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Abstract

The Box-Jenkins approach to time series analysis, a regression method
for analyzing sequential dependent observations, was used to select the
most appropriate stochastic model for describing undergraduate grade point
averages. The technique, applied to approximately a half century of
data from two universities, suggested that the moving average model
provided the optimal fit. Suggestions were made for further exploration
of GPA data.
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TIME SERIES ARIMA MODELS

OF UNDERGRADUATE GRADE POINT AVERAGE

Whenever a phenomena is observed over time, it is often useful to search

for temporal patterns within the data. Economists have studied stock market

prices, sociologists have examined population levels, and psychologists have

investigated changes in the incidence of depression. For such purposes, a

variety of time series analysis procedures have been developed, derived primarily

from the theory of multiple regression. These techniques require data gathered

from at least fifty time periods (McCleary and Hay, 1980, p. 20). Since

arcnival data covering this many time periods is not as commonly collected

in education as in some other fields, these mathematical approaches are not

as widely used in educational research. It is the purpose of this paper to

illustrate such an application, using undergraduate grade point averages.

Although educational institutions evaluate their students each term, a

single group of pupils is not often evaluated fifty times on the same variable,

as would be required for a time series analysis. However, a meaningful time

series can be realized by obtaining the average grades given during each of

the grading periods across a lengthy time span. For about the last half

century, many universities and colleges have adopted a 5-point grading scale,

using either the letters A through E or the numbers 1 through 5. Some of the

institutions calculated, at each grating period, the average of grades awarded

to their students, with the intent of maintaining reasonable consistency in

their grading standards both among their departments and across time.

Approximately fifteen years ago, reports began appearing that a conspicious

increase was occuring each year in the grading patterns at many institutions

(Birnbaum, 1977). Although that pattern appears to have abated during the

past few years (Suslow, 1977), grades remain at a noticably higher level than
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prior to the increase.

A variety of factors have been suggested to explain the phenomena of

institutional grade average fluctuation (Birnbaum, 1977), but there has been

a lack of data that support the proposed explanations. Rogers (1983)

examined several independent variables (demographic and economic) for the

possibility of explaining temporal variation over an extended time frame,

but found each of them lacking in explanatory power.

Any "explanation" of a phenomena implies that the phenomena can be

adPquately described. Mathematical models, and regression models in particular,

are appropriate for such a description, but an examination of the literature

suggests that most authors rely solely on visual graphs rather than employing

mathematical modeling. It was the purpose of this study to use a stochastic

time series approach to generate mathematical models that might appropriately

describe the entire sequence of grade point data.

Method

Sample

Grade point average data were collected from two midwestern universities

for about a fifty year span. For the first, hereafter called University A,

data was collected for each year from 1929 through 1982. This data is plotted

as a time series plot in Figure 1. For the second institution, hereater called

University B, data was collected each year from 1932 to 1982, except for the

years 1943 through 1946, when no data was available. This data is plotted in

Figure 2.

Procedure

These data were analyzed with the time series analysis procedures

brought together in 1970 by George E. P. Box and Gwilyn M. Jenkins, in their

volume entitled Time Series Analysis: Forecasting and Control (revised
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edition 1976). These Auto-Regressive Integrated Moving Average (ARIMA)

models (often neferred to as "Box-Jenkins" models) require a large amount

of data. However, when data are collected over an extended time period, as

in this study, there is the possibility that the social meaning of the data

could change over time. Thus, it becomes difficult to assign the same

interpretation to the data at the beginning and end of the series. None-

theless, the study of temporal patterns is an intriguing one, and with the

development of appropriate computer software, the Box-Jenkins methods have

become available to a much wider audience.

McCleary and Hay (1980) have prepared a treatise designed to encourage

the use of the Box-Jenkins analysis for social science data, and to explicate

strategies for both analyzing the data on the computer and presenting the

computer output. Their strategies undergird the analysis in this study.

The data was processed on a Harris computer, using MINITAB (Ryan, et al.,

1982). Other approaches and other computer programs could have been used,

but this was the one available for this project. The reader will need to

interpret the methodological procedure of this study in that light.

The empirical identification procedures recommended by Box and Jenkins

require an analysis of the autocorrelation function (ACF) and the partial

autocorrelation (PACF) of the time series. The graphed ACF and PACF for

both of the University time series are shown in Figures 3 and 4. The ACF is

a set of correlations, each one of which represents the correlation between

the original sequence and itself when lagged

k units. For observations close together, e.g., 1 or 2 lags, we most often

find a higher correlation than for observations further apart, as is typified

in Figures 1 and 2, where the correlations are slowly dying out as the lags
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increase. This dying out phenomena is a consequence of the fundamental

tenent of the ARIMA model, namely that the effect of any given input to the

system declines over time. (Note that this is just the opposite of a time

series of a bank savings account where, assuming a constant interest rate,

the compounded interest from the first dollar invested is always larger

than that from any subJequent dollar invested.) When the data is properly

modeled, the residuals (erro/s resulting from the model) should be randomly

distributed, and thus yield an ACF with with values that are all statistically

non-significant. The goal of the Box-Jenkins approach is to find such a

model.

The Box-Jenkins approach is a three stage procedure to build a model,

consisting of Identification, Estimation, and Diagnosis. Each of these

will be illustrated in the following analysis. The cycle iterates until an

interpretable solution is found.

University A

Identification.

An examination of the ACF of the raw data (Figure 3) shows that the ACF

falls to zero slowly, indicating that there is a strong systematic trend in

the data. The most common method for removing this trend is to transform

the data by replacing each observation with the difference between it and the

preceding observation. When this differer transformation is complete, the

ACF is again computai Figure 5 shows the Nur for the differences. The values

are much smaller, indicating almost random data. However, there are some

spikes, which may be due to sampling error or to some systematic process, so

further analysis is required.

The PACF is interpreted similar to the ACF, except that each value is

the correlation between observations k units apart after the correlation at
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intermediate lags has been controlled or "partialled out". The PACF in Figure

3 shows a single spike, which may be the result of what is called a moving

average (MA) component. This moving average component can be conceptualiZed

as a random "shock" which is added to each observation to obtain the predicted

value for the next observation.

The distinguishing characteristic of a moving average process is the

tinite ouration of the shock. The shock persists for q observations and

then is completely suppressed (McCleary and Hay, p. 61). Such a "shock"

might be the result of the new grades that are added each term for each

particular student. Since the majority of students will leave the institution

after four years, the impact of any particular student will vanish when that

individual leaves.

From the ACF and PACF we can now tentatively "identify" the model as an

ARIMA (0, 1, 1). The zero indicates that there is no auto regressive (AR)

term, the middle 1 indicates that differencing is to be used (this is the

Integrative (I) term), and the last 1 indicates a moving average (MA) term.

Estimation.

When the estimates of the parameters were computed, it was found that

the (0, 1, 1) model produced a t-value of only 1.23 for the MA term. Since

this value was not statistically significant at the .05 level (nor anywhere

near there), the model was rejected, and the procedure returned to the

identification stage.

Identification.

It might be useful at this point to emphasize that since the estimated

ACF and PACF are based on very small samples, they are subject to relatively

large sampling errors. Consequently, any identification is very tentative.
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Because the ACF and PACF for first differences appeared rough, it seemed

appropriate to take second differences, i.e., differences between the

difference scores. Figure 6 shows the resulting ACF and PACF. They appear

more interpretable, suggesting a (0, 2, 1) model. An examination of Figure 1

also suggested that the variance was not constant across time. To attempt

to correct this, a logarithmic transformation of the data was performed.

Est;mation.

Table 1 shows the results of estimating the (0, 2, 1) model. The moving

average parameter of .9767 satisfies the stationarity requirement that its

absolute value be less than 1.0, and is also statist: ally significant at

less than the .05 level.

Diagnosis.

The simplest diagnostic procedure is to compare the resul ts of the gi ven

model and alternative models. In this way, it can be shown that a part.; :ular

model is optimal in that neither a simpler nor a more complex model will

suffice. The simpler model (0, 1, 1) was already shown to be inadequate.

The more complex model (0, 2, 2) yielded a statistically insignificant second

MA term, so it was rejected. The (1, 2, 1) model was also tested, but the

AR term was insignificant. Thus, the ARIMA (0, 2, 1) model was accepted as

the "best" fit.

The equation generated by this procedure can be conveniently written

in the following form: (1-B)2yt = (1-.9767B)at where B is the backshift

operator, and at is the random-shock ele, (McCleary and Hay, (1980), p. 46,

64). The backshift operator is defined 't = Yt_i and follows the usual

algebraic rules. The operator (1-B) re, nts first differences and (1-B)2

represents second di fferences .

8
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The random shock element a
t

is the stochastic component in the equation.

In the ARIMA model this moving average component can be shown to be mathe-

matically equivalent to the exponentially weighted average of all previous

observations (Pankratz, 1983, p. 49, 109; McCleary and Hay, (1980), p. 63).

University B

Identification.

An examination of the estimated ACF and PACF of the raw data (Figure 4)

suggests that this data is also non-stationary and needs to be differenced.

The single spike on the PACF suggests a (0, 1, 1) model.

Estimation.

The (0, 1, 1) model produced an estimate of the Moving Average parameter

with a t-value of .23. Since this was far from statistical significance,

modifications needed to be made. Second differences were used, since the

data appeared to approximate a quadratic trend. The (0, 2, 1) model produced

a parameter with a t-value of 11.12, which was highly significant.

Diagnosis.

The model was first diagnosed by comparing it with a more complex model.

Accordingly, a (0, 2, 2) model was tested. It produced significant t-values

for both MA parameters, as shown in Table 1. To compare the two models, the

mean squares of the residuals wan computed. The (0, 2, 1) model yielded

MSR = .0011274, while the (0, 2, 2) model yielded MSR = .0009977. Finally,

a (1, 2, 2) model (yet more complex) was tested, hut it yielded MSR =

.0011641. Consequently, the (0, 2, 2) model was favored, since it yielded

the smallest MSR.

The ACF and PALT for the Residuals of model (0, 2, 2) are shown in

Figure 7. No spikes are shown at lag 1 or any other lags. The residuals

appear to meet the diagnostic criteria, so the model is accepted.

9
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The model can be conveniently written as (1-B)2yt. (1 - 1.1475B + .5302B2)at.

Seasonality

The data analyzed above were yearly data, but many social science data

are collected on a monthly or quarterly basis and show strong seasonal

components. To test the hypothesis that a seasonal trend occured in grade

averages within each year, data was obtained from University B for each

quarter term for a 44 year span. The raw data plot is shown in Figure 8,

where the numbers 1, 2, and 3 designate Fall, Winter, and Spring terms,

respectively. A strong seasonal trend appears to be a noticable feature, so

a time series seasonality analysis was performed. Seasonality is defined as

"any cyclical or periodic fluctuation in a time series or repeats itself at

the same phase of the cycle or period" (McCleary and Hay, 1980, p. 80).

Identification

Figure 9, showing the estimated ACF and PACF of the first differenced

data, indicates a strong seasonal trend. The seasonality factor is known

to be three. Further, most social science process yield regular and seasonal

factors of the same type. Since the previous analysis of University B

suggested ARIMA (0, 2, 2) model, it was decided to first test the ARIMA

(0, 2, 2) (0, 2, 2)3 model. However, that model produced an estimate of a

Moving Average parameter with a t-value of only .41. Modifications were

then made upon the model. After several trials, the ARIMA (0, 1, 1),(0, 1, 1)3

model was found to produce statistically significant terms, as shown in Table 3,

with MSR = .0006550.

Diagnosis

The (0, 1, 1),(0, 1, 1)3 model was diagnosed by comparing it with

several competitive models. Adding a second MA Parameter proved non-significant.

10
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Using an AR term in either the regular or the seasonal component (which

might be inferred from the slow decay in the ACF) yielded a significant

term, but the MSR term was slightly lauer. A simpler model, postulating

only a seasonal term (0, 1, 0), (0, 1, 1)3 also produced a larger MSR.

The ACF and PACF for the residuals of the model are shown in Figure 10.

Since no spikes are observed, the model is accepted.

A time series with both regular and seasonal oomponents is expressed as

a multiplicative model. The accepted model is writtm as:

(l-B)(1-B3)yt = (1-.37B)(1-.77B3)at.

Conclusion

This paper has suggested that meaningful mathematical models can be

created to describe the time series of changes in the yearly grade point

average at a university. The models are very tentative, partly because of

the small number of available observations and also because of their relative

complexity.

While this paper has not answered the questions about the so-called

"grade inflation," it has indicated that a mathematical description of the

time series of grades is sufficiently complex to suggest that no simple

answer may suffice. The data is unstationary, as shown by the need for

differencing. It further appears to be best modeled by an approach that

postulates random shocks that persist for only a finite time, yet each of which

can be represented as an exponentially weighted average of all previous

observations. This perhaps reflects both the influx of new students and the

persistent effects of traditional grading practices.

Data for this study was available for only two institutions of higher

education, so the generalizability of the results is limited. Studies with

data from other institutions would serve to indicate the existence of general

patterns across institutions.
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Table 1. Parameter estimates for the ARIMA (0, 2, 1) model. University A.

FINAL ESTIMATES UF PARAMETERS
I NUMBER TYPE ESTIMATE

1 MA 1 0.9767

DIFFERENCING. 2 REGULAR

'RESIDUALS.

!NO. OF OBS.

ST. DEV. TRATIO
0.0439 22.26

SS 0.0191286 (DACKFORECASTS EXCLUDED)
DF 51 MS = 0.00p4751
ORIGINAL SERIES 54 AFfER DIFFERENCING

Table 2. Parameter estimates for the ARIMA (0, 2, 2) model. University B.

FINAL ESTIMATES OF
NUMBER TYPE

1 MA 1

2 MA 2

FARAMETERS
ESTIMATE

1.1475
0.5302

DIFFERENCING. 2 REGULAR
RESIDUALS. SS = 0.0429018

OF = 43 MS =
NO. OF OBS. ORIGINAL SERIES

ST4. DEV. TRATIO
0.1224 9.38
0.1220 4.35

(SACKFORECASTS EXCLUDED)
0.0009977
47 AFTER DIFFERENCING 45

Table 3. Parameter estimates for the ARIMA (0,
University B.

,FINAL ESTIMATES
:NUMBER TYPE

1 MA 1

2 SMA 3

OF PARAMETERS
ESTIMATE

0.3704
0.7728

DIFFERENCINO. 1 REGULAR

1, 1), (0, 1, 1)3 model

ST. DEV. T-RATIO
0.0814 4.55
0.0564 13.70

1 SEASONAL DIFFERENCES OF ORDER 3

RESIDUALS. SS = 0.0825284 (BACKFORECASTS EXCLUDED)
DF = 126 MS = 0.0006550

NO. OF OBS. ORIGINAL SERIES 132 AFTER DIFFERENCINO 129
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Figure 1. Grade Point Average (GPA) at University A, by year, from

1929 to 1982. (Prior to 1944 the data is for the whole

year; afterward it is for fall term.)
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Figure 2. GPA at University B, by year, from 1932 to 1982 (fall term).

Far 1943-1946, data are not available.
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12 0,046 XXX
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Figure 3. Estimated ACF and PACF for GPA. University A.
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12 0.116 XXXX
13 0.039 XX
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Figure 4. Estimated ACF and PACF for GPA. University B.
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Fi gure 5. Estimated ACF and PACF for fi rst di fferences. Uni versi ty A.
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3 -0.063 XXX
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6
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XXXXXXXXXXX
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-0.265

XX
XXXXXXXX

15 0.217 XXXXXX
16
17

-0.097
0.036 XXX

XX

Partial Autocorrelations
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13 -0418
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.17 4.021 XX

Figure 6. Estimated ACF and PACF for second differences. University A.
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Autocorrel ations
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XXXXX
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12 0.125 XXXX
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Figure 7. Estimated ACF and PACF for residuals from Arima (0, 2, 2)

model. University B.
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Figure 8.1 GPA at University_d, by quarter, from fall term 1932 to spring

term 1982. For 1943-1946,data are not available.
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1 -0.461 XXXXXXXXXXXXX
2 -0.426 XXXXXXXXXXXX
3 0.857 XXXXXXXXXXXXXXXXXXXXXX
4 -0.419 XXXXXXXXXXX
5 -0.427 XXXXXXXXXXXX
6 0.808 XXXXXXXXXXXXXXXXXXXXX
7 -0.375 XXXXXXXXXX
8 -0.396 XXXXXXXXXXX
9 0.762 XXXXXXXXXXXXXXXXXXXX
10 -0.351 XXXXXXXXXX
11 -0.383 XXXXXXXXXXX
12 0.729 XXXXXXXXXXXXXXXXXXX
13 -0.351 XXXXXXXXXX
14 -0.374. XXXXXXXXXX
15 0.707 XXXXXXXXXXXXXXXXXXX
16 -0.344 XXXXXXXXXX
17 -0.343 XXXXXXXXXX
18 0.644 XXXXXXXXXXXXXXXXX
19 -0.291 XXXXXXXX
20 -0.360 XXXXXXXXXX

Partial ,Autocorrel ations

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1 -0.461 XXXXXXXXXXXXX
2 -0.811 XXXXXXXXXXXXXXXXXXXXX
3 0.471 XXXXXXXXXXXXX
4 0.044 XX
5 -0.256 XXXXXXX
6 0.061 XXX
7 0.037 XX
8 0.043 XX
9 0.102 XXXX

10 0.020 X
11 -0.007 X
12 0.108 XXXX
13 -0.037 XX
14 -0.090 XXX
15 0.023 XX
16 -0.039 XX
17 0.029 XX
18 -0.175 XXXXX
19 0,042 XX
20 -0.115 XXXX

Figure 9. Estimated ACF and PACF for first differences on quarter data.

University B.
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,

-1.0 -0.8 -0.6

4.11...0 111 4114 0oVU614
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Autocorrelations

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1 -0.021 XX
2 0.008 X
7 0.179 XXXXX

0.029 XX
5 -0.112 XXXX
6 -0.015 X
7 0.083 XXX
8 0.018 X
9 -0.037 XX
10 0.091 XXX
11 0.077 XXX
12 -0.020 X
13 -0.082 XXX

,14 0.001 X
15 0.032 XX
16 -0.126 XXXX
117 0.054 XX
18 -0.144 XXXXX
19 0.052 XX
20 -0.125 XXXX

Partial Autocorrelations

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
1 -0.021 XX
2 0.008 X
3 0.179 XXXXX
4 0.038 XX

-0.118 XXXX
6 -0.056 XX
7 0.078 XXX
8 0.069 XXX
9 -0.022 XX

10 0.046 XX
11 0.059 XX
12 0.007 X
13 -0.105 XXXX
14 -0.047 XX
15 0.053 XX
16 -0.067 XXX
17 0.053 XX
18 -0.202 XXXXXX

.19 0.077 XXX
20 -0.121 XXXX

Figure 10. Estimated ACF and PACF for residuals from the ARIMA model

(0, 1, 1), (0, 1, 1)3. University B.
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