Described are the implemented and attained mathematics curriculum of 18 countries that participated in the Second International Mathematics Study. Differences and similarities between countries, are illustrated through analysis of the data, and data are presented to indicate shortcomings in the content and outcomes of education within certain countries. The bulk of the document consists of two appendixes consisting respectively of 180 test items and a data matrix. (Author/PK)
Second International Mathematics Study

The Implemented and Attained Mathematics Curriculum
A Comparison of Eighteen Countries

Center for Education Statistics
Office of Educational Research and Improvement
U.S. Department of Education

Contractor's Report
Second International Mathematics Study

The Implemented and Attained Mathematics Curriculum: A Comparison of Eighteen Countries

W. J. Pelgrum
Th. Eggen
Tj. Plomp

Twente University of Technology
Department of Education
Enschede, Netherlands

Larry E. Suter, Project Officer
Center for Education Statistics

Prepared in part for the Center for Education Statistics under contract OE 300-83-0212. Opinions, conclusions or recommendations contained herein are those of the author, and not necessarily those of the U.S. Department of Education.

July 1986
ABSTRACT

In this paper a description is given of the implemented and attained mathematics curriculum of eighteen countries who participated in the Second International Mathematics Study. The aim of this paper is to illustrate the kind of differences and similarities between countries, which can be found by analyzing the collected data. Within clusters of countries with comparable implemented curricula reference data can be found from which shortcomings can be identified in the content and outcomes of education within certain countries.
INTRODUCTION

Many evaluation studies in different countries are directed at describing the educational situation in certain parts of the school system or at estimating the effect of certain educational measures for the improvement of the educational process and its outcomes. An understanding of the whole of various measures can be gained by performing periodical assessment studies which cover the total school system. One special type of assessment studies, performed periodically, are the international comparative studies of IEA (International Association for the Evaluation of Educational Achievement). These studies are focused on certain school subjects and enable an evaluation of education on the national level in comparison with other educational systems. International empirical studies are important for at least three different reasons:

1. It enables a description of differences and similarities between national educational systems and enables the identification of specific idiosyncrasies within particular countries.

2. Comparison of the results of a country with relevant others may result in the identification of weak areas for which measures to optimize education could be developed.

3. It contributes to the understanding of how education functions in a variety of different settings.

The Second International Mathematics Study (SIMS) was one of the IEA-studies in which 20 countries participated (from 1977 - 1984). In this report we will explore some possibilities for using the international data of the SIMS to identify shortcomings within national educational systems. Attention will be especially focussed on data regarding the implemented and attained mathematics curriculum.

IEA is an international organization with about 40 member countries. Since the early sixties IEA has been involved in multinational research projects. At first, attention was focussed on the study of the outcomes of education in several disciplines. In recent projects a wider range of educational research questions such as the causes of early school leaving on the influence of the classroom environment has been studied. Twelve countries took part in IEA's first project: the first mathematics project. The results of this study are reported internationally by Husen (1967).

In the period 1970-1975 the Six Subject Study was undertaken. In this study reading comprehension, science, civics, English (as a foreign language), French (as a foreign language) and literature was investigated. The results of this study are reported in 9
In order to make comparisons between countries which provide optimal information, one has to be careful in the choice of the research design and of the instruments. E.g. no differences in total-testscores sometimes mask really interesting differences at subtest or item level, so only looking at total test scores may produce anti-information. One may however add to this that even comparisons of student achievement on subtest and/or item level may be trivial if the implemented curriculum (which is the subject matter in which the students really were taught) is not taken into account. In this paper we will present possibilities of country comparisons based upon an analysis of the implemented and attained curriculum simultaneously. Our aim is primarily to develop a method for country comparisons which allows for maximal information as a basis for identifying the areas for which optimization measures could be taken. After a description of the background and the design of the study and the data which were analyzed we will first describe similarities and differences between countries on the attained and implemented curriculum level. Finally comparisons between countries will be made based upon analysis of data on the two levels simultaneously.

BACKGROUND OF THE SECOND MATHEMATICS STUDY

In the sixties important changes in the mathematics education took place all over the world. Changing opinions about the content and the didactics of school mathematics were the starting point of a profound revision of the mathematics curricula. In many countries these developments stabilized in the beginning of the seventies. The second part of this decade was therefore a good period for a state-of-the-art study of mathematics in the schools. The major aim of the project is to give a description of the relationship which exist between (a) the mathematics program (what is the content and context of mathematics teaching?), (b) the affective and cognitive results of the students (what is the output of mathematics teaching?) and (c) the teaching-learning process (in what way is the output achieved?). We can study the mathematics curriculum on three different levels. On the first level we have the intended curriculum, as specified in the official documents of a country. The second level is the curriculum as implemented within the schools and the classrooms. In the actual mathematics lessons the intended curriculum is given its concrete form. Here the time to be spent on the parts of the curriculum, the didactics and the methods are determined. Finally, we have the attained curriculum: the (affective and cognitive) objectives the students have attained. In the study the content of each of these levels is described and the relationships between them are investigated. Each curriculum level is a special object of study in certain parts of the SIMS (see figure 1). In this figure is also indicated on which level data were collected.
In the phase curriculum analysis, attention has been paid to the content (i.e. the topics in school mathematics) and the context (e.g. school systems, examination system) of the intended mathematics curriculum. In this paper we will not deal with these analyses; see Steiner (1980) for the first results. The study of the teaching-learning processes within the classroom is (amongst others) aimed at the description of the implemented curriculum, the methods used and the didactics applied in this methods. In the third part of the study the cognitive and the affective results of the students are assessed in relation to the intended and the implemented curriculum and several other variables (e.g. hours spend on home work and gender).

SUMMARY DESIGN AND INSTRUMENTS

In the next sections only those characteristics of the design of the study are mentioned which are necessary for a good understanding of the results presented later.

The Design of the Study

A total of 20 countries participated in the SIMS. The design of the study was a result of discussions between the participating countries. Each country could take part according to the complete international design or only in parts of the study. In this paper we will restrict ourselves to one of the two internationally proposed populations. The international definition of this population (population A) is: all students in the grade level where the majority has attained the age of 13.00 -13.11 by the middle of the school year. In most countries this population is the second year of secondary education (US-grade level 8).

In each country a representative sample of students from this population was drawn.
Instruments

The following test and questionnaires were used:

1. Cognitive tests
2. Student background questionnaires
3. Teacher questionnaire "Opportunity to Learn"
4. Teacher background questionnaires
5. School questionnaire

For this paper especially the instruments 1. and 3. are of importance. The cognitive tests are important instruments to measure the attained curriculum. They consist of five-choice items from five content areas (Arithmetic, Algebra, Geometry, Statistics, Measurement). Each student answered a part of the items, by taking a test of app. 40 items, which was the same for all students (core test), and one of the four tests (of app. 34 items), each of which was designed for a quarter of the students (rotated forms). The "Opportunity to Learn" questionnaire is one of the instruments to measure the implemented curriculum. In this questionnaire several questions are posed to investigate whether the subject matter, represented by the respective items, was taught to the students or not. In other words: did the students have an opportunity to learn (OTL) the subject matter represented by that item? In the international wording of the question for each item teachers had to indicate in which of the following periods the subject matter concerned was or should be taught:

1. Before this year.
2. This year (before the day of testing).
3. Never or after this year.

For most countries "this year" is the second year of secondary education (the 8th of compulsory education). There are exceptions, because in some countries an age based sample instead of a grade based sample was used.

To eliminate from this rating the hidden estimation of the difficulty of the item for a particular class, the teacher was also asked to estimate (per item) the percentage of students in his/her class who should be able to answer the item correctly without guessing.

THE DATA

The data which are reported in this paper stem from the following 18 countries:

1 Belgium-Flemish 10 Israel
2 Belgium-French 11 Japan
3 Canada-BC 12 Luxembourg
4 Canada-Ont 13 Netherlands
5 England 14 New Zealand
6 Finland 15 Scotland
7 France 16 Sweden
8 Hongkong 17 Thailand
9 Hungary 18 USA
The content of the cognitive tests was not the same for all countries, because some countries took part in the so-called longitudinal component of the study in which the same students were tested on different occasions, while other countries only participated in the cross-sectional component of the study, in which students were tested just once. The item sets for both components were not completely overlapping. The sequence of items in both study components was different. We will restrict our analyses to the 157 items which were common in both parts of the study. These items are listed in appendix I. After the proper data modifications for each item a weighted percentage correct and percentage OTL (which was calculated by counting the answers in the categories "this year" and "before this year") was computed. In appendix II these percentages are listed for each item and country. The weights consisted of the stratum weights which were available on the international datafiles. For three countries (Belgium-French, Hongkong, Scotland) OTL-ratings were not available. Table 1 contains some overall statistics for each country. The first six columns give test results, the latter six OTL-percentages. The first of these sets of columns contains total test results, while the others represent subtests, respectively for the subjects arithmetic (ARIT), algebra (ALGB), geometry (GEOM), statistics (STAT) and measurement (MEAS). In table 1 interesting phenomena can be noted. First of all the table shows that Japanese students have the highest achievement scores on the total test and the five different subtests. For other countries the achievement-level is not so consistent for all subtests. For instance: the mean score of the USA is very low, but this is mainly caused by low scores in Algebra, Geometry and Measurement (which also have relatively low OTL's). The same holds for Luxembourg and Sweden. In France and Israel the subscores on Geometry are very low. It is noteworthy to see that at the same time the OTL for this subdomain is also very low in these countries. In some countries (e.g. Thailand and Hungary) the OTL-scores on certain subtests are very high while the achievement of students is on a level of countries who have a much lower OTL. This observation may lead these countries to a further analysis of their data, searching for possible causes which may lead to measures for improvement. When OTL is a good predictor of achievement level we might expect that the relative position of countries in the OTL-
Table 1: mean percentages correct scores (TEST) and mean percentages Opportunity to Learn (OTL) on subtests and the total test.

TEST

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>TOTAL</th>
<th>ARIT</th>
<th>ALGB</th>
<th>GEOM</th>
<th>STAT</th>
<th>MEAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Belgium-Flemish</td>
<td>52</td>
<td>57</td>
<td>51</td>
<td>42</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>2 Belgium-French</td>
<td>52</td>
<td>58</td>
<td>51</td>
<td>44</td>
<td>53</td>
<td>57</td>
</tr>
<tr>
<td>3 Canada-BC</td>
<td>51</td>
<td>57</td>
<td>48</td>
<td>42</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>4 Canada-Ont</td>
<td>49</td>
<td>54</td>
<td>42</td>
<td>42</td>
<td>56</td>
<td>51</td>
</tr>
<tr>
<td>5 England</td>
<td>47</td>
<td>48</td>
<td>39</td>
<td>44</td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>6 Finland</td>
<td>50</td>
<td>49</td>
<td>46</td>
<td>45</td>
<td>61</td>
<td>54</td>
</tr>
<tr>
<td>7 France</td>
<td>53</td>
<td>58</td>
<td>55</td>
<td>38</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>8 Hongkong</td>
<td>49</td>
<td>55</td>
<td>43</td>
<td>43</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>9 Hungary</td>
<td>57</td>
<td>57</td>
<td>51</td>
<td>54</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>10 Israel</td>
<td>45</td>
<td>51</td>
<td>46</td>
<td>36</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>11 Japan</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>57</td>
<td>71</td>
<td>69</td>
</tr>
<tr>
<td>12 Luxembourg</td>
<td>39</td>
<td>48</td>
<td>34</td>
<td>26</td>
<td>39</td>
<td>52</td>
</tr>
<tr>
<td>13 The Netherlands</td>
<td>58</td>
<td>60</td>
<td>52</td>
<td>53</td>
<td>67</td>
<td>63</td>
</tr>
<tr>
<td>14 New Zealand</td>
<td>46</td>
<td>46</td>
<td>40</td>
<td>45</td>
<td>58</td>
<td>46</td>
</tr>
<tr>
<td>15 Scotland</td>
<td>49</td>
<td>51</td>
<td>43</td>
<td>46</td>
<td>60</td>
<td>49</td>
</tr>
<tr>
<td>16 Sweden</td>
<td>44</td>
<td>43</td>
<td>34</td>
<td>40</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>17 Thailand</td>
<td>43</td>
<td>44</td>
<td>38</td>
<td>40</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>18 USA</td>
<td>45</td>
<td>51</td>
<td>43</td>
<td>38</td>
<td>58</td>
<td>41</td>
</tr>
</tbody>
</table>

OTL

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>TOTAL</th>
<th>ARIT</th>
<th>ALGB</th>
<th>GEOM</th>
<th>STAT</th>
<th>MEAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Belgium-Flemish</td>
<td>62</td>
<td>78</td>
<td>75</td>
<td>31</td>
<td>39</td>
<td>84</td>
</tr>
<tr>
<td>2 Belgium-French</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3 Canada-BC</td>
<td>65</td>
<td>78</td>
<td>79</td>
<td>46</td>
<td>45</td>
<td>72</td>
</tr>
<tr>
<td>4 Canada-Ont</td>
<td>72</td>
<td>88</td>
<td>71</td>
<td>51</td>
<td>61</td>
<td>85</td>
</tr>
<tr>
<td>5 England</td>
<td>71</td>
<td>81</td>
<td>66</td>
<td>56</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td>6 Finland</td>
<td>59</td>
<td>73</td>
<td>67</td>
<td>36</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>7 France</td>
<td>74</td>
<td>89</td>
<td>89</td>
<td>44</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>8 Hongkong</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9 Hungary</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>85</td>
<td>84</td>
<td>95</td>
</tr>
<tr>
<td>10 Israel</td>
<td>57</td>
<td>66</td>
<td>77</td>
<td>38</td>
<td>45</td>
<td>57</td>
</tr>
<tr>
<td>11 Japan</td>
<td>75</td>
<td>83</td>
<td>82</td>
<td>51</td>
<td>74</td>
<td>93</td>
</tr>
<tr>
<td>12 Luxembourg</td>
<td>55</td>
<td>75</td>
<td>48</td>
<td>33</td>
<td>31</td>
<td>78</td>
</tr>
<tr>
<td>13 The Netherlands</td>
<td>68</td>
<td>78</td>
<td>70</td>
<td>64</td>
<td>31</td>
<td>79</td>
</tr>
<tr>
<td>14 New Zealand</td>
<td>67</td>
<td>70</td>
<td>66</td>
<td>63</td>
<td>62</td>
<td>74</td>
</tr>
<tr>
<td>15 Scotland</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16 Sweden</td>
<td>50</td>
<td>63</td>
<td>43</td>
<td>34</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>17 Thailand</td>
<td>73</td>
<td>84</td>
<td>81</td>
<td>56</td>
<td>52</td>
<td>84</td>
</tr>
<tr>
<td>18 USA</td>
<td>68</td>
<td>84</td>
<td>67</td>
<td>44</td>
<td>70</td>
<td>74</td>
</tr>
</tbody>
</table>
ranking is approximately the same as in the ranking by mean percentages correct. Figure 2 shows this relation for the 15 countries on the total test for which both mean achievement scores and OTL's were available.

Figure 2: scattergram of testscores (TEST) and percentages opportunity to learn (OTL) for 15 countries

Figure 2 clearly shows that there is a relation: countries with a high OTL in comparison with countries with a low OTL on the average have students with higher achievement scores. The figure however also shows that countries with approximately comparable OTL’s can have very different achievement scores. This means that besides OTL also other factors are influencing the outcomes of education. We will explore the data further by looking at similarities and differences between countries at a more detailed level.

SIMILARITIES AND DIFFERENCES BETWEEN COUNTRIES

In studying the similarities and differences between countries, we will adopt an approach whereby we will work with data on the item level. Although this approach has the disadvantage that we have to be very cautious not to capitalize on idiosyncrasies of single items, the advantage is that it is focussed on the most concrete level of mathematics content which in this study is possible. This means that we circumvent the disadvantage of working with predefined categorizations which are merely legitimated in terms of the structure of the subjectmatter, but not in terms of empirical observable phenomena. In the following we will try to explore whether an item level approach yields interpretable results. From the patterns of percentages correct and of OTL we can learn what countries have in common and to what degree differences exist. Using the set of 157 items the correlation between countries percentages correct responses on the items were calculated.
The same has been done for the percentages OTL. The first correlation shows the degree to which the items which were relatively easy (or difficult) in one country have the same relative easiness (or difficulty) in other countries. The same holds for OTL-correlations. Table 2 contains all the different inter-correlations which could be obtained in this way: the lower triangle contains the correlations of percentages correct across the items while the upper triangle represents correlations of OTL-percentages.

Table 2: intercorrelations (x100) between countries of percentages correct (under triangle) and percentages OTL (upper triangle)
Table 2 shows that the intercorrelations of the percentages correct generally are high (in 99 of the 105 cases the test correlation is higher than the OTL correlation) and that the OTL-correlations show more variability (shown e.g. by the range), illustrating that the OTL profiles of some countries resemble each other more than the profiles of other countries.

For instance, the implemented curriculum (as measured by the OTL-ratings) in Belgium-F1 corresponds most with that of France and Luxembourg and less with that of New Zealand and Hungary. The implemented curriculum of New Zealand on its turn is most closely associated with that of England and The Netherlands. The USA curriculum looks most alike that of Canada-Ontario and England. A factor analysis reveals some groupings of countries (see the plot in figure 3). The biggest contrast is formed by the groups France, Belgium-F1 and Japan versus Canada-Ont, Canada-BC and the USA.

FACTOR 1

```
*  
*  
*  
*  
FRA  
BFL  
 
*  
*  
*  
*  
JAP  
LUX  
 
*  
*  
FIN  
THA  
ISR  
 
*  
*  
NTH  
SWE  
CBC  
 
*  
*  
CON  
USA  
 
*  
*  
ENG  
 
*  
*  
NWZ  

*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  
*  

FACTOR 2
```

Figure 3: plot of first two factors after principal component analysis and varimax rotation on OTL-percentages.

An inspection of the differences between these two groups at the item level reveals that in the Belgium/Japanese/France group there is a high emphasis on arithmetic in the form of word problems and a low emphasis on the theorem of Pythagoras and square roots, while in the Canadian/USA group there is a high emphasis on arithmetic in the form of calculations and a low emphasis on vector geometry (represented what in SIMS often are called "The French items"). The analysis (and therefore its graphical representation) is meaningful, because it confirms some broadly expected curricular distinctions.
It is however important to remember that correlations and factor analysis are only sensitive for the relative ordering, so what the correlations in table 2 and figure 3 are showing is the degree of correspondence between countries as far as the relative emphasis on teaching the items is concerned. However, countries which look alike very much in this way, may differ a lot when one looks at the absolute differences in OTL-ratings. In order to show this, we calculated for each item and each pair of countries the absolute difference of OTL-percentages and summed these over all items. In table 3 these sums (divided by 100) for each pair of countries are displayed. The table shows that still much of what was visible in the correlation table, is also present in this table of absolute differences, but it gives more information how close or apart countries are.

Table 3: sum of absolute differences of OTL-percentages between countries (divided by 100).

<table>
<thead>
<tr>
<th>Country</th>
<th>CBC</th>
<th>CON</th>
<th>ENG</th>
<th>FIN</th>
<th>FRA</th>
<th>HUN</th>
<th>ISR</th>
<th>JAP</th>
<th>LUX</th>
<th>NTH</th>
<th>NWZ</th>
<th>SWE</th>
<th>THA</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>32</td>
<td>31</td>
<td>33</td>
<td>28</td>
<td>26</td>
<td>46</td>
<td>34</td>
<td>35</td>
<td>28</td>
<td>32</td>
<td>28</td>
<td>30</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>CON</td>
<td>31</td>
<td>20</td>
<td>33</td>
<td>27</td>
<td>26</td>
<td>43</td>
<td>31</td>
<td>34</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>38</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>ENG</td>
<td>33</td>
<td>25</td>
<td>33</td>
<td>28</td>
<td>32</td>
<td>43</td>
<td>33</td>
<td>48</td>
<td>33</td>
<td>31</td>
<td>33</td>
<td>37</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>FIN</td>
<td>28</td>
<td>25</td>
<td>33</td>
<td>28</td>
<td>33</td>
<td>43</td>
<td>31</td>
<td>39</td>
<td>39</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>FRA</td>
<td>26</td>
<td>34</td>
<td>28</td>
<td>33</td>
<td>32</td>
<td>46</td>
<td>31</td>
<td>39</td>
<td>37</td>
<td>29</td>
<td>36</td>
<td>25</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>HUN</td>
<td>46</td>
<td>43</td>
<td>33</td>
<td>33</td>
<td>48</td>
<td>33</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>31</td>
<td>27</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>ISR</td>
<td>34</td>
<td>23</td>
<td>31</td>
<td>31</td>
<td>25</td>
<td>39</td>
<td>51</td>
<td>31</td>
<td>51</td>
<td>23</td>
<td>36</td>
<td>25</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>JAP</td>
<td>35</td>
<td>36</td>
<td>29</td>
<td>28</td>
<td>34</td>
<td>26</td>
<td>23</td>
<td>39</td>
<td>26</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>LUX</td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>39</td>
<td>26</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>NTH</td>
<td>32</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>26</td>
<td>37</td>
<td>37</td>
<td>29</td>
<td>36</td>
<td>29</td>
<td>29</td>
<td>35</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>NWZ</td>
<td>38</td>
<td>29</td>
<td>25</td>
<td>21</td>
<td>25</td>
<td>40</td>
<td>37</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>SWE</td>
<td>40</td>
<td>33</td>
<td>36</td>
<td>37</td>
<td>25</td>
<td>47</td>
<td>61</td>
<td>31</td>
<td>45</td>
<td>27</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>THA</td>
<td>30</td>
<td>23</td>
<td>17</td>
<td>24</td>
<td>31</td>
<td>27</td>
<td>31</td>
<td>34</td>
<td>26</td>
<td>29</td>
<td>29</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>USA</td>
<td>31</td>
<td>18</td>
<td>13</td>
<td>25</td>
<td>31</td>
<td>39</td>
<td>26</td>
<td>33</td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>31</td>
<td>31</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 3 shows for instance that the USA and Canadian-Ont implemented curriculum really resemble each other very much: the sum of absolute differences is 1300 calculated over 157 items, which means an average difference of 4.08 in OTL percentages per item over these two countries. It illustrates however also that other countries which had high intercorrelations of OTL-values and which are in the same group as a result of the principal component analysis may still have a lot of differences. An example is BFL and LUX, for which the sum of absolute differences is 2800, which is more than two times as high as in the preceding example. How consistent and meaningful the differences between countries are, can be discovered by inspection of the item content of the items for which the difference in OTL is relatively great, e.g. greater than 30%. The result of one of the possible 196 comparisons (in this case
USA and Japan) is displayed in table 4, which shows that in the Japanese curriculum, goniometry, coordinates, calculation of surface area and content and formulae are more emphasized than in the USA, while in the USA arithmetic, square roots and the properties of geometric figures are more emphasized. What is

Table 4: item contents and OTL in Japan and the USA for items which differ more than 30% in OTL

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>DIFFERENCE</th>
<th>JAP</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 IF 5X+4=4X-31 THEN X EQUALS</td>
<td>41</td>
<td>97</td>
<td>56</td>
</tr>
<tr>
<td>7 FLAT CARDBOARD CUBE</td>
<td>65</td>
<td>91</td>
<td>26</td>
</tr>
<tr>
<td>11 MIDPOINT OF NUMBERLINE</td>
<td>32</td>
<td>87</td>
<td>55</td>
</tr>
<tr>
<td>13 CIRCUMFERENCE OF CIRCLE</td>
<td>69</td>
<td>92</td>
<td>23</td>
</tr>
<tr>
<td>27 GIVEN X KG OF TEA, SELL 15 KG</td>
<td>52</td>
<td>96</td>
<td>44</td>
</tr>
<tr>
<td>30 DERIVE RELATION FROM TABLE</td>
<td>35</td>
<td>78</td>
<td>43</td>
</tr>
<tr>
<td>42 REFLECTION OF LINE</td>
<td>31</td>
<td>58</td>
<td>27</td>
</tr>
<tr>
<td>54 PARALLEL LINES</td>
<td>59</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td>55 CORNER FROM WOODEN CUBE, VIEW ABOVE</td>
<td>49</td>
<td>68</td>
<td>19</td>
</tr>
<tr>
<td>56 INFER VALUES OF P AND Q IN TABLE</td>
<td>32</td>
<td>95</td>
<td>63</td>
</tr>
<tr>
<td>72 SAVE 3 OR 5 $. HOW MANY MONTHS 10 MORE</td>
<td>32</td>
<td>94</td>
<td>62</td>
</tr>
<tr>
<td>74 WHICH POINT JOIN TO (-3,4) NOT CUT X/Y AXIS</td>
<td>45</td>
<td>82</td>
<td>37</td>
</tr>
<tr>
<td>79 ANGLE OF CIRCLE GRAPH</td>
<td>65</td>
<td>95</td>
<td>30</td>
</tr>
<tr>
<td>81 ANGLE OF BCD</td>
<td>35</td>
<td>69</td>
<td>34</td>
</tr>
<tr>
<td>93 AREA OF FIGURE</td>
<td>37</td>
<td>95</td>
<td>58</td>
</tr>
<tr>
<td>122 DERIVE FORMULA FROM GIVEN DATA</td>
<td>37</td>
<td>96</td>
<td>59</td>
</tr>
<tr>
<td>123 DERIVE FORMULA FROM GIVEN DATA</td>
<td>35</td>
<td>96</td>
<td>61</td>
</tr>
<tr>
<td>127 HOW MANY BLOCKS IN BOX OF GIVEN SIZE</td>
<td>31</td>
<td>97</td>
<td>66</td>
</tr>
<tr>
<td>129 RING TOGETHER BELLS WITH DIFFER. INTERVALS</td>
<td>50</td>
<td>96</td>
<td>46</td>
</tr>
<tr>
<td>130 SURFACE AREA OF RECTANGULAR BOX</td>
<td>35</td>
<td>97</td>
<td>62</td>
</tr>
<tr>
<td>141 AREA OF GIVEN FIGURE</td>
<td>33</td>
<td>98</td>
<td>65</td>
</tr>
<tr>
<td>145 A/15 – B/5 IS EQUAL TO</td>
<td>48</td>
<td>87</td>
<td>39</td>
</tr>
<tr>
<td>152 ESTIMATION OF AREA IN SHADED REGION</td>
<td>34</td>
<td>81</td>
<td>47</td>
</tr>
<tr>
<td>164 SIZE OF ANGLE BCD</td>
<td>38</td>
<td>82</td>
<td>44</td>
</tr>
<tr>
<td>167 RESULT AFTER ROTATION OF FIGURE</td>
<td>31</td>
<td>53</td>
<td>22</td>
</tr>
<tr>
<td>172 DERIVE FORMULA FROM GIVEN DATA</td>
<td>59</td>
<td>96</td>
<td>37</td>
</tr>
<tr>
<td>40 SIMILAR TRIANGLES, HOW LONG IS SU?</td>
<td>-44</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>70 SQUARE ROOT OF 12 X 75</td>
<td>-57</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>73 0.0046 IS EQUAL TO</td>
<td>-56</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td>85 3/5 / 2/7 IS EQUAL TO</td>
<td>-64</td>
<td>36</td>
<td>100</td>
</tr>
<tr>
<td>97 DERIVE N FROM EXPONENTIAL EQUATION</td>
<td>-62</td>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>100 THEOREM OF PYTHAGORAS</td>
<td>-54</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>108 SQUARE ROOT OF 75</td>
<td>-61</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>111 THEOREM OF PYTHAGORAS</td>
<td>-54</td>
<td>2</td>
<td>56</td>
</tr>
<tr>
<td>116 PROBABILITY SELECTING RED BUTTON FROM JAR</td>
<td>-33</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>119 DEFINITION SIMILAR TRIANGLES</td>
<td>-44</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>133 DEFINITION PARALLELOGRAM</td>
<td>-54</td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>143 SINCE 4X9=36, SQUARE ROOT 36 IS EQUAL</td>
<td>-60</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>171 X/2 < 7 IS EQUIVALENT TO</td>
<td>-34</td>
<td>20</td>
<td>54</td>
</tr>
</tbody>
</table>
moreover noteworthy in table 4 is the consistency of ratings for items which have a comparable content, e.g. item 100 and 111 (Pythagoras) or items 122, 123 and 172 (derive formula from given data). The same kind of comparisons can be made for other combinations of countries, which may result in a description of how countries differ in emphasizing certain subject matter in their implemented curriculum. What the data show is the diversity which exists in implemented curricula of different countries. When comparisons between countries are made with respect to achievement data these differences in implemented curricula should be taken into account.

THE IDENTIFICATION OF WEAK AREAS

As one of the goals of the SINT is to contribute to the improvement of education, one may try to find in the data the areas in which student performance might be improved. As there are no absolute standards to make these kind of judgements a relative approach has to be sought. In the preceding sections we showed that comparisons between countries have to take account of the diversity of OTL. In this paragraph we want to explore what countries may learn from the achievement results of other countries by looking simultaneously at achievement and OTL data. As we are in this paper exploring a possible method we choose for an approach for comparing countries using rather conservative criteria. This is done by considering for each country only those items which have a large OTL (more than 8%). Furthermore we will only consider those items for which there is a large difference of p-value of a country with the country of reference (we choose a difference larger than -20%). The number of items which suffice these conditions for each pair of comparisons is shown in table 5. From the table we may see that e.g. there is one item with high OTL in Canada-BC and in Belgium-Fl. on which Canada-BC students perform less (according to this criterion) than the students from Belgium-Fl. and that there are four items on which the Canada-Ont students perform less than the Belgium students, etc.
Table 5 shows that the number of items for several comparisons may differ considerably. It is however important to stress that in some cases this is due to the absence of items which fulfill the OTL>80% condition, so a country with a very heterogeneous curriculum and consequently no items with OTL>80% is hardly represented with items in this analysis and consequently doesn’t have many countries to compare with. Therefore the bottom-row of table 5 shows the number of items which fulfill the condition OTL>80% within each country. The number of these items are relatively low for Israel, Sweden, Luxembourg and Finland (which is consistent with the overall statistics in table 1).

So the less the number of items with OTL>80%, the less the chance that there will be items which fulfill all the conditions for this analysis. This disadvantage might be circumvented by calculating within each country p-values only for those students which had an OTL for that item. However this calculation cannot be done straightforward as a number of other variables have to be controlled simultaneously in order to prevent unfair comparisons.

In table 6 for each country a short description is given of the information which is available through table 5 and the content of the items. We repeat that our analysis is a conservative one and only reveals the areas in which relatively poor achievement is occurring.
Table 6: description of weak areas/items per country

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>WEAK AREAS/ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium-Flemish</td>
<td>the calculation of areas of plane figures and surface areas and volumes of solids.</td>
</tr>
<tr>
<td>Canadian-BC</td>
<td>the calculation of areas and arithmetic based on word problems.</td>
</tr>
<tr>
<td>England</td>
<td>fractions, exponents, multiplication with decimal numbers, reading of scales, arithmetic based on word problems, calculation of areas and volumes, simplification of algebraic expressions.</td>
</tr>
<tr>
<td>Finland</td>
<td>fractions and the subtraction of negative numbers.</td>
</tr>
<tr>
<td>France</td>
<td>calculation and estimation of areas, percentages and fractions.</td>
</tr>
<tr>
<td>Hungary</td>
<td>fractions and the calculation of areas</td>
</tr>
</tbody>
</table>
| Israel | 13: if P=LW, P=12, L=3 then W=?
166: if x=-3 then -3y=?
173: 7 x (3 + 9) is equivalent to |
| Japan | 1: 2 meter + 3 millimeter equals
11: find the midpoint of a line segment
33: given 300 girls and 800 students, what is ratio boys/girls
125: capacity of cubic container of 10x10x10 cm in liters |
| Luxembourg | calculation of areas of figures, volume of solids and calculations of fractions. |
| Netherlands | calculation of fractions and exponents, with the subtraction of negative numbers. |
| New Zealand | fractions, negative numbers, decimal numbers, arithmetic based on word problems and numberlines. |
| Sweden | fractions, subtraction of large numbers and with numberlines. |
| Thailand | a large number of different items. |
| United States | arithmetic based on word problems, the calculation or estimation of areas, the multiplication of negative numbers, fractions and percentages and with numberlines. |
The description above indicates in which areas probably improvement measures could be taken. It is however important to realize that the items which we mentioned are probably only a subset of items which point to areas in which underachievement occurs, because the selection of items is based upon estimates of OTL at the national level. Therefore it would be advisable, before considering such measures to carry out more detailed analyses and look at the performance of certain groups of students within a country (e.g. 10% best, 10% worse or students from certain types of schools) in comparison with other countries. This could give a better understanding of the question where underachievement is located. After that the question should be raised why student performance on a particular subset of items in a certain country is relatively low. These analyses are however beyond the scope of this article.

CONCLUSIONS

In this paper we explored a method of country comparisons which takes account of the fact that the mathematics curriculum differs between countries. Our calculations show that it is important to take into account for any comparison of cognitive measures the opportunity of students to learn (OTL) the subject matter which is tested. The test- and OTL-data from the Second International Mathematics Study show that the implemented mathematics curricula differ within and between countries. Some groups of countries with comparable curricula could be found. By using OTL- and test-data simultaneously, we made a first step towards the identification of potential problem areas in which curriculum-developers and teacher trainers could take a closer look in order to improve the quality and outcomes of education. Of course more work has to be done to find out how powerful the OTL-measures are and especially how much they enhance the process of interpretation of the data. In this respect we consider it especially useful in further analyses to compare certain subgroups (e.g. top 10% vs. bottom 10%, boys vs. girls, etc.) of students between countries after controlling for OTL.

REFERENCES

APPENDIX I
TEST ITEMS
1. 2 metres + 3 millimetres is equal to
 - A 2.0003 metres
 - B 2.003 metres
 - C 2.03 metres
 - D 2.3 metres
 - E 5 metres

2. $\frac{1}{5}$ is equal to
 - A 0.20%
 - B 2%
 - C 5%
 - D 20%
 - E 25%

3. If $5x + 4 = 4x - 31$, then x is equal to
 - A -35
 - B -27
 - C 3
 - D 27
 - E 35
Four 1-litre bowls of ice cream were set out at a party. After the party, 1 bowl was empty, 2 were half full, and 1 was three-quarters full. How many litres of ice cream had been eaten?

A $\frac{3}{4}$
B $\frac{23}{4}$
C $\frac{1}{2}$
D $\frac{3}{4}$
E None of these

5. Which of the following is the closest approximation to the area of the rectangle with measurements given?

A 48 m2
B 54 m2
C 56 m2
D 63 m2
E 72 m2
6. The area of the shaded figure, to the nearest square unit, is

A 23 square units
B 20 square units
C 18 square units
D 15 square units
E 12 square units

7. The diagram shows a cardboard cube which has been cut along some edges and folded out flat. If it is folded to again make the cube, which two corners will touch P?

A corners Q and S
B corners T and Y
C corners W and Y
D corners T and V
E corners U and Y
8. The length of \(AB \) is 1 unit.
Which is the best estimate for the length of \(PQ \)?

A 2 units
B 6 units
C 10 units
D 14 units
E 18 units

9. On the scale the reading indicated by the arrow is between

A 51 and 52
B 57 and 58
C 60 and 62
D 62 and 64
E 64 and 66
10. A solid plastic cube with edges 1 centimetre long weighs 1 gram. How much will a solid cube of the same plastic weigh if each edge is 2 centimetres long?

A 8 grams
B 4 grams
C 3 grams
D 2 grams
E 1 gram

11. On a number line two points A and B are given. The point A is -3 and the point B is +7. What is the point C, if B is the midpoint of the line segment AC?

A -13
B -1
C +2
D +12
E +17

12. A painter is to mix green and yellow paint in the ratio of 4 to 7 to obtain the colour he wants. If he has 28 litres of green paint, how many litres of yellow paint should be added?

A 11
B 16
C 28
D 49
E 196
13. If \(P = LW \) and if \(P = 12 \) and \(L = 3 \), then \(W \) is equal to

A. \(\frac{3}{4} \)

B. 3

C. 4

D. 12

E. 36

14. A model boat is built to scale so that it is \(\frac{1}{10} \) as long as the original boat. If the width of the original boat is 4 metres, the width of the model should be

A. 0.1 metres

B. 0.4 metres

C. 1 metre

D. 4 metres

E. 0.0 metres

15. The value of \(0.2131 \times 0.02958 \) is approximately

A. 0.6

B. 0.06

C. 0.006

D. 0.0006

E. 0.00006
15. \((-2) \times (-3)\) is equal to

A -6
B -5
C -1
D 5
E 6

17. Which of the indicated angles is ACUTE?

18. If \(\frac{4x}{12} = 0\), then \(x\) is equal to

A 0
B 3
C 8
D 12
E 16
The length of the circumference of the circle with centre at 0 is 24 and the length of arc RS is 4. What is the size in degrees of the central angle ROS?

A 24
B 30
C 45
D 60
E 90

In a discus -throwing competition, the winning throw was 61.60 metres. The second place throw was 59.72 metres. How much longer was the winning throw than the second place throw?

A 1.12 metres
B 1.88 metres
C 1.92 metres
D 2.12 metres
E 121.32 metres
21. In the above diagram, triangles ABC and DEF are congruent, with \(\overline{BC} = \overline{EF} \). What is the size of angle EGC?

A. 20°
B. 40°
C. 60°
D. 80°
E. 100°

22. \(\angle 65° \)

\(\angle 75° \)

\(x° \)

\(x \) is equal to

A. 75
B. 70
C. 65
D. 60
E. 40
23. A square is removed from the rectangle as shown. What is the area of the remaining part?

A. 316 m²
B. 300 m²
C. 284 m²
D. 80 m²
E. 16 m²

24. Cloth is sold by the square metre. If 6 square metres of cloth cost $4.80, the cost of 16 square metres will be

A. $12.80
B. $14.40
C. $28.80
D. $52.80
E. $128

25. The air temperature at the foot of a mountain is 31 degrees. On top of the mountain the temperature is -7 degrees. How much warmer is the air at the foot of the mountain?

A. -38 degrees
B. -24 degrees
C. 7 degrees
D. 24 degrees
E. 38 degrees
26. \(0.40 \times 6.38\) is equal to

A. 0.2552
B. 2.452
C. 2.552
D. 24.52
E. 25.52

27. A shopkeeper has \(x\) kg of tea in stock. He sells 15 kg and then receives a new lot weighing \(2y\) kg. What weight of tea in kg does he now have?

A. \(x - 15 - 2y\)
B. \(x + 15 + 2y\)
C. \(x - 15 + 2y\)
D. \(x + 15 - 2y\)
E. None of these
28. In the figure the little squares are all the same size and the area of the whole rectangle is equal to 1. The area of the shaded part is equal to

\[\frac{2}{15} \]

A. \(\frac{2}{15} \)
B. \(\frac{1}{3} \)
C. \(\frac{2}{5} \)
D. \(\frac{3}{8} \)
E. \(\frac{1}{2} \)

29. The distance between two towns is usually measured in

A. millimetres
B. centimetres
C. decimetres
D. metres
E. kilometres

30. The table below gives the relation between the height from which a ball is dropped \((d) \) and the height to which it bounces \((b) \).

<table>
<thead>
<tr>
<th>(d)</th>
<th>50</th>
<th>80</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

Which formula describes this relation?

A. \(b = d^2 \)
B. \(b = 2d \)
C. \(b = \frac{d}{2} \)
D. \(b = d + 25 \)
E. \(b = d - 25 \)
31. \(\frac{2}{5} + \frac{3}{8} \) is equal to

A. \(\frac{5}{13} \)

B. \(\frac{5}{40} \)

C. \(\frac{6}{40} \)

D. \(\frac{16}{15} \)

E. \(\frac{31}{40} \)

32. \(7\frac{3}{20} \) is equal to

A. 7.03

B. 7.15

C. 7.23

D. 7.3

E. 7.6

33. In a school of 800 pupils, 300 are boys. The ratio of the number of boys to the number of girls is

A. 3:8

B. 5:8

C. 3:11

D. 5:3

E. 3:5
34. What is 20 as a percent of 80?

A 4%
B 20%
C 25%
D 40%
E None of these

35. The sentence "a number x decreased by 6 is less than 12" can be written as the inequation

A \(x - 6 > 12 \)
B \(x - 6 \geq 12 \)
C \(x - 6 < 12 \)
D \(6 - x > 12 \)
E \(6 - x < 12 \)

36. 30 is 75% of what number?

A 40
B 90
C 105
D 225
E 2250

37. Which of the points A, B, C, D, E on this number line corresponds to \(\frac{5}{8} \)?

A point A
B point B
C point C
D point D
E point E
38. 20% of 125 is equal to

A 6.25
B 12.50
C 15
D 25
E 50

39. What are the co-ordinates of P?

A (-3, 4)
B (-4, -3)
C (3, 4)
D (4, -3)
E (-4, 3)
Triangles PQR and STU are similar. How long is SU?

A 5
B 10
C 12.5
D 15
E 25
41. Which of the following is equal to a quarter of a million?

A 25250
B 40000
C \(\frac{1}{4000000}\)
D 250000
E 2500000

42. In which diagram below is the second figure the image of the first figure under a reflection in a line?
43. Which is the closest estimate for the answer to $\frac{5}{7} + \frac{6}{8}$?

A about 8
B about 11
C about 12
D about 15
E about 31

44. The Davis family took a car trip from Kauri Hill through Rimu to Chase. They then drove back to Rimu through Earlville, and then returned to their home in Kauri Hill. If the total distance they drove was 115 kilometres, how far is it from Kauri Hill to Rimu?

A 20 kilometres
B 35 kilometres
C 40 kilometres
D 75 kilometres
E 80 kilometres

45. A number x is multiplied by itself and the result is added to four times the original number. This can be expressed as

A $x^2 + 4$
B $x + 4$
C $2x + 4$
D $x(x^2 + 4)$
E $x^2 + 4x$
46. The triangles shown above are congruent. What is \(z \)?

- A 52
- B 55
- C 65
- D 73
- E 75

47. A 15 centimetre piece is cut from a ribbon 1 metre long. What is the length of the remaining piece?

- A 85 cm
- B 115 cm
- C 985 cm
- D 1015 cm
- E 9985 cm
If \(m \) is the direction of projection and \(l \) is the axis of projection, which of the following statements is correct?

A \(p(A) = B \)

B \(p(D) = C \)

C \(p(D) = F \)

D \(p(G) = H \)

E \(p(C) = D \)

The figure above shows a rectangular box. Which of the following is closest to the volume of this box?

A \(16 \ cm^3 \)

B \(18 \ cm^3 \)

C \(28 \ cm^3 \)

D \(36 \ cm^3 \)

E \(48 \ cm^3 \)
50. Lines \(\overline{AB} \) and \(\overline{CD} \) are parallel. Two angles which add up to 180° are

A angles 1 and 3
B angles 4 and 6
C angles 2 and 5
D angles 2 and 7
E angles 1 and 8

51. A team scores an average of 3 points per game over 5 games. How many points altogether were scored in the 5 games?

A 3
B 5
C 3
D 5
E 15

52. The table shows scores for a class on a 10-point test. How many in the class made a score GREATER than 7?

<table>
<thead>
<tr>
<th>Test Score</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>///</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>///</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>///</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>///</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>///</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>/</td>
<td>1</td>
</tr>
</tbody>
</table>

A 2
B 8
C 10
D 12
E 20

41
53. \[\frac{3}{8} - \frac{1}{5} \] is equal to

A \(\frac{1}{20} \)
B \(\frac{7}{40} \)
C \(\frac{7}{20} \)
D \(\frac{19}{40} \)
E \(\frac{2}{3} \)

54. Which of the lines \(d_1, d_2, d_3, d_4, d_5 \) has no point equidistant from \(P \) and \(Q \).

A \(d_1 \)
B \(d_2 \)
C \(d_3 \)
D \(d_4 \)
E \(d_5 \)
The figure above shows a wooden cube with one corner cut off and shaded. Which of the following drawings shows how this cube would look when viewed from directly above it.

A

B

C

D

E
56. The table above shows the values of \(x \) and \(y \), where \(x \) is proportional to \(y \). What are the values of \(P \) and \(Q \)?

A \(P = 14 \) and \(Q = 31 \)
B \(P = 10 \) and \(Q = 14 \)
C \(P = 10 \) and \(Q = 31 \)
D \(P = 14 \) and \(Q = 15 \)
E \(P = 15 \) and \(Q = 14 \)

57. 1st row 1
2nd row 1 - 1
3rd row 1 - 1 + 1
4th row 1 - 1 + 1 - 1
5th row 1 - 1 - 1 - 1 + 1

What is the sum of the 50th row?

A 0
B 1
C 2
D 25
E 30

58. The position on the scale indicated by the arrow is

A 1.004
B 1.04
C 1.08
D 1.4
E 1.8
The graph shows the distance travelled by a tractor during a period of 4 hours. How fast is the tractor moving?

A 1 kilometre per hour
B 2 kilometres per hour
C 4 kilometres per hour
D 8 kilometres per hour
E There is not enough information

What is the area of the parallelogram?

A 30 cm2
B 36 cm2
C 48 cm2
D 60 cm2
E 80 cm2
61. In the division above, the correct answer is

A 0.614
B 6.14
C 61.4
D 614
E 6140

62. The circle graph shows the proportions of various grain crops produced by a country. Which of the following statements is TRUE?

A More oats than rye is produced.
B The largest crop is barley.
C Equal quantities of wheat and barley are produced.
D The smallest crop is oats.
E Wheat and oats together make up less than half the total grain crop.
63. The price of an article was $100. The price was first raised by 10% and was then reduced by 10% of the new price. What is the price of the article now?

A $90
B $99
C $100
D $101
E $110

64. If \(10^2 \times 10^3 = 10^n\) then \(n\) is equal to

A 4
B 5
C 6
D 8
E 9

65. A car takes 15 minutes to travel 10 kilometres. What is the speed of the car?

A 30 kilometres per hour
B 40 kilometres per hour
C 60 kilometres per hour
D 90 kilometres per hour
E 150 kilometres per hour
66. If \(x = -3 \), the value of \(-3x\) is

A. \(-9\)
B. \(-6\)
C. \(-1\)
D. \(1\)
E. \(9\)

67. \(\overline{AB}, \overline{CD}, \) and \(\overline{EF} \) are intersecting straight lines as shown above. The sizes of certain angles are shown. \(x \) is equal to

A. \(54\)
B. \(62\)
C. \(64\)
D. \(126\)
E. \(128\)

68. When \(x = 2 \), \(\frac{7x + 4}{2x - 4} \) is equal to

A. \(11\)
B. \(3\)
C. \(\frac{11}{5}\)
D. \(\frac{9}{5}\)
E. \(\frac{7}{5}\)
69. What is the area of triangle PQR?

A 3 square units
B 6 square units
C 9 square units
D 12 square units
E 18 square units

70. What is the square root of 12×75?

A 6.25
B 30
C 87
D 625
E 900
The figure QRST is a square and PQT an equilateral triangle. If PG = 6 cm then the area of the square is

A 64 cm²
B 48 cm²
C 40 cm²
D 36 cm²
E 24 cm²

Peter and Paul decided to start saving money. Peter can save 3 dollars each month and Paul can save 5 dollars. At this rate, after how many months will Paul have exactly 10 dollars more than Peter?

A 2
B 3
C 4
D 5
E 8
73. 0.00046 is equal to

A 46×10^{-3}
B 4.6×10^{-2}
C 0.46×10^3
D 4.6×10^4
E 46×10^5

74. One of the following points can be joined to the point $(-3,4)$ by a line segment which cuts NEITHER the x NOR the y axis. Which one?

A $(-2,3)$
B $(2,-3)$
C $(2,3)$
D $(-2,-3)$
E $(4,-3)$
Which of the following sequences of numbers is in the order in which they occur from left to right on the number line?

A 0, \(\frac{1}{2}\), -1
B C, -1, \(\frac{1}{2}\)
C -1, -\(\frac{1}{2}\)
D -1, 0, -\(\frac{1}{2}\)
E -\(\frac{1}{2}\) -1, \(\frac{1}{2}\)
76. 72 is equal to

A 7200
B 720
C 72
D 7.2
E 0.72

77. Which of the following is thirty-seven thousandths?

A 37000
B 37
C 0.37
D 0.027
E 0.0037

78. The petals on 100 flowers of different kinds were carefully counted, and the results are shown in this table.

<table>
<thead>
<tr>
<th>No. of petals</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-12</td>
<td>5</td>
</tr>
<tr>
<td>13-15</td>
<td>22</td>
</tr>
<tr>
<td>16-18</td>
<td>48</td>
</tr>
<tr>
<td>19-21</td>
<td>18</td>
</tr>
<tr>
<td>22-24</td>
<td>7</td>
</tr>
</tbody>
</table>

How many of the flowers had fewer than 19 petals?

A 48
B 52
C 73
D 75
E 93

53
There are 7000000 girls under the age of 21 in a country with a total population of 36000000. If a circle graph (pie chart) were drawn showing the distribution of the population, the size of the angle in the sector representing girls under the age of 21 would be

A. 7°
B. 20°
C. 21°
D. 70°
E. 75°

For the table shown, a formula that relates m and n is

A. \(n = m \)
B. \(r = 3m \)
C. \(r = -m^2 + 1 \)
D. \(r = m^2 + 1 \)
E. \(n = 2m + 1 \)
81. The line \(\overline{AB} \) is a line of symmetry for figure \(\triangle ABCDE \). The size of angle \(BCD \) is

A \(30^\circ \)

B \(51^\circ \)

C \(50^\circ \)

D \(70^\circ \)

E \(11^\circ \)

82. Rosemarie walked from Riverview to Bridgeport, which are 3.1 kilometres apart. During her walk she lost her watch, went back 1.7 kilometres to find it, and then continued in the original direction until she reached Bridgeport. How many kilometres had Rosemarie walked altogether when she arrived at Bridgeport?

A 1.4

B 4.8

C 6.5

D 8.2

E None of these
83. Three straight lines intersect as shown in the diagram. What is x equal to?

A 30
B 50
C 60
D 110
E 150

84. Joe had three test scores of 78, 76, and 74, while Mary had scores of 72, 82, and 74. How did Joe's average compare with Mary's?

A Joe's was 1 point higher
B Joe's was 1 point lower
C Both averages were the same
D Joe's was 2 points higher
E Joe's was 2 points lower

85. \(\frac{3}{5} \) is equal to \(\frac{2}{7} \) or \(\frac{21}{35} \) or \(\frac{35}{35} \)

A \(\frac{21}{10} \)
B \(\frac{5}{12} \)
C \(\frac{10}{21} \)
D \(\frac{6}{35} \)
E \(\frac{31}{35} \)
\(\mathbf{u} \) and \(\mathbf{v} \) are two vectors.

Which figure below represents \(\mathbf{u} - \mathbf{v} \)?

- **A**
- **B**
- **C**
- **D**
- **E**
87.

\[x - 3 = 15 \]

\[6x = 15 - 3 \quad (i) \]

\[6x = 12 \quad (ii) \]

\[x = 12 \div 6 \quad (iii) \]

\[x = 2 \quad (iv) \]

The first error in the above reasoning, if one exists, FIRST APPEARS in line

A (i)

B (ii)

C (iii)

D (iv)

E None of these, there is no error.

88.

In the above rectangle the size of angle ROQ is

A 23°

B 45°

C 46°

D 54°

E 67°

58
89. Which of the following operations with whole numbers will ALWAYS give a whole number?

A. Addition
B. Multiplication
C. Division

90. Which of the following operations with whole numbers will ALWAYS give a whole number?

A. I only
B. II only
C. III only
D. I and II only
E. II and III only
91. The value of $2^3 \times 3^2$ is

A 30
B 36
C 64
D 72
E None of these

92. The size of the angle shown is nearest to:

A 155°
B 145°
C 95°
D 35°
E 15°
The rectangle shown above is cut along the dotted lines and the three parts put together, without overlapping, to give the figure shown below.

The area in square centimetres of this figure is

A 8 cm2
B 10 cm2
C 12 cm2
D 14 cm2
E 16 cm2
How much longer does it take for car B to go 50 kilometres than it does for car A to go 50 kilometres?

A. 1 hour 15 minutes
B. 1 hour 30 minutes
C. 2 hours
D. 2 hours 30 minutes
E. 2 hours 35 minutes

Which of these numbers is a prime number?

A. 21
B. 22
C. 23
D. 24
E. 25
96. Quadrilateral ABCD is a...

A rhombus
B parallelogram
C square
D rectangle
E none of these

97. \(N = 10^3 + 10^1 + 10^0 + 10^{-2} \)

N is equal to

A \(N = 10 \)
B \(N = 20 \)
C \(N = 1011 .01 \)
D \(N = 100 \)
E none of these

98. If there are 300 calories in 100 grams of a certain food, how many calories are there in a 30 gram portion of that food?

A 90
B 100
C 900
D 1000
E 9000
99. \[5x - 3 = 2x - 4 \]

A. \[7x + 3 \]
B. \[8x - 2 \]
C. \[6x \]
D. \[7x - 3 \]
E. \[7x + \]

100. [Diagram of a right triangle with sides labeled: 3, \(x \), \(b \)]

Which of these is a correct statement for this triangle?

A. \[x^2 = 3^2 + 4^2 \]
B. \[x^2 + 3^2 = 4^2 \]
C. \[x = 4^2 - 3^2 \]
D. \[x^2 = 4^2 - 3^2 \]
E. \[x = 4 + 3 \]
101. \(x \) is equal to

- A 4 m
- B 6 m
- C 8 m
- D 10 m
- E 12 m

102. The large square has area 1 square unit. The area of the shaded part is

- A 14 square units
- B 1.4 square units
- C 0.14 square units
- D 0.014 square units
- E 0.0014 square units
103. \[\text{The total area of the two triangles is} \]

\[\begin{align*}
A & : 6 \times 8 \text{ cm}^2 \\
B & : \frac{6 \times 8}{2} \text{ cm}^2 \\
C & : \frac{10 \times 6}{2} \text{ cm}^2 \\
D & : \frac{16 \times 12}{2} \text{ cm}^2 \\
E & : \frac{20 \times 12}{2} \text{ cm}^2
\end{align*} \]

104. If dollars are shared equally among four boys, how many dollars does each boy receive?

\[\begin{align*}
A & : -4 \\
B & : \frac{4}{2} \\
C & : 4 \\
D & : \frac{4}{4} \\
E & : 4 \\
\end{align*} \]

105. \((-6) - (-8)\) is equal to

\[\begin{align*}
A & : 14 \\
B & : 2 \\
C & : -2 \\
D & : -10 \\
E & : -14
\end{align*} \]
106. The length of a box was measured and found to be 9 centimetres TO THE NEAREST CENTIMETRE. Which of these could have been the length of the box measured more accurately?

A 10 cm
B 9.9 cm
C 9.62 cm
D 9.6 cm
E 8.6 cm

107. The picture above shows how Pedro used a short tree to find the height of the tall tree. What answer should Pedro get?

A 10 metres
B 12 metres
C 14 metres
D 17 metres
E 20 metres
108. \(\sqrt{75} \) is between

A 4 and 5
B 5 and 6
C 6 and 7
D 7 and 6
E 8 and 9

109. \((22 \times 18) - (47 + 59)\) is equal to

A 290
B 300
C 384
D 408
E 502

110. There are 35 students in a class. \(\frac{1}{5} \) of them come to school by bus, another \(\frac{2}{5} \) come by bicycle. How many come to school by other means?

A 7
B 14
C 21
D 28
E 35
111. What is the value of \(s \)?

A 7
B 13
C 15
D 17
E None of these

112. Which of the following is most likely to be nearest to the weight of a normal man?

A 6.5 kg
B 65 kg
C 185 kg
D 850 kg
E 1850 kg

113. Which of the following is a pair of equivalent fractions?

A \(\frac{5}{8} \) and \(\frac{2}{3} \)
B \(\frac{5}{6} \) and \(\frac{2}{3} \)
C \(\frac{4}{5} \) and \(\frac{14}{15} \)
D \(\frac{7}{5} \) and \(\frac{9}{15} \)
E \(\frac{5}{2} \) and \(\frac{14}{24} \)
114. Which of the following patterns can be folded along the dotted sides to make a cube?

A

B

C

D

E

115. \(\frac{2}{5} - \frac{1}{2} \) is equal to

A \(\frac{2}{3} \)

B \(\frac{9}{10} \)

C \(\frac{1}{10} \)

D \(\frac{1}{7} \)

E \(\frac{1}{3} \)
116. There are five black buttons and one red button in a jar. If you pull out one button at random, what is the probability that you will get the red button.

A 0
B 1/6
C 1/5
D 5/6
E 1

117. You wish to know whether S-OSH is the most popular soft-drink in your school. The way of finding out, from among the following, which will give results you can be most sure of, will be to:

A note the number of empty SLOSH bottles in the rubbish bins.
B ask the manager of the snack bar how many cases of SLOSH he has ordered in the last month.
C ask your friends whether they think that SLOSH is the most popular soft-drink.
D discuss with the driver of the soft-drink delivery truck what he thinks of SLOSH.
E keep a record of soft-drink sales in the school by brand name over a period of 1 week.
118. A group of children was divided into 7 teams with nine in each team. Later, the same group of children was divided into teams with seven in each team. How many teams were there then?

A 7
B 8
C 9
D 16
E 63

119. If two triangles are SIMILAR, which of the following statements is TRUE?

A Their corresponding angles MUST be equal.
B Their corresponding sides MUST be equal.
C Their corresponding sides MUST be parallel.
D They MUST have the same area.
E They MUST have the same shape and size.

120. Three hours after starting, car A is how many kilometres ahead of car B?

A 2
B 10
C 15
D 20
E 25
Suppose you start at point $M(-1, -1)$, move a distance of one unit to $N(-1, -2)$, then turn left and move one unit to the point $P(0, -2)$. If you again turn left and move one unit, you will now be at the point with coordinates

A. $(1, -2)$
B. $(0, -3)$
C. $(0, -1)$
D. $(-1, -2)$
E. None of the above

122. The cost of printing greeting cards consists of a fixed charge of 100 cents and a charge of x cents for each card printed. Which of the following equations can be used to determine the cost of printing n cards?

A. $\text{cost} = (100 + x) \text{ cents}$
B. $\text{cost} = (106 + y) \text{ cents}$
C. $\text{cost} = (6 + 100z) \text{ cents}$
D. $\text{cost} = (106w) \text{ cents}$
E. $\text{cost} = (60\%n) \text{ cents}$
123. “Six times a certain number (call it q) equals the sum of eight and twice the number.” This can be written as

A $6q = 2(8 + q)$
B $6(q + 8) = 2q$
C $6(q + 8) = 8 + 2q$
D $6q = 8 + 2q$
E $q = 1$

124. Candidate A received 70 percent of the votes cast in an election. If 4200 votes were cast in the election, how many votes did Candidate A receive?

A 2800
B 2900
C 2940
D 3000
E 4130

125. What is the capacity of a cubic container 10 cm by 10 cm by 10 cm?

A 1 litre
B 10 litres
C 100 litres
D 1000 litres
E 1000 centimetres
126. If \(x = y = z = 1 \), then \(\frac{x - z}{x + y} \) is equal to

A. 2
B. -1
C. 0
D. \(\frac{1}{2} \)
E. 1

127. Michael has a large number of wooden blocks which are cubical in shape with each edge 1 centimetre long. What is the maximum number of these blocks that can be used to fill a rectangular box with interior dimensions 10 centimetres long, 10 centimetres wide and 7 centimetres high?

A. 27
B. 70
C. 140
D. 280
E. 700

128. If the ratio of 2 to 5 equals the ratio of \(n \) to 100, then \(n \) is equal to

A. 10
B. 20
C. 40
D. 150
E. 250
129. One bell rings every 8 minutes, a second bell rings every 12 minutes. They both ring at exactly 12 o’clock. After how many minutes will they next ring together?

A 8
B 12
C 20
D 24
E 96

130. What is the SURFACE AREA of this solid rectangular box?

![Diagram of a rectangular box with dimensions 6 cm x 4 cm x 9 cm]

A 50 square centimetres
B 100 square centimetres
C 114 square centimetres
D 216 square centimetres
E 228 square centimetres
131. \(3.3 \times 10^5 \) is equal to

A 0.000033
B 3.23000
C 32 300
D 323 000
E 32 300 000

132. The speed of sound is approximately 340 metres per second. How long will it take before the sound of a car horn reaches your ears if the car is 714 metres away?

0.21 seconds
B 2.1 seconds
C 21 seconds
D 210 seconds
E None of these

133. A quadrilateral MUST be a parallelogram if it has

A one pair of adjacent sides equal
B one pair of parallel sides
C a diagonal as axis of symmetry
D two adjacent angles equal
E two pairs of parallel sides
134. Which of the following is FALSE when \(a, b, \) and \(c \) are different real numbers?

A \(a + b + c = a + (b + c) \)
B \(ac = ba \)
C \(a + b = b + a \)
D \(ax \cdot c = a(bc) \)
E \(a - b = b - a \)

135. 74.236 rounded to the nearest HUNDREDTH is

A 74.2
B 74.3
C 74.23
D 74.24
E 74.240

136. A bowling ball travels 4 metres per second. The distance \(d \) metres travelled in \(t \) seconds is given by \(d = 4t \). In the table below \(x \) is equal to

<table>
<thead>
<tr>
<th>(t)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>(x)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

A 6
B 10
C 12
D 14
E None of these
In the graph, rainfall in centimetres is plotted for 13 weeks. The average weekly rainfall during the period is approximately

A 1 centimetre
B 2 centimetres
C 3 centimetres
D 4 centimetres
E 5 centimetres

138. \(162 \times 45\) is equal to

A 1378
B 1458
C 5890
D 6290
E 7290
139. If segment PQ were drawn for each figure shown below, it would divide the figure into two congruent triangles. Which figure?

A

B

C

D

140. The arithmetic mean (average) of: 1.50, 2.40, 3.75 is equal to

A 2.40
B 2.55
C 3.75
D 7.65
E None of these
There is a brass plate with the shape and dimensions shown in the figure above. What is its area in square centimetres?

A 6
B 24
C 32
D 64
E 96

Triangle PQT can be rotated onto triangle SQR. The centre of rotation is

A Point P
B Point Q
C Point R
D Point S
E Point T
143. Since \(4 \times 9 = 36\), \(\sqrt{36}\) is equal to
A \(4 \times 9\)
B \(4 \times 3\)
C \(2 \times 9\)
D \(2 \times 3\)
E \(\sqrt{2} \times \sqrt{3}\)

144. If, in the given figure \(PQ\) and \(RS\) are intersecting straight lines, then \(x + y\) is equal to
A \(15\)
B \(30\)
C \(60\)
D \(180\)
E \(300\)

145. \(\frac{a}{15} - \frac{b}{5}\) is equal to
A \(\frac{a - 3b}{15}\)
B \(\frac{5a - 15b}{15}\)
C \(\frac{a-b}{10}\)
D \(\frac{a-b}{75}\)
E None of these
16. The picture shows some black and some white marbles. Of all these marbles what fraction is white?

A $\frac{1}{2}$
B $\frac{6}{6}$
C $\frac{4}{6}$
D $\frac{6}{10}$
E $\frac{4}{10}$

147. What is the volume of a rectangular box with interior dimensions 10 cm long, 10 cm wide, and 7 cm high?

A 27 cm^3
B 70 cm^3
C 140 cm^3
D 280 cm^3
E 700 cm^3
148. A runner ran 3000 metres in exactly 8 minutes. What was his average speed in metres per second?

A 3.75
B 6.25
C 16.0
D 37.5
E 62.5

149. The straight line joining the points (2,3) and (2,7) cuts the straight line joining the points (1,4) and (5,4) at the point

A (4,2)
B (1,4)
C (1,3)
D (2,3)
E (2,4)
150. The set of integers less than 5 is represented on one of the number lines shown below. Which one?

A

\[\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

B

\[\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

C

\[\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

D

\[\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

E

\[\begin{array}{cccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

151. Which of the following is (are) TRUE?

I \((53 \times 73) \times 17 = 53 \times (73 \times 17)\)

II \(133 \times (78 + 89) = (133 \times 78) + 89\)

III \(133 \times (78 + 89) = (133 \times 78) + (133 \times 89)\)

A I only

B II only

C III only

D I and II only

E I and III only
152. Each of the small squares in the figure is 1 square unit. Which is the best estimate of the area of the shaded region?

A. 10 square units
B. 12 square units
C. 14 square units
D. 16 square units
E. 18 square units

153. Here is a table of data and a graph of the same data. What is x?

<table>
<thead>
<tr>
<th>Number of Cars</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>2</td>
</tr>
<tr>
<td>1 or 3</td>
<td>x</td>
</tr>
<tr>
<td>4 or 5</td>
<td>7</td>
</tr>
<tr>
<td>6 or 7</td>
<td>3</td>
</tr>
</tbody>
</table>

Number of cars

A. 2
B. 3
C. 4
D. 5
E. 6
154. The area of the shaded circle is what part of the area of the large circle?

A $\frac{1}{6}$
B $\frac{1}{5}$
C $\frac{1}{4}$
D $\frac{1}{3}$
E $\frac{1}{2}$

155. Find the sum:

3 weeks 5 days
+ 9 weeks 6 days

A 12 weeks 1 day
B 12 weeks 4 days
C 13 weeks 1 day
D 13 weeks 4 days
E 13 weeks 11 days
The graph shows the time of travel by pupils from home to school. How many pupils must travel for more than 10 minutes?

A 2
B 5
C 7
D 8
E 15

Matchsticks are arranged as follows:

If the pattern is continued, how many matchsticks are used in making the 10th figure?

A 30
B 33
C 36
D 39
E 42
158. Subtract:

\[
\begin{array}{c}
1054 \\
- 865 \\
\hline
189
\end{array}
\]

- A 189
- B 199
- C 211
- D 289
- E 299

159. In a school election with three candidates, Joe received 120 votes, Mary received 50 votes, and George received 30 votes. What percent of the total number of votes did Joe receive?

- A 6/10%
- B 40%
- C 60%
- D 80%
- E 120%

160. On level ground, a boy 5 units tall cast a shadow 3 units long. At the same time a nearby telephone pole 45 units high cast a shadow the length of which, in the same units, is

- A 24
- B 27
- C 30
- D 60
- E 75
161. One of the following figures is congruent with the figure above. Which one?

A

B

C

D

E

162. The symbol \(P \cap Q \) represents the intersection of sets \(P \) and \(Q \) and the symbol \(P \cup Q \) represents the union of sets \(P \) and \(Q \). Which of the following represents the shaded portion of the diagram below?

A \((P \cap Q) \cup R \)

B \(P \cup (Q \cap R) \)

C \(P \cap (Q \cup R) \)

D \((P \cap Q) \cap R \)

E \((P \cup Q) \cap R \)
163. Given vectors \mathbf{v} and \mathbf{w} as shown in the figure above, what is \mathbf{DB}, the vector from D to B?

A. $\mathbf{v} + \mathbf{w}$
B. $\mathbf{v} - \mathbf{w}$
C. $\mathbf{w} - \mathbf{v}$
D. $\mathbf{w} + \mathbf{w}$
E. $\mathbf{v} + 2\mathbf{w}$

164. If AB is a straight line, what is the size in degrees of angle BCD?

A. 20
B. 40
C. 50
D. 80
E. 100
165. Which equation is true for ALL values of \(n \)?

A. \(2 + n = n + 2 \)

B. \(3 + n = 4 + 2 \)

C. \(n + 1 = 1 \)

D. \(2n + 1 = n \)

E. \(n + 3 = 3n \)

166. PUPILS IN FORMS 1, 2, 3, AND 4

Which of these is a TRUE statement about the information shown on the graph?

A. Form 2 is the smallest class

B. Forms 2 and 4 have the same number of pupils

C. Form 3 has twice as many boys as girls

D. Form 4 has more girls than boys

E. Form 1 has as many boys as there are girls in Form 4
A half-turn about O is applied to the figure above. Which of the figures below is the result?

A
B
C
D
E

How many pieces of pipe each 20 metres long would be required to construct a pipeline 1 kilometre in length?

A 5
B 50
C 500
D 5000
E 50000
169. In a quadrilateral, two of the angles are each 110°, and the third angle is 90°. What is the size of the remaining angle?

A 50°

B 90°

C 130°

D 140°

E None of the above.

170. $\frac{1}{2} \times \frac{1}{4}$ is equal to

A $\frac{1}{8}$

B $\frac{1}{6}$

C $\frac{2}{8}$

D $\frac{2}{4}$

E 8

171. $\frac{7}{2} > 7$ is equivalent to

A $x < \frac{7}{2}$

B $x < 5$

C $x < 14$

D $x > 5$

E $x > 14$
172. Lemonade costs x cents for each bottle, but there is a refund of b cents on each empty bottle. How much will Henry have to pay for z bottles if he brings back y empties?

A. $az + by$ cents
B. $az - by$ cents
C. $(z - bw)$ cents
D. $(z - x) - (z + y)$ cents
E. None of these

173. Which of the following equals $7 \times (3 + 9)$?

A. $(7 \times 3) + (7 \times 9)$
B. $(7 \times 9) + (3 \times 9)$
C. $(7 \times 3) - (3 \times 9)$
D. 7×27
E. $21 + 9$
174. PQRS is a rectangle. Its image after a transformation is the rectangle $P'Q'R'S'$, as shown above. The transformation used could have been:

A. a rotation about the origin
B. a reflection in the y-axis
C. a translation parallel to the x-axis
D. a reflection in the x-axis
E. a translation parallel to the y-axis.

175. According to the scale shown, the length of side BC of the rectangle $ABCD$ (to the NEAREST CENTIMETRE) is:

A. 5 centimetres
B. 6 centimetres
C. 7 centimetres
D. 8 centimetres
E. 9 centimetres.
176. \(-5(6 - 4)\) is equal to
A 50
B 26
C 10
D -10
E -26

177. $150 is divided in the ratio of 2 to 3. The smaller of the two amounts is
A $30
B $50
C $60
D $90
E $120

178. \[
\begin{array}{c}
\text{In the number in the box the digit 6 represents} \\
A 6 \times \frac{1}{100} \\
B 6 \times \frac{1}{10} \\
C 6 \times 1 \\
D 6 \times 10 \\
E 6 \times 100
\end{array}
\]
179. Here is a table that shows the number of trees planted along a highway in a week.

<table>
<thead>
<tr>
<th>Days of the Week</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Trees Planted</td>
<td>80</td>
<td>50</td>
<td>60</td>
<td>90</td>
<td>75</td>
</tr>
</tbody>
</table>

On the diagram below the graph for the first two days' plantings has been drawn. If the graph were completed, which point would indicate the top of the bar on Thursday?

![Diagram with labeled points A, B, C, D, E, T, S, R, Q, P]

180. The weight gain from 6 to 10 months was

A 1 kg
B 2 kg
C 4 kg
D 6 kg
E 8 kg
APPENDIX II
DATA MATRIX