — Power plants release waste heat into rivers, lakes, and the oceans which changes the environments for the existing fish there. Many fish cannot survive these changes.

IV. Pollution and environmental impact from other sources of energy

A. Wood — Releases unburned chemical compounds and small burned particles (soot and other particles) which are harmful when inhaled

 (NOTE: Wood is even more polluting than fossil fuels.)

B. Geothermal energy — Releases hydrogen sulfide gas into the air which results in acid rain

C. Hydroelectric energy — Produces no pollution but the damming of rivers changes natural biological systems such as animal habitats

D. Nuclear energy — Main pollution is the radioactive waste which must be handled with great care; nuclear accidents in nuclear plants can cause very severe pollution which can have long term effects on the environment
INFORMATION SHEET

V. Ways to control pollution
 A. Develop more pollution-free energy sources.
 B. Reduce pollution at source.
 Examples: Emission-control devices on automobiles, filters added to power plant smoke stacks
 C. Reduce use of energy through conservation.
 (NOTE: Using less energy will create less pollution.)

VI. Energy conservation measures for areas of use
 A. Home energy use
 1. Use energy-efficient appliances.
 2. Close up cracks around doors, windows, and foundations.
 3. Provide adequate insulation in walls, ceilings, and foundations.
 4. Reduce heating and cooling temperatures in home.
 5. Develop energy-conservation habits.
 Examples: Turn off lights and appliances when not needed, use washing machine and dishwasher only when fully loaded, fix leaky faucets
 6. Recycle materials. (Aluminum, glass, paper)
 B. Business and Industrial use
 1. Close up cracks around doors, windows, and foundations.
 2. Provide adequate insulation.
 3. Reduce thermostats.
 4. Improve efficiency of machines and processes used by industry.
 5. Recover heat previously lost through smoke stacks and exhaust systems.
 6. Recycle products and resources.
 7. Stagger demand. Change usage so all people do not want it at the same time.
INFORMATION SHEET

C. Transportation use

1. Carpool to work or school.

2. Plan trips using most direct and efficient routes.

3. Use modes of transportation other than personal automobile all the time. Use public transportation (mass transit) when possible. Walk and ride bicycles as much as possible.

4. Improve driving habits. Avoid sudden starts and stops.

5. Drive automobiles with smaller, more fuel-efficient engines.

VII. Emerging transmission systems

A. Lasers — Concentrated short electromagnetic wavelengths used in industry, medicine, and research for drilling, welding, cutting, and burning

B. Fiberoptics — Hair-thin strands of flexible glass used to carry communication messages

C. Cryogenics — Super cooling to prepare freeze-dried foods and to produce super-efficient generators and superconductors for more efficient transmission of electricity
VIII. Advances in transportation

A. Rail transportation

1. Applying cryogenics to traditional rail transport, Maglev (magnetically levitated) trains can reach speeds of over 300 mph and provide quiet and smooth rides.

2. Computerized rail classification yards

3. Computerized people-moving systems (mass transit)

B. Highway transportation

1. Engines that burn methanol and synfuels

2. Engines that use hydrogen as a fuel

3. Electric vehicles powered by batteries

4. Electronic control systems

C. Air transportation

1. Propfan design
 a. Has 8 to 10 shorter propeller blades that turn faster than regular blades.
 b. Will use 20% less fuel.
2. Canard design
 a. Wings are at or near the end of the aircraft.
 b. Are light, fast, fuel-efficient, and safe.

3. Fuel cells — Produce electricity from a chemical reaction between hydrogen and oxygen

![Diagram of a fuel cell]

(Note: The space shuttle Columbia used fuel cells to provide electrical power during flight.)

4. Composite materials — New materials are being used such as hexel honeycomb, a resin-coated, paperlike polymer covered with graphite fibers imbedded in epoxy.

(Note: This was used in the construction of the Voyager.)
Types of Pollution

Air Pollution

Water Pollution

Land Pollution
Air Pollution
(Pollutants and Their Effects)

Nitrogen dioxide combines with hydrocarbons and sunlight to form smog. Smog irritates the eyes of people, damages their lungs, and causes headaches. It also injures plants.

Sulfur dioxide turns into sulfur trioxide. It then combines with water vapor to form sulfuric acid, which corrodes metals.

Mercury harms the nervous system of humans.

Carbon dioxide causes headaches and dizziness in humans.

Nitrogen dioxide harms the respiratory systems of humans and damages plants.

Burning of Trash and Wood

Factories, Homes, and Office Buildings

Motor Vehicles

Hydrocarbons injure plants.

Sulfur dioxide harms the respiratory systems of humans and animals.

Carbon monoxide causes headaches and dizziness in humans.

Lead harms the nervous systems of humans.
ASSIGNMENT SHEET #1 — RESEARCH TRENDS IN ENERGY USAGE

NAME ________________________________ SCORE ________

Directions: Using a current scientific magazine as a source, research and discuss trends in energy usage for one source of energy (fossil fuels, nuclear energy, etc.).
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT
UNIT VII

ASSIGNMENT SHEET #2 — WRITE A SCENARIO OF ENERGY USE
IN THE YEAR 2500

NAME _______________________________ SCORE __________

Directions: Using what we have covered in this unit and any outside resources, write a scenario of how you think energy will be used in the year 2500.
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT
UNIT VII

ASSIGNMENT SHEET #3 — DISCUSS THE EFFECT OF A TOTAL ABSENCE OF FOSSIL FUELS

NAME ____________________________ SCORE __________

Directions: Using what we have covered in this unit and any outside resources, discuss what would happen if there were no fossil fuels left in the world. How would this change your life?
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACTS
UNIT VII

JOB SHEET #1 — CONSTRUCT A MODEL MAGLEV TRAIN

A. Tools and materials

1. 1 - \(\frac{3}{4}'' \times 6'' \times 36'' \) wood
2. 1 - \(1\frac{1}{2}'' \times 3'' \times 30'' \) aluminum channel
3. 1 - \(\frac{3}{4}'' \times 3\frac{1}{2}'' \times 32'' \) wood
4. 2 - \(\frac{5}{8}'' \times 1\frac{1}{4}'' \times 32'' \) wood
5. 2 - \(\frac{3}{4}'' \times 1'' \times 1'' \) wood
6. 1 - 6'' x 16'' ABS thin plastic or balsa wood
7. 2 - \(\frac{1}{2}'' \times \frac{3}{4}'' \times 2'' \) bar magnets
8. 8 - .5 x .060'' strip magnets, two poles on each side (12'' divided into four 30'' strips and four 6'' strips)
9. 2 - 1'' pulleys and axles
10. 1 - Fine nylon cord, 6'' long (fishing line)
11. 1 - \(\frac{1}{2}'' \times 2'' \) spring
12. 1 - \(\frac{1}{8}'' \) welding rod, 6'' long
13. Compass
14. Fasteners and adhesives
15. Tools as appropriate (Follow safety rules!)

FIGURE 1
B. Procedure

1. Construct basic track assembly. End view is shown in Figure 2.

FIGURE 2

![Diagram of track assembly]

- a. Cut a 3/4" x 6" x 36" base.
- b. Cut a 3/4" x 3 1/2" x 32" bottom track to carry the propulsion magnet.
- c. Center this on the base track and fasten.
- d. Cut two 5/8" x 1 1/4" x 32" magnet side rails.
- e. Position as shown and fasten, leaving a 1" groove for the propulsion magnet.
- f. Center the 1 1/2" x 3" x 30" aluminum channel on the side rails and fasten.
2. Examine Figure 3 making note of the locations of the strip magnets, their polarity, and the location of the train stops.

FIGURE 3

![Diagram of aluminum channel with strip magnets and wood train stops.]

a. Cut strip magnets into 30" lengths.

(NOTE: These can be cut with scissors.)

b. Use a compass to determine the polarity of the magnets; the compass’ north pole with point to the magnets’ south pole.

c. Mark magnets with chalk.

(NOTE: Poles may also be identified by placing magnets next to each other; like poles repel each other.)

d. Glue magnetic strips in the channel according to the measurements and polarity shown in Figure 3.

e. Form and fasten wooden train stops to each end of the aluminum channel.
3. Build Maglev train as shown in Figures 4 and 5.

FIGURE 4

Maglev Train

a. Cut the plastic or balsa wood to the dimensions shown in Figure 5. The critical dimension is the train width.

FIGURE 5
b. Cut the plastic or balsa wood to provide the minimum clearance between the magnets on the train and those on the channel.

c. Assemble the train using adhesive.

d. Add corner pieces of plastic or wood to strengthen the train as shown in Figure 6.

FIGURE 6

![Corner glued in place to hold two sides (may also be small rectangular block)](image)

e. Do not glue the top. It should be removable.

f. Use the corner pieces as shown in Figure 4 to position the top.

g. Cut four magnet strips, 6" long.

h. Use a compass to determine the polarity.

i. Glue magnets on the train positioning them as shown.

j. Glue a ½" x ¾" x 2" bar magnet in the train as shown in Figure 5.

4. Place the train in the track and check. It should be suspended in the air.

5. Check the polarity of the assembly as shown in Figure 7.

FIGURE 7

![Repulsion](image)
6. Assemble the propulsion system to the track. (Figure 8)

FIGURE 8

- Drill a hole at each end of the track.
- Mount the pulleys so that the nylon cord can travel through and along side the propulsion groove. (Figure 9)

FIGURE 9

- Assemble or find a small balsa wood or plastic box to hold the propulsion magnet. The box should just fit in the propulsion groove and hold the magnet.
- Place the magnet in the box.
JOB SHEET #1

e. Drill small holes in each end of the box for attaching the nylon cord.

f. Cut the cord into two pieces, each 3' long. Attach the pieces to the box, one on either end.

g. Place the box in the propulsion groove.

h. Position it so that the polarity is the same as that of the magnet in the train. The propulsion magnet must repel the train magnet to cause the train to move.

i. Run the cords in opposite directions through the eyes and around the pulleys (Figure 9).

j. Tie the cord ends to the ends of a spring which will maintain tension in the cord.

(NOTE: Another means of propelling this train is through the use of a rubber band and a plastic propeller.)

7. Test your train’s propulsion by pulling the cord. As the propulsion magnet moves through the groove, it should repel the train magnet, causing the train to move down the track.

FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACTS
UNIT VII

PRACTICAL TEST
JOB SHEET #1 — CONSTRUCT A MODEL MAGLEV TRAIN

STUDENT’S NAME _______________________________ DATE __________

EVALUATOR’S NAME ___________________________ ATTEMPT NO. ______

Instructions: When you are ready to perform this task, ask your instructor to observe the procedure and complete this form. All items listed under “Process Evaluation” must receive a “Yes” for you to receive an overall performance evaluation.

PROCESS EVALUATION

(EVALUATOR NOTE: Place a check mark in the “Yes” or “No” blanks to designate whether or not the student has satisfactorily achieved each step in this procedure. If the student is unable to achieve this competency, have the student review the materials and try again.)

The student:

1. Checked out proper tools and materials. YES NO
2. Constructed basic track assembly.
3. Cut strip magnets.
4. Determined magnet polarity.
5. Attached magnets to track assembly.
7. Checked train and track for suspension.
8. Assembled propulsion system.
9. Tested train.
11. Cleaned the work area.
12. Used proper tools correctly.
13. Performed steps in a timely manner (___hrs. ___min. ___sec.)
15. Provided satisfactory responses to questions asked.

EVALUATOR’S COMMENTS: __
PRACTICAL TEST

PRODUCT EVALUATION

(EVALUATOR NOTE: Rate the student on the following criteria by circling the appropriate numbers. Each item must be rated at least a "3" for mastery to be demonstrated. (See performance evaluation key below.) If the student is unable to demonstrate mastery, student materials should be reviewed and another product must be submitted for evaluation.)

Criteria:

<table>
<thead>
<tr>
<th>Basic Track Assembly</th>
<th>Channel Centered</th>
<th>Aluminum Channel</th>
<th>Aluminum Channel Not Centered</th>
<th>Propulsion Groove Too Narrow/ Too Wide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Groove Correct</td>
<td>Base OK</td>
<td>Too Long</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Base OK</td>
<td>Too Long</td>
<td>Too Narrow/ Too Wide</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Suspension System</th>
<th>Polarity Correct/ Reverse</th>
<th>Magnet Polarity</th>
<th>Magnet Strips Too Long</th>
<th>Magnet Strips Too Short</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Strips Correct Length</td>
<td>Magnet Polarity</td>
<td>Magnet Strips Too Long</td>
<td>Magnet Strips Too Short</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maglev Train</th>
<th>Clearance</th>
<th>Body</th>
<th>Reposition</th>
<th>Magnets/</th>
<th>Clearance</th>
<th>Exceeds Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>Wrong Polarity</td>
<td>1</td>
<td>Specifications</td>
</tr>
<tr>
<td></td>
<td>Meets Minimum Specifications</td>
<td>Needs Reinforcement</td>
<td>Magnets/</td>
<td>Clearances</td>
<td>Exceeds Maximum Specifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propulsion System</th>
<th>Clearance</th>
<th>Cord Too Long</th>
<th>Cord Too Short, Too Much</th>
<th>Propulsion Box</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Meets Minimum Specifications</td>
<td>Not Enough</td>
<td>Too Much</td>
<td>Too Wide/ Too Narrow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tension</td>
<td>Tension</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATOR’S COMMENTS: ____________________________

PERFORMANCE EVALUATION KEY

<table>
<thead>
<tr>
<th>Number</th>
<th>Skill Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Skilled — Can perform job with no additional training.</td>
</tr>
<tr>
<td>3</td>
<td>Moderately skilled — Has performed job during training program; limited additional training may be required.</td>
</tr>
<tr>
<td>2</td>
<td>Limited skill — Has performed job during training program; additional training is required to develop skill.</td>
</tr>
<tr>
<td>1</td>
<td>Unskilled — Is familiar with process, but is unable to perform job.</td>
</tr>
</tbody>
</table>

(EVALUATOR NOTE: If an average score is needed to coincide with a competency profile, total the designated points in “Product Evaluation” and divide by the total number of criteria.)
1. Match the terms on the right with the correct definitions.

_____a. Dense, brownish-yellow mass of air resulting from a combination of sunlight, hydrocarbons, and nitrogen oxides given off by automobile engines

_____b. The circumstances, objects, and conditions that surround an organism

_____c. Something that contaminates the environment

_____d. Efficient use of energy with minimal waste

_____e. Science concerned with interrelationship between living organisms (plants, animals, humans) and their environments

_____f. Rain containing sulfuric acid resulting from a combination of water vapor and sulfur oxides released by fossil fuel combustion

_____g. Tiny particles of solid or liquid matter

_____h. Science dealing with the properties of materials at extremely low temperatures

_____i. Occurs when a layer of warm air settles over a layer of cooler air that lies near the ground; the warm air holds down the cool air and prevents pollutants from rising and scattering

_____j. Contamination from primarily mercury and lead which are highly poisonous and can affect the human nervous system

_____k. Warming of the earth's surface caused by solar radiation passing through the earth's atmosphere and then being trapped by air particles and water vapor so that the heat builds up

1. Acid rain
2. Combustion
3. Conservation
4. Cryogenics
5. Ecology
6. Environment
7. Greenhouse effect
8. Heavy metal poisoning
9. Hydrocarbon
10. Particulates
11. Pollutant
12. Radiation
13. Smog
14. Thermal inversion
TEST

___1. The chemical process of burning which releases heat, light, and chemical by-products

___m. Organic compounds often occurring in petroleum, natural gas, coal, and bitumens

2. Match types of pollution on the right with the correct descriptions.

___a. Loud sounds such as from jet engines, jackhammers, and vehicle engines cause discomfort in people and can damage hearing

___b. The addition of heated water to a body of water; this is primarily from industries and power plants and can kill animals and plants that are used to living at lower temperatures

___c. Comes from industrial chemical wastes, runoff from fertilizers and pesticides, animals wastes, and human sewage

___d. Comes from all combustion processes such as furnaces in factories and homes, vehicle engines, and the burning of trash and wood

___e. Comes from overuse of farm lands which exhaust the soils' nutrients, erosion from careless farming or land development, and solid wastes from human trash and litter

___f. Comes from sunlight, nuclear weapons and waste products, and some electronic devices; exposure to large amounts of it can cause cancer and death

1. Air pollution
2. Land pollution
3. Noise pollution
4. Radiation
5. Thermal pollution
6. Water pollution

3. Complete statements concerning pollution from fossil fuels by circling the correct words.

a. Smog makes (thinking, breathing) difficult, irritates eyes, and can injure (heart, lungs) as well as damage plants.

b. Carbon monoxide (can, can not) be fatal in large amounts.

c. Carbon monoxide exposure causes (headaches, stomachaches).

d. Fossil fuel combustion gives off excess (sulfur dioxide, carbon dioxide) which warms the atmosphere.
TEST

e. Acid rain is (slightly, very) harmful to all forms of life.

f. The most noticeable effects of acid rain are reduced (fish, human) populations.

4. Match other energy sources on the right with the correct pollutions and environmental impacts.

_____a. Releases unburned chemical compounds and small burned particles (soot and other particles) which are harmful when inhaled 1. Geothermal energy

_____b. Releases hydrogen sulfide gas into the air which results in acid rain 2. Wood

_____c. Produces no pollution but the damming of rivers changes natural biological systems such as animal habitats 3. Nuclear energy

_____d. Main pollution is the radioactive waste which must be handled with great care; accidents can cause very severe pollution which can have long term effects on the environment 4. Hydroelectric energy

5. List two ways to control pollution.

a. ________________________________

b. ________________________________

6. List three energy conservation measures for each of the following areas:

a. Home energy use

1) ________________________________

2) ________________________________

3) ________________________________

b. Business and industrial use

1) ________________________________

2) ________________________________

3) ________________________________
TEST

c. Transportation use

1) __

2) __

3) __

7. Match emerging transmission systems on the right with their correct descriptions.

_____a. Concentrated short electromagnetic wavelengths used in industry, medicine, and research for drilling, welding, cutting, and burning

_____b. Hair-thin strands of flexible glass used to carry communication messages

_____c. Super coding to prepare freeze-dried foods and to produce super-efficient generators and superconductors for more efficient transmission of electricity

1. Cryogenics

2. Fiber optics

3. Lasers

4. Robots

8. Complete the following statements concerning advances in transportation by circling the correct words.

a. An advancement in air transportation is the propfan design which has 8 to 10 shorter propeller blades that turn (slower, faster) than regular blades and will use (20%, 80%) less fuel.

b. The (Canary, Canard) design has wings at or near the end of the aircraft. This design is light, fast, fuel-efficient, and safe.

c. Applying (cybernetics, cryogenics) to traditional rail transport, Maglev trains can reach speeds of over 300 mph and provide quiet and smooth rides.

d. An advancement in highway transportation is engines that burn (methanol, ethanol), synfuels, and (hydrogen, oxygen).

e. An advancement in space transportation is the use of (battery, fuel) cells which produce electricity from a chemical reaction between hydrogen and oxygen.

(NOTE: If the following activities have not been accomplished prior to the test, ask your instructor when they should be completed.)

9. Research trends in energy usage. (Assignment Sheet #1)

10. Write a scenario of energy use in the year 2500. (Assignment Sheet #2)

11. Discuss the effect of a total absence of fossil fuels. (Assignment Sheet #3)

12. Demonstrate the ability to construct a model maglev train. (Job Sheet #1)
FUTURE PROJECTIONS AND ENVIRONMENTAL IMPACT
UNIT VII

ANSWERS TO TEST

1. a. 13 h. 4
 b. 6 i. 14
 c. 11 j. 8
 d. 3 k. 7
 e. 5 l. 2
 f. 1 m. 9
 g. 10

2. a. 3 d. 1
 b. 5 e. 2
 c. 6 f. 4

3. a. Breathing, lungs
 b. Can
 c. Headaches
 d. Carbon dioxide
 e. Very
 f. Fish

4. a. 2
 b. 1
 c. 4
 d. 3

5. Any two of the following:
 a. Develop more pollution-free energy sources.
 b. Reduce pollution at source.
 c. Reduce use of energy through conservation.

6. Any three from each of the following:
 a. Home energy use
 1) Use energy-efficient appliances.
 2) Close up cracks around doors, windows, and foundations.
 3) Provide adequate insulation in walls, ceilings, and foundations.
 4) Reduce heating and cooling temperatures in home.
 5) Develop energy-conservation habits.
 6) Recycle materials. (Aluminum, glass, paper)
 b. Business and industrial use
 1) Close up cracks around doors, windows, and foundations.
 2) Provide adequate insulation.
 3) Reduce thermostats.
 4) Improve efficiency of machines and processes used by industry.
 5) Recover heat previously lost through smoke stacks and exhaust systems.
 6) Recycle products and resources.
 7) Stagger demand.
ANSWERS TO TEST

c. Transportation use
 1) Carpool to work or school.
 2) Plan trips using most direct and efficient routes.
 3) Use modes of transportation other than personal automobile all the time.
 Use public transportation when possible. Walk and ride bicycles as much as possible.
 4) Improve driving habits. Avoid sudden starts and stops.
 5) Drive automobiles with smaller, more fuel-efficient engines.

7. a. 3
 b. 2
 c. 1

8. a. Faster, 20%
 b. Canard
 c. Cryogenics
 d. Methanol, hydrogen
 e. Fuel

9.-11. Evaluated to the satisfaction of the instructor

12. Performance skills evaluated to the satisfaction of the instructor