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Abstract

This study used knowledge derived from classroom-based research on teaching and lab-

oratory-based research on children's learning to improve teachers' classroom instruction

and students' achievement. 20 first-grade teachers, assigned randomly to an experimental

treatment, participated in a month-long workshop in which they studied findings on children's

development of problem solving skills in addition and subtraction. Other first-grade teachers

(N = 20) were assigned randomly to a control group. Although instructional practices were

not prescribed, experimental teachers taught problem solving significantly more and number

facts significantly less than control teachers. Experimental teachers encouraged students

to use a variety of problem solving strategies, and they listened to processes their students

used significantly more than did control teachers. They believed that instruction should

build upon students' existing knowledge more than did control teachers, and they knew

more about individual students' problem-solving processes. Experimental students' exceeded

control students in number fact knowledge, problem solving, reported understanding, and

reported confidence in problem solving.
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One of the critical problems facing educators and researchers is how to apply the

rapidly expanding body of knowledge on children's learning and problem solving to classroom

instruction. Theory and research on cognition and instruction have now reached a point

where they can be used profitably to develop principles for instruction to guide curriculum

development and the practice of teaching. Implications for instruction do not follow im-

mediately from research on thinking and problem solving, however, and explicit programs

of research are needed to establish how the findings of descriptive research on children's

thinking can be applied to problems of instruction (Romberg & Carpenter, 1986). Thus,

researchers need to investigate how research-based knowledge of children's learning and

cognition can be used and applied by real teachers to instruction of real children in actual

classrooms with all the complexity that is involved.

To undertake such a task requires building on knowledge derived from classroom-based

research on teachers and teaching as well as knowledge elrived from laboratory-based

research on children's learning and cognition. Traditionally, research on children's learning

and research on classroom teaching have been totally separate fields of inquiry governed
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by different assumptions, asking different questions, employing different research paradigms,

requiring different standards of evidence, and conducted by different groups of researchers

(Romberg and Carpenter, 1986). The present investigation was unique because we, as re-

searchers from these two distinct paradigms, came together and used knowledge derived

from both paradigms to attempt to improve the teatting of actual teachers. In the discussion

that follows we describe how the present investigation built on knowledge derived from

each of these research paradigms.

Research on Children's Thinking

Research on children's thinking has tended to focus on performance within a specified

content area, and the analysis of the task domain represents an important component of

the research. This study draws on the extensive research on the development of addition

and subtraction, concepts and skills in young children. Researchers have provided a highly

structured analysis of the development of addition and subtraction concepts and skills as

reflected in children's solutions of different types of word problems. In spite of differences

in details and emphasis, researchers in this area have reported remarkably consistent findings

in a number of studies, and researchers have drawn similar conclusions about how children

solve different problems. This research provides a solid basis for studying how children's

thinking might be applied to instruction. (For reviews of this research see Carpenter,

1985; Carpenter and Moser, 1983; or Riley, Greeno, and Heller, 1983).

Analyses of Addition and Subtraction Problems

Research on addition and subtraction word problems has focused on the processes

that children use to solve different problems. Recent research has been based on an analysis

of verbal problem types that distinguishes between different classes of problems based on

their semantic characteristics. While there are minor differences in how problems are

categorized and some researchers include additional categories, the central distinctions

that are included in almost all categorization schemes are illustrated by the problems in
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Table 1. Although all of the problems in Table 1 can be solved by solving the mathematical

sentences 5 + 8 = ? or 13 - 5 = ?, each provides a distinct interpretation of addition and

subtraction.

Insert Table 1 about here.

The join and separate problems in the first two rows of Table 1 involve two distinct

types of action whereas the combine and compare problems in the third and fourth row

describe static relationships. The combine problems involve part-whole relationships within

a set and the compare problems involve the comparison of two distinct sets. For each

type of action or relation, distinct problems can be generated by varying which quantity

is unknown, as is illustrated by the distinctions between problems within each row in Table

1. As can be seen from these examples, a number of semantically distinct problems can

be generated by varying the structure of the problem, even though most of the same words

appear in each problem.

Children's Knowledge and Strategies

These distinctions between problems are reflected in children's solutions. Even before

they encounter formal instruction, most young children invent informal modeling and counting

strategies for solving addition and subtraction problems that have a clear relationship to

the structure of the problems. At the initial lever of solving addition and subtraction

problems, children are limited to solutions involving direct representations of the problem.

They must use fingers or physical objects to represent each quantity in the problem, and

they can only represent the specific action or relationship described in the problem. For

example, to solve the second problem in Table 1, they construct a set of 5 objects, add

more objects until there is a total of 13 objects, and count the number of objects added.

To solve the fourth problem, they make a set of 13 objects, remove 5, and count the re-

6
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maining objects. The ninth problem might be solved by matching two sets and counting

the unmatched elements. Children at this level cannot solve problems like the sixth problem

in Table 1, because the initial quantity is the unknown and, therefore cannot be represented

directl' with objects.

Children's problem-solving strategies become increasingly abstract as direct modeling

gives way to counting strategies like counting on and counting back. For example, to

solve the second problem in Table 1, a child using a counting-on strategy would recognize

that it is unnecessary to construct the set of 5 objects, and instead would simply count

on from 5 to 13, keeping track of the number of counts. The same child may solve the

fourth problem by counting back from 13. Virtually all children use counting strategies before

they learn number facts at a recall level.

Although children can solve addition and subtraction problems using modeling and

counting strategies without formal instruction, the learning of number facts remains a

goal of instruction (NCTM, 1987). Number facts are learned over an extended period of

time during which some recall of number facts and counting are used concurrently. Children

learn certain number combinations earlier than others. Before all the addition facts are

completely mastered, many children use a small set of memorized facts to derive solutions

for problems involving other number combinations. These solutions usually are based on

doubles or numbers whose sum is 10. For example, to find 6 + 8 = ?, a child might recognize

thi.t 6 + 6 = 12 and 6 + 8 is just 2 more than 12. Derived facts are not used by a handful

of bright students, and it appears that derived facts play an important role for many children

in the learning of number facts.

Applying Cognitive Research to Instruction

Until recently, researchers on children's thinking and problem solving have focused

on children's performance without considering instruction. They have provided a picture

of how children solve problems at different stages in acquiring skill in a particular domain,

7
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but they have not addressed the question of how children learn from instruction. Researchers

are beginning to turn their attention to this important question (Carpenter & Peterson,

in press), but much of the work represents an extension of the carefully controlled clinical

approaches employed in cognitive science (c.f. Anderson, 1983; Collins & Brown, in press).

Although we do not deny the importance of research that investigates how instruction

may operate under optimal conditions, it is not clear that the findings from this research

always can be exported directly to typical classrooms. Some researchers have found that

instructional programs that were effective in tutorial settings or with small groups of children

were much less effective when they attempted to train teachers to apply them in traditional

classroom environments (Fuson & Secada, 1986; Resnick & Omanson, 1987). Thus researchers

need to begin to explore directly how to apply research on children's thinking to instruction

in real classrooms with all the complexity that is involved.

Several approaches for applying cognitive research to classroom instruction are consistent

with the findings of research on children's thinking and problem solving. One possibility

would be to design instruction that directly teaches the knowledge and strategies required

for competent performance. An alternative would be to specify instructional sequences

that lead children through the primary stages in the development of competence (Case,

1983). A third alternative would be to use the detailed knowledge that research provides

about the errors that children make and the knowledge deficiencies that cause them (Brown

& Van Lehn, 1982) to develop specific diagnostic procedures for teachers to assess children's

knowledge and misconceptions so that instructional programs could be matched to outcomes

of the assessment to build upon children's existing knowledge or explicitly redress their

deficiencies.

Although we concur that instruction should be matched to children's existing knowledge

and that instruction should take into account what researchers know about the thinking

involved in the acquisition of competent performance, instructional approaches that attempt

s
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to specify explicit programs of instruction ignore two critical variables in classroom in-

struction: 1) the classroom teacher and 2) the classroom setting. To address these two

critical variables, we need to draw on knowledge derived from classroom-based research

on teachers and teaching.

Classroom-Based Research on Teachers and Teaching

Over the years, researchers on teaching have documented that to understand teaching

in an actual classroom setting, one needs to recognize that teaching is an interactive process.

In early process-product studies of teaching effectiveness, researchers such as Flanders

(1970) and others developed teacher-student interaction observation systems to describe

the teaching-learning processes in actual classrooms. These researchers then correlated

observed teacher-student interaction patterns and behaviors with students' scores on stand-

ardized achievement tests and defined effective teaching practices as those that correlated

highest with achievement (Dunkin and Biddle, 1974). Present day researchers on teaching

have continued to focus on the interaction of the teacher and students in their studies

of classrooms. As Shulman (1986) put it,

Teaching is seen as an activity involving teachers and students working jointly.
The work involves exercise of both thinking and acting on the parts of all par-
ticipants. Moreover, teachers learn and learners teach (Shulman, 1986a, p. 7).

Findings from classroom-based research on teaching have demonstrated the importance

of studying teaching and learning in actual classroom settings. As Good and Biddle (in

press) noted, "Early teaching effectiveness research in the 1970's was motivated by a dis-

satisfaction with previous research which had been conducted in laboratory settings... and

a dissatisfaction with solutions that were not based on an understanding of existing classroom

practices and constraints" (Good and Biddle, p. 26). Another assumption shared by most

researchers who have conducted classroom-based research on teaching is that the teacher

has a central role in classroom instruction (Shulman, 1986a). In teaching mathematics in

9
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the elementary school the teacher, ultimately, has the responsibility for planning, developing,

and carrying out instruction that facilitates students' meaningful learning of mathematics.

A Cognitive View of the Teacher

In keeping with the emerging cognitive view of the learner described above, researchers

on teaching have begun to take a cognitive perspective on the teacher (Clark and Peterson,

1986; Peterson, 1988). Like their students, teachers are thinking individuals who approach

the complex task of teaching in much the same way that problem solvers deal with other

complex tasks. Researchers studying teachers' thinking and decision making have documented

that teachers do not mindlessly follow lesson plans in teachers' manuals or prescriptions

for effective teaching (Shave lson and Stern, 1981; Clark and Peterson, 1986). ",:eachers

interpret plans in terms o.: .heir own constructs and adapt Irescriptions to fit the situation

as they perceive it. Teachers' knowledge and beliefs affect profoundly the way that teachers

teach. Moreover, previous efforts at curriculum reform may have failed because reformers

attempted to prescribe programs of instruction without taking into account the knowledge,

beliefs, and decision making of the teacher implementing the program (Romberg and Car-

penter, 1986; Clark and Peterson, 1986). Thus, teachers' knowledge, beliefs, and decisions

have become important foci of study.

Reseaxch_on Teachers' Knowledge. Beliefs. and Decisions

Previous research on teachers' decision making suggests that teachers do not tend

to base instructional decisions on their assessment of children's knowledge or misconceptions

(Clark and Peterson, 1986). Putnam (1987) and Putnam and Leinhardt (1986) proposed that

assessment of students' knowledge is not a primary goal of most teachers. They argued

that keeping track of the knowledge of 25 students would create an overwhelming demand

on the cognitive resources of the teacher. Putnam and Leinhardt hypothesized that teachers

follow curriculum scripts in which they make only minor adjustments based on student

feedback. The evidence is far from conclusive, however, to support the belief that teachers

10
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do not or cannot monitor students' knowledge and use that information in instruction.

Furthermore, Lampert (1987) has argued that a concern for monitoring students' knowledge

should be related to a teacher's goals for instruction. Although teachers may be able to

achieve short-term computational goals without attending to students' knowledge, they

may need to understand students' thanking to attain higher level goals of facilitating students'

meaningful understanding and problem solving.

Researchers have begun to investigate how teachers' knowledge of and beliefs about

their students' thinking are related to student achievement. In an earlier study, based

on the same group of teachers as the study reported here, we measured 40 first-grade

teachers' knowledge of students' knowledge and cognitions through questionnaires and an

interview (Carpenter, Fennema, Peterson, and Carey, in press). We found that these first-

grade teachers were able to identify many of the critical distinctions between addition

and subtraction word problems and the kinds of strategies that children use to solve such

problems. However, teachers' knowledge was not organized into a coherent network that

related distinctions between types of word problems to children's solution strategies for

solving the problems, nor to the difficulty of the problems. In the same study, we found

that teachers' knowledge of their own students' abilities to solve different addition and

subtraction problems was significantly positively correlated with student achievement on

both computation and problem solving tests. Similar results were reported by Fisher, Berliner,

Filby, Mar liave, Cahn, and Dishaw (1980), who found that teachers' success in predicting

students' success in solving specific problems on a standardized test was significantly car -

related with their students' performance on the test.

In a related study (Peterson, Fennema, Carpenter, and Loef, in press), we found a

significant positive correlation between students' problem solving achievement and teachers'

beliefs. Teachers whose students achieved well in addition and subtraction problem solving,

tended to agree with a cognitively-based perspective that instruction should build upon

11
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children's existing knowledge and that teachers should help students to construct mathematical

knowledge rather than to passively absorb it.

In none of the studies cited above did researchers address the critical question of,

"How might knowledge of the very explicit, highly principled knowledge of children's cog-

nitions derived from current research influence teachers' instruction and subsequently affect

students' achievement?" Research provides detailed knowledge about children's thinking

and problem solving that, if it were available to teachers, might affect profoundly teachers'

knowledge of their own students and their planning of instruction. Shulman (1986b) called

this type of knowledge pedagogical content knowledge, and Peterson (1988) referred to it

as content-specific cognitional knowledge.

The purpose of this investigation was to study the effects of a program designed to

provide teachers with detailed knowledge about children's thinking. We have termea this

approach to applying cognitive research, Cognitively Guided Instruction.

Cognitively Guided Instruction

Cognitively Guided Instruction (CGI) is based on the premise that the teaching-learning

process in real cla,sr)oms is too complex to be scripted in advance, and as a consequence,

teaching essentially is problem solving. Classroom instruction is mediated by teachers'

thinking and decisions. Thus, researchers and educators can bring about the most significant

changes in claszroom practice by helping teachers to make informed decisions rather than

by attempting to train them to perform in a specified way.

The guiding tenet of Cognitively Guided Instruction :5 that teachers' instructional

decisions should be based on the goals of instruction which can be achieved through careful

analyses of their students' knowledge. The goals of instruction include dev'lopment of

problem solving, understanding of concepts and the acquisition of skills. To accomplish

these goals, teachers must have a thorough knowledge of the content domain, and they

must be able to assess effectively their students' knowledge in this domain. Relevant know-

12



Using Knowledge of Children's Mathematics Thinking 11

ledge integrates content knowledge with pedagogical knowledge. In the domain of early

addition and subtraction it includes an understanding of distinctions between problems

that are reflected in students' solutions at different levels of acquiring expertise in addition

and subtraction. Teachers must have knowledge of problem difficulty as well as know-

ledge of distinctions between problems that result in different solution strategies. Teachers'

ability to assess their own students' knowledge also requires that teachers have an under-

standing of the general levels that students pass through in acquiring the concepts and pro-

cedures in the content domain, the processes that students use to solve different problems

at each stage, and the nature of students' knowledge that underlies these processes.

Two major assumptions underlie CGI. One is that instruction should develop under-

standing by stressing relationships between skills and problem solving with problem solving

serving as the organizing focus of instruction. The second assumption is that instruction

should build upon students' existing knowledge.

Several broad principles of instruction may be derived from these assumptions. The

fill/ principle that is embedded in all the other principles is that instruction should be

appropriate for each student. A second prix .iple is that problems, concepts, or skills being

learned should have meaning for each student. The student should be able to relate the

new idea to the knowledge that he or she already possesses. Third, instruction should be

organized to facilitate students' active construction of their own knowledge with under-

standing. Because all instruction should be based on what each child knows, the necessity

for continual assessment is the fourth, principle. Teachers need to assess not only whether

a learner can solve a particular problem but also how the learner solves the problem.

Teachers need to analyze children's thinking by asking appropriate questions and listening

to children's responses. Research on children's thinking provides a framework for this

analysis and a model for questioning. Fifth, teachers need to use the knowledge that they

13
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derive from assessment of their children's thinking in the planning and implementation of

instruction.

Purpose of the Study

The purpose of the study reported here was to investigate whether giving teachers'

access to knowledge derived from research on children's thinking about addition and sub-

traction would influence the teachers' instruction and their students' achievement. Our

hypothesis was that knowledge about different problem types, children's strategies for

solving different problems, and how children's knowledge and skills evolve, would affect

directly how and what teachers did in the classroom. Perhaps more importantly, we hy-

pothesized that such knowledge would affect teachers' ability to assess their own students,

which, in turn, would be reflected in teachers' knowledge about their own students. Teachers'

knowledge of their own students would affect instruction, allowing teachers to better tailor

instruction to students' knowledge and problem solving abilities. Thus, students' meaningful

learning and problem solving in mathematics would be facilitated.

Aingof Paradigms in the Design of the Study

Because we were attempting to build on research-based knowledge derived from both

research on children's learning and research on classroom teaching, we drew on both par-

adigms in designing the study. We measured student achievement with standardized achieve-

ment tests in the trauition of classroom-based process-product research on teaching, but

we constructed additional tests and scales that were sensitive to the distinctions between

different levels of problem solving identified by cognitive research on children's learning.

To assess learning, we interviewed children using techniques derived from research on

children's problem solving in arithmetic to identify the processes that children used to

solve different problems. We developed two classroom observation systems that followed

procedures commonly employed in studies of classroom instruction. However, we derived

many of the observation categories from a cognitive analysis of the content of instruction,

14
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the strategies that children use, and different assessment and grouping practices that we

hypothesized that teachers might employ in applying their knowledge about children's thinking.

Our observation categories required observers to go beyond students' overt behavior to

infer the cognitive strategies that teachers expected or encouraged students to use and

that students were actually using to solve problems. Finally, in this study we employed

a large sample of classrooms and quantifiable measures to provide the kinds of evidence

commonly reported in traditional process-product studies of teaching. In spite of

some similarities in design and methodology to traditional process-product experimental

studies, such as that of Good, Grouws and Ebmeier (1983), the present study differed in

several important respects from those studies. First, we did not specify a program of

instruction for the teachers. Teachers designed their own programs of instruction. A

goal of the study was to investigate whether and how teachers applied knowledge about

children's thinking and problem solving in their own classrooms. Second, we hypothesized

that the most critical influence on teachers' instruction would be their knowledge and

learning, including the knowledge about students that teachers gained during the school

year as they taught their own students. Thus, the year of classroom instruction following

the initial teacher workshop was not conceptualized as a separate implementation phase;

it was part of the treatment. Whereas we did not continue intensive work with the teachers

during the instructional year, we assumed that teachers' knowledge and beliefs would continue

to change as teachers gathered more knowledge about their own students. We collected

classroom observation evidence not to assess fidelity of treatment implementation, but

rather to obtain quantifiable data that would help us understand what the treatment actually

was.

Research Questions

In this study we addressed the following questions about teachers and their students.

1. Did teachers who had participated in a program designed to help them understand
children's thinking:
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a) Employ different instructional processes in their classrooms than did teachers
who had not participated in the program?

b) Have different beliefs about teaching mathematics, about how students learn,
and about the role of the teacher in facilitating that learning than did
teachers who did not participate in the program?

c) Know more about their students' abilities than did teachers who did not
participate in the program?

2. Did the students of teachers who participated in a program designed to help
them understand children's thinking:

a) Have higher levels of achievement than did the students of teachers who
did not participate in the program?

b) Have higher levels of confidence in their ability in mathematics than did
the students of teachers who did not participate in the program?

c) Have different beliefs about themselves and mathematics than did students
of teachers who did not participate in the program?

Method

Overviqw

Forty first-grade teachers participated in the study. Half of the teachers (N = 20)

were assigned randomly by school to the treatment group. These teachers participated in

a four week summer workshop designed to familiarize them with the findings of research

on the learning and development of addition and subtraction concepts in young children

and to provide teachers with an opportunity to think about and plan instruction based on

this knowledge. The other tea..:hers (N = 20) served as a control group who participated

in two 2-hour workshops focused on non- routine problem solving. Throughout the following

school year, all 40 teachers and their students were observed during mathematics instruction

by trained observers using two coding systems developed especially for this study. Near

the end of the instructional year, teachers' knowledge of their students was measured by

as1;ing each teacher to predict how individual students in her class would solve specific

problems. Teachers' predictions were then matched with students' actual responses to obtain

a measure of teachers' knowledge of their students' thinking and performance. Teachers'

6
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beliefs were measured using a 48-item questionnaire designed to assess teachers' assumptions

about the learning and teaching of addition and subtraction. Students in the 40 teachers'

classes completed a standardized mathematics achievement pretest in September, and a

series of posttests in April and May. The posttests included standardized tests of computation

and problem solving as well experimenter-constructed scales which more precisely assessed

students' problem solving abilities. At posttest time, students were also interviewed as

they solved a variety of problems to assess the processes that they used to solve different

problems. Finally, students completed several measures of attitudes and beliefs developed

for this study.

Subjects

The subjects in the study were the teachers and their students in 40 classrooms in

24 schools located in Madison, Wisconsin, and in four smaller communities near Madison.

The schools included two Catholic schools and 22 public schools. All the teachers in the

sample volunteered to participate in a four week inservice program during the summer, to

be observed during their classroom instruction in mathematics during the following year,

and to complete questionnaires and interviews in May of 1986 and 1987. Each participating

teacher received $100 as an honorarium for each year of the study. The mean number of

years of elementary teaching experience for the teachers in the sample was 10.90, and

the mean number of years teaching first-grade was 5.62. Two of the teachers had just

completed the first year of teaching. None of the teachers reported participating in any

training in which recent research on addition and subtraction was discussed. During the

instructional year of the study, 36 teachers taught first grade classrooms, and 4 teachers

taught first/second grade combinations.

Teachers were assigned randomly to treatments by school. Whenever possible, twelve

first grade students - -six girls and six boys - -were selected randomly from each class to

serve as target students for observation and the interviews. While all first grade students

17
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in each class completed the written posttests, the analyses were based on data from target

students so that all comparisons of treatment effects were done on the same sample of

students.

Cognitively Guided Instruction (CGI) Treatment

Goals of the Workshop. The workshop for the Cognitively Guided Instruction (CGI)

group was conducted during the first four weeks of the teachers' summer vacation. Because

word problem solving was the organizing focus of CGI, much of the workshop was devoted

to giving teachers access to knowledge about addition and subtraction word problems and

how children think about them. The initial goal of instruction was to familiarize teachers

with research on children's solutions of addition and subtraction problems. Teachers learned

to classify problems, to identify the processes that children use to solve different problems,

and to relate processes to the levels and problems in which they are commonly used. Although

the taxonomy of problem types and the models of children's cognitive processes were sim-

plified somewhat, each teacher gave evidence of understanding of the problem types and

related solution strategies. This knowledge provided the framework for everything else

that followed, and 1-112 weeks of the four-week workshop was spent on it.

During the remainder of the workshop, teachers discussed principles of instruction

derived from research and designed their own programs of instruction based upon those

principles. Although instructional practices were not prescribed, the broad principles of

instruction presented above were discussed. Specific questions were identified that teachers

needed to address in planning their instruction, but teachers were not told how they should

answer them. These questions included the following: 1) How should instruction build

initially upon the informal and counting strategies that children use to solve simple word

problems when they enter first grade? 2) Should specific strategies like "counting on"

be taught explicitly? and 3) How should symbols be linked to the informal knowledge

18
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of addition and subtraction that children exhibit in their modeling and counting solutions

of word problems?

Another goal of the workshop was to familiarize teachers with curricular materials

available for instruction. Teachers were encouraged to evaluate these materials on t:.e

basis of the knowledge and instructional principles that they acquired earlier in the workshop.

Format of the CGI Workshoo/Treatment. The workshop was taught by Professors

Carpenter and Fennema with the assistance of three graduate students, two mathematics

supervisors from the Madison Metropolitan School District, and one curriculum supervisor

from the Watertown, WI Unified School District. The workshop involved five hours of

participation each day, four days a week for four weeks. Although teachers were told

that they could complete all work during the 20 workshop hours each week, some teachers

did take work home with them.

Teachers were provided with readings prepared for the workshop that presented the

problem type taxonomy, synthesized the results of research on children's solutions of addition

and subtraction word problems, and discussed how these findings might be applied in the

classroom. A number of videotapes of children solving problems were used to illustrate

children's solutions strategies, and teachers had the opportunity to interview one or two

young children. A variety of instructional materials were also available for the teachers

to review including textbooks, manipulatives, and enrichment materials.

A typical day included an hour lecture/discussion led by Carpenter or Fennema. During

the first six days, these discussions focused on the findings from research on addition

and subtraction. Discussions during the next four days explored ways that these findings

might be implemented in the classroom. In the remaining sessions, the topics discussed

included general problem solving, time on task, and equity issues. Each day the teachers

could also participate in a small group session led by one of the graduate students. The

purpose of these sessions was to examine different curricula or enrichment materials and
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to discuss how these materials might be used to facilitate children's problem solving following

principles of CGI. During the rest of the time, teachers were free to read; to plan the

following year's instruction; to study videotapes of children solving problems; to talk with

other participants and the staff; and to examine textbooks, manipulatives, or enrichment

materials.

Teachers were given a great deal of freedom to monitor their own progress, and to

select and work on activities that facilitated their own learning. Although they were given

no specific written assignments, teachers were asked to plan a unit to teach during the

following year, as well as a year-long plan for instruction based on principles of CGI.

Each week teachers met with one of the staff to discuss their progress for the week and

to clarify their ideas about their plans. Teachers either worked alone or with others as

they desired.

Because we hypothesized that the teacher's knowledge about each of her student's

thinking about addition and subtraction would develop during the instructional year, we

conceptualized the treatment as including the following instructional year. However, after

the workshop, our formal contact with the CGI teachers was limited. We met one time

with them in October when teachers discussed with us what they had done to that point

with CG1. One of the staff also served as a resource person and responded to any questions

that CGI teachers posed to her throughout the year. Each teacher who participated in

the workshop received 3 university credits an' was given $50 to buy materials to implement

CGI.

Control Group

Teachers in the control group participated in two 2-hour workshops that were held

in September and February during the instructional year. The control group workshops

were in no way comparable to the CGI workshops in duration or extent of coverage, and

the purpose was not to provide a contrasting treatment. The goal was to provide control
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teachers with Some sense of participation in the project and give them some immediate

reward for their participation. The problem solving focus of the control group's workshops

was different from that of the CGI workshop. While the problem solving emphasis of CGI

was on story problems that could be based on the children's personal experience, the problem

solving emphasis of the control group's workshop was on mathematical problems that are

intriguing and of a more esoteric nature. Such problems are often designated as nonroutine

problems. During the Control Group workshops, no discussion occurred about how children

think as they solve problems nor was any specific framework given for how to understand

children's cognitions. Rather, the discussion focused on the importance of children learning

to solve problems and the potential use of nonroutine problems to motivate students to

engage in problem solving.

The control workshops were taught by a graduate student who was a member of the

CGI staff. Teachers were first asked to solve a nonroutine problem themselves, and then

they discussed the various heuristics that they used as they found a solution. This problem

solving activity was followed by a discussion of various heuristics that children might use

to solve a problem such as: charting, making a diagram, drawing a picture or making a

list. Teachers were given access to materials that gave examples of nonroutine problems

and to trade books that included some problem solving activities for children. They also

discussed how they might use their own mathematics textbook to provide problem solving

experiences for children.

Classroom Observations

We constructed two observation systems: one that focused on the teacher and one

that focused on the student. In both systems, observers used a 60-second time-sampling

procedure in which they observed for 30 seconds, and then for the next 30 seconds, they

coded the behavior and activities of either teacher or the target student, depending on

the system. The teacher observer focused on the teacher from the beginning of the time
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that the teacher taught mathematics to the end of the mathematics period. The student

observer focused on each of the target students, in turn, until all 12 students had been

observed. The observer then returned to the first target student and rotated through

the same 12 students as long as class time allowed. Target students were observed in a

different order each clay.

Observation Categories. Observation categories were selected carefully by considering

the literature and the purpose of the study. From a previous study (Peterson and Fennema,

1985) we adapted the major category of set in (whole class; medium group; small group;

teacher/student; and alone) because we thought that CGI teachers might vary the instructional

setting to auapt to students' knowledge and abilities. To compare possible differences in

CGI teachers instruction with the lesson phases of active mathematics teaching (Good,

Grouws, and Ebmeier, 1983), we coded the phases of review, development, controlled practice,

and student work (seatwork) in the student system.

The mathematics content was a primary category in both systems. The major categories

of addition and subtraction content were number facts, represented problems, word problems

and other addition and subtraction. Number facts focused on the knowledge and use of

simple computations using addition number facts up to 9 + 9 or corresponding subtraction

number facts. Represented problems were problems presented pictorially or with counters

whose solution did not require any additional representation oy the students. Included in

this category were typical textbook problems in which pictures show children or animals

joining or leaving a group to illustrate an addition or subtraction problem. Word problems

were problems presented either verbally or written in story form that required the student

to use addition or subtraction in order to solve them. Other addition and subtraction

included problems or activities, other than those described thus far, that required the student

to use addition or subtraction. Student non-engagement with the mathematics content

was coded in the student system (Peterson & Fennema, 1985).
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Subcategories under teacher behavior were derived from findings by Fennema and

Peterson (1986) that students' problem solving was positively related to teachers' feedback

to the process of obtaining the answer rather than to the answer so feedback to process

and feedback to answer was coded. In addition, both cognitive research on children's

learning and CGI principles suggest that it may be important for the teacher to pose problems

to students and to listen to process which involves listening to a student working a problem

aloud or listening to a student describe the way he or she solved a problem.

Building on the research on children's learning and cognitions, we coded both the

strategy that the teacher expected or encouraged the students to use in solving problems

and also the strategy that students actually appeared to be using. Strategies coded in both

systems included direct modeling, advanced counting, derived facts, and recall. In the

teacher system if the teacher appeared to expect no one clear strategy, then no clear

strategy was coded. If the teacher encouraged or expected use of more than one of these

strategies, multiple strategies was coded. In the student system, if the observer could

not determine what strategy the student was using, then no clear strategy was coded.

In summary, in the teacher system for each 60-second time sampling interval when

addition and subtraction instruction was occurring, the observer checked one subcategory

within each of the following major categories: setting, content, teacher behavior and strat-

egy. In the student system, for each 60-second time sampling interval when addition and

subtraction instruction was occurring, the observer checked arLe subcategory within each

of the following categories: vatin, lesson phase, content (including non-engaged with

content) and §trategv. Table 2 shows the specific observation categories in each system.

Insert Table 2 about here.
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Inter-Observer Agreement was estimated by having a reliability observer code with

the assigned observer at specified times during the study. A sample of these data were

used to calculate inter-observer agreement. For the teacher system, agreement estimates

were calculated for a pair of observers who coded the same two teachers on each of four

days during the study. For the student system, estimates were based on the coding of

three teachers on each of two days by the regular coder and a reliability cod.;. An estimate

of agreement for each category was made by comparing the coding of the two observers

for each coding interval. Thus, for each coding category and interval, observers might

have agreed or not agreed to check or not to check a given category. Percent inter-observer

agreement was calculated for each category by summing the total number of agreements

over the total agreements plus disagreements for the intervals coded. Table 2 presents

the estimates of inter-observer agreement for each coding category in the teacher and

student observation systems.

Observation Procedures. In September and October observers were hired and trained

in a 2-week training session following procedures used previously by Peterson and Fennema

(1985). Observation manuals were developed for each system. (Peterson, 1987) Training

involved a week of coding transcripts and videotapes followed by a week of practice coding

in first-grade mathematics classrooms that were not part of our study. At the end of

the training period, each observer completed a written test that assessed the observer's

content knowledge, and coded a videotape of a first-grade classroom that assessed the

observer's coding ability. Observers who achieved the criterion levels on both tests were

judged sufficiently knowledgeable and skilled to begin actual classroom observations.

Each teacher and class was observed for four separate week-long periods (a minimum

of 16 days) from November through April. During each scheduled observation period, a

student observer and a teacher observer coded together in the same classroom. During the

observations, the teacher wore a wireless microphone, and the teacher observer listened
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to the teacher through earphones to aid in understanding the teacher's private interactions

with students.

Teachers' Knowledge Measures

Three separate measures were constructed to assess teachers' knowledge of their own

students. Procedures were adapted from a similar test used in an earlier study (Carpenter

et al., in press). For each of the three measures, teachers were asked to predict their

target students' performance on specific problems. The teachers' knowledge scores were

based on the match between their predictions for each target student and that student's

actual response to each given item on the corresponding student achievement test described

below.

For the knowledge of nimber Fact Strategies, teachers were asked to predict the

strategy that each of their target students would use to answer each of the 5 items on

the students' Number Facts Interview. The teachers' scores were calculated by comparing

each teacher's predicted strategy to the strategy that the given target student actually

used. For each item for each student the teacher received 1 point for each correct match

between predicted and actual strategy, and 0 points for no match.

For the knowledge of students' Problem Solving Strategies, teachers were asked to

predict the strategy that each of their target students would use to solve each of the 6

problems on the students' Problem-Solving Interview. Because students frequently use several

different strategies to solve a given problem at different times, teachers were allowed,

but not required, to identify as many as three strategies that a given student might use

for a particular problem. Teachers were encouraged to identify only strategies that they

thought the student might actually use. The teacher's response was scored as a match

and given 1 point if the student solved the given problem on the Problem-Solving Interview

using any one of the strategies identified by the teacher.
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For the knowledge of Problem Solving Abilities, teachers were asked to predict whether

each of the target students could answer correctly specific problems on the written tests.

Teachers did not have to specify what strategy the student used. Eight problems were

selected front the Complex and Advanced problem scales desciibed below. The teacher's

response for each student for each item was scored on the basis of the match between

the teacher's prediction and the target student's actual answe: to the given problem. The

teacher received I i;JiAt for each correct match for each student and each item. A teacher's

prediction could match the students' actual response by predicting accurately whether or

not a student would answer a given problem correctly.

The Number Fact Strategies and the Problem Solving Strategies tests were administered

individually by trained interviewers using similar procedures and coding criteria to those

used for the student interviews described below. For the Problem Solving Abilities test,

interviewers gave teachers a list of the target students and a list of the eight problems.

Interviewers asked teachers to predict which of the problems each of the target students

could solve correctly. The Cronbach alphas were .57, .86, and .47 = 40) for teachers'

Number Fact Strategies, Problem Solving Strategies, and Problem Solvit.g Abilities tests,

respectively.

Teachers Belief Instrument

Teachers' beliefs about the learning and teaching of addition and subtraction were

assessed using four 12-item experimenter-constructed scales. Peterson, Fennema, Carpenter,

and Loef (in press) have provided a complete description of these scales and demonstrated

the reliability, construct validity, and predictive validity of teachers' scores derived from

them.

For each item teachers responded on a five-point Likert scale by indicating, 'strongly

agree," "agree," "undecided," "disagree," or "strongly disagree? Half of the items on each

scale were worded such that agreement with the statement indicated agreement with a
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cognitively guided perspective. The remaining six items were worded so that agreement

with that item indicated less agreement with a cognitively guided perspective. Scale 1,

The Role of the Learner, was concerned with how children learn mathematics. A high score

indicated a belief that childre.i construct their own knowledge while a low score on the

scale reflected a belief that children receive knowledge. Scale 2, Relationship between

Skills. Understanding and Problem Solving, dealt with the interrelationships of teaching various

components of mathematics learning. A high score indicated a belief that all components

should be taught as interrelated ideas while a lower score indicated a belief that lower

level skills are prerequisites to teaching understanding and problem solving. Scale 3,

Seauencing of Mathematic: 1, assessed teachers' beliefs about what should provide the basis

for sequencing topics in addition and subtraction instruction. A high score indicated a

belief that the development of mathematical ideas in children should provide the basis for

sequencing topics for instruction, while a low score indicated a belief that formal mathematics

should provide the basis for sequencing topics for instruction. Scale 4, Role of the Teacher,

assessed teachers' beliefs about how addition and subtraction should be taught. A high

score reflected a belief that mathematics instruction should facilitate children's construction

of knowledge while a low score reflected a belief that instruction should be organized to

facilitate teacher's presentation of knowledge.

Sample items included: "Most young children can figure out a way to solve simple

word problems" (Scale 1); "Children should not solve simple word problems until they have

mastered some basic number facts" (Scale 2); "The natural development of children's math-

ematics ideas should determine the sequence of topics used for instruction" (Scale 3); "Teach-

ers should allow children to figure out their own ways to solve simple word problems"

(Scale 4). Cronbach's alpha internal consistency estimates for teachers' scores in this

sample (N = 40) were .93 for the total scales combined and .81, .79, .79 and .84 for Scales

1 through 4, respectively.
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Student Achievement Measugs_

At the beginning of the year, students' achievement was measured using a standardized

achievement test as a pretest. Posttests, given near the end of the school year, included

three written tests and individual interviews. Written posttests included: a standardized

test of computational skills, a standardized test of problem solving, and an experimenter-

developed problem solving test. From the two problem solving tests, three scales were

constructed: Simple Addition and Subtraction Word Problems, Complex Addition and Sub-

traction Word Problems, and Advanced Word Problems. Posttest interviews assessed each

student's recall of number facts (a computational skill) and identified the strategies that

were used to solve addition and subtraction word problems. Thus, there were two posttest

measures of computational skills--one based on a written test and one from the interview;

and there were five posttest measures of problem solving--the standardized test, the three

problem solving scales, and the interview of problem solving strategies. The internal con-

sistencies of the tests were estimated using Cronbach's alpha and are reported in Table 3.

Insert Table 3 about here .

Written Achievement Tests. The Mathematics subtest of the Iowa Test of Basic Skills

(ITBS), Level 6, was used as the pretest. The Computation subtest of the ITBS, Level 7,

was used as the written posttest of computation. Three posttest problem solving scales were

constructed by using items selected from the Mathematics Problems subtest of the ITBS,

Level 7, and experimenter designed items which included a broad range of more difficult

problems. The three scales, listed below, represent different levels of problem solving ability.

Simple Addition and Subtraction Word Problem. This scale included 11 word problems

involving simple joining and separating situations with the result unknown.
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Complex Addition and Subtraction Word Problems. This scale included 12 more difficult

addition and subtraction word problems based on the analysis of problem types by Carpenter

and Moser (1983) and by Riley et al. (1983). Problems from this scale are not included

in many first-grade mathematics programs.

Advanced Word Problems. This scale included multi-step problems, grouping and par-

titioning problems, and problems involving extraneous information.

Table 4 shows representative examples from each scale.

Insert Table 4 about here .

Student Interviews. At posttest time, target students were interviewed individually

to determine the strategies that they used to solve certain problems and to assess their

recall of number facts. The Number Facts Interview involved five addition number facts

with sums between 6 and 16. The Problem-Solving Interview consisted of six addition

and subtraction word problems involving simple joining situations and missing addend situations

with the change unknown. Responses were coded by the interviewer using a coding system

developed by Carpenter and Moser (1983). The strategy of interest on the Number Facts

Interview was recall of number facts.

Students' Confidence and Beliefs

Students' Confidence. Students were asked to indicate if they thought they could

do 12 word problems. They were asked to circle YES if they thought they could solve

the problems or to circle NO if they didn't think they could solve the problem. One item

was, "Dorothy has 6 stickers. How many more stickers does she need to collect to have

14 altogether?" The items were read to children in a group setting. Students were given

1 point for a YES answer and 0 points for a NO answer. Cronbach's alpha internal con-

sistency estimate for students' scores was .91 (N=40).
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Students' Beliefs. Students were interviewed about their beliefs on the same four

belief constructs described above for teachers. Items from the teachers' belief scales were

reworded to make them understandable to children. A 16-item interview scale was constructed

with 4 items for each scale. Students were asked to respond to the interviewer on a 3-

point Likert scale of "Yes", "Maybe" or "No." Students' responses were scored, "Yes" =

3, "Maybe" = 2, "No" = 1 for positively stated items, and the opposite for negatively stated

items. Example items included: "The teacher should tell kids exactly how to solve story

problems in math;" (Scale 4) and "Most kids can solve easy story problems by counting

their fingers or something else before the teacher teaches them how to solve the problem."

(Scale 2). (See Teacher Beliefs Instrument above for descriptions of each construct.) Cron-

bach's alpha internal consistency estimates for students' scores on each of the four belief

scales were .63 (N = 40 classes) for the Total scale, and .52, .19, .45, and .68 (N = 40 classes)

for Scales 1, 2, 3, and 4, respectively. Because of the low internal consistency for student

beliefs on individual scales, which may be due to the small number of items per scale,

only the Total scale score was used in subsequent analyses.

Students' Attention and Understanding. Students' reports of attention and understanding

were assessed in an interview using questions developed and used previously by Peterson,

Swing, Braverman (1982); Buss (1982) and Peterson, Swing, Waas, and Stark (1984). Peterson

et al. (1982, 1984) provided empirical data that demonstrated the reliability and validity

of students' reported attention and understanding on these questions. The interviewer

asked students to "think back to the last time you were in math class at school" and answer

the following questions:

"During that math class, when you were supposed to be paying attention to the
teacher or your work, were you paying attention all of the time, most of the
time, some of the time, or not very much of the time?" (Repeat the question
if necessary.)

"During that same math class, how well were you understanding the math that
you were doing? Were you understanding all of it, most of it, some of it, or
not very much of it?" (Repeat the question if necessary.)
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Students' responses were scored as follows: "All" = 4; "Most" = 3; "Some" = 2; "Not very

much" = 1.

Testing and Interview Procedures

Student Data. The students' written tests were administered by trained testers following

written protocols. Target students who were absent on the day of testing were tested

after they returned to school. The pretest was administered during September. In each

class the written posttests and student confidence and belief measures were administered

on two consecutive days in April or May, 1987. On the first day the following tests were

administered in the following order: the ITBS problem-solving test and the ITBS computation

test. On the second day the experimenter designed problem solving items and the Confidence

Scale were given.

The student interviews were also conducted during April and May, 1987, by trained

interviewers. The Problem Solving Interview was conducted first, followed by the Number

Fact Interview, followed by the Beliefs Scales, and finally by questions on student's attention

and understanding.

Teacher Data. In May 1986, before the workshop began in June, teachers completed

the belief questionnaire, and these data are reported in Peterson et al. (in press.) In May

1987, after the student data were collected, we again assessed teachers' beliefs. Within

1-2 days after their children's interviews were conducted, trained graduate assistants con-

ducted the Teacher Knowledge Interview and administered the Teacher Belief Instrument

to individual teachers.

Results

In this section, we describe the results of the four major analyses that we conducted.

First, we examine how CGI and control classrooms differed in the content, activities, behavior,

learning, and instruction in which teachers and students were observed to be engaged.

Second, we describe differences between CGI and control teachers in their knowledge and
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beliefs. Then we examine effects on students' achievement, including students' problem

solving and knowledge of number facts at a recall level. Finally, we describe effects on

students' confidence, beliefs and reported attention and understanding.

Within a classroom,a student's behavior and learning is not independent from other

students' behavior and learning. Because of this interrelationship, students' scores can

not be considered independent for purposes of statistical analyses. Thus, the class or

the teacher served as the unit of analysis in all analyses and results that we describe.

Classroom Observations

We computed means, standard deviations, and t tests between groups for each of the

categories on the teacher observation system and :be student observation system. Table

5 presents the results for the teacher system, and Table 6 presents the results for the

student system. For most mean es in both tables the numbers within each major category

represent the mean proportion of time spent on that activity within the total time spent

on addition and subtraction instruction. Thus, total time spent on addition and subtraction

was used as the denominator for most of the proportions in these two tables.

Insert Tables 5 and 6 about here .

Although the focus of the observation--the teacher or the student--differed between

the two observation systems, the results showed consistent and complementary patterns

between CGI and Control teachers for similar observation categories in the two systems.

Although some differences were significant in one system but not in the other, the same

trend appeared consistently in both systems. The differences that exist can generally be

explained by the fact that the focus of the observation, teachers or individual students,

were not always engaged in the same activity. For example, for the alone category under

setilui the teacher was seldom observed to be working alone (approximately 2% of the
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time as shown in Table 5), but students frequently worked alone (about 34% of the time

as shown in Table 6). Similarly, although the teacher engaged in one-to-one interaction

with students about 20% of the time, individual students were observed to be engaged in

one-to-one interaction with the teacher only about 1% of the time.

etting. No significant differences appeared between CGI and control teachers in

their grouping patterns as measured by the coding of the setting in the two systems.

Content and Lesson Phase. CGI students and control students did not differ in the

proportion of time in which they were engaged with addition and subtraction content, but

when teaching addition and subtraction, teacher observations showed significantly different

content emphases between CGI and control teachers. During addition and subtraction in-

struction, CGI teachers spent significantly more time on word problems than did control

teachers. In contrast, control teachers spent significantly more time on number facts prob-

lems than did CGI teachers (Table 5). A similar pattern was observed for the student

observations although the difference in time spent on problem solving by students was

not statistically significant (Table 6).

In the student observations the differences in content coverage varied over different

phases of the lessons (Table 6). Control students were more likely to be given word problems

to work on during seatwork, which was more apt to be done alone, while CGI students

were more likely to work on word problems during review, development, and controlled-

practice which was generally done in a large-group setting. In contrast, during these

large-group lesson phases, control students were more likely than CGI students to be working

on number facts. Although CGI and control teachers did not differ in time spent on de-

velopment, controlled practice, or seat work, control teachers and students did spend more

time on review. Taken together, these findings for review and for content by lesson phase

suggest that control students were more likely than CGI students to be spending time in
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a large-group setting on drill and review of number facts, while CGI students were more

likely to be solving probiems in the large-group setting.

Teacher Behavior. CGI teachers more often posed problems to students and more

frequently listened to the process used by students to solve problems. In contrast, in

giving feedback on students' solutions to problems, control teachers focused more frequently

on the answer to the problem than did CGI teachers.

Strategy. Although no overall differences appeared between CGI and control classes

in the strategies that students actually used during class (Table 6), CGI teachers allowed

students to use a variety of different strategies during instruction more often than did control

teachers (Table 5). Control teachers appeared to provide more explicit instruction in a

particular strategy and expected the students to use that Strategy. This pattern is illustrated

by the different results for the advanced counting strategy on the two observation systems.

Although results from the teacher observation system showed that control teachers expected

students to use advanced counting strategies significantly more often than did the CGI

teachers, results from the student observations showed no difference in the students' actual

use of advanced counting strategies. It appears that CGI teachers provided as much op-

portunity for students to use advanced counting strategies, but they allowed the opportunity

for students to use other strategies as well.

Teachers' Knowledge

Table 7 presents means, standard deviations, and t tests between groups for scores

on the tests of teachers' knowledge. CGI and control group teachers differed significantly

in their knowledge of student strategies for both number facts and problem solving. However,

CGI and control teachers did not differ significantly in their knowledge of students' problem

solving abilities in which teachers predicted students' performance on complex addition

and subtraction word problems and on advanced problems.
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Insert Table 7 about here.

Generally, control group teachers overestimated the use of number fact recall by

their students by factors of two or three to one. In contrast, CGI teachers' predictions

for the level of recall of number facts by their students generally did not deviate by more

than 10% to 20% from the actual level of use by their students. Although CGI students

actually used recall strategies significantly more than did control group students, control

group teachers predicted higher levels of recall of number facts for their students.

Teachers' Beliefs

Table 8 presents the means and standard deviations for CGI and control teachers'

beliefs at pretest and posttest. Group by Time analyses of variance (piNOVA) were computed

to examine treatment effects on each of the teacher belief scales from pretest (before

the workshop) to posttest (after a year of teaching). Table 8 summarizes the ANOVA

results. A sigh;ficant time by treatment interaction indicated that after the treatment

for scales 2, 4 and total, CGI teachers were significantly more cognitively guided in their

beliefs than were control teachers. Both groups of teachers increased significantly in

their agreement with the perspective that children construct mathematical knowledge (Scale

I), and at posttest the CGI and control teachers did not differ in their agreement with

this perspective.

Insert Table 8 about here.

Student Achievement

Analyses of covariance (ANCOVA) between groups were computed on each of the

student achievement measures controlling for prior mathematics achievement as measured
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by the pretest. The ANCOVA was not computed on scores on the Simple Word Problem

Scale because tests for homogeneity of regression revealed a significant prior achievement

by treatment interaction. Table 9 presents means, standard deviations, adjusted means

and t values for the ANCOVAs for the posttest student achievement measures. Although

students' in CGI teachers' classes and students in control teachers' classes did not differ

significantly in their performance on the ITBS-computation test, CGI students demonstrated

a higher level of recall of number facts on the Number Facts interview than did control

students.

Insert Table 9 about here.

A significant prior achievement by treatment interaction was found on the Simple

Addition and Subtraction Word Problem scales. For classes who scored at the lower end

of the scale on the ITBS pretest, CGI classes scored higher on the Simple Addition and Sub-

traction Word Problem Scale than did control classes. For classes at the very top of the

scale on pretest achievement, control group classes scored higher than CGI classes. Figure

1 shows the interaction and the regions of significance that were computed using the Potthoff

(1964) extension of the Johnson-Neyman technique. The regions of significance included

6 CGI classes and 6 control group classes at the lower end on pretest achievement and 3

CGI classes and 1 control class at the upper end on pretest achievement.

Insert Figure 1 about here .

On the test of Complex Addition and Subtraction Word Problems, students in CGI

teachers' classes outperformed students in control teachers' classes. CGI and control classes

did riot differ significantly in their achievement on Advanced Problems. On the Problem
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Solving interview, students in CGI classes used correct strategies significantly more often

than students in control classes. No significant differences appeared between the groups

in the students' use of any strategy.

Students' Confidence, Beliefs. Understanding, and Attention

Table 10 presents the means, standard deviations, and t tests between groups for

students' confidence, beliefs, and reports of understanding and attention. CGI students

were more confident of their abilities to solve mathematics problems than were control

students. Like their teachers, students in CGI classes were significantly more cognitively

guided in their beliefs than were students in control teachers' classes. In addition, CGI

students reported significantly greater understanding of the mathematics than did control

students. CGI and control students did not differ in the extent to which they reported

that they paid attention during mathematics class. These latter findings are consistent

with the classroom observations that showed that CGI and control students did not differ

in the amount of time they were judged to be engaged with the addition and subtraction

content.

Insert Table 10 about here.

Discussion

The results of this study provide a coherent picture of teachers' knowledge and beliefs,

classroom instruction, and students' achievement and beliefs that is consistent with the

assumptions and principles of Cognitively Guided Instruction. Two major themes are reflected

in the guiding principles of CGI. One is that instruction should develop understanding by

stressing the relationships between skills and problem solving with problem solving serving

as the organizing focus of instruction. This suggests that CGI classrooms would be char-

acterized by a greater emphasis on problem solving than would be found in traditional
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classrooms. The second major theme is that instruction should build upon students' existing

knowledge. This implies that teachers regularly assess students' thinking and the processes

that students use to solve different problems so that teachers understand students' knowledge

and capabilities and can adapt instruction appropriately. We use these two themes in our

discussion of the results.

The Role_of Problem Solving

CGI and control teachers differed significantly in their beliefs about the relationship

between skills and problem solving with CGI teachers' beliefs being more consistent with

the basic assumptions of CGI. In particular, CGI teachers agreed more than control teachers

with the belief that skills should be based on understanding and problem solving. Further,

in contrast to control teachers, CGI teachers agreed more with the belief that instruction

should facilitate children's construction of knowledge. Given that findings from research

on young children's problem solving skills was the basis of the CGI workshop, this belief

would also be consistent with a greater emphasis on problem solving during instruction.

The instruction of CGI and control teachers represented by the classroom observation

data reflected the picture portrayed by the belief scales. CGI teachers focused on problem

solving about 1-1/2 times as much as did control teachers, while control teachers focused

on number facts about 1-1/2 times as much as did CGI teachers. Looking at these results

from a slightly different perspective, CGI teachers spent over twice as much time teaching

problem solving as they did teaching number facts; control teachers spent more time teaching

number facts than problem solving.

Although the different measures of student computation and problem solving achievement

provided slightly different perspectives, the emphasis on problem solving in CGI classes

was reflected in student achievement. No overall difference appeared between the CGI and

control classes in their ability to solve addition and subtraction problems with the result

unknown (Simple Addition and Subtraction Word Problems). Performance on the Simple
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Addition and Subtraction Word Problem scale was near the ceiling for both groups (means

of 9.87 and 9.63 out of a maximum score of 11) so there was little room for treatment

effects. However, a significant prior-achievement by treatment interaction appeared. In

classes with low levels of achievement on the pretest, CGI students scored higher at posttest

on the test of Simple Addition and Subtraction Word Problems than did control students.

This interaction may have been due to the fact that the test allowed more room for lower

achieving classes to move up on the test than for higher achir-ving classes to move.

The type of problems on the Simple Addition and Subtraction Word Problem scale

represents the treatment of word problems typically found in most first-grade mathematics

textbooks and programs. The Complex Addition and Subtraction Word Problem Scale included

problems from the more comprehensive analysis of addition and subtraction problems that

was discussed in the CGI workshop, and such problems are not typically included in a first-

grade program. Performance of CGI classes was significantly higher on these complex

problems than was performance of control classes. These significant differences did not

transfer, however, to the advanced problems that involved multiple steps, extraneous in-

formation, or grouping and partitioning. It might be argued that the differences in problem-

solving performance were simply a matter of more time spent solving problems. Increasing

instructional time devoted to problem solving is not, however, a simple matter. In the

past, teachers generally have been reluctant to sacrifice time traditionally devoted to teaching

computational skills to teach more problem solving or to spend more time developing un-

derstanding. This is confirmed by results of national and international assessments which

suggest that emphasis in mathematics instruction in American mathematics classes has been

on low level skills and that the result has bean that most students cannot apply the skills

they have learned to solving even relatively simply problems (Carpenter, Lindquist & Matthews

& Silver, 1983, McKnight, 1987).
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Recent curriculum recommendations have called for a stn. in emphasis so that problem

solving becomes the focus of instruction (National Council of Teachers of Mathematics,

1980; 1987). Previous reform efforts have failed, partly because teachers have not embraced

the goals of the curriculum reformers (NACOME, 1975; Romberg & Carpenter, 1986) and

because reformers have not attended to teachers' beliefs, thinking, and decision making

(Clark & Peterson, 1986,. Thus, although the content taught may have changed, emphasis

on skills has remained. Thus, convincing teachers to adopt a problem solving approach

to teaching mathematics and to spend more time on problem solving is not a trivial matter.

Although both the treatment and control workshops in this study focused on children's

problem solving performance, in neither workshop did we specify a program of instruction

for teachers or dictate an amount of time that should be devoted to problem solving.

The decision to spend more time on problem solving was made by the CGI teachers but

not by control teachers. Teachers may be reluctant to place a greater emphasis on problem

solving for several reasc One is teachers may fear that many problems are beyond

"he capabilities of their students, and that students must master number facts first in

order to solve word problems (Peterson, Fennema, Carpenter, & Loef, in press). CGI teachers

knew that this was not so. The research they studied during the summer workshop provided

convincing evidence that a wide variety of problems are nut beyond the abilities of most

first-grade students. Furthermore, this knowledge provided CGI teachers with a basis for

assessing their own students to find out their student; actual problem solving capabilities.

Consequently, CGI teachers may not have been reluctant l spend more time on problem

solving.

Another related concern of teachers may be that time spent on proble,a solving will

detract from their students' learning of computational skills. First-grade teachers and

students are held accountable for students' learning addition an subtraction number facts

to a requisite level of automaticity. The results of this study clearly document that a
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focus on problem solving does not necessarily result in a decline in performance in com-

putational skills. In spite of the emphasis on problem solving in CGI classes and the cor-

responding decrease in time spent on computational skills, CGI classes and control classes

performed equally well on a standardized test of computational skill. Furthermore, students

in CGI classes actually had a higher level of recall of number facts than did control students.

Because CGI teachers were able to accurately assess their children's knowledge, they may

have been aware that their children were learning number facts. Thus, the concern of

not meeting expectations for their children's competency in computation was alleviated.

Because most first-grade children have a variety of counting and modeling strategies

that they can use to generate number facts, standardized tests often provide a better measure

of the speed with which children can apply counting and modeling strategies than of children's

actual recall of number facts. On tests such as the ITBS computation test, children often

use these counting and modeling strategies so rapidly that it appears that they are recalling

as they solve number fact items. Because CGI students actually used a recall strategy

during the interview more than did control children, it might be argued that OGI students

actually demonstrated higher levels of number fact knowledge and skills than did control

students.

In summary, in contrast to control teachers, CGI teachers expressed beliefs that were

more consistent with the principle that problem solving should be the focus of instruction

in mathematics. CGI teachers spent more time than did control teachers on problem solving

and less time teaching number facts. Differences in students' achievement on both problem

solving and retail of number facts favored the CGI group.

Assessing Students' Thinking and Building Upon Their Knowledge_

In contrast to control teachers, CGI teachers' knowledge, beliefs, and instructional

practices were more consistent with the principle that it is important to assess children's

thinking. The observation data showed that CGI teachers posed problems and listened to
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the processes that students used to solve problems significantly more often than did control

teachers. CGI teachers also allowed students to use a variety of strategies to solve a

particular problem more frequently than did control teachers. Both posing problems and

listening to process provided the opportunity for teachers to assess students' knowledge.

By allowing students to use any strategy that they chose, the teaches was able to assess

how each student was thinking about the problem rather than requiring the student to

imitate one strategy that the teacher specified. This approach was also more consistent

with the belief expressed by CGI teachers that instruction should facilitate children's con-

struction of knowledge rather than present information and procedures to children.

A typical activity that was observed in CGI classes was for a teacher to pose a problem

to a group of students. After giving some time for students to solve the problem, the

teacher would ask one student to describe how he or she solved the problem. In posing

the problem, the teacher's emphasis was on the process for solving the problem, not the

answer. After this student explained his or her problem solving process, the teacher would

ask if anyone had solved the problem in a different way and give another student a chance

to explain her or his solution. The teacher would continue calling on students until no

student would report a way of solving the problem that had not already been described.

This approach might have served at least two purposes. First, the CGI teacher was able

to assess the problem solving processes of a number of students in the group, thus giving

the teacher knowledge of individual student's problem solving abilities and strategies.

Second, students were allowed to solve the problem at a level that was appropriate for

them. In other words, the teacher facilitated students' learning by encouraging each student

to construct a solution to the problem that was meaningful to him or her.

Control teachers' instruction was characterized by more control over the content of

instruction and less assessment of students' thinking. In contrast to CGI teachers, control

teachers posed problems less often, listened to students' strategies less, and less often en-
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couraged the use of multiple strategies to solve problems. They spent more time reviewing

material covered previously, such as drilling on number facts, and more time giving feedback

to students' answers.

What CGI teachers learned by posing problems and listening to their children solve

problems was reflected in their knowledge of their students. CGI teachers identified the

strategies that their students would use to solve a problem or generate a number fact

significantly more accurately than did control group teachers. Control group teachers

consistently overestimated their students' ability to rcall number facts. By better under-

standing the processes that children were using, CGI teachers may have been able to adapt

instruction so that more appropriate activities were provided to children who were ready

to learn number facts at a recall level. Recall of number facts was higher in CGI classes.

Although we had anticipated that the observation data might show treatment differences

in grouping practices because CGI teachers would attempt to adapt instruction to individual

students, we found no significant differences between CGI and control teachers in their

use of medium groups, small groups, or individual instruction. Thus, while CGI teachers

may have greater knowledge of the individual differences between students, they did not

change their grouping practices. Most teachers in both groups continued to use whole

class and individual seatwork as the primary instructional settings which tend to predominate

in most elementary mathematics classrooms (Romberg & Carpenter, 1986; Peterson, in press).

Conclusions

The results of this study suggest that one effective approach for using the results

of research on children's thinking and problem solving to improve classroom instruction

is to help teachers to understand the principal findings of the research so that teachers

can use this knowledge to evaluate more effectively their students' knowledge and make

more informed instructional decisions. Such an idea is not new. Nearly a century ago,

William James (1900) proposed the same general theme.
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You make a great, a very great mistake, if you think that psychology, being
the science of the minds' laws, is something from which you can deduce definite
methods of instruction for immediate classroom use. Psychology is a science,
and teaching is an art; and sciences never generate arts directly out of themselves.
An intermediate inventive mind must make the application (pp. 7-8).

Our findings also illustrate the fruitfulness of building on knowledge derived from

two distinct paradigmatic approaches to research --classroom-based research on teachers

and teaching and laboratory-based research on children's learning and cognition. Not only

did important new knowledge emerge from the integration of these two paradigmatic ap-

proaches, but also the success of this research effort may herald the transition to a new,

integrated paradigm that has been proposed (Romberg & Carpenter, 1986; Fennema, Carpenter

& Peterson, 1988; Peterson, 1988). This study provides concrete evidence that knowledge

from research on children's thinking and problem solving can make a difference in teachers'

knowledge and beliefs which are reflected in teachers' classroom instruction and in students'

achievement. The study also provides a perspective on what kinds of changes this knowledge

leads to. In particular, teachers in this study seemed to use their specific knowledge they

acquired about children's problem solving to assess their own students and to provide in-

struction that built upon their students' existing knowledge and skills.

In this study, we gave first-grade teachers access to specific research findings that

portrayed children's addition and subtraction concepts which merge from children's informal

problem solving. Teachers' subsequent classroom instruction reflected a problem solving

emphasis. The question remains as to whether similar results would be obtained by giving

teachers access to research based knowledge on children's thinking that focused less on

specific aspects of problem solving. But the results of this study suggest that providing

teachers with access to specific content related knowledge about students' problem solving

can increase significantly teachers' emphasis on problem solving in their own gasses.

Thus, one question that requires further study is: What kinds of knowledge about students'

thinking and problem solving can teachers use most effectively? We speculate that giving
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teachers knowledge of broad principles of learning and problem solving would have had

less effect on teachers' instruction than giving teachers' access to more specific knowledge

about children's problem solving in the particular content domain that was the basis for

this study. In the workshop we provided teachers with explicit examples of children's

problem solving in addition and subtraction that the teachers could relate directly to their

own students, and also discussed examples of assessment techniques that the teachers could

apply in their classrooms. As one of the CGI teachers in our study commented: "I have

always known that it was important to listen to kids, but before I never knew what questions

to ask or what to listen for."

A key feature of this study that distinguishes it from other studies of classroom teaching

was that the mathematics content was a critical variable in the study. Cognitive researchers'

analysis of content, that was the basis for the research on addition and subtraction, provided

a link between the psychology of children's thinking and the mathematics curriculum so

that teachers could apply what they learned about children in their teaching. The cognitive

analysis also provided us, as researchers, with a framework for thinking about and for

assessing teachers' knowledge, beliefs, classroom instruction and for evaluating students'

achievement and beliefs. Although many unanswered questions remain, our results suggest

that giving teachers access to research based knowledge about students thinking and problem

solving can affect profoundly teachers' beliefs about learning and instruction, their classroom

practices, and their knowledge about their students, and most importantly, their students'

achievement and beliefs.
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Table 1

Classification of Word Problems

Problem Type
Result Unknown Change Unknown Start Unknown

Join 1. Connie had 5 marbles
Jim gave hRr 8 more
marbles. How many
does Connie have
altogether?

2. Connie has 5 marbles.
How many more marbles
does she need to win
to have 13 marbles
altogether?

3. Connie had some marbles.
Jim gave her 5 more.
marbles. Now she has 13
marbles. How many
marbles did Connie
have to start with?

Separate 4. Conniehad 13marbles. 5.
She gave 5 marbles to
Jim. Howmanymarbles
does she have left?

Combine

Connie had 13 marbles.
She gave some to Jim.
Now she has 5 marbles
left. How many marbles
did Connie give to
Jim?

6. Connie had some marbles.
She gave 5 to Jim. Now
she has 8 marbles left.
How many marbles did
Connie have to start with?

7. Connie has 5 red marbles and 8 blue
marbles. How many marbles does she
have?

8. Connie has 13 marbles. Five are red
and the rest are blue. How many blue
marbles does Connie have?

Compare 9 . Connie has 13 marbles .

Jim has 5 marbles . How
many more marbles does
Connie have than Jim?

10. Jimhas 5 marbles .

Connie has 8 more
thanJim. Howmany
marbles does Connie
have?

11. Connie has 13 marbles.
She has 5 more marbles
than Jim. How many
marbles does Jim have?
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Table 2

Inter-Observer Agreement on Teacher and Student Observation Categories

Teacher Observation Interrater
Category Agreement

Student Observation Interrater
Category Agreement

SettingSetting

Whole Class 98 Whole Class 90
Medium Group 96 Medium Group 99
Small Group 98 Small Group 97
Teacher/Student 96 Teacher/Student 99
Alone 99 Alone 88

Content Content

Number Fact Problem 97 Represented Problems 94
Represented Problem 96 Word Problems 97
Word Problems 93 Number Fact Problems 94
Other Addition/Subtraction 99 Other Addition/Subtraction 99

Non-Engaged with Content 95

Expected Strategy Strategy Used

Direct Modeling 90 Direct Modeling 90
Advanced Counting 98 Advanced Counting 99
Derived Facts 100 Derived Facts 100
Recall 91 Recall 82
Multiple 82 Not Clear 89
Not Clear 90

Teacher Behavior Lesson Phase

Poses Problem 87 Review 95
Development 94

Process Focus Controlled Practice 99

Student Work (Seatwork) 88
Questions Process 95

Explains Process 96

Gives Feedback to Process 95

Listens to Process 98

Answer Focus

87Questions Answer
Explains Answer 95

Gives Feedback to Answer 92

Listens to Answer 88

Checks/Monitors 98

53



Using Knowledge of Children's Mathematics Thinking 51

Table 3

Reliabilittes of Student Achievement Measures (N 40)

Test Cronbach's alpha

ITBS (Level 6) .84

Computation Posttests

ITBS (Level 7) - Compw:ation .89

Number Facts Interview .83

Problem-Solving Posttests

ITBS (Level 7) - Mathematics Problems .90

Scale 1: Simple AdditiLa and Subtraction Word Problems .72

Scale 2: Complex Addition and Subtraction Word Problems .91

Scalt 3: Advanced Word Problems .90

Problem-Solving Interview .66
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Table 4

Representative Items from Problem- Solvinz Scales

Scale 1: Simple Addition and Subtraction Problems

Maria had 5 guppies. She was given 7 more guppies for her
birthday. How many guppies did she have then?

Garcia had 13 balloons. 5 balloons popped. How many balloons
did he have left?

Scale 2: Complex Addition and Subtraction Problems

Pat has 6 baseball cards. How many more baseball cards does she
need to collect to have 14 altogether?

Larry had some toy cars. He lost 7 toy cars. Now he has 4 cars
left. How many toy cars did Larry have before he lost any of
them?

Jimmy has 12 rings. Amy has 7 rings. How many more rings does
Jimmy have than Amy?

Advanced Problems

Jan needs 11 dollars to buy a puppy. He earned 5 dollars on
Saturday and 2 dollars on Sunday. -low much more money does he
need to earn to buy the puppy?

Ann had 11 pennies. Candies cost 3 pennies each. Ann spent 6
pennies on candies. How many pennies does Ann have left?

Mary has 3 packages of gum. There are 6 pieces of gum in each
package. How many pieces of gum does Mary have altogether?
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Table 5

Means and Standard Deviations of Proportions of CGI and Control Teachers'
Time Spent on Addition and Subtraction Instruction for Each Teacher Coding
Category (N - 40)

Teacher Observation Category
Mean

CGI
(SD)

Control
Mean (SD) t(3

SETTINGa

Whole Class 59.96 (22.97) 61.29 (18.07) -0.20
Medium Group 11.31 (18.47) 3.00 (4.47) 1.95
Small Group 6.20 (8.23) 5.12 (5.45) 0.49
Teacher/Student 20.60 (12.85) 28.0.; (14.15 ) -1.74
Alone 1.93 (3.10) 2.55 (4.1 7) -0.53

CONTENTa

Number Fact Problems 25.95 (13.63) 47.20 ( 21.22) -3.77**
Represented Problems 9.70 (8.33) 8.18 (5.50) 0.68
Word Problems 54.58 (18.84) 36.19 (21.92) 2.84**
e;:ner Addition/Subtraction 9.77 (8.97) u.44 (6.38) 0.54

TEACHER BEHAVIORb

Poses Problem 16.96 (6.22) 10.4 3 (4.64) 3 76**

Focuses on Process 24.96 (7.10) 22 .78 (4.43) 1.17
Questions Process 5.91 (2.96) 4.85 (2.95) 1.13
Explains Process 6.78 (2.49) 8.24 (3.44) -1.54
Gives Feedback to Process 4.81 (2.89) 5.71 (2.48) -1.05
Listens to Process 7.46 (3.88) 3.97 (2.11) 3.54**

Focuses on Answer 28.63 (5.06 ) 30.85 (5.58) -1.32
Questions Answer 11.94 (3.3 2) 11.34 (4.26) 0.49
Explains Answer 1.67 (1. 7) 2.33 (1.24) -1.80
Gives Feedback to Answer 8.04 (3 .10) 10.51 (3.27) -2.45*
Listens to Answer 6.97 ( 3.10) 6.66 (2.67) 0.34

Checks/Monitors 10.89 (6.21) 13.11 (6.35) -1.12

EXPECTED STRATEGYc

Direct Modeling 29.85 (16.10) 29.05 (16.46) .16

Advanced Counting 4.65 (4.18) 10.72 (12.67) -2.04*
Derived Facts 3.1 9 (4.38) 1.43 (3.21) 1.44
Recall 14. 82 (8.83) 18.48 (11.24) -1.15

Multiple 32 .29 (15.51) 21.93 (10.89) 2.45*

Not Clear 5.43 (5.91) 9.95 (10.11) -1.73
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*p < .05
**p < .01

aProportions within this category sum to 100% because one of each of the
subcategories was coded for each time the teacher engaged in addition and
subtraction instruction.

bProportions within this category do not sum to 100% because for each time
the teacher engaged in addition and subtraction instruction, some additional
subcategories of teacher behavior were coded but are not reported here.

cProportions within this category do not sum to 100% because the additional
content category of "other addition and subtraction" might have been coded
when the teacher engaged in addition and subtraction instruction.
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Table 6

Means and Standard Deviations of Proportions of CGI and Control Students'
Subtraction Instruction/Activities for EachTime Engaged in Addition and

Student Coding Category (N 40)

Student Observation Category
Mean

CGI

(SD)

Control
Mean (SD) t(38)

SETTINGa

Whole Class 51.79 (24.38) 53.25 (18.58) -0.21
Medium Group 6.56 (12.91) 1.67 (2.83) 1.65
Small Group 5.92 (4.39) 7.72 (7.25) -0.95
Teacher/Student 1.47 (1.18) 1.59 (1.07) -0.34
Alone 34.26 (16.67) 35.76 (16.45) -0.29

LESSON PHASEb

Review 4.49 (2.78) 8.04 (4.44) 3.03**
Development 19.10 (12.06) 19.71 (10.20) -0.17
Controlled Practice 37.50 (18.93) 30.14 (14.51) 1.38
Student Work (Seatwork) 38.44 (17.88) 41.42 (17.18) -0.54

CONTENTa

Represented Problems 7.56 (5.99) 7.23 (5.82) 0.13
Word Problems 39.93 (15.90) 31.44 (18.64) 1.55
Number Facts Problems 26.90 (13.52) 37.19 (17.58) -2.08*
Other Addition/Subtraction 7.80 (6.76) 6.81 (5.33) 0.51
Non-Engaged with Content 17.81 (7.10) 17.23 (8.00) 0.24

CONTENT X LESSON PHASEb

Review, Development &
Controlled Practice

Represented Problems 4.84 (4.72) 5.49 (5.34) -0.40
Word Problems 36.13 (15.13) 23.27 (13.00) 2.88**
Number Facts 9.03 (5.61) 18.81 (10.81) -3.59**
Other Addition/Subtraction 4.61 (5.78) 4.92 (4.20) -0.20

Student Work

Represented Problems 2.67 (2.73) 1.79 (2.18) 1.13
Word Problems 3.67 (4.33) 8.06 (8.15) -2.13*
NumbrAr Facts 17.78 (12.58) 18.05 (11.09) -.07

Other Addition/Subtraction 3.19 (2.83) 1.85 (2.14) 1.65
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Table 6 continued

Student Observation Category CGI Control
Mean (SD) Mean (SD) t(38)

STRATEGY USEDc

Direct Modeling 24.40 (12.70) 26.46 (12.24) -.52
Advanced Counting 8.35 (6.58) 8.93 (7.95) -.25
Recall 19.91 (5.91) 20.72 (9.89) -.31
Derived Facts 1.63 (2.06) 1.25 (2.36) .54
Not Clear 20.10 (10.58) 18.60 (10.99) .44

*p < .05
**p < .01

aProportions within this category sum to 100% because one of each of the
subcategories was coded for each time the student was expected to be engaged
in addition and subtraction instruction or activities.

bProportions within this category do not sum to 100% because for each time
the student was engaged in addition and subtraction instruction or ac-
tivities, some additional subcategories were coded but are not reported
here.

cProport:s.ons within this category do not sum to 100% because the additional
content category of "other addition and subtraction" and "non-engagement"
might have been coded for content.
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Table 7

Means. Standard Deviations, and t-tests for Teacher Knowledge Tests

(N 40)

Test Maximum CGI Control
Possible Mean Mean

(SD) (SD) t(38)

Number Fact Strategies 5 2 81 2.25 3.51**
(.46) (.58)

Problem-Solving Strategies 6 2.97 2.08 3.56**
(.87) (.71)

Problem-Solving Abilities 8 5.40 5.25 .74

(.75) (.51)

**p < .01
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Table 8

Pretest Means, Posttest Means, Standard Deviations, and ANOVA Results for
Teachers' Beliefs (N - 391)

Belief Scale CGI Control
Mean Mean F Tests
(SD) (SD) Group(G) Time(T) GXT

Scale 1 Pretest

Posttest

40.15
(7.52)

45.20

39.05
(6.24)

42.11
(4.82) (7.08) 1.18 27.65** 1.68

Scale 2 Pretest 48.75 50.26
(5.80) (6.62)

Posttest 53.80 50.16
(4.48) (6.85) 0.38 9.01** 9.79**

Scale 3 Pretest 45.60 45.00
(5.83) (6.01)

Posttest 47.75 44.63
(5.12) (5.06) 1.28 1.87 3.74

Scale 4 Pretest 44.00 44.79
(6.10) (5.42)

Posttest 50.85 47.37
(5.78) (5.51) 0.37 25.68** 5.26*

Total Pretest 178.50 179.11
(22.11) (20.30)

Posttest 197.60 184.26
(16.27) (20.95) 1.13 27.73** 9.16**

*p < .05
**p < .01

1Pretest Belief Scores unavailable for one teacher.
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Table 9

Means, Standard Deviations Adjusted Means, and t-values for Student
Achievement Measures (N s 40)

Test
Maximum
Possible

CGI
Mean SD
(Adjusted Mean)

Control
Mean SD
(Adjusted Mean) t(37)1

Computation

ITBS (Level 6) 27 20.95 2.08 20.05 1.81 1.40
(20.91) (20.10)

Number Facts 5 2.26 .49 1.80 .78 2.23*
(2.25) (1.81)

Problem Solving

ITBS (Level 7) 22 17.28 1.83 16.42 1.89 1.62
-Problems (17.20) (16.50)

Simple Addition/ 11 9.87 .40 9.63 .67
Subtraction2

Complex Addition/ 12 8.60 1.56 7.80 1.51 1.99*3
Subtraction (8.53) (7.87)

Advanced 13 8.40 2.02 8.05 1.29 .52

(8.32) (8.13)

Interview 6 5.62 .28 5.37 .37 2.51*
(5.61) (5.38)

*p < .05

lt-values calculated following ANCOVA approach.
2lnteraction present so ANCOVA could not be calculated.
30ne tailed test.
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Table 10

Means_ Standard Deviations, and t-tests for CGI and Control Students' Con-
fidence. Beliefs, Reported Attention, and Understanding_kN 40)

Student Measure CGI

Mean
(SD)

Control
Mean
(SD)

t(38)

Confidence 10.34 9.77 1.79*1
(.87) (1.14)

Student Beliefs 31.12 29.61 2.97**
(2.01) (1.09)

Reported Understanding 3.30 3.16 1.73*1
(.28) (.22)

Reported Attention 3.43 3.50 -0.82
(.30) (.24)

*p < .05
**p < .01

lone tailed test

F3
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