AUTHOR
TITLE
INSTITU'SION
SPONS AGENCY
PUB DATE
GRANT
NOTE

AVAILABLE FROM

PUB TYPE
EDRS PRICE DESCRIPTORS

Halasz, Ida M.; Desy, Jeanne
Technique for Management: Time for Learning. BASICS: Bridging Vocational and Academic Skills.
Ohio State Univ., Co?ünbus. National Center for Research in Vocational Education.
Office of Vocational end Adult Education (ED), Washington, DC.
87
G008620030
61p.; For related documents, see ED 252 701-702, ED 252 737-739, ED 257 995, ED 266 264, ED 276 873, and CE 047 969-97J.
National Center Publications, Bcx SP, National Center for Research in Vocational Education, 1960 Kenny Road, Columbus, OH 43210-1090 (Order No. SP300EB--\$7.50; complete BASICS set, SP300--\$198.00).
Guides - Non-Classroom Use (055)
MFOl Plus Postage. PC Not Available from EDRS.
*Academic Achievement; Academic Education; *Basic Skills; Educational Improvement; *Integrated Activities; Integrated Curriculum; Postsecondary Education; Productivity; Secondary Education; Time Factors (Learning); *Time Management; *Time on Task; *Vocational Education Productivity Imp-ovement

IDENTIFIERS

ABSTRACT

This handbook provides guidelines for enhancing the use of time in secondary and postsecondary vocational-technical classes. It is intended to guide teach~rs, administrators, supervisors, inservice coordinators, and teacher educators through conducting time-use analysis. It is part of BASICS, a package of integrated materials developed to assist teachers, administrators, and counselors in bridging vocational and academic skills. Since the information is broadly applicable, a prologue focuses the application of the information for the sfacific purpose of strengthening basic skills. It suggests ways for vocational and academic teachers to employ time-use analyses together to improve the productivity of their classes. Chapter 1 describes the purpose of the handbook and defines key concepts. Chipter 2 provices background on time use in education, including highlights from research and studies of vocational-technical classes. Chapters 3-5 each discuss one of the three stages of time-use analyses: discover how time is used, decide what change is needed, and change day-to-day practice. An example of a time-use analysis is used throughout to illustrate the use of an observation form and five worksheets. An appendix contains the reproducible forms. (YLB)

[^0]

the national center mission statement

The National Center for Research in 'Vocational Education's mission is to increase the ability of diverse agencies, institutions, and organizations to solve educational prodems relating to individual career planning, preparation, and progression. The National Center fulfills its mission by:

- Generating knowledge through research
- Developing educational programs and products
- Evaluating individual program needs and outcomes
- Providing information for national planning and policy
- Installing educational programs and products
- Operating information systems and services
- Conducting leadership development and training programs

For further information contact:
Program Information Office
National Center for Research
in Vocational Education
The Ohio State University
1960 Kenny Road
Columbus, Ohin 43210-1090
Telephone: (614) $486-3655$ or (800) 848-4815
Cable: CTVOCEDOSU/Columbus, Ohio
Telex: 8104821894

Copyright ${ }^{\text {c }}$ 1987. The Natıonal Center for Research in Vocatıonal Education. The Ohoo State University. All rights reserved.

Strengthen basic skills by using . . .

TECHNIQUE FOR MANAGEMENT TIME FOR LEARNING

by
Ida M. Halasz
Jeanne Desy

With a Prologue by

Sandra G. Pritz
Michael R. Crowe

FUNDING INFORMATION

Project Titie:	National Center for Research in Vocational Education, Applied Research and Development
Grant Number:	G008620030
Project Number:	051BH60001A
Act under Which Funds Administered:	Carl D. Perkins Vocational Education Act. P.L. 98-524, 1984
Source of Grant:	Office of Vocational and Adult Education IJ.S. Department of Education Washington, D.C. 20202
Grantee:	The National Center for Research in Vocational Education The Ohio State University Columbus, Ohio 43210-1090
Acting Executive Director:	Chester K. Hansen
Disclaimer.	This publication was prepared pursuant to a grant with the Office of Vocational and Adult Education, U.S. Department of Education. Grantees undertaking such projects under government sponsorship are encouraged to express freely their judgment in professional and technical matters. Points of view or opinions do not, therefore, necessarily represent official U.S. Department of Education position or policy.
Discrimination Proinlbited:	Title VI of the Civil Rights Act of 1964 states: "No person in the United States shall, on the grounds of race, color, or national orıgin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance." Title IX of the Education Amendmenis of 1972 states: "No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving federal financial assistance." Therefore, the National Center for Fiesearch in Vocational Education Project, like every program or activity receiving financial assistance from the U.S. Department uf Education, must be operated in compliance with these laws.

TABLE OF CONTENITS

Page
LIST OF FISURES v
FOREWORD VII
EXECUTIVE SUMMARY IX
PROLOGUE XI
CHAPTER 1. INTRODUCTION 1
Purpose of this Handbook 1
Key Concepts and Defınitions 3
CHAPTER 2. TIME USE IN EDUCATIO' 7
Highlights from Research 7
Studies of Vo-Tech Classes 8
CHAPTER 3 FIRST STAGE: DISCOVER HOW TIME IS USED 13
Plan Time-Use Analyses 13
Conduct Observations 17
CHAPTER 4 SECOND STAGE: DECIDE WHAT CHANGE IS NEEDED 23
Compute Time Use 23
Display Results 26
Interpret Results 26
CHAP TER 5. THIRD STAGE: CHANGE DAY-TO-DAY PRACTICE 31
Enhance Time Use 31
Develop Action Plans 35
APPENDIX 39
Observation Form 41
Worksheet I: Observation Schedule 42
Worksheet II: Computer Time IJse 43
Worksheet III: Display Time Use 44
Worksheet IV: Interpret Results 45
Worksheet V• Teacher's Action Plan 46
REFERENCES 47

LIST OF FIGURES

figure Page
1 Stages of using time better 2
2 Student tıme use in vo-tech classes 3
3. Time use observed in secondary vocational classes 9
4. Time use observed in postsecondary vo-tech classes 10
5 Variations in student time on task 16
6. Example of Worksheet I used to schedule observations 17
7 Observation form 18
8. Example of observation form used to record student activities 20
9. Use a clipboard, quartz clock, and pencil with eraser for observations 21
10 Worksheet II for computing time use 24
11. Example of Worksheet II used to compute time use 25
12 Example of Worksheet III used to display time use 27
13. Example of Worksheet IV used to interpret time use 28
14 Example of Worksheet V used for teacher's action plan 37

FOREWORD

Converging factors point to a rieed to look for new pathways to vocational education excelience the public's increased expectations regarding academic outionnes of education, heightened by a number of national reports; increased graduation requirements and declining vocational enrollments in many states; the emphasis in the Perkins Act on the need for strengthening academic foundations; and business and industry requests that entry-level en, ployees have a more thorough knowledge of the basic academics they will need to apply in their vocational fields. Those concerned agree that students neeo to have stronger basic academic skills as they feave secondary education programs-stronger academic skills for graduation, for work, and for life.

The National Center ${ }^{\text {ras }}$ as sponsored diverse efforts dealing with basic skills in vocational education from research to deyelopment to dissemination. Much has been learned about vocational students' basic skills learning problems. In order to make connections between research and practice, the National Center has, through synthesis and development, prepared an integrated package for teacher use, reinforcing this information with practical applications gleaned from teachers' repertoires across the nation. The products in the package are aimed toward enabling vocational and academic teacners to strengthen the academic component of vocational programs through joint effort.

The BASICS package provides resources in five focus areas: research findings, teaching techniques, instructional materials, instrurtional strategies, and support roles. The resources are organized in three looseleat guidebooks for flexible use, and an accompanying videotape provides an orientation to the topic and to the package.

The Bridger's Guide orients administrators, counselors. teachers, employers, and families to the purpose and application of BASICS; individual roles are explained, resources identified, and implementation guidelines and strategies outlined in workshop format. Individual compone,:ts to the guide are as follows:

- Implementation Guide describes the philosophy of BASICS and provides guidelines for implementing the program.
- Support Roles for Basic Skills describes the role of administrators and counselors in a program for improving basic skills
- Primer of Exemplary Strategies provides teachers with examples of other teachers' successful efforts and diverse approaches.
- Roadsigns from Research (posters and brochures) highlights key research findings of interest to teachers in strengthening basic skills.

Targeted Teaching Techniques provides vocational and academic teachers with assessment, planning, and management tools to improve students' basic skills. Iridividual components are as follows:

- Technique for Management: Time for Learning lays foundatıons fcr more effective basic sh:!!s instruction through a study of the use of class t!me.
- Technique for Remediatıon: Peer Tutorıng discusses the planning, implementation, and evaluation of peer tutoring programs to strengthen students' basic skills
- Technique for Computer Use: Software Evaluation describes a procedure for joint evaluation of educationai software for basic skills instruction.
- Technıque for Individualizatıon: The Academic Development Plan guides school staff through a systematic identification of individual student needs and steps to meet those needs.
- Techniques for Joint Effort: The Vorational-Academic Approach describes teaching techniques that vocational and academic teachers can use jointly to improve students' basic skills.

Developing an Instructional Program provides teachers with practical and theoretical information on development or selection of appropriate applied basic skills instructional materials Individual components are as follows:

- Instructional Materials Development discusses the prerequisites of materials development, alternative curriculum types. and guidelines for mate als development and review
- Supplemental Instructıonal Resources identifies sources of basic skills instructional materials available for use with vocational students.
- Instructıonal Assistance in Specific Basic Skills prepares vocatıonal teachers to help students gain reading, writing, oral communications, and math skills.

The National Center wishes to acknowledge the leadership provided to this effort by D. Robert E. Taylor, recently retired Executive Director. Appreciation is extended to the fo!lowing individuals who served as a panel of experts to assist staff in planning strategy and recommending document content: Eugene Bottoms, Consultant to the Southern Association of Colleges and Schools; Michele Brown, Vocational Supervisor, Idaho Falls School District, ID: Alton Crewe, Super intendent, Gwinnett County Public Schools, GA; Roger Faulkner, Iristructor-Coordinator. Great Oaks Joint Vocational School District, OH: and Darrell Parks, Director, Divisıon of Vocational and Career Education. Ohio Department of Education.

Special recognition is due the following Natıonal Center staff who played major individual roles in the development of the BASICS package: Richard J. Miguel, Associate Director for Applied Research and Development, and Michael R. Crowe, Project Director, for leadership and direction of the project; Sandra G. Pritz, Senior Program Associate, Judith A. Dechler, Program Associate, and June Veach, Graduate Research Associate, for synthesizing and developing the documents, and Deborah Black for word processing the documents. Appreciation is extended to the National Center editorial and media services personnel for editorial review, graphics, and production of the documents.

Chester K. Hansen
Actıng Executive Director
The National Conter for Research
in Vocational Education

EKECUTIVE SUMMARY

This handbook provides guidelines for making better use of time in vocational-technical classes. Interest in time use has increased sharply in recent years. For instance, one of the recommendations in A Nation at Risk (Na!ional Commission for Excellence in Education 1983) was to increase time for learning. Research shows that time is a critical factor; increasing tıme on task increases students' achievement.

Further more, time use is one of the few variables related to student achievement that teache.s can control in the classroom. Therefore, by learning to make better use of time teachers can improve vo-tech education. Teachers can "teach smarter" by changing the ways they manage student time.

The information in the handbook is broadly applicable. To focus the application of the information for the specific purpose of strengthening basic skills, a prologue $h ;$ been inserted. This suggests ways for vocational and academic teachers to employ tıme-use analyses together to improve the productivity of their classes.

This handbook is designed to guide teachers, administrators, supervisors, inservice coordinators, and teacher educators in conductıng time-use analyses. The three stages of time-use analyses are as follows:

1 Discover how students use time through observation in the classroom.
2. Decide if it is necessary to increase time on task.

3 Change day-to-day practice ir the classroom if increased time on task is desired.
The methods presented in this handbook are based on studies conducted in secondary and postsecondary vo-tech classes (Halasz and Behm 1983: Halasz, Behm, and Fisch 1984). The results of these studies showed that secondary students were, on the average, on task about 71 percent of the class time, whereas postsecondary students were on task about 83 percent of their classroom time. The studies also showed that teachers have a great deal of control over how students spend their time, and that certain teacher behaviors promote more time on task than others. These indings have been used to arrive at strategies for increasing time on task.

Yhis handbook provides background information and seep-by-step procedures to conduct time-use analyses An example of a time-use analysis is utilized throughout to illustrate the use of observation form and the five worksheets. The reproducible worksheets and observation form are contained in the appendix.

Once time use has been determined, specific strategies to increase time on task can be selected. The strategies discussed here are-

- treat time as an important resource;
- define individual student and class goals clearly:
- plan and organize class activities in advance;
- use a wider range of teachiing methods;
- have positive expectations of students and reinforce them in a positive manner.
- encourage students to work independently;
- assign meaningful tasks;
- minimize scheduled, whole-class breaks;
- decrease opportunities for interruptions from outside the classroom; and
- serve as a role model of the world of work.

PROLOGUE

Research
Findings:

How much time students are actively engaged in learning contributes strongly to their achievement. The amcunt of time available for learning is determined by the instructicnal and management skills of the teacher and the priorities set by the school administration.

What Works: Research about Teaching .nd
Learning, U.S. Department of Education, 1986

Applications of the Research Findings:

A teacher who has 30 students six 50 -minute pc .iods a day for 180 days controls 27,000 hours of student learning time in a typical school year.

If 1 C students wait 10 minutes each day for other students to and arrive, they lose 300 hours of learning time in a typical school jear.

National Commission on Excellence in Education Recommends More Time for Basic Skills

The report A Nation at Risk prompted discussion and debate in almosi every city, town, and hamlet in the United States. The state of educational exrellence in this country is under close scrutiny at all levels of involvement-local, state, and federal. The debate this document has initiated will not be quickly resolved. Rather, it will take the long-term commitment of all those concerned with the educational system to bring about the necessary changes.

The commission identified four important aspects of the present educational process in America: zontent, expectations, time, and teaching. Relevant to this discussion is time.

The commission made the following recommendations:

- We recommend that significantly more time be devoted to learning the New Basics. This will require more effective use of the existing school day, a longer school day, or a lengthened school year.
- The time available for learning stiould be expanded through better classroom management and organization of the school day.
- Administrative burd ns on the teacher and reiated intrusions into the school day should be reduced to add time for teaching and learning.

As the National Commission points out, tim ised more wisely is an alternative to the longer school days and years being proposed for many schools. The need tc expand the effective time for learning basic skills is accentuated by the following figure showing that only 2.8 percent of the time in the vocational classes studied was devoted to basic skills. The usa of time is one of the few key variables related to student achievement that teachers can control in the classroom. Time nust be treated as an important learning resource.

Student use of time in sei. sted secontary vocational-technical classes

Cooperation Is a Key to Time-Use Analysis

This guide is intended to help teachers improve the use of time in the classrnom through timeuse analysis. Although time-use analysis can be used for a variety of purposes, it is suggested here as a means for vocational and academic education teachers to work together to improve the productivity of their classes The academic teacher can perform the observations for the vocationul teacher and vice versa. The purpose is not for teachers to make evaiuative judgments of one another. but instead to assist one another through observation and sibsequent dissussion. Another set of eyes, free to observe through the time-on-task, template, provides additional information for each teacher to consider in pianning how to maximize the us? of the avi "able class time.

Most teachers have never observed other teachers' classes or had their own classes observed by cther teachers. Thny can learn a great deal in either role. Teachers vihose vlasses are observed can benefit from the results and make chat. ges that increase time on tat; Meanwhile, observers can learn how other teachers deal with various classroom situations and how students spend their time. especialiy when their teachers are busy with other students.

Through working together with this technique, teachers can obtain new and helpful information. They can offer their teacher counterpart insights based on their observations. They will also gain new irisights for their own cla ses as they discuss their observatıons. Good instruction cannot
 ideas and to get support from each other.

The Benefits of Joint Vocational-Academic Effort

An added beneficial dimension emerges by the pairing of vocational and academic teachers. Most teachers have never had the opportunity to observe other teachers' ciasses, and it is even rarer for vocational and academic teachers to have had the chance for this kind of exchange. The potential is especially great because each teacher brings the perspective of a different teaching context. As they work toward increasing the amount of time spent on basic skills, their sharing
opens the door for increased integration and coordination to maximize the quality of the time. The ultimate goal, after all, is for learning to take place during the time spent on task.

Vocaional teacher: are likely to be alert to how academic concepts are being reinforced by connection with real world examples and practice problems. They can suggest applications of Dasic concepts from their specific vocational areas. Vocational teachers may be especially interested to see how a simple, single principle, once learned. can be applied in numerous ways.

Academic teachers are likely to be geared for identification of basic skills principles as academic concepts. They can point out when student recognition of generalizable principles might simplify and reintorce their learning. Academic teachers will be especially interested to see specifically how academic concepts are being used concretely in the vocational context. They may gain insight into how the act of applying a concept cements the learning of the concept, particularly for students whose learning style lends itself most to this mode.

New insights into the teaching/learning process should be ultimately convertible into time saved. More effective learning may reduce the student's need for review or remediation. The time saved can be soent in teacii.ing basic skills.

In short, both vocational and academic teachers can offer much and profit much from the cross-fertilization that occur's through their joint use of classroom time analysis. As they discuss ways to use time more effectively based on their observations, they are likely to move toward greater vocational-academic integration. Learning gains in both vocational and academic courses
should result from a greater integration and coore worth more. Furthermore, students s.'ould be hot .
n of those courses so that the time spent is
to apply basic skills to solve problems.

Suggested Options for Use

Technique for Management: Time for Learning can be used in a variety of ways for the purpose suggested here: cooperative time-use analysis to improve management of learning time for basic skills instruction. One end of the range of possibilities is for a teacher who is interested in pursuing time-use improvement to read the guide, recruit a teacher to help with the observations, and proceed as the guide directs. As discussed earlier, the potential of bonus outcomes for the integration of vocational and academic learning is greatest if a vocational instructor pairs with an academic instructor. However, positive outcomes can be expected from the pairing of any two teachers who want to !earn more about managing their classrooms.

At the opposite end of the range of options is the participation of a large number of teachers. perhaps schoolwide or districtwide, in a coordinated program of time-use analysis. Where this is feasible and desired. it is helpful to conduc a workshop for the participants. Managing Learning Time: A Professional Development Guide (Halasz, Ida M. and Raftery, Susan R.; National Center for Research in Vocational Education; Columbus, Ohio; 1985) is available to assist in conducting a workshop. It is designed to be used by anyone charged with training others in time-use analysis at the local, regional, or state level. The workshop guide contains a model agenda for a 1 1/2-day workshop with each presentation laid out and masters for transparencies and handouts provided. An optional 17-minute videotape is helpful but not essential to the workshop. It is recommended that each pirticipant have a copy of Technique for Management: Time for Learning.

Other options exist for implementing time-use analysis. For instance, the guide can be used flexibly by a small group of teachers working together. The group might view the videotape as a
mıniworkshop. What is וnidoriant is to facilitate the tıme-use analysıs so as to increase effective learning tıme for strengthening basıc skiiis Most other methods of increasing learnıng tıme (e g. lengthening the school day) entail costs or are extremely difficult to implement One option that does not require enormous additional costs is maxımizing available class tıme This alternative is controllable by teachers, the persons ultimately responsible for educating students

The observation form on the following page is adapted specifically for basic skills observations. Teaciiers focusing on strengthening basic skills may choose to use this form rather than the one provided in the appendix to this guide. Refer to chapter 3 for co.nplete directions for using this form.

BASIC SKILLS OBSERVATION FORM

Date \qquad Class \qquad
Observation 12345 Observer
School \qquad Number of Students Enrolled

Class Begins \qquad Endis

Describe any unusual circumstances that are decreasing time-on-task opportunities such as assemblies, fire drills, etc.

Purpose of This Handbook

This handbook provides guidelines for enhancing the use of time in secondary and postsecondary vocational-technical classes It is intended to guide teachers, administrators, supervisors. inservice coordinators, and teacher educators through conducting time use analysis. It also provides research-based tips on how to help students make better use of class time. A Nation At Risk. the report of the National Commission for Excellence in Education (1983), convinced the public that education must be improved in the United States One of the commission's recommendations was to increase the time available for learning. Tıme is a critical factor because, as research shows. more time on task leads to higher student achievement in school.

Making better use of tıme is one way to improve vo-tech education. In fact, the use of tıme is one of the few variables related to student achievement that ieachers can control in the classroom. Teachers cannot control other important variables such as student ability, aptitude, or family background. Teachers can, however. "teach smarter" by changing the ways they manage students' tıme in the classroom Certain teaching and management methods enhance tıme on task more than others As a result. students spend more time learning skills related to the curriculum and are better prepared to succeed on the job after graduation.

Figure 1 illustrates the three stages of time-use analyses. As shown, teachers first discover how students use time in their classes through time-use analysis (stage 1). Second. they decide if it is necessary to increase time on task (stage 2). Third, they change their day-to-day practice in ways that are known (through research) to increase students' time on task (stage 3).

This handbook provides background information and specific guidelines in the form of worksheets to observe and analyze time use. What is more important, the handbook explans how to interpret the results Strategies, based on research in vo-tech classes, provide conc:ete recommendations for changes indicated in the results of the time-use analyses.

Staff in secondary and postsecondary settings can use this handbook for various purposes. The procedures are based on methods used to research time on task in secondary and postsecondary classes. The step-by-step; procedures are useful for-

Stage 1

Figure 1. Stages of using time better

- teacher inservice activitıes.
- research for decısion making.
- process evaluation for program improvement. and
- preservice teacher education.

The handbook is designed to guide an individual (or a committee) in organizing the observations for any one of these purposes. The individual assuming such responsibilities cuuld be-

- a master teacher leading a committee to promote excellence,
- the vocational director of a secondary area school or system,
- the local or State system's evaluation and research director,
- the director of the technical department of a community college,
- the local system's supervisor for a service area,
- the systemwide inservice coordinator.
- a university professor of teacher education classes,
- a State department administrator, or
- a regional or intermediate unit coordinator.

Regardless of who organizes the observations, it is highly recommended that the teachers of the classes selected for observations be involved in planning. When time use analysis is used as an inservice activity, teachers should participate voluntarily. When it is used for process evaluation of a program, classes can be selected randomly or purposively, but always with the teachers' involvement and consent throughout.

Most teachers have never observed other teachers' classes or had their own classes observed by other teachers They can learn a great dea! in either role. Teachers whose classes are observed can benefit from the results and make changes that increase time on task. Meanwhile, observers can learn how other teachers deal with various classroom situations and how students spend their time, especially when their teachers are busy with other students.

The best way to use this handbook is to first read it through to understand the underlying concepts and the entire procedure Then duplicate copies of the five worksheets and the observation form that have been included in the Appendix to help in planning the observations and interpreting the results

Key Concepts and Definitions

Before reading further, you should know a few key concepts and definitions it is important to know that student use of tıme in classrooms for activities that build their vocational-technical skills is called tıme on task In other words. when students are involved in a discussion, listening to a lecture. seeing a filmstrip. practıcing on a piece of equipment, taking a quiz, cleanıng up their work area. or doing anything to increase their ability to work in occupations related to their class. they are spending tıme on task.

The opposite is tıme off task. or the tıme students spend on activitıes that do not lead to building their skills Some examples are waitıng for class to begın when buses are late, chatting with a group of classmates. or leaving the room to wander in the halls.

Figure 2 shows the ways tıme is used in vocational-technical classes Notice that the major divisions are time on task and tıme off task. Time on task is further divided into curriculum-related and

Figure 2. Student time use in vo-tech classes
other, or non-curriculum-related. activities Curriculum-related includes tasic skills. technical skills. employabllty skills, human relations sh!tls, and youth organization activites

- Basic skills include reading writing, and calculations. In most cases. basic skills are learned in combination with technical skills. For instance, the student calculates the length of the board that is needed, then measures the board before cutting it. Another example is the use of workbooks which often combine reading a theoretical description. calculating several problems, then writing answers to questions about the information covered.
- Technical skills are the substance of the vccational-technical curriculum They include both theory and hands-on practice of various tasks that require manual proficiency and complex cognitive understanding. Technical skills also nclude knowing appropriate occupation-related procedures and the use of tools. equipment, and facilities.
- Employability skills encompass three areas. Work values or attitudes may be táight tl rough discussions about getting to class or work on tıme and doing one's work well Job-seeking, maintainıng, and advancing skills include practice in developing a resume and learning about interpersonal skills that are necessary for success on the job Knowledge of the world of work can be taught through discussions about job opportunities. wage structures, and the social or personal implications of chosen jobs
- Human relations skilis include activities that help students become socialized to the world of work. These skills are interpersonal and social skills that students need in order to become accepted and succeed on the job. Human relations skills are a very important part of the curriculum in vo-tech classes, especially those for the disadvantaged and handicapped. An example of how they are taught is a student coffee break held to socialize students to similar activities on the job.
- Youth organization activities include HERO, FFA, VICA, DECA. FBLA, OEA. and other school-sponsored activities that are part of the vo-tech curriculum These activities are on task because they use and reınforce varıous skills, including leadership and iriterpersonal skills that students will use on the job.

Other on-task actıvities include setting up for practice. cleanıng up afterwards. and managerıal tasks. Managerial tasks include listening to public address announcements, filling out forms to take a bus trip. or any other activity that is assigned or necessary but is not related to the curriculum.

Time off task has two major divisions. The first is tıme for breaks Mandatory breaks may be scheduled for the whole class, or individual breaks used to visit the restroom or get a drink of water. Other off-task activities include whispering or talkıng, waitıng or just doıng nothıng, and behaving disruptively In general. off-task activities are those that do not add to the students' votech skills.

In this handbook, time use is referred to in terms of the proportion or percentage of class time given to a specific activity. Thus, when reading about studies conducted in vo-tech classes, you will notice that, on the average, secondary students were on task 71 percent of the total class time. You will further read that postsecondary students were on task 83 percent of the total class time The postsecondary students, in other words, spent a higher proportion of their classroom time in on-task activities.

You will also see graphs of student use of class time for various acilvitıes. such as technical skills or human relatıons skills Picturing proportıons or percentages graphically is an easy way to explain how time has been spent in vo-tech classes. By following the step-by-step procedures in chapters 3 and 4. you will also be able to create graphs that show how time is spent in classes you observe or organıze for observations

Highlights from Research
The concept of time on task-the tıme when a student is actively learning-is the fruit of a century of research Early studies emphasized tıme in the c'assroom as a measure of learning. One result of this focus is today's requirement of a specific number of Carnegie Units for graduation from high school.

The recent change in emphasis from time in class to tıme on task is due largely to the work of two modern theorists The first. John Carroll (1963). concluded that how much students learned depended on the amount of time they actually spent on learning tasks. Later scholars became increasingly interested in Carroll's theory-and for good reason. Many varıables that influence learning have been closely studied. but tıme is unique among them. It can be easily measured. in contrast to such factors as student ability It can also be managed. Although teachers have little control over many varıables such as class size and equipment. they can control the amount of tıme given to learning tasks in the classroom.

The terrn "time on task" was coined by Benjamin Bloom in 1977. Building on Carroll's theory. Bloom developed a model for "mastery learning " What did if take to achıeve mastery of a skill or concept? It took time. Bloom concluded After studying time spent on learning tasks, he believed that students who had enough time to learn, and who were encouraged to spend that time actively trying to learn, would master their subjects.

Since Bloom's theory appeared. an astonishing amount of research has been done on the concept of time on task For example. Stallings (1980) found that achievement depends on how tıme is used-not on the lerigth of the class $\sim r$ the school day. This means the role of the teacher is crucial since it is the teacher who determines how most classroom time is used.

Research on how teachers can increase time on task suggests that one way is simply to allot more time for learning activities Fisher and others (1978) found that when teachers did so. classes spent more time on task Whether or not allocated time is used for learning is still very important. of course When higher proportions of allocated tıme are used for learning. students tend to achieve more.

How d teaching methods affect tıme on task? Not surprisingly. students respond differently to different methods. For example, one study found that stidents with high aptitude and high co ifidence in their academic ability spent more tıme off task when they were in groups than when they were working on their own Both high and low achievers tended to spend more time on task when two-way communication methods such as discussion were used (Anderson and Scott 1978)

The amount of time individuals need in order to learn also varies Low achievers need more tıme than high achıevers (Bloom 1977). Low achievers, however. spend less tıme on learning tasks. not more. Evertson (1980) found these students were on task only about 40 percent of the ${ }_{14}$ classroom tıme. in contrast. high achievers were on task 85 percent of the tıme-more inan twice as much as low achievers. While high achievers worked. Iow achievers spent much of their off-task time waitıng and doıng nothing.

These and many other studies reınforce John Carroll's original belief that. in general. more tıme nn task means greater student achievement. When students spend more tıme learning. they learn more.

Studies of Vo-Tech Classes

In 1982, the Commission on Excellence in Educatıon identıfied tıme spent on subjects as one of the variables most crucial to impioving the quality of education The commission's statement reflected a growing general acceptence of the importance of student time on task Numerous studies have shown that the amount of tıme students spend in learning activities is reflected in their academic achievement.

Until recently, however, little research had been done on vocational-technical classes. although it seemed tikely that time would be used differently in these classrooms In academic classes, for instance. students achieve most when lecture. demonstration, and discussion are the prımary teachıng methods. In vocatıonal-technical classes, where much time is customarily given to individual work, students might achieve more with a different com'ınatıon of instructional methods. To explore these possibilities. two studies were carried out at the National Center for Research in Vocational Education.

The first study (Halasz and Behm ,983) concentraºd on secondary classes Classes were observed in sev in comprehensive high schools and area vocational schools located in four states The classes represented several program areas. Observers spent 2 weeks at these sites They recorded the activities of each class on a form sımılar to the one in this handbook for 10 full class meetings.

The seconts study (Halasz, Behm, and Fisch 1984) included 16 postsecondary and 9 secondary vocatıonal-technical classes in schools located in 2 states Again, the secondary schools included were both comprehensive and area vocational schools The postsecondary classes were in a community college and an acult technical school During these 2 exploratory studies 338 secondary and 328 postsecondary students were observed

The Secondary Classroom

Time on task in the secondary classrooms observed varied slightly in the two studies Figure 3 shows how time was used across all the classes in the first study About 63 percent of the time was spent on curriculum-related learning, represented by blocks A, B, C, and D The largest amount of

Figure 3. Time use observed in secondary vocatioial classes
this time (about 38 percent) was spent in practice. learning technical skills through hands-on work with tools, equipment. and materia!s Basic skills, employability skills. and theory accounted for the rest of the time on task

The remaining on-task activities are those which were assigned. but not curriculum related (85 percent) Most of this tıme was spent on setup and cleanup

Time off task reters to any number of nonlearning activities. Students may be waitıng, fooling around. doing nothing. socıalızing. using the restroom. and so forth. Tıme off task sometımes results from disruptions within the classroom and interruptions from outside the room. such as public address announcements and visitors The secondary students observed spent about 29 percent of their time in off task activities. Breaks took almost 5 percent of this tıme.

Some factors seemed related to how time was used in these secondary classrooms. For example, the longer the class, the greater the proportion of time students spent on task. Class size also influenced time on task; smaller classes spent more time on task than larger ones. In addition. tıme on task varied with program area. Students in classes such as trade and industrial education, which had more opportunity for hands-on work, tended to spend more time on task.

The Postsecondary Classroom

The postsecondary students observed in the second study spent about four-fifths of their class tıme on task As figure 4 shows. most of this time was spent on theory, with sizable amounts also devoted to practice About 11 percent of the time on task was spent on noncontent activities. mu:.i of it on setup or cieanup For those students. scheduled breaks took 7.5 percent of the classroom tıme Theır actual time off task was approxımately 9 percent of classroom tıme.

Figure 4. Time use observed in postsecondary vo-tech classes

Aithough total time on task did not vary much among the service areas. the kinds of on-task activities did For instance. in the plants and diseases agriculture class. about 86 percent of the time was spent on theory, and none was spent on practice The business and office classes. on the other hand. devoted over half of therr time to practice

Breaks were handled in varıous ways, from no breaks to breaks takıng 17 percent of the tıme in one of the classes Several teachers did not schedule breaks, but had an "open door" policy. students left to get a drink, use the restroom, and so forth. at their own discretion Usually, these classes had loss tıme off task than those that included scheduled breaks

Teacher Behaviors

The major purpose of the 1984 study of vo-tech classrooms was to examıne how teachers influence time on task The results showed that teachers do have a definte influence in most classes, the teacher sets the level of enthusiasm and intensity When the teacher was actively working. students also worked more Moreover, there were specific things teachers did which seemed clearly related to increased time on task.

- Goal definition was t . . single most important teacher behavior Teachers who cle:- Iy stated the daily and weekly goals for the class and individuals had classes with the most time on lask.
- An oyerview of tasks and concepts helped students understand what they were working toward. They were better able to see how specific skills are used in larger projects
- Planning and organization meant that supplies. tools. and equpment were ieady when class began This gave students what they needed to accomplish their goals
- Awareress that time was important also characterized teachers who kept their ciasses on task Postsecondary teachers in particular seemed to maximize the tıme avalable. perhaps because they knew many of their students had other demands on their time
- With-it-ness. the teacher's awareness and sensitivity to students' neeas, also helped keep students on task Teachers who had this awareness knew when students needed help or supplies to proceed. They did not waste their students' tıme
- Maximizing the available time was characterıstıc of teachers whose classes had high time on task These teachers seemed to share their students' urger.iy about accomplishing learnıng tasks
- Varying teaching methods by using demonstratıon. discussions, and so oll, in addition to one-on-one instruction. heiped classes spend more time on task
- Modeling the work ethic seemed to inspire students to be more on task Teachers whin were good role models dressed and acted in a professional manner and were never idle during class time Many part-tıme postsecondary teachers who worked in the fields in which they z.ere teaching referred often to the world of work
- Positive expectations and positive reinforcement often went hand-ın-hand Postsecondary students. despite their higher personal motivation. seemed to benefit from a teacher's confidence and praise just as much as secondary students
- Ensuring that tasks were meaningful. rather than repetıtious or mechanical. challenged students and kept them more engaged in learning
- Encouraging students to work independently seemied to allow them to feel ownership of their work Teachers who set clear goals facilitated independence. their students were able to keep working rather than wait. off task. for new instructions.

The findings about ways teachers affect tıme on task in vocational-technical classrooms may be the most important result of these studies They strongly suggest that analyzing time use in the classroom can help iderify ways to change the use of time and increase st'ident learning

The first stage in enhancing tıme on task is to discover how ciass tıme is being used. This stage includes planning the time-use analyses and conducting the observations in the classrooms. After reading about the, e procedures in this chapter, use copies of Worksheet I and the observation form (included in the Appendix) to discover how time is used in the class or classes you wish to analyze

Plan Time-Use Analyses

Careful planning is essential for discovering how class time is used. Several related factors are involved in planning time-use analyses in vo-tech classes These include (1) determining why the time-use analysis is being done. (2) selecting specific classes, and (3) scheduling utaff. It is difficuli to say which comes first. Realistically, in most educatıonal organızatıons. resources are a major factor in planning staff development or evaluation activities, and must often be given primary consideration.

The most critical i asource in tıme-use analyses is staff time and avallability to conduct ubservations and analyze results Each time-use analysis requires several hours of observation of that class To be done fairly and correctly. each class shouid be observed for at least three enlire class periods

Anotier important $f=$ ritor is how the time-use analyses are explained to teache. s. Any form of observation in the classroom can be threatening to teachers Even inservice activities and process evaluations. which aıe positive ways to improve programs, are sometımes feared. Because fear can be a problem. the nex ${ }^{+}$section is devoted to building understanding of this process.

Explain Time-Use Antalyses

The best approach to lessen teachers' fear is to use time-hse analyses in the teacher inservice program Thus, improving the productivity of vo-tech classes becomes a goal of the inservice program rather than an aspect of evaluation. Another approach is to make time-use analyses one part of the prucess evaluation of programs. Yet a third approach is to use time-use analyses to research
information for decision makıng. Finally, tıme-use analyses become an excellent way to provide feedback to student teachers about their practice-teaching sessions

Fegardless of the stated purpose, teachers should be involved in planning and implementing time-use analyses. In some schools, teachers can be scheduled to conduct observations in er, it. others' classes. This appruach obviously requires a great deal of coordinatıon. but it can be ver! helpful because teachers rarely have the opportunity to watch each other teach and manage classes. A National Institutes for Research report pointed out that "school improvement is mcot surely and thoroughy achieved when teachers and administrators frequently observe tach other teaching and orovide each other with useful (if potentially frightening) evaluations if their teaching" (Fullen 1982, p. 29). Through carefully planned rotation, all teachers could have the opportu nity to learn through serving as observers and through having time-use analyses of their classes conducted by other teachers.

If involving teachers as observers is not practical, supervisors, administrators, or evaluatois should conduct the observations. But be sure to involve teachers as much as possibte in planning You shouid aiso explain the purposes and uses of time-use analy ses to them. Teachers will undoubtedly nnow that how students use class time directly reflects upon their teaching Although most teachers want to improve their instructional and managerial behavic's. like other professionals, they can be sensitive to recommendations that require changes

Involving teachers in the process usually lessen their concerns It is also helpful to assure them that all observations will be completely confidential You can maintari confidentiality by discussing results only with the teachers and administrators who are directly involved Maintaining confidentiality encourages teachers to accept the process as a way of improving the productivity in their classes rather thar - way of judging them as teachers.

Select Clasjes

How you select classes depends both on your role and the specific purpose of the time-use analyses. If you are the director of vocational education for a large city, you can conduct tirne-use analyses for research. You may need to know, for example, the average amount of tıme on task across all classes before making a decision to implement inservice training to increast tudents' productivity. If so. you would select classes differently than would the director of an area vocational school. whose purpose may be to conduct process evaluations for $\epsilon a r$ h service area

The first of several ways to seiect classes is random selection. You would choose this method if you were the large-city director of vocational education or a State evaluator. Random selection is especially useful when you have over 100 classes and wish to generalize about time use in the school system, region or State. With random selection, you can observe several classes and assume that the results represent all the lasses with some room for error.

For example, you co! Id learn the average level of time use in 200 classes, by conducting ar alyse, in only 65 clusses (choser by pulling names out of a hat) The results would be, at most, 10 percent above or below what they would be if every class were observed. The advantage of random selection is that, without conducting analyses in all the classes, you can have trustuorthy information about time use across all the classes. The drawback is that teacheij are less likely to make changes in their own classes when the results are based on the observations of o:hers.

A second way to choose classes is called purposive selection. This simply means that you select classes for a specific purpose befause random selection is not possible or not desirable. Purposively selected classes are nci representative of all classes. In many cases, however, purposive selection provides a better picfure of time use than a random selection does.

Imagine that you need to know the average level of time on task across five service areas but have the resources to conduct only five analyses. You should choose the one class in each service area that you feel is most typical of all the classes. Of course, human nature being what it is, most administrators might iend to choose the better classes as opposed to average ones One way to avoid that pitfall is tc use some criterion, such as student grades, on which to base the decision.

A third way to select classes is to request volunteers. Teachers who volunteer their classes for tıme-use analyses may be concerned with time use or may feel their classes have a very high percentage of time on task. This means that volunteer classes are less likely to be representative of other classes than the results froin classes selected randomly or purposively. This method of selection may be least useful for research anci most usefui when time-use analyses are a part of teacher inservice.

The remaining way to select classes is not to use a method of stlection at all. Rather time-use analyses may be conducted in every class. Obviously, this method provides the most direct information that teachers can use to change their instructionai and managerial behaviors related to students' time use. If a few time-use analyses are conducted every week throughout the school year, the supervisor. administrator, or peer teacher observers should not be overextended at any one point in time. If II classes are involved, there is also less tendency for teachers to feel threatened than if they are randomly or purposively selected. When possible, this may be the best way to select classes when the results are to be used in process evaluation of vo-tech programs.

Schedule Time-Use Analyses

Ideally. each class should be observed three to five times for entire class periods. Because votech classes can be up to 35 or 4 hours long. considerable time is needed for each time-use analysis

Because there are many changes during a class period in a typical vo-tech class, classes should be observed for entire class periods. In a study described in chapter 2, Halasz and Behm (1983) found that every class differs in its pattern of time on and off task. This is illustrated in figure 5, which shows the variations of student time on and off task during Monday, Wednesday, and Filday of a week of observation. The number of students on task are shown in relation to the number of mincites (55) of class time. Notice that if you observed only the first half of these particular classes, you would have had a higher proportion of time on task than if you observed only the second half.

Figure 5 also shows why it is imporiant to observe for at least 3 days. As in this case, the first day is often unusual because the teacher and students are very much aware that they are being observed. Altho sigh, as a well-known researcher, (Kerlinger 1973) observed, "Teachers cannot do what they cannot do" (p. 539). By the second and third day, teachers and students usually relax and go about their normal activities. For these reasons, you should plan in observe each class for at least 3 full class periods within 1 week.

Use Worksheet I (found in the Appendix) to schedule the observations. Figure 6 is an example of Worksheet \mid as it was used by the director of an ares 'ocational school to schedule four time-

Figure 5. Variations in time on task during three days
use analyses In this case. the time-use analyses were part of the inservice program. The teachers in this school teach during either the morning or the afternoon, and spend the remaining time planning. developing materials, visiting students at cooperative education sites, and meeting with employers They have been scheduled here to observe each other's classes during their planning time.

Figure 6. Example of Worksheet I used to schedule observations

Conduct Observations

Parts of the Observation Form

At first glance, the observation form may appear complex, but it is really simple 10 use. Figure 7 shows a smaller version of the reproducible form contained in the Appendix.

First, notice the information requested at the top of the form. Be sure to fill in all the blanks on the first page you use for each class. You will probably use several pages of the form for each class period observed since each page has room for only 30 minutes of observation. Now read the headings across the form. The one at the left is easy-"Time." Since you will record activities everv other minute, you will start with the second minute of class time. Fill in the hour and minute. You

Figure 7. Observation form
must observe what is happening before you record the activity, so if the class starts at 8.00 am . the first time you fill in should be 802 Then write 8.04. 806.808 , and so forth for all of the class time you observe

The next three headings indicate three broad types of activities students spend time on votech classes For each 2-minute period of time. write the number of students doing that particular activity in the correct column Keep in mind that during any mınute each student can be marked as doing only one activity Although a student may be both practıcıng a technical skill and chatting
with a friend, he or she should be counted only once. The total number of students marked in all the columns has to add up to the number marked in the "Students Present" column. Otherwise the percentages (or proportions of time-use) you arrive at will be incorrect.

The first of the three activity headings is "Number of Students on Curriculum-Related Tasks." This section includes activities related to the content of the curriculum such as practicing technical skills, basic skills, and so forth. Sometimes it is difficult to decide whether students are werking on technical skills or basic skills. When in doubt, guess. Do not let the need to make a decision keep you from observing and recording every student every 2 minutes.

The second of the three headings. "Number of Students on Other Tasks," includes setup and cleanup, and managerial activities that are not curriculum-content related. Although these are ontask activities that need to be done in most classes, they are not specific to the curriculum.

The third of the three headings, "Number of Students on Break/Off Task," is for activities that are clearly not on task These include actıvities such as waiting, talkıng, and whole-class or individual breaks.

The next column. "Number of Siudents Present at This Moment," is very important. Write the number of students actually present, not the number you know are enrolled in the clasu. In some classes students straggle into class so that the number piesent will change several times during the first few minutes Do a quick check across each minute to see if the numbers of students ir, the various columns add up to the number present.

The final section of the form is for "Notes." Use it to describe what is happening, especially events or circumstances that affect time on task. Some examples of unusual circumstances that decrease time on task are fire drills, lengthy public address announcements, visitors, accidents, or emergencies. Be sure to write in the page number at the bottom right. If, for example, the class you observe is 2 hours long, you would use 4 pages. (Each page has room for 15 rows; you would need 1 page per 30 minutes when you record every nther minute.)

The very bottom row of the observation for.n is for "Totals." After you have finished recording an entire class period, add (down) each columr. on every page. Figure 8 shows page one of several observation forms that were used to record time use in Mr. Lee's class. Note that Mr. Howell, the observer, wrote notes to describe what was happening. He recorded the number of students actually present every 2 minutes and added each column. In chapter 4, you swill learn how to recurd these totals on Worksheet II. You will also learn how to determine the proportions (percentages) of time use

Observing In Classrooms

After the observation dates are scheduled on Worksheet 1 . make sufficient copies of the observation form found in the Appendix. You will need two forms per hour of observation that is scheduled if you recr d activities on an every-other-minute basis. Use a clipboard as illustrated in figure 9 to hold the observation forms. Since it is awkward to look at your watch and often inconvenient to look at a wall clock, use an inexpensive stick-on or clip-on quartz clock to keep track of the minutes.

Take several sharpened pencils with big erasers berause you may need to make changes. For example. If a student leaves the room, you may mark her as "off task, on break." Later, when she

Figure 8. Example of observation form used to record student activities
returns with supplies from the office, you will want to change that time to "on-task, managerial activities."

As an observer. your mission is to be as quiet and unnoticed as possible under the circumstances. If the teacher talks to you. politely refuse to engage in a conversation Stay in the background. sit down whenever possible, and do not chat with the students Even though you may want to. do not offer to help students or give them advice.

Figure 9. Use a clipboard, quartz clock, and pencil with eraser for observations

When you enter the classroom for your first observation. you should already be very familiar with the observation form As yo: begin observing, the best approach is to scan the classroom systematically from left to right. As you scan. count the number of students who are engaged in the activity, for example, practicing technical skills Record the number in the correct column on the observation form Then count and record the number of students engaged in other types of activities. Be sure to count the total number of students present every 2 minutes and record it in the last column.

At first you may feel "out of breath" from countıng and recording all the students every 2 minutes. After a short while, though. you will be so accustomed to the systematic process that you nay even be bored' At that point you will have to concentrate to observe but you will also start seeing interesting varıatıons in students' behaviors.

Sometımes you will find that you have to lie a !ittle to tell the truth as you observe For example. when students chat briefly (less than 2 minutes), you should not indicate "whisper. talk quietly." However. If the students chat briefly several times, you would indicate that by recording them in the "whisper. talk quietly" column at least once Observers must make many such decisions which are not easy It is important that the "picture" you are r3cording of the use of class time is as fair and truthful as possible.

Chapter 4 Second Stage: Decide What Chatice is Neधded

The second stage in enhancing time on task is to decide what changes are needed. In this stage you will compute tıme use, display the results, and interpret the results. Use copies of Worksheets II and III (found in the Appendix) to complete this stage.

Compute Time Use

After completing all the observations of a class, as discussed in chapter 3, add (down) the columns on each page of the observation form Write the results in the "Totals" row across the bottom of the observation form. Use a calculator or adding machine to doubie-check your answers. Errors in addition can cause many problems later.

As shown in figure 10. Worksheet II has space to record 11 pages of the observation form, or 5.5 hours of observation. You will probably need to use at least 2 copies of Worksheet II to record 3 days of observation in a typical vo-tech class, so be sure to make several copies.

Follow the directions in Part A on Worksheet II. which tell you to add the students present on all the pages to find the grand total. Write the answer in the box.

Now record the totals for each activity from each page of the observation form in the appropriate columns of Worksheet II, going from top to bottom. All the totals from page one (of the several observation forms you have used) should be listed in column one.

Add (across) to arrive at a grand total for each activity. Record each grand total on Part B of the worksheet.

Divide the grand totai ior each activity by ine grand iotai of siudents. Notice the math symbois that guide you The resulting answers are the average proportions (or percentages) of class time spent on each activity.

When you have finished Part B, add the parcentages ior all the activities. They should total about 100 percent. but may not be exact. For examfle, you could have a total of 98.8 or 100.9. If the totals are over 5 percent more or less thar, 100 percent, double-check your math and retrace your steps io find the errors

Figure 10. Worksineet il tor computing time use

After you complete Part B, use the subtotal rows to find the proportions of time spent on the various types of r.irriculum-related tasks, other on-task activities, breaks, and time off tas... Add these four subtotals. Agi.in :hey should total about 100 percent.

If you are thoroughly confused at this point. do not despairl Computing time use is easier to do than it seems in reading about it Figure 11 shows how Mr Howe!! computed his observations of Mr Lee's ciass Notice that the first column lists all the totals from the first observation page Mr Howell used (see figure 9). Since he used seven observatiori forms altogether, he also used seven columns on his Worksheet II.

Figure 11. Example of Worksheet II used to compute time use

If you add up the four subtotals in Part B of 'Ar. Howell's worksheet. you will find that

$$
44.5 \%+172 \%+16.4 \% \times 21.2 \%=993 \% .
$$

The total is not 100 percent due to rounding. but, as mentioned above, this is nothing to :orry about.

When many classes are observed in a large-scale iesearch study or process evaluation, hand calculations may be too time consuming. You should, if pussible, use a computer to help in working with such large amounts of information. If you have access to a mainframe computer, you (or your programmer) probably have a statistical computer program (s - ch as SPSS or SAS) that can very quickly do the computation described here. You can also use a personal computer program designed to handle descriptive statistical analysis. If you are using a computer, the formula you need to know is as follows:

$$
\begin{aligned}
& \begin{array}{l}
\text { total student minutes } \\
\text { spent on the activity }
\end{array} \\
& \text { total minutes in the class } x
\end{aligned}=\begin{aligned}
& \text { proportion (or percentages) } \\
& \text { of time spent on the activity }
\end{aligned}
$$

This formula will be used to compute each activity.

Display Results

There are a number of ways to display the results of your time-use analyses A simple listing of proportions of time is straightforward and useful. A graph like those shown in figures 3 and 4 is especially helpful to show time use.

Worksheet III (found in the Appendix) provides directions for drawing graphs. Using copies of Worksheet III, follow the directions to create a simple graph. Figure 12 shows how Mr Howell used this worksheet to display the results of time-use analysis in Mr. Lee's Electronics I class.

As you see, Mr. Howell filled in the key to tell what activity each letier rep. esents You have the option of showing all the activities as he did, or the four major types of activity which are indicated in the subtotal rows Whichever you display. you should also include the actual percertage of time for each activity

You may wish to shade or color areas of the graph to emphasize certain activities For example, on-task activities could be colored blue and off-task activities red if time spent on basic skills is especially important, you may want to draw attention to the amount of time by shading that activity

Interpret Results

The hardest part of time-use analysis is not observing or computing but interpreting the results. Most people want to know, "What is the acceptable level of time on task?" Unfortunately. there is no firm answer to that question Your organization or committee should make that decision based on the research findings described in chapter 2 and local expectations for time use For

Figure 12. Example of Worksheet III used to display time use
example, in some schools, teachers and administrators may decide that more than $\mathbf{2}$ percent of time off task is unacceptable and must be remedied.

Remember that research in vo-tech ciasies shows that the average time on task in secondary classes was 71 percent and 83 percent in postsecondary classes These averages, however, include the lowest and highest rates in many vo-tech classes These averages are comparable tr those found in elementary and academic seccndary classes. But the average may not be the acceptable level for your school or college. Many teachers and admınıstrators believe stıdents should be on task 85 to 95 percent of the class time

When interpreting the results. you should also consider the purpose of the time-use analyses If these analyses aie done as inservice activities or for process evaluations, the teacher and the observer (and perhaps the admınistrator) should discuss the results. It is very important that the discussion be as nonthreate ing as possible. After all. the purpose is to improve the program, not to discourage the teacher

Worksheet IV (found in the ippendix) can be a very helpt• I guide to the discussion. The completed observation forms and Worksheet III should also be on hand. Figure 13 shows how a teacher. Mr Lee, and an obs - ver, Mr huwel, usec, the worksheet to interpret the results of the time-use analysis Notice that most of the comments simply provide information. None are critical or judgmental.

Work meet iV
INTERPRET RESULTS
Class \qquad Dote Lan 11
Teacher mute Observer his thane

Directions: Duplicate copies of this worksheet for the teacher, observer and others involved in interpreting the realists. Refer to the completed observation forms and Worksheet III to answer and discuss the following questions:

1. What was the average percent of students' time on task?

61.79

2. How mich of the time (percent) did students spend on

- theory of technical skills?
\qquad
- basic skills?
- human relations skills?
- youth organization activities?

3. How was the time used in relation to the objectives of the class? OK. coned are were the er os then and khasi hellas.
4. Why did students spend 14.5% of time waiting or doing nothing?

$$
\begin{array}{ll}
\text { - set }-7 \\
\text { - clan up 7 } \\
\text { - managerial tasks? } & \frac{4.670}{7.370} \\
\hline
\end{array}
$$

6. How much time (percent) did studies pend on breaks? Were the breaks taken as a class or individually? \qquad Ind students pend on br

 Cleanup about 11:00

Figure 13. Example of Worksheet IV used to interpret time use

Teachers are often surprised to find that their students spent so much time off task Many want to know when this occurred. The observation forms will have this information Perhaps there was considerable time spent waiting for students to arrive to class in the morning Or. there may have been long periods of time when students waited for the teacher to give them individual help It is a good idea to make a list of the reasons for time off task

Take a look at how the time on task was spent. also Some on-task activities are more producefive than others. How much e was spent cleaning up? Was that amount necessary? What about
tıme for employability skills-was any tıme devoted to that aspect of the cuiriculum? Should there be? Should more time be devo:ed to teaching students how to behave on the job? What about time for piactice-was it well spent on progressively more chailenging tasks? Or, did students practice one skill over and over again without learninf anything riew?

If the purpose of the time-use analy_as is research. you may want to do furthe analyses of the results If so. you can use a computer program with a chi square test to find out, for example, if there is a difference in time on task between long and short vo-tech classes. If there is, with long classes having a greater proportion of time on task than shorter classes, a chı square test would indicate wnether or not that difference is merely due to chance. If the tests show that it is not, admınistrators may decide to schedule longer blocks of class time Informatıon about differences can be very helpful when making various decisions about vo-tech classes within a school system or in a community college or technical school

Working with the results of tıme-use analysis is interesting and challenging. There are many factors to consider. but undoubtedly the most important to remember is that this is a tool for improving vo-tech education Whether the analysis is done for inservice purposes or for research. teachers should be informed and included in the process. Be sure that interpretation is positive. not judgmental You will find that most teachers are eager to use their time-use analysis to improve learning in their classrooms.

The third stage of enhancıng time on task is to make changes in day-to-day practice. As has been mentioned, time is one of the few factors teachers can control in their classrooms, and timeuse analyses make control possible. They give teachers very specific information to work from. Many teachers want to increase their students' time on ask unce they have analyzed time use in their classrooms.

There is no one way to do this; te ${ }_{2}$ chers whose students use time well employ a variety of techniques and behaviors to got d effect. This means teachers can freely choose methods that suit their teaching styles, subjects, and cirsses.

After a ;lass is anal zed and discussed, the teacher should read the following material on ways to enhancf 'e use. Then Worksheet V. which is discussed in the last section of this chapter, can be usi elop a plan of action.

Enhance Time Use

The suggestions given here are based on a study of the factors that influence time use in votech classrooms (Halasz. Behm, and Fisch 1984). The study involved 9 secondary and 16 postsecondary classrooms A total of 480 students were observed in 2 comprehensive high schools. 5 area vocational schools. a community college, and an adult technical school.

The recommendations in this chapter are based on the results of the study. They reflect the behaviors and attitudes observed in teachers whos : classes do spend higher-than-average time on task Too inany recommendations are given for any teacher to adopt them all; they are intended to give a range of options Depending on the results of observation. one or several changes may seem most appropriate.

Treat Time as an Important Resource

This straightforward concept is at the heart of any effort to enilance time on task. In essence, i: means seeing time in each class as limited and important. For example, teachers who feel time is
important routinely begir, their classes when the bell rings Five or ten minutes of disorganized activity and chattıng at the beginning of each class add up to a ia ge amount of wasted time over the school year

When we consider the actual time involved, the importance of starting on time becomes obvious If 10 students in a class of 15 wait 10 minutes every day for the last 5 students to arrive. they will lose an astounding 300 hours of learning tıme during a a typical school year

When students are bused in from other schools, starting on time can be a problem. Some classes have been observed that included students who always arrived by bus at least 10 minutes late In situations of this kind, some teachers delay beginning class, and allow students to socialize until the late-comers arrive. Those who see time as important, however, have the students who are present begin individual assignments rather than wa!t untıl everyone is there The short lecture on theory, or specific skills, which often begins a class can be delayed in this situatıon until all students have arrived. Meanwhile, those who are present are not wasting time

In vo-tech classrooms, clean-up activities can also decrease time on task. Clean up is necessary, but is seldom an activity during which the most significant learning takes place. Yet. classes have been observed where clean up always began 30 minutes before the end of the class. Observers noted much of that time was not used for clean up. Instead. students cleaned their work stations and then stood around chatting or just waiting. For vocational-technical teachers, simply decreasing this kind of start-up and clean-up time is often an excellent way :o gain time on task

Many teachers, especially at the secondary level, choose to instruct students one-on-one in each skill rather than teaching the class as a whole. This can lead to a great deal of off-task time while other students await instruction. Whereas one-on-one teaching usually plays a large part in the vo-tech classroom, many skills and concepts can be taught to groups of studenis When time is seen as an important resource, teachers seem to take care that students are not off task, waiting for individualized instruction.

Define Goals Clearly

Although such tactors as a teacher's methods, style of interaction, and sensitivity to students' needs are important to time on task, none is as significant as the definition of goals The research. (Halasz. Behm, and Fisch 1984) showed that teachers who clearly state goals for the ciass and for individuals riave students who spend the highest proportion of tıme on task

Goals that were both explained verbally and posted seem to help students most When students worked on indıvidual assignments, postıng goals seemed especially important. Students referred to the goals often. and used them to keep working rather than standing by intil the teacher was free to give them their next assignments.

Secondary teachers spend about one-third of their time giving individualized instruction For them, it can te especially helpful to define longer-range goals for the students. Otherwise, the demands of setting step-by-step goals verbally for each student can be exhausting

One carpentry teacher whose class was observed for this study had real problems because he did not define goals. He had given the class the group project of building a small shed The project included a wide variety of challenges, but many of the tasks used the same set of skills The teacher might have given more of an overview of general skills. He might also have given specific
areas to designeied students, who could then have worked at their own pace. Instead, each student had to wait for the next assignment after each small step. The process of defining goals in a piecemeal fashion was almost more than the teacher could handle. While he struggled, students stood around. off task. Teachers with situations like this can benefit greatly by defining goals for their students in advance, and b; providing better overviews of the whole task or larger chunks of the task.

Plan and Organize

Planning makes it possible not only to set realistic goals, but also to explaın them clearly to the class Advance organization leads to higher time on task in other ways as well. For instance, vo-tech classes often depend on supplies of some kınd, such as typing paper, wood, cooking supplies, or solder. When these materials are not ready, students have to wat until they are. On the other hand. if supplies are organized students can spend more time on task, and teachers are able to use their class time in more productive ways.

Some of the problems that consume tıme, such as equipment shcrtages, are beyond the teacher's control. but they can still be combatted through planning. For instar.ce, many tirnes it is possible to plan other assignments that do not require the use of equipment, so that students who are wa!ting their turns for equipment can be using that time on other activities.

Troublesome equipment problems can sometimes be minimized through planning. A business/office teacher told observers that she made a point of going through each assignment on each brand of word processor before class. This prepared her for the questions and problems that might arise because of differences among the machines. Because vo-tech classes often make heavy use of equipment, planning of this kind can be especially valuable.

Use a Range of Teaching Methods

Wher, teachers vary their methods and use such techniques as audiovisual aids, demonstrations, field trips, and guest speakers, students spend more time on task. Unfortunately, most teachers use a very narrow range of methods, and often overlook the method that would be appropriate for the teaching task. Even though most of the teachers observed were obviously competent in their areas and willing to work hard in the classroom, their poor choice of methods seemed to undercut their efforts. Some of the teachers observed used nothing but one-on-one instruction, especially those who were using individually-paced competency-based instruction.

The competency-based curriculum does dernand one-on-one instruction, but time on task is greater when teachers also use such methods as lectures and demonstrations to give students an overview of the subject mutter. Some teachers provide this kind of orientation through lectures and demonstrations, but only at the beginning of the school year. It would be helpful to continue using these methods to explain the new tasks students begin throughout the school year.

Have Positive Expectations, Provide Positive Reinforcement

Teachers who discourage independent work often convey the belief that students will do nothing right if left on their own. Some secondary teachers observed seemed to feel that students would not do anything right in any case, no matter how explicit the instructions. Students in their
classes seemed more demoralized and were less on task than students whose teachers clearly had confidence in their abilty to do the work.

Those teachers who obviously had positive expectations of their students usually had the habit of praising good work as well The virtues of positive reinforcement (which have been much discussed in teacher education) were evident in these classrooms Students seemed to have a keener d^sire to work and tended to stay on task.

Encourage Students to Work Independently

When students are forced to depend on teachers for instruction every step of the way time on task is not the only benefit lost. Students also lose the opportunity to explore alternative methods. to develop confidence in their own judgment. and to take command over their tasks

Overcontrol by teachers did not seem to be a problem in the postsecondary classes observed. but was often evident in secondary classes. especially when students were grouped in several rooms. Student dependence on teachers often led to high amounts of tıme off task. as the students waited for instructions or help.

Certainly teacners should not abdicate control over their classes, too much control of the learning process. however. seems to inter ere with learning. Time on 'ask is highest when teachers encourage students to work autonomously as much as possible. Independence can be fostered through teaching necessary skills in advance, and through providing longer-range goals for students to work toward without constant supervision.

Assign Meaningful Tasks

Ennancing time use should not mean merely increasing time on task, when the tasks in questıon have little value as learning activities. Observers have noted that some classes .vere devoted largely to routine work that did little to advance students' skills. In other classes. students delayed tackling meaningful work in favor of busy-work which was easıer or less challengıng Perhaps because these students were quiet and occupied, their teachers left them alone.

In general, students are more often on task when they are involved in challenging activities in one class observed. students were given a simple. specific task at the lathe This was a good beginning task. but they were assigned to do it again and again. To the observers it was obvious that they were bored and were carrying out the assignment in the most perfunctory way Students in this kind of situation seem to alternate between fulfiling requirements in a rote fashion and seizing any opportunity to be off task.

Whether activities contribute to learning in meanıngful ways is a decision that may be best answered by individual teachers, perhaps with input from their supervisors In general, the best index of effective teaching is not the number of students on task but the number engaged in doing tasks that give genuine opportunities for learnıng.

Minimize Scheduled Breaks

In some schools. breaks may be mandatory Where they are not. scheduled breaks should be avoided This is not a harsh policy, but ore that is suggested by the findings of the study When
students take breaks only as they need them, they usually spend less tıme off task. Postsecondary students in partıcular use time better when they take breaks as needed. Sometımes, in fact, students do not want breaks, and will work throu gh scheduled breaks if permitted. In one secondarylevel machine shop class, the teacher had to s hut off the electricity to force students to stop working.

Not only do mandatory breaks use c'ass, tıme, but regainıng the work momentum takes addıtıonal time. Efudents are often off task for a surprising amount of time after a break.

Decrease Interruptions

Interruptions-disturbances that originate outside the classroom-do not seem to have a major impact on the time on task of the class as a wh-' 3 . Interruptions can, however, decrease tıme on task for individual students. Oi.casionally teachers, especially at the secondary level, allow students from other classes to come irito the classroom at will. This disrupts the learning activity of the friends they seek out and with wrom they talk.

Some interruptions, such as pu'slic address announcements and fire drills, may be beyond the teacher's power to control. Interruptions by other students, however, can be easily controlied by simply closing the door when the :lass begins. This prevents the loss of on-task time that results from student interruptions. and is one of the easiest changes a teacher can m~ke to increase individual students' time on task.

Provide Students with a Role Model

When teachers are obviously dedicated to their work, students seem to work better aiso. Competence. organization. and commitment to goals all impress students and provide them with a model of good work habits.

Teachers-especially in vo-tech classes-can be role models for students through the way they dress. In some classes with high tıme on task, observers have noted that teachers dress in a way suitable to the area of specialty. One word processing teacher, for instance, dressed in appropriate business outfits. She also made frequent references to her own knowledge of the world of business and the skills students would need. Overall, she seemed to be a good role model for her students in her dress, behavior, and attitude.

Not all teachers who were cbserved took care to provide good role models. In one class, two instructors periodically reminded students to wear hard hais-but neither ever wore a hard hat during the week they were observed. This careless practice would seem to indicate that the teachers did not really believe in the importance of safety practices. Their students are probably less likely to take safety seriously, as a result. In general, when teachers obviously believe in the importance of the discipline, students seem more likely to be disciplined and motivated to work.

Develop Action Flans

Now that you have read about the strategies teachers use to enhance studerits' use of class time, you can develop or help teachers develop action plans to make changes in their day-to-day practice Use the information from Worksheets III and IV to decide what changes are needed.

Since change is really up to teachers, they should decide what changes to make. Based on the tıme-use analyses of their classes, teachers should plan to make one to three changes Using a copy of Worksheet V. they should-

1. list the current use of student time that needs to be changed:

2 list their goal for change. and

3 list specific strategies for accomplishing that goal
Figure 14 shows an example of the action plan Mr Lee filled out
Mr. Lee's analysis showed that students were off task almost 20 percent of the time. This time loss occurred for two reasons. The students waited for class to begin, and they waited during class for instructions between tasks. Mr. Lee wants to cut this lost time at least in half. He plans to write individual student assignments on the chalkboard daily, so students can start working as soon as they come to class. Thus, even if buses are late, students will not waste time waiting for others to arrive. He also plans to $\mathbb{S}^{\text {ive }}$ e short demonstrations more often to review the skills students will use that day. Mr. Lee has thought further about this problem, and has decided to experiment with a peer-teaching strategy. He will pair more advanced st'ıdents with less advanced students to avoid the long waits the latter group has between his individual explanations.

An a_tıon plan is a commitment teachers make to themselves about changes in their teaching behaviors. Without an action plan, good intentions may not be carried out Some teachers are likely to find the results of the time-use analysis of their class interesting but not compelling in terms of change They may become motivated bv tesigning their action plans These plans can also be used as part of their annual staff development goals

The purpose of this handbook has been to guide you through the process of analyzing time use in vo-tech classes. Five worksheets and a class observation form guided you - whether you are a teacher, an administrator, an evaluatoi, or a teacher educator-through planning and conducting tıme-use analyses The steps given here were derived from those used in research The strategies for increasing time on task are also based on research in secondary and postsecondary vo-tech classes They are solid recommendations that should help any committed teacher improve time on task.

Time-use analysis, as this handbook shows. is not overwheimingly difficult to carry out-it can be done by anyone who simply follows the guidelines. Once you have done one analysis. it is surprisingly easy and interesting to do the next. The results are very specific. and areas for change are usually easy to target Most important. positive changes in how time is used lead to more learning in the classroom

Good luck in your contınued work to improve vo-tech instruction by enhancing student tıme on task'

Worksheet V
TEACHERS ACTION PLAN

Directions: Use this worksheet to decide what changes you will make to increase student time on task. Refer to Worksheets III and IV for information about the current use of time in your classroom. Plan at least one, but no more than three changes at this time. Good luck in accomplishing your goals!

Figure 14. Example of Worksheet V used for teacher's action plan

- Observatıon Form
- Worksheet I Observation Schedule
- Worksheet II Compute Time Use
- Worksheet III. Display Tıme Use
- Worksheet IV Interpret Results
- Worksheet V Teacher's Action Plan

Date \qquad Class \qquad

Observatıon 122345 Observer
School \qquad Number of Students Enrolled

Class Begins \qquad Ends \qquad

TIME	NUMBER OF STUDENTS ON CURRICULUM-RELATED TASKS						NUMBER OF STUDENTS ON OTHER TASKS			NUMBER OF STUDENTS BREAK						NOTES
																Describe any unusual circumstances that are decreasing time-on-tasks opportunities such as assemblies, fire drills, etc.
:																
:																
:																
:																
:																
:																
:																
:																
:																
:																
:																
:																
:																
;																
:																
TOTALS																

Worksheet I

OBSERVATION SCHEDULE

A

Worksheet II

COMPUTE TIME USE

Class \qquad Dates of Observation \qquad
Directions: Make several copies of this viorksheet. Then add the total number of students present on each page of the ubscrvation form to find the graid totai the grand total of students present is \qquad . Now, follow the directions ini Part A and B. The answers in the last column show the proportions (percent) of cla stime used fur each activity. Kerp in mind that all the percents (or the subtotal pe:cents) should add to 100 percent.

PART A
List the totals from the bottoms of all the observation form pages used for this class.

PART B
Divide the grand tot s for each activity by the grand total number - students preseri'. .Vrite the answer in the proportion (percer i) column.

	1	2	3	4	5	6	7	8	9	10	11	Grand Total$/$Divided By Grand Total Students Present	is	Proportion (Percent) of Class Time
Theory of Tech. Skills												\div	$=$	\%
Practice of Tech. Skills												\div	$=$	\%
Basic Skills												\div	$=$	0
Employability Skills												\div	$=$	\%
Human Relations Skille												\div	$=$	\%
Youth Org. Skills												\div	$=$	\%
Curriculum- Related Tazks												\div	$=$	\%
Set Up												\div	$=$	\%
Clean Up												\div	=	\%
Managerial Tasks												\div	$=$	\%
$\begin{aligned} & \text { Other } \\ & \text { Tasks } \end{aligned}$												\div	$=$	\%
Class Breaks												\div	=	\%
Individual Breaks												\div	$=$	\%
Breaks												\div	$=$	\%
Wait, So Nothing												\div	$=$	\%
Whisper, Task Quietly												\div	$=$	\%
Behave Disruptively												\div	=	\%
Time Off Task												\div	=	\%
$43 \quad 55$														

Worksheet III

DISPLAY TIME USE

Class \qquad Ob:erver \qquad

Directions: Use copies of this worksheet to graphically show the proportions of time calculated in Worksheet II. Imagine that the block of time below represents the time in an entire class period, or ' 00 percent. Using the proportions of time calculated on Worksheet II, draw a line to divide the class time by the various activities. For example, if 25 percent of the time was used for theory of technical skills, draw a vertical line at the 25 -perceni mark. Continue drawing lines until all the a tivities are shown. Next, code each division of time with a letter. Then, write a key to indicate the type of activity each letter represents.

TIME USE IN THE \qquad CLASS

KEY:
$A=$
$E=$
$B=$
$F=$
$C=$
G =
D =

Worksheet IV

INTERPRET RESULTS

Class Date

Teacher \qquad Observer \qquad

Directions: Duplicate copies of this worksheet for the teacher, observer and others involved in interpreting the results. Refer to the completed observation forms and Worksheet III to answer and discuss the following questions:
i. What was the average percent of students' time on task? \qquad
2. How much of the time (percent) did students spend on

- theory of technical skills?
- practice?
- basic skills?
- employability skills?
- human relations skills?
- youth organization activities? \qquad

3. How was the time used in relation to the objectives of the class?
4. Why did students spend \qquad \% of time waiting or doing nothing?
5. How much time (percent) did students spend on

- set up?
- clean up?
\qquad
- managerial tasks? \qquad

6. How much time (percent) did students spend on breaks? Were the breaks taken as a class or individually?
7. What time was class started? What time was clean up announced?
8. How much time (percent) was used for role call and other managerial activities? \qquad

Worksheet V

TEACHER'S ACTION PLAN

Teacher \qquad Date \qquad

Directicns: Use this worksheet to decide what changes you will make to increase student time on task. Refer to Worksheets lit and IV for information about the current use of time in your classroom. Plan at least one, but no more than three changes at this time. Good luck in accomplishing your goals!

Current use of student time which I wart to change. (List pe, eents of time if possible.)	My goal for student use of time (List percent of time if possible.)	Specific strategies I will use to accomplish my goal.
1.		
2.		

REFERENCES

Anderson. L W. and Scott, C C "The Relatıonship among Teaching Methods, Student Characteristics, and Student Involvement in Learning." Journal of Teacher Education 29, no. 3 (MayJune 1978) 52-57.

Bloom. B S "Time and Learning." American Psychologist 29 (1974). 682-688. Reprinted in Learning and Instruction. edited by M. C Wittrock. Berkeley: McCutchan, 1977

Carroll. J B. "A Model of School Learning." Teachers College Record 64 (1963): 723-733
Evertson. C "Differences in Instructıonal Activities in High and Low Achieving Junior High Classes " Paper presented at the annual meeting of the American Education Research Association. Boston. April 1980.

Fisher. C W:Filby, N N : Marliave. R S . and Berliner. D. C. Teachıng Behaviors, Academic Learning Tıme and Student Achievement. Final Report of Phase III-B. Technical Repori V-I. San Francisco Far West Laboratories, 1978.

Fullen. Michael "Implementing Educational Change Progress at Last." Paper presented at the conference on "The Implications of Research on Teaching for Practice," National Institute of Education. Washington, DC. February 1982 Revised June 1982.

Halasz. I. Behm. K. and Fisch. M Influences on Secondary and Postsecondary VocatıonalTechnical Student Time on Task Columbus The National Center for Research in Vocational Education. The Ohic State University, 1984

Halasz. I. and Behm. K. Time on Task in Selected Vocatıonal Education Flasses Columbus The Natıonal Center for Research in Vocational Education. The Ohio State University, 1983.

Kerlinger. Fred N Foundations of Behavioral Research New York. Holt. Rinehart ariu' Winston. 1973.

National Commission on Excellence in Education. A Natıon at Risk. The Imperative for Educatıonal Reform Washıngton. DC• Government Printing Office. 1983.

BILL AS L. STED BELOW
Ci Bill Me

- Bill My Agency/Organization on

Purchase Order No.
Q Purchaseing Order Enclosed

- Confirming P.O. to follow
nemititaince
- \qquad U.S. enclosed CK No. (payable to the Nitional Center for Research in Vocational Education)
- Payable on receipt of invoice

BILL TO:

Agency

Name/Title

Street Address
City

Order
Authorized by
Signature

CHARGE' TO MY CREDIT CARD U

- Agreeing to pay the sum, set forth to the bank which issued the card in accordance with the terms of the credit card.

SHIP TO:

Agency
Name/Title
Street Address

City	State

OFFICE
USE ONLY Date

		Authorization		
Order No.	Title	Unit Price	Quantity Ordered	Extended Price
SP300A	The Bridger's Guide (includes)	\$ 75.00		
SP300AA	Implemientation Guide	10.95		
SP300AB	Primer of Exemplary Strategies	11.95		
-	Improving the Basic Skills of Vocational-Technical Students: An Admınistrator's Guide	12.00		
-	Integration of Academic and Vocational-Technical Education: An Administrator's Guide	1400	5	
SP300AC	Provide for Basic Sxills	7.95		
SP300AD	Roadsigns from Resear a (black-line masters)	1495		
SP300B	Introduction to Basics (videocassette-VHS)	25.00		
SP300C	Roadsigns from Research (set of 4 posters)	2000		
SP300D	Instructional Program Development (includes)	50.00		
SP300DA	Instructional Materials Development	13.95		
SP300DB	Supplementa! Instructional Resources	7.95		
. ${ }^{\circ}$	Assist Students in Achieving Basic Reading Skills	5.00		
-	Assist Students in Developing Technical Reading Skills	750	5 F	
-	Assist Students in Improving Their Writing Skills	400		
-	Assis! Students in Improving Their Oral Communication Skills	$5.5{ }^{5}$		
-	Assist Students in Improving Their Math Skills	6.50		\%
SP300E	Targoted Teaching Techniques (Includes)	50.00		
SP300EA	Techniques for Joint Effort: The Vocational-Academic Approach (with audiocassette)	13.95	.	
SP300EB	Technique for Management: Time for Learning	7.50		
SP300EC	Technique for Remediation' Peer Tutoring (with audıcassette)	13.95		
SP300ED	Technique for Compuier Use: Software Evaluation	750		
SP300EE	Techniqur for Individualization: The Academic Development Plan	995		
SP300	BASICS: Bridging Vocationel and Academic Sklils (complete set at 10% discourit)	198.00		

- Obtain additiohal copies by contacting American Association for Vocatioral Instructional Materials (AAVIM). 120 Driftmier Engineering Center. Athens. GA 30602.

Sub Total
(less __ \% discount, as applicable) Minus

The Ohio State University

[^0]:

 * Reproductions supplied by EDRS are the best that can be made from the original document.

