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.... 1 1.1 Abstract

Historically, most researchers conducting factor analysis

have employed what have come to be called exploratory methods.

However, more recently, confirmatory factor analytic methods have

been developed that can directly test theory either during factor

rotation using "best fit" rotation methods, or else during factor

extraction, as with the LISREL computer programs developed by

Joreskog and his colleagues. The present study utilizes a small

data set to compare results across various exploratory and

confirmatory factor analytic procedures. The benefits and

limitations of each approach are summarized.

a:0
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Factor analysis has been described as "one of the most

powerful tools yet devised for the study of complex areas of

behavioral scientific concern" (Kerlinger, 1986, p. 689), and as

"the furthest logical development and reigning queen of the

correlational methods" (Cattell, 1978, p. 4). The usefulness of

factor analytic methods has been established through traditional

applications of the3e methods both in theory development (e.g.,

Guilford's Structure-of-Intellect Model--Guilford, 1965, 1967;

Guilford & Hoepfner, 1971) and in test validation. Most

researchers employing factor analytic techniques have used what

have come to be known as "exploratory" techniques. However, more

recently, "confirmatory" factor analytic methods have been

developed that can directly test theory either during factor

rotation using "best fit" Procrustean rotation methods, or else

during factor extraction through the use of special statistical

software packages such as LISREL (Joreskog & Sorbom. 1986).

The purpose of the present study was to provide a heuristic

example which illustrates some comparisons between statistical

results obtained using exploratory and confirmatory factor

analytic techniques. A data set consisting of the scores of

junior high school students on a variety of psychological tests

(Holzinger & Swineford, 1939) is utilized for this purpose.

This data set has traditionally been used with some frequency to

illustrate factor analytic applications (cf. Gorsuch, 1983;

Joreskog, 1986). Following a brief overview of the processes and
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the relative strengths and weaknesses of exploratory and

confirmatory factor analytic methods, the results of various

factor analytic procedures using the selected data set are

presented. Based on the results of these analyses, conclusions

are drawn relative to the usefulness

confirmatory methods.

Exploratory Factor Analytic Methods

The conventional "exploratory" factor

of exploratory and

analytic methods are

.

designed to analyze covariance structures among a common set of

variables, and to explain the relationship among these variables

in terms of a smaller number of unobserved latent variables

called factors. These factors, if interpretable, constitute "the

initial structuring of a field [of -tudy]" (Cattell, 1952, p.

359). Thus, Kerlinger (1986) refers to factor analysis as a

means of reducing complex data sets containing numerous variables

to a more manageable size. This data reductive property of

exploratory factor analytic methods serves to make these methods

useful in establishing the construct validity or "constitutive

meaning" (Kerlinger, 1986) of psychometric instruments. Hence,

Nunnally (1978, p. 111) notes that construct validity has been

referred to as "factorial validity" and "trait validity."

Similarly, Gorsuch (1983, pp. 350-351) suggests that

A prime use of factor analysis has been in the

development of both the theoretical constructs for

an area and the operational representatives for the

theoretical constructs. If a theory has
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clearly defined constructs, then scales can be

directly built to embody those constructs.

However, it is often the case that the theories in

a particular area are sufficiently undeveloped so

that the constructs are not clearly identified.

In short, "factor analysis is intimately involved with questions

of validity. . . .Factor analysis is at the heart of the

measurement of psychological constructs" (Nunnally, 1978, pp.

112-113).

Despite their usefulness in addressing issues related to

construct validity, exploratory methods are not without their

shortcomings. For instance, exploratory methods do not directly

addresJ issues of theory development. Exploratory factor

structures are determined on the basis of the mechanics of the

method rather than on the basis of a priori considerations of the

researcher (Cattell, 1978). Selection of the number of factors

to extract, for instance, is based upon one of several mechanical

procedures, such as Guttman's "eigenvalue greater than one" rule

(Guttman, 1954) or Catteil's "scree" test (Cattell, .)66). Zwick

and Velicer (1986) present evidence that there may be

discrepancies as to the number of factors that should be

extracted across these various procedures, thus further

confounding the problem of the number of factors to extract.

Similarly, Cattell (1978) discusses problems associated with

extraction of either too many or too few factors.

Factor interpretation may also be a problem in exploratory

b



methods:

The major disadvantage of pure exploratory factor

analysis lies in the difficulty involved in

interpreting the factors. This difficulty most

often comes about because the researcher lacks even

tentative prior knowledge about the processes which

produce covariation among the variables studied and

has no basis on which to make his interpretations.

In these circumstances the interpretations given

the factors may be nothing more than tautological

transformations of the names of the original

variables. Difficulty is also encountered when the

factors obtained represent confounded effe "ts and

the researcher is unable to decide which of these

effects is unique to the factor--a problem which

may come about from random selections of variables.

(Mulaik, 1972, p. 363)

Additional in_arpretation

overinterpretation

problems

of factors with

may result

small factor

due

4
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structure

coefficients (Nunnally, 1978), or if factor structures are

considered confirmed based upon post hoc analysis of factor

structures for a given data set (Gorsuch, 1983).

A third criticism of exploratory methods is that they

impose upon the research situation certain assumptions which may

not always honor the relationships among the variables in a given

data set. These assumptions include requiring that all common
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factors be correlated with one another in the oblique case, or

that all common factors be uncorrelated with one another in the

orthogonal case; requiring that all observed variables be

affected by all common factors; and requiring that all common

factors be uncorrelated with all unique factors (Long, 1983a, p.

12) .

Despite these shortcomings, when used appropriately,

exploratory factor analysis is useful in helping researchers to

assess the nature of relationships among variables within a given

set, and, consequently, to establish the construct validity of

tests. Hence, exploratory methods are neither "a royal road to

truth, as some apparently feel, nor necessarily an adjunct to

shocgun empiricism, as others claim" (Nunnally, 1978, p. 371).

Confirmatory Factor Analytic Methods

Confirmatory factor analytic methods extend the usefulness

of the exploratory methods by determining the extent to which

"endogenous" latent variables, i.e., those variables actually

occurring within the factor analytic model, can be explained by

"exogenous" variables, i.e., a set of conceptual or theoretical

variables determined outside the model (Long, 1983b). Hence,

confirmatory methods are superior to exploratory methods in that

they may be utilized to test hypotheses regarding the nature of

observed factors (Gorsuch, 1983). In order to perform these

analyses, a priori factors are specified based upon theoretical

expectations. Confirmatory methods then seek to optimally match

the observed and theoretical factor structures for a given data
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set to determine the goodness of fit of the predetermined factor

model.

Considering that confirmatory methods capitalize more on

theoretical considerations of a given data set than do

exploratory methods, it is not surprising Gorsuch (1983)

concluded that confirmatory methods should be the more widely

used of the two major factor analytic approaches, with

exploratory methods "reserved only for those areas that are truly

exploratory, that is, areas where no prior analyses have been

conducted" (p. 134). As opposed to the "canned" restraints

inherent in exploratory methods, confirmatory methods allow the

researcher to specify "substantively motivated" constraints which

define the factor structural model (Lona, 1983a). These

constraints include, but are not limited to, predetermination of

the degree of correlation, if any, between each pair of common

factors, predetermination of the degree of correlation between

individual variables and one or more factors, and specification

as to.which particular pairs of unique factors are correlated.

Matnematically, confirmatory factor analytic models are

covariance structure models (Bock & Bargmann, 1966; Joreskog,

1973; Long. 1983b), or as they are more popularly known,

"structural equation" or "LISREL" models. Bentler (1980).

Baldwin (1989), and Long (1983b) offer coherent introductory

discussions of these models. As Long (1983b, p. 12) points out,

these models decompose the covariances among the variables in a

given set in two conceptually distinct steps:



O. A

First, the observed variables are linked to

unobserved or latent variables through a factor

analytic model, similar to that commonly found in

psychometrics. Second, the causal relationships

among these latent variables are specified through

a structural equation model, similar to that found

in econometrics.

According to Anderson (1987, p. 49), constructing a

structural equation model "begins with a statement of a verbal

theory that makes explicit the relations hypothesized among a set

of variables," and then makes assumptions regarding a causal

structure among the latent and observed variables in the set. In

the confirmatory factor analytic case, the structural equation

model can be used to compute maximum likelihood estimates of the

degree of fit between observed and theoretical factor structures.

As Bentler (1980, p. 420) described this process:

The primary statistical problem [in structural

equation mcdeling] is one of optimally estimating

the parameters of the model and determining the

goodiless-of-fit of the model to sample data on

measured variables. If the model does not

acceptably fit the data, the proposed model is

rejected as a possible candidate for the causal

structure underlying the observed variables. If

the model cannot be rejected statistically, it is a

plausible [but not necessarily the most

lu
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appropriate] representation of the causal

structure.

Confirmatory analysis can be utilized in two ways. First,

exploratory methods can be used to determine the number of

factors to extract, and then the factor results -.:an be rotated to

a "best fit" confirmatory position. This use of confirmatory

analysis is especially useful when the researcher does not have a

single theory in mind which can be theorized to explain the data,

or when the theorized model fails to be confirmed (Lcng, 1983a).

In this sense, the confirmatory model is actually used in an

exploratory fashion. To purists this method might be considered

questionable as it violates the assumption of independent

sampling; however this problem can be overcome by splitting a

given sample and using one cohort to determine the nature of the

factor structure, and the other to determine the degree to which

the model explains the data (Gorsuch, 1983).

A second way of using confirmatory me6hods is to employ them

during facto- extraction, with the number of factors being

determined on the basis of previous exploratory studies, or upon

theoretical considerations. Use of the model in this manner

constitutes confirmatory factor analysis in the "pure" sense.

The purpose of confirmatory factor analysis in this application

is to determine the overall fit of the theoretical model to the

data collected from the sample at hand.

In conducting a confirmatory factor analytic procedure of

either type using LISREL VI (Joreskog & Sorhom, 1986), the user

14.
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decides which parameters of the model are to be "fixed" and which

are to be "free." For instance, values on the factor structure

matrix can be set at prespecified levels based upon expected

correlation between individual variables and one or more factors.

Fixed values are indicated by being given a zero value; free

values are estimated during the analysis by fitting the model to

the data in light of the constraints of theoretical expectation.

The user may also specify whether the model is to be applied to

the correlation or the covariance matrix. Although results are

generally similar with either matrix, in certain research

situations, the covariance matrix may better honor the reality of

the data due to certain structural and distributional properties

inherent to assessment and behavioral data (Cudeck, 1989).

Finally, the degree of correlation, if any, between the factors

can also be specified.

If the analysis succeeds in identifying all of the specified

parameters, the model is identified. One check of the

identifiability of the model is the test of positive

definiteness of the information matrix. According to Joreskog

and Sorbom (1986, 1.23-1.24), "The information matrix is the

probability limit of the matrix of second order derivatives of

the fitting function used to estimate the model. . ." If the

model is not identified, LISREL prints a warning message that the

information matrix is not positive definite. Joreskog and Sorbom

(1986, p. 1.24) warn, however, that obtaining a positive definite

information matrix does not necessarily insure that the model is

1
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identified, although experience in using the LISREL software has

indicated that this test is a highly reliable indicator of the

model's goodness of fit.

Once a model is identified, the data set used for

identifying the model would not be used by the purist to assess

the fit or.. the model. This does not mean, however, that the

estimators for the first data set should not be consulted.

These estimators should be regarded as preliminary findings

(Learner, 1978), and "[t]he model selected must be viewed as

tentative, in need of verification with a second, independent

sample" (Long, 1983a, p. 68). LISREL VI offers three fitting

functions for estimating parameters in confirmatory models.

These functions are based on three distinct types of estimators,

namely unweighted least squares, generalized least squares, and

maximum likelihood estimators. Long (1983a) and Joreskog and

Sorbom (1986) discuss the relative properties of each of these

three estimators.

For the purposes of the present study, only maximum

likelihood estimates will bt. utilized as these estimates are

scale invariant, approximately unbiased, and approximately

multivariate normally distributed. As with may other hypothesis

testing statistical methods, confirmatory maximum likelihood

analyses are useful in that they yield a complete analysis.

Rotational procedures are not needed since maximum likelihood

estimates are directly calculated in their final form (Gorsuch,

1983, p. 119). Hence, in addition to the advantages of

1%)
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confirmatory methods over exploratory methods mentioned earlier,

these methods are superior for yet another reason, namely that

they rid the researcher of the problems inherent to the selection

of an appropriate rotational procedure.

In addition to offering direct maximum likelihood estimators

of each of the parameters of the model, LISREL VI also offers

four statistics which indicate the degree of overall fit of the

observed factor structure to the theoretical structure. The chi-

square goodness of fit statistic tests the null hypothesis that

there is no statistically significant difference in the observed

and theoretical covariance structure matrices. The value of chi-

square ranges from zero to infinity, with a zero value indicating

perfect fit. Obviously, in the irajority of cases, the

researcher's goal is to not reject the null hypothesis, thereby

confining the expected structure. Since a statistically

significant result yields a rejection of the fit of a given

model, the chi-square statistic has been referred to as a "lack

of fit index" (Mulaik, James, Van Alstine, Bennet. Lind, &

Stilwell, 1989).

Bentler and Bonett (1980) point out that the chi-square test

is subject to yielding statistically significant results (and

consequently, failing to offer evidence of goodness of fit) when

sample sizes are large. Thus, it may be unclear in many large

sample research situations whether the statistical significance

of the chi-square is due to poor fit of the model or to the size

of the sample. Joreskog and Sorbom (1986, p. 1.39) emphasize

1 ,ii



.. -

12

that chi-sciare values may also escalate to statistically

significant values when variables are not subject to multivariate

normal distribution. Hence, it is true here as it is in many

other research situations that reliance upon statistical

significance testing may not always be the best way to evaluate

statistical results (Carver, 1978; Thompson, 1987).

A secord statistic for assessing o'ierall fit of a model is

the goodness of fit (GFI) index. According to Joreskog and

Sorbom (1986, p. 1.41), "GFI is a measure of the relative amount

of variances and covariances jointly accounted for by the

model." In addition to GFI, LISREL also computes an adjusted

goodness of fit (AGFI) statistic bases on a correction for the

number of degrees of freedom in a less restricted model obtained

by freeing more parameters. Unlike chi-square, GFI and AGFI are

less d_pendent on sample size or departures from multivariate

normali7.y. Generally, these goodness of fit indicators range in

value from zero to one, although negative values are also

possible.

A third overall model fit statistic is the root mean square

residual (RMR). RMR is "a measure of the average of the residual

variances and covariances" (Joreskog & Sorbom, 1986, p. 1.41),

and since it is an indicator of measurement error, it is most

useful when comparing two different models for the same data set.

Consequently, researchers rely less frequently upon RMR than upon

other goodness of fit indices.

A final statistic for assessing overall model fit is the
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total coefficient of determination, a derivative of the multiple

correlation coefficient (R2) which originated with Specht (1975).

Like GFI and AGFI, the coefficient of determination ranges

between zero and unity. According to Anderson (1987, p. 53),

"This statistic indicates the amount of variation in the

endogenous variables jointly accounted for by the model." The

coefficient of determination can also serve as a generalized

measure of the reliability of the model (Joreskog & Sorbom, 1986,

p. III.11).

Even when all of the overall model fit statistics indicate a

high degree of fit between the observed and expected factor

structures, it is important to remember that

. . the measures 'X2, GFI and RMR are measures of

the overall fit of the model to the data and do not

express the quality of the model judged by any

other internal or external criteria. For example,

it can happen that the overall fit of the model is

very good but with one or more relationships in the

model very poorly determined, as judged by the

squared multiple correlations. . . (Joreskog &

rorbom, 1986, p. 1.41)

IL is also possible that more than one model can be determined to

adequately fit the data (Biddle & Marlin, 1987; Thompson &

Borrello, 1989). Thompson, Webber, and Berenson (1987)

illustrate this point in the confirmatory analysis of the factor

structure of a children's health locus of control measure.
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Thus, obtaining good fit of a model to a particular data set does

not mean that the model is confirmed, since other models (tested

or not) may also fit the data.

When a model has been rejected (i.e., when the confirmatory

analysis fails to adequately fit the observed factor structure

with the theoreti.7a1 structure), the researcher may wish to

implement a "specification search." This procedure uses the

estimates computed for the rejected model to suggest better

fitting models. The LISREL VI package can be utilized to

conduct a specification search once a model has been rejected.

The procedure relaxes fixed parameters of the model one at a time

on the basis of "modification indices." These indices reflect

the changes of the chi-square goodness of fit test with each of

the fixed parameters, in turn, relaxed, and then frees the one

parameter which offers the greatest amount of improvement in the

fit of the model.

A Heuristic Example Comparing Exploratory and Confirmatory
Methods

Holzinger and Swineford (1939) conducted various factor

analytic procedures on a data set consisting of scores of 317

junior high school students on 26 psychological tests measuring

various ability variables. The "Grant-White" cohort of this data

set (n = 145) will be utilized in the present study as a

heuristic example illustrating differences in factor analytic

results using exploratory and confirmatory methods. The 26 tests

administered to the sample were theoretically designed to measure

1`j
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five broad psychological constructs--visualization (Tests 1

through 4), verbal intelligence (Tests 5 through 9), test-taking

speed (Tests 10 through 13), memory (Tests 14 through 19), and

mathematical ability (Tests 20 through 26). A brief description

of the content of each of the tests is presented in Appendix A.

Discussions of Holzinger and Swineford's (1939) factor analytic

results based on these data are presented by Gorsuch (1983) and

Mulaik (1972).

As previously noted, the data set utilized in the present

study included scores for 145 subjects on the 26 measures. Two

separate factor analyses were performed using these data. The

first analysis utilized exploratory factor extraction of

orthogonal principal components followed by confirmatory rotation

to determine goodness of fit. The second analysis utilized

confirmatory extraction of five factors based upon theoretical

expectations. In both analyses, factors were allowed to

correlate during the confirmatory procedures.

Results

Analysis I: Exploratory Extraction, Then Confirmatory Rotation

An initial principal components exploratory factor analysis

was run using the SPSSx FACTOR procedure. The analysis yielded

six factors with prerotation eigenvalues greater than one.

Analysis of the "scree" plot (Cattell, 1966) of the eigenvalues

indicated the appropriateness of a four factor solution. These

four factors accounted for 54.6 of the variance. Factor results

were rotated to the varimax criterion. The resultant factor
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matrix ' presented in Table 1.

INSERT TABLE 1 ABOUT HERE

Using a saliency criterion of 1.401, Factor I was most

highly saturated with Tests 9, 7, 6, 5, 8, 20, and 22. The five

tests correlated most highly with this factor (Tests 9, 7, 6, 5,

and 8) were originally designed to measure abilities in the

verbal domain. The remaining two tests (20 and 22) that

correlated highly with this factor were designed as measures of

mathematical ability. Hence, the observed structure for this

factor does not exactly match the expected structure, although it

does represent relatively well the expected verbal ability

factor.

Factor II was most highly saturated with Tests 1, 4, 25, 26,

2, 3, and 23. Four of these tests (Tests 1 through 4) were

designed as measures of visual ability. The remaining three

tests were originally designed as measures of mathematical

ability; however, since Tests 25 and 26 are alternate measures,

respectively, for Tests 3 and 4, they can be regarded as tests of

visual ability. Hence, this factor represents well the expected

structure of the visual abilities factor. It is interesting that

Test 23, the seemingly "misplaced" test, also correlated highly

with Factor I (factor structure coefficient equal to .43),

indicating that this test did not uniquely saturate the factor

space occupied by either of the first two factors. Were this a

typical exploratory construct validity study, a researcher might
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be prone to delete this test from future validity studies.

Factor III was most highly saturated with Tests 10, 12, 13,

11, 24, and 21. Four of these tests (Tests 10 through 13) were

designed as measures of test taking speed. The remaining two

measures (Tests 24 and 21) were designed as measures of

mathematical ability. Item 24 also correlated highly with Factor

I (factor structure coefficient equal to .41), offering evidence

for possible deletion of the measure from future analyses.

Finally, Factor IV was most highly saturated with Tests 17,

14, 15, 16, 18, and 19. This was perhaps the "cleanest" of the

four factors, with all of the six highly correlated tests

originally designed as measures of memory and recognition. One

of the measures (Test 16), however, also correlated highly with

Factor II (factor structure coefficient equal to .45).

In sum, this exploratory factor analytic procedure yielded

interpretable results, with the four extracted factors accounting

for all 26 of the test variables. Four of the five expected

factors were identified, with each of the five tests of the

remaining expected factor (mathematical ability) correlating

highly across one or more of the first three factors. In

interpreting these results, the researcher might wish to delete

the last five measures from future analyses, or else re-evaluate

the construct thought to be measured by the tests in this cohort.

The fact that several of the tests in this cohort correlated well

with more than one factor could serve as a justification for

deleting those measures from subsequent analyses.
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As a follow-up analysis to this exploratory procedure, a

Procrustean rotation procedure was utilized to assess the

viability of this four factor solution. Procrustean rotation

procedures are used to assess the goodness-of-fit of observed

factor structures to expected structures. One method for

performing these procedures has been discussed by Gorsuch (1983)

and psychometrically elaborated by Thompson (1986). This method

involves projecting the observed and expected solutions into the

same factor space by rotating actual results to the "best fit"

position with the expected factors. The cosines of the paired

factors across the observed and "target" models are correlation

coefficients, and hence provide estimates of the degree of

goodness (or badness) of fit between the two factor solutions.

These cosines may be computed using the computer program RELATE

(Veldman, 1967) which also "recreates" the observed factor matrix

to best fit the theoretical factor matrix.

In the present case, the Table 1 matrix served as the actual

structure matrix. The "target" structure matrix was structured

based upon the original theoretical factors suggested by

Holzinger and Swineford (1939). Each of the 26 measures was

expected to be univocal (i.e., to "speak" through only one

factor); consequently, each variable was assigned a factor-

structure coefficient of unity on the factor with which it was

expected to correlate and a value of zero on all other factors.

Since Ulf, mathematical abilities factor was not identified in the

previous exploratory analysis, Tests 20 through 26 (originally

24.
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designed as tests of mathematical ability) were expected to

correlate with Factor II (Visual Abilities). This placement was

selected since three of these seven variables had correlated

highly with Factor II in the previous exploratory analysis.

Table 2 presents the cosines among the factor axes across

the expected and actual factor matrices. The reproduce' observed

factor matrix resulting from this analysis is presented in Table

3. These results suggest a high degree of fit of the actual

structure to the expected structure, with all of the cosines

among paired factor axes approaching unity (values ranging from

.9752 to .9975), and with all but one of the measures (Test 24)

highly correlating with the expected factors. In addition, each

observed factor tended to correlate rather weakly with expected

factors other than the one it was supposed to represent. Thus,

these results tend to confirm the previous findings.

INSERT TABLES 2 AND 3 ABOUT HERE

Analysis II: Confirmatory Extraction

The second method used for analyzing the data consisted of

confirmatory extraction of five :lctcprs based upon the

theoretical model posited for the 26 measures. This procedure

was a "pure" application of confirmatory factor analysis as no

consideration was given to exploratory procedures prior to

conducting the analysis. A target factor matrix was specified

with free values for 26 parameter estimates based upon expected

factor structures. All of the measures were predicted to be

univocal, i.e., correlated with or "speaking through" only one

24
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factor, although factors were allowed to correlate. The LISREL

VI commands for running this analysis are listed in Appendix B.

The maximum likelihood estimates resulting from this

analysis are presented in Table 4, and the interfactor phi or

correlation matrix is presented in Table 5. The chi-square

statistic for the model (df = 289) was 466.57 (probability level

< 0.001). The total coefficient of determination and goodness of

ftt index, respectively, were 0.95 and 0.80. Interfactor

correlations were relatively high, with off-diagonal coefficients

ranging from 0.46 to 0.87, and with the highest interfactor

correlations between the fifth and the remaining four factors.

These results indicate that the expected five-factor model is

identified, although the fit of the model is less than adequate.

INSERT TABLES 4 AND 5 ABOUT HERE

The LISREL model specified for Analysis II included a

specification search based upon automatic model modification.

Allowing for these modifications essentially made the

confirmatory model an exploratory one since these modifications

were not based upon theoretical considerations. Automatic

modification indices were utilized to free the fixed model

parameters (13, 2), (24, 3), (21, 3), (17, 2), (10, 2), and (24,

2) in an attempt to improve the fit of the model. Modifications

through parameter (21, 3) were considered noteworthy. The three

remaining modifications were not considered as the modification

of parameter (17, 2) yielded an unrealistic value for parameter

2.,
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(17, 4) (maximum likelihood estimate greater than one). Since

this value could not be interpreted, the remaining modifications

were not considered (Joreskog & Sorbom, 1986, p. 1.42).

The maximum likelihood estimates and interfactor phi matrix

which resulted from the first three modifications of the model

are presented in Tables 6 and 7, respectively. The chi-square

statistic for the model (df = 286) was 413.22 (probability level

< 0.001). The total coefficient of determination and goodness of

fit index, respectively, were 0.98 and 0.83. Thus, the overall

fit of the model improved with these modifications, although the

improvement was minimal. In addition, the interfactor phi-matrix

correlations were adjusted downward, with off-diagonal

coefficients ranging from 0.37 to 0.85.

INSERT TABLES 6 AND 7 ABOUT HERE

The goodness of fit is still not adequate enough to assume

the appropriateness of the model. Interestingly, two of the

three measures for which Analysis II model parameters were

modified (Tests 21 and 24) were in the set of items expected to

measure mathematical ability. This finding, along with the high

interfactor correlations between the MATH factor and each of the

other factors, suggests that the mathematical abilities construct

may not be as discretely identified as the other four factors.

Discussion

The results of the analyses presented above indicate that

exploratory and confirmatory factor analytic procedures can yield



22

different results. In the present example, the atheoretical,

mechanical factor extraction procedures utilized in the

exploratory factor analytic procedure (Analysis I) yielded a

different number of factors than the theoretically driven

procedures utilized in the confirmatory procedure (Analysis II).

It is interesting to note, however, that the seeming accuracy of

the Procrustean-rotated initial exploratory factor matrix in

matching the expected target matrix may not necessarily indicate

the viability of the four factor structure over the five factor

structure. Gorsuch (1974) points out that Procrustean methods

not only tend to capitalize on chance, but also rely heavily on

"stretching and trimming the data to fit the hypotheses" (p.

167). Horn (1967) provides psychometric evidence to illustrate

this property of Procrustean methods, showing that these methods

can sometimes lead to erroneous confirmatory results even when

factor structures are determined using totally random numbers!

The identification of a five-factor model using the LISREL

confirmatory procedures could be regarded as an affirmation of

Hollinger and Swineford's (1939) classifications of the various

ability measures. However, the less than desirable fit of this

model to the data indicates the need for additional exploratory

studies with other data sets to either confirm or challenge the

five-factor theoretical structur posited for these measures.

The results of the exploratory procedures utilized in

Analysis I illustrate a valuable point, namely that initial

exploratory factor structure should not be regarded as

20
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confirmation of expected factor structure simply because some or

all of the observed factors match expected factors. Additional

confirmatory factor analytic studies that establish goodness of

fit across several different data sets are needed to genuinely

confirm initial exploratory factor analytic results. As Gorsuch

(1983, p. 335) put it, "To the extent that invariance can be

found across systematic changes in either variables or the

individuals, then the factors have a wider range of applicability

as generalized constructs." In the Analysis I example, the

follow-up confirmatory procedure challenged the exploratory

factor solution even though the original exploratory solution

yielded interpretable factors and appeared to

the variance in the factor space.

Another point illustrated by the analyses

account well for

conducted here is

that confirmatory methods may be used in an exploratory fashion.

Confirmatory methods can be used as (a) follow-up procedures to

exploratory factor identification (as illustrated in Analysis I),

or (b) ef:ective exploratory methods for examining modification

of confirmatory models which are either not identified or do not

adequately fit a given data set (as illustrated in Analysis II).

This modification funtion of confirmatory models can provide the

researcher with clues as to how best to restructure theory. In

cases in which models are specified so as to allow factors to

correlate, modification can also be used to determine how changes

in the model affect these correlations, with the possibility of

identifying nested effects of some factors within others.

2t,
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Finally, even though neither the four- nor five-factor

solution models proposed herein achieved very good fit with the

selected data set, both models were viable. This finding

illustrates another strength of confirmatory factor analysis,

i.e., the identification of multiple plausible models for

explaining the relationships among a given set of variables.

This aspect of confirmatory models makes the models especially

useful in research situations in which the theoretical structures

underlying observed behaviors are week or nonexistent, or in

which there are competing theoretical models for explaining

relationships among behavioral variables.

Summary

The present study has illustrated several ways in which

confirmatory factor analytic methods may be useful in behavioral

research. Advantages of confirmatory techniques over traditional

exploratory factor analytic techniques include the ability to

directly test theory and the ability to generate various

statistics for determining goodness of fit of theoretical models

to actual data. Used either alone or in tandem with exploratory

methods, confirmatory methods can help the researcher avoid

erroneous conclusions about factor structures which might emerge

using exploratory methods alone. Whereas exploratory methods are

an invaluable aid in the initial structuring of behavioral

constructs, confirmatory methods serve the researcher in the

affirmation or rejection of models derived using theoretical

considerations or exploratory factor analytic techniques.
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Table 1
Varimax Rotated and Sorted Exploratory Factor Matrix

29

Variable I II III IV

T9 .84368 .16866 .05732 .18178
T7 .84067 .16193 .15760 .07190
T6 .80078 .18593 .06986 .19972
T5 .77695 .20061 .20741 .08979
T8 .63806 .31948 .24004 .10541
T20 .44767 .38582 .07164 .32942
T22 .43534 .36265 .11846 .33263

Ti .16061 .69723 .19667 .15574
T4 .22608 .68976 .10959 .07172
T25 .14618 .63062 -.06440 .13987
T26 .24343 .62363 .07000 .04550
T2 .07949 .58449 .07805 .03359
T3 .13273 .54714 .13808 .12329
T23 .42674 .48382 .22395 .23677

T10 .17895 -.11212 .83838 .12053
T12 .02371 .20235 .78960 .04919
T13 .17549 .45558 .61988 .02471
Til .18564 .07723 .61887 .34552
T24 .41126 .10006 .54632 .28598
T21 .17557 .43149 .48810 .19031

T17 .16494 -.00857 .24505 .69260
T14 .20588 .02369 .04536 .68092
T15 .08580 .10845 .04312 .65548
T16 .05532 .44604 .05855 .57261
T18 -.00345 .34462 .38080 .47471
T19 .15941 .18196 .19371 .45310

34
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Table 2
Cosines Among Axes of Observed and Theoretical Factor Structures

1 2 3 4

1 .9209 .3488 .1322 .1129
2 -.3417 .9346 -.0006 -.0988
3 -.1140 -.0494 .9894 -.0750
4 -.1485 .0500 .0601 .9858

Table 3
The Table 1 Matrix Rotated to "Best Fit"

with the Expected Target Matrix*

VERBAL VISUAL SPEED MEMORY

Ti .4347 :5813 .1302 .1764
T2 .2912 .5157 .0368 .0552
T3 .3452 .4537 .0852 .1375
T4 .4714 .5602 .0432 .0782
T5 .8203 -.0870 .1000 -.0044
T6 .8341 -.1197 -.0463 .0915
T7 .8596 -.1431 .0467 -.0364
T8 .7427 .0700 .1411 .0396
T9 .8693 -.1487 -.0614 .0658
T10 .2501 -.1783 .8056 .1370
Til .3187 -.0257 .5614 .3541
T12 .2023 .1757 .7649 .1025
T13 .4052 .3630 .5690 .0583
T14 .2808 -.1155 -.0308 .6446
T15 .1966 .0073 -.0216 .6415
T16 .2789 .3414 -.0133 .5821
T17 .2595 -.1329 .1722 .6726
T18 .2210 .2762 .3246 .5086
T19 .2870 .0707 .1305 .4437
T20 .5935 .1750 -.0239 .2819
T21 .3982 .3242 .4274 .2124
T22 .5806 .1572 .0247 .2885
T23 .6181 .2828 .1313 .2076
T24 .5181 -.0756 .4673 .2587
T25 .3619 , .5256 -.1220 .1439
T26 .4561 .4951 .0073 .0441

*The largest factor structure coefficient for each variable
across the four factors is printed in bold type.

3,4
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Table 4
Maximum Likelihood Factor Matrix for Analysis II

VERBAL VISUAL SPEED MEMORY MATH

Ti 0.000 0.704 0.000 0.000 0.000
T2 0.000 0.498 0.000 0.000 0.000
I:3 0.000 0.502 0.000 0.000 0.000
T4 0.000 0.681 0.000 0.000 0.000
T5 0.803 0.000 0.000 0.000 0.000
T6 0.816 0.000 0.000 0.000 0.000
T7 0.838 0.000 0.000 0.000 0.000
T8 0.702 0.000 0.000 0.000 0.000
T9 0.844 0.000 0.000 0.000 0.000
T10 0.000 0.000 0.659 0.000 0.000
Til 0.000 0.000 0.683 0.000 0.000
T12 0.000 0.000 0.714 0.000 0.000
T13 0.000 0.000 0.743 0.000 0.000
T14 0.000 0.000 0.000 0.509 0.000
T15 0.000 0.000 0.000 0.501 0.000
T16 0.000 0.000 0.000 0.609 0.000
T17 0.000 0.000 0.000 0.624 0.000
T18 0.000 0.000 0.000 0.637 0.000
T19 0.000 0.000 0.000 0.502 0.000
T20 0.000 0.000 0.000 0.000 0.654
T21 0.000 0.000 0.000 0.000 0.616
T22 0.000 0.000 0.000 0.000 0.655
T23 0.000 0.000 0.000 0.000 0.728
T24 0.000 0.000 0.000 0.000 0.602
T25 0.000 0.000 0.000 0.000 0.462
T26 0.000 0.000 0.000 0.000 0.544

Table 5
Interfactor Phi Matrix for Analysis II

VERBAL
VISUAL
SPEED
MEMORY
MATH

VERBAL

1.000
0.590
0.462
0.502
0.757

VISUAL

1.000
0.574
0.637
0.872

SPEED

1.000
0.599
0.645

MEMORY

1.000
0.762

MATH

1.000

3 ,-1
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Table 6
Modified Maximum Likelihood Factor Matrix for Analysis II

32

VERBAL VISUAL SPEED MEMORY MATH

Ti 0.000 0.725 0.000 0.000 0.000
T2 0.000 0.495 0.000 0.000 0.000
T3 0.000 0.517 0.000 0.000 0.000
T4 0.000 0.688 0.000 0.000 0.000
T5 0.803 0.000 0.000 0.000 0.000
T6 0.816 0.000 0.000 0.000 0.000
T7 0.838 0.000 0.000 0.000 0.000
T8 0.703 0.000 0.000 0.000 0.000
T9 0.844 0.000 0.000 0.000 0.000
T10 0.000 0.000 0.786 0.000 0.000
Til 0.000 0.000 0.663 0.000 0,000
T12 0.000 0.000 0.703 0.000 0.000
T13 0.000 0.325 0.466 0.000 0.000
T14 0.000 0.000 0.000 0.508 0.000
T15 0.000 0.000 0.000 0.499 0.000
T16 0.000 0.000 0.000 0.604 0.000
T17 0.000 -0.491 0.000 0.629 0.000
T18 0.000 0.000 0.000 0.639 0.000
T19 0.000 0.000 0.000 0.503 0.000
T20 0.000 0.000 0.000 0.000 0.670
T21 0.000 0.000 0.349 0.000 0.423
T22 0.000 0.000 0.000 0.000 0.668
T23 0.000 0.000 0.000 0.000 0.733
T24 0.000 -0.680 0.486 0.000 0.333
T25 0.000 0.000 0.000 0.000 0.498
T26 0.000 0.000 0.000 0.000 0.566

Table 7
Modified Interfactor Phi Matrix for Analysis II

VERBAL
VISUAL
SPEED
MEMORY
MATH

VERBAL

1.000
0.574
0.401
0.502
0.746

VISUAL

1.000
0.369
0.596
0.848

SPEED

1.000
0.554
0.400

MEMORY

1.000
0.719

MATH

1.000

&i
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Appendix A
Tests Included in Holzinger and Swineford (1939) Data Set

Tests of Visualization

TEST 1--Visual Perception Test (from Spearman VPT, Part III)
TEST 2--Cubes Test (Simplification of Brigham's Spatial Relations

Test)
TEST 3--Paper Form Board Test (Shapes that can be combined to

form a targeted criteria)
TEST 4--"Lozenges" Test (from Thorndike--Shapes that can be
inverted and then combined to identify a targeted criteria)

TEST 25- -Piper Form Board Test (Revision of TEST 3)
TEST 26--"Flags" Test (Possible Substitute for TEST 4--Lozenges)

Tests of Verbal Intelligence

TEST 5--General Information Verbal Test
TEST 6--Paragraph Comprehension Test
TEST 7--Sentence Completion Test
TEST 8--Word Classification Test (Selecting word which does not

belong in a set)
TEST 9--Word Meaning Test

Tests to Determine Test-taking Speed

TEST 1JSpeeded Addition Test
TEST 11--Speeded Code Test (Transforming shapes into alpha with

code)
TEST 12--Speeded Counting Test (Counting of dots in various

shapes)
TEST 13--Speeded Discrimination Test (Discriminating straight and

curved capitals)

Tests of Memory/Recognition

TEST 14--Memory of Target Words Test
TEST 15--Memory of Target Numbers Test
TEST 16--Memory of Target Shapes Test
TEST 17--Memory of Object-Number Association Targets Test
TEST 18--Memory of Number-Object Association Targets Test
TEST 19--Memory of Figure-Word Association Targets Test

Tests of Mathematical Ability

TEST 20--Deductive Math Ability Test
TEST 21--Math Number Puzzles Test
TEST 22--Math Word Problem Reasoning Test
TEST 23Number Series Test (Completion of number series)
TEST 24 -- Woody- McCall Mixed Math Fundamentals Test



.1,66" im

34

Appendix B
LISREL VI Commands for Running Analysis II

USERPROC NAME=LISREL
TI THEORETICAL CONFIRM ANALYSIS #2
DA NI=26 NO=0 MA=KM
NA
'Ti' T2"T3"T4"T5"T6"T7"T8"T9"T10"T11"T12'
'T13"T14'
'T15"T16"T17"T18"T19"T20"T21"T22"T23"T24"T25
'T26'
RA
MO NX=26 NK=5 PH=ST
LK
'VERBAL' VISUAL' 'SPEED'
PA LX

'MEMORY' 'MATH'

0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
OU SE TV MR MI FS SL=.05 TM=1200
END USER
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