DOCUMENT RESUME

ED 309 989 SE 050 831

AUTHOR Blume, Glendon W., Ed.; Heid, M. Kathleen, E4d.

TITLE New Directions for Mathematics Instruction. 1989
Yearbook.

INSTITUTION Pennsylvania Council of Teachers of Mathematics,
University Park.

PUB DATE 89

NOTE 155p.

AVAILRBLE FROM Pennsylvania Council of Teachers of Mathematics, 171
Chambers Building, The Pennsylvania State University,
University Park, PA 16802 ($7.50).

PUB TYPE Collected Works - General (020) -~ Guides - Classroom
Use - Guides (For Teachers) (052)

EDRS PRICE MF01/PCO7 Plus Postage.

DESCRIPTORS Calculus; Computer Assisted Instruction; =xElementary
School Mathematics; Elementary Secondary Education;
Geometry; Mathematical Vocabulary; *Mathematics
Instruction; Mathematics Teachers; Problem Solving;
x*Secondary School Mathematics; Yearbooks

IDENTIFIERS *Pennsylvania

ABSTRACT

This yearbook discusses instructional approaches that
are consistent with the reformulation of the school mathematics
curriculum by the National Council of Teachers of Mathematics (NCTH).
Articles included cover: (1) Pennsylvania standards for mathematics
programs (including goals, curriculum, instruction, evaluation,
teachers, and administration); (2) metacognitive skills; (3)
cooperative learning in calculus; (4) teaching the language of
mathematics; (5) problem solving with number operations; (6) teaching
geometry; (7) problem solving strategies; (8) learning from real
life; (9) using realistic applications; (10) applied geometry; (11)
mathematical modeling; (12) use of estimation; (13) geometrical
probability; (14) computer based approaches in calculus; and (15)
changes in teacher education. (YP)

**************************************************2********************

* Reproductions supplied by EDRS are the best that can be made *

x from the original document. *
*****************x*****************************************************




ED309989

NEW DIRECTIONS
FOR MATHEMATICS
INSTRUCTION

"PERMISSION TO REPRODUCE THIS U.S. DEPARTMENT OF EDUCATION
MATERIAL HAS BEEN GRANTED 8Y Oftice of Ec | and 1
. EDUCATIONAL RESQURCES INFORMATION
M. Kathleen Heid CENTER (ERIQ)

Trus document has been reproduced as
recewved from the person or orgamzation
ongmnaing it

© Minor changes have been made 10 )mprove
reproduction Quaity

TO THE EDUCATIONAL RESOURCES ® Poinls olview or opnions staledin s docu

INFORMATION CENTER (ERIC).” ggg’l ggs:fgn';e'c:;fgw represent officral

1989 Yearbook

PENNSYLVANIA COUNCIL OF
TEACHERS OF MATHEMATICS

P REST COPY AVAILABLE




1989 PCTM YEARBOOK EDITORS AND
REVIEWERS

Co-Editors

M. Kathleen Heid
The Pennsylvania State University

Glendon W. Blume
The Pennsylvania State University

Manuscript Reviéwers

Terry Baylor
Milton Hershey School

Edward Beardslee
Millersville University

Alice Borja
The Pennsylvania State University

Charles H. Fleming
Upper St. Clair High School

Marlin Hartman
Indiana University of PA

Annalee Henderson
State College Area High School

Susan Heicklen
State College Area School District

Daniel Kunkle
Mercersburg Academy

David R. Marchand

Billie Mazza
Bishop Neuman High School

Mary Moran
Pleasant Valley High School

Joann Maxwell
Cathedral Preparatory School

John S. Mowbray
Shippensburg University of PA

Francis J. Reardon
PA Department of Education

James E. Renney
Altoona Area School District

Timothy Seiber
Cumberland Valley School District

Martin Simon
The Pennsylvania State University

Susan Stonebraker

Venango Campus-Clarion University South Central Elementary School

The 1989 PCTM Yearbook is an offivial publiativn of the Pennsylvamia Counul of Teachers ot Math-
ematics. Membersiup in the Counul indudes a subsunption to the Yearbuuk and Newsietter. Other
individuals and gtstitutions may subswribe tu these publicativns. Inquines shuuld be sent to Mary Musan,
R.D #1, Box 172, Canadensis, PA 18325. Opimions expressed in the articles are thuse uf the authors and

are not necessarily those of the Council.

3.




NEW DIRECTIONS
FOR MATHEMATICS
INSTRUCTION

1989 Yearbook

Glendon W. Blume
The Pennsylvania State University

M. Kathleen Heid
The Pennsylvania State University

Co-Editors

PENNSYLVANIA COUNCIL OF
TEACHERS OF MATHEMATICS




PREFACE -

The 1989 PCTM Yearbook — NEW DIRECTIONS FOR MATHEMAT-
ICS INSTRUCTION — is the fifth yearbook to be developed and distrib-
uted to members of the Pennsylvania Council of Teachers of Mathemat-
ics. We chose this theme because of recent calls for reformulation of the
school mathematics curriculum, one of which has been elaborated in the
recently-published Curriculum and Evaluation Standards for School Mathe-
matics from the National Council of Teachers of Mathematics. This publi-
cation and others cited in articles in this Yearbook have called for new
mathematics content in grades K-12 as well as new approaches to teach-
ing that content.

Thearticles that follow provide suggestions for changes in emphasis in
the K-12 mathematics curriculum and discuss instructional approaches
that are consistent with those changes. Standards for K-12 Mathematics
Programs in Pennisylvania, a cooperative effort by PCTM with the Pennsyl-
vania Association for Supervision and Curriculum Development and the
Pennsylvania Council of Supervisors of Mathematics, provides a guide
for school districts to use in determining whether their mathematics
programs are consistent with recent suggestions for curricular reform.

Several articles in this Yearbook address mathematics as communica-
tion, one of the standards that appears at each of the X-4, 5-8, and 9-12
grade levels in the NCTM Standards. The article by Zbiek suggests that
self-communication can be an important part of mathematics learning,
since it can enhance students’ metacognitive capabilities. New ap-
proaches using small group cooperative learning to enhance student-
student and teacher-student communication is addressed in the article by
Saunders. The Heinrichs and Larrabee article provides techniques for
helping students to deal with the interaction between the language of
mathematics and English.

Problem solving is another of the K-12 NCTM standards. The article by
Cohen illustrates how teachers can address problem solving in the ele-
mentary classroom by using activities that grow out of work with the four
basic operations. The article by Camerlengo introduces a dynamic ap-
proach to problem solving in secondary-level geometry. Larson'’s article
examines two general approaches, top-down and bottom-up, that teach-
ers might use when teaching problem solving.

Five articles address the uses of applications of mathematics and the
development of mathem..tical models for realistic situations. Dobransky,
Kerrigan, Kerrigan, and Stopper explain why elementary teachers might
include a focus on realistic problems in their curriculum. Matras describes
a variety of uses for applications problems at the secondary level, and the

,>ticle by Cacka presents an entire Geometry course that focuses on
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applications of mathematics. The articles by Blume and Swetz provide
examples of situations one might use to engage students in the process of
mathematical modeling.

Several of the articles address pariicular content areas or suggest
specific techniques that are appropriate for new curricular emphases. The
Jorgensen article argues that estimation should be an integral part of
mathematics instruction at all levels. The article by Walton introduces the
reader to a new approach that incorporates the use of geometric models
for probability problems. The articles by Heid and Leinbach illustrate the
impact of new graphing and symbolic-manipulation tools in calculus.
These articles suggest that standard approaches to calculus are no longer
appropriate for preparing students to be users of mathematics in the 21st
century.

Changes in curriculum and instructional methods are not possible
without teachers who are knowledgeable about and committed to such
changes. The article by Trueblood suggests ways that teacher education
programs can prepare teachers to be fluent with the content of a revised
and reformulated mathematics curriculum and to acquire the background
in teaching methods necessary to provide the instruction for such a
curriculum.

The school mathematics curriculum recently has received unprece-
dented attention and will face numerous challenges in the years ahead. It
is hoped that the suggestions offered in the-aforementioned articles will
stimulate teachers and researchers to continue to address the question of
how mathematics instruction can help students to create, apply, reason
with, and communicate about mathematics

Many people contributed in important ways to the 1989 Yearbook. The
authors of the manuscripts deserve thanks for sharing their ideas with
their peers. Eighteen referees selected the articles from among the many
quality articles that were submitted. Their insightful suggestions also
contributed greatly to the editorial process. The commercial and institu-
tional advertisers deserve thanks for their investment in the yearbook.
The PCTM Executive Board’s support for the efforts of the Publications
Committee continues to be appreciated. Bob Nicely, the current President
of PCTM and Co-Editor of the previous PCTM Yearbooks, provided
valuable assistance in all stages of preparation of the Yearbook. Linda
Haffly and Suzanne Harpster of Penn State provided excellent support to
the co-editors. We are grateful for being given the opportunity to work
with so many helpful people. We hope the Yearbook proves to be useful
and invite response from readers, authors, and advertisers.

Glendon W. Blume M. Kathleen Heid
The Pennsylvania State University  The Pennsylvania State University
1989 Yearbook Co-Editor 1989 Yearbook Co-Editor
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STANDARDS FOR K-12 SCHOOL MATHEMATICS
PROGRAMS IN PENNSYLVANIA:
A GUIDE FOR A MATHEMATICS PROGRAM REVIEW

Pennsylvania Association for Supervision and Curriculum Development
in cooperation with the
Pennsylvania Council of Teachers of Mathematics
and the
Pennsylvania Council of Supervisors of Mathematics

MATHEMATICS PROGRAM REVIEW COMMITTEE

Committee Chair — Robert F. Nicely, Jr. (PASCD, PCTM, PCSM)

Elementary School (K-4) Subcommittee

Lucy Mirisciotti Young — Chair (PASCD, PCTM), Canon-McMillan School
District

Lois Barson (PCTM, PCSM), School District of Philadelphia

Linda Renney (PASCD, PCTM), Bellwood-Antis School District

Brenda Wise (PASCD), Eastern Lancaster County School District

Middle/Junior High School (5-8) Subcommittee

James E. Renney — Chair (PASCD, PCT M, PCSM), Altoona Area School
District

James S. Gibson (PASCD, PCTM, PCSM), Bellefonte Area School District

Joanna C. Good (PASCD), Eastern Lancaster County School District

Carl A. Guerriero (PASCD, PCTM, PCSM), Dickinson College

Senior High School (9-12) Subcommittee

Glendon W. Blume — Chair {PCTM, PCSM), The Pennsylvania State
University

Bethlynne Cacka (PASCD), Eastern Lancaster County School District

Mary Moran (PCTM, PCSM), Pleasant Valley School District

Fred R. Stewart (PCTM, PCSM), Neshaminy School District

Introduction!

Now, perhaps more than at any time in this century, the K-12 math-
ematics curriculum is undergoing major changes. The National Council
of Teachers of Mathematics (NCTM) has issued “Curriculum and Evalu-
ation Standards for School Mathematics” and position statements on
leadership, staff development, and the effective use of technology. The
Mathematical Sciences Education Board (MSEB) has been developing a
philosophy and framework for the K-12 mathematics curriculum, the
Mathematical Association of America (MAA) has issued “Guidelines for

Q

Iy




2 Standards for K-12 Mathematics

the Continuing Mathematical Education of Teachers” and NCTM has
issued “Guidelines for the Post-Baccalaureate Education of Teachers of
Mathematics.”

In an effort to help Pennsylvania school districts capitalize on the
current opportunity for curriculum redesign and enhancement, the
Pennsylvania Association for Supervision and Curriculum Development,
in cooperation with the Pennsylvania Council of Teachers of Mathematics
and the Pennsylvania Council of Supervisors of Mathematics, has de-
veloped a guide for conducting @ mathematics program review. The
authors of the guide — the aforementioned mathematics program review
committee — carefully analyzed the NCTM and MAA publications, plus
others listed in the references, and then identified and listed critical
elements in the areas of goals, curriculun, instruction, evaluation, and
teacher and administrator responsibility. The committee then designed
the program review guide to enable school district personnel to analyze
their mathematics programs with respect to these critical elements, both
in terms of their current level of implementation and their levels of
importance — both nationally and locally.

This guide lists elements that have been identified as important by
natiorial standards. It is intended to (1) stimulate critical analysis of
content, methodology, assessment and management issues related to the
K-12 mathematics program, (2) identify some of the major desired di-
rections for the K-12 mathematics curriculum, and (3) help districts
identify discrepancies between “what is” and “what could be.”

Because of the many differences (staff needs, resources, goals, organi-
zational patterns, etc.) among school districts, each district must deter-
mine the most meaningful application for the guide. School district
personnel should develop an application plan that enables them to use
the guide in a way that recognizes these idiosyncratic differences.

It is inappropriate to simply distribute the guide to teachers, have them
“fillitout,” and then tally the results! This document is only one piece of a
comprehensive mathematics program review. Itis a guide which will help
districts gather data which teachers and administrators can discuss. They
can then work toward consensus about future directions for the math-
ematics program. The process may be more important than the product!

The sample completed guide in this section contains six items that were
selected from the program review guide (one item from each of the six
sections) so that district personnel can see how they might complete the
forms. When answering the question “How important is this to you?”,
respondents should encircle N for “not important,” M for “moderately
important,” and V for “very important.” When answering the question
““To what extent does this happen in your setting?”, respondents should
encircle No for “not implemented,” Lo for “low level of implementation
or occurrence, * Mod for “moderate level of implementation or occur-

ERIC 1
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Mathematics Program Review Conmittee 3

rence,” Hi for “high level of implementation or occurrence,” and NA for
“’not applicable.”

SAMMLE
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The authors of the guide suggest that districts:

1. form committees at grade levels K-4, 5-8, and 9-12;

2. give each committee member a copy of the mathematics program
review document at least one week before the committee meetin gis
scheduled;

3. allot at least one full day for the committee members to discuss and
analyze their respective (K-4, 5-8, 9-12) portions of the K-12 math-
ematics program as well as the other (K-12) sections of this
document; and

4. use the results of the analysis to develop and impleinent realistic
long-range curriculum and staff development plans for the district.

One way a district might want to organize the day (mentioned initem 3

above) is as follows.

1. Form committees of 5-10 members at grades K-4, 5-8, and 9-12.
(There are a number of ways to organize these committees, de-
pending on district organization patterns and goals.)

2. Have each committee member read the mathematics program re-
view guide prior to the team meeting.

3. Have the committee members, in the meeting, come to consensus
on the “level of importance” for each item in the guide.

ERIC BEST COPY AVAILABLE
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4 Standards for K-12 Mathematice ~

4. Have the committzse mem
gram to determine the "l
exists in the district.

5. Have the chairs of the committees compile a “consensus” document
that reflects the K-12 program. Concurrent or follow-up assistance
from outside consultant(s) might be needed as part of this analysis
and planning process.

The following sections — Goals, Curriculum: K-4, Curriculum: 5-8,
Curriculum: 9-12, Instruction, Evaluation, Teachers: K-12, and Admin-
istration: K-12 — contain a listing of the elements that have been identi-
fied as important by national standards. The primary author(s) of each of
the sections are listed with the respective sections. Copies of the complete
(i.e. with columns for recording perceptions and comments) mathematics
program review guide can be obtained from the Pennsylvania As-
sociation for Supervision and Curriculum Development. (Contact Robert
F. Nicely, Jr., 277 Chambers Building, The Pennsylvania State University,
University Park, PA 16802; telephone 814/865-2525 for details on how to
get copies or to discuss strategies forimplementation and data analysis.)

bers, in the meeting, analyze their pro-
evel of implementation” that currently

'The primary author of this se.tion was Robert F. Nicely, Jr.

GOALS?

An exemplary mathematics program should:

1. systematically develop mathematical concepts and skills including
measurement, estimation, computation, and geometry;

2. be a sequential, integrated, and articulated K-12 curriculum;

3. helpall students develop proficiency in problem solving and higher-
order thinking;

4. encourage all students to develop their full potential in
mathematics;

5. promote a belief in the utility and value of mathematics;

6. provide a variety of experiences for students which will enable them
to understand the relationship of mathematics to their world;

7. usetechnology inall forms to enhance mathematics instruction; and

8. be taught by knowledgeable, proficient, and active professionals.

*The primary authors of this section were James E. Renney, James S. Gibson, Joanna C.
Good, and Carl A. Guerriero.

CURRICULUM: K-4°

A. Probiem Solving (Critical Thinking Skills)
Problem solving provides a framework for the learning of most mathematics

concepts and skills. Many of the best problem solving situations grow nat-
Q




Mathematics Drogean Review Cowiinitice S

urally from the students’ environment and are posed by both the student and

the teacher. A variety of strategies and techniques can be used in the solution

process.

1. Instructional activities regularly include problem solving with
mathematical applications that are meaningful to students.

2. Instructional activities integrate other subject areas.

3. A variety of strategies (e.g., patterns, guess and check, working
backwards, diagramming, simulation, reduction, logical thinking)
are used to develop higher-level thinking skills.

4 Instructiona! activities include real problems with manipulative/
laboratory/outdoor experiences and technology.

5. Estimaticn is used to determine reasonableness of answers.

- Communicating Mathematical Ideas

Mathematics is a language which — when used early, often and appropriately
— enhances and expedites learning. Communication of mathematical ideas
should be an integral part of every district's program.

1. Understandings and relationships between and among math-
ematical concepts, procedures and symbols are communicated
through writing and speaking. This is done at each stage of con-
ceptual development — concrete, pictorial, abstract— and in every
area of mathematics.

2. Mathematics information is presented in a variety of ways such as
speaking, drawing, graphing, writing, concrete demonstrations
and/or with projects.

3. Mathematics information is received by listening, visualizing, and
reading. ’

. Computation (Whole Numbers)

Computational skills should enable children to develop a complete under-
standing of the four operations and to apply these to real-world problems.
When applying computational skills, students should have practice in choos-
ing the appropriate computational method, i.e., mental arithmetic, paper-
pencil algorithm, or calculating device. Careful attention must be given to
underlying concepts when using manipulatives (concrete) to develop thinking
patterns.

1. Practical experiences provide an understanding of the relation-
ship of mathematics to the real world.

2. Computational skills in the basic operations — additior, sub-
traction, multiplication, and division — with whole numbers are
sequentially developed.

3. Problem situations use informal language. Menipulative mate-
rials and activities precede the formulation uf representative
number operations.
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4. Mathematical symbols, (e.g., =, +, —, <,>) are related to the
expression of problem situations, models, number sentences and
operations.

. Operational sense (e.g., choice of operations, fact families, and
inverse operations) is developed through the analysis of arith-
metic operations.

6. A variety of paper-and-pencil algorithms and mental arithmetic
techniques are used.

7. Computational algorithms are developed with an understanding
of underlying principles (the “whys”).

8. Estimation is used to determine whether a computed answer is
reasonable.

9. Calculators are used as a computational tool.

10. Computers are used as an instructional tool.

wm

D. Measurement

Measurement enables children to recognize m.._.hematics in their own lives.
The process of measuring requires active involvement and encou=ages par-
ticipation in problem-solving. The sty of measurement extends a child’s
concept of number and offers opportunities to practice estimation and frac-
tions. Many ways exist to integrate measurement across the curriculum in
real-life situations. Current recommendations suggest that one avoid arith-
metic conversion between systems of measurement.

1. Instruction includes concrete experiences in both customary and
metric systems as well as systems of measurement developed by
the student.

2. Estimation of quantities is used to determine appropriateness of
answers and in some cases, provides the answer.

3. Measurable attributes include length, mass, area, volume, angle,
temperature and time.

4. Problems of measurement are made meaningful by using real- life

situations.

. Calculators and computers are used to solve measurement

problems.

6. Fraction and geometric concepts are related to measurement.

[$)]

. Numeration

1tis essential that children understand numbers so that they can establish order

and make sense of number use in their everyday lives. Teachers should provide

a variety of activities with physical materials before emphasizing work with

symbols. These activities should enable students to value mathematics and

become confident in their ability to do mathematics.

1. Number concepts are developed sequentially from concrete to
semi-concrete to abstract.
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2. Manipulative materials and activities are used to construct number
meanings through real-world expe-iences.

3. Number concepts are developed through counting, writing, order-
ing, and comparing numbers, and through grouping and place-
value.

4. Number sense (i.e., recognizing number relationships, relative
magnitudes, and the effects of operating on numbers) is
developed.

. Geometry/Spatial Concepts
Geometry relates directly to several areas of the curriculum, particularly
language, science, number and measurement concepts. Children’s under-
standing of spatial terms and their ability to function in the classroom seiting
are enhanced by instructional activities involving spatial relationships and
patterns. Geometric understandings enable students to visualize, thereby
increasing their comprehension. Some children’s spatial capabuities exceed
their numerical skills. Developing spatial capabilities fosters success and
interest in mathematics.

1. Geometric shapes are explored and attributes identified through
concrete manipulatives.

2. Geometric models are constructed in a variety of ways including
manipulating geometric shapes on a computer screer..

3. Concepts of space (e.g., the Boehm concepts) are explored through
concrete experiences as well as congruence, symmetry, parallel and
perpendicular lines. (The Boehm concepts are language terms
which relate directly to concepts of space. The Boehm concepts
include center, above, below, second from the left, third from the
end, beside, between, in front of, middle, pair, top, and bottom.)

4. Geometry is used to solve problems.

5. Geometry is related to concepts of number and measurement.

. Organizing and Interpreting Data

Construction and interpretation of charts, tables, and graphs are important

skills that can be developed in kinde~:arten and the primary grades. Real-life

situations can be translated into th .. mathematical representations and nsed

to lielp stedents think analytically, categorize, compare, make conclusions,

and predict owtcomes.

1. Simple tables, maps, charts, graphs, and diagrams are con-
structed, read, and used.

2. Everyday rezl-life situations are translated into mathematical
representaticns.

3. Questions about everyday living are answered by collecting, or-
ganizing, and using data.

4. Representational models and/or verbal arguments are used to

LN
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justify thinking and solution processes.

5. Patterns, models, experiences, and obscrvations are used to make

and validate conjectures and/or predict outcomes, (e.g., school
election results, weather forecasts, and sporting event outcomes).

. Fractions (Decimals to tenths in Grade 4)

Fractions and decimals are an integral part of the real world. Initial cuncepts

in this area provide the basis for advanced work in later grades. A stident’s

knowledge of number systems is greatly enhanced when fraction and dec.:nu!
concepts are integrated with whole numbers.

1. Concepts are developed in a sequential manner using physical

materials, diagrams and symbols.

. Concrete models and pictorial representations using geometric

shapes, congruent regions, diagrams and sets are employed to
explore operations.

. Real-world situations are used to show the relevance of fractions

and decimals to daily life.

- Fractional representations include regions, sets, symbols, and the

numberline.

. Skills such as comparing and ordering, finding equivalent frac-

tions, and relating fractions to decimals are stressed.

. Concepts and operations are applied to other areas of the cur-

riculum such as problem solving, geometry, measurement and
analysis of data (statistics).

I. Technology
The use of computers and calculators should be integrated throughout the
mathematics curriculum rather than taught as a special topic. Students should
be able to use these technological tools for unwieldly computations, to assess
reasonableness of an answer, for problem solving, and to assist them in the
mastery of mathematical topics.
1. Computers and calculators are used for mathematical applications,

($)]

problem solving, and concept development.

. Mathematics software is carefully selected for quality and appropri-

ateness and used to supplement the mathematics curriculum and
instruction.

- Technological tools are used for complex calculations when the

tedium of manual manipulation outweighs the educational bene-
fits, i.e., multi-digit (more than two digits) divisors, multi-digit
multipliers.

. Current research is used to update the integration of computers and

calculators into the mathematics program.

- The use of computers is incorporated into all levels of the K-4

mathematics program.
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6. Estimation and mental arithmetic skills are used to determine
whether results obtained from computers or calculators are
reasonable,

*The primary authors of this section were Lucy M. Young, Lois Barson, Linda Renney, and
Brenda K. Wise.

CURRICULUM: 5-8

A. Problem Solving (Critical Thinking Skills)

Lewrning to solve problems is the principal reason for studying mathematics.
Problem solving is the process of applying previously acquired knowledge to
new and unfamiliar situations. Solving word problems in texts is one form of
problem solving, but students also should solve non-routine problems.
Problem-sclving strategies involve posing questions, analyzing situations,
translating results, illustrating results, d- wing diagrams, and using trial
and error. Students should see alternc _ solutions to problems, they should
experience problems with more than a single solution.

1. Activities that require original thinking are routinely encountered
in the presentation of the material.

2. Checks for reasonableness and completeness are included as an
integral part of the problem solving process.

3. Topics are often applied to real-world situations that differ from
those presented in the textbook.

4. Multi-step solutions and non-routine problems are posed on a
regular basis.

5. Situations are provided that require the determination of the
problem; the collection and use of missing data, formulas, and
procedures; and the definition of an acceptable solution.

6. Activities require the collection, organization, and manipulation
of data and the drawing of inferences from that data.

7. Computer simulations are used to model and/or analyze complex
situations.

8. Mathematical information routinely appears in various forms
(e.g- tables, graphs, formulas and functions).

9. Group problem solving is encouraged which requires students to
share responsibility for the product of the activity and to discuss
the results.

10. Activities are structured so that several strategies or techniques
are available for use in the solution process.

11. Activities are sequenced to guide the development from identifi-
cation of concrete instances to formal investigations.

12. Interdisciplinary projects are encouraged.

13. Strategies such as top-down analysis and stepwise refinement are
used to analyze and solve complex problems.
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14. Activities-are used which require the generalization of resuits to
other situations and subject matter areas.

. Communication

The 5-8 program should provide opportunities for students to develop and use

the language and notation of mathematics. Vocabulary that is unique to

mathematics and terms which have a common as well as a mathematical

connotation should be used throughout the curriculum. Mathematical ideas

should be expressed by writing, speaking, making models, drawing diagrams

and preparing graphs. Opportunities should be provided for mathematical

discussions.

1. Mathematical situations are represented or described in a variety of
ways (e.g. verbal, concrete, pictorial, graphical, algebraic).

2. Understanding of mathematics is developed through reflection
and by organization and communicaiion of ideas.

3. Positions on mathematical processes and/or solutions are defended
through sound argument.

4. The need for mathematical symbolism is demonstrated.

5. The ability to read mathematics is emphasized.

6. The ability to write mathematics problems from real-world situ-
ations is emphasized.

7. Proper mathematical vocabulary and notation is stressed.

Computation

The 5-8 program provides students with a variety of opportunities to compute
with whole numbers, decimals, and fractions. Calculaters or computers
should beused for long, tedious computations. Students should be permitted to
study additional mathematics topics prior to their mastery of computational
algorithms.

Students should be able to carry out rapid approximate calculations through
the use of mental arithmetic and a variety of computational estimation
techniques. When computation is needed, an estimate can be used to check
reasonableness, examine a conjecture, or make a decision. Studexts should also
learn simple techniques for estimating measurements such as length, area,
volume, and mass (weights). They should be able to decide when a particular
result is precise enough for the purpose at hand.

1. Pencil and paper is used to add, subtract, multiply and divide
fractions with “reasonable” denominators.

2 Pencil and paper is used to add, subtract, multiply and divide
decimals having a “reasonable” number of places.

3. A four-function calculator is used to add, subtract, multiply and
divide “unreasonable” fractions and decimals.

4. Computational algorithms are developed with an understanding
of underlying principles (the “whys”).
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D. Measurement

Students must see the power, usefulness, and creative aspects of mathematics
so that they will not view it as a static, bounded set of rules and procedures to
be memorized but quickly forgotten. When measurement is explored through
rich, investigative, purposeful activity, it provides such opportunity. Stu-
dents should learn the fundamental concepts of measurement through concrete
experiences.

1. Basic units of measurement in the metric system and the relation-
ship between those units of measurement — both within the
dimension (e.g. length or volume) and between dimensions (e.g.
length and volume) are included.

2. Basic units of measurement in the customary system and the
relationship between these units within a dimension (e.g. feetin a
yard or pints in a quart) are included.

3. Appropriate instruments are selected and used to measure a di-

mension accurately.

Scale drawings are made and interpreted.

Procedures and formulas to determine area and volume are de-

veloped and used.

6. Measurements in both the metric and the customary system are

estimated.

Student-developed systems of measurement are encouraged.

Concepts of perimeter, area, and volume are developed intuitively

by counting units, covering surfaces, and filling containers.

9. Real-world measurements are used to generate student-collected
data.

o1

® N

E. Number/Number Systems
A critical part of the middle school mathematics curriculum is a student’s
ability to generate, read, use, and appreciate multiple representations for the
same quantity. A student’s understanding of numerical relationships as
expressed in ratios and proportions, equations, tables, graphs, and diagrams is
of crucial importance in mathematics.

Additionally, students need to understand the underlying structure of
arithmetic. Emphasis must be placed on the reasons why various kinds of
numbers (fractions, decimals, and integers) occur, on what is common among
various arithmetic processes (how the basic operations are similar and different
across sets of numbers — whole numbers vs, fractions vs, decimals, etc.); and
on how one system relates to another (integers as an extension of whole
numbers).

1. The sets of numbers are developed starting with the counting
numbers and ending with the irrationals.
2. Numbers are understood to have several representations (frac-
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tions, decimals, etc.) and processes are available to convert from
one to another.

- Numbers are written as numerals, in words and in expanded

notation.

- The relationship between a number (or set of numbers) and its

(their) graph(s) is emphasized.

- The use of ratio and proportion is extended to cases different from

the problems normally in the texibooks.

- The most appropriate form of a number is used in computation.

The concepts of precision and accuracy are introduced and in-
cluded in the determination of answers.

- Numbers with terminating, repeating or nonrepeating decimal

forms are presented and used properly.

- Computation performed on elements of a set of numbers is pat-

terned after and developed from the application of binary oper-
ations to the whole numbers.

- Feasible, reasonable and impossible solutions are explored and

discussed.

Number theory concepts such as prime numbers, GCF, LCM and
divisibility are introduced and developed.

Mathematics is viewed as a systematic development of a body of
knowledge from a few accepted propositions by applying logical
and procedural rules.

The concepts of relation and function are introduced and
explored.

Geometry

Students should have knowledge of concepts such as parallelism, per-
pendicularity, congruence, similarity and symmetry. They should know
properties of simple plane and solid geometric figures and should be able to
visualizeand verbalize how objects move in theworld around them using terms
such as slides, flips and turns. Geometric concepts should be explored in
settings that involve problem solving ana measurement.

1.
2.
3.

The identification and description of geometric figures are
emphasized.

Opportunities to visualize, represent and manipulate one-, two-,
and three- dimensional figures are provided.

The relationship between geometric properties and other math-
ematical concepts are explored.

- Geometric relationships and their consequences are developed

through nonclassroom experiences.

. Appreciation of geometry and its relationship to the physical world

is developed.

- Construction, drawing and measuring are used to further under-

7
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standing of geometric properties.
7. Technology is used.to explore geometric properties.

G. Probability and Statistics

Understanding probability and the related area of statistics is essential to being

an informed citizen and is important in the study of many other disciplines.

Students in grades 5-8 have a keen interest in trends in music, movies, and

fashion and in the notions of fairness and the chances of winning games. These

interests can be excellent motivators for the study of probability and statistics.

1. Data are systematically coilected and organized.

2. Collections of data are represented and described by developing
and using charts, graphs and tables.

3. The likelihood of bias in a collection of data is recognized.

4. Predictions are made by interpolation or extrapolation from events
or a given collection of data.

5. Basic statistical notions (e.g., measures of central tendency, varia-
bility, correlation and error) are developed.

6. The concept of probability is developed and applied both in a
laboratory (classroom) and in the real world.

7. Simulations and.experiments are devised and conducted to deter-
mine empirical probabilities.

8. The role of probability is emphasized in situatons of chance,
insurance, weather, and other activities.

9. When calculating from real data, the level of accuracy and preci-
sion needed are emphasized.

H. Algebra

One of the most important roles of the middle grades mathematics curriculum

is to provide a transition from arithmetic to algebra. It is critical that students

in grades 5-8 explore algebraic concepts in an informal way in order to build a

foundation for subsequent formal study of algebra.

1. Informal explorations with algebraic ideas (e.g., variable, expres-
sion, equation) that can be abstracted from physical models, data,
tables, graphs and other mathematical representations are used.

2. Concrete experiences with situations that allow students to inves-
tigate patterns in number sequences, make predictions and formu-
late verbal rules to describe patterns are emphasized.

3. Manipulative skills are de-emphasized and students’ ability to use
algebraic concepts to express mathematical relationships are
emphasized.

*The primary authors of this section were James E. Renney, James S. Gibson, Joanna C.
Good, and Carl A. Guerriero.
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CURRICULUM: 9-12°

A. Problem Solving (Critical Thinking Skills)

Learning to solve problems is the principal reason for studying mathematics.

Problem solving is the process of applying previously acquired knowledge to

new and unfamiliar situations. Solving word problems in texts is one form of

problem solving, but students also should be faced with non-routine problems.

Problem solving involves posing questions, drawing diagrams, analyzing

situations, using guess and test, and illustrating and interpreting results.

Students should see alternate s...tions to problems, and they should solve

problems with more than a single solution. Problems and applications should

be used to motivate the study of mathematical concepts.

1. Non-routine problems that require application of previous knowl-
edge to unfamiliar situations are assigned and discussed in all
courses.

2. Applications involve building and using mathematical models of
realistic situations.

3. A variety of problem-solving strategies are developed to solve a
broad range of problems.

4. Formulation of original problems is stimulated by classroom
discussions.

5. Problems and applications are used to introduce riathematical
topics, to develop understanding of them, and to review them.

6. Questioning the reasonableness of a solution to a problem is
emphasized as much as the method for obtaining the solution.

7. Opportunities are provided to compare several strategies for solv-
ing a problem and to solve problems that have more than one
solution.

8. Incorrect solutions are analyzed to identify common errors in the
problem solving process.

B. Communication

The 9-12 program should provide opportunities for students to develop, learn and

use the language and notation of mathematics. Vocabulary that is unique to

mathematics and terms which have a common as well as a mathematical connota-

tion should be developed and used through wt the curriuclum. Mathematical ideas

should be expressed by writing, speaking, making models, drawing diagrams and

preparing graphs. Opportunities should be provided for discussion uf inathemati-

cal topics.

i. Cemmunication skills are developed in small groups through lis-
tening, exploring, questioning, discussing, and summarizing.

2 Mathematical concepts are described and processes justified by
speaking, writing, drawing diagrams and graphs, and demonstrat-
ing with concrete models.

7%a)
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3. Vocabulary used in the classroom is consistent with the level of the
course and addresses precise terminology, paraphrased descrip-
tions, and ““everyday” use of mathematical language.

4. Appropriate symbolism and notation is used by students and in all
material presented to students.

C. Computation

The 9-12 program provides students with a variety of opportunities to gain
facility in computing with whole numbers, decimals, and fractions, and in
using the four basic operations. Students should appropriately choose calcula-
tors or computers to perform computations that warrant their use. Lack of
mastery of paper-pencil computation should not prohibit students from study-
ing additional mathematics topics.

1. Choosing appropriate computational methods (mental arithmetic,
paper-pencil algorithms, or calculating device) is emphasized in all
courses.

2. Calculators and computers are used in daily work and on
examinations.

3. Selecting the appropriate computation to be performed is stressed
as much as performing the computation.

4. Students are provided the opportunity to study additional mathe-
matics topics/courses even if they lack facility with paper-pencil
computation.

5. Computation serves the purpose of strengthening conceptual and
procedural understanding of number, numeration and operations
in the context of applications and problem solving.

6. The approach to computation in 9-12 mathematics courses reflects
the ways in which computation is and will be used outside of the
school setting.

D. Estimation

The 9-12 program provides opportunities for students to develop and use

estiimation skills and concepts on a continuing basis throughout all courses,

L. Estimation is used to judge reasonableness of results.

2. Estimation is used frequently as part of the problem-solving proc-
ess rather than being used only for computational exercises.

3. Calculators are used to develop estimation skills and reasonable-
ness of results. .

4. Situations are presented for which precision of results must be
determined.

E. Reasoning
Provisions are made at all levels for introduction and use of simple valid
arguments. The 9-12 program provides students with opportunities fo learn
£

7y,
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the basic teneis of logical argument and to validate arguments. Connections

between various representations of mathematical ideas are used to develop

arguments.

1. Opportunities are provided to explore patterns and to make and
test conjectures.

2. Construction of simple valid arguments using a variety of proof
techniques (counterexample, proof by contradiction, etc.) is re-
quired in all courses. i

3. Activities which necessitate following a logical argument and judg-
ing the validity of the argument are provided in all courses.

4. Higher-order thinking skills are taught and evaluated in all
courses.

5. Different representations (e.g., diagrams, graphs, tables of values,
equations) are used {o draw conclusions about problem situations.

F. Curriculum Emphasis

There should be a change in the content emphasis in the secondary curriculum.
The strong emphasis traditionally placed on computational algorithms in the
noncollege-bound curriculum should give way to the inclusion of a broad range
of studies, including problem solving, estimation, geometric concepts, apylica-
tions and mathematical reasoning. The program for college-bound students
should integrate the same concepts and reduce the emphasis on algebraic
manipulation skills. Throughont all courses calculators and computers should
be used as tools for graphing, problem solving, performing tedious calcula-
tions, data generation, and concept development.

1. The systematic use of calculator and/or computer graphing to
develop and support algebraic concepts reduces the need for
paper-pencil graphing.

2. Function, as introduced in algebra, serves as a unifying concept
across all mathematics courses (e.g., geometric transformations,
trigonometric functions, and sequences).

3. Emphasis is on algebraic concepts such as linearity, function,
equivalent expressions, solution, and the like, rather than on
algebraic manipulation skills.

4. The concepts of limit, maximum, and minimum are developed
informally throughout the algebra strand.

5. Investigations and comparisons of various geometries are used to
enhance the study of geometric concepts.

6. Opportunities to explore patterns and to make and test conjec-
tures precede the development of deductive arguments.

7. The writing of deductive arguments in paragraph form is
encouraged.

8. The study of geometric properties is not restricted to formal
geometry courses.
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9.
10.
11.
12.
13.

14.

15.
16.
17.
18.
19.
20.
21.

22,

Opportunities to visualize and work with three-dimensional fig-
ures are provided to develop spatial skills.

Problems are chosen in such a way as to integrate various strands
of mathematics with applications from other curricular areas.
The use of the scientific calculator is emphasized rather than table
reading skills and interpolation.

The development of trigonometric function concepts progresses
from the informal to the formal.

Data from real-world situations are needed to illustrate the prop-
erties of trigonometric functions.

Discrete mathematics topics such as representing problem situa-
tions using finite graphs, matrices, sequence and series, and
combinatorics (combinations, permutations, probability) are in-
cluded in both college-bound and noncollege-bound curricula.
Experimental probability or simulation methods are used when
appropriate to represent and sclve problem situations.
Applications of probability in related fields such as business and
sports are integrated into the mathematics curriculum.

Charts, tables, and graphs are used to draw inferences from
real-world situations.

Opportunities are provided to collect, organizeand displaydatain
all courses.

Statistical techniques developed in mathematics classes are ap-
plied to other areas.

Applications of measures of central tendency,variability and
correlation are used at appropriate levels.

Information is provided to give the opportunity to analyze the
validity of statistical conclusions and the uses and abuses of data.
Calculators and computers are used as tools in statistical
investigations.

*The primary authors of this section were Glendon W. Blume, Bethlynne Cacka, Mary
Moran, and Fred R. Stewart.

INSTRUCTION®

Tolearn the essential mathematics needed for the 21st cenlury, students need a
non-threatening environment in which they are encouraged o ask questions
and take risks. The learning climate should incorporate high expectations for
all students, regardless of sex, race, handicapping condition, or socioeconomic
status. Students need to explore mathematics using manipulatives, measur-
ing devices, models, calculators, and computers. They need to have opportuni-
ties to talk to each other and write about mathematics. Students need modes of
instruction that are suitable for the increased emphasis on problem solving,
applications, and higher-order thinking skills. For example, cooperativ

6
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learning allows students to work together in problem-solving situations to
pose questions, analyze solutions, try alternative strategies, and check for
reasonableness of results.

A. Teaching Strategies and Instructional Activities

1. Teaching practices include large group, small group, and individ-
ualized instruction when appropriate.

2. A variety of instructional strategies that are based on research
findings is used.

3. The classroom environment encourages students to interact with
peers and the teacher, take risks, explore, and seek their own
solutions to problems.

4. Calculators are used by all students as an integral part of the

program at all levels.

. Computers and appropriate software are used by all students.

. Teaching strategies that foster the development of higher-order
thinking, reasoning, problem solving, and communicating math-
ematical ideas are used in all courses.

7. Activities for developing mathematical concepts are appropriate
to students’ levels of development and progress from the use of
manipulatives to the pictorial to the abstract or symbolic.

8. Teachers employ teaching styles compatible with studlents’ learn-
ing styles.

9. Problems using realistic application situations are used to intro-
duce and develop mathematical concepts as well as to reinforce
them.

10. Instructional activities are designed to build on students’ previ-
ous mathematical experiences.

o n

B. Human and Material Resources and Facilities

1. Appropriate curriculum materials in sufficient quantities are pro-
vided for all students, including those who are mathematically
gifted or in need of remediation.

2. Human resources such as department heads, teacher aides, tech-
nology specialists, volunteers, librarians, support staff, referral
services, resource teachers, and consultants are available and used
to support the mathematics program.

3. Sufficient ‘time is allotted for effective and efficient mathematics
instruction.

4. Instructional and resource areas — large group, small group,
individual, math laboratories, computer laboratories, math cen-
ters, library media centers — are available to support activities that
require flexible grouping.
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A staff resourceand office area is provided forindividual and group
planning.

Teachers have ready access to equipment — manipulatives, chalk-
boards, bulletin boards, calculators, computers, computer projec-
tion devices, overhead projectors, duplicating equipment—to
support the instructional program.

Audiovisual materials are readily available and integrated intc the
instructional program.

. Adequate and appropriate computer software is used and integrat-

ed into the instructional program at all levels.

. Contemporary issues and careers in mathematics are explored

through community resource persons, current articles, news
items, and other resources.

“The primary authors of this section were Glendon W. Blume, Bethlynne Cacka, Mary

Moran,

and Fred R. Stewart.

EVALUATION’

Evaluation is perhaps the most discussed but most poorly conducted element of
any curriculum or instructional program in the schools. In order fo obtain a
fair and comprehersive assessment of any K-12 program, evaluation strategies
must focus on the curriculum, the personnel, the materials, and the facilities.

There is a certain amount of redundancy, but the evaluation section focuses

more on the precess of evaluation. One might think of this section as “‘meta
evaluation’’ — an evaluation of the evaluation.

A. Pr

.

2.

ogram (Curriculum)
Appropriate planned course documents are available to all staff
who teach mathematics.

Planned courses are up-to-date and reflect both the needs of the
district’s students and the current topics in mathematics articu-
lated by PDE and NCTM.

The mathematics curriculum can be approached through a variety
ofinstructional methods and i appropriate to students with differ-
ent learning styles.

The mathematics curriculum articulated in the planned courses is
the curriculum actually taught.

The articulated mathematics curriculum is periodically evaluated
by:

a. teacher-made tests

b. criterion-referenced tests
¢. standardized tests

d. classroom observations
e. teacher feedback

f. student feedback
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6. Student evaluation data is periodically used to:
. assess the quality of the mathematics program.
- provide information about the effectiveness of the instruction.
. adjust curriculum content.
- inform the Board of Education, parents, and the prcfessional
educational community of both progress and needs.
e. determine the focus of staff development programs.
f. determine a part of student report card marks.
7. The revisionary process for the mathematics curriculum involves:
a. school-based student evaluation data.
b. current research findings.
¢. NCTM recommendations.
d. PDE recommendations.
. state test data (TELS/EQA)
- school district instructional support staff.
g- teacher feedback.
h. outside consultants.
8. Evaluation instruments are changed and updated in consonance
with curricular changes.

an o

laa 1

B. Student

1. Student mathematical progress, based on clearly defined district
objectives, is monitored and reported.

2. The district testing program (standardized, criterion referenced,
competency tests, etc.) influences the placement and instruction of
students.

3. Teachers are involved in the development and utilization of proce-
dures for tracking student mathematical progress and for improv-
ing student monitoring procedures.

4. Student mathematical progress within and across grade levels is
communicated among teachers to improve student learing.

5. Student differences (gifted and talented, remedial, average) are
considered in the development of evaluation devices.

6. Student evaluation is periodically analyzed to accommodate
changes in goals.

7. Student developmental levels are considered in the development
of evaluation devices.

8. Evaluation is a motivation to student achievement.

C. Teacher Evaluation
1. Assessment devices are admunistered by the teacher and data
obtained are utilized in planning instructional activities for indi-
vidual students.
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. Teachers base instructional activities for students on student

needs, interests, and abilities.

. Teachers match teaching sthategies to the needs of students and

the nature of the objective.

. Teachers provide a classroom environment that is conducive to

the learning of mathematics.

. Teachers maintain and interpret appropriate records of student

progress.

. Teachers follow the district’s planned courses for teaching

mathematics.

Formal teacher evaluation is based on criteria for effective teach-
ing adopted by the district and described in a written document.
Teacher evaluation is based on current research.

Teacher evaluation includes data from classroom observations.

. Teacher evaluation includes feedback from students which fo-

cuses upen such aspects as interest of content, effectiveness of
instruction, challenge of work, and individual success.

D. Staff Development
1.

Provisions are made for sharing educational ideas among
teachers.

2. Meetings are held to discuss teacher concerns and techniques.
3.

Teachers and administrators meet regularly to plan and revise the
mathematics curriculum.

- Inservice is provided for each teacher prior to implementing a

mathematics curriculum.

- Teachers of mathematics participate in state and national math-

ematics workshops, meetings, institutes, and conferences.
Teachers of mathematics enroll in college-level courses.
Teachers of mathematics enroll in practical educational courses
available through the intermediate units.

Teachers of mathematics observe one another in mathematics
courses.

Peer coaching exists among mathematics teachers.

. Summaries of relevant current research, and professional pub-

lications and materials are made available to teachers of
mathematics.

Mathematics teachers are surveyed to determine their needs/
desires for staff development.

Mathematics teachers are involved in the planning of staff de-
velopment programs.

Inservice activities are planned to prepare teachers to ‘cach cur-
rent topics in mathematics.

a0
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Inservice activities show teachers how to utilize available instruc-
tional materials, facilities, and equipment.

Teachers of mathematics participate in the governance activities
of professional mathematics organizations.

Training is provided for teachers of mathematics in the effective
use of computer hardware/software.

Staff development addresses course content, methods of presen-
tation, and learning strategies.

Assistance is provided to teachers for interpreting the results of all
mathematics assessment.

Materials used and suggested in staff development sessions are
purchased by the district.

20. Teachers are made aware of published diagnostic tests as a means
for assessing student attainment.
E. Materials
1. Printed materials (including textbooks, teachers manuals, instruc-
tional aids)

a. Procedures have been established to evaluate and select text-
books and other instructional materials.

b. Teachers participate in the evaluation and selection of textbooks
and other instructional materials.

¢. Provisions are made for teachers to become familiar with se-
lected textbooks before using them in the classroom.

d. Textbooks are periodically reviewed and updated.

e. Teachers work with the media specialist on evaluating and
selecting mathematics materials for the media center.

f. Printed material is appropirate to the mathematical and reading
level of the targeted group.

2. Instructional aids

a. An inventory of available instructional aids is provided for the
teaching staff.

b. Teachers have easy access to instructional aids.

c. Procedures have been established to evaluate and select instruc-
tional aids to ensure that selected aids support the mathematics
curriculum.

d. Teachers participate in the evaluation and selection of instruc-
tional aids.

e. Provisions are made for teachers to become familiar with se-
lected instructional aids before using them with students.

f. Instructional aids are periodically reviewed and updated.

3. Student manipulatives

a. Procedures have been established for the evaluation and sel-

ection of student manipulatives.

4
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b Teachers participate in the evaluation and selection ot student
manipulatives.

¢. Provisions are made for teachers to become familiar with the
uses of maripulatives before using them with students.

d. An inventory of available manipulatives is provided for the
teaching staff.

e. Anadequate supply of maripulatives is available per child in the
targeted group.

f. The supply of manipulatives is periodically reviewed and
updated.

g- Manipulatives are appropriate for the mathematical and de-
velopmental levels of the students.

4. Technclogy

a. Tbe district has a plan for integrating technology into the math-
ematics curriculum.

b. A systematic process exists for evaluating and selecting hard-
ware and software.

¢. Provisions are made for teachers to learn the use of hardware.

d. Teachers work with the media specialist to evaluate and select
math software for the media center.

e. Aninventory of available hardware and software is provided for
the teaching staff.

f. Hardware/software is readily available for every classroom.

g- Incentives are offered to teachers to utilize technology in their
classrooms.

h. Hardware/software is appropriate to the mathematical and de-
velopmental levels of the students.

5. Audio-visual materials

a. Procedures have been established to evaluate and select audio-
visual material and hardware which support the mathematics
curriculum.

b. Teachers work with the media specialist to evaluate and select
audio-visual mathematics software/hardware.

¢. The district provides funds to purchase audio-visual software/
hardware. ~ )

d. Provisions are made for teachers to become familiar with audio-
visual mathematics materials and equipment before using them
with students. ;

e. Aninventory of available audio-visual mathematics materials is
provided for math teachers.

f. Audio-visual equipment and materials are periodically reviewed

and updated.
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F. Facilities

1.

2.

Instructional areas are available for large group, small group and
individualized instruction.

Books and resource materials (such as instructional aids, audio-
visual equipment, hardware, software, manipulatives) are safely
stored and easily accessible.

- The resource facility and its contents are accessible to physically

challenged students.

- Resource materials are organized in containers designed to be

manageable by students and to facilitate easy use.

"The primary authors of this section were Lucy M. Young, Lois Barson, Linda Renney, and
Brenda K. Wise.

TEACHERS: K-128

Inorder to have a high-quality mathematics program, teachers of mathematics
have the responsibility to be well-prepared, to possess and demonstrate
positive attitudes, to continually grow professionally, and to be actively
involved in educational issues that effect the quality of their students’
learning.

A. Professional Preparation
Teachers of mathematics:

1.
2.
3.

4.

have a strong background in mathematics;

have a strong background in mathematics education;

have a strong background in child or adolescent development and
behavior; and

meet state certification standards for their assigned teaching
responsibilities.

B. Professional Development
Teachers of mathematics:

1

2.
3.
4,

have and use personal “professional self-development” plans;
belong to the Pennsylvania Council of Teachers of Mathematics;
belong to the National Council of Teachers of Mathematics;
read the publications of the Pennsylvania Council of Teachers of
Mathematics and the National Council of Teachers of Mathematics;
and

attend, and use the knowledge gained from, mathematics work-
shops, meetings, conferences, institutes, and inservice programs.

C. Involvement
Teachers of mathematics are actively involved in the:

1.
2.

design and development of their staff development activities;
critical analysis of their own teaching behavior;

~
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3. selection of textbooks and other instructional resources; and
4. critical examination and revision of the mathematics curriculum.

D. Attitude
Teachers of mathematics:
1. exhibit positive attitudes toward, and havea positive rapport with,
their students;
2. exhibit positive attitudes toward mathematics and its use;
3. set high, but reasonably achievable, expectations for their stu-
dents’ mathematics performance and classroom behavior; and

4. develop and reinforce the notion of lifelong learning as a desirable
behavior.

*The primary author of this section was Robert F. Nicely, Jr.

ADMINISTRATION: K-12°

In order for a school district to ensure that it has a high-quality mathematics
program, the school board and administration have the responsibility to
provide leadership and support for personnel development, curriculum and
instructional improventent, communications, and contpliance.

A. Professional Development (outside of the school district)

School board policy and administrative practice:

1. Encourage and support teachers of r. ~thematics to attend local,
state and national professional .. .thematics education
conferences.

2. Encourage and support teachers of mathematics to attend math-
ematics workshops, meetings, institutes, conferences, and in-
service programs.

3. Encourage and support teachers of mathematics to enroll in math-
ematics, mathematics education, and related courses in colleges
and universities.

4. Provide a professional library — including publications and mate-
rials from professional organizations — in the school for use by
teachers and mathematics.

B. Staff Development (within the school district)

School board policy and administrative practice:

1. Provide for the systematic orientation of newly-hired teachers of
mathematics to the district’s curriculum and instructional
resources.

2. Provide for the systomatic and regular updating of all teachers of
mathematics regarding current research and recommendations
from professional organizations.

3. Enable teachers of mathematics to be systematically involved in the
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26 Standards for K-12 Mathematics

design and development of their staff development activities.

4. Provide adequate financial support for “expert help” for staff
development programs for teachers of mathematics.

5. Encourage and enable teachers of mathematics to observe other
teachers of mathematics.

C. Curriculum and Instructional Leadership
School board policy and administrative practice:

1. Provide for instructional leadership and support for the math-
ematics program &t the building level.

2. Provide for coordination of the K-12 mathematics program among
all schools in the district.

3. Provide for teachers at different grade levels and in different
buildings to meet on a regular basis to review K-12 mathematics
program issues.

4. Provide for the development and/or revision of the K-12 math-
ematics curriculum on a regular basis.

5. Ensure that each teacher of mathematics has a copy of the planned
course for his/her assigned grade(s) or course(s).

6. Usea curriculum and instruction management model that enables
district personnel to determine if the planned curriculum is being
implemented.

7. Provide for adequate and appropriate physical facilities (labor-
atories, furniture, space) for the K-12 mathematics program.

8. Provide for adequate and appropriate instructional materials (cal-
culators, computers, concrete materials, books, measurement
devices) for the K-12 mathematics program.

9. Ensure that adequate time is allotted to plan and teach the K-12
mathematics program.

10. Ensure that the instructional organization pattern accommodates
student differences.

11. Enables teachers of mathematics to be systematically involved in
the selection of textbooks and other instructional resources.

D. Compliance
School board policy and administrative practice:
1. ensure that the K-12 mathematics program is in compliance with
state (Chapter 5) requirements.
2. ensure that all teachers meet state certification requirements.

*The primary author of this section was Robert F. Nicely, Jr.
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METACOGNITIVE SKILLS,
PROBLEM SOLVING,
AND THE MATHEMATICS CLASSROOM

Rose M. Zbiek
Lake-Lehman High School

“Stop and think about what you're doing.” How many times a day
does a teacher wish that he or she could encourage students to reflect
upon what they are doing and why they are doing it? Within the past two
decades, metacognition—"thinking about thought’—has become a
major issue in psychological and educational research. [ts influence upon
increasing understanding and improving learning has become the focus
of many studies. The intent of this article is first to explore the role of
metacognition in research and particularly in mathematical problem
solving, and then to propose techniques through which metacognitive
skills may be developed during mathematics instruction.

Nature of Metacognition

Metacognition may be viewed as the integration of two separate al-
though related ideas: a learner’s knowledge and beliefs about cognitive
phenomena, and the self-regulation and control of the learner’s cognitive
action. The former includes beliefs about oneself and others as cognitive
beings, knowledge of factors and conditions that make tasks more diffi-
cult, knowledge of the scope and requirements of tasks, knowledge of
cognitive strategies, and awareness of the potential usefulness of these
strategies. Asan example, a student may know that solving an equationis
more difficult when there are trigonometric expressions or higher powers
involved. The second aspect of metacognition involves the influence of
knowledge and beliefs on decisions to employ a certain strategy, on
understanding a given task, and on monitoring the use of strategies
(Garofalo & Lester, 1985). That same student may use his or her knowl-
edge of the ease of solving quadratic equations versus the difficulty of
solving trigonometric and quartic equations to begin to solve

sin®x — 3 sin’ = 4
by writing it as
A’ -3A =4

Metacognition in Literature

Metacognition in Mathematics Education
Metacognition has only recently drawn the attention of mathematics
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30 Metacognitive Skills

educators. Many factors contribute to this delay. First, metacognition is
poorly defined and is often hard to distinguish from other cognitive
activity (Garofalo and Lester, 1985). As an example, when dividing 4 into
712, consider the idea of ’checking your answer” by multiplying 4 by 178.
Is this a metacognitive effort to verify the solution process, or s it part of
the cognitive strategy for doing long division? In z.ddition, metacognitive
activity is rarely encountered in a classroom, where the focus most often
is on getting “’the answer”” rather than on the solution process. Students
seem to react to their environment (Schoenfeld, 1985). After all, why
think about how exercises 1 and 2 differ as long as you get the answers in
the back of the book? Metacogitive skills are also overlooked because they
are covert. To study them requires relying on self-reports. It certainly is
not hard to imagine the difficulty a young child would have in explaining
why he or she chose to add 4 + 8 by counting on from 8 rather than by
regrouping to have 2+ (2 +8). Lastly, as long as students do get the right
answers, metacognitive skills are deemed unimportant as well as unre-
searchable {Lester, 1982).

Metacognition and Problem Solving

The role of metacognition in problem solving has recently received
increased attention (Garofalo & Lester, 1985; Kilpatrick, 1985; Silver,
1982). Many mathematics educators believe metacognitive activity is the
"’driving force” behind success (Schoenfeld, 1983). In fact, being able to
use these skills to approach and evaluate an unusual situation may
explain why expert problem solvers are successful even when faced with
problems about ideas with which they have little experience. This could
explain why one student can solve a puzzle in minutes while it takes
another student (or the teacher) hours.

Occurrence of Metacognitive Behavior

Despite the potential need for metacognitive skills in successful prob-
lem solving, researchers have found an absence of metacognitive activity
during classroom and laboratory observations. This lack was found at all
age levels. Such findings tend to substantiate Schoenfeld’s (1985) obser-
vation; although students may be spending a large number of hours
seeing and learning about performing mathematically, they are not
necessarily spending any time seeing and learning about thinking math-
ematically. (For examples see Garofalo & Lester, 1985; Heid et al., 1988;
Lester, 1980; Schoen & Oehmke, 1980; Suydam, 1987.)

Feasibility of Successful Metacognitive Training

The lack of metacognitive skills among students suggests the need to
consider how we can train students in these skills. Several researchers
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have voiced this thought (See Flavell, 1979; Rigney, 1980; Garofalo &
Lester, 1985).

This concern about whether students can be taught to use meta-
cognitive skills was considered by Lester (1980). He noted that Schoenfeld
had addressed this idea with some success. Schoenfeld actually de-
veloped a schematic outline of a “managerial” strategy for problem
solving and discussed how to train students to use it. He stressed specific
manageriai strategies that apply to mathematical problem solving. These
strategies were efficierit ways to choose an approach, toavoid approaches
that go nowhere, and to allocate resources such as time. Thus, students
were not only taught the problem-solving techniques, but also ways to
choose among them. The weakness of his results, however, is that he
worked with a very limited population: college students with substantial
mathematical backgrounds who voluntarily enrolled in his course on
mathematical problem solving.

Classroom Implementation of Metacognitive Training

Techniques Implied in Literature

Many students undoubtedly develop some awareness of meta-
cognitive activity on their own. Most teachers, with comments such as
“check your work,” do give some indication that regulation is important.
However, mathematical instruction, classwork, and homework still focus
primarily on developing knowledge of concepts and procedures, but not
on acquiring and controlling metacognitive behaviors. Several ways of
improving metacognitive skills are suggested in the literature. These
ideas fall under three main categories: classroom structures, com-
munication, and technology.

Teachers could include the modeling of metacognitive skills, small
group interaction while solving problems, large group work during
which the students direct the solution, and reciprocal teaching episodes
Wherein individual students play the teacher. Metacogpnitive skills also
may be enhanced when teachers encourage communication, including
questioning to induce thought, self-communication, and student writing.
Technology may be used by teachers to increase metacognitive activity
through student programming assignments and software designed to
model and cue the regulatory process. The common element of all these
techniques is the transfer of responsibility for gaining and evaluating
understanding from the teacher to the student.

Examples of Activities Using the Techniques

The material chosen for examples might involve secondary school
geormetry or algebra, perhaps trigonometry or even calculus. However,
the first two examples given here are appropriate for a first-year course in
general mathematics. This choice reflects three considerations. First, the
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32 Metacognitive Skills

emphasis in the examples is on the techniques, not on the mathematical
content. More importantly, problem solving and metacognitive skills are
relevant for all students. Lastly, training in metacognitive skills may
particularly aid academically marginal students.

The first example uses writing with pretest questions as a self-
communication exercise. Figure 1 contains pretest questions from a
commercially produced textbook (Bolster & Woodburn, 1985). Figure 2
provides an example of the types of responses students may give when
directed to write “what they are thinking” while doing the problems. This
writing process focuses the students’ attention on their own thinking.
The need to put something on paper makes this task unavoidable. Having
these metacognitive remarks in writing may provide direction for ex-
ploration, remediation, and discussion. The teacher can aid the student to
use these comments to develop metacognitively.

C. Reduce _8 to lowest terms.
20

F. Write 2 as a decimal.
"5

Figure 1. Skills Pretest Exercises for Multiplying and Dividing Fractions
and Mixed Numbers, taken from the Teacher’s Edition of Mathematics in
Life (Bolster & Woodburn, 1985, p. 149).

Chagter Pretesth st
. 8. 4Z_ : .
€ & Za% 5 ‘ 7ot the biggbol
a& :-—z— :

2.4 6h O startad, weng.~
57 fﬁ drued o dot Qome P
% 52% 4 aeoma Tow big, .

2% | shouditbe .4?

Figure 2. Potential Responses Evoked by Writing Activity During Skills
Pretest.

The second example is a small-group activity. Exercises, as found in the
textbook (Bolster & Woodburn, 1985) are given in Figure 3. The sup-
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plemental questions given in Figure 4 are designed to address the meta-
cognitive skills of “varying conditions” and “evaluating results.” The
consideration of the data set raises questions about the use and accept-
ance of the mathematical models. The specific questions requiring stu-
dents to evaluate their results encourages them to verify their own
answers rather than to remain dependent on the teacher.

Eva and Luis Ortiz exercise regularly at a nearby track. Luis rides a
bicycle and Eva jogs. There are small posts in the ground to mark the
fractional parts of one lap of the track. Luisrides ata speed of one lap
every 1%2 minutes. How long will it take him to complete

a. 3 laps? d. 1% laps?
b. 7 laps? e. 5% laps?
¢. 12 laps?

Figure 3. Consumer Applications Exercises, taken from the Teacher’s
Edition of Mathematics in Life (Boister & Woodburn, 1985, p. 161).

DIRECTIONS: Answer these questions after you do page 161.

21. Luis’ friend Dave actually timed Luis as he did his lap yester-
day. The data Dave collected is shown below.
Lap number 1 2 3 4 5 6 7

Time to complete 2 1M 1% 1% 1% 1% 1%
this lap

a. According to this data, how long did it take Luis to complate
the first three laps?

b. Compare this answer to the answer you had forexercise 1 on
page 161.

c. Explain why the answer to part a is different t om what you
calculated in exercise 1.

22. a. Useyour numbers from exercises 1 through 2 on page 161 to
complete the following chart.
Number of laps 1% 3 5% 7 12

Time to complete
this many laps

b. Assume that Janice, Frank and Ellen were asked to calculate
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how long it would take Luis to complete exactly 4 laps. They
gave these answers:

Janice 5 minutes
Frank S minutes
Ellen 6% minutes

Without doing any calculations, whose answer would you
accept? Why?

Figure4. Supplemental Questions for Applications Exercise Done in Small
Groups.

Thelast example is appropriate for developing the metacognitive skills
of “choosing strategies” and “comparing alternative approaches.” As
well as obtaining answers to realistic questions, the students must verbal-
ize the reasoning behind their choices. They must also consider using

otherapproaches—ideas which may not have otherwise occurred to them
without this model.

Consider the following situation:

The cost c of having-a-meal catered by E-Z Serve depends upon
the number # of people served. The graph, equation, and table
below represent this relationship.

800 ¢=8.84n + 53
700 :
¢ 600 n c
500 0 53
400 10 141.4
300 20 229.8
200 30 318.5
100 40 406.6
0 50 495
0 10 20 30 40 50 60 70 80 60 583.4
n 70 671.8
80 760.2

1. A customer calls and asks, “What it would cost him to have a
party catered for 32 people?”
a. Which form of the relationship would you use to answer his
question?

4
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b. Why did you choose this form?

¢. What answer would you give the customer?

d. With which other forms could you have answered this
question?

2. A potential customer call and asks. “Could I have a party for 18
people catered for under $250?”
a. Which form of the relationship would you use to answer his
question?
b. Why did you choose this form?
¢. What answer would you give the customer?

d. With which other forms could you have answered this
question?

Figure 5. Algebra I Problem Situation and Corresponding Questions.
Questions like these appear in the materials used in the "Algebra With
Computers” curriculum (Fey, et al., 1986).

Implications for Further Study

Adgitional research must determine the possible roles of classroom
structure, communication and technology in developing metacognitive
skills. Researchers must ascertain which combinations of these tech-
niques are most effective. Future investigations must consider which
particular aspects of metacognition are most directly influenced by each
technique. Longitudinal studies done in naturalistic classroom settings
are needed.

A model which explains metacognition must be developed. Similarly,
new or revised problem-solving models >hould include the role of meta-
cognition (Silver, 1985). These models should reflect its potentially de-
velopmental nature.

The development of metaccgnitive skills helps students to learn, to
understand, to use, and to appreciate problem-solving processes. Math-
ematics instruction encouraging metacognitive as well as mathematical
concepts enables students to apply, reason with, and communciate about
mathematics.
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HIGH SCHOOL CALCULUS STUDENTS TRY
COOPERATIVE LEARNING:
WHAT CAN THEY TELL US?

Dr. James Saunders
Upper St. Clair High School

One of the main goals of cooperative learning is to prepare students for
a team-oriented world. There is reason to believe that formal education 1s
one of the few experiences left where the individual has to learn and be
evaluated without the benefit of consultation and assistance from others.
Individual learning is so much a part of traditional education that stu-
dents often resent and ridicule the high-achievers because they make the
others look bad (Brandt, 1987). Advocates of cooperative learning think
that education can be structured in such a way so that all students will be
encouraged by and feel a part of the accomplishments of each learner in
the group. The best analogy is a baseball or basketball team where the
members appreciate the contributions of the exceptional player, but
realize that all have to do well in order to help the team to succeed (Slavin,
1987). How can educators unravel all of the many years of concentration
on individual, competitive-type learning that students have come to
acceptas away of life? One suggestion, which is the subject of this paper,
is to introduce students to cooperative learning in a four or five week unit.
During and after the experimental unit listen to what the students have to
say. What are their fears? What do they like about cooperative learning?
What suggestions do they have? Students and teachers, working to-
gether, can implement a more team-oriented approach to learning by
gradually working toward greater emphasis on the achievement of the
group rather than the individual.

There are approximately one hundred students who take calculus each
year at Upper St. Clair. Calculus students are among the most highly
motivated individuals in the school. These students work hard to achieve
good grades which they naturally consider as a result of individual
achievement. Up to the point of the experiment discussed in this report,
all students involved would probably define cooperative learning as
simply a method of working in small groups to help learn a task. The
concept of determining one’s grade based on the achievement of all
members of a group was an unusual, if not foi.ign, teaching-learning
method for most of these students.

The intent of the author in this report is to explain how a cooperative
learning experiment was carried out, to present some of the statistical
results, and most importantly to relate what the students had to say about
their reactions to cooperative learning. As a teacher of mathematics for
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40 Calculus Students Try Cooperative Learning

many years, I am continually impressed by how students give fresh
insights into solving problems. Similarly, they have much to tell us about
what methods work in the classroom. All we have to do is listen.

Students were informed ot tha cooperative learning experiment at the
beginning of the third quarter of the 1987-88 school year. Four classes of
students were divided into “equivalent” groups of three or four students
each. Equivalence was based on the teacher’s judgement of previous
calculus achievement. Calculus at Upper St. Clair is presented in a class,
large-group format. Students meet as a class for two mods (25 minutes
each) on Monday, Wednesday and Friday. Two classes are joined (50-60
students) to form a large group on Tuesdays and Thursdays. Most of the
cooperative learning activities were carried out on Mondays and Wednes-
days. The Tuesday large group usually consists of a lecture on new
material, but there is ample opportunity to “check for understanding” by
breaking up into cooperative learning groups. Thursday is reserved for
quiz and test evaluations. The unit includes three quizzes and a test.

Before the students were told about the details of the cooperative
learning experiment, a cooperative learning attitude survey (see Appen-
dix) was administered. The survey was constructed from ideas about
cooperative learning discussed by Ron Brandt(1987) and Robert E. Slavin
(1987). The same survey was also administered at the end of the four-
week experiment. Results of the survey showing class averages for each
item are displayed in Table 1 and Figure 1.

Student Attitudes Toward Cooperative Learning
PRE-TEST POST-TEST

Mod de M N Mo Ne MobMe Awnge  Mas Mo MadNe Mot Ne  Mud Mo Avempe

12 % 3 ¥y Se e N 12 pE AT 36 RALS ]

370 353 350 3.53 357 356 3.55 329 3.52 3.48
3.15 329 289 300 308 300 301 221 287 277
335 306 314 308 316 301 3.01 254 297 288
4.00 4.18 411 398 4.07 391 393 357 371 3.78
4.50 447 443 436 444 433 431 418 4.0 4.23
3.50 329 329 336 336 334 332 279 294 3.10
4.00 424 393 395 403 396 404 4.07 3.94 4.00
3.05 282 271 278 287 278 272 214 245 252
4.10 441 414 492 419 403 416 425 4.16 4.18
3.5 282 296 307 300 308 304 250 274 2.84
11 + 375 341 325 339 345 343 339 329 3.48 340
12 - 435 476 479 458 4.62 451 454 486 435 4.57
13 - 340 294 296 293 306 296 300 264 3.06 292
14 - 390 394 371 3.64 380 367 371 357 371 3.67
15 + 4.05 400 404 398 402 392 397 411 406 4.02
16 + 4.35 453 454 442 446 444 443 436 4.19 436

OO0~ NV B W we T
LR N A 1

S
+ 4 0

Class average 3.78 373 365 3.64 3.63 3.63 340 3.52

“ Bias sefers 10 positive or negative statement toward cooperative learming. Responses were scored as
A=5,B=4, C=3, D=2 and E=1 on positive items. A=1, B=2, C=3, D=4 and E=5 on negative items.

Table 1
Q
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Figure 1

One of the key features of this version of cooperative learning is the
emphasis on students teaching each other. Concepts and terminology are
discussed by the students. When new material was to be presented, a
representative “teacher” was asked to come to the front of the room from
each group. While the instructor discussed the lesson with the represen-
tative ““teachers,” the groups of students worked on completing assigned
problems. The “teachers” would then go back and teach the other
members of the group. Quizzes and the unit test continued to be admin-
istered on an individual basis. However, group members’ scores were
compared and the individual's score recorded in the gradebook was the
average of the highest and lowest scores for the group. Thus, all can
benefit from the superior work of the high achiever and still have an
incentive to encourage and help each other to understand the material
presented. There were many opportunities to remind students that the
crucial component of cooperative learning is that it is not good enough
just for you to understand; everyone in your group must feel confident
about the task at hand. Student reaction to grades based on group
achievement was relatively passive. There seemed to be more a sense of
adventure as reflected in a comment like "’Let’s see how this works.”
rather than “No way!”.

Now, let’s look at what the students thought about cooperative learn-
ing. Student reactions were compiled from the free response questions
listed on the back of the post attitude survey. Sample responses are listed
below as positive, negative and suggestions.

What did you like about the cooperative learning experiment? It was a chance
to get help and sometimes a better understanding of the material. When
you are unsure about something, someone in tne group will always
volunteer to help you. . . . Ilike teaching others how to do the problems.
Also, I liked being able to ask others for help and have them help me
because they know that it is a group effort. . . . It was easier to ask for
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help because you knew that other people’s grades depended on you.
Other people in the group were more willing to take the time to help for
the same reason. . . . Talking about the problems helped because one of
us might be able to explain a problem that the others didn’t get. Thus if
youhad todo a problem on theboard that you didn’t get, there were other
people to help you figure it out. . . . It brought my grades up and I also
think I learned more. My group always explained everything to me, so
understood. I was more interested to learn. I also like working out the
problems with them because every time I didn’t understand I would just
ask them. . . . I also liked how a group can solve problems. together
faster, because each person has input, each knows different parts of the
problem — so with a group effort it is done faster. . . . The group
explained many questions and we talked about the problems so we had a
better understanding of what we were doing. . . . It gave you many
“study partners” and a reason to work harder when many students want
to ease up. . . . By talking with other students about the assignments in
class, I felt I received more individual attention and instruction than
before. . . . When I did really bad on a quiz my teammates were there to
help me. I didn’t want to put my team down so I had to study more and
try harder. . . . I thought that I learned more, or understood it better
coming from someone whose comprehension of the subject would be
about the same as mine. There was a sense of caring about how the others
did in the group. . . . It enables you to get a higher test score. It also
encourages those who normally don’t do well to try a lot harder because
they feel guilty about pulling down the grades of the other students.
What did you not like? Having to be taught the material by someone else
and not getting to hearit myself firsthand. . . . Ifeltalot of pressure from
people who did better than me, like you better do well or else! I also did
not like my group. . .. Some groups had more potential to do well
because they got all smart people. I didn’t like depending on others for
my grade and having others depend on me for theirs. . . . Some people
rely too much on the other group members. . . . Some people didn’t care
thatthey were hurting the group and didn’tstudy. . . . I wouldn’tlikeitif
I was getting A’s, and someone else was pulling me down. . . . How
some of the “smarter” people would get really mad at others in their
group because they didn’t catch on as fast and would bring their score
down. If they really cared they would help them, not criticize, whetherin
cooperative learning or a regular program. . . . My group lacked mo-
tivation. When they did not understand something, they didn’t ask for
help. When I tried to help, I don't think they were listening. . . . I don’t
feel that it is fair for an individual’s grade to suffer because other people
do not score as well on quizzes. It should not be other students’ respon-
sibility to teach, that is why we have a teacher. . . . Although the group s
<pposed to be a team, it isn’t. It is still mostly individual. . . . Earning
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the lowest score and have others know was embarrassing. . . . That the
people who tried the hardest and worked most efficiently were penal-
ized. . . . I feel time was wasted when every member of the group was
confused. . . . I felt cheated out of my own individual scores. . . . Coop
learning made the high achievers work hard and the low achievers feel
guilty. . . . An individual can not work to his/her own pace. They must
keep up with or slow down to help the group rather than simply spending
the most time on what he or she individually finds most difficult. I sort of
was planning to take it easy and not study so much this semester, but I felt
likeI'had a responsibility to do my best, because it's not fair to the others.

Do you have any suggestions ebout how to introduce andlor implement
cooperative learning? Make it a gradual introduction in the first semester by
having a group of 3 or 4 people take a quiz together and try to get used to
the idea of an average grade. . . . It would be tough, because I'd bet most
of the community would be against it. . . . Explain teamwork will be a
part of our lives, in jobs, marriages, etc. — and we should learn how to
cooperate. . . . I think grades should be the average of the highest,
lowest, and the individual’s score, so that the group score is important.
but the individual’s score can also help or hurt the individual. This way
the student would benefit from both the cooperative and independent
learning. . . . Have one group test (not all) which is really tough and have
group members pool their abilities into taking the test together. . . . Let
those who prefer co-op to do it and those who don’t continue individual
work . . . Still keep the groups — but make it some way that the lowest
person doesn’t over benefit and the highest person isn’t the one who is
hurt the most. But I don’t know how. Sorry. . . . I think more interest
might be generated by greater competition between the teams. . . . There
should be an emphasis placed on the idea of being a team — working
toward the common (all in the group) goal of understanding.

In summary, there is a clear message from the students. They appreci-
ate the opportunity to try cooperative learning, they understand the need
fordeveloping cooperative skills and, in many instances, they even work
harder; but, itis difficult to give up individual grades. Several students
even expressed feelings of guilt for “pulling down" the grades of others.
It takes more than one experiment in cooperative learning to realize that
the goal is not for the individual to get a good grade, but for the group to
be successful. The suggestion for including the individual score with the
group average may be helpful. Also, several comments were made to
suggest more group competition to provide incentives to assist each
other. As one student sugg. sted, “We have to think up ways so that the
lowest person doesn’t over benefit and the highest person isn’t hurt.”

Attitude survey results (Table 1) show that attitudes toward cooper-
ative learning decreased on all but one of the items from pre-test to
post-test. Also class averages for the whole survey decreased for each
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4 Caleulus Students Try Cooperative Learning

class. Significance tests were not applied to this data, but we can be
reasonably sure that attitudes toward cooperative leaming did not im-
prove as a result of this study. This result is consistent with the free-
response comments when you consider the student feeling toward group
grading. Whether or not the students achieved more as a result of
cooperative learning was not addressed. This author, from the student
comments and observation of the experiment, tends to feel that the
students did work harder than normal for second semester seniors.
Students were aware that cooperative learning ’moved” them to change
some of.their traditional patterns of learning. One student noted, "I feel
cooperative learning would work but only for a more enthusiastic, less
senior class!”’.
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APPENDIX
Cooperative Learning Attitude Survey
A If you strongly agree C If your feeling is neutral
B If you agree D If you disagree

E If you strongly disagree

—— 1. Cooperative learning is contrary to basic American values.

—— 2. Individual learning patterns do not prepare students very well

for today’s team oriented world.

. Students joining forces to “’sink or swim” together in academic

classes is not practical.

—— 4. Group work is a powerful tool for learning.

—— 5. People understand and remember things much better if they
talk about them with others.

—— 6. When students compete individually the student who gets the
"best grades” is sometimes ridiculed because he/she makes the
others look bad.

—— 7. Incooperative classrooms, students encourage their teammates
to do well, because they also benefit.

—— 8. Itisunfair that students should benefit from each other’s efforts
and share responsibility for what others do or don’t do.

—— 9. Americans have always prized individuality but in the modern
world we also need teamwork.

—— 10. Typical citizens will support the use of cooperative learning in
schools.
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—— 11. Individual scores should be based on the average score of the

—— 12. Individual scores should be based on the lowest score of the

—— 13. Cooperative learning causes the smartest or highest achieving

persons to do most of the work.

—— 14, In cooperative learning the lowest achieving persons will have

little to do.

—— 15. The group’s task is to ensure that all will be successful on

individual learning assessments.

— 16. If students care about the success of the team, it becomes
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TEACHING THE LANGUAGE OF
MATHEMATICS IN THE UPPER
ELEMENTARY GRADES

Audrey S. Heinrichs
Widener University

Virginia Larrabee
Castleton State College

Asone of the Curriculum Standards adopted by the Nationai Council of
Teachers of Mathematics (1989), problem solving is of greatimportance in
school mathematics. Since many mathematical problems are verbally
stated, teachers of mathematics must deal with 1) mathematics as a
language, 2) everyday language, and 3 the interaction between the two.

Inaddition, the importance of familiarity with mathematical words is
underscored by the high correlation that exists between vocabulary
knowledge and comprehension (Anderson & Freebody 1981; Carr &
Wixson 1986). Unquestionably children must understand the words they
hear and read in order to comprehend the verbally expressed problems
that they meet (Vacca & Vacca 1986). In real life as in school, problems are
most often met in verbal form, and as often must be analyzed by pro-
cesses that involve words.

This article will present instructional methods which emphasize the
interaction of the languages of mathematics and English in order to
provide a necessary route into the language of mathematics. The methods
will also increase comprehension for all children, as concepts, relation-
ships, and vocabulary pertinent to the field of mathematics are
déveloped. )

Semantic Mapping or Webbing

Making a two-dimensional visual image of the relationships of math-
ematical words has been found to be useful (Johnson & Pearson 1984, 1n
Stahl & Clark 1987). In making a semantic map or web, students analyze
the commonalities between certain words, including their hierarchy or
equivalence of rank. This causes the children to become involved in
sorting out the meanings of such words, creating greater familianity with
them. An example of a semantic map of terms related to the concept
“Multiplication” appears in Figure 1. The teacher directs students to the
glossary of their math textbook and assigns them, in small groups to
facilitate discussion, the task of locating related terms, then defining their
relationship by drawing a semantic map of them.
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Teaching the Language of Mathematics

A number of alternate terms and different paths of relationship might
be chosen, and this flexibility in itself creates discussion and specific
definition by the students drawing the maps. When the semantic maps
are drawn on transparencies and shown to the whole class, the orig-
inating groups can describe how and why they selected and related their
terms as they did on their map. One resultis a gain in their sense of power
over the concepts, and another result is a sense of flexibility in ap-
proaching mathematics. They see, for instance, that a word like "’ad-
dend” may be placed in different categories and at differing levels within
a category, depending upon how the categories are defined by the
student who is making the semantic map. (See Figures 1 and 2.)

repeated
addition L whole numbers |
A decimals
multiple
MULTIPLICATION
/ \

basic multiplicand
multiplication multiplier

facts

product

Figure 1
SEMANTIC MAP OF MULTIPLICATION-RELATED TERMS.

Multiple Meanings of Technical Words

A number of mathematical words have additional meanings that are in
common use. Deliberate study of these words expands the student’s
sense of 1) flexibility, again, 2) familiarity with the words, 3) the impor-
tance of specific definition, and 4) the value of having a wide krowledge
of word meanings (Heinrichs 1987). In either of the following activities,
the teacher may provide the students with the list of words in Figure 3,
which contains words from math textbooks for fourth-, fifth-, and sixth-
grade levels, or direct students to the glossary of their math textbook
where they can locate words with multiple meanings.

For the first activity, with the list before them on paper, on overhead
transparency, or on the chalkboard, the children create a story which uses
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addend

all together |

ADDITION

regroup

I total I

Figure 2
“ADDEND” AS A MAJOR SUB-CATEGORY.

Directions: Select the option which uses the same meaning of the under-
lined word that appears in the numbered sentence.

1. After Sally typed RUN, she was able to see the results of her BASIC
program.
a. The rabbit run was full of holes.
b. She found a run in her stocking.
¢. Let’s take a run around the block.
d. George likes to run for exercise.
e. One important computer program command is “run.”

2. A right triangle contains an angle of 90 degrees.
a. A rectangle has four sides and fovr right angles.
b. Did Anna really have the right to tell John?
c. Larry, your answer is right.
d. The Bill of Rights is a famous and important document.

Figure 3
MULTIPLE MEANINGS — SELECTING THE CORRECT ONE.

the mathematical words in their alternate meanings. Each word of the
story that comes from the list should be underlined in order to highlight
its multiple-meaning potentialities. The students re member the words as
friends when they next meet them in mathematical context.

A second activity that engages the students with multiple-meaning
words is that of copying the textbook sentence in which each math-
ematical word appears, and creating several sentences which use either
the correct meaning or alternate meanings in separate sentences. These
can be typed and copied or written on transparencies for discussion by
the whole class, as they select the meaning which is mathematically
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50 Teaching the Language of Mathematics

correct. The selection, the use of a dictionary to locate additional mean-
ings, and the processing of defiritions involve the students intensely in
all of the meanings of the mathematical words, and, . nce again, under-
line the importance of exact definition in the use of technical vocabulary.
An example follows in Figure 4.

area list reduce
average loop reflection
base mean remainder
basic measure right
bit meter round(ing)
capacity mode run
carry multiple sample
circle ordering scale
deduct part segment
degree perimeter space
diameter place value square
difference plane store
digit point straight
discount power sum
expanded prime time
factor print translation
figure prism triangle
flip product unit
foot property variable
fraction proportion volume
graph protractor yard
range zero

Figure 4
WORDS WITH MULTIPLE MEANINGS. GRADES 4,5, AND 6.

Both of these activities are fun and effective in irvolving children ir
processing mathematical words, releasing e terms from their some-
times threatening aura. The teacher mustbe prepared for some roise and
discussion as the students work on these activities (Guerriero 1988).

It is important to recognize that efforts to increase the richness of
language possessed by students has an incalculable payoff. The more
words they know, the more words they can learn and the more infor-
mation they can comprehend, whether orally or in written form. Children
can be confused — unnecessarily — by the multiple meanings of words.
Using an incorrect definition, from a different language, will not solve

- mathematical problems; such problems require proper technical defi-
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nition of terms. This confusion is unfortunate-and can be avoided by
teachers who see mathematical terms in their own and other contexts and
deliberately pass on that knowledge to their pupils.

Summary

Deliberate language development by teachers of upper elementary
grade mathematics can produce gains in students’ knowlede of, ease and
familiarity with, and use of technical terms in that subject. Ability tosolve
word problems, the capacity to analyze, and an understanding of the
need for exact definition can be enhanced by the methods described here.
Benefits in general richness and awareness of language use can result, as
mathematical concepts and terms are processed and remembered.
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The Teacher’s Job
Is To Get Students To Learn

Achigvement scores in mathematics have declined in recent years. American
students no longer compete in math achievements at the international level.
Domestic test scores have continued in a downward-sliding trend for years.

These are facts which affect not only students, but teachers, administrators,
parents, and professional organizations; as well as the future of our national
leadership in an increasingly technological global marketplace.

As individuals, many teachers feel frustrated and concerned about the status of
math achievement. As individuals, teachers cannot effect pasitive change at the
state or national levels. However, teachers can effect positive change in their
classrooms.

Perhaps afirst step in positive change can be brought about by adjusting the way
the teacher perceives hisher role in the classroom. Many teachers perceive their
primary function in the math classroom as the “jont-of-all-information” or as the
“dispenser of wisdom." Teachers enjoy this central position in the classroom and
are loath to relinquish their “personal stage.”

Let us consider a departure from this generally accepted situation and explore
another possibility: It is possible for the traditional teacher-centered role of instruc-
tion to be adjusted to a role of facilitator in a student-centered learning mode. The
imporiance of the teacher remains. The change is where the emphasis in the
classroom is placed. The teacher can be more effective by becoming “a guide at
the side” instead of a “sage on the stage.”

There is no known mode of leaming as effective as “learning-by-doing.” 1 we
examine the way we leamed o play the piano or throw a baseball or hammer a nail
or speak a foreign language, the things we now do best were leamed over a period
of time with many, many, opportunities to practice. Precious few of us learned
anything in a flash of insight.

If you are interested in higher achievement, a more posttive attitude, and
increased self-esteem for your students, give them an opportunity to “learn-by-
doing” and guide them gently to concept mastery over a period of time.

Give up the wonderful dog-and-pony show in order to provide time and oppor-
tunity for your students to practice and improve. Try the Saxon books in a
cooperative learning environment for an exciting experience in seeing kids do and
learn mathematics.

Saxon Publishers would like to help you and your students realize a positive
change and higher achievement. There are giveaway programs, pilot programs,
and a growing network of teacher resources and help. Change is difficult and can
befrightening. Dare tobe betterat yourjobin orderto allowyour students to become
better at theirs.

For information or samples, please contact:
Saxon Publishers, Inc., 1002 Lincoln Green, Norman, OK 73072

(405) 329-7071
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PROBLEM SOLVING WITH ADDITION,
‘ SUBTRACTION, MULTIPLICATION,
AND DIVISION

Martin P. Cohen
University of Pittsburgh

Basic number operations can provide many rich opportunities for
problem solving. A-variety of activities that involve addition, subtraction,
multiplication, and division can be used for problem solving. Students
can be presented with problems that require them not only to know the
basic number operations but also to use good reasoning skills. When
necessary, a calculator can be used to facilitate computation and focus
students’ attention on problem solving.

Activity 1

This activity is called digit detectives (Cohen, 1985, p- 44). Replace each
blank with a digit so that the solution to the problem will be correct.

(1) @ ©) @
-17 43_ -6 7)5__
+2. -2_9 X 1 S——
975 -86 -2 -
=6 7
—-3— 0

Some students may use guess-and-test, especially in problems 3 and 4.
In problem 3, students may realize the second factor is either 12 or 17.1£17
is chosen, then the first partial product would not be a two-digit number.
Hence, the second factor must be 12.

Activity 2

Write +, —, X, or + in the appropriate boxes to make the statement
correct. Each operation must be used exactly one time.

Mm ol 12 15[ Jaol
@ 7L 16121 sl

What happens when parentheses are used?

sl Jol Tl Jglde=m

120 =19
l1=1n
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Strategies might include not subtracting a larger number from a ..naller
number, not dividing unless the quotient is a whole number, and con-
sidering the size of the numbers in relation to the answer. For example, in
problem 1, since 80is solargein relation to 19, itis probably a good idea to
first divide 80 by 20. Students may then proceed to try 9 x 2, since it is
close to 19.

Students can explore whether there is more than one way to assign the
operations, and if more than one way exists, they can determine the
number of different ways the operations can be assigned to produce the
correct result.

Activity 3

The problems in this activity are called nuniber search problems (Cohen,
1985, pp. 45-46). You are given an initial, or starting number, and your
goal is to reach an ending, or final, number by applying two basic
operations as often as needed. Try to be as efficient as you can. Consider
this sample problem.

Given the number 9, try to reach the number 11 using the operations of
" Adding 4 and Subtracting 5.

Solution:

+4 -5 +4 -5 +4
9> 13> 8™ 12> 7 11

Students can first be asked whether it is possible to reach 11. Given the
solution above, they can be asked whether there are other solutions.
Another interesting queston is whether one can find a solution for any
two operations (e.g., Adding 4 and Subtzacting 9). Now try these.
(1) Given the number 39, try to reach the number 40 using the oper-
ations of Adding 11 or Subtracting 7.

(2) Given the number 107, try to reach the number 17 using the
operations of Adding 11 or Dividing by 3.

(3) Given the number 90, try to reach the number 80 using the oper-
ations of Multiplying by 2 or Dividing by 3.

Students can use specific strategies as well as more general strategies
on these problems. A very powerful general strategy involves comparing
one’s number to the final or goal numbers. In problem 1, 39 is below the
goal of 40, therefore, add 11. Now, 50 is above the goal of 40, therefore,
subtract 7. For the same reason, subtract 7 from 43 and continue this
process. Some students may realize that problem 1 can be solved by
representing the difference, one, as two groups of 11 minus three groups
of 7,

In problem 2, one can use the general strategy described for problem 1,
but one must also avoid dividing unless the quotient is a whole number.
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Again, questions can be raised about whether a solution exists and how
many solutions exist. (In problem 1, what happens if one adds 11 seven
times and subtracts 7 eleven times?)

Activity 4

In this activity, one is to use each of the digits 2, 3, 4, 5, and 8, toyield a
sum of 662. One might write:

524
+_38
662
1) Use all five digits to yield a sum of 490.
2) Use all five digits to yield a difference of 778.
3) Use all five digits to yield a product of 28,290.
4) Use all five digits to yield a quotient of 882.

P~~~ —

These problems can lead to consideration of problems such as the
following.

Using the digits 2, 3, 4, 5, and 8, arrange two factors so that multi-
plication will yield (1) the greatest possible product, (2) the smallest
possible product, and (3) the product closest to 15,000.

(1) 832 x 54 = 44,928

(2) 2 x 3458 = 6916

(3) 3825 x 4 = 15,300

Each of the preceding activities and problems associated with them
have many variants. For example, one might begin Activity 2 with only
two boxes. Also, the whole numbers in that activity may be replaced by
fractions or decimals. Additional problems in Activity 3 can require more
than two operations. Variants or problems similar to those presented are
easy to construct. Students can be asked to construct their own problems.
Usually, they find this assignment very enjoyabie.

Activities 1-4 are simple, in that they only involve the four basic
operations. However, problems posed in conjunction with these ac-
tivities can raise challenging questions and provide students with an
opportunity to learn important problem-solving strategies.
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Drill and Practice
or
VERBAL PROBLEMS

Algebra I, Algebra 11, College Algebra

Here is how Disks 1-7 work. The student inputs his or
her name, reads the instructions, and chooses from a
menu: Main Facts and Methods, Easy Problems,
Medium Problems, or Hard Problems.

Disks 1-7 have 20 easy, 20 medium, and 10 hard pro-
blems. For each problem, the student uses pencil and
paper as needed, and when ready, chooses one of the
answers provided. A.complete solution appears, and
then the student may choose either a similar problem
or a different problem.

Incorrectly solved problems can be repeated over and
over again, each time with a new set of values, while the
method of solution stays the same until the student has
mastered the method.

At any time during a drill and practice session, the stu-
dent or teacher can see a Prograss Report showing
the numbers of attempts and successes on all the
problems. The Progress Report includes the student’s
name and can be easily printed on paper.
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MATHEMATICS, MOTION, &
GENERALIZATIONS

Vivian Camerlengo
The Pennsylvania State University

Every mathematics teacher is aware of students who respond accu-
rately to items of factual knowledge on a unit test but later are unable to
recall them for use in a problem solution. The fact that memory can serve
to produce what is needed at the time of evaluation with little or no
permanency of conceptual meaning is not surprising to the experienced
professional, although it may seem inconsistent with the teaching strate-
giesand activities that have been implemented in the classroom. Teachers
ponder this fact and often decide that what is needed is more review of
the “basics.” This article suggests another possibility to the “more of the
same’ strategy —a way of linking conceptual knowledge through the use
of dynamic motion and generalizations. The approach that will be dis-
cussed addresses the structure of the mathematics involved and attempts
to minimize the amount of rote recall required from the student. Exam-
ples will include an excerpt from a geometry unit on the measurement of
angles involving dynamic motion, the use of spatial relationships in a
proof, and an application of visualization techniques in the solution of a
non-routine problem.

Teaching “Today’s” Geometry

The mathematics education community today is takinga second look at
the teaching and learning of high-school geometry. Mathematics edu-
cators have reviewed the role of rigor and proof, as seen in the van Hiele
levels; they have recommended the incorporation of technology through
the use of computer packages such as Logo and the Geometric Supposer
and they have suggested that we teach geometry on the secondary level
from both a synthetic and algebraic perspective. This last suggestion
includes objectives that address the student’s ability to:

— represent problem situations with geometric models,

— interpret and draw spatial phenomena,

— deduce properties of figures from given assumptions, and

— apply and analyze Euclidean transformations (NCTM, 1987).
Geometry teachers would surely agree with the appropriateness, albeit
incompleteness, of this set of objectives. It is difficult, however, to teach
the concepts necessary for achievement of these ubjectives. Students who
have completed a high school geometry course often remember it with
comments like,

— "Sure glad it is over!”’




60 Mathematics, Motion and Generalizations

-

— “Theorems and more theorems to be memorized.”

— "Proofs, proofs, proofs!"’

— “Don’t remember much.” ((Martell) Camerlengo, 1982).
An expanded application of the notions of dynamic motion’ and general-
ization addresses these student responses. This idea has been applied to
high school geometry by the Geometry Problem Solving Project
(NIE-G780225) and results in a generalization that can unify several,

apparently disparate, theorems and proofs.>

Ore Equals Six!

Consider the six “different” theorems presented in a conventional
high-school geometry text involving the measurement of angles formed

inside and outside of circles.

CASE 1 — CENTRAL ANGLE
THEOREM:

A central angle is measured by its inter-

cepted arc.

CASE 2 — INSCRIBED ANGLE
THEOREM:

The measure of an inscribed angle is

one-half the measure of its intercepted

arc.

CASE 3 — ANGLE FORMED BY
CHORDS:

The measure of an angle formed by two

chords intersecting within a circle is one-

half the sum of the measures of its inter-

cepted arcs.

B
0
A

mdg BOA = m(ZE)
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CASE 4 — ANGLE FORMED
BY SECANTS
INTERSECTING
OUTSIDE THE
CIRCLE:

The measure of an angle formed

by two secants intersecting in

X, c
the exterior of a circle is cne-half
thedifference of the measures of

~~N TN
its intercepted arcs. - myABC = ¥ (mAC-mA'C")

. ~, B
CASE 5 — ANGLE FORMED BY A
TANGENT AND A .
SECANT: &/
a) The measure of an angle formed by a
tangent and a secant intersecting at 2

the point of tangency is one-half the
measure of its intercepted arc.

~~
m<L BAC = % m(ARC)

b) The measure of an angle R

formed by a tangent and a o)
secant intersecting in the ex-
terior of a circle is one-half .

the difference of the mea-
sures of its intercepted arcs.

~~~ N
m< ABC = ¥ (mAC- mRC)

CASE 6 — ANGLE FORMED
BY TWO
TANGENTS:

The measure of an angle formed

by two intersecting tangents is

one-half the difference of the
measures of its intercepted arcs.

m ABC = & (mARC - mAC)
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All of the above cases can be reduced to one, Case 3, if we adopt an
appropriate convention for the construction of the rays forming the angle
and note the location (in motion) of the vertex of the angle. In the
diagrams beiow consider the vertex of angle 1 “moving” from the center of
the circle, O, (Case 1) to another location (off of O, the center of the circle,
but still within the circle’s interior (Case 3) to a position o the circle (Cases
2and 5a) and eventually to a position outside the circle (in the exterior —
Cases 4, 5b, and 6). The vertex of the angle is either interior to the circle,
on the circle, or exterior to the circle.

In the central angle case we can
extend the two radii to intercept
an arc of measure equal to the
one subtending the central an-
gle; the generalization of angle
measure being determined by
one-half the sum of the mea-

sures of the intercepted arcs -~ ~
holds. m<AOB = % (mA3 +mA'3")
=% (2x) = x
A
In the inscribed angle case we can con- S ‘\ ,)LO
sider the minor arc at the vertex to have 0
the measure of zero degrees. The gen- IZ
eralization that the measure of an angle
isdetermined by one-half the sum of the
measures of its intercepted arcs applies
here. mg ACB = % (x + ¢)
= _1/2 X

As the vertex of the angle
moves from the interior to the
exterior of the circle, consider *
the minor arc to be of negative
measure; the generalization
holds.
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Thus, all angles formed by radii, chords, secants, and/or tangents inter-
secting in the interior of the circle, on the circle, or in the exterior of a circle
are determined by one-half of the sum of the measures of the intercepted
arcs, noting that the arc may be zero or negative measure depending on
the movement and location of the angle’s vertex.’ Not only does one
generalization replace six but in addition, the process of visualizing some
parts of figures in motion and other parts as stationary allows the re-
lationship of specific components to “completed whole” tobe seen from a
different perspective.

Visualizing a Proof

Another application of dynamic motion results in an overview of a
proof that can be readily “seen” and provides a plan for generating a
logico-deductive corroboration in T-proof format. Consider the theorem:

If a tangent and a secant are drawn to a
circle from an exterior point, the square
of the length of the tangent segment is
equal to the product of the lengths of the
secant segment and its external secant
segment. X

GN2 = (AN) (RN)

If we use_the heuristic of selecting an appropriate auxiliary line and
construct GA and GR, we note that both triangle GRN and triangle GAN
contain angle N (see figure at top of next page). If we can locate one more
pair of congruent angles, we will have similar triangles and can utilize its
consequence, the proportionality of corresponding parts. Applying the
generalization discussed in the first part of this paper, we note that both
angles, NGR and NAG intercept the same arc and therefore, have the
same measure; similarity is established! If we “pick-up,” reflect, and
rotate the two triangles RGN and GAN and arrange them as illustrated, it
is clear that the proportion GN/AN = RN/GN can be generated. One
more algebraic manipulation produces the desired result,
GN? = (AN) (RN). Similar “movement” of triangles will yield the other
theorems concerning segments formed by chords, secants, and tangents.
The reader is encouraged to try these.

72
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Incorporating Problem Solving

In keeping with a problem solving model that posits an interaction
between conceptual knowledge and successful heuristic implementation
(Kantowski, 1977, 1981), a problem like the following could be introduced
during the unit.

A diameter AB is drawn through C, the

center of a circle. Two points, D and E are

taken on the circumference of the circle

such that D and E are on opposite sides of

AB,and CE 1 AB. Chords AD, DB and

DE are drawn. Find the measure of the E

angle formed by chords DE and DB (GPSP- 8

NIE-G78-0225).

Not only do students need to employ several concepts concerning angle
measure but they also need to utilize them in a nonroutine fashion. An
insight that could lead a student to solution depends on visualizing D as
”moving” and E as fixed by the perpendicularity constraint. Wherever D
is fixed, however, the specific heuristic that directs the students to focus
on angles that intercept the same arc applies. If the student can employ
the notion of reversibility and “’see” arc BE along with angle EDB, (s)he
will notice the arc subtends two angles, ECB and EDB. Knowledge of one
fact concerning a central angle and its measure (or the one generalization
presented earlier) leads to solution. When high-school students used this
heuristic approach in conjunction with the generalization relating angles

and their measure, 72% were successful in solving the problem ((Martell)
Camerlengo, 1982).

Time for Problem Solving

Inthis article, we employed the notion of dynamic motion of an angle’s
vertex to collapse several theorems involving the measures of angles in
circles into one generalization. In addition, we used the rigid motion
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transformations of reflection, rotation, and translation in conjunction
with appropriate geometric heuristics to visualize an overview and a plan
for a geometric proof. Finally, we integrated the movement of one point
and the fixity of arother in a problem solving situation through the
specific heuristic that directs one to focus on angles that intercept the
same arc.

Employing dynamic motion and visualization techniques in teaching
mathematics, as well as using generalizations to establish meaningful
links among properties, minimizes what students have to produce from
rote memory. With less time needed for drill on factual and conceptual
knowledge, mathematics teactiers may increase the time spenton solving
nonroutine problems in geometry. This goal is consistent with the first
standard of the National Council of Teachers of Mathematics (1987). The
concluding comments of the Standards document suggest that the quality
of instruction in the classroom will improve only with a different per-
ception of mathematics along with appropriate student activities (National
Council of Teachers of Mathematics, 1987). This paper argues for the need of
perception in mathematics as well — perceptions that are influenced by
the use of visualization techniques, dynamic motion, and unifying gen-
eralizations. Mathematics in motion may well be mathematics internal-
ized, conceptualized, and available for use in problem solving — a
direction we all want our students to follow.

FOOTNOTES
'The concept of dynamic motion in geometry encompasses all ngid transformations on the
figure as a whole- rotation, reflection, and translation, as well as movement of component
parts of the figure within the constraints of the whole. Guilford (1959} referred to these
abilities, )in his model of the structure of the intellect, as Vz (visuahization) and 5-R (spatial
relations).
“The author is currently developing applications of visualization ard motion techmiques 1n
other domains of mathematics, including algebra and tri onomet:y.
’The ideas presented in this section were developed by the project staff of the Geometry
Problem Solving Project at the University of Florida, 1978-82, research supported by the
National Institute of Education, grant #G78-0225.
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MATHEMATICAL PROBLEM SOLVING:
SHOULD WE BE TOP-DOWN, BOTTOM-UP, OR
MIDDLE-OUT?

Philip D. Larson
Upper Bucks Christian School

Not long ago an ad appeared in a nationally-distribated newspaper
featuring a reprinted version of Ray’s Arithmetics, a set of volumes used in
the nineteenth century. The ad’s headline stated, “Let the experts scoff,
my child knows math!” At the end of one of Ray’s texts appears the
following:

Youth in that generation finished their schoolbooks and then read

the Bible, sang from the hymnbooks of Lowell Mason, and read

Roman and Greek classics in the original languages. It was not

unusual for a blacksmith to carry a Greek New Testament under his

cap for reading during his lunch break. The literacy rate, even on the

frontier, was higher than today’s rate. (Ray, 1985, opposite p. 408)
Some people would assume that students’ knowledge of arithmetic and
geometry also must have been greater then than it is now. In response to
this, proponents of back-to-the-basics might suggest that purchasing
texts similar to these nineteenth-century texts would improve students’
performance.

Others agree that we must return to the basics — but contend that we
also must redefine those basics. One of the new “basics” is problem
solving (Coleman, et al., 1983, p. v). “But that’s not new,”” someone says.
“Kids have always had to solve problems!”” However, if problem solving is
defined as ‘ollows, perhaps one should say that kids have not always had
to solve problems. Problem solving embraces:

a situation that involves a goal to be achieved, has obstacles to

reaching that goal, and requires deliberation, since no known algori-

thm . available to solve it. (House, Wallace, & Johnson, 1983, p. 10)

How should schools teach this new “basic?”” Should one approach
problem solving by refining and sharpening old, tried-and-true methods?
One textbook author, John Saxon, seems to believe that the idea of
emphasizing procedures is basically sound, but that teachers just need to
work the system better. Saxon’s textbooks are similar to many traditional
textbooks in that both aim to teach students algorithmic skills. Saxon has
sharply modified the traditional modular approach, however, by ex-
posing students to algorithms in increments rather than units. In a typical
Saxon text, a lesson may begin a new topic, such as negative exponents,
however, the accompanying assignment would have only a few exercises
on this new topic. Eac* subsequent assignment would continue to have a
few exercises on negative exponents. In these books:
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the learning process is spread out and comprehension will come in

time. The emphasis is on review and not on an all out [sic] attack on

the new concept. This development spreads out the learning pro-
cess, increases the depth of understanding and improves long term

[sic] retention. (Saxon, 1981, p. vi)

Saxon also has said that “understanding comes downstream from do-
ing;"” he assures teachers that "after [students] do a problem like this
every night fora year or a year-and-a-half, . . . mostof the kids can do the
problem and some of them even understand” (Bloom & Saxon, 1988).

Back-to-basics advocates would claim that students need only to prac-
tice-practice-practice the basic skills (or algorithms). Becoming well-
acquainted with textbook exercises and textbook “problems” (such as
coin orage problems) will give students positive experiences from which
they will be able to synthesize solutions to many real problems. As
students repeatedly practice these skills, they will become problem solv-
ers. In other words, since becoming a successful problem solver requires a
foundation of basic procedural skills, teachers should start from the
bottom (skills) and move up to problem solving (insight).

Others argue that the way to produce good problem solvers is not to
appeal to lowér-level thinking by stressing repeated, rote exercises.
Rather, one must require higher-level thinking. Following the inspiration
of Polya and Wickelgren, children should be taught to de such things as
draw diagrams, work backwards, or use some other generalized plan-of-
attack (Polya, 1945; Wickelgren, 1974). Since children would be much
better prepared to solve the world’s problems if they knew a set of general
approaches to problem solving, some say we must start at the top and
work down to the actual problems!

Two Approaches

Most people likely would agree that students need to be problem
solvers. Unfortunately, there is little agreement about how to teach them
to become problem solvers. Many opinions seem to be split between two
ends of an apparent dichotomy, the bottom-up approach and the top-
down approach.

Consider the following illustrations of how these two approaches
might influence an instructor teaching the division of fractions. Tra-
ditionally the bottom-up approach has been used and students have
simply been given a technique. they have been told that they should
always invert the second fraction and multiply. After students are skilled
in the procedure, they would be give n problems to which their procedure
would apply. A teacher from this school of thought would place great
emphasis on how to divide the fractions, the reason why would be of
secondary importance. If students would ask why, they might even be
told, “It’s just a rule. That’s the way you're supposed to do it.”
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Top-down instruction would be very different. While a pure top-down
approach may not have a sequence of content to cover (as in a Piagetian
classroom- vithout-curriculum), nevertheless the problem of ratio ap-
portionmeat might arise in an applied situation, and the class might wish
to devise a general algorithm for dividing fractions. As indicated in the
example below, the result from their exploration might ostensibly be the
same as the rule taught from the bottom-up, but, in a top-down approach,
the reasons would be stressed much more than the procedural steps.

4.
=5

1

Z
6 =4.7
56
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If the quadratic formula were being considered in an algebra class,
bottom-up teachers would stress the procedures; top-down teachers
might not emphasize the procedures, but rather would try to develop
each student’s intuition by exploiting the geometry of the quadratic
formula (such as the symmetry inherent in the plus-or-minus sign). If the
simplex method of solving linear programming problems were being
taught, bottom-up teachers would emphasize how to solve the problem
and apply the results; a top-down teacher would lead students to re-
invent the simplex method by thinking what should be done graphically
in a two-dimensional situation, how corner points could be found via
Gauss-Jordan reduction, extrapolating to hyper-space, etc.

How does a teacher choose from these two approaches? Certainly the
goalis clear: teachers want to develop problem solvers. Butis a bottom-up
approach most productive or is top-down a preferable approach? Recent
research can cast some light on this question.

Problem-solving Literature

A major premise of top-down problem solving is that traditional pro-

cedures should be moved to the side to make way for heuristics, or
content-independent strategies such as working backwards, drawing a
diagram, etc. Does this policy produce students with better problem-
solving skills? Many research studies have found that teaching heuristics
or content-general strategies was effective. The results of the following
projects are significant.

Since 1950 numerous investigations of mathematical problem solving
have been conducted. Marcucci (1980) examined thirty-three studies in
which researchers compared instruction between control groups and
groups using approaches such as modeling, guided discovery, and heur-
istics. (In each of these thirty-three studies, problem solving meant
solving traditional textbook-type problems.) Instruction in heuristics
proved to be the most successful technique at the elementary level;
however, these approaches proved to be less successful than even the
control treatment in the secondary studies.
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Swoope (1983) prepared a ten-week course for second-year algebra
students in which they were taught problem-solving strategies. At the
end of the course, experimental and control groups were compared for (1)
their performance on the mathematics section of the SAT, and (2) their
use of problem-solving strategies. While the experimental group means
on the SAT were not significantly higher than the control group means,
the experimental group did score significantly higher on use of problem-
solving techniques.

Many students seem to be able to see a problem only.one way, but Vissa
(1985) discovered that students who had been taught top-down strategies
had greater “flexibility in incorporating other heuristic strategies when
one alone seemed unproductive” (p. 2431A). Surprisingly, however,
Vissa found that in numerous cases “students who had no instruction in
the targeted heuristics seemed to develop problem-solving skills com-
parable to students who experienced such instruction”” (p. 2431A). No
report was made on whether or not the students in the experimental
group were more successiul resolving the problems.

In a similar study, Brewer (1981) taught an experimental group of
average fifth-graders the four-part heuristic of George Polya: (1) under-
standing the problem, (2) devising a plan, (3) carrying out the plan, and
(4) looking back (Polya, 1945). The control group had the same oppor-
tunity as the experimental group to solve problems (and compare re-
sults), but they received no j truction in problem-solving methods.
Brewer concluded that the experimental group “scored significantly
higher on only one criterion, Devising a Plan.” She also noted that the
“treatment did not produce « significant difference on the total written
testscores . . ."” (p. 1944A).

Proudfit (1981) also compared fifth-grade students who had been
instructed in Polya’s four-pronged approach with those who had not.
Students in the experimental group were found to be more adept in steps
two (devising a plan) and four (looking back). No difference was found in
steps one (understanding the problem) and three (carrying out the plan).

Inan important investigation by Charles and Lester (1984), an experi-
mental group was taught Polya’s model of problem-solving and attention
was especially given to providing time for process problems and helping
the students to choose and use strategies. They reported that “the
experimental classes scored significantly higher than the control classes
on measures of ability to understand problems, plan solution strategies,
and get correct results” (pp. 15-16).

One may notice that all of the above studies found that students
developed superior use of heuristics, but only thelast of the studies found
that the students were any better at actually solving problems.

Lesh (1985) found that “students more often construct solutions by
gradually organizing, integrating, and differentiating unstable conceptual
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structures . . . than by linking together stable procedural systems . . .”
(p 320). That s, the students in this study did not usually use automated
skills to solve the problems in the research. Lesh also wrote that for
researchers to discover the heuristics of experts in order to teach them to
novices would probably be of little value.
It seems plausible that childrens’ [sic] conceptions of problem-
solving processes, strategies, and heuristics must develop in a
manner similar to the way other mathematical ideas . . . are known
to develop. Yet, research has seldom viewed heuristics develop-
mentally. (p. 325)
Very often problem solving means simply to teach students Polya’s
heuristics. But, as Silver (1985) says, “Polya does not present a theory of
instruction” (p. 249).

More Problem-solving Literature

What about other literature? Do top-down strategies always come out
on top? Not at all. Larkin and others (1980), in reviewing the research,
found that poor problem solvers often were prone to use general heuris-
tics while good problem solvers would usually choose content-specific
approaches. In examining the differences between an expert and a novice
in physics (kinematics), they noted the following;

The novice solved most of the problems by working backward from

the unknown problem solution to the given quantities, while the

expert usually worked forward from the givens to the desired
quantities. This was surprising, since working backward is usually
thought to be a more sophisticated strategy than working for-
ward. . . . Novices having little experience . . . seem to require
goals and subgoals to direct their search. The management of goals
and subgoals — deciding periodically what to do next — may
occupy considerable time and place a substantial burden on limited
short-term memory. (p. 1338)
Lesh (1985) found similar results:

Students who do not have relevant ideas in a particular domain are,

in general, poor problem solvers in that domain, even if they have

had extensive training in the use of general, content-independent

heuristics and strategies. (p. 313)

One may infer from these studies that one well-trained in general prob-
lem solving is not likely to be able to compete in a content domain with
someone skilled in that domain. Bloom and Broder agree. They found
that “methods of problem solving, by themselves, could not serve as a
substitute for basic knowledge of the subject matter”” (Bloom & Broder, in
Mayer, 1985, p. 131).

Some advocates of bottom-up have argued that rotely-learned knowl-
edge can evolve into general concepts. So, if one rotely acquires some

Q . ~ _‘,
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declarative or data knowledge, that knowledge can be abstracted into
more general procedural knowledge (or concepts,. And so, the argument
goes, bottom-up learning perhaps can evolve into top-down thinking.
Winograd (1975), in studying artificial intelligence, found that the line
between declarative and procedural knowledge is not absolute; for exam-
ple, one can characterize declarative knowledge via a computer program
or procedural knowledge, and one can easily characterize procedural
knowledge with linear data or declarative knowledge.

Perhaps some of these strange loops between bottom-up and top-down
arerelated to memory abilities. Hunt (1980) suggested that students with
high-verbal skills (and apparently greater short-term memory) found it
€asy to use more strategies in problem-solving tasks. He contended that,
“The less effort required [by the memory,] the more capacity there is
available for other tasks” (p. 94). So the fact that some students could
spend more time in metacognitive activities was related to memory
capacity. Those who did not become involved in metacognition were too
busy with more basic details.

Needed Research

1 Modem problem-solving methods are often taught 1n a bottom-up
way, even though they are supposed to be the beginning of top-down.
That is, students are sometimes given a list of superprocedures (or
heuristics) which they aie to memorize before trying to solve a prob-
lem. Should this be changed?

2. Is the apparent dichotomy between bottom-up and top-down an
example of idiosyncratic cognitive styles? Silver has indicated that
“individual cognitive stylesare modifiable” (Silver, p. 259, 1985). Ifitis
true, then, that cognitive styles can be changed, should one of these
approaches be changed to the other?

3. Several of the studies cited took place over a period of less than three
months. Perhaps more time is needed to find positive results. There-
fore, one might design a longitudinal study to identify students
receiving bottom-up instruction and students in a top-down environ-
ment. How would these groups of students compare on a general
problem-solving test, perhaps something like problems from the
MATHCOUNTS competition?

4 Is the best instructional approach to provide rich experiences for our
students that allow them to build many content-specific schemata? Is
this more efficient-than teaching content-independent heuristics?

5. Do poorer problem-solving students need greater facility with skills
than experts? If so, why?
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Final Comments

In summary, much research posited in favor of traditional problem-
solving showed that students are better able to use heuristics, but it rarely
showed that they would be better able to solve problems. Other research
showed that students who had only leamned content-independent stra-
tegies (heuristics) could not compete with those who followed content-
specific tactics.

A back-to-basics approach does not seem appropriate, although per-
haps some algorithmic skill is needed. Can any insight be gained into
division or square roots by learning the traditional algorithms? Most
students wholearn these procedures (and most teachers who teach them)
haven’t the slightest notion why these algorithms work. Can one geta
better understanding of division or root extraction by learning these
traditional methods? Yet it appears that expert problem solvers are
experts partly because of their algorithmic proficiency.

One potential problem with the back-to-basics movement appeared in
a study (Reed, 1983) comparing students using the texts by John Saxon to
students using conventional texts. While students using Saxon’s book-
performed better on algorithmic skills (as one would expect), attitudes
toward mathematics degenerated more among students using Saxon’s
texts than among students using the traditional texts. One might con-
clude that students find bottom-up approaches boring.

Consider an analogy between learning math and learning automotive
repair. Do we expect one who is highly skilled in using wrencher and
other tools necessarily to be qualified to fix our own car? Of course not.
Likewise, can a back-to-basics emphasis on skills alone prepare a student
to be able to solve real problems? Hardly. One would certainly think that
emphasizing skills alone could not prepare a student for problem solving.

On the other side, those who would advocate heuristics without skills
have too often been like the emperor who had no clothes: the clothing of
research simply does not conclusively show any practical value in gen-
eralized approaches. The apparent face validity of teaching heuristics has

. not held up very well under the scrutiny of research.

Those who advocate primarily either a top-down or a bottom-up ap-
proach to instruction in prublem-solving could be considered eatremists
in their opposition to the other approach. Students who would be prob-
lem solvers certainly must have some algorithmic skill, although the
needed algorithmic skills may be substantially different from those
stressed at present. Yet students also must have developed creativity and
the ability to handle unfamiliar problems, they need many things offered
by a top-down approach.

The apparent dichotomy between these approaches and the chasm
between skill and intuition disappears when one considers that math-
ematics is partly a facet of our culture. many marvelous ideas have been

Re




~

E

RIC

74 Mathematical Problem Solving

synthesized in the past, and we will continue to use our creativity to add
to the body of knowledge about mathematics. In this cultural model,
bottom-up teachers would emphasize looking to the past, following ideas
that have already been synthesized, and perhaps even encouraging
students to understand them. Likewise, top-down teachers would em-
phasize looking to th;}uture, and would be intently preparing students to
create new mathematics by various means including reinventing already-
existing mathematics. Fr .m this culturalmodel, it appears that top-down/
bottom-up is not an either-or, but is rather a both-and.

Ourstudents need to be well-aware of the past, and they certainly need
to be prepared for the future. The task facing us, then, as mathematics
educators, is to find the optimum symbiosis of top-down and bottom-up,
a “middle-out” appreach (Zbiek, 1988), in which both top and bottom
levels of thinking are emphasized. Such an approach will eye both the
marvels of the past and the excitement of the future. Mathematics stu-
dents of tomorrow will, I believe, find us using a synthesis of top-down
and bottom-up; perhaps we will be using a “middle-out” approach.
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EVERYDAY MATHEMATICS: LEARNING FROM
REAL-LIFE EXPERIENCES

Paul Dobransky
Marple Newtown School District

Jean Kerrigan
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Judy Stopper
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One of the most powerful ways for children to achieve in mathematics
is to experience constructive real-life mathematical situations in the
classroom (Commission on Standards for School Mathematics, NCTM,
1987). Examples involve problems drawn from the child’s local environ-
ment, for instance, ac’.al and simulated excursions such as estimating
gas mileage while riding in a car or estimating the amount of change tobe
received while shopping at a local store. Primary students might learn to
identify coins by using real coins to purchase ice cream from the school
cafeteria. Intermediate students can-learn about percent by computing
sales tax on actual purchases at a local department store or discounts on
records or tapes from a music store. Situations like these, which will be
referred to as “everyday mathematics,” fill the child’s world with ac-
tivities involving thinking skills and estimation. Beginning in kindergar-
ten, students should form the habit of estimating before calculating
answers (Mathematics Framework for California Public Schools, K-12,
1985).

WHAT IF . . . I have $10.00 to spend on a music tape, how much tax
willI pay? What will be the total cost? How much cheaper is the price
in one store than another? What might be a good price? If Ican getthe
tape for 25% off, what will I have to pay?

Mathematics involving such “what if” questions is tie mathematics
encountered in everyday situations. It is the mathematics one does in
roping with the real world. Pencils and calculators are not always used,
but thinking skills, approximation, estimation, and common sense are
required.

Motivation for Learning

Students who apply skills in their daily lives are much more motivated
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to internalize the learning of these skills. For instance, students who
count money to see if they have enough to purchase cookies are much
more motivated than students who count plastic money for no real
reason; students counting M & M’s so that each student receives an equal
amount are more highly motivated than students using plastic counters
to learn counting. Representing these experiences on paper or on the
chalkboard is more meaningful because students are involved in the
action. Students using everyday mathematics are motivated to achieve
beyond their grade-level objectives because their goal is to solve real
problems.

A challenging activity might involve developing a booklet of everyday
problems to be solved by the class. Such a publication can be extremely
motivational when students share problems with family and friends.
Ownership of problems motivates students, and :his increased mo-
tivation leads to increased learning.

Emphasis on Interaction

Everyday mathematics can utilize common experiences which stimu-
late interaction between students and the teacher as well as among
students. Since most classes have students who shop at the same stores
and attend the same recreational activities, students can work in groups
to formulate and solve everyday problems. “Interaction among children
is one of the chief motivators for the learning process. Children’s thinking
and insight are stimulated by explaining their solution processes to
others, as well as by the ideas and questions offered within the group.
They come to examine a problem more objectively and begin to use new
perspectives when they are exposed to different points of view” (Gilbert-
MacMillan and Leitz, 1986). This interaction promotes problem solving
strategies and develops thinkers The teacher acts as a catalyst to stimu-
late thinking by responding to the students’ inquiries as they think
through the development and solution of relevant local problems. Chl-
drenare encouraged to offer varied approaches to a solution. An example
of interaction that might occur follows:

Teacher:  All 18 of you brought in your $1.00 for the pizza party. What
shall we do?

Student 1: We (an get pizza from the cafeteria for $3.00 for each pie.

Student 2: If ea h pizza can be cut into 8 pieces, we will need 412 pizzas
for each student to get 2 slices.

Teacher:  We cannot buy % of a pizza.

Student 2: We will have to buy five pizzas. That will cost $15.00.
Student 3: Can we have soda?

Teacher:  Six packs of Pepsi will cost $1.89.
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Student 3: Then we will need about $6.00 for soda, but we only have
$3.00 left.

Student 4: We can get two-liter bottles for $0.79 each. Six people could
«easily share a bottle. Three bottles times about $0.80 each is
$2.40.

Student 5: Mrs. Jones, do you like Pizza?
Teacher:  Why do you ask?

Student 5: Well if you don’t like pizza, then it would be easier to buy 6
pies, cutthem into 6 slices each, and forget the soda. Then we
won’t have to fight over the extra slices and worry about
giving money back.

This type of interaction contrasts sharply with that which occurs when a
teacher stands in front of the room with answer book in hand, while
students recite their answers to the odd-numbered exercises.

Everyday Mathematics and Textbooks

Because many word problems in textbooks are contrived, it is critical to
include locally-developed problems in mathematics lessons. Textbook
problems often are so predictable in their makeup that students do not
even bother to read them, but just extract the numerical data and compute
(Paige, 1988). For example, addin, prices from a menu in a local fast-food
restaurant may be more meaningful than doing so from a menu in a
textbook. Measuring distances that involve local landmarks can be more
effective than computing distances in textbook problems. Students im-
prove their understanding of measurement by measuring things mean-
ingful to them. Recording and comparing growth patterns or per-

formances in local “olympic games” are suggested activities. Problems.

involving personal statistics of students (e.g., height or number of sib-
lings) take on added significance to them.

When students use only wozd problems from textbooks, there is little
transfer to the everyday world. Since the students are consistently work-
ing toward the type of solution usually found in answer keys, they may
not use higher-level thinking skills nor have the opportunity to answer
the “what if” questions commonly encountered in everyday problems.

Everyday Mathematics and Its Integration with Language Arts

Everyday mathematics,activities provide opportunities for students to
develop oral and written communication skills. Students can discuss their
daily experiences and mentally “’hold conversations with themselves’ to
organize language that can be understood by others. Reading and writing
skills improve when students are writing about topics they know well and
have experienced. Furthermore, an interest in word problems increases
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when there is a positive response from peers and a sense of ownership.
As an example, when students” mathematics problems are duplicated for
class members, they are motivated not only to solve the problems but also
to improve their language so that peers are able to read and understand
their written work.

Conclusions

In today’s world, estimation, mental arithmetic, and knowing what
operation to use in solving problems are more important than the actual
algorithmic method of calculation. However, in many classrooms, stu-
dents spend most of their time on repeated manipulations. What is even
more tragic is that, all too often, worksheets are simply marked as right or
wrong, with the assumption that errors are mainly due to carelessness.
Everyday mathematics can be highly diagnostic and offers teachers
opportunities to detect incorrect methods employed by students and to
improve students’ problem-solving ability.

If one believes that understanding solutions and developing thinking
skills are as important as getting correct answers, then everyday math-
ematics is a method to consider. Furthermore, if one truly believes that
the primary function of school is to help students survive in the real
world, then the real world should be the primary source of learning
experiences. In this context, everyday mathematics becomes a vital com-
ponent of the mathematics program in every school.
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FINDING AND USING REALISTIC
APPLICATIONS PROBLEMS IN THE
MATHEMATICS CLASSROOM

Mary Ann Matras
East Stroudsburg University

Rapidly advancing technology has precipitated recent calls for changes
in school mathematics. The availability of powerful computers and calcu-
lators in both classrooms and homes and subsequent changes in the
content and uses of mathematics have forced a substantial reexamination
of the entire school mathematics curriculum.

Recommendations made by professional organizations like the Nation-
al Council of Teachers of Mathematics (NCTM, 1980, 1987) emphasize
using the power of calculators and computers to allow instruction to focus
on problem solving, concept learning and realistic applications problems.
The search has begun for ways to implement these recommendations in
mathematics classrooms at all levels of instruction, and mathematics
teachers have the opportunity to explore these ideas in their own class-
rooms. The purpose of this article is to look at ways that new technology
might change the use of applications problems in the mathematics class-
room and to suggest ways that teachers might write their own applica-
tions problems for classroom use.

Classroom Applications Enhanced Through Technology

Applications problems have always been a part of the mathematics
curriculum. Mathematics educators have felt that a central purpose of
mathematics education was instruction in solving problems. In the past,
however, because of the difficult level of computation or symbolic manip-
ulation involved in realistic application problems, these problems have
often been written in such a way that these computations or manipula-
tions could be readily done by hand. As a consequence, many realistic
problems were not included in the curriculum or instruction. With com-
puters and calculators available to handle difficult computations or sym-
bol manipulations, mathematics materials and lessons are now free to
include realistic applications problems at all grade levels and for a wider
variety of purposes than were previously available. Classroom teachers
can begin to explore new uses of application problems in instruction.

Using Applications to Introduce a New Skill or Unit

Students at all levels of mathematics learning are apt to question what
use the mathematics that they are learning will have to them. Using a
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realistic application problem as anintroduction to a new skill or unit is one
way in which teachers may answer those “What use is it to me?”
questions and may motivate students to understand and to use new
skills. For example, an algebra teacher who is introducing students to
quadratics might begin instruction using a projectile motion problem
such as one that discusses the height of a pop-up hit in baseball (Fey,
1986). For the teacher who has a classroom computer with a large monitor
(or a computer-screen projection device) or whose students are good
users of calculators, questions about the height of the pop-up and when it
hits the ground are readily answered even on the first day of instruction in
quadratics. This situation can then lead to a discussion of the variety of
situations where quadratics are used, in preparation for later develop-
ment of manipulative skills dealing with quadratics. Middle school teach-
ers whoare introducing units on decimals can begin with applications
involving money. Calculators can be used to handle the initial com-
putations as students and teacher discuss the situation and develop the
decimal concepts. The use of technology allows teachers to choose a
wider variety of application problems to help with the introduction of
units or skills. ’

Using Applications for Practice of a Newly Learned Skill or Concept

Application problems are also useful for helping students practice a
newly learned skill or concept. For example, students learning slope can
be asked to look at a group of linear situations, to compute the slope for
each situation and to explain what it means both in terms of the situation
and in terms of the computational definition of slope. Students who are
practicing almost any computational skills may be asked to answer a wide
variety of questions based on a table or graph relating to an application
problem. ’

Using Applications to Review or Consolidate Skills

Applications problems are especially good for providing an oppor-
tunity for students to review and consolidate skills. Teachers who are
planning a review prior to a test or quiz or who are reviewing prerequisite
skills prior to introducing more difficult skills may find that a carefully
selected application problem will provide a new and exciting basis for
classroom discussion. This end-of-the-chapter time might be a good
opportunity for students and teacher to discuss longer and more com-
plicated applications problems. For example, the projectile motion prob-
lem about the baseball pop-up or one concerning flight in space (Fey,
1986) might be used at the end of the unit to review and consolidate
quadratic skills. For review of decimals, a computer-spreadsheet table
with information expressed in decimal form may serve as a basis. For
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review of percents, election year polls and other poll data may provide a
beginning point.

Using Applications to Enhance Motivation

Applications can be infused into instruction at times when students
particularly need motivation. This motivation may be particularly helpful
for students trying to review concepts that have been studied but not yet
mastered. Students in these situations often feel that they have already
seen all of the materials, and as a result the may turn off instruction. The
use of different and unusual applications may make it easier for students
toparticipate in class or understand concepts that they have seen before.

Convincing Students of the Usefulness of Mathematics

Interdisciplinary units filled with applications problems may help
students see the usefulness of mathematicsin other areas, may help them
see mathematics skills in new ways and may, by sheer repetition, help
them master difficult skills. Mathematics teachers can construct these
interdisciplinary units to coincide with relevant units in other subject-
matter areas. For example, when the science teacher is teaching an
ecology unit, the mathematics teacher can use information from the
science text and from the nearest EPA reporting station to do a graphing
unit. This approach allows the science teacher to expect a higher level of
mathematical skills from students in the science classroom and allows the
mathematics teacher to help students develop a higher level of graphical
interpretation skills. Ma*%:-zatics teachers may team with social studies
teachers to presentratio and proportion in the mathematics classroom
when map skiils are being taught in social studies. High school math-
ematics teachers may ask science and social studies teachers for copies of
their textbooks to use as resources in developing ciassroom application
problems. Through “double teaming” by mathematics teachers and
teachers of other subjects, students can often learn difficult skills in one
class and then have them reinforced or used in another class.

Summary of Uses

A wide variety of classroom uses of applications problems are available
toteachers. Using applications to motivate the need for a skill, to practice
a newly learned skill, to practice a number of skills together, to review
either prior toa test or before the introduction of subsequent material can
help students learn mathematics. The appropriate use of calculators and
computers may make it possible to use problems with realistic data.
Interdisciplinary efforts by mathematics teachers and teachers of other
subjects can help students see the usefulness of mathematics while they
learn well in both subject areas.
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Finding Realistic Applicaticns Problems

Teachers who seek to use a wide variety of applications in their
classrooms must be able to find suijtable problems for classroom use.
Older textbooks may not have been writter: with an applications ap-
proach; some newer textbooks that have applications problems in them
have very simple, unrealistic data. Teachers with excellent texts available
will still seek problems for use in classroe:n instruction, supplemental
worksheets and tests and quizzes. While there are a number of excellent
supplementary materials (Sharron & Reys, 1979; NCTM, 1980) available
for teachers to use in preparing applications prablems, teachers who seek
realistic data may have to research their own problems.

The most difficult part of writing applications problems involves locat-
ing new and interesting situations to meet the specific instructional needs
of the studencs. The location of situations requires detective effort on the
part of the teacher. Teachers need to be aware of places where application
data may be found and they need to be in constant search of applications.

The newspaper has historically been a major resource in finding situ-
ations for applications problems. The sports page has many interesting
statistics, the business page has tables and graphs, and the news pages
frequently have stories with a mathematical slant. Newspaper graphs are
often a good source of ideas and questions. Opinion polls and headlines
may be sources for statistics and percent problems. Teachers may provide
students with a number of newspapers, and ask them to write their own
application problems using recently acquired skills.

Though newspapers remain a good source of applications, a variety of
other sources are available for problem situations. One major source is the
government. As a collector and user of statistics, all foris of government
(federal, state, and local) produce a wide variety of reports filled with
applications of mathematics. For example, the EPA publishes reports
which give pollution and air quality readings for local reporting stations;
these reports are rich with ideas and situations. The Superintendent of
Public Documents (Pueblo, CO) prints a great number of free or inex-
pensive materials full of applications for the mathematics classroom.
Regional governments often print pamphlets full of statistics on the’local
area, while state governments print their own statistical reports.

Textbooks from other subjects and from advanced mathematics can
also be sources of problems. A college calculus, physics or business text
may contain situations that can be modified for use in particular math-
ematics classrooms. Copies of current textbooks in other subject areas can
also provide a source of problems. School libraries are rich resources of
possible situations; even the fiction section can give clues concemmg
students” interests.

But perhaps the most interesting problems are developed by teacher
detectives looking around at the uses of mathematics in everyday life. The
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placemat on the tray of « fast-food restaurant may contain a table telling
thé calories and nutrients in their various salads and salad dressings.
Such a table can be used to generate addition and subtraction problems
for upper elementary students, decimal problems for junior high stu-
dents or general mathematics students in high school, or a sampling
distribution problem for statistics students. The table on the back of a
radio station’s advertising rate flier can be used to write a linear function
problem for an Algebra I test. Doctors’ offices offer statistics in brochures
ondifferent drugs or diseases, and in children’s growth charts and adults’
weight charts. Teachers who use applications problems are continually
looking for unusual sources of problems. They find that when ap-
proached for information, most people are more than willing to help. The
cashier at the fast food restaurant will find them a clean placemat to take
home, the doctor a copy of a chart, the friend a sales brochure.

Applications problems provide exciting and different ways for teachers
to help students become knowledgeable adult users of mathematics. By
using new technology available to them, teachers can use more realistic
applications problems in their classrooms. And by becoming detectives of
sorts, teachers can search for and find new realistic problems for use in
instruction.
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APPLIED GEOMETRY —
AN INTEGRATED APPROACH

Bethlynne Cacka
Garden Spot High School

“But when will  ever use this?"” How many times have you heard that
question? How many times have you attempted to convince students that
they may, indeed, need to apply the math that they are learning? Garden
Spot High School’s Mathematics and Industrial Arts/T echnology Edu-
cation (IA/TE) Departments have collaborated in an attempt to convince
at least some of their Geometry students that mathematics is useful.

In a course being piloted in the 1988-1989 school year, low ability math
students are participating in an Applied Geometry course that is being
team taught by a math teacher and an IA/TE teacher. The course in-
tegrates the student of geometry, mechanical drawing, constructions and
model making.

The first “seeds” of the course resulted from a faculty room con-
versation. A Geometry teacher, who had difficulty grasping spatial re-
lations and concepts related to drawing, asked a drafting teacher for some
insight into a particular problem. The drafting teacher was quite helpful,
but realized that he knew little of the geometric reasoning behind his
suggestions. Further discussions lead to the “Wouldn't it bs interesting
if . . .” stage of planning. From there the ideas were passed on to the
mathematics department, where they were received with interest and
enthusiasm. Work was then begun on developing .he integrated cur-
riculum for the Applied Geometry course.

Todd Reitnouer, an IA/TE teacher at Garden Spot High School, ex-
plains the willingness of his department to support the integrated
approach:

Industrial arts has traditionally used a hands-on approach to teach-

ing its content. In the switch in philosophy to Technology Edu-

cation, we are interested in working some of our learning activities
into the courses of other departments. These activities allow the
students to see how the math~:natics that they study has everyday
applications and it also introduces them to new technologica! zreas.

Some of the projects being used in the Applied Geometry course
were taken from the basic Mechanical Drawing course. Where we
once taught shapes and how to draw them with instruments, we
will now include the geometric reasoning behind the constructions.
Other projects were newly designed to fit into the units being
taught. (Reitnouer, 1988)

The Applied Geometry course is based on three major premises.
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1. STUDENTS LEARN GEOMETRY THROUGH A PROBLEM-
SOLVING APPROACH.
The course consists of a series of projects or problems that students
are to solve. One of the first projects is the design, layout and
constructicn of a storage box with a lid and compartments to hold
the student’s drawing instruments. Each student develops a design
that is submitted to the class as a whole. The class then studies and
compares the designs to decide which one will best suit the purpose.

2. STUDENTS LEARN ON A “NEED TO KNOW” BASIS.

As a project progresses, students are introduced to the geometric
and Industrial Arts concepts that they will need to complete their
project. For the storage box project, students are introduced to
measurement, perpendicular lines, parallel lines, and board feet.

3. STUDENTS FOLLOW A PROBLEM FROM DESIGN, TOLAYOUT,

TO CONSTRUCTION.
Each project is designed to have students meet three goals:

(1) to design a solution to the problem,

(2) to draw a layout for the solution, and

(3) to construct or build the final project.
In the storage box project. the student design chosen by the class is
blueprinted. Students then plan a list of the necessary materials
(board feet of wood, hinges, stain, etc.). In the final stage, students
construct their instrument boxes in the school’s woodshop.

A course outline for Applied Geometry is given in the Appendix. Also
included is an example of one of the course projects.

The planning for the Applied Geometry course took approximately
three years. First a presentation- was made to the Eastern Lancaster
County School Board. The Board received the course with interest and
agreed to provide more than $2000 to support the endeavor.

Dr. John Gould, Assistant District Superintendent, explains the dis-
trict’s philosophy:

In 1984, as part of a curriculum redesign process, secondary teach-

ers were encouraged to analyze their courses for possible in-

tegration with courses outside their content areas. This process
utilizes the developing research in teaching and learning styles and

a need to offset the intuitive understanding that high school cur-

riculums oftentimes fragment a student’s perception of learning.

Current educational literature calls for schools to develop programs

that will help all students to understand the interrelationships

between information . . . with the developraent of Applied Geome-
try, the district believes that we are beginning to address these
relationships and that the course will serve as a prototype for other

courses. (Gould, 1988)

Following the Board’s approval, the second step required the IA/TE
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teacher to select the drawing equipment for each student. Because the
regular drafting room was not available, portable drawing boards, and
quality compasses, architect’s scales, triangles, protractors and lead
holders were ordered. The geometry teacher reviewed textbooks in
search of a geometry book that would support the ideas of the course.
Addison-Wesley’s Informal Geometry was selected, but intended for refer-
ence only.

Together the teachers prepared the classroom, replacing desks with
cafeteria tables and chairs. A drafting machine was installed and a cabinet
was “borrowed” to store the equipment.

A last necessary step in the process of piloting a course is evaluation. A
second geometry course was offered to other low ability students using
the Addison-Wesley textbock. The course will be taught “traditionally”
by the same Geometry teacher that is teachng the pilot. As the year
progresses, the Mathematics Department will compare the two classes for
ability and knowledge. Based on the final June evaluation, the Applied
Geometry will or will not be offered to all low ability students.

Students have been receptive to the Applied Geometry concept and
patient with their sometimes faltering t2achers. Is the course succeeding?
Itistoo soon to tell—but not one student has asked the dreaded question,
“But when will I ever use this?!

REFERENCES

Gould, ). (1988). Personal communication.
Reitnouer, T. (1988). Personal communicaticn.

APPENDIX
APPLIED GEOMETRY COURSE OUTLINE, FALL 1988
I.  INTRODUCTION
A. Spatial Visualization
B. Vocabulary
II. MEASUREMENT
.  GEOMETRIC CONSTRUCTIONS
A. Drafting Instruments
B. Non-intersecting lines
C. Intersecting lines
D. Planes
E. Circles
F. Regular polygons
PROJECT — Supply Box (detailed in the article)
IV.  TRIANGLES
PROJECT — Use drafting instruments to duplicate a given tri-
angle. Lead to the discovery of the triangle con-
gruence postulates.
PROJECT — Design and build a geodesic dome from toothpicks.
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VI

VIL

VIIL

Applied Geometry

POLYGONS AND POLYHEDRA

PROJECT — Design, layout, and construct a box with a lid (metal
shop).

PROJECT — Design, layout and construct 5 different polyhed. 4
and create a mobile. (construction paper)

PROJECT — Design and build a sphere with toothpicks using a
combination of geometric shapes.

PROJECT — Draw various crystalline structures. (this project is
team taught with a science teacher)

AREA AND PERIMETER

PROJECT — Plot plan
PROJECT — Design and layout a cover for a machine; calculate
the surface area.

VOLUME

PROJECT — Design, layout and construct a sugar scoop (metal
shop).

ADDITIONAL IDEAS

A.

B.

C.

Discovering geometry in nature through photography
Programming in LOGO
Introduction to trigonometry through surveying

SAMPLE APPLIED GEOMETRY PROJECT
Construction of a Scoop

Geometric Concept — Cylinder
A. (1) Define circumference — example roll a coin along a segment

to measure its circumference, measure the coin’s diameter
and then divide circumference by diameter (c/d). Do for 3
coins. Show answer is the constant pi.

(2) Define volume of a cylinder. Determine the volume of the
cylinder.

(3) Define the surface area of a cylinder. Find the surface area of
the cylinder.

. Extend figure to show various types of cylinders.

(1) right cylinders
(2) oblique cylinders

C. Show a scoop and discuss the relationship between the scoop

D.

E.

and a cylinder. Allow class to discover correlations.

Explain, discuss and demonstrate a truncated right cylinder.
Develop and sketch the three basic views: top, side, and
auxiliary.

Discuss what information would be needed to make a sccnp.

Mechanical Drawing Section
To make = scoop:

(1) Draw the front and top views of a truncated cylinder.
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(2) Divide the top view into convenient number of equal parts.
(3) Project divisions down to front view.
(4) Draw stretchout line (circumference)
a. include tabs
b. divide into the same number of equal parts as the top
view (12).
(5) Project lines from front view to stretchout.
(6) Plot curves.
(7) Draw the circular base with tabs.
(8) Design and draw the handle for the scoop.
L. Construct a pattern and transfer the layout onto paper to make the
model.
IV. Discussion of the project
"A. The class will discuss the various models and decide on the best
drawing.
B. The selected drawing will be sent to the metal shop tobe made (if
possible) as a special project by a metal shop student.
C. Finished product will be returned and discussed by the class.

ABOUT THE AUTHOR
Bethynne Cacka is a member of the Mathematics Department at Garden Spot High School.

Heraddresis Garden Spot F.gh School, 669 E. Main Street, P.O. Box 609, New Holland, PA
17557-0609.

j Y
O




DC.Heath and Company
SUCCESS

We start vmth a sohd foundatlon and just keép-
building for success,

D.C.Heath and Company

1157 Elchelberger Street, Hanover; PA 17331
717-632-7929, 1-800-235- 3565

AmCorman]

-

107




Q

MATHEMATICAL MODELING: A FOCUS FOR
TEACHING
STUDENTS TO APPLY MATHEMATICS

Glendon W. Blume
The Pennsylvania State University

The existence of computer technology has changed the nature and use
of mathematics in many ways. Prior to the accessibility of computers,
many applications of mathematics centered on analysis of well-
established mathematical representations of physical systems. Since the
mid-1970's mathematicians and users of mathematics have given in-
creased attention to formulating mathematical representations that
model a process or system and less attention to carrying out the com-
pwations associated with such a system (Cross & Moscardini, 1985). In
short, the process of building and testing mathematical models has
become anincreasingly important capability for those who createand use
mathematics.

What Is Mathematical Modeling?

To understand the meaning of the term “mathematical modeling,” it is
helpful to note similarities in several definitions of the mathematical
modeling process. James and McDonald (1981) describe mathematical
modeling as “’the process of translating a problem from its real environ-
ment to a mathematical environment, in which it is more conveniently
studied, and then back again” (p. 5). Kerr and Maki (1979) describe such
translation in more detail. They define the process as one in which the
first step is usually the identification of a real-wo-Id problem. That problem
is often modified and simplified so it can be described in a reasonably
precise, but succinct, manner. At this point one has formed a real model, a
written description of the problem. The words and concepts of the real
model are replaced with mathematical symbols and expressions. That
produces the mathematical model. Then one uses mathematical techniques
to arrive at conclusions based on the model. These conclusions are then
tested and compared with the or‘ginal real-world problem to determine
the appropriateness and usefulness of the model. Similarly, Andrews
and McLone’s (1976) description of mathematical modeling includes
simplification or ideali-ation, translation into mathematical entities, val-
idation of the model, and interpretation of the results of the model.

The diagram in Figure 1 (NCTM, 1987) summarizes the preceding
descriptions by illustrating the process of mathematical modeling. Notice
that the procrss begins in the upper left with the identification of a
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94 A Focus for Teaching

real-world problem situation. That situation often is simplified in some
way so an accessible problem can be formulated. A mathematical rep-
resentation of the simplified situation is constructed and constitutes the
“‘mathematical model.” Mathematical transformations or operations are
used to generate a (mathematical) solution, which is then interpreted in
light of the problem that was formulated. This interpreted solution is then
verified to determine whether it offers an adequate (real-world) solution
to the real-world problem. At this point, the modeling process may begin
again, using a refined version of the model.

REAL ABSTRACT

Real-World Solution
Problem within the
Situation Model

Simplification

?Operations

athematizatio Mathematical
H Model - muﬁoﬂ(s)

Inequality(ies)

Problem
Formulation

Figure 1. The Mathematical Modeling Process.

An Example of Mathematical Modeling

The following example of an application situation was developed while
working with two teachers who were participating in an algebra cur-
riculum development project that emphasizes mathematical modeling.' It
is intended for use with first-year algebra classes.

The Real-World Problem Situation

In certain states owners of automobiles are required to have a safety
inspection done on their vehicles each year. These inspections usually
check, among other things, whether headlights work properly, whether
brake linings are sufficient, and whether the tires have enough tread on
them to provide a safe leve! of traction. If the tread depth of a tire is less
than some minimum arount, the owner is required to replace the tire.

Formulation of the Problem

Suppose an automobile owner wanted to estimate the distance he or
she could drive before needing to replace a tire. The owner might base
such an estimate on the current tread depth of the tire. Alternately, an
© wner might want to know how much tread would be needed to be able
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todrive another 10,000 miles, about one year's driving distance for many
peoplé. Hence, the problem consists of determining a relationship be-
tween a tire’s current tread depth and the number of miles of driving
distance remaining for that tire.

There are a number of simplifications and assumptions thatarise in the
formulation of this problem. For example, one might assume that the tire
is of “average” quality, that driving conditions are “normal,” and that
when the tire is new it wears similarly to what it does when litile tread
remains. Also, one might exclude indicators of tire quality other than
tread depth, for example, uneven wear or sidewall cracking. One also
might assume that tread depthis uniform over the entire circumference of
the tire and accept a single tread-depth measurement as representative of
the tire’s tread depth.

The Mathematical Model

To describe remaining driving distance, D, as a function of current
tread depth, ¢, one needs to develop a function rule of the form,

D(t) = an expression involving ¢.
An acceptable function rule can be found by following a chain of reason-
ing similar to the following. An “average” tire might be sold with a 40,000
mile tread wear-out guarantee. If the minimum tsead depth for passing
inspection is 2/32in., and a new tire has approximately 11/32 in. of tread,
thenthe “usable” tread is 11/32 — 2/32, or 9/32 in. Since about 40,000 miles
of driving wears away this 9/32 in. of tread, 40,000 - (9/32) = 142,222
provides anestimate of the number of miles of driving distance remaining
perinch of tread. Once this is known, the number of miles a tire can be
driven can be determined by multiplying the number of usable inches of
tread remaining by 142,222 miles per inch of tread. This can be represen-
ted symbolically by
D(t) = 142222 (¢ — 2/32),

where £ is the current tread depth in inches, (¢ — 2/32) is the "usable”
tread depth, and D(t) is the distance, in miles that the tire can be driven. It
should be noted that this model assu:nes a constant rate of change for
remaining driving distance as a function of tread depth, thus givingrise to
the linear model described by the function rule above.

Solution Within the Model

Given the preceding model, the driver who measures % inch of tread
on a tire can expect to be able to drive 142222 (1/8 - 2/32), or slightly under
9000 miles on that tire. Similarly, if one is interested in determining
whether a tire has 13,000 miles of driving distance remaining on it, one
needs to solve the equation

L) = 13000 or 142224 ¢t — 2/32) = 13000.
This model predicts that one needs a minimum tread depth of ap-
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proximately 5/32 inch to get an additional 13,000 miles of driving distance
out of a tire. Note that students need not possess the skills to be able to
solve the preceding equation in order to develop and discuss the math-
ematical model. A calculator could be used with a guess-and-test strategy
oracomputer could be used to solve directly for f or to generate a table of
values or graph from which an acceptable solution could be determined.

Interpretation of Results From the Model

Once the preceding mathematical solution has been generated, it must
be interpreted in light of the problem formulated from the real-world
situation. At this point one must determine whether the solution is
reasonable, the extent to which assumptions that have been made might
affect the accuracy of the solution obtained, and whether further re-
finement of the model is warranted. Discussion likely would center on a
tire’s uniformity of wear over time, the need to take mutiple measure-
ments of tread depth around the tire, and other factors that might be
takeninto account in interpreting the solution generated from the model.

The Role of Applications in School Mathematics

If one examines the role that applications play in secondary (and
elementary) mathematics curricula, one often finds that applications are
"afterthoughts,” serving primarily to provide practice on recently-taught
skills and concepts. Typical approaches to applications require skills to be
developed prior to consideration of applications, and, often, little em-
phasis is placed on any of the aspects of modeling other than working
with the symbolic representation to find a solution within the model.
Because most students do not encounter the entire mathematical mod-
eling process, they cannot take advantage of the rich set of processes
associated with applying mathematics: making reasonable assumptions,
formulating problems from ill-defined situations, translating quan-
.tative, spatial or logical information into a mathematical representation,
verifying the validity of a model, and interpreting a solution in light of
real-world information. Such processcs deserve emphasis that often is
given exclusively to the products (methods of solution and solutions)
associated with the teaching of applications.

A focus on mathematical modeling allows teachers to use applications
(realistic situations) to introduce concepts rather than to provide practice
on skills that have been taught. The existence of technology allows
teachers and students to focus on building and testing mathematical
models, not just on developing solutions within a given model. Using a
computer and/or calculator to aid the process, students can easily ouild,
test, discuss, and then modify a mathematical model for a situation.

The use of mathematical modeling in the school mathematics cur-
riculum can provide interesting, realistic situations (see Swetz, 1987) that
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can motivate students and develop their ability to become users of
mathematics outside of the classroom. Appropriate use of applications
should include a focus on:

L. recognizing mathematics in a situation and posing a problem,

2. expressing relationships in mathematical form,

3. generating a mathematical solution, and

4. interpreting the solution and reconsidering the model.
When students encounter a situation that involves mathematical re-
lationships, whether they be numerical, spatial, or logica! ones, students
should be able to determine how mathematics applies to that situation,
posea problem in mathematical terms, create some useful mathematical
representation(s) of the situation, generate a solution, and interpret the
appropriateness of that result for the situation at hand. If students can
demonstrate such abilities, then their mathematics instruction will have
been far more successful than instruction that focuses primarily on
practicing the setting up and solving of equations that arise from fairly
well-defined, and not necessarily realistic, application exercises.

FOOTNOTE
"’Computer-Intensive Algebra” is a project funded by the National Science Foundation
(MDR-8751499). This research was supported in part by the National Science Foundation.
Any opinions, findings, conclusions or recommendations expressed herein are those of the
authorand do not necessarily reflect the views of NSF. Donna Bettcher and Mike McRae of
Northwestern Hi;r’h School, Adelphi, MD, were responsible for developing and cdanfymng
this mathematical model.
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MATHEMATICAL MODELING

Frank Swetz
The Pennsylvania State University at Harrishurg

Introduction
What is mathematical modeling?

Intuitively, most people understand what a “model” is in the physical
sense. Itisa replication, usually scaled down, of an object. Children may
make model boats or airplanes. The model shares many of the properties
of the original object: it may have the same features, be the same color
and may even function similarly to the object it represents. For example, a
midel sailboat can float and is propelled by the wind. The model is
convenient to work or play with precisely because it does not share all of
the properties of the parent object. Properties such as size and weight can
prevent us from working with a real object, whereas its model can be
easily handled. A model can be readily manipulated and studied, and in
the process, information on the parent object can be obtained. The
acronautical features of a supersonic passenger plane often are deter-
mined by the use of models ir a windtunnel, since the alternative strategy
of building a full-scale plane and testing it in a windtunnel would be
prohibitive in cost. Physical models supply a valuable tool in many
technological and industrial research fields.

Theoretical models also can be constructed. A theoretical model of an
object or phenomenon is a set of rules or laws that accurately represents
that object or phenomenon in the mind of an observer. When those rules
or laws are mathematical in nature, a mathematical model has been
developed. Thus, a mathematical model is a mathematical structure which
approximates the features of a phenomenon of concern. The process of devising a
mathematical model is called mathematical modeling. Some basic mathematical
structures that frequently are used in modeling situations are. graphs,
equations or systems of equations or inequalities, digraphs, index num-
bers, numerical tables and algorithms. For a civil engineer, the amount of
deflection (bending) of a beam underload is important. One could always
set up a beam, subject it to a load and measure its deflection, however,
this process would be time consuming and expensive. It would be more
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100 Mathematical Modeling

convenient if a theoretical model for a beam under load existed. Through
experimentation, observation and calculation, such a model was found:

Deflection = P12
48EI
where L = the length of the beam under concern
P = the load
E = tne modulus of elasticity, which depends on the naterial
from which the beam is made.
I = the moment of inertia, which depends on the cross-sectional
area of the beam.
In this instance, the model for deflection is a single equation. Most
scientific formulas are really mathematical models of the phenomena they
describe.

What is the difference between problem solving and mathematical modeling?
Mathematical modeling is a type of problem solving. While math-

ematical modeling shares characteristics with many problem-solving
situations, it is distinctly different. Frequently, in a mathemaZical mod-
eling situation, a phenomenon is to be modeled that is seemingly un-
mathematical in context. It may be an event in the realm of politics, such
as the prediction of election results in a particular county, or economics,
concerning the long-term behavior of oil prices, or even ecology, when
future growth patterns of a forest are to be predicted. These events must
be interpreted as problems, their important factors discerned, relation-
ships determined and then interpreted mathematica.ly. The math-
ematical interpretations of relationships allows for an analysis of the
phenomenon, and conclusions (solutions) can be found. Thus, math-
ematical modeling is a systematic process drawing on many skills and
employing the higher cognitive activities of interpretation, analysis and
synthesis. The modeling process is comprised of four main stages:

1. Observing a phenomenon, delineating the “problem situation” in-
herent in the phenomenon and discerning the important factors,
(variables/parameters), affecting the problem;

2. Conjecturing about the relationships between fa.tors and represent-

ing them mathematically, thus obtaining a mod{ for tive phenomenon,

Applying appropriate mathematical analysis to the 1aodel; and

4. Obtaining results, reinterpreting them in the context of the phenom-
enon under study and drawing conclusions.

These stages can be schematically represented in the form of a closed
cycle:
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observation
interpretation .
Real World - Mathematical
Phenomenon . Model
formulation
application analysis
Conclusions interpretation Mathematical
Predictions - Conclusions

A fifth stage also could be added to this process, namely, the testing
and refinement of the model. Are the conclusions usable? Do they “make
sense?”” If not, a reexamination of the models, factors and structure is
called for, and a possible reforraulativon of the model may result.

Sample Modeling Exercises

The following modeling exercises are examples of ones that were
developed as part of a National Science Foundation workshop for teach-
ers directed by the author during 1987 and 1988. Information about the
availability of the complete set of modeling exercises, entitled Math-
ematical Modeling in the School Curriculum. A Resource Guide of Classroom
Exercises, can be obtained by writing to the author at the address given at
the end of this article.!

A Trash Collector’s Dream

This modeling exercise is apprcpriate for students in a Generai Mathe-
matics course. The mathematics topics involved are basic operations and
an introduction to the use of variables and algebraic expressions. Georgia
Voegler of the Mechanicsburg Area School District developed this
example.
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102 Mathematical Modeling

Description of the Problem

A trash collection contractor eniers 1 new development of 200 homes
with this proposal:  the annual service charge of $300 per household will
be reduced by $1.25 for every enrcllment over 100 homes. How many
homes within the development must the contractor provide services to in
order to maximize his revenue?

The Model

The trash collector’s revenue is the money that is paid by the enrolled
customers. If 100 or less than 1¢9 customers enroll, the collector will get
$300 from each one. In this case, the maximum revenue will be
100 x $300, or $30,000.

If more than 100 customers enroll, there will be more customers but
each will pay less. The bill will go DOWN $1.25 per household each time
the number of customers goes UP.

A table can help to organize this information.

Customers

Extra Total Bill for Each Customer Revenue
0 100 $300 $30,000.00
1 101 $300 — $1.25 = $298.75 $30,173.75
2 102 $300 — $1.25 — $1.25 = $297.50 $30,345.00
3 103 $300 — $1.25 — $1.25 — S$1.25 = $296.25  $30,513.75

Do you see that if there are three extra customers, $1.25 is subtracted
three times? This fact can be used to speed up the calculations. Let n
represent the number of customers over 100. Then $1.25(n) must rep-
resent the amount to be subtracted from $300 for each bill. Remember, we
are looking for the maximum revenue, that means the largest amount of
money.

Continue the table, but this time use some larger numbers.

Customers  Bill for Each Customer Revenue
n_ 100+ n 300 — 1.25(n) (100 + n) (300 — 1.25n)
20 120 $300 — $1.25(20) = $275 $33,000.00
40 140 $300 — $1.25(40) = $250 $35,000.00
60 160 $300 — $1.25(60) = $225 $36,000.00
80 180 $300 — $1.25(80) = $200 $36,000.00
100 200 $300 — $1.25(100) = $175 $35,000.00

From the table it appears that the maximum revenue should occur with
the enrollment of between 160 and 180 customers. Continue the table to
show these values. Complete this table.

1 :
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Customers  Bill for Each Customer Revenue
n_ 100+n 300 — 1.25(n) (300 + n) (300 — 1.25n)
60 160 $300 — $1.25(60) = $225 $36,000.00
65 165 $300 — $1.25(65) =
70 170 $300 — $1.25(70) =
80 180 £300 — $1.25(80) = $200 $36,000.00

(1) What appears to be the number of custoniers that will provide the
maximum revenue?

(2) Check your result by trying one customer more and one customer
less than your answer above.

(3 Does this prove your answer?

(@) Does this type of enrollment plan seem to be reasonable for a
business to try?

(5) Find the maximum amount of revenue if the reduction is $1.50 for
each enrollment over 100.

Students also may be encouraged to graph their results as revenue vs.
number of customers. They should be able to see the growtt: of revenue s
170 customers and a decline thereafter.

An Irrigation Problem

This modeling exercise is appropriate for students in second-year
algebra or precalculus classes. Geometry, analytic geometry and ad-
vanced algebra topics are required, and, although calculus could be used,
itis notrequired. This example was developed by Jefferson Hartzler of the
Department of Mathematics, The Pennsylvania State University at
Harrisburg.

Description of Problem

A linear irrigation system consists of a long water pipe on whexls with
sprinklers mounted on regular intervals 2long the pipe. The system
moves slowly across a rectangu: .. field to give all parts of the field the
same designated amount of watex.

The manufacturer wants you to decide how to spz .e the sprinklers on
the pipe to give the most uniform coverage of water possible. After you have
established the best spacing you should also decide how fast the system
should move across the field to drop one inch of water in one pass.
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I

# Sprinklers

Here are the specifications:

1. Each sprinkler head produces the spray pattern shown below. The
flow rate is 5 gallons per minute for each sprinkler. That is, water falls
uniformly on the area between two concentric circles with radii 1 foot
and 20 feet.

2. The field is 1000 feet wide and 2000 feet long.
3. There should be no more than double overlap of spray patterns to
avoid runoff.

The Model

To have any hope of getting uniform coverage it is necessary for the

o~

O

1
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spray patterns to overlap. What would happen if the outer circles of the
spray patterns were tangent to each other?

o0

If the distance between the sprinklers is called d, you need to find the
“best” value for d so that 20 < d < 40. (d < 20 results in at least triple
overlap of spray patterns! Why?)

Here is a diagram for 20 < d < 40.

(4

Now put the circles on a rectangular coordinate system in a convenient
way. (Itis good enough tolook at only two spray patterns, since the same
results will occur all along the pipe.)

by

|
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Now we can write the equations for the three circles:

C1:x2+y2=202
Cy: (x = d)? + f = 20
C3:x2+y2=12

Recall that your objective is to provide uniform coverage of water. This
must be translated into a mathematical statement. The amount of water
placed on a square inch of land x units away from the y-axis depends on
how long that area is under one or more spray patterns. Since the system
is moving across the tield at a constant rate, the time under spray will
depend on the vertical chord lengths through the square inch of iand. For
some x values there will be one chord and for others there will be two.

Complete uniformity would require that the sum of the vertical chord
lengths through x be the same for all x. You can see that this is not
possible. The most uniform coverage will then be obtained by selecting d
sothat the difference between the maximum and minimum chord sums is
as small as possible.

Call C(x) the “sum of vertical chords” function.

2(VI0 -2 -VIi-2) for0<x=<1
Cw= {2 Vaw -2 for1<x<d — 20

2[VI0 -2 +VI0 = (x = 4]  ford -w<x<d
The graph of C(x) will look like this:

c4

» X

1 d-20
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You should graph C{x) for at least one value of d by plotting points,
using a computer, or using calculus.

From the graph it is clear that the largest value of C(x) occurs at 1 or d/2
and the smallest at d — 20.

The problem now can be solved by completing the table below and
selecting the d value which yields the smallest entry in the last column.

d | C@) C(-g-) Cd - 20) | Cmax = Ciin

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Now you know how far apart the sprinklers should be. How many
sprinklers are needed? Where should the end one be placed? How fast, in
inches per hour, should the device move across the field so that the
average waterfall is one inch? What is the most water any portion of land
will receive? What is the least?

Suggestions for Further Study

Resolve the problem if triple overlap of spray patterns is permitted.
Does this solution give more uniform coverage?

Conclusion
Why incorporate mathematical modeling into the secondary school curriculum?
©  One of our ultimate goals as teachers is to prepare young people to

ERIC i1s
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| function confidently and knowledgeably in “real-world” situations.
| Mathematical modeling is a form of real-world problem solving. The
| techniques discussed above are exactly those employed by math-
’ ematicians to solve the problems they encounter in their workplaces. A
modeling approach to problem solving focuses a variety of mathematical
skills on the task of obtaining a solution and helps a student see math-
ematics in a broad spectrum of applications. The strategies and skills
learned in modeling exercises are readily transferable.to new situations.
Students who have been involved in modeling experiences obtain a
greater appreciation of the power of mathematics. As one student in an
Algebra I class commented after doing a modeling exercise, “Now that's
[ real mathematics!”’

How can mathematical modeling be incorporated into secondary mathematics
teaching?

_ Modeling can be incorporated in a variety of ways. There is no need for
separate courses or sections of a course devoted exclusively to math-
ematical modeling. The separation or isolation of mathematical modeling
from the rest of the mathematics curriculum tends to raise suspicionin the
minds of students — that mathematical modeling is something exotic or
difficult. A modeling approach to problem solving and modeling thecry
should be incorporated gradually and in a low-key manner into the
existing curriculum. The relevant mathematics and many of the problem
situations are already in place, they merely need a slightly different
orientation to become modeling situations.

How can a teacher prepare to undertake modeling exercises with his or her
students?

First, the teacher should learn more about mathematical modeling by
doing some additional reading on the subject. The Mathematics Teacher
often publishes excellent articles on mathematical modeling. Second, the
teacher should examine existing modeling exercises, such as the exam-
ples presented above, to determine their appropriateness for use in a
given class. After working through the mathematics, students’ potential
reactions to the exercises should be assessed. If the anticipated reactions
are positive, some of the prepared exercises should be given to the
students. Finally, as the teacher gains confidence with the ideas and
techniques of mathematical modeling, he or she.can seek out other
appropriate modeling situations, or better yet, devise his or her own.
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FOOTNOTE
' Mathematical Modeling in the School Curriculum was developed under a project funded by
the National Science Foundation (Award No. TEI—8550425). Any opinions, findings,
conclusions, or recommendations expressed herein are those of the author and do not
necessarily reflect the views of NSF.
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KEEP 'EM GUESSING

Fred H. Jorgensen
Middle Bucks AVTS

From the corner of the room comes this comment: “I know what you
are going to say.”

What's that?”, T ask.

The response: ““Give me an approximation.”

Hearing that made me feel good—another student had evidently
caught on. Seldom does a period goby in which I dont plead (often many
times) for students to approximate, estimate, or just plain guess what an
answer to a particular problem might be. In this case the student no
longer needed prodding, he knew what to do.

Estimation is considered high on just about anyone’s list of math-
ematics priorities today. State, local, and federal recommendations in-
variably, often quite vigorously, advocate the teaching of estimation in
school mathematics classes. The National Council of Teachers of Math-
ematics has dedicated its entire 1986 Yearbook to the subject.

My aim here, however, is to propose that estimation is not just another
topic to be covered if and when time permits. Rather, estimation is a way
of teaching regardless of the subject matter, regardless of the grade level
at which mathematics is taught and regardless of the “category” of
students. For one thing, estimation can be thought of as a tool which one
uses to help solve problems of all types and at all degrees of difficulty.
Making good estimates, or educated guesses, forces one to at least know
what the problem is asking for. Often it leads to a method of solution.

For example, a lesson on addition of fractions with unlike denomi-
nators begins with the teacher putting this problem on the board:

3 + 3 =2
4 8

Consider all the discussion and thinking that could take place by simply
asking the class “What do you think the answer should be?" No doubt,
someone will be quick to volunteer 6/12 as an answer, and you might
write this down as a “possibility.” Patience is the rule here while other
students have time to speculate, respond, and possibly argue in favor of
additional "possibilities.” Someone may come up with the correct
answer—possibly even a brilliant observation unpredicted by the
teacher. How wonderful! If not, nothing is lost and the teacher can begin
instruction with an alerted class.

Estimates can also be used to verify an answer found by other means.
That is, if the answer is close to the estimate, it is probably correct.

)
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. Suppose, for example, that a student arrives at an answer of 20 inches
(Ah! The English system still remains) for the hypotenuse of a right
triangle whose legs are 15inchesand 5inches. Which is the better teacher
comment?: "Youranswer is wrong,” or “Look at the picture and tell me if
youranswer is reasonable.” The second comment would probable stimu-
late additional thought by the student, whereas the former might only
serve to discourage.

This useof estimation (to verify an answer) is particularly helpful when
using calculators or computers, since these machines, as useful as they
are, du not generally “know" if an answer is reasonable or not. All too
frequently, students blindly accept the most absurd electronic output
when a simple estimate could have caught the obvious error.

So, by constantly encouraging students to estimate, we are giving them
a tool for both analyzing and checking problems. Moreover, in some
circumstances estimating is all that is required. At other times, when data
is either limited or inexact, estimation is all that is possible. These are
additional reasons for stressing estimation in mathematics classes. When
will you finish your homework? How marniy points will our team score?
How long before we reach our destination? These are examples of ques-
tions which cannot, or maybe need not, be answered with precision or
certainty, but may never-the-less require answering—albeit with an
estimate.

Teachers might consider giving whole assignments thatare focused on
estimating or mental computation. This can be particularly appropriate
when introducing a new topic. Ask your students to “try by any means”
problems on the not-yet-learned material. Suppose your next tepic in
Trigonometry is conditional equations. Why not assign a list of suck
problems without any instruction other than to say “’Find as many values
of the variables in these equations which make the equazions true.” Some
students may not be able to do this on their own, but others may surprise
you with their ingenuity. In any case, as with the earlier problem on
addition of fractions, they are 1ikely to be ready or even anxious for your
upcoming instruction.

Teachers can use student estimates as a teaching aid. If a student’s
estimate is “off target,” it may reveal reasons for his or her misthinking.
Ananswer of 30 for the approximate square root of 93, for example, may
mean that the student is confusing the square root of a whole number
with an even number of digits for one with an odd number of digits.

Finally, estimation is timeless. While many other tools and methods we
use or topics we choose may be here today and gone tomorrow, esti-
mation is here to stay. That is, as long as teachers continue to teach
students to think instead of just producing answers which have little or
no meaning to them, estimation will be an important part of mathematics
instruction.

T
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As we search for New Directions for Mathematics Instruction in the 1990's,
indeed in any decade, let us include a strong does of estimation as an
essential ingredient. Day, after day, after day, let's keep our students
guessing, guessing, guessing. They will enjoy it!

ABOUT THE AUTHOR
Fred Jorgensen is a mathematics teacher at Middle Bucks Area Vocational-Technical
School. His address is P.O. Box 317, Old York Road, Jamison, PA 18929,
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GEOMETRICAL PROBABILITY

Karen Doyle Walton
Allenstown College of St. Francis de Sales

Probability is an area of mathematics that has been given little attention
in the traditional mathematics curricula of most elementary and sec-
ondary sciiools in the United States. Recognizing this deficiency, the
National Council of Teachers of Mathematics (NCTM) has drafted Cur-
riculum and Evaluation Standards for School Mathematics (NCTM, 1987),
which prescribes the inclusion or probability and statistics at each level of
a child’s education.

Standard 10 states that students in grades K-4 should be introduced to
probability in terms of simple experiments through investigation and
actual involvement, generating results and exploring the ideas of chance
and likely outcomes. Students in grades 5-8 are to be involved in mod-
eling and simulation as well as the study of both empirical and math-
ematical probability. In grades 9-12, while continuing to study experi-
mental and theoretical probability, students should apply the concept of
randomness to simulations as well as actual probabilistic experiments
(Burrill, 1588).

Geometrical probability is an approach to the subject which represents
a new direction for mathematics instruction in the traditional K-12 cur-
riculum. The NCTM is not alone in recognizing the importance of geo-
metrical probability. The Consortium for Mathematics and its Appli-
cations (COMAP) received funding from the National Science Foun-
dation which enabled Fred Djang (1988) to author ”Applications of
Geometrical Probability,” a teaching module which introduces prob-
ability by using experimentation, estimation, and calculation to model
real-world problems. Richard Dahlke and Robert Fakler's (1986) ”’Appli-
cations of High School Mathematics in Geometrical Probability” was
published by COMAP in cooperation with the Society for Industrial and
Applied Mathematics, the Mathematical Association of America, the
American Mathematics Association of Two-Year Colleges, and the
NCTM—organizations spanning mathematics education from kindergar-
ten through the postdoctoral level, and attesting to the consensus on the
importance of geometrical probability.

What is Geometrical Probability?

Geometric probability is a means of discovering the likelihood of a
real-world experiment by translating the problem into the random choice
of points in a geometric region. The model can be illustrated by throwing
darts ata one-unit square dartboard on which a circle of radius 1/10 unit
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has been drawn. Assuming that the dart throws will be distributed
randomly on the dartboard, the question s asked “Whatis the probability
ofa dart landing inside the circle?”” The dartboard is called the sample space
and the region inside the circle is called the event or feasible region. The
probability of a dart landing inside the circle is equal to the area of the
circle divided by the area of the square, as illustrated in Figure 1.
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Why Study Geometrical Probability?

Geometrical probability is an intuitive topic replete with interesting
problems appropriate for all levels of mathematics instruction. Each
problemis translated into a mathematical model dealing with continuous
(as opposed to discrete) sample spaces and events. The process is the
foundation of problem solving, ranging from calculating simple areas;
graphing inequalities, and applying theorems, and leading to calculus-
based probability and statistics on the college level (Dahlke and Fakler,
1986).

The following problems illustrate the potential of geometrical prob-
ability to provide fertile opportunities for creative problem solving, in-
tegrating various areas of mathematics and computer learning.

Examples of Geometrical Probability

Problem 1: (Djang, 1988) Lisa rides to work ona subway which runs every
ten minutes. If she arrives at the subway stop at a random time in the
morning, what is the probability that her wait for the subway will be more
than three minutes?

Mathematical Solutivn: Since Lisa arrives at a random time during a ten-
minute period, the ten-unit line segment below can be used as a math-
ematical model to represent the sample space. The segment from 0 to 7
represents the feasible region for waiting more than three minutes. Hence
the probability of waiting more than three minutes is the length of the
feasible region divided by the length of the sample space.

j————  SAMPLESPACE
0 7 10
L 1 1 13 | 3 1 I 1 1 L ]
A B C

F—— FEASIBLEREGION —

MEASURE OF THE FEASIBLE REGION
MEASURE OF THE SAMPLE SPACE

PROBABILITY

LENGTH OF SEGMENT AB
LENGTH OF SEGMENT AC

7
10
Figure 2.
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Problems such as this one lend themselves well to the introduction of the
concepts of chance, randomness, and likely outcomes. A successful
motivational device that is consistent with Standard 10 of the draft of
Curriculum and Evaluation Standards for School Mathematics (NCTM, 1987) is
to have students experience an empirical approach, perhaps followed by
a computer simulation, before the mathematical solution is discussed.

Actual Trials: Students could construct a spinner with 10 units on its face.
After each spin, the outcome is recorded, ignoring spins which land on 10
or7. Thisis permissible since the point on the spinner corresponding to a
number such as 7 or 10 will, theoretically, be infinitely small, making the
probability of landing on that point zero. After recording the data from
100 spins (excluding those landing on 10 or 7) as in Figure 3, the empirical
probability can be calculated. Students can perform additional trials (e.g.,
200and 300) and observe changes in the relative frequencies. The teacher
can introduce such terms as sample space, feasible region, experiment,
trials, events, relative frequencies, complementary events, successful
trials, and randomness in a natural, unforced setting.

Figure 3.
Relative Frequencies
Numberof  Outcomes Waiting More Waiting Less
Trials  0-7 7-10 Than 3 Minutes Than 3 Minutes
100 62 38 62/100 = 0.620 38/100 = 0.380
200 135 65 135/200 = 0.675 65/200 = 0.325
300 212 88 212/300 = 0.717 88/300 = 0.293

Computer Simulations: A computer simulation of the problem provides
additional motivation and reinforcement. A class with minimal computer
programming experience can write a simple BASIC program such as the
one below, or the teacher can provide the program for a class with no
programming experience.
HOME

20 FORI=1TO 10

30 X = RND(1)*10

40 PRINT X

50 NEXTI _

60 END
Note: In some versions of BASIC, RND(1) generates random numbers in
the interval [0,1).

Since each run of the program generates 10 outcomes ranging between 0
and 10, results can be tallied for 100 trials, 200 trials, etc., as illustrated in
Figure 4. Relative frequencies can be calculated.
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Figure 4.
Relative Frequencies
Number of Outcomes Waiting More Waiting Less
Trials 0-7 7-10 Than 3 Minutes Than 3 Minutes
100 65 35 65/100 = 0.650 35/100 = 0.350

200 139 61 139/200 = 0.595 61/200 = 0.305
300 204 96 204/300 = 0.680 96/300 = 0.320

Comparisons of the results of the actual spinner trials, computer
simulation, and mathematical solution can generate thoughtful dis-
coveries and questions.

The following geometrical probability problem also lends itself well to
solution by these three methods.

Problem 2: (Djang, 1988) Ata county fair a game is played by tossing coins
ona large table ruled into congruent squares with sides of 5 centimeters. If
a coin lands entirely within a square, the player wins a prize. (It is
assumed that the markings on the table have no thickness.)

Actual Trials: Using a thin pen, draw a grid with fines 5 centimeters apart
on a large piece of posterboard. Place the grid on the floor and allow
students to throw pennies onto it, tallying the number that fall entirely
within a square. Repeat the trials 100 (or 250, or 500) times, as in Figure 5.

Figure 5
Sample Trials
Successful Throws 30 81 160
Total Throws 100 250 500

Relative Frequen
of Successful Throws  30/100 = 0.3 81/250 = 0.32 160/500 = 0.32

Computer Simulation: Run the program PENNY TOSS listed in Figure 6,
letting T = 100. Record the results and repeat for T = 250 and 500.
Observe that line 80 randomly generates a- and y-coordinates for the
center of the tossed coin. Line 100 determines whether the coin falls
within the square and counts the number of successful trials. Line 120
computes the relative frequency of successful trials.

Sample Runs: When 100 pennies are “tossed” the relative frequency of
success is 0.34; when T = 250, the relative frequency is 0.364; when T =
500, the relative frequency is 0.378.

Mathematical Solution: Using geometrical probability, the experiment can
be considered as randomly choosing a point of a region. Each outcome of
the «periment becomes the position of the coin’s center on or within
whi. .eversquare it faiis. In the diagram below, a single square is isolated
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from the grid since a single square and its interior can be considered the
sample space.

Figure 6.

10 REM PENNY TOSS

20 HOME

30 S$=0

40 PRINT: PRINT “HOW MANY TOSSES DO YOU WANT?”

50 PRINT: PRINT "“T SHOULD BE LESS THAN OR EQUAL TO 1000”

60 INPUTT

70 FORI=1TOT

80 X =7*RND (1):Y = 7*RND (1)

90 IF(X<1)OR (X>6)OR(Y <1)OR (Y > 6) THEN GOTO 80

100 IF(X>2) AND (X <5)AND(Y>2)AND(Y<5) THENS =S + 1

110 NEXT 1

120 PRINT: PRINT ““THE RELATIVE FREQUENCY OF SUCCESS IS
"“S/T

130 PRINT: PRINT “DO YOU WANT TO TOSS PENNIES AGAIN?”

140 INPUT C$

150 IF LEFTS$ (C$,1) = “N” GOTO 170

160 GOTO 20
170 END
Figure 7.
-—— 1
31 5
1. 3 1

A successful outcome occurs if the coin is interior to the square. Since the
diameter of the coin is 2 centimeters, its center must lie at least the radius
length (1 centimeter) from the boundary of the square region. The
feasibility region is the shaded square region of side 5 — (1 + 1) = 3.
Therefore the probability of success, P, equals the area of the feasibility
region divided by the area of the sample space: P = 3¥5* = 9/25 = .36.
Compare results from the three methods.
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Conclusion

Numerous additional problems are presented in “/Applications of High
School Mathematics in Geometrical Probability” (Dahlke & Fakler, 1986)
and ““Applications of Geometrical Probability” (Djang, 1988), which
includes examples, black-line masters for transparencies, and sup-
plemental exercises with solutions. Additional problems for grade seven
through the beginning college level can be found in the Additional
Readings on Geometrical Probability that follow the references. Ap-
proaching problems in more than one way encourages students to create,
apply, reason, and communicate about mathematics. Success at problem
solving, modeling, and simulation empowers students to become articu-
late, confident, and able users of mathematical reasoning.
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NEW DIRECTIONS FOR CALCULUS:
THE POTENTIAL FOR A COMPUTER-BASED
APPROACH

M. Kathleen Heid
The Pennsylvania State University

The problem is that everybody talks about it and everybody has sugges-
tions on what to do about it. The topic is not “‘the weather” but the
content of introductory calculus courses. The purpose of this paper is to
outline some of the issues and recommendations surrounding the calcu-
lus debate, to discuss one major force for change, and to illustrate one
specific curriculum that provided a new direction for calculus responsive
to those recommendations for change.

The Present Status of High School Calculus

Many students arrive in introductory college calculus courses with
some high school exposure to the subject. In a survey of Pennsylvania
high school calculus teachers, for example, Wilson (1987) found that
eighty-four percent of the teachers surveyed believed that their students
were taking calculus in high school for the express purpose of preparing
themselves to succeed in the college course. They, and their teachers,
presume that a high school introduction to calculus will give them a “leg
up” on the calculus course they will take in college. As early as 1973,
Mullenex and Neatrour (1973) reported that 56 percent of the Virginia
high school calculus students actually took the course over in college.

In spite of this rather widely accepted practice of taking high school
calculus as preparation for its repetition in college, nevertheless, there is
ample evidence that this practice has not been successful. In research
studies that span almost twenty years, McKillip (1965) and O’Dell (1983)
have found that students who fellow one or two semesters of high school
calculus witha college calculus course do not perform better in the college
course than students with no high school calculus.

At present, the only clearly discernible advantage attributable to high
school calculus occurs for students who take the AP calculus course.
These students regularly outperform their college counterparts on mea-
sures of calculus performance (Fry, 1973; Haag, 1977; Dickey, 1982). This
advantage was recognized in a February 1986 statement from the
National Council of Teachers of Mathematics and the Mathematical
Association of America: "MAA and NCTM recommend that all students
taking calculus in secondary school who are performing satisfactorily in
the course should expect to place out of the comparabie college calculus
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course.” One might think that, with such a consistent message from the
research and with such an unequivocal position taken by the two largest
bodies of mathematics educators in the country, the issue is settled. Au
contraire — the debate has just begun.

New Directions for College Calculus

Since the time of the joint NCTM/MAA statement on high school
calculus, there have been significant efforts to rethink and reformulate
the beginning calculus curriculum. During the past few years, the Tulanie
Conference (Douglas, 1987) suggested that the new introductory calculus
courses be “lean and lively”” and the follow-up conference in October
1987, “Calculus fora New Century” (Steen, 1988), pointed out the need to
give a greater number of students a deep and practical understanding of
calculus. Following the lead of those conferences, colleges and univer-
sities across the nation are now working on radically reformed versions of
college calculus. These versions, as they emerge, are likely to be charac-
terized by a deemphasis on symbolic manipulation skill, an increased
emphasis on applications, and a considerable role for the graphics and
symbolic-algebra capabilities of calculators and computers. While the
carefully designed AP calculus curriculum assured successin learning the
conceptsand skills of the “’old” calculus, its success with the new calculus
courses is yet to be tested.

New Directions for Calculus in High School

Forces for change in the treatment of calculus are coming from the
secondary school level as well. The National Council of Teachers of
Mathematics, in its Curriculum and Evaluation Standards for School Math-
ematics, has proposed that the core curriculum for school mathematics in
grades 9 through 12 include the “conceptual underpinnings of calculus.”
According to the 1987 draft of the Standards (NCTM, 1987) the secondary
mathematics curriculum should include:

“the informal exploration of calculus concepts from both a graphical

and numerical perspective so that all students can:
— determine maximum and minimum points of a graph and inter-
pret the results in problem situations; and
— investigate the concepts of limit and area under a curve by
examining sequences and series.”
Inaddition, the Standards recommend that all college-intending students
havean understanding and an ability to apply the concepts of limits, area
under a curve, rate of change, and slope of a tangent line in addition to the
ability to analyze a variety of function graphs. These goals are probably
consistent with these-in the college calculus reform movement. More-
over, when the Staudards are implemented, students will enter college
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with many of the basic understandings on which the newly-designed
college course could profitably build.

The Computer: A Preeminent Force for Change

One of the most powerful forces for change in the introductory calculus
curriculum has been the growing availability and sophistication of com-
puting technology. Calculators and computers provide students with
finger-tip access to function graphs, limits, derivatives, and definite and
indefinite integrals. Programs like Mathematica, Derive (the successor to
muMath), and Maple now provide the personal computer user with
automatic graphical and symbolic manipulation ability within a single
package. Calculator companies are making similar strides.

The Hewlett-Packard HP-28S, for example, is a recently available
calculator that can perform differentiation either directly or in a step-by-
step mode. For example, to compute the derivative with respect to x of
4x’, the user merely types in 4x* on one command line and x on the next
command line, and then depresses the differentiation key. In a step-by-
step mode the conversation between the userand the calculator looks like
the following:

User Command ' Calculator Display Interpretation
3 X (4*X3) 3 X (4*X"3) d/dx (4x%)
Differentiate 4*3 X (X3) 4 d/dx (x°)
Differentiate 440 (X)*3*X(3-1)) 4 (d/dx(x)) (3x*")
Differentiate 4*(3*X"2) 4 (3x?)

The HP-28S also has a limited capacity to perform symbolic int.gration
and the capability of producing function graphs. Other calculators now
available feature function graphers and incorporate some of the numeri-
cal calculus capabilities (numerical integration, for example).

The existence and widespread availability of this kind of computing
technology now makes it feasible to construct calculus curricula that focus
on major ideas, concepts, and applications, instead of on by-hand sym-
bolic manipulation.

A Computer-based Conceptually Oriented Calculus Curriculum

I constructed and field-tested one such curriculum with an intro-
ductory applied calculus course at a large university (Heid, 1988). In the
context of a fifteen-week course, the experimental classes devoted the
first twelve weeks to the concepts and applications of calculus and used
the computer to take limits, to compute derivatives and integrals, tosolve
equations, and to graph functions. Instruction on by-hand symbolic-
manipulation skills was reserved for the last three weeks of the course. As
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reported in Heid (1988), students in the experimental classes seemed to
understand calculus concepts of derivatives and integrals more broadly
and deeply than students in the traditional course, and performed com-
parably on a final examination of by-hand symbolic-manipulation skills.

The most important feature of the experimental curriculum was the
singular priority given to conceptual understanding. The examples below
give the flavor of test questions and assignments that can be given to
introductory calculus students who have access to graphing and symbolic
manipulation programs and who have not yet learned the manual pro-
cedures for computing derivatives and integrals. They serve to illustrate
some 'wvays that computer-based calculus courses could shift their em-
phaces to conceptual understanding.

Sample test questions:

Instead of asking students to compute a derivative or an integral, the
following questions aimed at assessing student understanding of the
concepts.

1. Thus far in the course you’ve learned no rule for finding the
derivative of a function like

f(x) = 3%
Explain how you could find f'(4) to any desired accuracy.

2. Agraph of the acceleration of a vehicle in miles per hour is shown
below where D(t) is the distance (in miles) that a vehicle travelsin t
hours. At time t = 0, the velocity of the vehicle is 25 miles per
hour. Estimate the velocity, D’(t), of the vehicle (in miles perhour)
attimet = 5.

Ya
3 -+
Y=D"(T)
2 -4
1 -t
d 1 % 3 3 ' L ).
] i LI ] ' 14 ¥ i
1 2 3 4 5 6 7 T(in hours)
Figure 1

3. Suppose transportation specialists have determined that G(v), the
number of miles per gallon that a vehicle gets, is a function of the
vehicle’s speed, v, in miles per hour. Interpret, in terms of mileage
and speed, the fact that G'(55) = 4.

Within the context of a course that allocated most routine symbol
manipulation to the computer, students in the experimental course

- -
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outperformed their counterparts in the traditional course on testand quiz
items like ::10se above. For example, they were more able: to interpret
information about graphs, slopes, and derivatives; to translate between
symbolic representations and their graphs; and to explain a theoretical
basis for a derivative.

Sample assignments:

An important feature of the assigt.ments was the fact that many of the

assignments engaged students in the active consideration of multiple

representations (graphic, numeric, and symbolic) of derivatives and

integrals.

1. Given: f(x) = 6x° — 5x°

Use the computer to sketch graphs of y = f(x), y = f'(x) and
y = f(x). Use muMath to verify the maximum and minimum
points, inflection points, x- and y-intercepts, and the intervals of
upward and downward concavity. Record the graphs as well as
the muMath results, and comment on how the characteristics of y
= f(x) are reflected in the graphs of y = f'(x) and y = f'(x).

[As part of the assignment, students created superimposed
graphs of £, f' and f". A sample is shown in Figure 2.}

F(X) = 6*X"5=5*X3
X~UNIT = .1

F(X)~UNIT =1
)-U Figure 2

2. Create your own original and realistic optimization problem.
Problems modelled on textbook problems (yours or others) are
not fair game! Once your problem is written, use muMath to find

138

[P —




128 New Directions for Calculus

an exact solution. Experiment with how the answer to your

problem would change if you change some of your parameter

values. Sketch graphs comparing these changes.
3. a. Solve the following problem using muMath.

b. Graph both the original function and a possible appropriate
antiderivative function, iliustrating on your graphs the prob-
lem data and the solution.

¢. Create another mathematical question related to your graph
and show the answer to your question both on your graph and
using muMath.

d. Estimate-the-areas-under-one-of-your-graphs. -Explain-how
your estimate corroborates the Fundamental Theorem of
Calculus.

People in manufacturing industries have observed in many in-
stances thatemployees assigned to a new job or task become more
efficient with experience. Some companies have enough experi-
ence with job training that they can project how quickly a new
employee will learn a job. Very often a learning curve can be
constructed which estimates the rate at which a job is performed
asa function of the number of times the job has been performed by
an employee. The learning curve for a particular job is
h(x) = 10/x + 5 forx >0
where h(x) equals the production rate measured in hours per unit
and x is the unit produced. For example, when the 7th unit is
produced x = 7 and h(7) is the rate (in hours per unit) at which the
employee is working. Determine the total number of hours ex-
pected for producing the first 10 units. . . . the first 1000 units. Is
there any limit suggested as to how efficient an employee can
become at this job? .
As the semester progressed, students became adeptat interpreting deriv-
atives and integrals symbolically, graphically, and numerically. With the
computer as a tool, students found that they concentrated study time on
the ideas instead of on the procedures of calculus.

Conclusions

At no time in recent history has the teaching of calculus received so
much attention. Decisions made now about new directions for calculus
courses will influence the pre-calculus secondary mathematics of the
future and impact on the nature of mathematical understanding of
tomerrow’s mathematicians, natural and social scientists and engineers.
Those new directions must result in a calculus with broader appeal and
with greater understanding for a larger pool of students. Computers and
calculators have the potential for helping calculus courses to fulfill that
promise.
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REDIS”OVERING THE FUNDAMENTAL
THEOREM OF CALCULUS

Carl Leinbach
Gettysburg College

Introduction

Very few first-year Calculus students appreciate the fact that the
Fundamental Theorem of Calculus is making a statement about a function
that is created from a given, bounded, piecewise continuous function
defined on some interval, [a, b]. They view the Theorem as a tool for
calculating and give very little thought to the nature of an integral. As a
result, they have little appreciation for the concept of integrating a
function and the applications of the definite integral become mechanical
processes that they barely understand and will quickly forget. If at the
end of the term, we ask our students (without warning them to prepare
for the question) to state the Fundamental Theorem, we will get an
answer that is equivalent to “F(b) — F(a).” More insightful students may
mention the fact that F'(x) = f(x).

The students in our first-year calculus course complete laboratory
projects using the computer algebra system, muMath, enhanced with the
graphics capabilities that are provided in the CALC-87 package marketed
by Professors Ralph Freese and David Stegenga of the University of
Hawaii. In muSimp, the language in which muMath is written, users can
easily enter function definitions into the workspace. To define the func-
tion g(x) = x*, for example, the user would enter:

FUNCTION G(X), X"2, ENDFUN:
To define a function, MEAN (A,B), that computes the mean of two
numbers, A and B, the user could enter:
FUNCTION MEAN(A, B), (A + B)/2, ENDFUN;
It is crucial that the system have the muSimp function definition capa-
bilities and that the system be able to display graphs. :

The laboratory project we will describe is positioned in the first-year
calculus course after the students have had some experience with ap-
proximating sums for the definite integral and prior to the presentation of
the Fundamental Theorem of Calculus. The lab proceeds from the defi-
nition of a new function based on the Midpoint Rule, to the calculation of
several approximations, to the tabulating of e\ eral approximations for
definite integrals of the same function over an interval, to the graphing of
these approximations. The student is then asked to compare the graph of
the approximations to the graph of the original function. In several prior
labs the students have looked at and analyzed the relationship exhibited
by the graph of a function and the graph of its derivative. They are now
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asked to compare the graphs of the approximations and the graph of the
function for any relationships.

The environment in which the students work contains a micro-
computer lab having several MS-DOS computers and a central work-
station with an overhead display for the instructor. The students work in
pairs, and gather data in the form of strings of symbols, graphs, or
numerical results. Each pair of students completes a worksheet to be
handed in at the end of the lab period. They then use their data to make
conjectures that are presented in their written laboratory report. Al-
though the students may discuss the results they obtained in the lab, the
two- to three-page written lab report is an individual effort. The lab report
contains three main sections: a discussion of the purpose of the lab; a brief
description of the lab procedure; and a discussion on the student’s
observation and conjectures. Obviously, the last section is the most
important section of the report and requires the most thought. It is this
section of the lab reports that the instructor can use as a basis for lectures
ona particular topic. In general, the students are much more interested in
seeing how their conjectures fared than in having a presentation based
solely on material from their text.

The Laboratory Project

Before beginning the laboratory project described here, students will
have done some homework exercises computing the values of definite
integrals using the Zefinition. They have had experience using the func-
tion values at the left-hand endpoints, right-hand endpoints, and mid-
points of the subintervals of the partition. The lab begins by having the
students enter the following muSimp function definition into their
workspace.

FUNCTION MIDPOINT(F, A,B,N), H:(B—A)/N,

H'SIGMA (EVSUB(F,X,A +H/2 +I*H),I,1,N- 1), ENDFUN;
The colon (:) signals the computer to assign to H the value of (B - A)/N.
Therefore, the MIDPOINT function gives the value
N-1

H % F(A + %HH)
i=1

toMIDPOINT (F, A, B, N) where H = _Bﬁé

This is merely a function for evaluating the sum of the areas of N
rectangles having bases of width h and Aeight equal to the function value
at the miipoint. (Rectangles lying below the x-axis have “negative”
height.} Although the same general results can be obtained using either
theright-hand or left-hand endpoints, the midpoint approximating sum
was chosen because it tends to give a more accurate approximation for a
given value of N.

Q
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After typing in this function the students test it using some known
results from class. For example, MIDPOINT (X"2,0,1,10) yields a result of
133/400 0r 0.3325. The students do three or four more familiar examples to
test their homework and gain familiarity with the use of this new
function.

Now that the students are familiar with the use of the MIDPOINT
function, it is time to convince them that this is indeed a function. They
are asked to make a table of the values of MIDPOINT (X"3,0,T,10) for
T = 0,0.1,0.2,0.3,...,1. From this table the students can plot by hand the
values of MIDPOINT (X"3,0, T, 10). But what does the graph look like for a
broader range of values and for some different functions? To answer this
question, the students use the graphing routine supplied by the CALC-87
enhancement to the package. From the very first lab period they have
used this graphics capability so this is not a new use of the system.

The command GRAPH(MIDPOINT(X"3,0,T,10),T); plots the function
in the range from T = —4 to T = 4. This graph obtained by using a
screen dump of the result is shown in Figure 1.

Figure 1

A byproduct of this investigation is that the students can see that it is
‘ possible to define a function by means of an algorithm as opposed to
| using a formula.

We have arrived at the crucial question for this lab period. What is the
\llcrelationship between MIDPOINT (F,0,T,10) and F(T)? The students are




134 Fundamental Theorem of Calculus

instructed to graph both of these funcdons together by issuing the
command: GRAPH(MIDPOINT(F,0,T,10),T,F(T)). The students display
similar pairs of graphs for five different functions and draw the results on
theirlab sheet. Figure 2 shows the graph of MIDPOINT (SIN(X2),0,T,10)
and SIN(T"2} in a range from —2 to 2. Although the accuracy of the
estimate deteriorates as T gets further away from 0, it is clear to those who
canrecognize the relationship between a function and its derivative, that
SIN(T"2) is the derived function for MIDPOINT(SIN(X"2),0,T,10), or at
least a close approximation of the derived function. Other functions
graphed together with MIDPOINT(F,0,T,10) in this lab are: X'3—X+1,
X4—-X"2+2X,EXP(—X"2), and SIN(X).

N

]

I

I

I

I SIN(T"2)
I . .

I

1

.
"

'/ MIDPOINT(SIN(X"2),0,T, 10)
4

eur? I
!
Figure 2

Summary

No one approach or technique is going to work for all students. This lab
does, however, allow the instructor to make some very important points.
The first point is that the computer algebra system provides a way of
implementing the Riemann Sum definition as an algorithm. The second is
that this algorithm defines a function that depends on a given function

© _idaninterval. The last point is the object of the lab. The function defined
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by this algorithm is an approximation of an antiderivative for the original
function. Not all students recognize this relationship. However, the
lecture on the Fundamental Theorem of Calculus that was given on the
day the lab reports were due had much more class participation and
apparent appreciation by the students than was evident in presentations
given prior to the inclusion of a lab in the course. There was also a much
more lively discussion of the theorem and the proof was followed much
more closely than had been the case in previous presentations. This was
especially the case among those students who did not notice the correct
relationship between the functions.
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CHANGES IN SECONDARY MATHEMATICS
TEACHER EDUCATION FCR THE 90°S

Cecil R. Trueblood
The Pennsylvania State University

Major changes are underway in the preparation of mathematics teach-
ers. The changes are driven by reams of critical reports, ominous sound-
ing data and the general public’s confusion about what these data mean.
The major changes are included in reports from The Holmes Group
(1986), The National Commission for Excellence in Teacher Education
(1985) and the Mathematical Association of America (1983 & 1988). What
effect changes recommended by these reports might have on mathemat-
ics teacher education during the 1990’s is not well documented. In fact,
what specific effects some of these changes might have has not been
delineated much beyond their cosmetic and political value. On the other
hand, changes recommended by the national reports are based upon an
on-going stream of research showing what in fact will help improve the
quality of teacher preparation programs and performance of mathematics
teachers in the classroom. Because of the field and clinical experience
focus of these changes, mathematics teachers in schools, in collaboration
with colleges and universities will be asked to play a significant role in
their implementation. If the recommendations are implemented, the
participation of high school mathematics teachers will extend from re-
cruiting prospective teachers to field experience supervision.

Recruiting and Retaining Quality Mathematics Teachers

Research data (Feistriter, 1986) indicate that the current rate of supply
of certified mathematics teachers will not be sufficient to meet the de-
mand over the next ten years. Additionally, Schlechty and Vance (1983)
report that 40-50 per cent of those entering teaching leave within the first
five years. This teacher shortage and high tumover rate is occurring at a
time when school boards have increased the number of mathematics
credits required for high school graduation. Further, current demo-
graphics (Commission on Minority Participation, 1988) indicated that
during the 1990’s one-third of our school population will be minorities.
Therefore, the critical issue now facing mathematics education is how to
recruit and retain quality mathematics teachers in general, and minority
mathematics teachers in particular.

To deal effectively and immediately with this issue requires that col-
leges, universities and schools work together to develop creative solu-
tions that focus upon what Mary Futrell, the president of NEA, calls the

O “pipeline” factors. Because of the size of the teacher shortage these
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solutions must become a pump rather than a biased filter in the pipeline
that places quality prospective teachers into America’s teacher education
programs.

Such solutions include increasing the academic support services and
the collaboration among guidance counselors, college and high school
mathematics teachers, and parents at the point where students select
mathematics courses and plan their high school program. To become a
mathematics teacher, a student must schedule and successfully complete
a quality academic program in high school.

We know that many prospective teachers become interested in teach-
ing mathematics because they are attracted to and come to respect one of
their junior or senior high school mathematics teachers. Reinstating and
supporting future mathematics teacher organizations in high schools will
fadlitate this connection. Effective leaders of such organizations should
use current knowledge about what influences a person’s decision to teach
(Berry, 1984; Stratford and Berd, 1985). In addition to identifying with a
teacher role model, research has identified two other factors that attract
and enccurage teachers to remain in the profession. These include the
prospective teachers’ knowledge about the lifestyle and benefits the
profession has to offer and the quality of the work environment experi-
enced during the first five years of classroom teaching. It is the com-
bination of these two factors, rather than just salary, that attracts and
convinces teachers tostay in the profession. In fact, research indicates the
content of these two factors become the dominant influence on teachers
as they decide to leave or remain in the profession.

Finally, new strategies that will immediately attract and retain minori-
ties in mathematics education should be developed. Such a strategy
consists of initiatives like developing partnership programs between
school districts having high concentrations of minority populations and
colleges or universities having mathematics teacher education programs
geared to helping students complete their program requirements. An
example of this strategy in action is the recently announced partnership
between Penn State and the Reading (PA) School District (Colling, 1988;
Abrams, 1988). The purposes are te attract qualified minorities to become
involved in schools and to interest them in enrolling in Penn State’s
mathematics teacher education program. Interested students will be
guaranteed admission to Penn State’s teacher education program and will
be assisted in obtaining financial help and the academic support needed
tocomplete the mathematics teacher education program'’s requirements.

Improving the Quality of Mathematics Teacher Preparation Programs

All of the national reports maintain that the quality and rigor of teacher
education programs must be improved. They also point to the need to
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increase the level of funding needed for colleges of education to carry out
the recommended reforms. The reports’ recommendations have become
the springboard for the substantive program changes now being con-
sidered by most mathematics teacher education programs across the
country. The recommendations can be placed into the three traditional
teacher education program components: namely, general education,
content specialty and professional education requirements. The recom-
mendations that follow are aimed at restructuring programs to provide
prospective mathematics teachers with a balance of high quality course-
work in each of these components at the undergraduate level. They do
not support the simplistic view that increasing the number of credits
allocated to general education and the prospective teacher’s content
specialty at the expense of professional preparation will produce more
effective classroom instruction. As most mathematics teachers know, the
educational problems we now face are much more complex than this
simplistic solution implies. In fact, if more credits in general education
and mathematics is the answer to better ciassroom instruction, the critics
must answer the question — Given the increase in general education and
mathematics credits in mathematics teacher education programs since
the 1930's, why have the mathematics achievement problems identified
by the recent national reports arisen? The answer is that the current
problems are more complex and are driven by many more pervasive
societal forces than a one-dimensional type of solution suggests. The
discussion that follows highlights the nature of this complexity and the
changes that must be made by all those in colleges and universities
responsible for preparing teachers. Psychological traps like scapegoating
and fingerpointing should be avoided because they only serve to prevent
the type of comprehensive changes required to redesign mathematics
teacher education programs.

General Education

Recent transcript studies, such as the one conducted by the Southern
Regional Education Board (1985), and the Association of American Col-
leges (Zemsky, 1987) show that there is a need to improve the distribution
of general education courses between'lower or introductory courses and
in-depth or upper level courses. If implemented this recommendation
means that the smorgasbord or free choice approach that has led to
electing only lower-level survey courses would be replaced by specifying
breadth and depth requirements for each of the traditional areas of study
known as general education. For mathematics teachers, special attention
needs to be given to increasing coursework in the area of science, tech-
nology and society and its impact on adults and children in an electronic-
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ground in mathematics, some of the quantification credits normally
allocated to this general education education category could be devoted to
building depth and breadth study in this area.

A panel established by the National Institute of Education and chaired
by Kenneth P, Mortimer (1984) points out that reallocating credits alone
does not address the major problems associated with improving the
general education programs in colleges and universities. Rather, as the
report points out, it is the ingredients that make up the quality of learning
that should be given the most attention. The report singles outimproving
students’ analytic, synthesizing and problem-solving capacities as essen-
tial to improving general education offerings. The report also stresses the
need for the departments responsible for general education to base
changes in general education requirements on data regarding students
learning and growth rather than just to reshuffle the number of credits
taken, course prerequisites, admission standards, etc.

Additionally, this comprehensive report maintains that prospective
mathematics teachers need high quality college teacher models who
demonstrate how to teach higher order thinking using microcomputer
technology, group problem solving, collaborative learning and other
teaching techniques and concepts which research shows maximize stu-
dent involvement in learning. Such techniques and concepts involve
using strategies to enhance students’ achievement motivation, to in-
crease engaged learning time, and to provide performance assessments
and feedback on a regular basis. In short, the report maintains that all
college teachers should enrich their instructional strategies beyond typi-
cal lecture to include more active modes of learning such as computer
simulations, in-class debates, small group seminars and the like to en-
courage students to become creators as well as receivers of knowledge.
Perhaps it is time to consider how all professors in colleges and univer-
sities can be better prepared as teachers during their graduate programs.
For example, colleges of education could create education minors and
teaching internships that could become part of doctoral programs for
graduate students whose goal includes teaching.

When these general recommendations are also extended to college
mathematics departments, these changes mean that prospective teachers
should learn mathematics in an enriched learning environment where
they are taught by professors prepared to teach and who demonstrate
they care about the subject matter and about improving their students’
critical thinking abilities. The report points out that these changes do not
mean that course content should be watered down in favor of ""exotic”
teaching strategies. On the contrary, it means mathematics courses
should be enriched to include the teaching of both mathematics content
and mental processes required to learn this content at a deeper level of
meaning. Additionally, use of such approaches will probably increase the
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contact between mathematics faculty and prospective mathematics
teachers.

Mathematics Content Specialty

In addition to improved general education requirements, what type of
undergraduate mathematics course content and what kind of instruction
should be included in a prospective teacher’s program?

The national reports indicate mathematics teachers need college level
mathematics courses that provide them with the background and matur-
ity needed to pursue additional coursework in matheinatics and mathe-
matics education at the masters level during their first five years of
teachingand beyond. Additionally, they need to have an in-depth under-
standing of the mathematics content contained in the school curriculum.
Currently the National Council of Teachers of Mathematics (Committee
on Standards for School Mathematics, 1987) and thie Mathematical As:o-
ciation of America (1983) suggest prospec:ive teachers need courses in the
following areas:

* Abstract & linear algebra « Probability & statistics

* Geometry * Introduction to computing

* Calculus * History of Mathematics

* Number theory * Computer science

* Discrete mathematics * An educational computing language

Beyond the mathematics content included in these areas, The Math-
ematical Association of America (1983) indicates it is important that the
emphasisin each course be on understanding, on foundations that model
good teaching techniques, on class discussion that motivates thinking, on
the mental processes that guide the search for meaning, and on sharing
and communicating this understanding and meaning with others. The
Association’s recommendations point out that instruction in these areas
should not be restricted to exposition that pushes students to reproduce
information from the current frontiers of mathematics theory and related
research. This observation is included here because one of the major
problems in some colleges and major research universities is the lack of
middle-range mathematics courses having the focus on teaching for
meaning just described. Such middle-range courses should make exten-
siveuse of examples, applications, models to teach problem solving, and
projects that encourage exploration and inductive thinking.

Such courses existed prior to the 1960’s. During the 1960’s, however,
this type of course was eliminated and replaced by upper-level courses to
accommodate the increased demand for mathematics majors whose goals
were the Masters and Ph.D. in pure mathematics. Most mathematics
departments agree that this preparation is not appropriate for math-
ematics teachers whose need is for a different level of understanding and
a variety of examples that can be used as they teach junior and senior high
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school students. In the past the middle-range courses have attracted
majors from other programs whose needs are relatively the same as
prospective mathematics teachers. Therefore, it would not be necessary
to advertise and restrict such courses to mathemati~s teachers.

Given the current financial problems face¢ by mathematics and math-
ematics education departments, the major problem that must be ad-
dressed by those responsible for funding these departments is how to
increase the monies needed to recruit and retain professors with the dual
interest of teaching such middle-range mathematics courses and of con-
ducting research in mathematics teacher education. Perhaps the time has
come to create new positions in both departments for which professors
with interests in teacher education are hired and given tenure because of
their specialized interests and productivity in research in mathematics
teacher education. This approach suggests that developing collaborative

-doctoral programs in mathematics teacher education could then become a

viable graduate program option.

Generic and Specialized Professional Knowledge and Practice

To date the mathematics education community has tended to focus on
increasing the number of mathematics courses in a secondary teacher's
program. This focus predominates despite the research by groups such as
Pennsylvania’s Association for Supervision and Curriculum Develop-
ment's Professional Preparation Committee (1986) showing that begin-
ning teachers’ problems during the first five years of teaching are pri-
marily pedagogical. One result of this narrow focus on mathematics
content is that insufficient attention is now being given to improving the
rigor and focus of the professional courses in a mathematics teacher's
preparation. A broadening of the focus is supported by Pennsylvania’s
survey of beginning teachers (Professional Preparation Committee, 1986)
that found that problems such as maintaining classroom discipline,
motivating and stimulating student interest in mathematics problem
solving rather than their lack of understanding of mathematics concepts
were the major concerns of beginning teachers.

The professional preparation of teachers was also reviewed by a variety
of national task forces such as the National Research Council (1989), the
National Commission for Excellence in Teacher Education (1985) and the
Mathematical Association of America (1983 & 1988). They concluded that
the product of any teacher education program must be a graduate well
grounded in both a subject specialty (e.g., mathematics) and the pro-
fessional knowledge and skills needed to be an effective teacher. For
mathematics teachers, this means preparing teachers so they have an
in-depth understanding of the mathematics in the school's curriculum
and a broad repertoire of instructional skills needed to facilitate the
learning of mathematics of a variety of students with different ability
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levels and interests. -

In addition to the state and national studies, the effective teaching
research shows that mathematics teachers must learn to be analytical and
reflective practitioners whose major concern is the cognitive and affective
growthof their students. As one of my colleagues pointed out, this means
effective mathematics teachers need to learn how to use action research in
their classroom to evaluate their teaching.

The effective teaching research also suggests that mathematics teacher
education programs must answer the question: What generic and special-
ized professional knowledge should be part of a mathematics teacher’s
background?

Briefly, effective teaching research and the national task forces agree
that it is critical for mathematics teachers to have experience in classrooms
with how a broad range of children, adolescents and adults develop and
learn mathematics. This means prospective teachers need a broad-range
course in the psychology and learning of mathematics where the con-
nections among learning theory, patterns in students’ mathematical
development and the teaching of mathematics are the singular focus.
Mathematics teachers also must learn how to use state-of-the-art tech-
nology and methodology in carefully supervised clinical experiences that
include microteaching, computer simulations and school-based intern-
ships. In these clinical experiences, teachers need to learn the basics
associated with teaching mathematics in a regular classroom as well as
how to diagnose the typical learning difficulties and to conduct remedia-
tion activities. Mathematics teachers must also understand the structure
of the school’s mathematics curriculum and the methodology associated
with specific instructional goals such as teaching concept development,
problem solving and skill building. To monitor and evaluate their teach-
ing effectiveness, teachers should be taught by master teachers to orga-
nize, manage and conduct self-analysis of bothindividualized and group-
based instruction using current video technology. Additionally, because
the professional knowledge base in methodology, learning theory and
curriculum is continually changing, teachers must develop the habits of
reading and integrating the knowledge reported by professional journals
into their teaching repertoire.

The above description suggests mathematics teacher education pro-
grams should include courses in the following areas:

* Psychology of mathematics learning;

* School mathematics curriculum;

* Teaching methods in school mathematics;

* Current issues and research in school mathematics;

* Design of instruction and assessment of student performance,

* Systematic observation and analysis of classroom instruction, and

* Supervised internships with students in schools.
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The rigor and the extensive nature of these requirements mean that
collegesand universities must eliminate the cleavage between mathemat-
ics and mathematics education departments so that undergraduate pro-
grams can be designed to accommodate both the content and pedagogical
needs of future mathematics teachers. Or, teacher education programs
will become graduate programs as recommended by the Holmes Group
Report (1986).

Finally, regardless of which option is chosen it is crucial to the ad-
vancement of the mathematics education profession to recognize that the
professional education of mathematics teachers be viewed as an on-going
life-long process and professional responsibility. The implication of this
point of view is that schools, colleges and universities will collaborate and
develop new extended graduate level mathematics education courses
and experiences in partnership programs aimed at motivating teachers at
alllevels to want to continue their professional development beyond the
Masters degree. The current career and staff development research dem-
onstrates how important staff development and extended graduate
programs are to the future quality of what happens in the classrooms with
students.

Summary

Major changes are underway in the preparation of mathematics teach-
ers. These changes are driven by recent national reports on teacher
education in general and mathematics teacher education in particular. If
the changes underway are implemented, participation of classroom
teachers will extend from recruiting prospective mathematics teachers to
field experience supervision. All of the national reports maintain the
quality and rigor of teacher education programs must be improved.
Suggestions for strengthening three program components, general edu-
cation, content specialty and professional education, are presented and
discussed.
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