Arbanas, Rose J.; Lindquist, Gayla R., Ed.

Michigan State Board of Education, Lansing.

33p.; For related documents, see SE 051 051-052.

Calhoun Intermediate School District, 17111 G Drive North, Marshall, MI 49068 ($2.50 plus $1.50 postage. For more than one, additional postage will be charged).

Guides - Non-Classroom Use (055)

*Career Education; *Career Guidance; Elementary Secondary Education; *Females; *Mathematics Education; Parent Attitudes; *Parent Influence; Parent Materials; Parent Role; *Parent Student Relationship; *Science Careers; Science Materials; Scientific Personnel

This handbook for parents is intended to help them to stimulate their daughters' interest in career paths for young women in mathematics and science-related areas. Main topics included are: (1) problems, i.e., the dearth of women in the sciences (includes a fact sheet); (2) practical advice and guidelines; (3) activities; (4) reading materials; (5) resource information, including books, periodicals, and organizations; and (6) a selected bibliography, listing seven references. (YP)
Girls + Math + Science = Choices

HANDBOOK FOR PARENTS

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY Rose J. Arbanas
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

BEST COPY AVAILABLE

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it.
Minor changes have been made to improve reproduction quality.

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.
Table of Contents

What is the problem? .. 1
Things to think and talk about 9
Activities for your child ... 19
Just for a laugh, here is ... 24
Where to look for more information 26
Epilogue .. 28
Selected Bibliography ... 29
What is the problem?

How high the sky? How far the moon? These are questions asked by children. But how many children actually go on to find the answers? And of those who do, how many are girls? Actually, the answers to the first two questions may not be important. What is important is the curiosity, the inquisitiveness, the willingness to explore what is behind them. Too often these qualities, essential to the development of scientific talent, are met with restrictions and annoyance on the part of adults, who see the exploring child as apt to get into trouble, to cause inconvenience to the adult, or, in the case of little girls, to display behavior that is not appropriately feminine.

How many little girls do you know, unlike Alice, who are missing Wonderland because their minds block it out? What happened to their curiosity? Are they encouraged to be curious? Are they discouraged from exploring rabbit holes or any other strange phenomenon that passes their way? Of the approximately two million scientists in the United States, about 9.4 percent are women. Is the low number of women scientists due to a difference in abilities between the sexes? Or are there other reasons?

Science and mathematics suffer from a mystique that has caused them to be set apart from everyday life and regarded as only for the absolutely brilliant or for the eccentric who displays anti-social behavior. This mystique creates a hardship on the woman because pressures to conform are even stronger for her.
But, science is a part of our American way of life. It is part of everyday life. Adding to our scientific knowledge can, even for the nonscientist, add to our enjoyment of living and our knowledge of life. It is natural -- there is nothing mysterious about it. Learning science can be a pleasure to both sexes if it is not regarded as strictly a classroom subject and if it is not regarded as a field of study within the capabilities of only one sex.

Children should ask “How high the sky? How far the moon?” They should keep on asking these questions. They should be encouraged to ask and ask and seek and seek to satisfy their own curiosity. This should include the little Alices. “Why does water boil? Why does water freeze? How does a seed become a flower?” Our children and their minds are our most important resources.

In addition, children should meet and learn about scientists and what they do. We live in a complex, technical society. This will be increasingly so. Solving many of our future problems will require well-developed minds. Half of those minds belong to girls. Extra effort must be made to stimulate their creativity and to encourage them to be adventurous, curious and competitive. Without this encouragement, girls may grow up to find that they have not only limited their options but also cut themselves out of a larger percentage of the job market -- engineering; technical jobs; jobs requiring mathematical skills such as physics, chemistry, medicine, computer programming and accounting. These challenging jobs are also the better-paid positions.
Hmm! Girls close many doors to their future because they stop taking math and science classes.

Kellogg Community College

Recommended High School Years of Study

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>MATHEMATICS</th>
<th>SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Automotive Technology</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Business Administration</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Criminal Justice</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Dental Hygiene</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Education</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electronic Data Processing</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Engineering</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Food Science</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Law</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Medical Lab Tech</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Medicine</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Physical Therapy</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Social Work</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Veterinary Medicine</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Getting the Facts Straight

1. There is a commonly held myth that mathematics is a male domain.
2. Females can learn mathematics as easily as can males.
3. Presently, high school girls take fewer mathematics courses than do high school boys.
4. Many occupations require at least four years of high school mathematics.
5. Advanced high school mathematics courses are just as useful for girls as they are for boys.
6. Women cannot enter many occupations because they lack the necessary mathematical background.
7. Boys are more likely than girls to continue taking mathematics courses because:
 - They receive encouragement.
 - It is expected of them.
 - They believe it will be useful to them in the future.
 - They are confident of their ability to learn mathematics.
8. Girls are more likely than boys to stop taking mathematics classes because:
 - They receive little encouragement.
 - They are not expected to continue.
 - They believe they won’t need it in the future.
 - They are not confident of their ability to learn mathematics.
Women in the Workforce

How much do you know about working women today? Take this quiz and find out.

1. The number of women who work for pay at some time during their lives is:
 a. 3 out of 10
 b. 5 out of 10
 c. 7 out of 10
 d. 9 out of 10

2. In 1984, the percentage of women who worked because of economic need (self-supporting or husband earned less than $15,000) was:
 a. 33 percent
 b. 45 percent
 c. 56 percent
 d. 66 percent

3. Married men with non-working wives and one or more children make up what percentage of all households?
 a. 7.0 percent
 b. 26.4 percent
 c. 62.8 percent
 d. 79.3 percent

4. Women make up what percentage of the total workforce?
 a. 15 percent
 b. 24 percent
 c. 44 percent
 d. 50 percent

5. In 1982, the median earnings for men and women who worked full-time year-round were:
 a. men - $26,456 women - $24,954
 b. men - $21,542 women - $13,352
 c. men - $22,317 women - $19,942
 d. men - $20,561 women - $20,240

6. In the past decade, three-fifths of the labor force increase has been among:
 a. women
 b. minority women
 c. minorities
 d. married women

7. In 1983, fully employed, female high school graduates (with no college background) earned:
 a. more than male high school graduates
 b. less than men who did not complete elementary school
 c. more than male high school graduates, but less than male college graduates
 d. about the same as high school graduates

8. The absentee rate from work for women is:
 a. much greater than for men
 b. slightly more than for men
 c. much less than for men
 d. slightly less than for men

9. The unemployment rate of minority women compared to that of Caucasian women is:
 a. about the same
 b. less than the rate of Caucasian women
 c. 35 percent more
 d. twice as high

10. The average woman worker will work outside the home between ______ in her lifetime.
 a. 5-10 years
 b. 10-15 years
 c. 15-20 years
 d. 20-40 years
Answers

1. The number of women who work for pay some time during their lives is: (d) nine out of ten.

2. The percentage of women who worked because of economic need in 1984 was: (d) 66 percent. Most women work because they have to work. The myth that women work only to amuse themselves or to buy luxuries for their families is a very limiting one because it is used to justify keeping women in low-paying jobs.

3. Married men with non-working wives and one or more children in 1987 made up: (a) 7.0 percent of all households. Families are changing rapidly in today's society. The high divorce rate is creating many single-parent families. Also, many people are choosing not to have any children or to remain single.

4. Women make up: (c) 44 percent of the total workforce.

5. In 1982, the median earnings for men and women who worked full-time were: (b) men - $21,542, women - $13,352. The gap between the earnings of men and women continues to widen. Many explanations for the gap are given, but one of the most prominent reasons is that women are concentrated in low-paying jobs. For example, secretaries, who are usually women, make much less than construction workers, who are mostly men.

6. In the past decade, three-fifths of the labor force increase has been among: (a) women. Women from all backgrounds are entering the workforce.

7. In 1983, fully employed women high school graduates (with no college background) earned: (b) less than men who did not complete elementary school.

8. The absentee rate from work for women is: (b) slightly more than for men. The rates are 5.6 days a year for women and 5.2 days a year for men. This question was included to show that women are not more likely to be absent from work than men. (The statement that women are likely to be sick often is sometimes used as an excuse for not hiring women.)

9. The unemployment rate for minority women compared to that of Caucasian women is: (d) twice as much.

10. The average female worker will work between: (d) 20 to 40 years in her lifetime. Those women who expect to work only a short period of time may be in for some surprises.
The Importance of Math

Hilary's Story

In grade school, Hilary was a whiz at math. So were many of the other girls. At times when many of the boys were squirming at their desks, wrinkling their foreheads, and trying to count on their toes, Hilary and the girls had already finished the assignment and had moved on to the extra credit questions and puzzles. Her parents hardly noticed when she brought home A's in math. It happened so often that they just took it for granted.

Then, sometime in junior high school, all that changed. Like her friends, Hilary seemed to lose interest in math. Her grades dropped, but she didn't really care. The boys, on the other hand, seemed to have finally caught on. They were taking all the math offered and doing well in it now.

What happened to cause this turnabout? Did the girls become dumb for some reason? Did the boys drain the girls' math ability and use it for their own, like some mad scientist in a bad horror movie? No, of course not. There isn't a logical explanation, but what happened to Hilary does happen frequently to young women. It has nothing to do with ability. If you had ability in grade school, you still have it. What you may have lost is the motivation to learn math. What you may have acquired is the notion that math is "unfeminine" or "for brains only." You may think, "No one wants to date girls who take trigonometry." If you do, that's silly.

You need to take math. Three years of high school math will give you more career options than almost any other subject. A great array of clerical jobs in banking, insurance, business and government need workers with math skills.

If you're planning to go to college, taking some math classes in high school is essential. A year of algebra and one of geometry are a bare minimum. If you have any interest in science or engineering, you ought to take trigonometry and calculus, too. Many colleges will not admit you without a solid math background. Most majors that prepare you for a specific high-paying career require math, although the amount and kind may differ. The math an engineer or a chemist needs is different from that an economics or business major needs. In each case the solid high school math foundation is the same. Whatever your major, one thing is certain. A knowledge of math helps you think analytically, which is an asset in any job. If you have no idea of the career you would like to eventually pursue, take math in high school to be safe. In this way you will not eliminate potential majors or careers for lack of a high school math background.
Did you know?

With math in her background a young woman graduating from high school can expect to earn $2,000-$4,000 more in her first entry level job. Math is often the key to the non-traditional jobs that pay more and offer more upward mobility.

It is a myth that people good at math can instantly come up with right answers or correct procedures.

The average yearly salary offered to a graduate with a 1983 Bachelor of Science degree in petroleum engineering was $31,044; with a Bachelor of Arts degree in humanities, $16,500.

Mary Kay’s Story

Mary Kay’s friends scoffed at her interest in math and science. They said that you should just go to college to have fun and learn interesting things. Mary Kay thought differently, “I decided I wanted to be able to get a job that I’d like and that would support me just about anywhere in the country. So I went into pharmacology. It sounds boring to a lot of people, I know, but I love it. I’ve been working at the hospital for eight years now. I work with doctors and patients, and recently I started lecturing to nursing classes. I make more money than most women do, too. I feel bad that some of my old friends still haven’t found jobs that they like. One of them, though, finally decided to start all over and is now in medical school. She’s the one who was most against my studying pharmacology. Funny how things work out.”

These high-paying jobs require some college math:
- Doctors
- Nurses
- Pharmacists
- All science-related jobs.
- Engineers
- Physicists
- Geologists
- Oceanographers
- Architects
- Accountants
- Computer Programmers

Over half of the jobs which are expected to increase most in number of workers by 1995 require math skills.

Math is not a talent, but a series of skills to be learned.
Many parents want to know how they can help their daughters become more interested and capable in mathematics. First, you should know that encouragement from parents is a major factor in the choices young women make to remain in mathematics. Indeed, many successful women in nontraditional fields state that the main reason they were able to overcome barriers to their achievement in a male field was due to the early and continued support from one or both parents.

You have both the right and obligation to discuss the selection of high school courses and their relation to future career options with your daughter. Counselors are often responsible for several hundred students and cannot be expected to be current on either the employment opportunities best suited for any one student or the special needs and interests each student might have. Counselors can be urged to stress the importance of mathematics for every student; however, it still remains the parents' responsibility to ensure that their daughter is protecting her own future by becoming mathematically literate.

Specifically, parents may find it helpful to assist teachers in bringing role models into the classroom or in organizing a math/science career conference in their daughter's school. Parents who are themselves involved in scientific and technical occupations are valuable resources for the classroom teacher and should be encouraged to volunteer their talents either as role models or as contacts for female co-workers.

Parents - whether or not you are involved in math and science - you should try to:

- Provide your daughters with the same kind of toys and games that your sons receive, things to take apart and build; as well as models, puzzles, and games that develop investigative skills

- Take your daughters to visit science centers, where everyone can actively explore scientific phenomena, and on industry tours (automotive assembly plants, "inside" tours of dams, etc.) so that your daughters can see math and science in action. There may even be an opportunity to see a female role model in a non-traditional career.

- See that time and space is provided for homework and that you take an interest in the content of the homework, not just its completion.

- Provide your daughters with magazines and other literature that describe different types of occupations in an interesting manner. Clip newspaper articles on working women, and talk about them. Send for career information from large, technological industries.

- Become informed about community resources that are available to stimulate interest in math and science: nature camps, science centers, YWCA, Girl Scouts, Campfire Girls, Sea Scouts, after-school programs at the schools. Most communities have a variety of enrichment activities for students with which parents may be completely unfamiliar.
Guidelines for Growth

How do you raise and encourage your daughter?
Here are some suggestions:

PRESCHOOL:
___ Dress her for activity, not sitting on the sidelines.
___ Buy her building and mechanical toys (Lego, Tinkertoys, dump trucks).
___ Select nonsexist day care and preschools.
___ Expand sex role models. Point out and challenge the limiting stereotypes on TV.

ELEMENTARY:
___ Encourage her to read; provide math puzzles, home computers.
___ Take her to zoos, factories, science museums.
___ Watch for signs of boredom with school. She may need acceleration, an individualized program or a different school.

JUNIOR HIGH:
___ Don’t push social relations.
___ Encourage her to take apart her bike and also to put it back together.
___ Expect her suddenly to want to be like every other girl, but continue to encourage school work.
___ Find female role models she can follow around for an afternoon.

HIGH SCHOOL:
___ Insist that she keep taking math and science, even if they’ve become optional.
___ Encourage her to focus on what she is learning in her classes rather than on her grades.
___ Help her find good college information and nonsexist career guidance.

ALWAYS SHOW THAT YOU BELIEVE IN HER ABILITIES.
Math Autobiography Questions

A. Think back to your math experience in elementary school. How did you feel about mathematics?

- Did you experience mostly success or difficulty in learning math?
- What did people say when you made a mistake in math, when you did very well?
- How did your interest and ability in math compare to other students’ - male and female - in your class?
- How did your elementary school teacher feel about math? Did her/his feelings influence you in any way?

B. Now recall your math experience in junior high school. What were your feelings about math?

- In what way had they changed since elementary school?
- If your feeling about math changed, what might have prompted the change?
- Who helped you when you had difficulty with math?
- Was your experience in math class different than experiences in your other subjects? How?
- How confident did you feel about your ability to learn math in junior high school?
- Were your math experiences in junior high school mostly successful?
- Did you experience any failure in math?
- How would you describe your feelings about math in junior high school?

C. What was your high school math experience like?

- Can you recall any strong feelings about math which occurred while you were in high school?
• How much math did you study in high school?
• What were your reasons for choosing to study or not to study math?
• How did your parents, teachers and counselors react to your decision regarding math?
• How confident did you feel about your ability to learn math in high school?
• Did your friends take advanced math courses?
• How did students in your school feel about girls taking advanced math classes?

D. Did you study math in college?
• How did you feel about it?

E. What are your feelings about math today?
• If you were required to enroll in a math course tomorrow, how would you feel?
• If you had to select a single memorable experience in math, what would that experience be?
• Has math or the avoidance of math been a factor in any decisions you've made about the choice of a major, a job, a career?
• How confident do you feel about your ability to learn math?

"A dog weighs 12 kg on 4 legs. What is its weight on 3 legs?"
Parents can be a big influence on their teenagers’ attitudes about mathematics. If you, as a parent, have negative feelings about females’ mathematical abilities, your children, from the youngest to the oldest, may have picked up that message. If you don’t believe that women can learn mathematics, your daughter may have very little confidence about her capabilities in mathematics class. How often do we succeed when we don’t believe in ourselves?

SOME PRACTICAL ADVICE FOR PARENTS

1. Talk openly with your children about their feelings toward mathematics. Share your own feelings about mathematics. Did you find mathematics fun and challenging? Were you a mathematics avoider? Sometimes sharing your own feelings of anxiety or insecurity will encourage them to be more open about their insecurities. Recognizing and expressing fears about mathematics can be a major step in overcoming them.

2. Talk to your sons and daughters about their feelings toward girls and mathematics. Talk about the myth of male superiority in mathematics. Many girls don’t do well in mathematics classes because they believe that boys are supposed to be better in mathematics than girls; they are afraid boys won’t like them if their grades are higher than boys in mathematics class. Point out to them that females can learn mathematics as well as males and that mathematics is just as important for girls as it is for boys.

3. Talk about career plans with your daughters. Point out that many occupations require a good mathematics background and that educational and career options are limited by not continuing in mathematics classes.

4. Talk about the usefulness of a good mathematics background in today’s world. Whether for a job, job-training, or coping with the rapidly changing technology of day-to-day life, mathematics is something that we depend upon with growing frequency.

5. Discussing attitudes about mathematics with your children is not the only way to help improve their attitudes. Practicing what you preach is every bit as important. Ask yourself the following questions.

 a. Do you treat your sons differently than you treat your daughters when it comes to mathematics? Do you make your son “sweat it out” a little when he comes to you for help with his homework? Do you give in more easily with your daughter? The secret to success in mathematics is staying with it. If you interact differently with your son than with your daughter you may be improving your son’s mathematics skills but undermining your daughter’s.

 b. Do you give your sons and daughters different kinds of toys? Do you encourage them to pursue different kinds of hobbies? Many people believe that boys do better in mathematics because boys have grown up playing with more mathematical or scientific toys. Through their experiences with athletics, they are likely to learn how to keep score, add points, figure batting averages and similar skills.
c. What kind of language do you use when referring to women and mathematics in your home? Mothers, do you say, "Ask your father," when someone asks for help in mathematics homework even though your husband may know no more math than you? Fathers, when your daughter complains about not understanding mathematics, do you say, "That's okay honey. Your mother doesn't know a thing about mathematics, and I love her anyway"?

6. Encourage your daughters to participate in mathematically-oriented games and activities - jigsaw puzzles; chess; packing things in boxes, suitcases, or cars; figuring out phone bills or per unit prices in the grocery store or monthly budgets.

7. Encourage your daughter to seek help and support if she is having trouble in mathematics class. Is there a mathematics support group she could join in your area? If not, you could help your school start one. Ask a counselor at your school about it.

8. Your children care what you think. Encourage your daughter to join the mathematics club, the chess club or the mathematics team. Give her as much encouragement as you would if she were joining the drama club or going out for cheerleading.

Remember, it's attitudes - not aptitudes - that are holding girls back from mathematics performance. Changing your attitude may make a significant contribution to your daughter's mathematical success.

- Thought Provokers -

Ask your daughter to:

- Draw a picture of herself when she is grown up and at work.

- Imagine she is 30 years old. Have her describe a typical Wednesday in her life.
Frequently Asked Questions or Comments
With Suggested Responses

COMMENT:

What can I do to encourage my children to continue to study mathematics?

RESPONSE:

• Communicate to your children the message that mathematics is important and will be useful to them in the future, that an inadequate mathematics background limits educational and career options.

• Share with your children the idea that mathematics is as important for girls as it is for boys.

• Encourage your children to do well in mathematics and to ask questions of the teacher or seek extra help with problems they do not understand. Girls have as much mathematical ability as boys. Express confidence in their capabilities.

• Do not convey to your children a negative attitude toward mathematics or the stereotypic notion that mathematics is a male subject. Have the same high expectations for your daughter's mathematics achievement that you do for your son's.

COMMENT:

I have trouble understanding the mathematics homework myself. I'm not much help to my children when they are having difficulty. What can I do?

RESPONSE:

Examine your own history of mathematics learning for sources of mathematics anxiety or mathematics avoidance. Recognizing signs of the problem in yourself may help you relate more effectively to the frustration, anxiety and difficulty your children are experiencing. Encourage your children to talk about the problems they are experiencing in mathematics class and to seek help from their teacher, the mathematics resource center or a mathematics support group if such a group exists at your school. Talk to your children's mathematics teachers to insure that your children get the help they need. Don't let your own difficulty with mathematics discourage you and deter your children from overcoming their own fears and trouble with mathematics.
COMMENT:

My daughter isn’t interested in mathematics-related careers. Why should we be concerned about her taking mathematics?

RESPONSE:

At this moment, your daughter may not be interested in a mathematics-related career. However, your daughter’s educational and career interests may change several times before she graduates from high school or college. Having at least three years of high school mathematics will allow her to consider a greater number of careers, training programs and college majors. It will also facilitate future career changes in our increasingly technological society. Many educational programs and careers depend on mathematics skills for entry or advanced work. Mathematics comprises one-fifth to one-half of the content on widely used employment and college entrance exams. Failure to take sufficient courses in mathematics will limit your daughter’s (and your son’s) educational and career options and it will hinder her opportunities to advance in the career she selects.

COMMENT:

My daughter isn’t sure what she wants to do. If she continues with mathematics, I’ll be pleased, but it is really up to her. I can’t force her to continue to study mathematics.

RESPONSE:

Parents can be a big influence on their children’s attitudes. Your children do care about what you think. The decision about learning mathematics must ultimately be made by your daughter. However, you have a responsibility, as a parent, to provide her with accurate information or to point out where she can obtain information in order to make a knowledgeable decision. You can talk to her about the usefulness of a mathematical background in today’s technological and changing world. You can point out the importance of mathematics in her educational and career planning.

COMMENT:

Do the school counselors have information on how much high school mathematics is needed for various careers?

RESPONSE:

School counselors do have books and pamphlets describing the requirements for entry into various careers and education programs. However, the amount of high school mathematics required or strongly recommended is not always stated, and many careers and majors have hidden mathematics requirements. Several Civil Service examinations have based one-third to one-half of their total scores on mathematics. College entrance examinations also base from one-fifth to one-half of their score on mathematics. While colleges suggest that two to three years of high school mathematics are required for entrance, they often fail to point out that having only two or three years of high school mathematics will drastically limit a students’ range in choice of college majors. A knowledge of statistics, computer programming, advanced algebra, or financial planning may be required for advancement in a career or for graduate work in most areas.
COMMENT:

My daughter doesn’t like mathematics and has to work harder at it than at her other subjects. Should she risk getting a low grade in it and jeopardize her chances of being admitted to a “good” college?

RESPONSE:

Low grades may have an influence on your daughter’s future plans. But not having an adequate mathematics background can also lead to lower salaries, fewer opportunities for entry-level positions and less opportunity for advancement in an occupation. Her educational and career options could be greatly limited. There are alternatives to dropping mathematics. Some high schools are offering mathematics support groups, tutoring, mini-courses or workshops teaching varied approaches to and strategies for learning mathematics. Some people have trouble learning mathematics, not because they are unable to do it, but because they are anxious about it. Getting help with mathematics is one way of reducing their anxiety. Learning to understand the causes of their anxiety about mathematics and the ways of reducing it has helped other students improve their mathematics achievement. If your child has math anxiety, you can talk to the counselor about it. Boys, as well as girls, may find mathematics difficult and may feel anxious about it. Yet, boys are more likely than girls to persist in their study of mathematics because they seem to recognize the usefulness and importance mathematics has to their career choices and because their parents expect more mathematics study of males than females. By expressing the same support and interest in your daughter’s mathematics achievement and by being as persuasive with her as you would your son, you can become a crucial element in her election of mathematics courses in high school.

COMMENT:

The importance of mathematics is being overstated. As parents we each had only two years of math, and we’re doing just fine. Two years of math is adequate for most girls.

RESPONSE:

At one time, two years of mathematics probably was adequate for most people. In this decade, however, many significant changes have occurred. The growth of technology has brought about a demand for highly skilled and specialized workers. People with backgrounds in engineering, science, mathematics, statistics, computer science, accounting, business, and other technical fields are much in demand. Preparation for these fields includes three to four years of high school mathematics and additional mathematics in post-secondary programs.

WHERE THE JOBS WILL BE

<table>
<thead>
<tr>
<th>10 fastest-growing occupations</th>
<th>Change 1966-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paralegal personnel</td>
<td>104%</td>
</tr>
<tr>
<td>Medical assistants</td>
<td>90%</td>
</tr>
<tr>
<td>Physical therapists, assistants</td>
<td>86%</td>
</tr>
<tr>
<td>Data-processing-equipment repairers</td>
<td>80%</td>
</tr>
<tr>
<td>Home health aides</td>
<td>80%</td>
</tr>
<tr>
<td>Computer-systems analysts</td>
<td>76%</td>
</tr>
<tr>
<td>Medical-record technicians</td>
<td>75%</td>
</tr>
<tr>
<td>Employment interviewers</td>
<td>71%</td>
</tr>
<tr>
<td>Computer programers</td>
<td>70%</td>
</tr>
<tr>
<td>Radiology technologists, technicians</td>
<td>65%</td>
</tr>
</tbody>
</table>

...And 4 that will lose jobs

Electrical, electronic assemblers	-54%
Industrial truck, tractor operators	-34%
Stenographers	-28%
Farmers, farm workers	-25%

Note: Projections are among occupations with 25,000 workers or more and assume moderate economic growth. USN&WA: Basic data U.S. Dept of Labor.
Ten Things to Remember
The Next Time You’re Avoiding Math

1. An important factor in learning math is the amount of time you spend studying it.

2. You don’t have to like math to learn it.

3. Some people make mistakes in math not because they are careless or unable to do it but because they are anxious about it. Learning to understand the causes of their anxiety about math and the ways of reducing it have helped other students improve their math achievement. If you have math anxiety, learning more about it would help you.

4. Avoiding math is related to math anxiety. Putting time and energy into catching up on the math not learned in earlier courses and understanding one’s feelings about math have been very effective solutions to math anxiety.

5. There is evidence that some students are less apt to contribute or to ask questions in mathematics classes. You have the right to ask for help or for clarification of a problem or math concept. Take the risk to obtain the information you need. Others in the class will follow your lead.

6. Mathematics may be a “hidden” requirement for occupational opportunities. The total score on several Civil Service examinations is based one-third to one-half on mathematics. College entrance examinations, such as the ACT and the SAT, base from one-fifth to one-half of the total score on mathematics. While colleges suggest that two to three years of high school math are required for entrance, they often fail to point out that only two to three years of high school math will limit your choices of college majors to those in the humanities, some social sciences and education.

7. Males, as a group, are not better at math than females. When females take as much math as males, there are few differences in their achievement.

8. Males have often continued in math because they are told that it is a requirement for the things they want to do.

9. Males hold most high paying and high prestige jobs in today’s job market. There is evidence that males are able to enter a wider range of jobs partly because of their stronger preparation in mathematics. The higher the prestige and salary of a job, the more likely it is to require a strong mathematics background.

10. Because of the effect of past stereotyping, some people still feel that math and science are male subjects. These people may make sex-biased remarks. Seek out people who can give you accurate and unbiased information about your need for math. Remember that Title IX protects women’s rights to equal opportunities in education.
Sentence Completion Exercise

1. When I need help with math, I usually ask...
2. I would expect a female mathematician to be...
3. I would expect a male mathematician to be...
4. Girls who enjoy math are...
5. Boys who enjoy math are...
6. When a boy fails a math quiz, it is usually because...
7. When a girl fails a math quiz, it is usually because...
8. Girls should be preparing for careers in...
9. Boys should be preparing for careers in...
10. When a daughter graduates from high school or college, her parents expect her to...
11. When a son graduates from high school or college, his parents expect him to...
12. In math classes, teachers think the boys should...
13. In math classes, teachers think the girls should...
14. When talking about math, counselors usually think that girls should...
15. When talking about math, counselors usually think that boys should...
Laurie has always loved animals. She takes care of all of her family’s pets and knows what to do when they get sick or injured. She is planning to take a lot of science and math. She wants to go to a special school to prepare for her profession.

To find Laurie’s job, put the right code letter over each “transformation” picture below.

CODE LETTERS

A

E

I

N

R

T

V

From SPACES, published by EQUALS, Lawrence Hall of Science, Berkeley, CA © 1982 by the Regents, University of California.
Louise likes building things. When she was only five years old she built a birdhouse with her mother’s help. She can use a saw and a hammer, and she knows how to measure and plan ahead so she won’t waste wood. Someday she wants to build a house.

In each row, a shape is always the same number. The same shape may stand for a different number in another row.

To find out what Louise’s job is, put the right code letter in each blank.

```
<table>
<thead>
<tr>
<th>Shape</th>
<th>Equation</th>
<th>Code Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>❁ + ❁ + ❁   = 9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>── □ =3 and □ + □ =13</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>❁ +1= △ and △ + □ =5</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>◻ -1= □ and □ + 3 = 7</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>△ + 1 = △ and △ + 6 = 7</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>□ + △ = 7 and □ + □ = 8</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>□ × □ = □</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
```

From SPACES, published by EQUALS, Lawrence Hall of Science, Berkeley, CA © 1982 by the Regents, University of California.
TOOTHPICK PUZZLES

1. Use 17 toothpicks to construct this figure.

a. Remove 5 toothpicks and leave 3 squares.

b. Remove 6 toothpicks and leave 2 squares.

2. Make this figure with 12 toothpicks.

a. Remove 4 toothpicks and leave 3 triangles.

b. Move 4 toothpicks and form 3 triangles.

3. With 9 toothpicks, make this figure.

a. Remove 2 toothpicks and leave 3 triangles.

b. Remove 3 toothpicks and leave 1 triangle.

c. Remove 6 toothpicks and get 1 triangle.

d. Remove 4 toothpicks and get 2 triangles.

e. Remove 2 toothpicks and get 2 triangles.

4. Use 8 toothpicks and 1 button to form a fish.

Move 3 toothpicks and button to make this fish swim the opposite direction.

5. Two farmers have land this shape.

a. The first farmer wants to divide her land evenly among her three daughters. Add 4 toothpicks to form three parcels of equal size and identical shape.

b. The second farmer wants to divide her land evenly among her 4 daughters. Use 8 toothpicks to form four parcels of equal size and identical shape.

6. Use 6 toothpicks to form 4 equilateral triangles.

Toothpick Puzzles - Solutions

There is an "X" on each toothpick to be removed. In most cases there are several possible solutions. Only one is indicated.

1. a.
 ![Diagram](image1)
2. a.
 ![Diagram](image2)
3. a.
 ![Diagram](image3)
 d.
 ![Diagram](image4)
4.
 ![Diagram](image5)
5. a.
 ![Diagram](image6)
 b.
 ![Diagram](image7)
6. Make a 3 dimensional tetrahedron.
 ![Diagram](image8)
Another Longitudinal Study
by Phyllis Steinmann

Once upon a time, in 1940, a research team decided to study the cooking ability of males and females to see if sex had any affect on this ability. The population chosen for the study consisted of 2,000 individuals selected at random: 1,000 were males, and 1,000 were females. Their ages ranged from 5.5 years to 6.5 years. They were observed for an average of two weeks, usually in the kitchen. It was found that both groups were equally adept at spreading peanut butter on slices of bread. Their biggest problem was when the jar of peanut butter was on the top shelf. Then the boys, who were slightly taller than the girls, had a little advantage. The major difference in the sexes was that the girls were twice as likely to put the dirty knife in the sink.

The same subjects were investigated again in 1946 when their ages ranged from 11.5 to 12.5. The large majority of girls, 65%, were able to prepare a simple meal, while only 15% of the boys had attained this skill.

The final study in the series was done in 1952 when the subjects were around 18 years old. At this time most of the females, 85%, were capable of preparing a full-course dinner, but only 5% of the males could do this.

The study clearly showed that there was a great difference in the cooking ability of boys and girls. Ten percent of the sample were twins where one was male, and the other female. These siblings, brought up in the same environment, showed the same discrepancy in cooking ability. It was decided the only explanation for this situation was that the ability to cook was stronger in female genes than in male genes.

In order to confirm the findings of this study, it was repeated again in 1972 with another group of 1,000 boys and 1,000 girls. At age six, the two groups were again found to be equally able to spread peanut butter sandwiches. In 1978 at age 12, they were about equal in their ability to heat up TV dinners in the microwave oven. In 1984, neither group had developed any real cooking skills, opting to eat out at McDonald's.

The results of this study are still being analyzed. One likely conclusion is that in a matter of some thirty years the female genes have been altered, possibly caused by radiation from TV sets.
Hey, people, I've got an idea! Let's find out what you all want to be when you grow up! First, the boys!

Boys, if you'll excuse us, the girls and I have to have a little chat.

We want to beommies!
Where to look for more information

BOOKS:

Perino, Josef and Shiela. *Parenting the Gifted: Developing the Promise*. Bowker, Xerox, New York, NY, 1982. Covers a range of facts and issues of importance to parents and teachers of the gifted including such things as adolescent gifted, choosing private schools, preschool gifted and many other issues. Has extensive bibliography.

PERIODICALS:
Games Magazine
P.O. Box 10147
Des Moines, IA 50340

Popular Mechanics
515 Madison Ave.
New York, NY 10022

Gifted Children Monthly
P.O. Box 115
Sewell, NJ 08080

Science Digest
1775 Broadway
New York, NY 10019

ORGANIZATIONS:
Michigan Association for the Academically Talented (MAAT)
Mary Lou Angelotti, 2209 Belaire, Midland, MI 48640
$10.00 per year membership includes quarterly newsletter, "Gifted Perspectives."

Michigan Association of Educators for the Gifted, Talented and Creative (MAEGTC)
Robert Hayduk, 31300 Anita, Warren, MI 48093
$10.00 per year membership includes quarterly "MAEGTC Newsletter."

The Academy for the Gifted and Talented of Michigan
Richard Watson, 2100 Pontiac Lake Road, Pontiac, MI 48054
$15 individual membership includes quarterly newsletter.
Family Math Materials

Contents

- A Mathematical Environment
- Beginning
- Word Problems and Logical Reasoning
- Measurement
- Numbers and Operations
- Probability and Statistics
- Time and Money
- Geometry and Spatial Thinking
- Patterns and Number Charts
- Estimation, Calculators and Microcomputers
- Careers

Appendix A - Organizing a FAMILY MATH Class
Appendix B - Mathematics Generally Covered at Various Grade Levels
Resource List for Parents and Teachers
Addresses of Publishers
Index

FAMILY MATH Book Order Form

To order a copy of FAMILY MATH, please fill out the form and enclose a check or purchase order made payable to:

The Regents, University of California

The cost of the book is $15.00, plus $2.00 for tax and shipping within the U.S.

I would like to purchase ________________ copies of the FAMILY MATH book.
Enclosed is my check or purchase order for $______________
Name: __________________________ Address: __________________________

Return to: FAMILY MATH
Lawrence Hall of Science
University of California
Berkeley, CA 94720 USA
Telephone: (415) 642-1823

City, State: __________________________
Zip, Country: __________________________
Parents, YOU can make a difference! YOU can help your children develop positive attitudes about math and science. As a parent, you are a major role model for your children. Believe it or not, they are watching what you do, listening to what you say and paying attention to what you believe. What a compliment to you!
Selected Bibliography

Downie, D., Slesnick, T. and Stenmark, J. K., Math for Girls and Other Problem Solvers, EQUALS, Lawrence Hall of Science, University of California, Berkeley.

Multiplying Options and Subtracting BIAS, An Intervention Program Designated to Eliminate Sexism from Mathematics Education, School of Education, University of Wisconsin, Madison, 1981.
