
Office of Educational Research and Improvement (ED), Washington, DC. National Diffusion Network.

PIP-87-200

Reference Materials - Directories/Catalogs (132) -- Reports - Descriptive (141)

Biology; Chemistry; Conservation (Environment); *Demonstration Programs; *Elementary School Science; Elementary Secondary Education; *Environmental Education; Federal Aid; Geology; Physics; Program Validation; Science Education; *Science Instruction; *Secondary School Science; *Validated Programs

*National Diffusion Network Programs

The National Diffusion Network (NDN) is a federally funded system that makes exemplary educational programs available for use by schools, colleges, and other institutions. This publication contains information describing the science education programs currently in the NDN, along with procedural information on how to access these programs. The current NDN science education programs described in this document are: (1) "Conservation for Children"; (2) "Foundational Approaches in Science Teaching (FAST)"; (3) "Geology Is"; (4) "Hands-On Elementary Science"; (5) "Informal Science Study"; (6) "Life Lab Science Program"; (7) "Marine Science Project: for SEA"; (8) "Physics--Teach to Learn Program"; (9) "Sci-Math"; (10) "Starwalk"; (11) "Stones and Bones, a Laboratory Approach to the Study of Biology, Modern Science, and Anthropology"; and (12) "ZOO: Zoo Opportunities Outreach."

Each program description is accompanied by a listing of the intended audience, the services available, the requirements of the program, and the name and address of the program's contact person. Included is a list of the state NDN facilitators. (TW)
Science Education Programs That Work
Science Education Programs That Work

A Collection of Proven Exemplary Educational Programs and Practices in the National Diffusion Network

Recognition Division, Programs for the Improvement of Practice

Office of Educational Research and Improvement
U.S. Department of Education, 555 New Jersey Avenue, N.W.
Washington, D.C. 20208
Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>So You Want to Know More About the NDN</td>
<td>1</td>
</tr>
<tr>
<td>Descriptions of Science Programs</td>
<td></td>
</tr>
<tr>
<td>*Conservation for Children</td>
<td>3</td>
</tr>
<tr>
<td>*Foundational Approaches in Science Teaching</td>
<td>4</td>
</tr>
<tr>
<td>*Geology Is</td>
<td>5</td>
</tr>
<tr>
<td>Hands-On Elementary Science</td>
<td>6</td>
</tr>
<tr>
<td>*Informal Science Study</td>
<td>7</td>
</tr>
<tr>
<td>*Life Lab Science Program</td>
<td>8</td>
</tr>
<tr>
<td>*Marine Science Project: FOR SEA</td>
<td>9</td>
</tr>
<tr>
<td>*Physics-Teach To Learn Program</td>
<td>10</td>
</tr>
<tr>
<td>*Sci-Math</td>
<td>11</td>
</tr>
<tr>
<td>*Starwalk</td>
<td>12</td>
</tr>
<tr>
<td>Stones and Bones, A Laboratory Approach to the Study of Biology, Modern Science, and Anthropology</td>
<td>13</td>
</tr>
<tr>
<td>ZOO: Zoo Opportunities Outreach</td>
<td>14</td>
</tr>
<tr>
<td>List of State Facilitators</td>
<td>15</td>
</tr>
</tbody>
</table>

*Receiving Dissemination grant funds from the U.S. Department of Education.
Introduction

This catalog contains descriptions of the science education programs in the National Diffusion Network. These programs are available to school systems or other educational institutions for implementation in their classrooms. While all the programs have been validated as effective by the Department of Education's Joint Dissemination Review Panel, those marked with an asterisk in the Table of Contents are currently receiving funds for dissemination from the National Diffusion Network. The funded programs may be able to offer to interested schools consultant services and limited assistance with the training and materials associated with installing one of these programs in their classrooms. Unfunded Panel-approved programs are able to offer services through cost/service agreements negotiated with potential adopters.

For further information on the National Diffusion Network or on these programs in science education, please contact your State Facilitator (see listing on page 15), or the National Diffusion Network Program, Office of Educational Research and Improvement, U.S. Department of Education, 555 New Jersey Avenue, N.W., Washington, D.C. 20208-1525, or by telephone at (202) 357-6134.
SO . . .
You Want To Know
More About the NDN

What is the National Diffusion Network?

The National Diffusion Network (NDN) is a federally funded system that makes exemplary educational programs available for adoption by schools, colleges and other institutions.

It does so by providing dissemination funds to exemplary programs, called Developer Demonstrator projects, for two purposes: (1) to make public and nonpublic schools, colleges and other institutions aware of what they offer, and (2) to provide training, materials and follow-up assistance to schools and others that want to adopt them.

NDN also provides funds to State Facilitators, whose job it is to serve as matchmakers between NDN programs and schools and organizations that could benefit from adopting the programs.

What makes the NDN Developer Demonstrator projects different from commercial products?

Several important things. NDN Developer Demonstrator project staff do not just hand a program to a school and expect the school to figure out how to use it. Instead, NDN program directors help local schools implement their programs to suit each school's unique needs. To do that, the director of the program provides training, lasting from one day to a week or more, to staff members in the adopting school. The director also provides follow-up assistance in the form of additional training, visits, telephone consultation and newsletters. Sometimes, a program director or a State Facilitator arranges for all adopters of a particular program in a region or state to form a network so they can share successful approaches and solve common problems. All NDN services are provided at little or no cost to adopters.

How does NDN assure that a program is effective and worthy of replication in other schools?

Before a program can become eligible for funding as a part of the NDN, it must be approved by the Department of Education. A program requesting a review must provide evaluation data that prove that the program is effective in the school in which it was developed or field tested, and that it could be used successfully in other schools. As of February, 1987, approximately 406 programs had been approved and 79 of them were receiving Federal dissemination funds to help other schools adopt them.

What kinds of programs are available for adoption through the NDN?

NDN programs can meet the needs of students of every age — pre-school through adult — and the needs of teachers, administrators and other school personnel. Subject areas represented among the NDN programs include mathematics, science and reading. There are also programs in writing, technology, the humanities and programs for gifted and talented students.

Some programs are designed to improve preservice and inservice teacher training. Other fields represented include special education, career and vocational education, adult literacy, early childhood education, health and physical education. Some programs are directed toward processes to improve school administration and management and thereby improve instruction.

Is it possible to see a Developer Demonstrator program in Action?

Yes. Each Developer Demonstrator program receiving federal dissemination funds maintains a demonstration classroom or school where visitors are welcome. These programs are located across the United States. In addition, many of the programs have demonstration sites in states other than the one in which they were developed. NDN State Facilitators can arrange for visits to a demonstration school, or to an adoption site.
How does a school adopt an NDN program?

The first step is to contact one of the NDN State Facilitators. Their job is to help schools and other organizations learn about and adopt NDN programs. Often, for examples, they hold “awareness conferences” featuring one or more NDN programs and invite educators to attend. They also work with educators in identifying the needs in a particular school and in determining which NDN program offers a solution. When a school decides to adopt an NDN program, the facilitator arranges for the program’s developer to provide training to staff in the adopting school. In addition, if a school requires financial assistance to make an adoption, the facilitator usually knows about funding sources and how to apply for a grant under various federal, state or local programs or from private foundations or industry. Some facilitators sponsor meetings for administrators on how to apply for financial assistance.

What if the program a school wants to adopt is located in another state?

That’s no problem; the NDN was developed so that educators would have access to exemplary programs, whether these programs are located in the same state or not. NDN brings the program to the school or district that wants it.

How much does it cost to adopt an NDN program?

The cost varies. NDN’s aim is to provide adoption assistance at minimal cost. State Facilitators are supported by NDN grants, so there is no cost for their services, and there is little or no cost for training. An adopter usually pays for any required curriculum materials and for release time for teachers to attend training. Some schools help meet adoption costs with a grant from local or state funding sources or with funds from other sources including the private sector.

What is the responsibility of a school in making an adoption?

Each Developer Demonstrator program has basic requirements to be met by adopters. Adopting schools, for example, are usually required to implement certain basic features of the program, such as regular monitoring of students’ academic progress or the use of certain activities. Some programs may require the adopting schools to compile pretest and posttest scores or other appropriate measures of effectiveness and growth in order that the adopted program’s benefits can be accurately evaluated. Each adopter agrees to an adoption plan which outlines roles and responsibilities of the parties concerned.

Can NDN really help schools?

Many teachers, administrators and other educators think so. In 1985-86 alone, NDN programs were installed in 18,000 schools. An estimated 62,675 teachers and other school personnel received training in the use of NDN programs and approximately 2,231,000 students were served by these adoptions. Several evaluations of the NDN show that it is meeting its goal of helping schools improve education through the dissemination of effective programs.

Where can you get more information about NDN programs?

Contact your NDN State Facilitator or The U.S. Department of Education, Recognition Division, 555 New Jersey Avenue, N.W.; Mail Stop 1525; Washington, D.C. 20208; phone (202) 357-6134.
CONSERVATION FOR CHILDREN. A practical, economical program to increase conservation awareness, understanding, and action of elementary school children through a variety of basic skill activities designed for use in the classroom.

Audience Approved by JDRP for children in grades 1-6.

Description Through a variety of basic skill activities intended for use in the classroom, Conservation for Children teaches about the interdependence of plants and animals, requirements of life, energy sources and use, pollution problems, recycling, and other conservation concepts based on scientific principles. The grade level conservation guides provide instructional materials which combine basic skill practice in the areas of language arts, math, social studies and science with a conservation concept. Program materials are used to supplement or replace presently used skill materials, so that no additional preparation time or equipment is needed. Teachers can use the materials as a primary resource for teaching basic skills, as supplementary materials to a core program, as enrichment activities, skill review, or as independent units of study. No change in staffing, physical setting, equipment, or instructional methodology is required. Criterion-referenced tests allow teachers to determine which materials are appropriate for individual students or groups. Special education teachers have found the materials valuable for use with their students due to the high interest level of the worksheets and the choice of ability levels and basic skill concepts.

Evaluation data confirms that students using the materials for a minimum of 30 minutes per week master 80% of the learning objectives. In addition, 75% of the parents of 2,000 students in the evaluation study responded in writing that they had observed their children implementing conservation practices at home which they had never seen before the children used the program materials.

CONSERVATION FOR CHILDREN materials include six grade level curriculum guides (1-6) and one ALL Levels guide (activities; resources). After the initial purchase of the guides, $25 per grade level, $165 for the complete program; there are no on-going costs for personnel, materials, or inservice training. A per pupil cost for installation is only $.70. There are no recurring costs.

Requirements The program may be used in any type of facility or setting and does not rely on any particular methodology or teaching style. The program is designed for use in the classroom and does not require any materials or equipment that are not normally found in any school. The curriculum guides may be reproduced in whole or in part with the permission and hope of the authors. Inservice as to implementation and material usage is minimal, usually two hours. The program requires no staffing changes as the classroom teacher continues to provide instruction.

Services Awareness materials are available at no cost. Visitors are welcome at the project site any time by appointment. Project staff are available to attend out-of-state awareness meetings (costs for travel expenses to be negotiated).

Contact Marilyn Bodourian, Project Director; Conservation for Children; John Muir Elementary School; 6560 Hanover Drive; San Jose, CA 95129. (408) 725-8376.
FOUNDATIONAL APPROACHES IN SCIENCE TEACHING. A course in the concepts and methods of the physical, biological and earth sciences and their relation to the environment.

Audience Approved by JDRP for students in grade 7. This program has also been used with students in grades 6 and 8.

Description This curriculum is a full year course giving students a sense of the operations of the modern scientific community by involving them in typical science activities. FAST is laboratory and field-oriented and designed for use with students who represent the full range of abilities and interests found in the typical middle/junior or high school classroom. Instructional strategies are structurally sequenced to address differences in learning styles and to develop thinking skills. Students study three strands concurrently: physical science, ecology and relational study.

The physical science strand introduces such concepts as mass, volume, density, buoyancy, physical and chemical properties of matter, pressure, vacuum, heat, temperature and energy; the ecology strand such concepts as ecology, plant and animal growth and development, weather and climate, field mapping and population sampling; the relational study strand such concepts as resource management, technology, environmental use, energy use and conservation.

Student and teacher materials guide student investigations. The Student Record Book enables students to record a concise log of individual and class activities. A classroom library of Reference Booklets, which describe use of instruments, suggest experimental designs, outline experimental techniques, and provide necessary supplemental readings, helps students to practice the skill of using outside references to supplement information available from the investigations and Student Book. The Teacher Guide presents the logic connecting topics and sequences. Keyed to the investigations in the Student Book, the Teacher’s Guide includes teaching suggestions, advice on classroom procedures, and detailed discussion of the conceptual and practical development of the students’ investigations. Other materials for teachers include the Instructional Guide and Evaluation Guide.

Requirements Adopting teachers are required to take 10 days of training (provided free with sufficient book purchases). Adopting schools are assumed to have basic science equipment and supplies including 6-10 centigram balances. An equipment kit is required. Recommended: a local project coordinator to monitor implementation activities, conduct bimonthly meetings with adopting teachers, and provide help to teachers as needed. Additional training is available for local coordinators and teacher trainers.

Services Awareness materials are available at no cost. Examination copies of student and teacher materials are available at cost, videotape describing the program available on loan (specify Beta or VHS). Visitors are welcome at project site and at selected demonstration sites by appointment. Some demonstration sites are available in other states. Project staff and/or certified representatives are available to attend awareness meetings on negotiated cost basis. Teacher training is conducted each summer at project site or can be provided for adoptors at adoptor site.

Contact Donald B. Young, Co-Director; Curriculum Research and Development Group; University of Hawaii; 1776 University Ave., Rm UHS 2-202; Honolulu, HI 96822 (808) 946-7863.

Developmental Funding: University of Hawaii JDRP No. 80-2 (12/9/80) Recertified (1/85)
GEOLOGY IS. An introductory geoscience course.

Audience Approved by JDRP for all students, grades 9-12.

Description Designed to become part of the secondary school curriculum, GEOLOGY IS provides geoscience learning opportunities not presently available in the science curriculum. A broad range of materials and media-delivery instruments allow for varied teaching and learning techniques. The technical aspects of course content and the social implications in the wise use of earth resources combine in an effective interdisciplinary approach. Awareness and understanding of geoscience processes make students more responsible consumers of earth materials and protectors of the environment.

The five distinct but related units of GEOLOGY IS are Introduction, Earth Materials, Observing the Earth, Internal Processes, and External Processes. Although it is a two-semester course, parts can be taught as a semester offering. Each unit contains text material, lab exercises and activities, and objective and subjective tests. Slide-tapes, films, videotapes, and guest speaker presentations are offered, and students are encouraged to evaluate these. Small groups and individuals investigate topical areas for student-led class discussions. Off- and on-campus field experiences and resource personnel add another dimension to the text. Teachers are provided with a guide and an activities handbook as a supplement to the student textbook.

Through study in this elective option, students can become more responsible consumers of earth resources and make informed decisions for the future regarding energy, geologic hazards, and land use.

Requirements The adopting district will need to provide an instructor with some basic coursework in the geosciences. Other than that, a typical science classroom and supplies are the only other requirements for adoption.

Costs The major cost to the district will be for the purchase of the GEOLOGY IS textbook and activity sheets. In addition, some supplies for the activities may have to be purchased if the district does not have an existing geoscience class.

Services Awareness materials are available at no cost. A slide-tape presentation is available if district will pay postage. Visitors are welcome at project site anytime by appointment. Project staff are available to attend out-of-state awareness conferences (cost to be negotiated). Training is conducted either at the project site or at the adopter site (costs to be negotiated). Implementation and follow-up services are available to adopters (costs to be negotiated).

Contact R. on D. Turley; O'Fallon Township High School; 600 South Smiley; O'Fallon, IL 62269. (618) 632-3507.

Developmental Funding: USOE ESEA Title IV-C JDRP No. 81-42 (12/18/81) Recertified (2/86)
HANDS-ON ELEMENTARY SCIENCE An instructional program intended to provide elementary students with hands-on instruction emphasizing the processes of science.

Audience
Approved by JDRP for elementary teachers and students, grades 1-5.

Description
The Hands-On Elementary Science provides elementary students with instruction that emphasizes the development of science processes as an approach to problem solving. In fostering positive teacher attitudes toward teaching science, it increased both the amount of science taught and the proportion of instruction dedicated to the processes of science. The curriculum employs a set of higher order of processes at each grade level consisting of three basic units. The units consist of lessons concerning a unifying topic. The topic is based upon the skills identified for that grade level. First grade students work primarily on observation in the three units of seeds, patterns and "magnetism." Second grade emphasizes classification skills through the study of insects, sink or float, and measurement. In the third grade, experimentation skills are developed by units on flight, measuring and plants. Fourth grade focuses on analysis in units on bio-communities, electricity and chemistry. The fifth grade curriculum emphasizes application and consists of units on earth science, soil analysis and small animals. Since this is not a text program, all lessons are based upon hands-on activities supported and defined by curriculum guides at each grade level. They provide a sequence of basic lessons and incorporate all necessary materials to support the program lessons. A unique feature of the program is an optional package of materials students may request to work on over the summer.

Requirements
The Hands-On Elementary Science program is transportable to other sites where a commitment exists for hands-on science instruction. Adoption of this program requires at least a half year planning and preparation followed by a staff development program. Teacher preparation consists of two days training prior to the implementation of the program followed by at least two follow-up workshops to resolve problems of implementation. Materials required include both a curriculum guide and a kit of materials of the appropriate grade level for each teacher and copies of the voluntary summer program for dissemination to interested students.

The cost of the program in the installation year is approximately $27 per student (assuming 25 students per class in a school of 800 students and training 20 teachers at a grade level). Subsequent year costs to maintain the program through the replacement of consumable supplies equals $1.50 per student. Teacher guides are available for $10 each and kits are available from a national vendor at costs ranging from $322 to $532 depending upon the grade level.

Services
Awareness materials are available at no cost. Visitors are welcome by appointment at project site and additional sites in home state. Project staff are available to attend out-of-state awareness meetings (costs to be negotiated). Training is available at project site and also at adopter site (costs to be negotiated). Implementation and follow-up services are available to adopters (costs to be negotiated).

Contact
Gary E. Dunkleberger; Hands-On Elementary Science; Carroll County Board of Education; Westminster, MD 21157. (301) 848-8280

Developmental Funding: Federal, State and Local

JDRP No. 86-19 (9/23/86)
INFORMAL SCIENCE STUDY (ISS)

Audience
Approved by JDRP for all students in grades 5-12.

Description
ISS supplementary presents physical science mini-units based upon student recall and utilization of popular amusement park rides, sports, and playground experiences in concept acquisition. Experiences are selected for their student appeal and their ability to provide concrete examples of otherwise abstract concepts. Topics covered include motion, acceleration, relativity, forces, gravity, time, graphing, conservation of energy, and frames of reference. Each of the mini-units is designed around student dialogue, providing an introduction and review/application of physical science and mathematics in low-key, predominantly non-technical language. Physical science terms are introduced only after instruction as needed. In addition, several of the units provide laboratory experiences using toys (race cars, model rockets etc.) and playground equipment.

With instructional periods from 1-3 weeks, students significantly increase knowledge and comprehension of science concepts, analytic recall of science experiences, and demonstrate significantly increased applications of science concepts to unique situations. Instruments by which students were measured were constructed and validated as part of the curriculum design and evaluation procedures.

Requirements
Mini-units may be adopted individually or as a group. Teachers may be trained in four hours.

Services
Awareness materials are available at no cost. Visitors are welcome to visit the project site by appointment. Project staff are available for awareness meetings (cost to be negotiated). Costs including training, materials, and equipment are approximately $1.21 per student (n=500), with a recurring cost of .60 per student.

Contact
Dr. Howard Jones, University of Houston, Room 348 Farish Hall, Houston, TX 77004, (713) 749-1624 and 749-3584.

Developmental Funding: National Science Foundation
JDRP No. 84-11 (3/30/84)
LIFE LAB SCIENCE PROGRAM An applied science program emphasizing a hands-on “living laboratory” approach to elementary science education.

Audience Approved by JDRP for elementary students, grades 2-6.

Description The Life Lab Science program strives to ensure students’ future interests and success in science by improving student attitudes toward the study of science, and increasing students’ level of knowledge and skill acquisition in science. The instructional approach is a combination of indoor and outdoor hands-on science activities with the key component being the garden lab (e.g., indoor grow box, greenhouse, planter boxes, vegetable beds, etc.). Students and teachers collaborate to transform their school grounds and/or classrooms into thriving garden laboratories for the study of scientific processes. In this setting students conduct experiments using the scientific method. They observe, collect and analyze data, establish worm colonies, raise vegetables, herbs and flowers, and have responsibility for maintaining their living laboratory. A structured course of study is followed in science, nutrition and gardening. Instructional time varies from two to four hours per week. Teachers are responsible for all classroom instruction and use The Growing Classroom, a three volume curriculum guide, for the bulk of their science lessons.

Requirements The critical learner setting is the “living laboratory” whether an indoor grow box, containers adjacent to the classroom, a greenhouse or a three acre school farm. As such, all elements of the program are transportable. The primary curriculum guide is The Growing Classroom, which contains three volumes—Science, Nutrition and Gardening and is accompanied by a scope and sequence. No textbooks are required with the exception of the gardening tools. Learning materials are predominantly household items. Prior to implementation, the program has a two-day workshop at the school site or at project site that prepares teachers for using the program, teaching techniques and the “living laboratory” approach. Following the initial training, staff development and program implementation become the responsibility of a Lead Teacher in each school. Advance training is available for Lead Teachers and technical assistance will continue to be provided throughout the installation year. Adopters of the Life Lab Science Program typically generate a great deal of community support and resources. Cultivating the community is an important requirement of a successful adoption. The adopter is responsible for travel and per diem costs. Trainer fees are to be negotiated. Implementation costs vary by site and the extent of “living laboratory” development. A set of The Growing Classroom curriculum must be purchased for each implementing classroom teacher at $40 per set.

Services Awareness materials are available at no cost. Visitors are welcome by appointment at project site and additional sites in home state and out-of-state. Project staff are available to attend out-of-state awareness meetings (costs to be negotiated). Training is conducted either at project site or adopter site (costs to be negotiated). Follow-up technical assistance is also available.

Contact Gary Appel/Lisa Glick; Life Lab Science Program; 809 Bay Avenue, Suite H; Capitola, CA 95010. (408) 476-7140.

Developmental Funding: ESEA, Title IV-C; Packard Foundation; JDRP No. 86-17 (9/10/86) California State Department of Education; National Science Foundation
MARINE SCIENCE PROJECT: FOR SEA. Comprehensive, activity-oriented marine science curriculum which teaches basic science skills and knowledge on or away from the coast.

Audience
Approved by JDRP for all students, grades 2, 4, 6, 7-8 and 9-12.

Description
By the year 2000, three out of four Americans will live within an hour's drive of the sea or Great Lakes coasts. The impact on these coastal waters will be severe. The nationally validated curriculum materials of Marine Science Project: FOR SEA are designed to equip students with information necessary to protect and maintain the world of water.

FOR SEA provides comprehensive, activity-oriented, marine education curriculum to be used in addition to or in lieu of an existing science program. Curriculum guides for each of the grade levels contain teacher background for each activity, student activity and text pages, answer keys for student activities and a listing of vocabulary words for each unit, and selected bibliography of children's literature of the sea and information books of the sea.

The Marine Science Project: FOR SEA is documented effective in teaching basic science skills and knowledge as measured by the CTB McGraw-Hill CTBS Science tests. The magic draw of water provides incentive to teach and learn science.

Requirements
The Marine Science Project: FOR SEA is designed to be implemented in classrooms at a room, grade, school, or district-wide level. Eight hours of inservice training provide implementing classroom teachers with an overview of the project, text implementation procedures, and activities designed to familiarize them with the materials. A copy of the appropriate grade level curriculum guide must be purchased for each implementing classroom teacher at $25 per guide. Student text materials in the guide are designed to be reproduced by the adopting sites. Hands-on materials are generally found in the school setting or are readily available at local grocery or variety stores. The start-up costs vary by site.

Services
Awareness brochures and samplers of curriculum are available. Project staff are available to attend out-of-state awareness sessions, with negotiable cost-sharing. Inservice training is provided to adopter site, again with cost-sharing negotiable. Follow-up services are provided by the project in appropriate cost-effective ways, including telephone, mail, cassette tape, and visits.

Contact
Laurie Dumdie, Demonstrator/Trainer; Marine Science Center; 17771 Fjord Drive N.E.; Poulsbo, WA 98370. (206) 779-5549.
PHYSICS—TEACH TO LEARN PROGRAM (PTTL) A physics instructional program using controlled computer simulation.

Description The goals of the Physics—Teach To Learn program (PTTL) are to provide both teachers and students with instructional materials and processes and to better illustrate the concepts that are most frequently misunderstood by students. The program was designed to enhance the fundamental qualitative understanding of physical events in fifteen topic areas. The PTTL program’s fifteen computer based instructional modules cover topics identified by teachers as being particularly difficult for students. Each topic simulation uses a format that requires the learner to make a judgement about a physical event. The teacher then shows the computer simulation leading the student through the various steps of exploration, development and application. After the application step, the student takes the formal paper/pencil post-test. Each topic is accompanied by extensive written curriculum material designed to enhance the teachers ability to present key concepts.

Requirements The PTTL project developed materials were designed to be adaptable to any course approach and compatible with any text format. As such, all aspects of the PTTL program are appropriate for dissemination to other sites. The material developed for the program includes a floppy disk for each of the program’s fifteen content modules. Each is capable of producing a virtual limitless number of variations to its computer simulations. The package of supplementary curriculum materials is designed to be utilized by the teacher to accompany each content module. The disks are designed for use with either the Apple IIc or IIe computer. A 19 inch or larger television is necessary for display of the computer simulation. The use of the PTTL materials requires no prior computer experience. Experienced physics teachers can be trained in the philosophy content and use of the modules in four hours. New and/or crossover teachers will need one to two days of training. The PTTL curriculum materials, including the computer diskettes, are available for a cost of $250 per set. Training costs range from $75-300, depending on the level of experience of proposed participating teachers, and on the availability of equipment at the school. If computer equipment and a television need to be acquired the cost will be approximately $1,600. Once the curriculum materials have been purchased and initial training has occurred, the PTTL program can be operated with no additional cost factors.

Services Awareness materials are available at no cost. Visitors are welcome by appointment at project site. Project staff are available to attend out-of-state awareness meetings (costs to be negotiated). Training is conducted at project site (costs to be negotiated). Training is also available at adopter site (costs to be negotiated).

Contact Leni Posner; Physics—Teach To Learn; Los Angeles Unified School District (LAUSD); Grants Assistance Unit; 450 North Grand Avenue; Los Angeles, CA 90012. (213) 625-6596

Developmental Funding: ECIA Chapter 2

JDRP No. 86-16 (9/25/86)
SCI-MATH. A curriculum module that bridges the abstract operations taught in mathematics and their application in the introductory sciences and in everyday activities.

Audience Approved by JDRP for students who are average to above-average achievers in grades 7-10, or low achievers including educationally disadvantaged at a slower rate in grades 7-12.

Description Sci-math is a modular curriculum that teaches the skills and concepts needed to apply proportions to problem-solving in the introductory sciences and in the everyday world. It consists of two modules, each requiring approximately 1/4 of a school year for the average student. Module One is a pre-algebra module which deals with the arithmetic and logic of proportions. Module Two examines how algebraic equations express proportions, and studies the graphical interpretation of proportions.

Many students have a great deal of difficulty with the mathematical aspects of the sciences, and fail to understand, appreciate, and like the sciences. Sci-math teaches students to apply the operations taught in mathematics to problems encountered in everyday life and in science. The approach is based on a modification of the "unit-pricing" concept, a method now used heavily in the sciences which requires the use of measurement labels like miles, grams, and seconds, in all the calculations. Mathematics in everyday living involves and applies this same concept—in consumer purchasing, business, crafts, and industry. This approach to proportions enables even Piagetian pre-formal students to understand and apply proportions to problem-solving.

There are 23 hands-on activities in the course available for the classroom. All problems and activities deal with variables familiar to students such as those found in the home, play, school, and business, etc. The materials used are readily available and inexpensive, such as rulers, string, pennies, spoons, jars and masking tape. By carrying these activities out with familiar variables, students can learn the mathematics of relationships so they can later apply these to the sciences. They also learn about measurement, inexact numbers, and estimation. A teachers' manual provides solutions to all problems, as well as data and answers to questions for the activities.

The curriculum may be used as a mathematics course for average students in the eighth grade or as a physical science course for eighth or ninth grades, or as an elective course in grades 9-12. Slow learners may use the modules at a slower rate doing more of the problems and activities, in grades 9-12. High achievers may start at 7th grade or earlier. At all grades, Sci-Math may be elected in part or as a whole, and may be interfaced into an existing course or used separately. The program was developed by Dr. Madeline P. Goodstein.

Requirements Sci-Math can be used in any classroom. Student modules and teacher guides are available at less than $6 per copy. Materials can be reused for several years. Material costs for activities and experiments are minimal.

Services Awareness materials are available at no cost. Project personnel are available for on-site awareness and/or training workshops. Costs for these services as well as evaluation and follow-up are to be negotiated with the sponsoring organization.

Contact James P. McAuliffe, Sci-Math Director; Education & Technology Foundation; Suite 544; 1855 Folsom St.; San Francisco, CA 94103.

Developmental Funding: National Science Foundation JDRP No. 82-20 (5/12/82)
STARWALK: A comprehensive earth/space science program for elementary students.

Audience Approved by JDRP for grades 3 & 5. The program has also been used in other grades.

Description Project STARWALK provides differentiated instruction in earth/space concepts which accommodate various developmental levels. Students receive a series of lessons structured around three visits to a planetarium to prepare them for their activities at the planetarium and to consolidate and further the learning after the visit. Planetarium handbooks and teaching packets provide the instructional materials for these lessons. Classroom teachers participate in the activities along with their students. Students in grade 3 are introduced to the Milky Way and the concept of time. Students in grade 5 study the planets and the solar system configurations, and seasons around the world. Inservice orientation and technical assistance are available as well as a management system for scheduling of students, equipment or service purchase, and dissemination and evaluation.

Requirements The availability of a planetarium model in a laboratory or classroom is a component of this program. The program should be implemented on a district-wide basis on the elementary level because lessons on each grade level are sequential. A science teacher or other staff member can be trained to carry out the program. There is a minimal amount of instructional material needed. There may be some cost involved in bus transportation depending upon the location of the planetarium and the number of students participating in the program.

Services Awareness materials are available at no cost. Developer is available to attend out-of-state awareness meetings (costs to be negotiated). Visitors are welcome at project site during school year by appointment. Training is conducted at adopter or project site (training no cost at adopter site, adopter pays own expenses; training no cost at adopter site, adopter pays developer's expense). Training is conducted at adopter site during school year by appointment. Implementation/follow-up services are available to adopters (costs to be negotiated). Evaluation kits include 50 student scan sheets, student response summaries for pre and post tests, classroom means for pre and post tests, and statistical report of student growth for pre and post tests. Two kits needed—one for third grade and one for fifth grade. Cost of instructional, management, and training materials packet, $25 per package. Evaluation kit available at $25 per kit. Two kits per adopter needed. Instructional materials from packet may be duplicated for participating teachers and students at adoption site. Per-pupil cost per year is dependent upon costs for student transportation, planetarium utilization fees, supplies, and indirect costs.

Contact Mr. Bob Riddle; Project STARWALK; Lakeview Museum Planetarium; 1125 W. Lake Avenue, Peoria, Illinois 61614. (309) 686-NOVA.

Developmental Funding: Title IV-C, State and Local
JDRP No. 83-9 (3/4/83)
STONES AND BONES, A LABORATORY APPROACH TO THE
STUDY OF BIOLOGY, MODERN SCIENCE, AND ANTHRO-
POLOGY. An innovative program designed to enrich and meet
the present modern or life science, biology, and physical
anthropology courses.

Audience Approved by JDRP for science students of all ability levels. The
program has been successfully implemented in grades 7-12.

Description The program meets the needs of all ability students. The format is interdisciplinary in
design and emphasizes active student participation through laboratory explorations. Modern
(general) or life science and biology instructional units supplement; enrich; and extend current
science curricula.

Three instructional pathways emphasize the study of humankind: Modern (General) Science
Pathway: Designed to motivate non-college-oriented students. Each of the 20 laboratory explorations
offers the general science student “hands-on” opportunities to investigate topics such as geologic
time, measuring radioactivity, mapping, behavior of primates, and replica casts of fossil hominids.
During this four to six weeks unit, students will also have an opportunity to simulate archaeological
cartography.

Biology Pathway: A four- to six-week overview of physical anthropology. The unit provides students
with “hands-on,” in-depth experiences as a supplement to physical anthropology in biology
textbooks. A series of 11 investigative explorations focuses on topics including primate behavior and
distribution, interpreting archeological records, primate locomotion and morphology, and replica
casts of fossil hominids. This approach reinforces and extends many basic concepts taught in the study
of biology.

Semester Course Pathway: This pathway in physical anthropology provides students the opportunity
to study the story of humankind in depth. Laboratory investigations pursue such topics as phylogeny
through time, continental drift, locomotion and behavior of primates, classification and morphology,
as well as 14 fossil replica casts of Australopithecus, Homo erectus, Neanderthal, and Cro-Magnon.

Instructional materials for all three pathways are highly self-directive; requiring minimal teacher
training. In addition to printed materials, cast replicas of fossil casts and instructional materials used
in the explorations have been validated to be scientifically accurate by the L.S.B. Leakey Foundation, Los
Angeles County Museum of Natural History, and by world-recognized anthropologists from various
major universities.

Based on the recommended basic materials needed for implementation, the start-up cost will be
approximately $471 for modern (general) science unit, $895 for biology unit, and $1300 for semester
course. An alternative is to implement the program with fossil cast photo reprints in actual size in lieu
of the fossil replica cast; the cost will then be approximately $55 for each of the instructional
pathways. Any number of classes can share the materials if classes are scheduled at different periods or days.
There is no additional cost in subsequent years of operation.

Requirements “Stones and Bones” can be implemented in various ways. The selection of the
pathway is determined by school and student needs. All three pathways require no special facilities or
equipment. Existing classrooms and readily available items from any classroom such as rulers, scissors,
and paste will be adequate. Teachers with none to minimal anthropology background will need no
more than one day of training for initiating each of the three pathways successfully. Teachers’ Guides
for the three pathways are available to effectively implement the program.

Services Awareness materials are available at no cost. Visitors are welcome at project’s demonstra-
tion school site by appointment. Training workshops are conducted at project sites and/or adopter
sites with costs to be shared. Project staff is available to attend awareness meetings out of state with
costs to be negotiated.

Contact Dr. Sid Sitkoff, Director; Los Angeles Unified School District; Office of Instruction; 450 N.
Grand Ave.; Los Angeles, CA 90012. (213) 625-6419. Milton Anisman, Disseminator; Physical
Anthropology Center; 6625 Balboa Blvd.; Van Nuys, CA 91406. (818) 997-2389.

Developmental Funding: USOE ESEA Title IV-C JDRP No. 82-99 (12/01/86)
PROJECT ZOO: ZOO OPPORTUNITIES OUTREACH. A series of curriculum materials related to the study of animals to supplement and enrich existing classroom programs through experiential learning.

Audience Approved by JDRP for K-6 students of all abilities.

Description Project ZOO is a science-oriented animal studies program that offers varied multi-sensory and multimedia learning experiences to augment zoo field trips. While children explore the world of animals and learn about conservation and ecology, activities are introduced in which students experience not only science, but aspects of language, mathematics, social studies, music and art. Through the use of nearly 300 project-developed materials, six units of study are explored: Animal Characteristics, Animal Behavior, and Animal Homes and Habitats for primary grades; and Classification, Adaptation, and Interdependence for the intermediate grades. Study prints, flash cards, student booklets, worksheets, and games make the program an interesting and successful experience, stimulating more self-direction and causing more positive personal interaction. The materials accommodate any learning style and have proved effective even though a trip to the zoo is not possible. The teacher’s unit book contains background and introductory information, activity suggestions, and a bibliography of resources. This manual, along with all needed materials, comprises a teaching kit. Materials include worksheet activities such as crossword puzzles, word search games, and matching items that can be enlarged for posters or games. These materials were teacher-created to reflect teacher needs and can be used in regular classroom programs. A sample kit of materials is available for review.

During development, students in project classrooms were compared with students in similar control classrooms through use of unit tests. Experimental students gained significantly more than comparison students in their knowledge and understanding of the concepts and processes of each of the six project units.

Requirements Full or partial adoption can be made. It is Project ZOO’s suggestion that the Characteristics, Behavior, and Homes and Habitats kits be used for K-3, and Classification, Adaptation, and Interdependence of Animals be used in 4-6. With the teacher unit book that comes with each kit, teachers can teach the units without training, but Project ZOO highly recommends a one-day workshop session.

Costs Since single kits can be purchased, each kit is individually priced. The kits are self-contained except for occasional materials, such as yarn, paper and plastic bags, which can be easily procured locally at little or no cost. The cost of individual kits are: Characteristics, $110; Behavior, $80.00; Homes and Habitats, $85; Classification, $233.50; Adaptation, $203.50; Interdependence of Animals, $195.50. Complete set, $1100.05.

Services A sample is available for 15 days free examination. Training is done at adopter site.

Contact Steve Binkley, Carolina Biological Supply Co., 2700 York Rd., Burlington, NC 27215. (919) 584-0381.

Developmental Funding: USOE ESEA Title IV-C
JDRP No. 81/18 (9/17/81)
State Facilitators

ALABAMA
Ms. Maureen Cassidy
Alabama Facilitator Project
Division of Professional Services
Room 866 - State Office Building
Montgomery, Alabama 36130
(205) 261-5065

ALASKA
Dr. Gladys Foris
State Facilitator
Alaska Department of Education
Pouch F - State Office Education
Juneau, Alaska 99811
(907) 465-2884

ARIZONA
Dr. L. Leon Webb
Arizona State Facilitator
Educational Diffusion Systems, Inc.
161 East First Street
Mesa, Arizona 85201
(602) 969-4880

ARKANSAS
Ms. B. J. Confer
State Facilitator
Arkansas Department of Education
Arch Ford Education Building
State Capitol Mall
Little Rock, Arkansas 72201
(501) 371-5038

CALIFORNIA
Ms. Jane E. Zinner, Director
Ms. Joyce Lazzeri, State Facilitator
Association of CA School Administrators
1575 Old Bayshore Highway
Burlingame, California 94010
(415) 692-2956

COLORADO
Mr. Charles D. Beck, Jr.
Colorado State Facilitator Project
Northern Colorado Educational
Board of Cooperative Services
830 South Lincoln
Longmont, Colorado 80501
(303) 772-4420

CONNECTICUT
Ms. Sally Harris
Connecticut Facilitator Project
Area Cooperative Educational Services
295 Mill Road
North Haven, Connecticut 06473
(203) 234-0130

DELAWARE
Ms. Mary Ketchem
State Facilitator Project
John G. Townsend Building
Dover, Delaware 19901
(302) 736-4583

DISTRICT OF COLUMBIA
Ms. Susan Williams
District Facilitator Project
Eaton School
34th and Lowell Streets, N.W.
Washington, D.C. 20008
(202) 282-0056

FLORIDA
Ms. Suzanne S. Carlton
State Facilitator
Florida Department of Education
Division of Public Schools
Knott Building
Tallahassee, Florida 32301
(904) 487-3496 or 487-1078

GEORGIA
Ms. Frances Hensley
Dr. Kent Gustafson, Project Administrator
Georgia Facilitator Center
226 Fain Hall, UGA
Athens, Georgia 30602
(404) 542-3332 or 542-3810

HAWAII
Dr. Elaine Takenaka
Hawaii Educational Dissemination Diffusion System (HEDDS)
Office of Instructional Services
595 Pepeekeo Street, Building H.
Honolulu, Hawaii 96825
(808) 396-6356
IDAHO
Mr. Ted L. Lindley
State Facilitator
Idaho State Department of Education
Len B. Jordan Office Building
Boise, Idaho 83720
(208) 334-2199

ILLINOIS
Dr. Shirley Menendez
Project Director
Statewide Facilitator Project
1105 East Fifth Street
Metropolis, Illinois 62960
(618) 524-2664

INDIANA
Dr. Lynwood Erb
Project Director
Indiana Facilitator Center
Logansport Community School Corporation
Logansport, Indiana 46947
(219) 722-1754

IOWA
Dr. David C. Lidstrom
State Facilitator
Department of Public Instruction
Grimes State Office Building
Des Moines, Iowa 50319
(515) 281-3111

KANSAS
Mr. James H. Connett
Kansas State Facilitator Project
Director, KEDD/\LINK
1847 N. Chautauqua
Wichita, Kansas 67214
(316) 685-0271

KENTUCKY
Mr. John C. Padgett
Kentucky State Facilitator
Kentucky Department of Education
Capitol Plaza Tower Office Building
Frankfort, Kentucky 40601
(502) 564-4394

LOUISIANA
Mr. Charles Jarreau
Facilitator Project Director
State Department of Education
ESEA Title IV Bureau Office
P.O. Box 44064
Baton Rouge, Louisiana 70804
(504) 342-3375

MAINE
Mr. Robert Shafto or
Ms. Catherine Harding
Maine Facilitator Center
P.O. Box 620
Auburn, Maine 04210
(207) 783-0633

MARYLAND
Dr. Raymond H. Hartjen
Maryland Facilitator Project
Educational Alternatives, Inc.
P.O. Box 265
Simms Landing Road
Port Tobacco, Maryland 20677
(301) 934-2992 (D.C. line 870-3399)

MASSACHUSETTS
Ms. Denise Blumenthal
Ms. Nancy Love
THE NETWORK
290 South Main Street
Andover, Massachusetts 01810
(617) 470-1080

MICHIGAN
Mrs. Patricia Slocum
Michigan State Facilitator
Michigan Department of Education
Box 30008
Lansing, Michigan 48909
(517) 373-1806

MINNESOTA
Ms. Diane Lassman
150 Pillsbury Avenue
Pattee Hall
University of Minnesota
Minneapolis, Minnesota 55455
(612) 624-0584
MISSISSIPPI
Dr. Bobby Stacy
Mississippi Facilitator Project
State Department of Education
P.O. Box 771
Jackson, Mississippi 39205
(601) 359-3498

MISSOURI
Ms. Jolene Schulz
Project Director
Columbia Public School System
310 North Providence Road
Columbia, Missouri 65201
(314) 449-8622

MONTANA
Mr. Ron Lukenbill
State Facilitator Project
Office of Public Instruction
State Capitol
Helena, Montana 59601
(406) 444-2080

NEBRASKA
Dr. Mary Lou Palmer
State Facilitator Project Director
Nebraska Department of Education
301 Centennial Mall
P.O. Box 94987
Lincoln, Nebraska 68509
(402) 471-3440

NEW JERSEY
Ms. Katherine Wallin or
Ms. Elizabeth Ann Pagen
Ed. Information & Resource Center
N. J. State Facilitator Project
207 Delsea Drive
Box 20, R.D. #4
Sewell, New Jersey 08080
(609) 228-6000

NEW MEXICO
Dr. Amy L. Atkins or
Ms. Susan Carter
New Mexico State Facilitators
Department of Educational Foundations
U of New Mexico - College of Education
Onate Hall, Room 223
Albuquerque, New Mexico 87131
(505) 277-5204

NEW YORK
Mr. Samuel Corsi, Jr.
State Facilitator
N. Y. Education Department
Room 860 EBA
Albany, New York 12234
(518) 474-1280

NORTH CAROLINA
Ms. Alean Miller
Project Director
N. C. Facilitator Project
N. C. Department of Public Instruction
116 West Edenton Street
Raleigh, North Carolina 27603-1712
(919) 733-7037

NORTH DAKOTA
Mr. Charles DeRemer
State Facilitator
Department of Public Instruction
State Capitol
Bismarck, North Dakota 58505
(701) 224-2514

OHIO
Mr. C. William Phillips
Ohio Facilitator Center
The Ohio Department of Education
Division of Inservice Education
65 South Front Street, Room 1013
Columbus, Ohio 43215
(614) 466-2979
OKLAHOMA
Dr. Kenneth Smith
Statewide Facilitator
Edmond Public Schools
215 North Boulevard
Edmond, Oklahoma 73034
(405) 341-3457

OREGON
Dr. Ralph Nelsen
Columbia Education Center
11325 S. E. Lexington
Portland, Oregon 97266
(503) 760-2346

PENNSYLVANIA
Mr. Richard Brickley or
Ms. Mary Miller
Facilitator Project, R.I.S.E.
725 Caley Road
King of Prussia, Pennsylvania 19406
(215) 265-6056

RHODE ISLAND
Ms. Faith Fogle
R.I. State Facilitator Center
R.I. Department of Education
Roger Williams Building
22 Hayes Street
Providence, Rhode Island 02908
(401) 277-2617

SOUTH CAROLINA
Mr. Leon F. Temples
State Facilitator
S. C. Department of Education
1429 Senate Street
Columbia, South Carolina 29201
(803) 734-8116

SOUTH DAKOTA
Ms. Maxine Schochenmaier
State Facilitator
Division of Elementary and
Secondary Education
Richard F. Kneip Building
Pierre, South Dakota 57501
(605) 773-4681

TENNESSEE
Dr. Reginald High
Dr. Charles N. Achilles
Project Directors
TN Statewide Facilitator Project
College of Education/BERs - U of TN
University of Tennessee
Knoxville, Tennessee 37996-3504
(615) 974-1945 or 4165 or 2272

TEXAS
Ms. Bonnie Garrington
Texas State Facilitator
Texas Education Agency
Wm. B. Travis Building
1701 N. Congress Avenue
Austin, Texas 78701
(512) 463-9661

UTAH
Mr. Lyle Wright
Utah State Facilitator Project
Utah State Office of Education
250 East 500 South
Salt Lake City, Utah 84111
(801) 533-5061

VERMONT
Mr. Howard Verman
Trinity College
Colchester Avenue
Burlington, Vermont 05401
(802) 658-7429

VIRGINIA
Ms. Judy McKnight
The Knowledge Group
3421 Surrey Lane
Falls Church, Virginia 22042
(703) 698-0487

WASHINGTON
Mr. Keith Wright
Project Director
Washington State Facilitator
15675 Ambaum Boulevard, S.W.
Seattle, Washington 98166
(206) 433-2453
WEST VIRGINIA
Ms. Cornelia Hedges
W. V. State Facilitator
Building #6, Room B-252
State Department of Education
Charleston, West Virginia 25305
(304) 348-3579

WISCONSIN
Mr. William Ashmore
State Facilitator
Department of Public Instruction
125 South Webster
P.O. Box 7841
Madison, Wisconsin 53707
(608) 267-9179

WYOMING
Mr. Jack Prince
State Facilitator
Wyoming Innovation Network System
State Department of Education
Hathaway Building - Room 236
Cheyenne, Wyoming 82002
(307) 777-6252

PUERTO RICO
Mr. Edgardo Rodriguez
Puerto Rico State Facilitator
Center for Dissemination, 5th Floor
Department of Education
P.O. Box 759
Hato Rey, Puerto Rico 00919
(809) 759-8240

VIRGIN ISLANDS
Dr. Lois Habateyes (Acting)
Virgin Islands State Facilitator
Virgin Islands Department of Education
P.O. Box 6640
St. Thomas, Virgin Islands 00801
(809) 774-6076