This document describes an experimental program which is designed to help students from grade 5 to grade 7 who are working at or slightly below grade level maintain mathematics skills. Students receive nine home-study packets containing two to four lessons each. Parents must make a commitment to supervise the home-study. The 25 lessons presented in grade 5 cover topics such as: (1) addition, subtraction, multiplication and division of whole numbers; (2) addition and subtraction of fractions; (3) measurement; and (4) word problems.
Math By Mail

Grade 5

Hampton City Schools
1819 Nickerson Blvd
Hampton, VA 23663
Welcome to Math by Mail!

Grade 5

Please, read the directions carefully. You may want to do this several times. Then look at the example which is worked out for you. Try it on your own to see if you get the same answer. After this you will be ready to work the other exercises. Repeat this process on each section.

Good luck!
WELCOME to MATH BY MAIL!! We hope you'll work hard but also will have fun. GOOD LUCK!

To the Parent: Please help your child get started on each packet and check the lessons to see if they've been completed before they are mailed. If you or your child does not understand the instructions or if help is needed in understanding the mathematics have your child call the math teacher.

I. In this lesson you will
 1. identify even and odd numbers
 2. round numbers

EVEN or ODD

Even numbers are whole numbers divisible by 2. Odd numbers are not divisible by 2.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>odd</td>
<td>odd</td>
<td>odd</td>
<td>odd</td>
<td>odd</td>
<td>odd</td>
</tr>
</tbody>
</table>

Even or odd?

1. 36 even
2. 15 even
3. 13 even
4. 20 even
5. 19 even
6. 25 even
7. 100 even
8. 102 even
9. 105 even
10. 231 even
11. 232 even
12. 233 even
13. 2 x 33 even
14. 2 x 47
15. 2 x 80
16. 1002
17. 2361
18. 4173
II. ROUNDING

To the nearest 10

In making an estimate we can round to the nearest 10.

232 is closer to 230 (4 or less - round down)
238 is closer to 240 (5 or more - round up)

Round to the nearest 10

<table>
<thead>
<tr>
<th>number</th>
<th>rounded to the nearest 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>93</td>
<td>90</td>
</tr>
<tr>
<td>384</td>
<td>380</td>
</tr>
<tr>
<td>496</td>
<td>500</td>
</tr>
<tr>
<td>1. 22</td>
<td></td>
</tr>
<tr>
<td>2. 18</td>
<td></td>
</tr>
<tr>
<td>3. 54</td>
<td></td>
</tr>
<tr>
<td>4. 183</td>
<td></td>
</tr>
<tr>
<td>5. 69</td>
<td></td>
</tr>
<tr>
<td>6. 846</td>
<td></td>
</tr>
<tr>
<td>7. 908</td>
<td></td>
</tr>
</tbody>
</table>

Round to the nearest 100

<table>
<thead>
<tr>
<th>number</th>
<th>rounded to the nearest 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>100</td>
</tr>
<tr>
<td>686</td>
<td>700</td>
</tr>
<tr>
<td>3961</td>
<td>4000</td>
</tr>
<tr>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>8. 7609</td>
<td></td>
</tr>
</tbody>
</table>
II. ROUNIDDNG Continued:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1163</td>
</tr>
<tr>
<td>10</td>
<td>851</td>
</tr>
<tr>
<td>11</td>
<td>756</td>
</tr>
<tr>
<td>12</td>
<td>2638</td>
</tr>
<tr>
<td>13</td>
<td>1800</td>
</tr>
<tr>
<td>14</td>
<td>931</td>
</tr>
</tbody>
</table>

Round to the nearest 1000

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7,269</td>
<td>7,000</td>
</tr>
<tr>
<td>29,898</td>
<td>30,000</td>
</tr>
<tr>
<td>675,423</td>
<td></td>
</tr>
<tr>
<td>2,650</td>
<td></td>
</tr>
<tr>
<td>380,500</td>
<td></td>
</tr>
<tr>
<td>593,579</td>
<td></td>
</tr>
<tr>
<td>43,296</td>
<td></td>
</tr>
<tr>
<td>1,900</td>
<td></td>
</tr>
<tr>
<td>85,382</td>
<td></td>
</tr>
</tbody>
</table>

Hampton City Schools Mathematics Department Lesson One
LESSON TWO

To the PARENT: In this lesson your child will:

Write word names for numbers.

LOOK over the place value chart.
Then read the two examples.

```
\(\begin{array}{c|c}
\text{Thousands} & \text{Ones} \\
\hline
4 & 2 \\
3 & 8 \\
\end{array}\)  
```

four thousand two hundred thirty-eight
six thousand one hundred three

NOW try the following.

I. Write word names for the following

1. 6,380 six thousand three hundred eighty
2. 8,002
3. 5,030
4. 4,063
5. 7,777
6. 822
7. 84
8. 189
9. 3,087
10. 6,700

Hampton City Schools Mathematics Department
Lesson Two
Write the number for each

11. Eight hundred six

12. Seven thousand, seven

13. Three thousand, four hundred

14. Two hundred thirty-nine

15. Four thousand, twenty

16. Five thousand, sixty-three

17. One hundred ninety-nine

18. Five thousand, fifteen

19. Eight thousand, three hundred

20. Twenty-nine

21. Two hundred ten

22. BUILD the number that has:

 Thousands: [] [] [] []

 6 in the thousands place
 9 in the ones place
 3 in the tens place
 0 in the hundreds place
 8 in the hundred thousands place
 2 in the ten thousands place

23. Write the number for:

Four hundred twenty-two thousand, nine hundred two

Hampton City Schools Mathematics Department
Lesson Two
II. Circle the digit in the indicated place. Look back at the place value chart if you have trouble. (Write number on answer sheet.)

1. 13, 307 thousands
2. 89,2_____ ones
3. 428,3___ ten thousands
4. 5, 784 tens
5. 1,378,255 hundred thousands
6. 6,875 tens
7. 1,036 hundreds
8. 32,866 thousands
9. 82,300 hundreds
10. 596 ones
LESSON THREE

TO THE PARENT: In this lesson your child will add whole numbers. Please have your child review the basic addition facts. Use the enclosed basic fact sheet as a 3 minute timed test.

<table>
<thead>
<tr>
<th>T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>+2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Add the ones; leave the tens unchanged.

<table>
<thead>
<tr>
<th>H T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>+1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0 2</td>
</tr>
</tbody>
</table>

Add the ones. Change 15 to 1 ten and 5 ones. Write 5 in the ones place. Add the 1 ten to 7.

<table>
<thead>
<tr>
<th>T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>+3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>+7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Add the ones. Change 12 to 1 ten and 2 ones. Write 2 in ones place. Add the 1 ten to 9.

<table>
<thead>
<tr>
<th>T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>+7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Change 10 to 1 ten and 0 ones. Write the 0; add the 1 in hundreds place.

<table>
<thead>
<tr>
<th>T</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>+7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Add the ones.

I. Try These

1. 16 +3 2. 38 +6 3. 47 +9 4. 36 +7 5. 48 +2

6. 97 +8 7. 65 +17 8. 49 +73 9. 53 +96 10. 36 +68

11. 91 +49 12. 78 +89

Hampton City Schools Mathematics Department
Lesson Three
II. Example: Add $357 + 639 + 128$

Step 1

\[
\begin{array}{c}
357 \\
639 \\
+128 \\
\hline
4\quad4
\end{array}
\]

Step 2

\[
\begin{array}{c}
357 \\
639 \\
+128 \\
\hline
1124
\end{array}
\]

Step 3

\[
\begin{array}{c}
357 \\
639 \\
+128 \\
\hline
1124
\end{array}
\]

Try These !!!!

1. $31 + 43 + 37$
2. $137 + 68$
3. $273 + 65 + 456$
4. $682 + 427 + 323$

5. $1672 + 381 + 235$
6. $2001 + 376 + 423$
7. $485 + 1313 + 697$
8. $2860 + 523 + 3576$

Hampton City Schools Mathematics Department Lesson Three

-2-
PLEASE ADD

1. \[
\begin{array}{c}
472 \\
219
\end{array}
\]

2. \[
\begin{array}{c}
404 \\
868
\end{array}
\]

3. \[
\begin{array}{c}
370 \\
246
\end{array}
\]

4. \[
\begin{array}{c}
864 \\
912
\end{array}
\]

5. \[
\begin{array}{c}
254 \\
462
\end{array}
\]

6. \[
\begin{array}{c}
666 \\
963
\end{array}
\]

7. \[
\begin{array}{c}
196 \\
325
\end{array}
\]

8. \[
\begin{array}{c}
246 \\
854
\end{array}
\]

All Sums have a 1.

Lesson Three
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3+7</td>
<td>2+5=</td>
<td>6+0=</td>
<td>2+3=</td>
</tr>
<tr>
<td>5+9=</td>
<td>6+4=</td>
<td>1+0=</td>
<td>9+1=</td>
</tr>
<tr>
<td>8+3=</td>
<td>7+0=</td>
<td>8+5=</td>
<td>1+3=</td>
</tr>
<tr>
<td>7+4=</td>
<td>2+0=</td>
<td>8+4=</td>
<td>5+3=</td>
</tr>
<tr>
<td>8+0=</td>
<td>8+6=</td>
<td>5+7=</td>
<td>1+4=</td>
</tr>
<tr>
<td>0+2=</td>
<td>6+6=</td>
<td>7+9=</td>
<td>5+4=</td>
</tr>
<tr>
<td>1+9=</td>
<td>4+1=</td>
<td>3+2=</td>
<td>6+9=</td>
</tr>
<tr>
<td>9+7=</td>
<td>4+8=</td>
<td>3+4=</td>
<td>0+6=</td>
</tr>
<tr>
<td>2+2=</td>
<td>9+9=</td>
<td>4+3=</td>
<td>9+6=</td>
</tr>
<tr>
<td>2+9=</td>
<td>9+5=</td>
<td>0+5=</td>
<td>3+1=</td>
</tr>
<tr>
<td>1+5=</td>
<td>3+6=</td>
<td>8+8=</td>
<td>0+4=</td>
</tr>
<tr>
<td>3+8=</td>
<td>4+6=</td>
<td>1+8=</td>
<td>7+8=</td>
</tr>
<tr>
<td>1+2=</td>
<td>2+8=</td>
<td>5+1=</td>
<td>0+7=</td>
</tr>
<tr>
<td>4+2=</td>
<td>2+6=</td>
<td>8+7=</td>
<td>4+4=</td>
</tr>
<tr>
<td>5+0=</td>
<td>9+2=</td>
<td>1+1=</td>
<td>0+3=</td>
</tr>
<tr>
<td>7+7=</td>
<td>6+2=</td>
<td>8+9=</td>
<td>2+4=</td>
</tr>
<tr>
<td>7+1=</td>
<td>5+8=</td>
<td>7+3=</td>
<td>6+5=</td>
</tr>
<tr>
<td>5+5=</td>
<td>2+1=</td>
<td>9+0=</td>
<td>6+3=</td>
</tr>
<tr>
<td>9+4=</td>
<td>7+6=</td>
<td>0+0=</td>
<td>4+7=</td>
</tr>
<tr>
<td>6+1=</td>
<td>5+2=</td>
<td>0+1=</td>
<td>4+5=</td>
</tr>
<tr>
<td>3+3=</td>
<td>4+0=</td>
<td>3+5=</td>
<td>4+9=</td>
</tr>
<tr>
<td>2+7=</td>
<td>0+8=</td>
<td>7+5=</td>
<td>6+8=</td>
</tr>
<tr>
<td>8+2=</td>
<td>1+6=</td>
<td>3+9=</td>
<td>1+7=</td>
</tr>
<tr>
<td>9+3=</td>
<td>0+9=</td>
<td>6+7=</td>
<td>3+0=</td>
</tr>
<tr>
<td>5+6=</td>
<td>8+1=</td>
<td>7+2=</td>
<td>9+8=</td>
</tr>
</tbody>
</table>
TO THE PARENT: In this lesson your child will subtract whole numbers. Please have your child review the basic subtraction facts. Your child should be able to complete the enclosed basic facts sheet in 3 minutes.

Remember

Subtract 5723 - 2457

I. Step 1
 5723
 -2457
 3266

Step 2
 5723
 -2457
 3266

Step 3
 5723
 -2457
 3266

Step 4
 5723
 -2457
 3266

Try These !!!

1. 346 2. 478 3. 680 4. 879
 -38 -35 -59 -425

5. 385 6. 787 7. 584 8. 700
 -118 -249 -397 -578

9. 7542 10. 5201 11. 7539 12. 7895
 -891 -4891 -3876 -6768

Hampton City Schools Mathematics Department

Lesson Four
II. SUBTRACTING

Subtract.

1. $247 - 168 = _____$

2. $325 - 118 = _____$

3. $533 - 467 = _____$

4. $7936 - 187 = _____$

5. $9241 - 5436 = _____$

6. $3721 - 1953 = _____$

7. $67 - 16 = 51$

8. $--- = _____$

9. $--- = _____$

10. $--- = _____$

11. $--- = _____$

12. $--- = _____$

Here's how:

$671 - 192 = 385$

$571 - 16 = 256$

$434 - 873 = 95$

Hampton City Schools Mathematics Department

Lesson Four
III. Subtract.

| | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. |
|---|------|
| | 55 | 436 | 92 | 845 | 52 | 200 | 96 | 436 | 471 | 201 | 771 | 565 | 541 | 323 | 625 | 75 | 753 | 676 | 74 | 78 | 860 | 43 |
See how many of these you can answer correctly in 3 minutes. Have someone time you and check your answers. THEN complete the remaining facts. DO NOT MARK ELY.

11 - 5	13 - 6	7 - 5	9 - 9
8 - 5	12 - 9	15 - 7	7 - 1
5 - 5	10 - 4	12 - 6	9 - 5
4 - 1	8 - 7	15 - 9	17 - 8
6 - 3	7 - 6	11 - 4	8 - 1
10 - 5	11 - 6	7 - 0	12 - 7
7 - 2	8 - 8	10 - 3	11 - 7
4 - 0	10 - 9	13 - 1	12 - 5
5 - 1	14 - 5	16 - 7	8 - 3
5 - 0	9 - 4	2 - 1	10 - 2
11 - 9	6 - 5	9 - 0	12 - 8
4 - 2	15 - 6	2 - 0	15 - 8
9 - 8	6 - 2	14 - 6	10 - 7
0 - 0	6 - 1	13 - 5	6 - 4
18 - 9	13 - 8	3 - 0	8 - 0
4 - 4	12 - 4	14 - 9	1 - 1
9 - 6	16 - 9	5 - 3	3 - 3
7 - 4	11 - 3	13 - 7	9 - 2
2 - 2	8 - 0	5 - 4	7 - 3
9 - 1	11 - 2	13 - 9	10 - 1
7 - 7	12 - 3	8 - 4	16 - 8
6 - 0	6 - 6	9 - 7	14 - 7
10 - 6	13 - 4	8 - 2	5 - 2
11 - 8	17 - 9	1 - 0	3 - 2
14 - 8	9 - 3	4 - 3	17
10 - 8			
TO THE PARENT: Have your child take the enclosed timed multiplication test. Your child should finish in three minutes. If not there should be drill on these X facts.

In this lesson your child will find products of up to 4 digit numbers X 2 digit numbers.

Remember

I.

EXERCISE SET 1:
Please multiply. Some have been worked for you.

1. \[
\begin{array}{c}
35 \\
\times 8 \\
\hline
280
\end{array}
\]

2. \[
\begin{array}{c}
67 \\
\times 4 \\
\hline
268
\end{array}
\]

3. \[
\begin{array}{c}
46 \\
\times 5 \\
\hline
230
\end{array}
\]

4. \[
\begin{array}{c}
62 \\
\times 3 \\
\hline
186
\end{array}
\]

5. \[
\begin{array}{c}
84 \\
\times 6 \\
\hline
504
\end{array}
\]

6. \[
\begin{array}{c}
48 \\
\times 8 \\
\hline
384
\end{array}
\]

7. \[
\begin{array}{c}
66 \\
\times 9 \\
\hline
594
\end{array}
\]

8. \[
\begin{array}{c}
57 \\
\times 7 \\
\hline
399
\end{array}
\]

9. \[
\begin{array}{c}
683 \\
\times 7 \\
\hline
4781
\end{array}
\]

10. \[
\begin{array}{c}
941 \\
\times 8 \\
\hline
7528
\end{array}
\]

11. \[
\begin{array}{c}
782 \\
\times 6 \\
\hline
4692
\end{array}
\]

12. \[
\begin{array}{c}
275 \\
\times 9 \\
\hline
2475
\end{array}
\]

13. \[
\begin{array}{c}
608 \\
\times 4 \\
\hline
2432
\end{array}
\]

14. \[
\begin{array}{c}
909 \\
\times 5 \\
\hline
4545
\end{array}
\]

15. \[
\begin{array}{c}
803 \\
\times 3 \\
\hline
2409
\end{array}
\]

16. \[
\begin{array}{c}
509 \\
\times 9 \\
\hline
4581
\end{array}
\]
Multiply: 526 \times 27

Step 1
\[
\begin{array}{c}
526 \\
\times 27 \\
\hline
\end{array}
\]
3682

Step 2
\[
\begin{array}{c}
526 \\
\times 27 \\
\hline
3682 \\
10520 \\
\hline
14202
\end{array}
\]

Exercise Set 2:
Please multiply. Some have been worked for you.

1. \[
\begin{array}{c}
99 \\
\times 25 \\
\hline
495 \\
1980 \\
\hline
2475
\end{array}
\]

2. \[
\begin{array}{c}
37 \\
\times 18 \\
\hline
666
\end{array}
\]

3. \[
\begin{array}{c}
59 \\
\times 74 \\
\hline
4312
\end{array}
\]

4. \[
\begin{array}{c}
763 \\
\times 48 \\
\hline
30520 \\
36624
\end{array}
\]

5. \[
\begin{array}{c}
376 \\
\times 87 \\
\hline
32952 \\
31902
\end{array}
\]

6. \[
\begin{array}{c}
965 \\
\times 64 \\
\hline
60160 \\
5840
\end{array}
\]

7. \[
\begin{array}{c}
6753 \\
\times 76 \\
\hline
513228
\end{array}
\]

8. \[
\begin{array}{c}
9132 \\
\times 41 \\
\hline
364502 \\
364502
\end{array}
\]

9. \[
\begin{array}{c}
5432 \\
\times 98 \\
\hline
530136 \\
530136
\end{array}
\]
III. Work the multiplication problems below.

1. \[35 \times 26\]
2. \[17 \times 36\]
3. \[22 \times 14\]

4. \[34 \times 20\]
5. \[138 \times 4\]
6. \[19 \times 32\]
7. \[28 \times 12\]

8. \[79 \times 9\]
9. \[19 \times 16\]
10. \[22 \times 34\]
11. \[17 \times 26\]
12. \[43 \times 12\]

13. \[14 \times 21\]
14. \[28 \times 10\]
15. \[23 \times 10\]
16. \[13 \times 42\]
17. \[18 \times 16\]

18. \[24 \times 20\]
19. \[23 \times 23\]
20. \[32 \times 23\]
21. \[32 \times 12\]
22. \[86 \times 12\]

23. \[93 \times 27\]
24. \[14 \times 62\]
25. \[18 \times 32\]
26. \[14 \times 72\]
<table>
<thead>
<tr>
<th>4x0=</th>
<th>8x2=</th>
<th>6x7=</th>
<th>1x3=</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x0=</td>
<td>7x4=</td>
<td>8x5=</td>
<td>6x1=</td>
</tr>
<tr>
<td>0x1=</td>
<td>1x6=</td>
<td>5x4=</td>
<td>7x1=</td>
</tr>
<tr>
<td>0x3=</td>
<td>5x6=</td>
<td>8x0=</td>
<td>6x5=</td>
</tr>
<tr>
<td>8x3=</td>
<td>6x9=</td>
<td>4x3=</td>
<td>0x5=</td>
</tr>
<tr>
<td>2x0=</td>
<td>5x7=</td>
<td>3x5=</td>
<td>7x7=</td>
</tr>
<tr>
<td>5x0=</td>
<td>2x1=</td>
<td>9x2=</td>
<td>7x6=</td>
</tr>
<tr>
<td>4x5=</td>
<td>0x6=</td>
<td>4x7=</td>
<td>3x2=</td>
</tr>
<tr>
<td>6x0=</td>
<td>8x7=</td>
<td>2x4=</td>
<td>6x4=</td>
</tr>
<tr>
<td>0x8=</td>
<td>9x6=</td>
<td>3x1=</td>
<td>4x2=</td>
</tr>
<tr>
<td>4x6=</td>
<td>9x9=</td>
<td>7x9=</td>
<td>5x3=</td>
</tr>
<tr>
<td>3x0=</td>
<td>5x8=</td>
<td>0x7=</td>
<td>6x3=</td>
</tr>
<tr>
<td>1x9=</td>
<td>4x8=</td>
<td>1x7=</td>
<td>3x6=</td>
</tr>
<tr>
<td>4x9=</td>
<td>8x8=</td>
<td>8x4=</td>
<td>3x8=</td>
</tr>
<tr>
<td>7x2=</td>
<td>0x0=</td>
<td>5x2=</td>
<td>1x5=</td>
</tr>
<tr>
<td>4x1=</td>
<td>9x8=</td>
<td>2x8=</td>
<td>8x1=</td>
</tr>
<tr>
<td>4x4=</td>
<td>7x3=</td>
<td>2x7=</td>
<td>6x8=</td>
</tr>
<tr>
<td>0x2=</td>
<td>2x5=</td>
<td>1x1=</td>
<td>8x9=</td>
</tr>
<tr>
<td>9x4=</td>
<td>3x3=</td>
<td>3x9=</td>
<td>9x7=</td>
</tr>
<tr>
<td>5x1=</td>
<td>1x4=</td>
<td>2x3=</td>
<td>5x5=</td>
</tr>
<tr>
<td>1x8=</td>
<td>9x0=</td>
<td>1x2=</td>
<td>8x6=</td>
</tr>
<tr>
<td>2x6=</td>
<td>6x6=</td>
<td>0x9=</td>
<td>9x3=</td>
</tr>
<tr>
<td>7x5=</td>
<td>2x9=</td>
<td>6x2=</td>
<td>3x7=</td>
</tr>
<tr>
<td>9x1=</td>
<td>0x4=</td>
<td>1x0=</td>
<td>7x8=</td>
</tr>
<tr>
<td>9x5=</td>
<td>2x2=</td>
<td>5x9=</td>
<td>3x4=</td>
</tr>
</tbody>
</table>

See how many of these you can answer correctly in 2 minutes. Have someone help you check your answers. Then complete the remaining facts. **Do not mark in.**
LESSON SIX

TO THE PARENT: Have your child take the
timed division math facts
test. Your child should get
them correct in three minutes.
If not, drill your child on these
facts.

In this lesson your child will divide
with one and two digit divisors.

Remember

Divide: 568 ÷ 6

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

EXERCISE SET 1:
Please divide. Some have been worked for you.

1. 5 | 3 5 3

2. 6 | 5 5 4 1

3. 8 | 3 4 7

Hampton City Schools Mathematics Department Lesson Six
Divide: 6820 ÷ 76

Step 1

7 6 \underline{6 8 2 0}

How many 7's in 68? Try 9.

Step 2

7 6 \underline{6 8 2 0}

Too big! Try 8.

Step 3

\[
\begin{array}{c}
7 6 \\
6 8 2 0 \\
7 4 0 \\
\end{array}
\]

8 is okay
multiply 8\times76
then subtract and bring down.

Step 4

\[
\begin{array}{c}
7 6 \\
6 8 2 0 \\
7 4 0 \\
\end{array}
\]

How many 7's in 74? Try 9.

Step 5

\[
\begin{array}{c}
8 9 R 5 6 \\
7 6 \\
6 8 2 0 \\
6 0 8 \\
7 4 0 \\
-6 8 4 \\
5 6 \\
\end{array}
\]

Multiply 9 \times 76.
Subtract.
Remainder is 56
II.

NAME

EXERCISE SET 2:
Please divide. One has been worked for you.

1. $3 \div 5 = \frac{14}{12} \quad 2. \quad 3 \div 8 = \frac{9}{2} \quad 3. \quad 3 \div 0 = \frac{678}{2}$

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
35 & 40 \text{ R}12 \\
-140 & \\
\hline
12 & 12 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
38 & 92 \\
-32 & \\
\hline
6 & 12 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
30 & 678 \\
-30 & \\
\hline
0 & 12 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
65 & 592 \\
-50 & \\
\hline
15 & 15 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
62 & 755 \\
-62 & \\
\hline
3 & 3 \\
\hline
\end{array} \]

\[\begin{array}{c|c}
\text{Division} & \text{Quotient} \\
\hline
53 & 2938 \\
-53 & \\
\hline
0 & 0 \\
\hline
\end{array} \]
Math Facts

See how many of these you can answer correctly in 3 minutes. Have someone time you and check your answers. **Then** complete the remaining facts.

<table>
<thead>
<tr>
<th>Name</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \div 2$</td>
<td>$12 \div 3$</td>
</tr>
<tr>
<td>$8 \div 4$</td>
<td>$0 \div 8$</td>
</tr>
<tr>
<td>$64 \div 8$</td>
<td>$0 \div 4$</td>
</tr>
<tr>
<td>$30 \div 6$</td>
<td>$48 \div 6$</td>
</tr>
<tr>
<td>$0 \div 7$</td>
<td>$12 \div 6$</td>
</tr>
<tr>
<td>$21 \div 3$</td>
<td>$2 \div 1$</td>
</tr>
<tr>
<td>$27 \div 9$</td>
<td>$14 \div 2$</td>
</tr>
<tr>
<td>$35 \div 5$</td>
<td>$1 \div 1$</td>
</tr>
<tr>
<td>$28 \div 4$</td>
<td>$5 \div 5$</td>
</tr>
<tr>
<td>$56 \div 7$</td>
<td>$0 \div 9$</td>
</tr>
<tr>
<td>$24 \div 3$</td>
<td>$0 \div 6$</td>
</tr>
<tr>
<td>$36 \div 4$</td>
<td>$20 \div 5$</td>
</tr>
<tr>
<td>$0 \div 3$</td>
<td>$32 \div 8$</td>
</tr>
<tr>
<td>$4 \div 4$</td>
<td>$00 \div 5$</td>
</tr>
<tr>
<td>$54 \div 6$</td>
<td>$24 \div 8$</td>
</tr>
<tr>
<td>$3 \div 1$</td>
<td>$6 \div 3$</td>
</tr>
<tr>
<td>$24 \div 4$</td>
<td>$6 \div 6$</td>
</tr>
<tr>
<td>$10 \div 2$</td>
<td>$\cdot 27 \div 3$</td>
</tr>
<tr>
<td>$4 \div 2$</td>
<td>$9 \div 1$</td>
</tr>
<tr>
<td>$0 \div 1$</td>
<td>$42 \div 7$</td>
</tr>
<tr>
<td>$18 \div 6$</td>
<td>$10 \div 5$</td>
</tr>
<tr>
<td>$14 \div 7$</td>
<td>$81 \div 9$</td>
</tr>
<tr>
<td>$7 \div 7$</td>
<td>$42 \div 6$</td>
</tr>
</tbody>
</table>
Please Divide

1. \(36)\overline{864}\)

2. \(19)\overline{703}\)

3. \(27)\overline{972}\)

4. \(34)\overline{782}\)

5. \(32)\overline{1312}\)

6. \(65)\overline{4680}\)

7. \(81)\overline{2997}\)

8. \(92)\overline{2484}\)

9. \(43)\overline{2709}\)
IV. Divide. Use the clues to complete the cross number puzzle.

ACROSS
1. 154 ÷ 14
2. 1144 ÷ 88
3. 1184 ÷ 37
4. 1690 ÷ 65
5. 2752 ÷ 43
6. 315 ÷ 7
7. 1767 ÷ 31
8. 3744 ÷ 52

DOWN
1. 588 ÷ 21

Find the quotients and remainders:

10. 42 \underline{1786}
11. 6 \underline{517}
12. 90 \underline{7124}
13. 36 \underline{509}
14. 8 \underline{635}
15. 54 \underline{2808}
16. 61 \underline{803}
17. 10 \underline{907}

Hampton City Schools Mathematics Department
Lesson Six
LESSON SEVEN

TO THE PARENT: In this lesson your child will find the greatest common factor (GCF) and the least common multiple (LCM). It is important that your child does not confuse the two.

FACTORs

I. The factors of 12 are 1, 2, 3, 4, 6, 12

The factors of 15 are 1, 3, 5, 15

The common factors of 12 and 15 are 1 and 3.

The greatest common factor (GCF) of 12 and 15 is 3.

EXERCISE SET 1:
Fill in the table. Some have been worked for you.

<table>
<thead>
<tr>
<th>NUMBERS</th>
<th>FACTORS</th>
<th>COMMON FACTORS</th>
<th>GREATEST COMMON FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1, 2, 4, 8</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1, 2, 3, 4, 6, 12</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1, 2, 4, 8, 16</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1, 2, 4, 5, 10, 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1, 2, 3, 6, 9, 18</td>
<td>1, 3,</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1, 3, 9, 27</td>
<td>1, 3,</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1, 2, 7, 14</td>
<td>1,</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1, 2, 4, 8, 16</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>1, 2, 5, 10, 25, 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1, 3, 5, 15, 25, 75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>7</td>
<td>1,</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1, 3, 9</td>
<td>1,</td>
<td></td>
</tr>
</tbody>
</table>

Hampton City Schools Mathematics Department Lesson Seven
II.

EXERCISE SET 2:
Find the greatest common factor for each pair of numbers. One has been worked for you.

1. $7 \rightarrow 13 \rightarrow$
 - GCF = 7

2. $3 \rightarrow 21 \rightarrow$
 - GCF = 3

3. $10 \rightarrow 30 \rightarrow$
 - GCF = 10

4. $24 \rightarrow 1, 2, 3, 4, 6, 8, 12, 24$
 - GCF = 12
 $36 \rightarrow 1, 2, 3, 4, 6, 9, 12, 18, 36$

5. $8 \rightarrow 18 \rightarrow$
 - GCF = 2

6. $15 \rightarrow 35 \rightarrow$
 - GCF = 5

7. $15 \rightarrow 21 \rightarrow$

III. MULTIPLES

When we multiply a number such as 3 by 0, by 1, by 2, we get multiples of 3.

- $0 \times 3 \rightarrow 0$
- $1 \times 3 \rightarrow 3$
- $2 \times 3 \rightarrow 6$
- $3 \times 3 \rightarrow 9$
- $4 \times 3 \rightarrow 12$

(0, 3, 6, 9, 12) are multiples of 3

EXERCISE SET 3:

1. Multiples of 7: {0, 7, 14, □, △, ○, ...}
2. Multiples of 6: {0, 6, 12, □, △, ○, ...}
3. Multiples of 11: {0, 11, 22, □, △, ○, ...}
4. Multiples of 12: {0, 12, 24, □, △, ○, ...}
5. Multiples of 8: {□, △, ○, 24, 32, 40, ...}
6. Multiples of 9: {□, △, ○, 27, 36, 45, ...}

(non zero) multiples of 12 are {12, 24, 36, 48, ...}

(non zero) multiples of 18 are {18, 36, 54, 72, ...}

least common multiple (LCM) of 12 and 18 is 36

Hampton City Schools Mathematics Department Lesson Seven
-2-
IV.

EXERCISE SET 4:

List the non zero multiples of each number. Then find the least common multiple for each pair. Two have been worked for you.

1. To find the multiples of 4 multiply 4 by 1, 2, 3, 4, etc. Do the same for 14. Then find the first common multiple.

 \[
 4 \rightarrow 4, 8, 12, 16, 20, 24, 28, 32, 36, \ldots
 \]

 \[
 14 \rightarrow 14, 28, \ldots
 \]

2. 12
 20

3. 9
 15

4. 6
 21

5. 8
 12

6. 10 \rightarrow 10, 20, 30, 40, 50, 60, 70, 80, \boxed{90}
 9 \rightarrow 9, 18, 27, 36, 45, 54, 63, 72, 81, \boxed{90}

7. 4
 26

8. 6
 96

9. 10
 25

10. 7
 12

11. Buns come in packages of 8. Hot dogs in packages of 10. What is the least number packages of hot dogs and of buns you should buy so you'll have the same number of buns as hot dogs?
Math Facts

See how many of these you can answer correctly in 3 minutes.

Have someone time you and check your answers. THEN complete the remaining facts.

<table>
<thead>
<tr>
<th>Fact</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 \times 4</td>
<td>16</td>
</tr>
<tr>
<td>5 \div 5</td>
<td>1</td>
</tr>
<tr>
<td>10 - 4</td>
<td>6</td>
</tr>
<tr>
<td>36 \div 4</td>
<td>9</td>
</tr>
<tr>
<td>7 \times 7</td>
<td>49</td>
</tr>
<tr>
<td>15 - 7</td>
<td>8</td>
</tr>
<tr>
<td>12 \div 3</td>
<td>4</td>
</tr>
<tr>
<td>7 + 3</td>
<td>10</td>
</tr>
<tr>
<td>27 \div 3</td>
<td>9</td>
</tr>
<tr>
<td>13 - 9</td>
<td>4</td>
</tr>
<tr>
<td>0 \div 6</td>
<td>0</td>
</tr>
<tr>
<td>10 - 8</td>
<td>2</td>
</tr>
<tr>
<td>31 - 0</td>
<td>31</td>
</tr>
<tr>
<td>9 - 1</td>
<td>8</td>
</tr>
<tr>
<td>18 \div 3</td>
<td>6</td>
</tr>
<tr>
<td>5 + 7</td>
<td>12</td>
</tr>
<tr>
<td>6 \times 6</td>
<td>36</td>
</tr>
<tr>
<td>28 \div 4</td>
<td>7</td>
</tr>
<tr>
<td>16 - 7</td>
<td>9</td>
</tr>
<tr>
<td>11 - 3</td>
<td>8</td>
</tr>
<tr>
<td>64 \div 8</td>
<td>8</td>
</tr>
<tr>
<td>45 \div 9</td>
<td>5</td>
</tr>
</tbody>
</table>

Draw a line through any facts you can’t remember.

Math Form ASHD Comb-8 (New '82)

Do not mail in.
TO THE PARENT: In this lesson your child will write equivalent fractions.

Fractions:

1. Fractional part eaten
 \[\frac{3}{5} \]

2. Fractional part of the cup filled
 \[\frac{3}{4} \]

3. Fractional part of the marbles that are dark
 \[\frac{6}{8} \]

EXERCISE SET 1:
Name the fraction for the part that is shaded.

1.

2.

3.

4.

5.

Hampton City Schools Mathematics Department Lesson Eight
6. How much of the carton is left? 7. What part has been eaten?
 (the light part)

8. What part has been eaten? 9. What part of the eggs are brown?
 (the dark part)

Equivalent fractions name the same number.

\[
\frac{1}{2} = \frac{2}{4} = \frac{3}{6}
\]

EXERCISE SET 2:
Study the diagrams and write the equivalent fractions for the shaded parts.

1.

Hampton City Schools Mathematics Department Lesson Eight
Write equivalent fractions for the shaded parts.

2.

Write two names for the shaded parts. The first one has been done for you.

3.

4.

5.

\[
\frac{6}{9} = \frac{2}{3}
\]

6.

7.

8.

Hampton City Schools Mathematics Department

Lesson Eight
Finding equivalent fractions:

Examples:

\[\frac{2}{3} = \frac{2 \times 3}{3 \times 3} = \frac{6}{9} \]

\[\frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \]

\[\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10} \]

III.

\[\frac{3}{8} = \frac{3 \times 6}{8 \times 6} = \frac{18}{48} \]

EXERCISE SET 3:
Give the missing fractions in each exercise.

1. \[\frac{1}{3} \times \frac{1}{4} \]
 \[\frac{1}{3} \times \frac{2}{2} \]
 \[\frac{1}{3} \times \frac{3}{3} \]
 \[\frac{1}{3} \times \frac{4}{4} \]
 \[\frac{1}{3} \times \frac{5}{5} \]

 \[\frac{1}{3} \]
 \[\frac{2}{6} \]

2. \[\frac{2}{5} \times \frac{1}{1} \]
 \[\frac{2}{5} \times \frac{2}{2} \]
 \[\frac{2}{5} \times \frac{3}{3} \]
 \[\frac{2}{5} \times \frac{4}{4} \]
 \[\frac{2}{5} \times \frac{5}{5} \]

 \[\frac{2}{5} \]

3. \[\frac{3}{10} \times \frac{4}{4} \]
 \[\frac{3}{10} \times \frac{10}{10} \]
 \[\frac{3}{10} \times \frac{20}{20} \]
 \[\frac{3}{10} \times \frac{25}{25} \]
 \[\frac{3}{10} \times \frac{100}{100} \]

 \[\frac{12}{40} \]

4. \[\frac{3}{4} \times \frac{5}{5} \]
 \[\frac{3}{4} \times \frac{8}{8} \]
 \[\frac{3}{4} \times \frac{25}{25} \]
 \[\frac{3}{4} \times \frac{100}{100} \]
 \[\frac{3}{4} \times \frac{1000}{1000} \]

 \[\frac{15}{20} \]

Hampton City Schools Mathematics Department
Lesson Eight
Find what you must multiply the numerator and denominator by to get the given denominator. Find the numerator.

5. \(\frac{4}{5} = \frac{4 \times \text{ } 3}{5 \times \text{ } 3} = \underline{\text{ } 15} \)

6. \(\frac{2}{3} = \frac{2 \times \text{ } 5}{3 \times \text{ } 5} = \underline{\text{ } 21} \)

7. \(\frac{3}{8} = \frac{3 \times \text{ } 4}{8 \times \text{ } 4} = \underline{\text{ } 32} \)

8. \(\frac{7}{10} = \frac{7 \times \text{ } 10}{10 \times \text{ } 10} = \underline{\text{ } 100} \)

9. \(\frac{1}{3} = \frac{1 \times \text{ } 3}{3 \times \text{ } 3} = \underline{\text{ } 30} \)

10. \(\frac{4}{4} = \frac{4 \times \text{ } 8}{4 \times \text{ } 8} = \underline{\text{ } 32} \)

Find the numerator.

11. \(\frac{1}{2} = \underline{\text{ } 12} \)

12. \(\frac{3}{4} = \underline{\text{ } 16} \)

13. \(\frac{4}{5} = \underline{\text{ } 25} \)

14. \(\frac{5}{8} = \underline{\text{ } 16} \)

15. \(\frac{1}{3} = \underline{\text{ } 6} \)

16. \(\frac{3}{5} = \underline{\text{ } 10} \)

Finding a common denominator

EXAMPLE 1:
Write equivalent fractions for \(\frac{1}{2} \) and \(\frac{3}{8} \) with a common denominator.

Names for \(\frac{1}{2} \rightarrow \frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \frac{4}{8}, \frac{5}{10}, \ldots \)

Names for \(\frac{3}{8} \rightarrow \frac{3}{8}, \frac{6}{16}, \ldots \)

\(\frac{4}{8} \) and \(\frac{3}{8} \) have the same denominators.

Hampton City Schools Mathematics Department
Lesson Eight
-5-
EXAMPLE 2:
Write equivalent fractions for \(\frac{5}{6} \) and \(\frac{1}{4} \) with a common denominator.

Names for \(\frac{5}{6} \) → \(\frac{5}{6}, \frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \ldots \)

Names for \(\frac{1}{4} \) → \(\frac{1}{4}, \frac{2}{8}, \frac{3}{12} \)

\(\frac{10}{12} \) and \(\frac{3}{12} \) have the same denominator.

IV.

EXERCISE SET 4:
Write equivalent fractions with a common denominator for each pair of fractions.

1. \(\frac{1}{2} = \frac{3}{6} \)
2. \(\frac{3}{4} = \frac{3}{4} \)

3. \(\frac{1}{2} = \frac{3}{10} \)
4. \(\frac{1}{3} = \frac{3}{4} \)
LESSON NINE

TO THE PARENT: In this lesson your child will reduce fractions and multiply fractions.

Reducing Fractions to Lowest Terms

\[
\frac{9}{12} = \frac{9 \div 3}{12 \div 3} = \frac{3}{4}
\]

\[
\frac{2}{12} = \frac{1}{6}
\]

EXERCISE SET 1:
Give the fractions in lowest terms.

1. \[
\frac{4}{10} = \frac{4 \div 2}{10 \div 2} = \frac{2}{5}
\]

2. \[
\frac{8}{32} = \frac{8 \div 8}{32 \div 8} = \frac{1}{4}
\]

3. \[
\frac{12}{20} = \frac{12 \div 4}{20 \div 4} = \frac{3}{5}
\]

4. \[
\frac{10}{12} = \frac{10 \div 2}{12 \div 2} = \frac{5}{6}
\]

5. \[
\frac{16}{42} = \frac{16 \div 2}{42 \div 2} = \frac{8}{21}
\]

6. \[
\frac{6}{21} = \frac{6 \div 3}{21 \div 3} = \frac{2}{7}
\]

7. \[
\frac{15}{40} = \frac{15 \div 5}{40 \div 5} = \frac{3}{8}
\]

8. \[
\frac{90}{100} = \frac{90 \div 10}{100 \div 10} = \frac{9}{10}
\]

9. \[
\frac{12}{20} = \frac{12 \div 4}{20 \div 4} = \frac{3}{5}
\]

10. \[
\frac{18}{24} = \frac{18 \div 6}{24 \div 6} = \frac{3}{4}
\]

Multiplying Fractions

This drawing shows that \(\frac{2}{3}\) of \(\frac{4}{3}\) is \(\frac{8}{15}\).

EXAMPLE 1: \[
\frac{3}{5} \times \frac{1}{2} = \frac{3}{10}
\]

Multiply numerators

Multiply denominators

EXAMPLE 2: \[
\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{6 \div 6}{12 \div 6} = \frac{1}{2}
\]
II. Multiplying Fractions

EXAMPLE 3: \[\frac{3}{1} \times \frac{1}{8} = \frac{3}{8} \]

EXERCISE SET 2:
Multiply and Reduce

1. \(\frac{1}{4} \times \frac{1}{2} \)

2. \(\frac{1}{2} \times \frac{4}{5} \)

3. \(\frac{2}{3} \times \frac{3}{8} \)

4. \(\frac{4}{5} \times \frac{1}{4} \)

5. \(\frac{1}{10} \times \frac{1}{3} \)

6. \(\frac{5}{11} \times \frac{2}{3} \)

7. \(\frac{3}{4} \times \frac{4}{7} \)

8. \(4 \times \frac{1}{2} \)

9. \(\frac{1}{10} \times \frac{3}{100} \)

10. \(\frac{7}{10} \times \frac{2}{5} \)

11. \(\frac{2}{3} \times \frac{2}{3} \)

12. \(\frac{1}{4} \times \frac{3}{2} \)

13. \(\frac{7}{2} \times \frac{1}{2} \)

14. \(\frac{3}{5} \times \frac{5}{3} \)

15. \(\frac{1}{8} \times 2 \)

III. Multiply Down, Multiply Across

\[
\begin{array}{ccc}
\frac{1}{2} & \frac{2}{3} & \frac{2}{6} = \frac{1}{3} \\
\frac{3}{4} & \frac{3}{5} & \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{3}{8} & \frac{2}{3} & \\
\frac{1}{5} & \frac{7}{10} & \\
\end{array}
\]
IV. Reduce each fraction to lowest terms. Can you find three answers which are the same?

1. \(\frac{4}{10} = \)

2. \(\frac{12}{16} = \)

3. \(\frac{8}{40} = \)

4. \(\frac{6}{36} = \)

5. \(\frac{24}{36} = \)

6. \(\frac{27}{36} = \)

7. \(\frac{15}{65} = \)

8. \(\frac{25}{35} = \)

9. \(\frac{21}{28} = \)

10. \(\frac{20}{22} = \)

11. \(\frac{4}{24} = \)

12. \(\frac{12}{24} = \)
Please multiply.

1. \(\frac{1}{5} \times \frac{3}{8} = \)

2. \(\frac{1}{4} \times \frac{3}{4} = \)

3. \(\frac{4}{5} \times \frac{3}{9} = \)

4. \(\frac{3}{4} \times \frac{1}{7} = \)

5. \(\frac{2}{5} \times \frac{4}{9} = \)

6. \(\frac{7}{10} \times \frac{11}{12} = \)

7. \(\frac{2}{3} \times \frac{5}{7} = \)

8. \(\frac{4}{5} \times \frac{2}{3} = \)

9. \(\frac{8}{9} \times \frac{11}{13} = \)

10. \(\frac{2}{9} \times \frac{8}{11} = \)

11. \(\frac{1}{3} \times \frac{1}{4} = \)

12. \(\frac{1}{5} \times \frac{3}{5} = \)
LESSON TEN

TO THE PARENT: In this lesson your child will add both like and unlike fractions.

Adding Like Fractions

EXAMPLE 1:
\[
\frac{4}{6} + \frac{1}{6} = \frac{5}{6}
\]

EXAMPLE 2:
\[
\frac{3}{16} + \frac{5}{16} = \frac{8}{16}
\]

EXERCISE SET 1:
Add. Reduce to lowest terms.

1. \(\frac{3}{5} + \frac{1}{5} = \)
2. \(\frac{3}{8} + \frac{4}{8} = \)
3. \(\frac{1}{6} + \frac{2}{6} = \)

4. \(\frac{3}{5} + \frac{2}{5} = \)
5. \(\frac{2}{3} + \frac{2}{3} = \)
6. \(\frac{5}{12} + \frac{4}{12} = \)

Adding Unlike Fractions

EXAMPLE:
\[
\frac{2}{3} + \frac{1}{12}
\]

Names for \(\frac{2}{3}\) → \(\frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12} \)

\[
\frac{1}{12}
\]

\[
\frac{2}{3} = \frac{8}{12}
\]

\[
+ \frac{1}{12} = \frac{1}{12}
\]

\[
\frac{9}{12} \text{ or } \frac{3}{4}
\]
Adding Unlike Fractions

EXAMPLE 2: \[\frac{1}{6} + \frac{3}{8} \]

Names for \(\frac{1}{6} \rightarrow \left\{ \frac{1}{6}, \frac{2}{12}, \frac{3}{18}, \frac{4}{24} \right\} \)

Names for \(\frac{3}{8} \rightarrow \left\{ \frac{3}{8}, \frac{6}{16}, \frac{9}{24} \right\} \)

\[\frac{1}{6} = \frac{4}{24} \]
\[+ \frac{3}{8} = \frac{9}{24} \]
\[= \frac{13}{24} \]

EXERCISE SET 2
Add and simplify.

1. \[\frac{3}{4} \]
 \[+ \frac{1}{12} \]

2. \[\frac{2}{3} \]
 \[+ \frac{1}{12} \]

3. \[\frac{1}{3} \]
 \[+ \frac{5}{7} \]

4. \[\frac{1}{3} \]
 \[+ \frac{4}{9} \]

5. \[\frac{1}{6} \]
 \[+ \frac{1}{2} \]

6. \[\frac{5}{3} \]
 \[+ \frac{1}{4} \]

7. \[\frac{3}{4} \]
 \[+ \frac{1}{2} \]

8. \[\frac{3}{5} \]
 \[+ \frac{4}{15} \]

9. \[\frac{3}{5} + \frac{3}{10} \]

10. \[\frac{1}{3} + \frac{3}{8} \]
III. EXERCISE SET 3:

Add the fractions below. Put your answers on the answer sheet. Don't forget! Reduce your answers to lowest terms.

1. \(\frac{1}{4} + \frac{5}{8} = \frac{6}{24} + \frac{15}{24} = \frac{21}{24} = \frac{7}{8} \)

2. \(\frac{1}{2} + \frac{3}{4} = \)

3. \(\frac{3}{8} + \frac{13}{16} = \)

4. \(\frac{1}{4} + \frac{3}{8} = \)

5. \(\frac{7}{8} + \frac{3}{4} = \)

6. \(\frac{13}{16} + \frac{1}{2} = \)

7. \(\frac{1}{4} + \frac{9}{16} = \)

8. \(\frac{5}{8} + \frac{3}{16} = \)

9. \(\frac{3}{4} + \frac{7}{16} = \)

10. \(\frac{5}{16} + \frac{3}{8} = \)
Add across. Add down.

Hampton City Schools Mathematics Department
Lesson Ten
LESSON ELEVEN

TO THE PARENT: In this lesson your child will subtract fractions with like and unlike denominators.

Subtracting Fractions with Like Denominators

EXAMPLE 1: \(\frac{3}{4} - \frac{1}{4} = \)

\[\frac{3}{4} - \frac{1}{4} = \frac{3-1}{4} = \frac{2}{4} \]

EXAMPLE 2: \(\frac{5}{6} - \frac{1}{6} = \)

\[\frac{5}{6} - \frac{1}{6} = \frac{5-1}{6} = \frac{4}{6} = \frac{2}{3} \]

EXERCISE SET 1:
Subtract and simplify.

1. \(\frac{9}{10} - \frac{5}{10} = \)

\[\frac{9}{10} - \frac{5}{10} = \frac{4}{10} \]

2. \(\frac{7}{8} - \frac{1}{8} = \)

3. \(\frac{11}{16} - \frac{7}{16} = \)

4. \(\frac{6}{7} - \frac{2}{7} = \)

5. \(\frac{7}{10} - \frac{2}{10} = \)

6. \(\frac{11}{12} - \frac{6}{12} = \)

Hampton City Schools Mathematics Department
Lesson Eleven
7. John had \(\frac{7}{8} \) yard of wool. He used \(\frac{5}{8} \) yard to make a vest. How much did he have left?

8. Nancy had \(\frac{5}{6} \) of a pie. She ate \(\frac{1}{6} \). How much was left?
II. Subtract, please.

1. $\frac{5}{7} - \frac{2}{7}$
2. $\frac{14}{17} - \frac{3}{17}$
3. $\frac{19}{25} - \frac{13}{25}$
4. $\frac{14}{37} - \frac{1}{37}$

5. $\frac{39}{100} - \frac{26}{100}$
6. $\frac{4}{5} - \frac{1}{5}$
7. $\frac{7}{8} - \frac{2}{8}$
8. $\frac{10}{13} - \frac{1}{13}$

9. $\frac{3}{4} - \frac{2}{4}$
10. $\frac{5}{6} - \frac{4}{6}$
11. $\frac{9}{10} - \frac{2}{10}$
12. $\frac{17}{21} - \frac{4}{21}$

Find the one numerator which is an even number.
III. Subtracting Fractions with Unlike Denominators

EXAMPLE 1:

\[
\begin{array}{c}
\text{Start} \\
0 \\
\text{Eve} \quad \text{Jan} \\
\text{Finish} \\
1 \text{ mile}
\end{array}
\]

\[
\begin{array}{c}
\frac{3}{5} \text{ mile} \\
\frac{1}{3} \text{ mile}
\end{array}
\]

Jan is how much ahead of Eve?

\[
\frac{3}{5} - \frac{1}{3}
\]

\[
\frac{3}{5} \rightarrow \left\{\frac{3}{5}, \frac{6}{10}, \frac{9}{15}\right\} \quad \frac{3}{5} = \frac{9}{15}
\]

\[
\frac{1}{3} \rightarrow \left\{\frac{1}{3}, \frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \frac{5}{15}\right\} - \frac{1}{3} = \frac{5}{15}
\]

So Eve is \(\frac{4}{15}\) mi. ahead of Jan.

EXERCISE SET 2:
Subtract. Simplify if possible.

1. \(\frac{11}{12} = \frac{11}{12}\)
2. \(\frac{3}{4}\)
3. \(\frac{7}{10}\)
4. \(\frac{3}{4} - \frac{1}{3}\)
5. \(\frac{5}{6} - \frac{1}{2}\) = \(\frac{5}{9} - \frac{1}{3}\)

Hampton City Schools Mathematics Department Lesson Eleven
IV. Subtract across. Subtract down.

\[
\begin{array}{c|c|c|c|c|c}
5 & \frac{1}{3} & \frac{1}{6} & 1 & \frac{1}{3} \\
\hline
\frac{3}{4} & \frac{1}{3} & \frac{2}{3} & \frac{1}{4} & \frac{3}{4}
\end{array}
\]
Subtract the fractions below.
Put your answers on the answer sheet.

1. \(\frac{5}{16} - \frac{3}{16} = \)

2. \(\frac{3}{8} - \frac{1}{4} = \frac{3}{8} - \frac{2}{8} = \frac{1}{8} \)

3. \(\frac{5}{8} - \frac{9}{16} = \)

4. \(\frac{3}{4} - \frac{1}{16} = \)

5. \(\frac{1}{2} - \frac{3}{16} = \)

6. \(\frac{7}{8} - \frac{1}{2} = \)

7. \(\frac{1}{4} - \frac{1}{8} = \)

8. \(\frac{3}{4} - \frac{11}{16} = \)

9. \(\frac{5}{8} - \frac{1}{2} = \)

10. \(\frac{15}{16} - \frac{1}{4} = \)

11. \(\frac{11}{16} - \frac{3}{8} = \)

12. \(1 - \frac{3}{8} = \)

Hampton City Schools Mathematics Department
Lesson Eleven
LESSON TWELVE

TO THE PARENT: In this lesson your child will read and write decimal fractions.

I.

<table>
<thead>
<tr>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

- 4.3 = forty-one and three tenths
- 3.27 = three and twenty-seven hundredths
- 4.05 = four and five hundredths

EXERCISE SET 1:
Please write each decimal as a word statement.

1. 3.4
2. 14.18 fourteen and eighteen hundredths
3. 20.02
4. 2.65
5. 4.50

Hampton City Schools Mathematics Department
Lesson Twelve
6. 4.7
7. 5.06
8. 37.61
9. 7.9
10. 0.36
II. Writing Decimals: Tenths and Hundredths

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>.42</td>
<td>42</td>
</tr>
<tr>
<td>2.</td>
<td>.18</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>.7</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>.10</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>.01</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>.11</td>
<td>11</td>
</tr>
<tr>
<td>7.</td>
<td>.86</td>
<td>86</td>
</tr>
<tr>
<td>8.</td>
<td>.03</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>.33</td>
<td>33</td>
</tr>
<tr>
<td>10.</td>
<td>.5</td>
<td>5</td>
</tr>
<tr>
<td>11.</td>
<td>.67</td>
<td>67</td>
</tr>
<tr>
<td>12.</td>
<td>.84</td>
<td>84</td>
</tr>
<tr>
<td>13.</td>
<td>.75</td>
<td>75</td>
</tr>
<tr>
<td>14.</td>
<td>.61</td>
<td>61</td>
</tr>
<tr>
<td>15.</td>
<td>.8</td>
<td>8</td>
</tr>
<tr>
<td>16.</td>
<td>.80</td>
<td>80</td>
</tr>
<tr>
<td>17.</td>
<td>.08</td>
<td>8</td>
</tr>
<tr>
<td>18.</td>
<td>.40</td>
<td>40</td>
</tr>
<tr>
<td>19.</td>
<td>.04</td>
<td>4</td>
</tr>
<tr>
<td>20.</td>
<td>.4</td>
<td>40</td>
</tr>
</tbody>
</table>

For each exercise, write a decimal.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td>6.31</td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td>5.80</td>
</tr>
<tr>
<td>27.</td>
<td></td>
<td>36.7</td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td>75.12</td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td>60.3</td>
</tr>
<tr>
<td>30.</td>
<td></td>
<td>541.18</td>
</tr>
<tr>
<td>31.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>32.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>33.</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>34.</td>
<td></td>
<td>9.1</td>
</tr>
<tr>
<td>35.</td>
<td></td>
<td>46.7</td>
</tr>
<tr>
<td>36.</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>37.</td>
<td></td>
<td>26.1</td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td>10.39</td>
</tr>
<tr>
<td>39.</td>
<td></td>
<td>1.48</td>
</tr>
<tr>
<td>40.</td>
<td></td>
<td>29.3</td>
</tr>
</tbody>
</table>
LES SSON THIRTEEN

TO THE PARENT: In this lesson your child will add and subtract decimal fractions. Emphasize that your child must line up the decimal points before adding or subtracting.

I. Addition of Decimals

EXAMPLES:

1. Add 4.68, 15, and 22.3

 Step 1 Rewrite in vertical form with the decimal points written directly under each other.

 Step 2 Add as with whole numbers.

2. Henry bought a fielder's glove for $15.49, a bat for $4.79, and a baseball for $2.19. How much did he spend altogether?

EXERCISE SET:

Add.

1. 7.5 + 1.3
2. 2.5 + 13.7
3. 3.0 + 8.9
4. $4.89 + $9.16
5. 4.54 + 45.4
II. Find the sums. Line up the numbers by using the decimal points provided. All the answers are **palindromes**. Palindromes read the same forwards & backwards.

1. $5.7 + .9 = $.

2. $7.2 + .027 = $.

3. $2.5 + 6 + .3 = $.

4. $7 + .91 + 12 = $.

5. $.087 + 4.7 + 2 + 63.2 + 9 = $.

6. $.461 + 6.3 + 9 + .4 = $.

Hampton City Schools Mathematics Department Lesson Thirteen
III. Subtraction of Decimals

EXAMPLES:

1. Find 9.36 - 3.1

 Step 1 Line up the decimal points.

 9.36
 - 3.1

 Step 2 Subtract.

 9.36
 - 3.1

 6.26

2. Find 8.7 - 2.33

 Step 1 Line up decimal points.

 8.7
 - 2.33

 Step 2 Annex zeros

 8.70
 - 2.33

 Step 3 Subtract.

 8.70
 - 2.33

 6.37

3. Tom bought a catcher's mask for $18.98. He gave the clerk a $20 bill. What was his change?

 $20.00 annex zeros

 $18.98

 $1.02

 To received $1.02 change.

EXERCISE SET:

Subtract.

1. 6.7 - 3.5

2. 6.28 - 3.76

3. 9.33 - 7.5

4. 6.3 - .7

5. 32.7 - 19.73

6. 11.6 - 3.79
7. The barometric pressure before the tornado was 29.34 in. and during the tornado was 27.44 in. By how much did the pressure change?

8. Helen bought a notebook for $5.39. She gave the clerk $10. How much change should she receive?
IV. Subtract.
Bozo says all answers have a seven.

1. \(.9 - .2 = \)
2. \(.93 - .26 = \)
3. \(.63.2 - 15.7 = \)
4. \(.009 - .002 = \)
5. \(632.01 - 260.09 = \)
6. \(61.7 - 54.3 = \)
7. \(5.73 - 4.98 = \)
LESSON FOURTEEN

TO THE PARENT: In this lesson your child will express common fractions as decimal fractions and decimal fractions to common fractions.

Changing Decimal Fractions to Common Fractions

\[
0.25 = \frac{25}{100} = \frac{25}{100} - \frac{25}{100} = \frac{1}{4}
\]

\[
0.3 = \frac{3}{10}
\]

\[
0.03 = \frac{3}{100}
\]

I. Write as fractional parts of a dollar. Reduce to lowest terms.

1.
2.
3. \(\frac{5}{100} = \frac{1}{20}\)

II. EXERCISE SET:
Write as common fractions. Reduce to lowest terms.

1. \(0.04 : \frac{4}{100} = \frac{1}{25}\)
2. \(0.29 : \frac{29}{100}\)
3. 0.35

4. 0.08
5. 0.7
6. 0.12
III. Changing Common Fractions to Decimal Fractions

EXAMPLES:

\[\frac{1}{5} = \frac{1 \times 2}{5 \times 2} = \frac{2}{10} = .2 \quad \text{change denominator to 10} \]

\[\frac{3}{4} = \frac{3 \times 25}{4 \times 25} = \frac{75}{100} = .75 \quad \text{change denominator to 100} \]

\[\frac{3}{20} = \frac{3 \times 5}{20 \times 5} = \frac{15}{100} = .15 \quad \text{change denominator to 100} \]

EXERCISE SET:
Fill in the boxes.

1. \[\frac{17}{50} = \frac{17 \times \boxed{2}}{50 \times \boxed{2}} = \frac{34}{100} = .34 \]

2. \[\frac{13}{25} = \frac{13 \times \boxed{4}}{25 \times \boxed{4}} = \frac{52}{100} = .52 \]

3. \[\frac{1}{2} = \frac{1 \times \boxed{5}}{2 \times \boxed{5}} = \frac{5}{10} = .5 \]

4. \[\frac{1}{3} = \frac{1 \times \boxed{3}}{3 \times \boxed{3}} = \frac{3}{9} = .333... \]

Hampton City Schools Mathematics Department Lesson Fourteen

-2-
Write each fraction as a decimal.

7. \(\frac{11}{25} = \frac{44}{100} = .44 \)

8. \(\frac{9}{20} = \frac{100}{100} = \)

9. \(\frac{9}{10} = \)

10. \(\frac{4}{5} = \frac{100}{100} = \)

11. \(\frac{4\frac{1}{2}}{10} = \)

12. \(\frac{7}{100} = \)

13. \(\frac{13}{100} = \)

14. \(\frac{2\frac{3}{10}}{10} = \)

15. \(\frac{2}{25} = \frac{100}{100} = \)

16. \(\frac{3\frac{2}{4}}{100} = \)

17. \(\frac{2}{5} = \)

18. \(\frac{1\frac{1}{2}}{10} = \)

19. \(\frac{9}{100} = \)

20. \(\frac{3}{10} = \)

21. \(\frac{2\frac{7}{10}}{10} = \)

22. \(\frac{5\frac{7}{10}}{100} = \)

23. Two appendages of the crab are pinchers. Give a fraction and decimal to show pinchers total appendages.

Hampton City Schools Mathematics Department Lesson Fourteen
REMEMBER!!!!!
Harry, the Hippo and PAC MAN take the biggest bite.

I. $7 < 10$
 7 is less than 10

$0.32 > 0.3$
$\frac{32}{100}$ is greater than $\frac{3}{10}$ or $\frac{30}{100}$

$0.3 = 0.30$
$\frac{3}{10}$ is equal to $\frac{30}{100}$

EXAMPLES:
Compare the decimals using $<$, $>$, or $=$.

$0.8 < 0.80$
compare tenths, both 8

$0.8 = 0.80$
compare hundredths, both 0
I. Continued.

NAME

compare tenths $0 < 8$

compare tenths, both 2

compare hundredths, $8 > 1$

Exercise Set 1:
Arrange these in order from SMALLEST to LARGEST.

Hampton City Schools Mathematics Department - Lesson Fifteen
II. EXERCISE SET 2:

Insert the Missing Decimals:

1. 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

2. .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85 .86 .87

4. .29 .30 .31 .32 .33 .34 .35 .36 .37 .38 .39 .40 .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 .51 .52 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85 .86 .87 .88 .89 .90 .91 .92 .93 .94 .95 .96 .97 .98 .99

Continue the Pattern:

5. 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5

6. .38 .39 .40 .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 .51 .52 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 .81 .82 .83 .84 .85 .86 .87 .88 .89 .90 .91 .92 .93 .94 .95 .96 .97 .98 .99

Hampton City Schools Mathematics Department
Lesson Fifteen
III. Equal Decimals

Circle the number that is not equal to the other numbers. Write number on answer sheet.

<table>
<thead>
<tr>
<th></th>
<th>1. .700</th>
<th>10. 8.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.7</td>
<td>8.250</td>
</tr>
<tr>
<td></td>
<td>.070</td>
<td>8.205</td>
</tr>
<tr>
<td>2.</td>
<td>.3</td>
<td>11. .72</td>
</tr>
<tr>
<td></td>
<td>.30</td>
<td>.702</td>
</tr>
<tr>
<td></td>
<td>.003</td>
<td>.720</td>
</tr>
<tr>
<td>3.</td>
<td>.90</td>
<td>12. 9.30</td>
</tr>
<tr>
<td></td>
<td>.009</td>
<td>9.300</td>
</tr>
<tr>
<td></td>
<td>.900</td>
<td>9.030</td>
</tr>
<tr>
<td>4.</td>
<td>.600</td>
<td>13. 4.70</td>
</tr>
<tr>
<td></td>
<td>.060</td>
<td>4.007</td>
</tr>
<tr>
<td></td>
<td>.60</td>
<td>4.700</td>
</tr>
<tr>
<td>5.</td>
<td>.002</td>
<td>14. 6.40</td>
</tr>
<tr>
<td></td>
<td>.020</td>
<td>6.040</td>
</tr>
<tr>
<td></td>
<td>.02</td>
<td>6.04</td>
</tr>
<tr>
<td>6.</td>
<td>.070</td>
<td>15. 4.07</td>
</tr>
<tr>
<td></td>
<td>.7</td>
<td>4.070</td>
</tr>
<tr>
<td></td>
<td>.700</td>
<td>4.007</td>
</tr>
<tr>
<td>7.</td>
<td>.40</td>
<td>16. 32.015</td>
</tr>
<tr>
<td></td>
<td>.040</td>
<td>32.150</td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>32.15</td>
</tr>
<tr>
<td>8.</td>
<td>.05</td>
<td>17. 48.29</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>48.290</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>48.029</td>
</tr>
<tr>
<td>9.</td>
<td>.08</td>
<td>18. 29.130</td>
</tr>
<tr>
<td></td>
<td>.080</td>
<td>29.103</td>
</tr>
<tr>
<td></td>
<td>.008</td>
<td>29.13</td>
</tr>
</tbody>
</table>

IV. Comparing Decimals

Compare the decimals. Use >, < or =.

<table>
<thead>
<tr>
<th></th>
<th>1. .9</th>
<th>10. .90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. .68</td>
<td>.4</td>
</tr>
<tr>
<td></td>
<td>3. .27</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>4. .3</td>
<td>.38</td>
</tr>
<tr>
<td></td>
<td>5. .8</td>
<td>.08</td>
</tr>
<tr>
<td></td>
<td>6. .30</td>
<td>.3</td>
</tr>
<tr>
<td></td>
<td>7. .18</td>
<td>.180</td>
</tr>
<tr>
<td></td>
<td>8. .618</td>
<td>.573</td>
</tr>
<tr>
<td></td>
<td>9. .07</td>
<td>.300</td>
</tr>
<tr>
<td></td>
<td>10. .400</td>
<td>.004</td>
</tr>
<tr>
<td></td>
<td>11. .35</td>
<td>.352</td>
</tr>
<tr>
<td></td>
<td>12. .098</td>
<td>.9</td>
</tr>
<tr>
<td></td>
<td>13. .02</td>
<td>.012</td>
</tr>
<tr>
<td></td>
<td>14. .070</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>15. .5</td>
<td>.07</td>
</tr>
<tr>
<td></td>
<td>16. .070</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>17. .008</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>18. .000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Hampton City Schools Mathematics Department

Lesson Fifteen
TO THE PARENT: In this lesson your child will measure using a centimeter and inch ruler. You will find a ruler in this packet. The measurements given are both in the Metric System and the Customary System.

I. Name these measuring tools.
 A.
 B.
 C.
 D.
 E.
 F.
 G.

Measurement Devices Can you name them?

Customary System

12 inches = 1 foot
3 feet = 1 yard

Hampton City Schools Mathematics Department
Lesson Sixteen
II. Using a Ruler

Place the zero mark at the end of the object to be measured.
Measure these pencils to the nearest $\frac{1}{4}$ inch.

1. $5\frac{3}{4}$ in
2.
3.
4.

Use your ruler to measure these to the nearest $\frac{1}{4}$ inch

5.
6.
7.

Hampton City Schools Mathematics Department Lesson Sixteen
III. Use a tape measure to measure the following to the nearest \(\frac{1}{4} \) inch.

1. Your height
2. Around your wrist
3. Around your neck
4. Around your ankle
5. Length of your foot
6. Length of a book
7. A comb
8. Length of your thumb

IV. METRIC SYSTEM

The centimeter (cm) ruler is divided into 10 equal parts called millimeters (mm).

![Centimeter ruler](image)

37 mm

How many mm? 32 mm

Measure the following to the nearest cm.

1. _______ cm
2. _______ cm

Hampton City Schools Mathematics Department
Lesson Sixteen
3. __________ cm

5. The width of this paper.
 __________ cm

4. __________ cm

6. Your height __________ cm
7. Length of your foot __________ cm

8. Length of your thumb __________ cm
TO THE PARENT: In this lesson your child will make conversions within the metric system.

Can you think of a word which begins with "cent" and means $\frac{1}{100}$?

Can you think of a word that begins with "mill" and means $\frac{1}{1000}$?

Think of the metric units of length as a staircase.

- millimeter
- centimeter
- decimeter
- meter
- dekameter
- hectometer
- kilometer

1 millimeter = .001 meter
1 centimeter = .01 meter
1 decimeter = .1 meter
1 dekameter = 10 meters
1 hectometer = 100 meters
1 kilometer = 1,000 meters

Moving down multiply!

Each step is 10 times the one which precedes it. A centimeter (cm) is 10 times a millimeter (mm). The kilometer (km) is on the third step from the meter and is 1000 times a meter (m).

EXAMPLES: (count the steps)

7 km = 1000 X 7 m = 7,000 m
12 cm = 10 X 12 mm = 120 mm
8 m = 100 X 8 cm = 800 mm

EXERCISE SET 1

1. 1 m = ________ cm
2. 1 km = ________ m
3. 5 m = ________ cm
4. 11 km = ________ m
5. 1 cm = ________ mm
6. 1 m = ________ mm
7. 5.5 cm = ________ mm
8. 7 m = ________ mm

Hampton City Schools Mathematics Department Lesson Seventeen
II. **Moving up divide!**

For one step up you divide by 10, 2 steps divide by 100, 3 steps divide by 1000.

EXAMPLES:

2000mm = __?__ m
(3 steps up)

\[
2000 \div 1000 = 2m
\]

40 mm = __?__ cm = \[
\frac{40cm}{10} = 4cm
\]

8000m = __?__ km = \[
\frac{8000m}{1000} = 8km
\]

EXERCISE SET 2

1. 70mm = __?__ cm
2. 500cm = __?__ m

3. 9000m = __?__ km
4. 4000mm = \[
\frac{4000mm}{1000} = 4\ m
\]

5. 300cm = __?__ m
6. 75,000m = __?__ km

7. 4000cm = __?__ m
8. 2500mm = __?__ cm
III. CONVERTING TO SMALLER OR LARGER UNITS OF LENGTH

a. \(3.79 \text{ km} = \text{_______ m}\)

Think, km is a larger unit than m so you must multiply. Count the steps down from km to m. There are 3 so multiply by 1,000.

\[3.79 \text{ km} \times 1,000 = 3,790 \text{ m}\]

HINT: To convert to a smaller unit, multiply by 10, 100 or 1,000.
To convert to a larger unit, divide by 10, 100 or 1,000.

b. \(8.7 \text{ mm} = \text{_______ cm}\)

Think mm is smaller than cm so you divide. There is one step so divide by 10.

\[8.7 \text{ mm} \div 10 = .87 \text{ cm}\]

c. \(10,101 \text{ m} = \text{_______ km}\)

m is smaller than km so you divide. There are 3 steps so divide by 1,000.

\[10,101 \text{ m} \div 1,000 = 10.101 \text{ km}\]

d. \(0.29 \text{ km} = \text{_______ cm}\)

km is larger - multiply. There are 5 steps.

\[0.29 \text{ km} \times 100,000 = 29,000 \text{ cm}\]

Complete.

1. \(7.01 \text{ m} = \text{_______ cm}\)

2. \(4,000 \text{ cm} = \text{_______ m}\)

3. \(0.68 \text{ cm} = \text{_______ mm}\)

4. \(3,000 \text{ mm} = \text{_______ m}\)

5. \(0.27 \text{ m} = \text{_______ dm}\)

6. \(909.8 \text{ cm} = \text{_______ m}\)

7. \(60.4 \text{ m} = \text{_______ cm}\)

8. \(5,389 \text{ m} = \text{_______ km}\)

9. \(422 \text{ m} = \text{_______ km}\)

10. \(22.5 \text{ m} = \text{_______ km}\)

11. \(0.53 \text{ km} = \text{_______ m}\)

12. \(0.017 \text{ m} = \text{_______ mm}\)

13. \(14 \text{ cm} = \text{_______ m}\)

14. \(89 \text{ cm} = \text{_______ m}\)

15. \(4,300 \text{ cm} = \text{_______ dm}\)

16. \(213 \text{ mm} = \text{_______ cm}\)

17. \(0.65 \text{ m} = \text{_______ mm}\)

18. \(0.03 \text{ cm} = \text{_______ mm}\)

19. \(7.1 \text{ cm} = \text{_______ mm}\)

20. \(32.6 \text{ km} = \text{_______ m}\)

21. \(9.2 \text{ km} = \text{_______ m}\)

22. \(0.34 \text{ km} = \text{_______ cm}\)

23. \(8,475 \text{ mm} = \text{_______ cm}\)

24. \(6.5 \text{ m} = \text{_______ cm}\)

Hampton City Schools Mathematics Department. Lesson 17
IV. CHOOSING THE BEST UNIT OF LENGTH

Write meter(s), centimeter(s), millimeter(s), or kilometer(s) in each blank so that the sentence makes sense.

1. Jane said, "Last year on vacation we traveled more than 2500 _____________ in our car."

2. The Hogan's swimming pool is 2.5 ________________ deep.

3. My new pencil is 18 ________________ long.

4. The hot dogs I buy are 22 ________________ long.

5. This crisp cracker is 3 ____________ __ thick.

6. Joan, my friend in the sixth grade, is 152.4 ________________ tall.

7. John's old car has been driven more than 100,000 ________________.

8. This driveway is 20.8 ____________ __ long and 7.9 ________________ wide.

9. My father's arm is almost one ________________ long.

10. This page is 21.5 ________________ wide.

11. The bee is ________________ long.

12. The marathon race course is 31.5 ________________ long.

13. The jump rope used at recess time was 235 ________________ long.

14. Many ants are about seven ________________ in length.

15. Matilda ran almost 250 ________________ across the parking lot.

Hampton City Schools Mathematics Department
Lesson Seventeen
-4-
LESSON EIGHTEEN

TO THE PARENT: In this lesson your child will find perimeters. Remind your child that perimeter is the distance around a figure.

The perimeter = 323 cm

To find the perimeter add the lengths of the sides.

\[
\begin{align*}
63 \text{ cm} & + 84 \text{ cm} \\
97 \text{ cm} & + 79 \text{ cm} \\
\hline
323 \text{ cm}
\end{align*}
\]

Find the perimeters.

1.

\[
P = 12 \text{ cm} + 22 \text{ cm} + 8 \text{ cm} + 5 \text{ cm} + 34 \text{ cm} = 87 \text{ cm}
\]

2.

\[
P = 52 \text{ m} + 46 \text{ m} + 26 \text{ m} = 124 \text{ m}
\]

3.

\[
P = 18 \text{ cm} + 18 \text{ cm} + 18 \text{ cm} + 18 \text{ cm} + 18 \text{ cm} = 90 \text{ cm}
\]

4.

\[
P = 36 \text{ cm} + 28 \text{ cm} + 18 \text{ cm} = 82 \text{ cm}
\]

5.

\[
P = 18 \text{ m} + 26 \text{ m} + 40 \text{ m} = 84 \text{ m}
\]

6.

\[
P = 7 \text{ km} + 11 \text{ km} + 8 \text{ km} + 5 \text{ km} = 31 \text{ km}
\]
Measure these with your centimeter ruler to the nearest mm and then find the perimeter.

7.

\[P = \]

8.

\[P = \]

9.

\[P = \]

10.

\[P = \]

11.

\[P = \]

12.

\[P = \]
II.
Finding the Perimeter of a Rectangle

The perimeter of a rectangle is the sum of the lengths of its sides.

\[5 + 14 + 5 + 14 = 38 \]

The perimeter of the above rectangle is 38 units.

Find the following perimeters.

1.
 \[4 \]
 \[8 \]

2.
 \[5 \]
 \[11 \]

3.
 \[\]

4.
 \[3 \]
 \[5 \]

5.
 \[4 \]
 \[7 \]

6.
 \[5 \]
 \[9 \]

7.
 \[6 \]
 \[9 \]
LESSON NINETEEN

TO THE PARENT: In this lesson your child will find areas of squares and rectangles.

Emphasize that area is what is contained inside a figure.

Area is measured in square units.

Count the squares in these figures. Each square is a square centimeter.

I. 1. 2. 3.

A = ____cm² A = ____cm² A = ____cm²

Find the Area of a Square

EXAMPLE 1:

Find the area of this square. Count the squares. Notice we could find the area a quicker way.

6 x 6 = 36 sq. units

36 square units

Hampton City Schools Mathematics Department Lesson Nineteen
EXAMPLE 2:
Find the area of this square.

4 cm × 4 cm = 16 cm²

III. EXAMPLE 3:
Find the area of a square with each side 7 inches.

7 in. × 7 in. = 49 sq. in.

EXERCISES
1.

A = ___

2.

2.5 cm

A = ___

3. Measure a side of the square above with a cm ruler and then find the area.

A = ___

Hampton City Schools Mathematics Department
Lesson Nineteen
FINDING AREA

You can find the area of a rectangle by multiplying the length & the width.

12 \times 3 = 36

The area of the rectangle above is 36 square units.

1. __________ square units

2. __________ square units

3. __________ square units

4. 3 square units

5. __________ square units

6. __________ square units

7. __________ square units

Hampton City Schools Mathematics Department Lesson Nineteen
IV. Use your ruler to find the area of these polygons in square centimeters.

1. _____ square centimeters

2. _____ square centimeters

3. _____ square centimeters

4. _____ square centimeters

Cut the region on the TOP into three (3) pieces to make it fit the region on the BOTTOM.

Hampton City Schools Mathematics Department
Lesson Nineteen
TO THE PARENT: In this lesson your child will determine the appropriate unit in which to measure length. Your child might need to review the units in Lesson 16.

I. These are only diagrams of "real" objects. Circle the best unit of measure to use for the "real" object.

1. 1 mm 1 cm 1 m
2. 200 mm 200 cm 200 m
3. 10 cm 10 m 10 km
4. 99 mm 99 cm 99 m
5. 1 mm 1 cm 1 m
6. 100 mm 100 cm 100 m
7. 1 cm 1 m 1 km

Hampton City Schools Mathematics Department
Lesson Twenty
II. Metric Units of Length: Circle the most reasonable length for the items pictured below.

1. Sheep: 75 mm, 75 cm, 75 m

2. Whale: 22 cm, 22 m, 22 km

3. Fish: 463 mm, 463 cm, 463 m

4. Truck: 5 cm, 5 m, 5 km

5. Water Tower: 30 mm, 30 cm, 30 m

6. Ring: 7 mm, 7 cm, 7 m

7. House: 16 mm, 16 cm, 16 m

8. Refrigerator: 167 mm, 167 cm, 167 m

9. Radio: 95 mm, 95 cm, 95 m

10. Table: 76 mm, 76 cm, 76 m

11. Can: 165 mm, 165 cm, 165 m

12. Pencil: 1 mm, 1 cm, 1 m

13. Train: 500 cm, 500 m, 500 km

Hampton City Schools Mathematics Department
Lesson Twenty

-2-
III. **CHOOSING THE BEST UNIT OF LENGTH**

Write meter(s), centimeter(s), millimeter(s) or kilometer(s) in each blank so that the sentence makes sense. Also write the answers on the answer sheet.

1. Fred's old car has been driven more than 100,000 ________.
2. Sue said, "Last year on vacation we traveled more than 2,500 ________ in our car.
3. Tom, my friend in the sixth grade, is 158 ________ tall.
4. The tumbling mat used in physical education is 200 ________ long.
5. The cookie is 4 ________ thick.
6. The mosquito is four ________ long.
7. My mother's shoe is about 20 ________ long.
8. The diving pool at the "Y" is 3 ________ deep.
9. Our house is 20 ________ long.
10. My new ballpoint pen is 18 ________ long.
11. The Boston Marathon is run on a course 31.5 ________ long.
12. My fingernail is about 10 ________ wide.
13. The hot dogs my mother cooks are about 15 ________ long.
14. Joe ran almost 230 ________ across the playground to the bus.
15. This page is about 22 ________ wide.
TO THE PARENT: In this lesson your child will learn about metric units of weight (mass) and capacity and will read a thermometer.

CAPACITY

How big is a liter? Let's make a box which will show you.

1. You will need a piece of paper which is 3 decimeters (30 centimeters) in length and width. Measure off using your metric ruler 3 squares with sides 10 cm each across the bottom and 3 squares with sides 10 cm each as shown in the diagram. Cut as shown.

2. Before folding paste it on cardboard to make it stronger and cover with self adhesive paper or plastic to make it stronger.

3. Fold as shown and tape edges securely.

4. You now have a 10 cm X 10 cm X 10 cm box which holds 1 liter.

If you cannot waterproof the box use a 1 pound coffee can as a model. It holds 1 liter.

Try this experiment.

Fill a quart container with sand, rice or beans. Then empty it into the liter box. Which holds more, a liter or a quart?

Hampton City Schools Mathematics Department Lesson Twenty-One
1. Cut out:

2. Fold on dotted lines to make a cube without a top. Cover with clear adhesive tape before taping to make the box waterproof.

This little box is lcm x lcm x lcm. It holds 1 milliliter of liquid. 1 milliliter of water weighs 1 gram.

WEIGHT (MASS)

Scales and Balances

To find how heavy things are you can put them on scales...

Spring Scales

Compression Scales

or on balances using metric 'weights' or mass pieces.

The following items weigh about 1 gram (g):

- 1 shelled peanut
- 1 potato chip
- 1 M & M
- 1 dollar bill
- 1 package of sugar substitute

I. Look on the kitchen shelf to find some canned and boxed foods. List at least five here with their weight.

1. ___________________________ 2. ___________________________

3. ___________________________ 4. ___________________________

5. ___________________________ 6. ___________________________

The Kilogram (1000 grams) is used to measure heavier things.

Meat: How many kilograms of meat in all?

People: A football player weighs about 100 kg.

Hampton City Schools Mathematics Department Lesson Twenty-One
II. Weight: Gram and Kilogram
Circle the better measure of weight for each object.

1. CANDY
 31 g 31 kg

2. CEREAL
 255 g 255 kg

3.
 40 g 40 kg

4. SOAP
 140 g 140 kg

5.
 566 g 566 kg

6.
 750 g 750 kg

7.
 1225 g 1225 kg

8.
 1 g 1 kg

9.
 5 g 5 kg

10.
 18 g 18 kg

11.
 9 g 9 kg

Hampton City Schools Mathematics Department
Lesson Twenty-One -3-
Reading Thermometers

Scales can be set up differently on thermometers. This one has a mark for each degree.

What temperature is shown?

$5^\circ C$

Hampton City Schools Mathematics Department

Lesson Twenty-One
III. Read each thermometer and then complete each sentence.

1. When the temperature is __________, you need to wear a coat, scarf and mittens.

2. When the temperature is __________, it is ice skating weather.

Note: The thermometer above is graduated every 2.
3. The highest outdoor temperature measured on earth is _____.

![Thermometer]

Choose the best measure.

4.
 - 90 mm
 - 90 cm
 - 90 m

5.
 - 10 ml
 - 100 ml
 - 1000 ml

6.
 - 450 g
 - 450 kg

7.
 - 25° F
 - 25° C

If you have a thermometer, use it to measure the following:

8. _______ temperature indoors
9. _______ temperature outside in the shade
10. _______ temperature outside in the sun
11. _______ temperature in the refrigerator
TO THE PARENT: In this lesson your child will graph points on a coordinate axis.

On the number line the coordinate of P is 2. What is the coordinate of Q?

PLOTTING USING COORDINATE AXES

Points on a coordinate are named by 2 coordinates. The first one is from 0 to the right, the second one is from 0 up.

A (2,3) Move 2 to the right, and 3 up.

B (7,4) Move 7 to the right, and 4 up.

C (0,10) Do not move from 0, go up to 10.

Write the coordinates for each of the letters.

D. _____ G. _____ J. _____ M. _____
E. _____ H. _____ K. _____ N. _____
F. _____ I. _____ L. _____ P. _____

Hampton City Schools Mathematics Department
Lesson Twenty-two
USING COORDINATES

Where is the
Start at °°
Go over (3). Go up (2).
The is at (3), (2).

MATCH

Hampton City Schools Mathematics Department
Lesson Twenty-Two
II. Name the picture.

Graph the picture. Find each point listed below. The first one has been done for you. Connect the points with straight lines in the order listed. Lift pencil when told to. Start a new line with the next group of points.

(2,8) Begin again
(3,6) (9,10)
(1,6) (11,10)
(3,10) (11,7)
(1,10) (14,7)
(2,8) (14,5)
(8,10) (12,3)
(9,10) (7,3)
(9,12) Lift pencil
(15,13) Begin again
(15,11) (2,8)
(3,13) (6,3)
(3,11) (7,3)
(9,12) (7,2)
Lift pencil
(5,2)
Lift pencil

Hampton City Schools, VA Math Department Lesson Twenty-two
PICTURE GRAPHS

Mark each ordered pair.
Connect the points in order.
Begin with column one.

2. What has no hands but can open a door?

 (2, 6) (12, 10)
 (6, 6) (11, 10)
 (8, 8) (10, 11)
 (8, 9) (8, 11)
 (20, 9) (8, 12)
 (18, 11) (6, 14)
 (17, 10) (2, 14)
 (16, 11) (0, 12)
 (15, 10) (0, 8)
 (14, 10) (2, 6)
 (13, 11)

4. Connect in order given as the points are plotted.

 (5, 0); (5, 2); (0, 2); (2, 4);
 (1, 4); (3, 6); (2, 6); (4, 8);
 (3, 8); (6, 12); (9, 8); (8, 8);
 (10, 6); (9, 6); (11, 4); (10, 4); (12, 2)

 y (7, 2); (7, 0); (5, 0)

3. Moves on water.

 (0, 2) (12, 7) (8, 10) (3, 7)
 (2, 0) (10, 6) (5, 8) (1, 6)
 (13, 0) (12, 5) (8, 6) (3, 5)
 (15, 2) (12, 2) (8, 2) (3, 2)
 (12, 2) (8, 2) (3, 2) (0, 2)

Hampton City Schools Mathematics Department Lesson Twenty-Two
3. Mrs. Saddler has 180 pounds of feed to divide equally among 16 horses. How much feed can she give each horse?

Given: ____________________________

? : ____________________________

4. There were 31 swimming classes, with 16 children in each class. How many children took swimming?

Given: ____________________________

? : ____________________________

5. The elephant is how much taller than the lion?

Given: ____________________________

? : ____________________________

6. Joe had 29 old coins. He bought more coins and now has 54 in all. How many coins did he buy?

Given: ____________________________

? : ____________________________

Hampton City Schools Mathematics Department Lesson Twenty-Three
GRADE 5

LESSON TWENTY-THREE

TO THE PARENTS: In this lesson your child will solve word problems involving whole numbers. Alert your child to the many real life problems encountered each day.

PROBLEM SOLVING

READ

Step 1: Read the problem. Ask yourself what you are given and what you are asked to find.

EXAMPLE: In the Hampton School, there were three fifth grades with 29 students in one class, 33 students in another, and 31 in another. How many fifth graders attended the fifth grade in Hampton School?

What are you given? 29 students
33 students
31 students

What are you asked to find? How many fifth grade students altogether.

I. EXERCISE SET 1
Tell what you are given and what you are asked to find.

1. Joe sold 72 papers on Monday, 87 on Tuesday, 77 on Wednesday, and 92 on Thursday. How many papers did he sell in four days?

Given: 72 papers, 87 papers, 77 papers, 92 papers
?

2. The three parking lots had spaces for cars as follows: Lot A, 32 spaces; Lot B, 60 spaces; Lot C, 48 spaces. How many spaces for cars are available on all three lots?

Given: _______________

?

Hampton City Schools Mathematics Department Lesson Twenty-Three
PLAN

Step 2: What operation will you use to solve the problem?

EXAMPLE: Fred had 65 stamps in his collection. He got more stamps for his birthday. Then he had 126 stamps. How many stamps did Fred get for his birthday?

You now have 126 stamps total. You had 65. You are asked to find the difference.

Subtract is the answer.

II. EXERCISE SET 2
Tell what operation you could use to solve the problem.

1. If you put 82 bottles into cartons of 6, how many cartons can you fill?

Operation: \(\div \) divide

2. There are 198 campers in archery classes, with 18 campers in each class. How many archery classes were there?

Operation: ______

3. How far is it from Park City to Dover?

Operation: ______

4. The car is how much longer than the bicycle?

Operation: ______

5. 56 students went on a field trip. 4 students were assigned to each car. How many cars were needed?

Operation: ______

6. Jody guessed that Ellen weighs 75\(\frac{1}{2}\) pounds. Ellen's actual weight is 80\(\frac{1}{2}\) pounds. Find the difference between Jody's guess and Ellen's actual weight?

Operation: ______

Hampton City Schools Mathematics Department
Lesson Twenty-Three
SOLVE

Step 3: Solve the problem.

EXAMPLES:
1. One Saturday John sold 78 papers, Donald sold 67 papers, and Michael sold 91 papers. How many papers did the boys sell altogether?

PLAN You must add.

SOLVE
78
67
+ 91
236

The boys sold 236 papers altogether.

2. One hot-dog vendor sold 18 trays of hot dogs. There were 32 hot dogs on each tray. How many hot dogs did he sell?

PLAN You multiply the number of hot dogs in each tray by the number of trays.

SOLVE 18 \times 32 = 576 hot dogs

So, 576 hot dogs were sold.

III. EXERCISE SET 3
Solve these problems. Show your work.

1. FOR STUDENT COUNCIL PRESIDENT

MARY 32
GEORGE 43
JOANNE 49

Find the total votes cast for Student Council President.

Hampton City Schools Mathematics Department Lesson Twenty-three
2. **Ring the Bell!**

- Sandy 9 ft
- Ian 7 ft
- Naomi 5 ft

How many feet higher did Sandy get than Naomi?

3. Alice sold 47 boxes of hockey buttons. There were 50 buttons in each box. How many buttons did she sell?

4. The city of San Antonio was founded in 1718. Houston became a city 119 years later. In what year did Houston become a city?
5. The camp cook expected 285 people for lunch. He cooked 3 ears of corn for each person. How many ears of corn did he cook?

6. Dan bought 19 packages of baseball cards. There were 5 cards in each package. How many cards did he buy?

7. If the trail is marked into 25-foot sections, how many sections will there be?

8. Mary had 496 stamps. She bought 117 stamps. How many stamps did she have then?

CHECK

Step 4: Check to see if your answer is reasonable.

EXAMPLE:

Given: dog + girl = 112 lbs.
 girl = 79 lbs.

Find the dog's weight.

Subtract: 112
 -79

 33 lbs

Is your answer reasonable?

YES. The dog weighs less than the girl plus the dog.

How much does the dog weigh?
EXERCISE SET 4

Solve these. Ask yourself if the answer is reasonable.

1. Tim bought 16 packages of football cards. There were 6 cards in each package. How many cards did he buy?

2. One day, 112 people separated into 8 equal groups to go hiking. How many people were in each group?

Use the map to find the shortest distance between:

3. Cherokee & Pawnee

4. Cherokee & Comanche

5. How much taller is the basketball player?

6. Indianapolis 500

<table>
<thead>
<tr>
<th>Date</th>
<th>Winning Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1911</td>
<td>75 mph</td>
</tr>
<tr>
<td>1972</td>
<td>163 mph</td>
</tr>
</tbody>
</table>

By how much did the winning speed increase?
TO THE PARENT: In this lesson your child will solve application problems. Many will involve addition and subtraction of decimals.

I. Write each price with a dollar sign and a decimal point.

1. 9¢
2. 15¢
3. 50¢
4. 98¢
5. 29¢
6. 35¢
7. 75¢
8. 47¢
9. 89¢

10. eight dollars and sixty-seven cents
11. ninety-three cents
12. four dollars and nine cents
13. one dollar and four cents
14. two dollars and sixty-four cents
15. one dollar and ten cents

To solve problems with decimals

. Use the four step method.
. Line up the decimal points in addition and subtraction.

Hampton City Schools Mathematics Department Lesson Twenty-Four
EXAMPLE 1:

Betty bought a ticket for $1.25. She gave the cashier a $5 bill. What was her change?

READ $1.25 cost of ticket
$5 given the cashier
How much change?

PLAN You are asked about change from
$5 so you subtract.

SOLVE $5.00
- 1.25

3.75

CHECK $5 - $1 is $4
So, $3.75 is reasonable

TWO STEP PROBLEMS

EXAMPLE 2:

For picnics, Mrs. Booth bought a portable cooler for $22.50 and a large jug for $5.62. She gave the cashier $30.00. How much change did she get back?

READ: $22.50 cost of cooler
5.62 cost of jug
$30.00 given the cashier

PLAN You are asked to find change from
2 purchases.
add then subtract

SOLVE $22.50
+ 5.62
$28.12

$30.00
- 28.12

$1.88

CHECK Purchases are about $22 and $6
$22 + $6 = $28
$30 - $28 = $2
So, $1.88 is reasonable.
II. EXERCISES
Solve these problems. Show your work.

1. How much pot roast did Kristie buy if she bought both roasts?

Camera A costs $17.95.
Camera B costs $31.95.
How much cheaper is Camera A?

2. Dana saves $0.25 each week. How much will Dana save in 8 weeks?

3. The Markhams bought 5 hot-turkey sandwiches at $1.85 each. What was the total cost?
The picture above gives airline distances in miles between certain cities. Use the picture to answer the questions below.

5. What is the distance between New York and Capetown by way of Natal? b. By way of Dakar?

6. How much shorter is the trip from New York to Lisbon than the trip from New York to Natal?
This map shows the area of each state. Use the picture to answer these questions.

7. What is the land area of each of these states?
 a. Arizona
 b. Utah
 c. California
 d. Washington

8. Which state has the largest land area?

9. What is the total land area of California, Nevada, Utah, and Arizona?
III. Find the sale price.

1. ½ OFF

 Reg. $8.48
 Sale price __________

2. SAVE 99¢

 WAS $8.59
 NOW ______

3. Clip the coupon worth 39¢.

 MILK SHAKE
 was 99¢
 now ______

4. SAVE $2.99

 Reg. $8.29
 Sale price ______
Check these ads. Write "YES" if the ad is correct; write "NO" if incorrect.

1. $\frac{1}{2}$ OFF

 Was 89.90
 Now 45.45

2. SAVE 40.15

 Reg 179.92
 Now 139.84

7. SAVE 78.4

 Now 2 for 7.00
 Was 3.89 each

8. $\frac{1}{2}$ PRICE

 Now 4.99
 Was 9.88

9. Clip the coupon 5.94

 HAMPTON RESTAURANT Special

 CRAB CAKE Reg 4.40
 DINNER Now 3.89

10. SAVE 29.10

 Was 78.9
 Now 5.99

Hampton City Schools Mathematics Department
Lesson Twenty-Four
LESSON TWENTY-FIVE

TO THE PARENT: In this lesson your child will answer and create problems based on information selected from charts, tables, maps, and graphs.

I. BAR GRAPHS

Languages Spoken In the World

<table>
<thead>
<tr>
<th>Language</th>
<th>People (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandarin</td>
<td>1.2</td>
</tr>
<tr>
<td>English</td>
<td>0.8</td>
</tr>
<tr>
<td>Russian</td>
<td>0.6</td>
</tr>
<tr>
<td>Hindi</td>
<td>0.4</td>
</tr>
<tr>
<td>Spanish</td>
<td>0.3</td>
</tr>
<tr>
<td>German</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Answer the questions about the graph above.

1. Which language is spoken by more people than any other?
 Mandarin (Chinese)

2. How many languages are spoken by more than 200 million people?

3. Make up your own question.
Answer the questions about the graph.

1. How many people have hazel eyes?

2. How many more people have brown eyes than blue?

Make up two questions about the graph.

3.

4.

Hampton City Schools Mathematics Department Lesson Twenty-Five
III. LINE GRAPHS

Answer the questions about the graph.

1. On what day were the least Slurpees sold?

2. How many more Slurpees were sold on Sunday than on Wednesday?

Write two questions about the graph.

3.

4.

Hampton City Schools Mathematics Department Lesson Twenty-Five
IV. MAPS

This map shows the number of people who lived in each of these states in 1890.

- NORTH DAKOTA: 190,983
- MINNESOTA: 1,310,283
- SOUTH DAKOTA: 348,600
- IOWA: 1,912,297
- KANSAS: 1,428,108
- MISSOURI: 2,679,185
- ARKANSAS: 1,128,211

1. Which state had the most people?
2. Which state had more people, Kansas or Iowa?

Write two questions about the map.

3. ____________________________
4. ____________________________
VI. TABLES AND CHARTS

<table>
<thead>
<tr>
<th>Region</th>
<th>Estimated Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>2,200,000,000</td>
</tr>
<tr>
<td>Europe</td>
<td>750,000,000</td>
</tr>
<tr>
<td>Africa</td>
<td>330,000,000</td>
</tr>
<tr>
<td>Latin America</td>
<td>300,000,000</td>
</tr>
<tr>
<td>North America</td>
<td>240,000,000</td>
</tr>
<tr>
<td>Oceania</td>
<td>21,000,000</td>
</tr>
</tbody>
</table>

Answer the questions about the chart.

1. Where do the most people live?

2. Do more people live there than the other regions together?

3. Make up your own question about the chart.
NAME__

1. Name the planets from largest to smallest.
 a. ________ g. ________
 b. ________ h. ________
 c. ________ j. ________
 d. ________
 e. ________
 f. ________

2. Which planet is about the same size as the earth?
 __

3. Name two planets that have diameters about \(\frac{1}{2} \) the size of earth's.
 a. __________________ b. __________________

4. Name the two planets which have diameters nearly 4 times as large as the earth's diameter.
 a. __________________ b. __________________

CONGRATULATIONS!!!!!!!
You have now completed
MATH BY MAIL

Hampton City Schools Mathematics Department Lesson Twenty-Five