This digest briefly reviews some of the current findings from research on microcomputers which seem most pertinent to teachers in elementary and secondary schools. Summaries are presented of findings related to: (1) status surveys; (2) computer literacy and mathematics instruction; (3) effects of teaching computer programming; (4) tutorial computer-assisted instruction and mathematics achievement; (5) computer-assisted drill and practice; (6) effects on students of mathematical games played on microcomputers; (7) computer-managed instruction; and (8) student attitudes. (ML)
Until three years ago, it was possible to state that little research had been published on microcomputer uses in mathematics education. That is definitely no longer the case! While most of the research is still in the form of doctoral dissertations, it has begun to overflow into journals. This digest briefly presents some of the findings from research on microcomputers which seem most pertinent to teachers in elementary and secondary schools.

We know from research with larger computers that they can be used effectively in mathematics instruction in each of their various applications. Thus we have some assurance, for instance, that:

- Instruction supplemented by properly designed computer-assisted instruction (CAI) is more effective than instruction without CAI.
- Both drill-and-practice and tutorial forms of CAI are effective in developing mathematical skills and fostering student achievement.
- Programming skills can be taught at the elementary school level, and extended (dramatically, for those students with time and interest) at the secondary school level.

In this overview the status of implementation will be considered first, before considering findings on computer literacy as they relate to mathematics instruction, programming and its effectiveness, tutorial CAI, drill-and-practice programs, games, computer-managed instruction, and, finally, attitudes toward computers in the mathematics classroom.

Status Surveys

Mathematics has been the predominant subject area in which microcomputers are used; although word-processing applications are rapidly overtaking mathematical uses. The amount of commercial software for mathematics instruction is rapidly growing; for the past five or six years, this software was primarily for arithmetic, with the emphasis on drill-and-practice programs. Within the last year or two, however, more and more of the software is planned to supplement and extend topics in the curriculum rather than merely provide drill and practice. In particular, the amount of software on problem solving is increasing, as the focusing of the curriculum on problem solving advocated by the National Council of Teachers of Mathematics and other educational groups, combined with less-than-pleasing data from state, national, and international assessments, underlines the need to improve problem-solving skills. Frankly, much of the available software is not sensational from either an interest or an educational viewpoint, but both factors are improving.

By 1985, a majority of elementary schools had five or more computers, while half of the secondary schools had 15 or more, according to a survey by Becker (1985a). Only 7 percent of secondary schools and 15 percent of elementary schools lack computers. These data show a clear change from Becker’s previous survey conducted in 1983 (Becker, 1985a). One point of interest is that elementary schools in 1985 appeared to be at the approximate point in attaining computers where secondary schools had been in 1983.

Computer Literacy

Computer literacy has been the focus of a number of studies. While many studies were concerned with computer literacy in general, some were connected with mathematics instruction:

- Use of microcomputer-assisted drill and practice on computational tasks significantly improved both the attitudes toward computers and knowledge about computers.
- Even a five-week summer session on mathematics and computer use was long enough to improve computer literacy.
- Boys and girls learn about computers equally well; but some attitudes differ. For instance, boys tend to consider computers and computing as a male domain more than girls do.
- Many students cannot be considered computer literate. For example, one-third of the 13-year-olds and one-fifth of the 17-year-olds questioned in the third national mathematics assessment believed that computers have minds of their own. Many did not realize that computers require special languages or that they are suited for doing repetitive, monotonous tasks (Carpenter et al., 1983).

Programming

Studies on the effects of teaching computer programming are varied in their findings:

- Some studies have found no evidence that students taught computer programming (most often with BASIC) have higher mathematics achievement than those not taught to program.
- In other studies, achievement was higher for those taught to program.
- Generally, no sex differences were found; when they were, boys scored better than girls on tests of programming skill.
- The same procedures were used by secondary school students in computer programming and in problem solving: heuristics, subgoals, looking back techniques, trial and error, and regular patterns of analysis and synthesis (Wells, 1981). In fact, such procedures were used even more frequently in programming than in problem solving, where they are stressed in mathematics instruction.
- Instruction in computer programming in either BASIC or Logo appeared to have a significant effect on the ability to analyze problems.
- While some studies reported no significant differences between students given or not given instruction with Logo, others reported success with using Logo to teach geometric concepts, problem solving, and spatial skills.
Tutorial Computer-Assisted Instruction
A large number of studies have involved tutorial CAI. As would be expected, the findings are mixed concerning mathematics achievement.

- Use of CAI produced higher achievement than did conventional instruction in many cases (as well as some effective benefits).
- In at least one case, achievement was significantly related to the amount of time spent on the computer.
- No significant differences between CAI and conventional instruction were found in a smaller number of studies.
- Significant differences favored the non-computer groups in only one study.

- CAI costs more than conventional instruction, but is lower when cost-effectiveness (base on achievement) is considered. Ash (1984) found that the cost-effectiveness index for computation was 2.84, for conventional instruction, more than three times larger than that for CAI (2.82). For concepts, the index was 1.06 for traditional instruction and 1.273 for CAI. From a study in Canadian schools, Hawley (1984) reported that the cost of CAI was $24 per day per student more than the cost of traditional instruction in grade 3, and 30% more in grade 4. When based on cost per unit of gain in achievement, or on the value placed on mathematics attainment and computer literacy by school boards and parents, CAI can be considered more cost effective than traditional instruction, according to Hawley.
- Use of the computer as a medium for diagnosis was explored, with indication that it may be more effective than the teacher in this role.

Drill and Practice
Most of the studies on computer-assisted drill and practice focused on the elementary level, where such software is widely used. Of 12 studies, eight reported that no significant differences in achievement were found between groups having or not having computer-assisted drill and practice. In only four of the 12 studies was achievement higher when computer-assisted drill and practice was used. This trend has been apparent in research with computers for over 20 years: drill and practice can be effectively administered by computers, but not necessarily more effectively than the teacher can provide non-computer drill and practice.

Games
The effects of various mathematical games played on microcomputers has been of interest to several researchers.
- Games were reinforcing and motivating. Using games as rewards, setting time limits, and playing with a peer were found to serve as intrinsic reinforcers.
- The computer game group responded correctly to twice as many items on a speed test of addition basic facts as did a non-game-playing group.
- While college students viewed games as problem-solving activities and applied a wide variety of problem-solving strategies, only about half of a group of eighth graders did so. They made limited use of such strategies as searching for patterns, while those not viewing the games as problems used random trial and error almost exclusively (Kraus, 1980).
- The importance and roles of challenge, fantasy, and curiosity in games differed for elementary school boys and girls.

Computer-Managed Instruction
Few studies of CMI have explicitly considered mathematics instruction. No significant differences in student achievement characterize each of three such studies. Teachers, however, preferred microcomputer-managed systems to non-computer systems — for obvious reasons.

Concluding Comment
As more research involving the use of computers in mathematics classrooms is published, we can expect to have more detailed information and specific suggestions on how to use them most effectively. We know they are a useful tool for mathematics instruction: now we must integrate that tool into the on-going curriculum.

Many suggestions on how to use computers effectively in mathematics instruction come from teachers' and students' experience. Journals such as the Mathematics Teacher, Arithmetic Teacher, School Science and Mathematics, and The Computing Teacher provide ideas you can use.

SELECTED REFERENCES
SUYDAM, Marilyn N. "Review of Research: Computers in Mathematics Education, K-12." Prepared for "Computers in Mathematics Classrooms" Conferences conducted by the National Council of Teachers of Mathematics, with funding from the National Science Foundation, In 1986.

Prepared by Marilyn N. Suydam
Associate Director, Mathematics Education