DOCUMENT RESUME

ED 271 100 IR 012 177
AUTHOR Kaiser, Javaid
TITLE Identification of Factors That Affect Software
Complexity. |
PUB DATE Dec 85 |
NOTE 93p.; Requirement for master's degree, University of
Kansas. Small print in the appendixes.
PUB TYPE Dissertations/Theses - Undetermined (040) --
Tests/Evaluatien Instruments (160)
EDRS PRICE MF01/PC04 Plus Postage.
DESCRIPTORS Adults; *Computer Software; *Difficulty Level; Factor

Analysis; Integrated Activities; Programing;
Questionnaires; Research Methodology; Surveys;
*Systems Analysis; Tables (Data)

IDENTIFIERS *Software Design; *Software Maintenance; System
Dynamics

ABSTRACT

A survey of computer scientists was conducted to
identify factors that affect software complexity. A total of 160
items were selected from the literature to include in a questionnaire
sent to 425 individuals who were employees of computer-related
businesses in Lawrence and Kansas City. The items were grouped into
nine categories called system planning, system characteristics,
system design, system testing, system documentation, system
correctness, system clarity, programming style, and system
management. Factor analysis and central tendenCy measures were used
to analyze the data. Based on 147 resprndents, 98% of the items were
found to affect systesm complexity. Large item variance was attributed
to the lack of forma! education or experience of respondents in some
areas of software development. The factors extracted in this study
were found to be useful in regrouping items to determine the
complexity of system attributes, system comporents, or of various
phases of system development. The need for a weighting scheme to add
component complexity to determine the overall system complexity was
identified. It is suggested that replication of this study on a
larger scale would prove useful and that the complexity of various
system components be weighted to determine the overall complexity of
the system. A list of references, a copy of the questionnaire, and
factor matrices are also provided. (JB)

AR KRR R AR AR R AR R R A AR R R AR KRR R R AR AR R AR AR R R R R KRR R KRR R AR R R R R AR R R R R

* Reproductions supplied by EDRS are the best that can be made *
®

from the original document. *
KRR R RR R AR R AR R R R R AR R R R R AR R RN AR R R R AR R RRRRRRR AR AR AR R AR AR AR AR kR

IDENTIFICATION OF FACTORS THAT AFFECT
SOFTWARE COMPLEXITY

us. wm oF mucanou

EDUCATIONAL RE&B}CES INFORMATION
CENTER (ERIC)

‘ The document has been reproduced as
recorved from the person or organuzation
ongmnating it

jul Minor changes have besn made 1o improve
reproduction quakity

® Ponts of view or opinions stated in thes docu

fment do not necessanty represent office’
PosItion of polcy

By

ED271100

Javaid Kaiser

University of Punjab, 1970
University of Punjab, 1972
University of Kansas, 1980
h.D., University of Kansas, 1984

oXxX=Z®
. [*
(- X7,]
[L[] [
- - -

Submitted to the Department of Computer Science

and to the Faculty of the Graduate School of the
University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science.

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Javaid Kaiser

Thesis Committee:

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

hairman

2 W-”\

Thesis defended: December, 1985.

Lo 12177

ABSTRACT

A survey was conducted on computer scientists to
identify factors that affect software complexity. A total
of 160 items were selected from the literature to include
in the questionnaire. The items were grouped into nine
categories called system planning, system characteristics,
system design, system testing, system documentation,
system correctness, system clarity, programming style, and
system management. Factor analysis and central tendency
measures were used to analyse data.

Based on the data on 147 respondents, 8% of the
items were found to affect system complexity. Large item
variance was attributed to the lack of formal education or
experience of respondents in some areas of software
development. The categories used in the present study,
were not found mutually exclusive. The factors extracted
in this study were found useful in regrouping items to
determine complexity of system attributes, system
components, or of various phases of system development.
The need for a weighting scheme to add component
complexity to determine the overall system complexity was
identified. The replication of this study on a 1larger

sample was suggested.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
Chapter 1 INTRODUCTION . . .

System Maintenance
Repair Maintenance

Purpose of the study
Chapter 2 REVIEW OF LITERATURE . . .
Software Metrics . . .
Program Length . .
Program Volume . .
Programming Effort
McCabe's Metric .
Bord Metric . . .
Program Chunk . .
METHODOLOGY
Development of tbe Que
Sampling
Data Analysis
Chapter 4 RESULTS . . . e e
System Planning .« . e
System Characteristics
System Design
System Testing . . .
System Documentation
System Correctness .
System Claricy . . .
Programming Style . .
System Management . .
DISCUSSION AND CONCLUSION

Chapter 3

e o ¢ o Ne o o o

Chapter 5
Conclusion
REFERENCES - . . . L]

Appendix A THE QUESTIONNAIRE , . . .
Appendix B FACTOR MATRICES

ii

Statement of the problem

Adaptive Maintenance
Productivity Maintenance
Significance of the study . .

t

® & & e e ¢ ¢ ¢ e o ® 6 & ¢ o e o ¢ ¢ ¢ o o

o]

e 3 e ¢ o o o o o

n

® & & & 8 6 & & ¢ e ¢ & e e m * & e e ¢ e o

Types and lLevels of complexity

ire

r

Page

1id

WO dWWWN -

LIST OF TABLES

TABLES PAGE
1 Item Statistics 23
2 Factors, Eigenvalues, and the Variance
Explained on System Planning Items 30
3 Factors, Items loaded on Factors, and

Item loadings on System Planning Category 32

4 Factors, Eigenvalues, and the Variance
Explained on System Characteristics Items 34

5 Factors, Items loaded on Factors, and Item
loadings on System Characteristics Category 35

6 Factors, Eigenvalues, and the variance
Explained on System Design Items 37

7 Factors, Items Loaded on Factors, and Item
Loadings on System Design Category 38

8 Factours, Eilgenvalues, and the variance
Explained on System Testing Items 40

9 Factors, Items Loaded on Factors, and Item
Loadings on System Testing Category 42
10 Factors, Eigenvalues, and the variance
Explained on System Documentation Items 44

11 Factors, Items Loaded on Factors, and Item
Loadings on System Documentation Category 45

12 Factors, Eigenvalues, and the Variance
Explained on System Correctness Items 47

13 Factors, Items Loaded on Factors, and Item
Loadings on System Correctness Category 48

14 Factors, Eigenvalues, and the Variance
Explained on System Clarity Items

Factors, Items Loaded on Factors, and Item
Loadings on System Clarity Category 51

l6 Factors, Eigenvalues, and the Variance
Explained on Programming Style Items 53

17 Factors, Items lLoaded on Factors, and Item
Loadings on Programming Style Category 55

18 Factors, Eigenvalues, and the Variance
Explained on System Management Items 57

19 Factors, Items Loaded on Factors, and Item
Loadings on System Management Category

Chapter 1

INTRODUCTION

Software complexity is a general, non-standard, and
relative term describing the composition of the system. It
is a relative term because it does not have an absolute
value assigned to it. A system with high software
complexity may be less complex than another system. The
term is non-standard as it is not delimited in scope and
may be used on different occasions tc mean different
things. A system with a large code having several
interliking modules may be considered a complex system. On
che other hand a short program with a difficult algorithm
may equally be called complex.

Because of the generality associated with the term,
software complexity may be used to define complexity level
for wvarious components of the system 1i.e. algorithm
complexity, code complexity, programming language
complexity, module linkage complexity, or I/O complexity.
Software complexity may also be used as an index for
various stages of system development and maintenance.
These developmental phases may be system planning, systenm
characteristics, system design, system teeting, system
management, system coding, and programming style.

The term 'software complexity*' gives an overall view

of the complexity 1level in a system and does not

recessarily mean that all system components have the same
complexity level. For example, a system may have a complex
code but a simple testing procedure or may have a complex
design but simple ccde. Likewise, various stages of system
development may not have the same complexity 1level. A
system may be very simple at the design stage but very
complex in the testing phase. Therefore, the ternm
'software complexity' gives a general impression about the
system but does not completely describe all its attributes.

The complexity of a system is very much affected by
the wa; the system is designed, coded, and tested. Human
factors including programming style, language
characteristics, and hardware limitations also affect the
complexity of the system. It is a known fact that
maintenance of a complex system is a difficult and
expensive task. This concern has resulted in a research
activity to find ways to develop less complex systems. The
present study is a step forward in this direction. The
identification of factors that affect softwere complexity
will help computer scientists to build 1less complex

systenms.

Statement of the Problem

The problem addressed in this research study was

stated as 'Identification of factors that affect software

complexity'. The term 'factors' as used in the statement,
referred to the underlying dimensions that supposedly
affect software complexity. The term software complexity
was used interchangeably with system complexity and
referred to large nrograms only. Complexity was defined in
terms of system maintenance and included repair
maintenance, adaptive maintenance, and productivity
maintenance. The definitions of these terms are given

belcow:

System Maintenance:

System maintenance was defined as an amouont of effort
needed to add, delete or modify segment(s) of a program. A
program that takes less effort in modification is 1less

complex than the one that takes more effort.

Repair Maintenance:

Repair maintenance is the maintenance needed to
correct 1logic errors discovered in a program after it has

been released into production (Vessay and Weber, 1983).

Adaptive Maintence:

Adaptive maintenance is the maintenance needed by a

program to better meet users' needs (Lientz and Swanson,

1981).

Productivity Maintenance:

Productivity maintenance is the maintenance needed to
improve the efficiency of the program in terms of
consumption of resources (Lientz, Swanson, and Tompkins,

1978).

Significance of the Study

Several attempts have been made in the past to
identify the factors that affect software complexity and
to develop a procedure to measure the complexity level in a
system (Curtis, Sheppard, Millman, Borst, and Love, 1979;
Lientz et. al., 1981; Vessey et. al., 1983).

The uniqueness of this study stems from rationale that
overall system complexity cannot be measured accurately
unless the complexity of its major components is measured
correctly, bacause system components tend to have
different 1levels of complexity. In order to produce an
index for the overall complexity of a system, component
complexity should be measured such that it has an additive
property. The other unique characteristic of this study
is the belief that overall system complexity is not of much
value compared to the system component complexity. It is

the component complexity that determines the cost of

particular system maintenance.

The significance of this study therefore, 1ies in its
attempt to identify major components of the system and the
various elements that affect the complexity of those

components.

Purpose of the Study

The purpose of this study was to develop an exhaustive
list of ele-ents that affect system complexity measured in
terms of system maintenace and then to use these elements
to identify underlying dimensions called factors, that
affect system complexity of various system components.
The factors identified based on statistical significance
were considered to provide a framework to conduct
experimental study to determine the impact of each of these
factors on various softwares under various conditions and

to help 1in developing procedures to make 1less conmplex

systems.

Chapter 2
REVIEW OF LITERATURE

Software complexity may have different meanings in
different contexts. It may refer to the complexity of the
algorithm, complexity of developing the systen, complexity
of interlinking modules, or the complexity of 1I/0
interface. In the present study, software complexity means
the amount of the effort needed to do repair maintenance.

Software complexity is affectted by several factors.
Structured programming, module programming, and top down
programming have considerably reduced the software
complexity of systems (Al-Suwaiyel, 1983). These factors
contribute to the simplicity and clarity of code and
therefore make it easy to perform rerzir maintenance
(Canning, 1972). Formal proofs of correctness also reduce
software complexity (DeMillo, Lipton, and Perlis, 1979).
Personnel characteristics of programmers affect system
complexity as well (Weinberg, 1971). Endres (1975) found
empirical evidence that high quality programmers have less
cost of repair maintenance. However, more formal and
operational measures of module complexity, progrsmming
style, and programmer quality are needed to reduce system
complexity (Vassey et.al., 1983).

The issue of software complexity is tied up with the
repair maintenance of the system. Vassey et. al., (1983)

considered repair maintenance a furction of system

complexity. Repair maintenance implies modifications in

the program already in production to (1) fix logical errors

discovered after its release, (2) to improve the
operational efficiency of the progranm by economizing
resources, or (3) to meet users' needs in a better way
(Lientz et. al., 1981).

The complexity measure provides an index of relative
cost to implement or comprehend a system. Rising cost of
goftware development and maintenance has aroused interest
in tools and measures to quantify and analyse software
complexity -(Jensen and Nairavan, 1985). Leintz et. al.
(1978) found that the repair maintenance cost may go from
~«0% to 75% of the total 1life cycle of a systen. Davis
(1974) discovered the relationship between systen
complexity and the entropy. He found that complex systems
undergo greater entropy. The high correlation between
system complexity and repair maintenance as well as the
need to reduce the cost of system maintenance has triggered
tremendous amouont of research activity on issues related
to system complexity (Thayer, Lipow, and Nelson, 1977).

The measureme.it of software complexity is still in its
infancy (DeMillo, et. al., 1980). It is generally measured
by the nuiker of modules, size of modules, and inter-
linkage of modules (Al-Suwaiyel, 1983). Software metrics
are also used in decermining the system complexity. A

strong relationship between software metrics and system

13

complexity has been identified by Mccabe (1976), Henry,
Kafura, and Harris (1981), Ottenstein (198l1), and Schneider
(1981). 1In spite of *%wese indices, it is very difficult to
determine system complexity accurately because of less
precise factors that determine such complexity. Such
factors include but are nol limited to ease of desiyn,
clarity of code, ease 1n understanding inter-module
communication, programming style, and team work of

programmers (Pashtan, 1985).

Types and Levels of Complexity

Al-Suwaiyel (1983) has categorized software complexity
into inherent complexity and complexity of developing the
system. Inherent complexity deals with the complexity of
the algorithm and depends on the computational model used
for the solution (Savage, 1976). It may be defined as the
minimum over all the complexities of all the algorithms
available a- solution. Inherent complexity is generally
measured in terms of time and space needed for execution.
Quality and effectiveness of design and the total project
cost can best be determined through inherent complexity.

The second type of complexity that deals with system
development have attributes like size of the system, number
of modules, number of functions within the system and the

linkage between modules. It 1is heavily influenced by

ERIC 14

system design methods that include flow oriented methods,
data structure oriented methods, and perspective methods
(Peter, 1981). System development complexity is
independent of the inherent complexity of a system.

Software comrlexity may also be categorized as (1)
logical, (2) structural, or (3) psychological. Logical
complexity deals with program control graph and may be
measured by a graph model called Cyclomatic (McCabe, 1976).
Structural complexity deals with size and linkages within
the sytem. Psychological complexity, on the other haud,
refers to pfogram comprehensibility.

The complexity level in a system may be documented in
several ways. vassey et. al., (1983) based his
classification on the length of code. A system with a code
length of 1 to 300 lines was called a simple system. Code
length of 301 to 600 lines represented a moderately complex
system while systems with more than 600 lines were labeled

as complex systems.

Software Metrics

The software metrics that are most commonly used in
determining software complexity have been reviewed briefly

in the following text.

n H

This is the most commonly used metric and is denoted

by N such that

N = Nl + N2 where
ul and HNz represent total number of operator and operand
occurances, respectively. This metric was first introduced
by Halstead (1977) to measure software complexity. Program
length can also be measured as
N = n, log2 n, + n, 1og2 n, where

n, and n, represent unique operators and opernads in the
system, respectively.

If size of the system is the sole determinant of
system complexity, program 1length is the most suited
metric. Davis (1984) criticised the use of operator and
operand counts and considered it as an obsolete measure to
determine software complexity. Jensen (1982) however, has
propused anohter alternative to measure program length and
it is represented by the follcwing expression.

N == log2 n, ! + 1og2 n, !

This equation is considered an improverent over
Halstead's original proposal (Jensen et. al., 1985).
Jensen et. al. (1985) also reported that the normalized
difference between the program length and Halstead's length
estismator is higher than reported by Halstead (1977). It,

therefore, confirmed the findings of Shen, Conte, and

10

16

Dunsmore (1982) that program length is an imprecise measure

to determine software complexity.

Program Volume:

Program Volume is the size of the program and is

denoted by V. Mathematically,

V= (N1 + N2) 1092 (n1 + n2) where
31 and uz are the number of operators and operands that
occur in a system, respectively. The n, and n, refer to

unique number of operators and operands, respectively

(Halstead, 1977).

Programming Effort:

The amount of programming effort needed to perform
repair maintenance on a system is considered an index of
the complexity of that system. It is denoted by E and may
be expressed as

E=V (n1 / n2) (N2 / 2) where
nl P 22 , and Hz represent number of unique operators,
nunher of unique operands, and the number of occurances of
opernads, respectively. This metric was also proposed by
Halstead (1977).

Programning effort may also be interpreted as decision
to implement an algorithm. It is highly correlated with
program length and program volume measures. Programming
effort, therefore, is also algebrically equivalent to

E = (n1 N2 V) (36 n where

2)

V refers to program volume. The notation Oy, n, . and Ez

have already been defined.

Shen et. al. (1983) has developed a linear
relationship between programming time and programming

effort. It is mathematically represented as

*
E = V2 / vV where V = N log2

In this equation, effort refers to elementary mental
discriminations, V to the number of mnental comparisons
needed to write a program of length N. v refers to
program potential volume (smallest value).

Pashton (1985) has used programming effort metric to
compare process model and monitor model in the design of

operating systems.

McCabe's Metric:
McCabe's metric denoted by MC deals with program

control complexity. According to this scheme, 1lineraly
independent control paths are determined in a connected
graph representing the software system. Mathematically,
MC=e =~V + 2 where
€ and v are the 2dges and vertices of the graph (McCabe,
1976) . The metric MC may also be computed readily by the
equation
MC =D+ 1 where

D denotes the number of decision nodes in the graph.

The correlation of program length, program volume, and

programming effort with McCabe's complexity measure (MC)
was found 1low and confirmed the hypothesis that high
correlation between MC and N is typical of decision bound
systems (Henry et. al., 1981). Prather (1984) considered
McCabe's metric insensitive to restructuring of code,
nesting 1level 1in the program, and found it correltaed

highly with the length of the program.

Bond Metrics:

This metric was introduced by Belady (1980) and refers
to the average level of nesting or average width of the
control graph. It is also called Belady's Bond Metric and
is denoted by B. Mathematically,

B=(1L(i)) / K where

K refers to the number of nodes in the control graph while
L(i) denotes the number of nodes at level i

Jensen et.
al., (1985) found consistently high correlation between
McCabe's MC and Belady's B measures. However, Dbecause of
less precision of B over MC and because of the
computational ease, MC was considered a better estimate of

system complexity.

rogra :
Davis (1984) has introduced a new metric called

program chunk to measure software complexity. The

rationale of this appraoch is that experienced programmers

use chunks to understand a program while beginners
concentrate on individual statements (Shneiderman, 1976b).
Therefore, the cost of repair maintenance can best be
estimated if system complexity is expressed in terms of
chunk complexity.

Based on the work of Woodfield (1980) on modules and
their inter-relationship, Davis (1984) proposed the
following equation to determine chunk complexity.

n

C= (m Ci Rj) where

o]

= Complexity of the chunk i,

= Number of other chunks affected by the chunk i,

[t

= Number of chunks, and

P)

= 2/3, a constant.

The constant R is based on the assumption that the
chunk 1is reviewed as many times as there is inter-
relationship with other chunks and that the complexity of
the chunk in terms of understanding it, decreases with
every subsequent review.

From the perspective of the maintenance programmer,
the effort required to modify the program depends on
whether the code is familiar or unfamiliar. The idea of
chunks, “herefore, may easily be extended to familiar and
non-familiar chunk. A chunk is considered familiar if it
has a high frequency of occurance. The formation of chunks
recognizable by a programmer is a function of programming

language and the application environment. It is because

14

semantic representation is formed by the syntactic
knowledge of the programming language. For example, the
recall of statements to switch the values of two variables
is spontaneous to an experienced programmer. Moreover, the
chunks that are meaningful can be remembered better
(Shneiderman, 1976).

The identification of chunks and defining their
boundaries is a gifficult task. Norcio (1980) and Brotsky
(1981) have addressed this issue in detail.

Chunks may be classified as mandatory or non-mandatory
(Mayer, 1979). Mandatory chunks are a set of statements
that have to occur together. For example, opening and
closing of a FOR loop. Soloway (1982) however, has
categorized chunks as strategic, tactical, and
implementation.

The overall complexity of a system, according to this
metric, may be determined by the complexity.of chunks and
their inter-relationship. The latter is also called
program structure.

In spite of large number of research efforts, the
software metrics that are available are not precise enough
to accurately measure the system complexity. Moreover, the
existing literature on the subject does not provide enough
direction to rank these metrics in terms of their
efficiency. The metrics of Halstead (1977) that are

supported by Sanshara, Vehara, and Ohkawa (1981) and Curtis

15

R1

et. al., (1979) are criticised by Baker and uweben (1980)
for being insensitive to program nesting and program
structure. Similarly, the metrics of McCabe (1976) and
Belady (1980) are considered too coarse to tap the
intricasies of the program (Prather, 1984). The chunk
complexity metric that taps the cognitive process needed to
understand programs look promising but needs further

research.

16

Chapter 3

METHODOLOGY

This chapter describes in detail the process used to
identify factors that reduce software complexity measured

in terms of repair maintenance.

Development of the Questionnaire

The first task of this study was to review the
existing 1literature on software complexity and to identify
elements that supposedly affect the corplexity of the
system. After a thorough review, 160 items were selected
as a potential set of elements that affect software
complexity measured in terms of system maintenance. The
items were generally drawn from Arthur (1983), Bersof,
Handerson, and Siegel (1980), Dunn and Ullman (1982),
Kernigham and Planger (1974), London (1974), Meek and Heath
(1981), and Tassel (1978).

Based on content, the items were categorized into nine
logical categories named system planning, system
characteristics, stystem design, system testing, system
documentation, system correctness, system clarity,
programming style, and system management. System planning
category included items related to system specifications

and overall planning conside-ations. System .naracteristics

17

category included terms that defined various attributes of
the system like efficiency, portability, maintainability,
modularity, reliability and so on. Items related to design
considerations were grouped under system design category.
System testing category included items on testing options
and tools. Items that heavily influenced the correctness
of the system output were grouped under systen
correctness. The items that influenced writing simple and
easy to understand code were grouped under the program
clarity category. Programming style elements describing
Do's and Don'ts were grouped under programming style
category. Items describing management of systems from
plarning to the completion stage were grouped under system
management.

Items were written 1like a Likert Scale to provide
enough variance. Five choices numbered 1 to 5 were given

to respondents on each item. The choices were labeled as

strongly agree, agree, neither agree nor disagree,
disagree, and strongly disagree. For consistency
considerations, the format of these choices was kept the

same throughout the questionnaire. This forced some of the
items to be worded negatively and they were spread randomly
within the category to which they belonged.

A statement describing the content of each category

preceded before the items. 1In each lead paragraph, it was

explicitly mentioned that the system complexity should be
interpreted in terms of system maintenance.

After the questionnaire was developed, a cover letter
was prepared describing the purpose of the study,
definition of the term 'complexity', and the use of the
data collected. The need for respondents' cooperation was
also emphasized. This cover letter was used as the front
page of the questionnaire.

The 1last section of the questionnaire requested
demographic information on respondents. It included
questions on sex, education, type of employment, nature of
job, Job designation, and computer related experience.
This section was included to identify and exclude from
study those respondents who were associated with software
firms but were not necessarily computer scientists. For
example, a Data Processing Manager who is an administrator
working in a software firm may not have any formal training
in the field of computer science.

A copy of the questionnaire including cover letter and

demographic section is given in Appendix A.

Sampling

Because o0f the 1length of the questionnaire, the
cooperation of computer related businesses in administering

the gquestionnaire to their employees was not frequently

19

available. Since it was an exploratory study and intended

to be exhaustive, the reduced version of the questionnaire
was not considered appropriate. Therefore, the whole
questionnaire was mailed out or was delivered in person to
businesses in Lawrence and Kansas City without any regard
to sampling strategy.

A total of 425 questionnaires were distributed of
which 152 were received in complete form. The completed
questionnaires were examined to identify the ones that were
completed by computer professionals. This task was
accomplished with the help of demographic information
collected on respondents on the 1last page of the
questionnaire. Seven of the completed questionnaires did
not have complete demographic inforumation to identify their
status as computer scientists. These questionnaires were
therefore excluded from the analysis leaving behind a

sample of 147.

Data Analysis

The information from the completed questionnaires was
entered on to a computer system. Item statistics in terms
of means and standard deviation was computed for each item.
Ttems with a mean value of 3.0 were considered non-
discriminatory in terms of increasing or decreasing system

complexity. Items with a standard deviation of 1.0 or

20

26

greater were eitler poor discriminators or the respondents
did not have the theoretical or practical background of
concepts used in those statements.

Factor analysis was performed on each of the nine
categories separately. A principal component solution was
performed on each category to determine the total number of
factors. The factors with eigenvalue of 1.0 or greater
were considered significant. After this initial analysis
for each category, factor analysis was repeated several
times for each category by varying the number of factors to
be extracted and examining rotated and unrotated solutions,
until such a time th.t a final solution was obtained. A
solution was considered final if it was the most logical
and meaningful in terms of naming factors and cross-
loadings. Varimax rotation was used whenever a factor
matrix was rotated. The assignment of items to factors
depended on item loadings. The item was assigned to a
factor on which it loaded the highest. Items with a loading
nf less than .40 were considered insignificant and were not
assigned to any factor. Statistical Package for Social

Sciences (SPSS, 1983) was used to perform statistical

analysis.

Chapter 4

RESULTS

This chapter includes the results obtained from data
analysis on items related to softweve complexity. The
items, divided into nine categories called system planning,
system characteristics, system design, system testing,
system documentation, system correctness, system
clarity, programming style, and system management, were
analyzed within the respective categories.

Table 1 describes the item means and standard
deviations on all the items. The category to which items
belong is identified on the top of each column. The
analysis revealed that all the items on system planning had
A mean value of less than 3.0. Item 15 was close to 3.0
and was considered a non-discriminator of software
complexity. Items 3 and 14 had a standard deviation
greater than 1.0.

Item statistics on items related to system
characteristics revealed that items 2 and 14 have means
greater than 3.0. This happened because these items were
negatively worded. On the remaining items, the mean value
was less than 3.0. In terms of standard deviation, items 1

to 5, 8, and 14 had a standard deviation of greater than

1. o.

22 28

Table 1

ITEM STATISTICS

System Planning System Characteristics
ITEMS _MEAN §.D. ITEMS MEAN S.D.
1 1.27 0.45 1 2.19 1.10
2 1.42 0.70 2 3.50 1.11
3 2.19 1.17 3 2.04 1.15
4 1.92 0.94 4 2.46 1.27
5 2.12 0.95 5 2.85 1.16
6 1.58 0.95 6 1.46 0.71
7 1.92 0.98 7 2.58 0.99
8 2.00 0.85 8 1.96 1.02
9 2.17 0.64 9 2.08 0.85
10 2.27 0.83 10 1.77 0.77
11 2.42 0.99 11 2.23 0.91
12 2.00 0.89 12 1.54. 0.81
13 2.04 0.87 13 1.42 0.58
14 2.58 1.03 14 3.42 1.24
15 2.92 0.89 15 1.58 0.76
16 2.00 0.85
17 2.12 0.86
23

29

ITEMS MEAN
1 3.85
2 2.88
3 2.12
4 2.19
5 1.23
6 2.35
7 1.85
8 2.58
9 2.23

10 2.85
11 2.69
12 3.00
9 2.23
10 2.85
1l 2.69
12 3.00
17 1.96
18 2.23
19 1.85
20 2.54
21 3.58
22 3.46
23 3.73

System Design

TABLE 1 (Contd.)

System Testing

ITEMS
1

2

10

11

10
11
16
17

18

19

MEAN
1.85
2.39
2.04

2.08

S.D.
0.68
0.64
0.60
0.89
0.80
0.89
0.77
0.67
0.75

0.82

System Documentation

ITEMS

10
11
12
13
14
15

16

MEAN S.D.
3.80 1.35
1.80 0.76
1.80 0.76
1.76 0.78
l1.68 0.63
1.68 0.56
1.52 0.71
1.88 0.68
2-67 0.82
1l.56 0.65
1.84 0.75
1.32 0.56
2.20 0.96
3.40 0.96
3.24 1.05
1.40 0.58

TABLE 1 (Contd.)

25

31

System Correctness

ITEMS

10
11
12
13
14
15
16
17
18
19

20

MEAN

S.D.

0.78
0.82

0.6

TABLE 1 (Contd.)

System Clarity Programming Style

1 1.96 0.72 1 2.00 1.06

2 4.19 0.80 2 2.28 0.98

3 4.23 0.91 3 1.89 0.82

4 1.85 0.97 4 2.58 1.14

5 1.69 0.55 5 3.62 1.20

6 2.00 0.85 6 3.31 0.93

7 3.08 1.09 7 2.46 0.95

8 2.00 0.85 8 1.73 0.67

9 1.65 0.49 9 1.69 0.68

10 2.04 0.72 10 3.58 0.90
11 2.12 1.03 11 2.27 0.67
12 2.65 1.13 12 2.00 - 1.04
13 1.85 0.54 13 2.62 0.85
14 1.73 0.60 14 1.77 0.59
15 1.54 0.76 15 1.73 0.60
16 2.12 0.71 16 2.15 0.78
17 2.04 0.66

18 2.15 0.78

19 3.81 0.75

20 2.92 0.80

26
32

TABLE 1 (Contd.)

System Management

ITEMS MEAN S.D.

8 1.65 0.69

10 1.92 0.63
11 2.35 0.69
12 2.77 1.03
13 2.15 0.78

14 3.65 l.23

27

33

The analysis of system design items revealed that
items 1, 16, and 21 to 23 had a mean value greater than
3.0. Of these items, 1, 16, 21, and 23 were negatively
worded and this kind of outcome was expected. Item 22,
however, was found inappropriate to determine complexity
because of its high mean value. The items, 1, 2, 11, 17,
22, and 23, had a standard deviation greater than 1.0 and
reflected large variances present in the opinions of
respondents.

Item 15 was the only item on the list of items on
system testing that had a mean value of greater than 3.0.
It happened because of the negatively worded statement. It
was also observed that the items 11, 14, and 19 had high
standard deviations (s > 1.0).

The analysis of system documentation items revealed
that items 1, 14, and 15 were negatively worded and
therefore, showed a high mean value (X > 3.0). Items 1 and
15 were found to have a high standard deviation value
(S > 1.0).

The analysis of items under system correctness
category identified items 5, 13, and 18 with high
mean values (X > 3.0). All these three items happened to
be negatively worded statements. Regarding standard
deviation, all items behaved as expected (S < 1.0).

Items 2, 3, and 7 related to system clarity had high

mean values because of their negatively worded stenm. The

28

34

standard deviation of items 7, 11, and 12 was higher than
1.0.

The analysis of programming style items identified
items 5, 6, 10, and 19 with high mean value (X > 3.0).
Content of these items revealed that they were negatively
worded. Standard deviation on items 1, 4, 5, and 12 was
found greater than 1.0.

Item 14 related to system management had a high mean
value (X > 3.0) because of its negatively worded statement.
The remaining items of tnis category had a mean value of
less than 3.0. Items 4, 7, and 12 were found to have
standard deviation of greater than 1.0.

Factor analysis was performed on items for each of the
nine categories identified earlier. The results of the
analysis are summarized below under the subheading

representing each category.

System Planning

The principal component solution of items on system
planning identified six significant factors. They together
expiained 77.4% of the total variance. The factors, their
eigenvalues, and the percent of variance explained by each
factor is given in Table 2.

After uxploring several possibilities, the solution

with 3 factors was found meaningful. The original factor

29

35

TABLE 2
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM PLANNING ITEMS

FACTOR EIGENVALUE PCT OF VAR CuMm PCT

VARIABLE

NONVNOOINVT OO OTO
99099 2999 0PV OV TPRO
MONM NOMN AINOMINONOONONO
NFWNOR N OOV ONONONONONO

-

NSO OMT™ OOV INM OV T e
® 9 000 9 990 P OSSO TN 0o
MIN OO0 O T M NN v

N

P N0 N O OV ONT 00 <3 MNJOD
O v~ OO ST MY e~ (N0 OO N
O PN VOO =N MO NN
L ITON OO T INO=INDN
QO ON WY 9= 000 O ~F MNIN =~ =00
SR N A BN BN BN BN B BN BN BN N AN
MONNT™

= OANMTIN OO O NN T NON
Land at ad X ot o

QNN TNV O
O O P OO re ro e v v
EEZZZEZEZE LD ETEZEEZZZLE
L C<CCCCLCLCC L
b ol e ed el el od sd el b) bl) i d
(9. N.§.N. 0. . N.N.N.§-N. ... ¥.¥. §

30

36

matrix was rotated orthognally to minimize crossloadings.

The three factors explained 53.2% of the total variance.
The factors, the items that loaded on these factors, and
the loading of the individual items are given in Table 3.

According to this solution, items 3, 4, 5, 10, 15, and
16 loaded on Factor 1. Items 6 to 9 loaded on Factor 2.
Items 1, 2, 11, 13, 14, and 17, loaded on Factor 3. Item
12 loaded poorly on all the three factors and was therefore
dropped from the analysis. Its highest loading was .38.
Based on item content, the three factors were named as High
level planning, design level planning, and Implementation
level planning.

The item loading on factor 1 ranged from .45 to .89.
Item 16 had the 1lowest loading while item 5 had the
highest 1loading. Item 4 also loaded high (.83). The
remaining items loaded in .50's. On factor 2, items 6 to 8
loaded in .70's. The range of iten loading was .63 to .77.
Item 9 had the lowest loading. Item loadings on factor 3
ranged from .50 to .70. The lowest loading was .50 on item

11. Item 17 loaded the highest.

System Characteristics

The factor analysis of items on system characteristics
found four significant factors that met Kaiser's criterion

of eigenvalue greater than 1.0 (Kaiser, 1960). However,

31

37

Table 3

Factors, Items Loaded on Factors, and Item Loadings
on System Planning Category

FACTOR 1 FACTOR 2 FACTOR 3
High Level Design Level Implementation
Planning Planning Level Planning
Items Loading Items Loading Items Loading
3 .58132 6 .71252 1 .65085
4 .83292 7 . 76632 2 .67906
5 .88704 8 .75154 11 .50273
10 50264 9 .63042 13 57553
15 56487 14 .55251
16 .44937 17 . 70456

three factor solution was found more appropriate and
meaningful. The three factors combined, explained 63.1% of
the total variance. The fourth factor cont.ibuted 8.7% to
the total variance. The factors, their eigenvalues, and
the percent of variance as extracted by principal component
solution are given in Table 4.

The analysis of the rotated factor matrix revealed
that items 6, 8, 9, 12, and 13, loaded on Factor 1l; items
2, 3, 4, 5, 7, and 14, loaded on factor 2; and items 1, 10,
11, and 15 loaded on Factor 3. The items that loaaed on
Fector 1 were related to system characteristics that dealt
with maintenance activity. The factor was therefore named
as Maintenance. Factor 3 included items that related to
the correctness of the output and was named Correctness.
The second factor included characteristics other than those
related to Correctness or Maintenance, and was therefore
named Others. The factors, the items comprising those
factors, and their loadings are given in Table 5.

Item loadings on factor 1 range from .64 to .86. The
lowest loading was on item 12. Itme 8 loaded the highest.
The range of item loading on factor 2 was .53 to .78. Item
2 loaded the highest while item 7 had the lowest 1loading.
On factor 3, items 1 and 10 1loaded in .50's while items
11 and 15 loaded in .80's. The range of lo2“ing was .57 to
.898. Items 10 and 15 had the lowest and the highest

loadings, respectively.

39

TABLE 4
FACTORS. EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM CHARACTERISTICS ITEMS

EIGENVALUE PCT OF VAR CUM PCT

FACTOR

VARIABLE

O PO T+ T = OO v VO
o 6 o 0o 00 0 9 09 00 0900
NOM e~ CMN = MIN OO OO D
NI OO0 D

-

O RN OOMMNINON TN
0 0 900 0 000 0 9 000
VT M O MO o=
NN

MONOM MU DT N N0 O
MNFONMNNANIN N WNOMNMN O
OONO =~ FN~TMOONTNTOM
Ve~ = 00 ~TINNA. O 00 MO
AP ONM OO NMNI ™ e O
99 0 9 g0 o0 e g e
MMe

= ONM TN OO0 O NN
Lad ol X L o1 g

O~ NN~
ONM TN ONO O™ e e
XXX XXXX XX A O
LI L <
b 3= o o e e e e e o o e e e e
LLUOLOOLLOUOLLOOLOULLOL

34

Table 5

Factors, Items Loaded on Factors, and Item Loadings

on System Characteristics Category

FACTOR 1 FACTOR 2 FACTOR 3
Simplicity Others Correctness
Items Loading Items Loading Items Loading
6 .78225 2 «77855 1 .59229
8 . 85695 3 .68902 10 + 56969
9 072422 4 «70783 11 .83310
12 64100 5 +76050 15 .89831
13 +76106 7 .52989
14 64722

41

System Design

The principal component analysis of items on system
design extracted nine factors with eigenvalue of 1.0 or
greater. They explained 85.1% of the total variance.
After repeating analysis with different number of factors,
the solution wiva five factors was found more meaningful.
The five factor solution explained 60.9% of the total
variance. The factors, their eigenvalues, and the
proportion of variance explained by each factor are given
in Table 6.

The item loadings for the five factor solution after
varimax rotation are given in Table 7. Factor 1, labeled a
General factor, was comprisad of items 2, 10, 14, 21, and
23. The items 8, 17, 18, and 19, loaded on Factor 2 and
this factor was named System Environment. Factor 3 was
comprised of items 3 to 6 and 20. It was given a name of
Programming Considerations. The fourth factor was called
Programming Style and included items 1, 9, and 11. Items
12, 13, 15, and 16 loaded on Factor 5 called Efficiency
Considerations.

Item 7 did not meet the criterion of minimum loading
of .4 and was therefore dropped from further consideration.
Item 22 was found inappropriate after the questionnaire was
printed. Therefore, it was not included in any analysis.

These deletions dropped the tot21 number of items in this

section to 22.

TABLE 6
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM DESIGN ITEMS

/

FACTOR EIGENVALUE PCT OF VAR CUM PCT

VARIABLE

Ay ————

M
PPN O O NN I POV MOMO OO0 O
® %0 0000 0 000 000009 0g 0000
50320850581356788999000
M INOON 00RO OO N OO O
Lt el

79625294749372985542100
® % 9 0 9% 00000 0PI IY SO TS
NI QM- 0NN N~

g

TNV O N FTOM OO NINT O 3OO
OMONMOOM T O MM OO NINT = N0 =N O
N0 ™ 0O 0 OM ONIN NION TN I~ CONIT v
TMOONNONANARA —=ON O~ 00 TMO O
VTV MONNOMNO NI N0 000 O
C.......C....C.........
MM = ==

TOM TN O OO O (NM T N ON 000 O—NIM)
At 2l ik nd 2l ad st o ol o AVT S VTANT N

01234567890123
TN ST N RS 00 O™ 0 0= 1= 0 g e en e o (YOS O O\
ZLZ X ZLZZZEZZIZZZIZZZZZZZ
GGGGGGGGGGGGGGGGGGGGGGG
idmdaialalale le Lot ¥ o T T T T DT P A o arturtusd
BODDNDDDDDDDBDDBDIDBBDVIVDVBB Y
LS s W WL W W) Wt W) W wWwir'wwwwww
(=YY Y Y - Y Y o Y- Y- WYY~ Y - Y- TP T oooaon

43

37

Table 7

Factors, Items Loaded on Factors, and Item Loadings

on System Design Category

FACTOR 1
General
Factor

FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5

System Program Programming Efficiency
Environment Consider- Style Consider-
ations ations

Items Loading 1Items Loading Items Loading 1Items Loading Items Loading

-

&

10
14
21
22

23

+74770
+61624
-.60566
+ 69443
.71095

.58179

.60084 .59183 1 .73281 12 .64593
.83495 +65513 9 -.60385 13 .66006
.78685 + 75944 11 .71115 15 .74960
«74569 .66780 16 .62822

+48605

Item loadings on factor 1 ranged from .60 to .75. The
lowest loading was on item 14 which also happened to be the
only negative value on this factor. The loading on item 2
wag the highest. The highest loading on factor 2 was .83
(item 17). The lowest loading was on item 8 (.60). The
range of item 1loading on factor 3 was from .49 to .76.
Item 20 had the lowest loading while item 5 1loaded the
highest. 1Item 9 on factor 4 was the only negatively loaded
item. It also had the lowest loading on this factor. The
highest 1loading (.73) was found for item 1. The range of
item loadings on factor 5 was .63 to .75. Item 15 1loaded
the highest while item 16 loaded the lowest. Items 12 and

13 loaded .64 and .66 respectively.

System Testing

Seven factors having eigenvalue of 1.0 or greater were
extracted from the 19 items on Testing. They together
accounted for 75.3% of the total variance. The factors,
their eigenvalues, and the proportion of variance explained
by each factor is given in Table 8.

After repeating the analysis with different number of
factors, the solution with four factors was found to be the
best. The solution explained 56.5% of the total variance.

Varimax rotation could not be performed due to

TABLE 8
FACTORS, EIGENVALUES, Al'D THE VARIANCE EXPLAINED

ON SYSTEM TESTING

ITEMS

FACTOR

PCT OF VAR CUM PCT

EIGENVALUE

VARIABLE

ORI MO~ NTO TN OO
U A BB ARARAREE R ER I N
= INN-OM O NOIN O NTONCOONONOND
NMTN0 O N0 00 0NN OOV O

-

O = OMMNMOONNO N0 TN M e
® 8 992 0.0 00 90 0 00 0 e g
™ F =NV O WNNT T NN~

N =

O N =N O OWNT T OINON = MN T O N
N OV OO = (NNMNO NN O
= O PN ™ INTUNO WO N SUNMPN M T
 MNOVOMNON OO O e N =N a0 NN
O =N = O NTMNN—~ OO0
0 0% 99 09 0% 9 P9 %O PO QYT
TN

= ONMSTNO N GO0 O = (NM ST O N a0
Lkl of ol nd ol ol Tt ol

Q=N TIN
 ONMNIST U W P 00 e~ 114!11“"””
P e o e o e o e Ladad DX o] = Yoy =Sy
DALYV WY VLY
TT—ITTTTTTTTTTTTTTTT

nonconvergence. The factors and the items that loaded on
these factors are given in Table 9.

The items that loaded on Factor 1 included 1, 2, 3, 5,
8, 13, 15, and 18. Based on item contents, the factor was
named Test Planning. The second factor was named Testing
Techniques and was comprised of items 9, 11, 12, 14, 17,
and 19. Items 6, 10, and 16, loaded on Factor 3. The
item content suggested Testing as an appropriate name for
this factor., Factor 4 was comprised of items 4 and 7 only.
This factor stayed in every solution examined and basically
loaded all the items that could not be loaded on other
factors. Therefore, this factor was given the name
Residual.

The item loadings on F.ctor 1 ranged from .50 to .76.
Item 3 had the highest loading while item 13 had the lowest
loading. Item 15 was the only item with negative loading
(-.66). Items 9, 11, and 19 loaded negatively on Factor
2. Disregarding the sign of loadings, the range was found
to be .50 to .75. The lowest loading was on item 17. Item
12 loaded the highest. Items 10 and 16 on Factor 3 had
almost the same loadings; .495 and .496, respectively.
Item 6 with a loading of .52 was the only negatively loaded
item on Factor 3. On Factor 4, 1item 4 loaded .63. The

only other item on this factor was item 4 and had a loading

of .63

Table 9

Factors, Items Loaded on Factors, and Item Loadings
on System Testing Category

o
FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4
Test Testing Testing Residual
Planning Technique
Items Loading Items Loading Itenms Loading Items Loading
1 .65402 9 -.61911 6 -.58582 4 .63362
2 .69137 11 -.54400 10 «49491 7 -.58325
3 .75801 12 .75380 16 .49619
5 .56680 14 56077
8 .51267 17 .49590
13 .49862 19 -.52302
15 «66493
18 .57430

44

System Documentation

P~incipal component analysis of the 16 items assessing
program documentation extracted five factors that met
Kaiser's criterion of an eigenvalue (Kaiser, 1960) and
explained 72.7% of the total variance. The factors
extracted, their eigenvalues, and the proportion of
variance explained by each factor is given in Table 10.

Factor analysis was repeated several times with
varying number of factors until a three factor solution wase
found. The three factor solution explained 59.5% of the
total variance. vVarimax rotation provided a better look on
factor matrix. The first factor was defined by items 2 to
8, 12, and 16, was named as Documentation Standards. The
second factor named Quality and Style included items 10,
11, 13, and 15. Items 1, 9, and 14 loaded on Factor 3.
This factor was named Documentation Analysis. The factors
and the item loadings on these factors are given in Table
11.

The range of item loadings on Factor 1 was .57 to .86.
Item 3 loaded the lowest while item 7 had the highest
loading. Items 6 and 8 had factor loadings in the .60's.
The remaining items loaded in .70's. The range of item
loadings on Factor 2 was .63 to .78. item 11 had the
lowest 1loading. Item 15 had the highest loading. The

highest loading on Factor 3 was found on item 1 (.71). The

43

49

TABLE 10
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM DOCUMENTATION
ITEMS

FACTOR EIGENVALUE PCT OF VAR CUM PCT

VARIABLE

MOMNANRON P I MO NN O D
BAIARERSEEE XN
MO OO NI ~F O T OO
MFTNONA OO OO

-

MO OO T O
O 9% 000 0 9 00 % 000 0
MNO OOV NN~
M~ =

CMITONTTMNC O TOITO
= O VO OM NI (N0 0000V
NP OOM ™ O T T T NOWN
WNO-OMNOTON U N NO M) T O = 0OV
MT VOO0 0O TN~ OO
8 90 00 9 PO O QOO PO OOLYN
Ve

CONMINO N0 O e~ NMTNO
Lk ol o el of X g

Q= NMT O
ONMSFUVO OO T T e T ™ o v
DD

VO POLUWOWLWOULWULLWOVLOLWY

COO0QO0O0O0OO000000QOO
(=YY Y- V- Y- -V-V-V-¥-Y-Y-y-y-¥-)

44

50

Table 11

Factors, Items Loaded on Factors, and Item Loadings
on System Documentation cCategory

FACTOR 1 FACTOR 2 FACTOR 3

Documentation Quality Documentation

Standards and Style Analysis

Items Loading Itenms Loading Itenms Loading
2 .75081 10 74884 1 .71028
3 .57085 11 .63104 9 .62792
4 .75785 13 .74112 14 .48123
5 78442 15 .77805
6 .68614
7 .85776
8 .63960 1
12 74420

3J 16 .72493

lowest 1loading of .48 was on item 14. Item 9, the only

remaining item on this factor, loaded .63.

System Correctness

Principal component analysis performed on 20 items
related to program correctness produced seven significant
factors that met Kaiser's criterion of eigenvalues (Kaiser,
1960). These factors explained 80.1% of the total
variance. The factors, their eigenvalues, and the percent
of variance explained by each factor is given in Table 12.

The factor analysis was repeated several times by
varying the number of factors to be extracted. The
solution with four factors was finally selected for its
logical and meaningful structure. This four factor solution
explained 60.3% of the total variance. The factors and the
items that loaded on these factors are given in Table 13.
Item loadings are based on orthognally rotated solution.

Items 7, 9, 10, 17, 19, and 20, loaded on Factor 1.
Based on item contents, the factor was named as
Programming Style. The second factor named Coding
Considerations was comprised of .tems 5, 12, 13, 14, and
16. Items 1, 3, 4, 6, and 15, coustituted Factor 3 which
was named Programming Structure. The fourth factor that
included items 2, 8, and 18, was named Residual as the
items that did not fit to other factors, were loaded on

Factor 4.

52

TABLE 12
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM CORRECTNESS

ITEMS

FACTOR EIGENVALUE PCT OF VAR CUM PCT

VARIABLE

00 00 OMO O = ONP O T OO NIN O O OO0
..............0.‘:..
W 00 OO0~ O30 T OO OO OO
NMINOOVN0 VOO PO RO OO O OO

—

808679289152493322-6
® 0 0 000 000 00 se PO OO 8o
VM~ O\ O N NI N =

[aV] ot o d

66206008442086127593
01626848091420386973
2254231151441693c161
60624746720478664310
1639530976542100008
-00000000.0.0.00.000
VIO e

T ONMTIN O N OO O NIM-TINON 0 OO

hant and al and il nd 2 L2 o VIl

or-ny WION- 00 OND
T.T.T.T.T..IT.T.T.T.T.T.T.T.T.T.T. | dandand
ccccccccccccccccc LOL
w EEEEEEEEEEEEGEGEE ww
[4. 3-4-4. 4.9 xxxxoraowacoa
(=] ccccccccccccccccccc

47

53

Table 13

Factors, Items Loaded on Factors, and Item Loadings
on System Correctness Category

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4
Coding Programming Program Residual
Considerations Style Structure
Items Loading Items Loading Items Loading Items Loading
7 +61130 5 -.66383 1 .87715 2 .85286
9 .80668 12 -.41989 3 «67233 8 +46509
10 . 90569 13 -.49621 4 «79171 18 .81536
11 .88483 14 .64655 6 -.52551
17 56146 16 .86023 15 «50372
19 .60276
20 .59991

Item loadings on Factor 1 ranged from .56 to .80. The

items with the lowest and the highest loadings were item 17
and item 10, respectively. TItems 9 and 11 loaded in .80's.
The remaining items were loaded in .60's. TItenms 5, i2, and
13 on Factor 2 were loaded negatively. Disregarding the
sign, the range of item loadings was .42 to .86. The
lowest loading vas on item 12 while item 16 had the highest
loading. The range of item loadings on Factor 4 was .46 to
.85, Items 2 and 8 were found as the highest and lowest

loaded items respectively. Item 18 loaded .81 on Factor 4.

System Clarity

Factor analysis was performed on 16 items on progran
slarity. Six factors met Xaiser's criterion (Kaiser, 1960)
and explained 79.4% of the variance. The factors, their
respective eigenvalues and the percent of variance
explained are given in Table 14.

The factor analysis with three factors was accepted as
a more 1logiczl and explainable solution. The initial
factor matrix was rotated orthognally. The factors, the
items that loaded on these factors, and their respective
loadings are given in Table 15.

Items 2 to 5, 11, 14, 15, and 16 were loaded on
Factor 1. This factor was named as Program Quality. The

s .cond factor named Coding Considerations consisted of

items 1, 6, 9, and 13. “tems 7, 8, 10, and 12 constituted

TABLE 14
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM CLARITY

ITEMS

EIGENVALUE PCT OF VAR CUM PCT

FACTOR

VARIABLE

OO OT ON T OO O QU000 T 000D
000 P et e P e oo
T MM =0 OV T OO0 O OO
2456778899999990

-

O TF - FINNINT MMM NND O30
® 2 060 0 0 000 00t " o0
P OON N M e
N

ONMMONIO OO IN A —1n (N O
O NN\ MON- v O 00N N ONT
N ONNOONMNIM M IO OO
NGO ANOIN O AONI N A 00O 00 OM)
O N AN M N 0ON N M S O OO
® 0 00 % 000 9ot 0
MON——r

= ONMTN O RO O —NIM-F1NO
' T ——

t

O=NM-T N0
= OVPITUYNO N GO ON 0= = goy= = = v
0z 02 ooz o2 OF 07 02 OF O OF 02 O Oz O
L LL L L LT L L L L
S R T A R A D O A e B P
cccccccccccccccc

Table 15

Factors, Items Lcaded on Factors, and Item Loadings
on System Clarity Category

F_¥FACTOR 1 FACTOR 2 FACTOR 3
Programming Coding Programming
Quality Considerations Style
Itens Loading Itens Loading Itenms Loading

2 ~-.58995 1 .75874 7 +73963
3 ~.78412 6 .81327 8 56674
4 54674 9 «51472 10 .66008
5 63232 13 «52702 12 .68103
11 62855
14 .56825
15 «74500
16 .44680
o o

57

Factor 3. This factor was named Programming Style based on
the coritent of items defining the factor.

Items 2 and 3 loaded negatively on Factor 1. The
lowest 1loading was on item 16 (.45). Item 3 had the
highest 1loading (.78). O Factor 2, the range of item
loadings was .51 to .81. Items 6 and 9 were the highest
and lowest loaded items, respectively. Item 1 loaded .76
while itme 13 loaded .53. The range of item loadings on
Factor 3 was .56 to .74. Items 7 and 8 were the highest
and lowest loaded items, renpectively. The remaining items

were loaded in .60's.

Programming Style

Tha principal component solution performed on 20 items
of programming style extracted seven factors having
eigenvalues greater than 1.0. The factors explained 80.2%
of the total variance. Table 16 lists the factors, their
eigenvalues and the percent of variance explained by these

factors.

After seveiral trials, a four factor solution after
varimax rotation was found more logical and explainable
than the other solutions and was therefore adopted for this
analysis. According to this solution, the four factors

explained 60.0% of the total variance. Factor 1 was

comprised of items 5 to 10, 12, and 19. The factor was

) 52
e 55

TABLE 16
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON PROGRAMMING STYLE

ITEMS

CUM PCT

PCT OF VAR

EIGENVALUE

FACTOR

VARIABLE

O NN MONOM (Y OOWVT o= v— QU A OO
® R 0 00 g QR POIO e g0
NNOONON 3 OF 00~ MNN OO OO OO0
NMTOONDVVO OO OOO

-

ONNMOV NN ONON VOO0 ON = =0
....................
O TP OM O M S ST e

N

O DUNMNANIR N OO N Ao~ ONOT LN O
N O 3OO NNN = MM e~ A ONMAO O OO
QO M ~FEOCO N TMISF (N Po~T M ONT NON O MY
9306597938142081316
MR OIN N O NN N O O 00
MR I I N B BN N
ST O~

= ONMNTN O MO0 O NN TN ON 00N
Lk e st al ol ulond E SOV

Q = OIM TN W 0OV
= OMSTIN O MO0 ¢ v=r= = > et v g e=(\J
W L LAJLA 4 LA LA L L) L LA L) L L) LI LS L)
S [UG DS DI U U DUN DUN DN [N DU DUS DU DUN DN JUN [N Y
P P Pre D B Do I D D Be P Bm Bw Im e Bu D B Do Iw
[l ad o o Sl Ll Sl o oy o ol o o S e o o
N NN NUINNN N NN WNWNY NV

53

99

named Progam Quality. Items 2, 3, 14, and 15, loaded on
Factor 2. The factor was called Programming style. The
third factor called coding Consideration included items 1,
4, 11, 16, and 20. Items 13, 17, 18, produced the fourth
factor called Efficiency Considerations.

The factors, the items that loaded on these factors,
and their respective loadings after varimax rotation are
given in Table 17.

Item 19 loaded slightly higher (.406) than the minimum
value of .40, needed to assign that item to a particular
factor. This item had the lowest loading on Factor 1.
Item 10 had the highest loading (.87). Items 8, 9, and 12
were negatively loaded. Item loadings on this factor were
comparatively lower than the other three factors. Item
loadings on Factor 2 ranged from .50 to .86. The items
with the 1lowest and highest loading on this factor were
items 15 and 2, respectively. The loading range on Factor
3 was .61 to .85. Item 4 loaded the highest while item 11
loaded the 1lcwest. Most of the remaining items had factor
loadings in .60's. The range of item 1loadings on
Factor 4 was .75 to .88. Items 13 and 17 were the lowest
and highest loaded items, repectively. The only remaining
item (item 18) had a loading of .80.

54

GO

Table 17

Factors, Items Loaded on Factors, and Iten Loadings
on Programming Style Category

FACTOR

1

FACTOR 2 FACTOR 3 FACTOR 4
Programming Programming Coding Efficiency
Quality Style Considerations Considerations
Items Loading 1Items Loading 1Items Loading 1Items Loading
5 .61753 2 .86058 1 . 70405 13 . 74984
6 58687 3 .83146 4 +84666 17 .87682
7 + 55423 14 68506 11 60707 18 .80412
8 ~.54315 15 .49848 16 63895
] -.41708 - 20 .567019
10 .87187
12 ~.48739
19 .40658

y

b

System Managemznt

Fourteen management related items were analyzed by
factor analysis to discover underlying dimensions. The
principal component solution revealed six factors that
explained 80.0% of the total variance. The factors, their
respective eigenvalues and the percent of variance
explained by each factor are given in Table 18.

Factor analysis was repeated several times by varying
the number of factors to be extracted so that a logical and
meaningful solution could be obtained. The solution with
four factors after varimax rotation met this criterion and
is included here for interpretation. According to this
solution, the factors explained 64.4% of the total
variance. The factors, items loaded on these factors, and
item loadings after varimax rotation are given in Table 19.

Factor 1 was defined by items 2, 4, and 12, and was
named Management Structure. Factor 2 included items 5, 8,
9, and 10, and was called Personnel Management. Items 3,
11, 13, and 14, comprised the third factor called
Management Support. The fifth factor called Management
Strategy consisted of items 1, 6, and 7.

Item 2 1loaded the lowest on Factor 1 (.59). The
highest loading of .90 was found on item 12. Item 4, the
only remaining item on this factor, 1loaded .65. The range
of item loadings on Factor 2 was .60 to .81. The lowest

loading was on item 9. Item 8 had the highest 1loading.

56

62

4BLE 18
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM MANAGEMENT ITEMS

FACTOR EIGENVALUE PCT OF VAR Cum PCY

VARIABLE

QN TNO WM™ N0 O
AN SAEEEEREEREERLE
O OMIN ONOMINNDOOO
N=FNON- QOO VOOV O

-

O O~FO v~ 0 COVIO0 M) OGO ~F
® 9 90 0 9 00 009 900
O MO0 NTNI N~
Ne-g—

QO FONOONT OO OONN
NNOTOM OO O N NND
MM OO N GO0 ~T « MM v
O OMNINONONN N0
O OO O 0 OMM NN~ O
® 9 0% 05 9009 000 g
Me e

NN O MO O =\ -3
Lok o ol o

O —=NM-~T
T VTV QO N IO ¢ e=reee o=
LA LIS LIS) W W W LI W
O OWOVWY DOV WDOIDY
LA LCCECIICC
CZZELZZDEZZZZEZZ2
L L LY <
EEXEYXYXEEY T XY | % o

57

63

Table 19

Factors, Items Loaded on Factors, and Item Loadings
on System Management Category

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4

Management Personnel Management Management

Structure Management Support Strategy

Items Loading 1Items Loading Items Loading Items Loading
2 «59563 5 -.65511 3 «45150 1 «+ 79499
4 «.65539 8 81564 11 .52884 6 «74311
12 .90512 9 «59775 13 .88239 7 55144

10 «64892 14 -.75144

Item 5 was the only negatively loaded item on this factor.
Item 14 on Factor 3 1loaded negatively. The lowest and
highest loading were on item 3 and item 13, respectively.
The range of item loadings was .45 to .88. Item loadings
on Factor 4 ranged .55 to .79. Items 1 and 7 were the

lowest and highest loaded items, respectively. Item 6
loaded .74 on this factor.

The factor matrices on all the nine categories are

given in Appendix B.

Chapter 5

DISCUSSION AND CONCLUSION

This chapter includes discussion of the results
described in Chapter 4. The chapter closes with the
conclusion derived from the findings of this research
study.

The analysis of item means and standard deviations
confirmed that all the items included in the questionnaire
affect system complexity to varying degrees. Items with a
mean value of 1less than 3.0 reflected respondents'
agreement that the attributes expressed in the statements
decrease software complexity. Similarly, item means of
greater than 3.0 reflected respondents' opinions that such
attributes incre se system complexity. The items with a
mean value of 3.0 or closer were not considered good
discriminators. These items were PLAN 15, DESIGN 12,
DESIGN 22 and STYLE 20. The content analysis revealed that
all these items except DESIGN 22 were highly related to
system complexity but respondents responced to thenm
randomly and the mean value turned out to be 3.0.

An examination of standard deviation values revealed
that not all respondents a2coreed or disagreed with the
statements with equal strength. Standard deviation of 1.0
or greater was viewed as high for this analysis. Standard

deviation of less than 1.0 was an index of the conformity

60

66

of views of respondents regarding those statements. Large

standard deviation values were considered to be a result of
different interpretations, that respondents attached to
standard terms. This fact confirmed the confusion that
exists in computer science 1iterature for non-standard
definitions and use of more than one term for a single
phenomenon.

Factor analysis revealed that the nine logical
categories to which the questionnaire was divided were not
exclusive. Factor analysis of items of a single category,
sometimes, produced factors that were related to the major
category. For example, Factor 3 of system characteristics
was named correctness which in fact is one of the nine
categories. Similarly, Factor 4 of System Design, Factor 2
of Program Correctness, and Factor 3 of Program Clarity
discovered underlying dimensions that were supposedly
tapped by one of the main categories. This finding
confirmed the rationale of this study that a single factor
in a system may affect several system components making a
cunulative effect on the complexity of a total system. It
meant that a system cannot be categorized into non-
exclusive components. For example, system testing which is
a component of system development may not stand alone
because it includes planning for testing, characteristics

of testing, testing documentation, testing management,

testing accuracy, clarity of test procedurer, and

programming style in test code. In other words, each

component of a system encompasses the whole developmental
span of the system. This finding was important for future
research activity in which the factors obtained from this
study may be used as logical entities rather than making
judgmental categories as was done in this exploratory
study.

Factor analysis also revealed that a major category
may give rise to factors that identify major components of
that category. The example is of System Planning categor:
in which all the three factors obtained refer to system
planning but at a different level. Factor 1 referred to
high level planning. Factor 2 clustered items that related
to design level planning. The third factor identified
implementation 1level planning or lower level planning.
Similarly, the system testing category produced four
factors called test planning, testing technique, testing,
and residual factor. Another example was the system
management category in which the four factors identified
various components of management. Factor 1 was called
management structure, Factor 2 related to personnel
management, Factor 3 was management support, and Factor 4
referred to management strategy.

On program documentation category, the three factors
identified three dimensions called documentation standards,

quality and style of documentation, and documentation

62

68

analysis. Under the programming style category, the four
dimensions that were discovered by factor analysis were
named programming quality, programming style, coding
considerations, and efficiency considerations.

On certain categories, factor analysis gave rise to
factors that could not successfully be named. The examples
included system characteristics category in which Factor 2
was named "Others". It was, in fact, a residual factor
such that the items that did not load on other factors were
loaded on Factor 2. For the program correctness category,
Factor 4 was a residual factor. The items that did not
load on the codiag consideration factor, programming style
factor, or programming structure factor, loaded on Factor
4 called residual factor.

The cross-loading of items, though minimized by
varimax rotation was still greater than expected. This
confirms the earlier finding made on the basis of item
means and standard deviations that the use of several terms
for th. Zame phenomenon means different interpre. .tions.
The other possible reason of cross~loadings was that
people were not sure what they were responding to and
therefore selected the degree of agreement or disagreement
with the statement at random. This tendency might have
been resulted from lack of education or experience by

respondents in the respective areas. Most of the subjects

of this study were involved in the process of large system

development but not all of them had extensive formal
training in system design and development. Those who
learned through experience were not familiar with the
“erminology used in the literature. The third category was
those who had taken at least one course in system design
and development but did not have experience of designing
the system. The perceptions of these three distinct groups
produced three unique sets of responses such that their
Cumulative effect resulted in cross-loading of items on

more than one factor.

Conclusion

One hundred and sixty items extracted from the
existing 1literature were categorized into nine categories
according to their content. These categories were made on
subjective reasons and were system planning, sys —em
characteristics, system design, system testing, program
documentation, program correctness, program clarity,
programming style, and system management.

Item means indicated that at least 98% of the items do
affect system complexity. Content analysis indicated that
all the items except one are related to system complexity.
High variance in respondents' responses was attributed
either to their lack of formal training or experience in

some areas of system development, or to the confusion

64

70

caused by multiple definitions of a single term. Computer

science 1literature has an abundance of terms that have
multiple meanings and all of them are recognized as
legitimate.

Factor analysis on system planning category identified
three factors called high level planning, design 1level
planning and implementation level planning. The system
characteristics category produced two factors called
simplicity and correctness. The third factor was a general
factor. Under system design category, the factors were
identified as general factor, system enviornment, program
considerations, programming style, and efficiency
considerations. Test planning, testing technique, testing,
and residual were the factors identified in System testing
category. Program documentation category had three
underlying dimensiors called documentation standards,
documentation quality & style, and documentation analysis.
Program correctness had coding considerations, programming
style, program structure, and residual as factors.
Programming quality, coding considerations, and programming
style were the dimensions of program clarity category.
Programming style category identified programming quality,
programming style, coding considerations and erficiency
considerations as factors. The 1last category, systen
management, had management structure, personnel manageitent,

management support, and management stragtegy as factors.

65
71

Factor analysis suggested that the items may be
regrouped according to the factors extracted to determine
complexity of system attributes, system components, or of
various phases of system development. It was recommended
that the study be replicated with a larger sample and that
the complexity of various system components be weighted to

determine the overall complexity of the system.

860

REFERENCES

Al-Suwaiyel, M.I. Man and Software Complexity.
Cybernetica, 26,3, 1983, 227-235.

Arthur, Lowell J. Programmer Productivity: Myths, Methods,
and Murphology. John Wiley & Sons, N.Y., 1983, pp. 287.

Baker, A.I., and Zweben, S.H. ™ comparison of measures of
control flow complexity. IEEE Transactions on Software
Engineering, SE-6, 6, 1980, 506-512.

Belady, B.L.A. Software geometry. 1In proceedings of 1980
Computer Symposium, Taipei, Republic of china, 1980.

Bersof, E.H., Handerson, V.D., and Siegel, S.G. Software
Configuration Management: An investment in product
integrity. Prentice Hall Inc., N.J. 1980, pp 385.

Brotsky, D. Program Understanding Through Cliche
Recognition. Working Paper 224, AI Lab., MIT, 1981.

Canning, R.G. Modular COBOL programming. EDP Analyzer, 10,
7, 1972, 1-14.

Curtis, B., Sheppard, s.B., Millman, P., Borst, M.A., and
Love, T. Measuring the psychological complexity of software
maintenance tasks with Halstead and McCabe metrics. IEEE
Transactions on Software Engineering, SE-5, 2, 1979, 96~
104.

Davis, John S. Chunks: A basis for complexity measurement.
Information Processing & Management, 20, 1-2, 1984, 119~
127.

De Millo, R.A., Lipton, R.J., and Perlis, A. Social
processes and proofs of theorams and prograns.
Communications of the ACM, 22, 5, 1979, 271-280.

Dun, Robert, and Ullman, Richard. Quality Assurance for
Computer Software. McGraw-Hill book Company, N.Y., 1982,
pp.351.

Endres, A. An analysis of errors and their causes in
systems programs. IEEE Transactions on Software
Engineering, SE-1, 2, 1975, 140-149

Halstead, M. Elements of software science. Elsevier
Computer Science Library, N.Y., 1977.

Henry, §S., Kafura, K., and Harris, K. On the relationship
between three software metrics. Proceedings of the ACM
Workshop/Symposium. Software Quality, University of
Maryland, college Park, 1981.

Jensen, H. An investigation of software metrics for real-
time software. Unpublished master's thesis, University of
Wisconsin - Milwaukee, 1982.

Jensen, H.A., and Vairavan, K. An experimental study of
software metrics for real-time software. IEEE Transactions
on Software Engineering, SE-11, 2, 1985, 231-234.

Kaiser, H.F. The application of electronic computers to
factor analysis. Educational Psychological Measurement,
20, 1960, 141-151

Kernighan, B.W., and Planger, P.J. The Elements of
Programming Style. McGraw Hill Book Company, N.Y., 1974,
pp' 1470

iientz, B.P., and Swanson, E.B. Problems in application
software maintenance. Communications of the AcM. 24, 11,
1981, 763=769.

Lientz, B.P., Swanson, E.B., and Tompkins, G.E.
Characteristics of application software maintenance.
Communications of the ACM, 21, 6, 1978, 466-471.

London, Keith R. Documentaion Standards (Revised Ed.).
Petrocelli Books, N.Y., 1974, pp. 253.

Mayer, R.E. A psychology of learning basic.
Communications of the ACM, 22, 11, 1979, 589-593.

McCabe, T.J. A complexity measure. IEEE Transactions on
Software Engineering, SE-2, 4, 1976, 308-320.

Meek, Brian, and Heath, Patricia. Guide to Good
Programming Practice. Ellis Horwood Ltd., N.Y., 1981, pp.
181.

Norcio, A. Human Memory Processes for Comprehending
Computer Programs. Applied Science Department, U.S. Naval
Acadenmy, 1980.

Ottenstein, L.M. Quantitative estimates of debugging
requirements. IEEE Transactions on Software Engineering,
SE-~5, 1979.

68

74

Pashtan, Ariel. Operating system models in a concurrent
Pascal environment: Complexity and performance
considerations. IEEE Transactions on Software Engineering,
SE~11, 1, 1985, 136-141.

Peter, L.J. Software Design: Methods & Techniques.
Yourdon Press, N.Y., 1981.

Prather, Ronald E. An axiomatic theory of software
complexity measure. The Computer Journal, 27, 4, 1984,
340-347.

Savage, J.E. The Complexity of Computing. John Wiley &
Sons, N.Y., 1976.

Schneider, V. Some experimental estimators for
developmental and delivered errors in software development
projects. In Proceedings of the ACM Workshop/Symposium.
Software Quality, University of Maryland, College Park,
1981.

Shneiderman, B. Measuring computer program quality and
comprehension. International Journal of Man-Machine
Studies, 9, 1976, 465-478.

Shneiderman, B. Exploratory experiments in programmer
behavior. I.lernational Journal of CICS, 5, 2, 1976b, 122-
143.

Shen, V.Y¥., Conte, S.D., and Dunsmore, H.E. Software
science revisited: A critical analysis of the theory and
its empirical support. IEEE Transactions on Software
Engincering, SE-9, 1983, 155-165.

Soloway, E. What do novices know about programming?
Directions in Human-Computer Interactions, Ablex, 1982.

SPSS Inc. SPSS'X: User's Guide. McGraw Hill Book
Company, N.Y., 1983.

Sunohara, T., Takano, A., Vehara, K., and Ohkawa, T.
Program complexity measure for software devleopment
management. 5th International Conference on Software
Engineering, IEEE, N.Y., 1981.

Tassel, Dennie V. Program Style, Design, Efficiency,
Debugging, and Testing. Prentice~Hall Inc., 1978, pp 323.

Thayer, T.A., Lipow, M., and Nelson, E.C. Software
Reliability. North-Holland, Amsterdam, 1978.

Vassey, 1Iris, and weber, Ron. Some factors affecting
program repair maintenance: An empirical study.
commununications of the ACM, 26, 2, 1983, 128-134.

Weinberg, G.M. The Psychology of Computer Programming.
Van Nostrand Reinhold, N.Y., 1971.

Woodfield, S.N. Enhanced effort estimation by extending

basic programming models to include modularity factors.
Doctoral dissertation, Purdue University, 1980.

70

BEST COPY AVAILABLE

The University of Kansas

Institute for Research in Learrung Disabdties
MMMWMM

Dear Computer Scientists,

There are several factors that are considered very predictive of software
complexity, A program which is structured,well documented, and has simple to
understand code is believed to have less repair maintenance after its release
into production than the programs that do not incorporate these factors. A
Tong 1ist of factors that make later modifications of programs easy, is
available from the 1{terature, However, there is no empirical evidence as to
what factors are more important than the others. The present study is a step
forward to identify the most significant factors that reduze system complexity
and to discover their underlying dimensions.

The terms system cowplexity and software camplexity are used interchang-
ably in tne enclosed questionnaire and both refer to large programs, only,
For this study, the definition of complexity 1s also delimited to an amount
of affort needed to add, delete, or modify sequent(s) of a program. For
example, a program that takes less sffort is less complex than the one that
needs more effort,

Your name has been selected for partcipation in this study as a represen-
tative of the profession that deals with the development and maintenance of
camputer software. Your responses on the enclosed questionnaire will provide
us valuable information about factors that could reduce system complexity.

Your responses on the questionnaire will be kewt confidential and a
copy of the rasults will be sent to you, {if desired. If you have any question
about the questionnaire, or on any other part of the study, please feel free
to contact me at {913) 864-4780,

Thankyou for your participation and caupleting the questionnatre.

Sincerely,

Q

ERIC

Aruitoxt provided by Eic:

Javaid Kaiser, Ph.D.

77

System planning(top level design) is the most crucisl psrt of system
developsent. Thorough understanding of the proposed ssatem not only
belps in its development, but alsoc reduces system complexity. Indicste
the degree to which you agree or dissgree that the following considere~
tions st the planning stage would reduce the complexity of the system.

(Complexity, for this study, is defined §n terms of repair maintensnce)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 1if you AGREE with the ststement.

Circle 3 1if you NEITHER AGREE OR DISAGREE with the stetement.

Circle & if you DISAGREE with the statement.
L

Circle if you STRONGLY DISAGREE with the statement.

System design specificstions 1 2 3 4 5
Softwsre requirement specificstions 1 2 3 4 3
Performance Specifications 1 2 3 4 5
Product specifications 1 2 3 [} 5
Project rationsle 1 2 3 [} 5
Top level desigo reviev 1 2 3 4 s
Module design review 1 2 3 4 5
Dats base design 1 2 3 4 5
Integration test plea 1 2 3 4 3
Selection of test procedures 1 2 3 L S
Configuretion management 1 2 3 4 5
Documentaticn standsrds 1 2 3 L S
Quality control plen 1 2 3 4 S

78

71

Tool specificstions 1 2 3 4
Vendor survey snd survillsnce 1 2 3 4
Knovledge sbout future development plsns 1 2 3 4
Future maintensnce sctivity 1 2 3 A

The following charscteristics fepresent s systen with less coamplexity.

Iodicate the degree to which you sgree or dissgree that the nsmed

Ussbility(Effort

the systea)

(= I ¥ T Y I ¥

required to perform its functions). 1 2 3 4 5

to lesrn, operste, and use

. 1 2 3 L S

Testability(Structured testing to insure

correctness) 1 2 3 4 5

Trscesbility(Machine opersted messurement

for correctness). 1 2 3 4 S

Simplicity(Implementation of functions in

charscteristic would slso reduce systea complexity. (Cowplexity is most understandable way). 1 2 3 4 H

defined ss repsir maintenance)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you neither AGRER or DISAGREE with the statement.

Circle & if you DISAREE with the statement.

Circle 5 4if you STRONGLY DISAGREE with the ststement.
Correctaess of output 1 2 3 &
Efficiency(Minimized processing time) 1 2 3 L
Flexibility to mske enhancements 1 2 3 4

Integrity(How well the softvsrc and data

are protected 1 2 3 4
Interopersbility(Interface with other systems) 1 2 3 %
Maintainsbility(Activity to locste or repsir

errors). . 1 2 3 &
Portsbility(Change in machine envircament) 1 2 3 L

Relisbility(Degree to which s systea is

79

ERIC

Aruitoxt provided by Eic:

Modulsrity(Independent functions linked

together).

Concision(Implement s function with

minisun code). 1 2 3 4 5

Structured programming(Use of IF-THEN-ELSX etc.) 1 2 3 4 5

Seversl factors need to be considered st the detailed design stsge of

systea development to reduce softwsre complexity. Iadicate the degree to

vhich you sgree or dissgree that the named fsctor would reduce the com-

S
S
S
plexity of the
tenance)
S
S Circle 1
Circle 2
S Circle 3
S Circle 4
Circle 5

BEST COPY AVAILABLE

systen. (Complexity is defined in terms of repsir main-

if you STRONGLY AGREE with the statement.

if you AGRER vith the statement.

if you NEITHER AGREE OR DISAGREE with the statement.
if you DISAGRER with the ststement.

if you STRONGLY DISAGREE with the statement.

50

72

ERI

Aruitoxt provided by Eic:

High decision density(# of decisions in s
sodule).
Bigh progrss level(# of CALLs to fuactions
per 100 lines of code).
Choice of procedures for formsl corrective sction
Resolution of hardwsre snd softwsrs iaterface
Well defined dsta structure

Establishing coatrol over bstches of foput

1
1

Use of methods for fsolsting errors snd their csusesl

Control on multiprograaming

Use of generslity in progras design
Eghancenent to s systes

Formal evsluation of slgoritha sccurscy

Differentisl compsrison of programs

Use of psudocode ty do t module logic

Use of grsphicsl tools to display softwsre logic

Use of cross references ia code

Iacluding modules with multiple entry/exists

Choics of s programming lsagusge

Adequacy of operstionsl environmsenets

Top-down progrsmming

State of the srt hardwsre for prograa developnent

Poor distinction between hardwsre snd software
functions

Initisl system stste not col;nidered

Poor user trsining

81

rs ~ »

»

NN eN

L Y Y 7 R ¥ Y R v ¥ S . S Y

L BV IV R V]

¥

Testing is s psrt of system development. The decisions made during the
testing stsge may sffect the systes complexity. Indicste the dsgree to
which yon sgrse or dissgrer that the named chsrscteristic would reduce

system cosplexity. (Complexity is defined ss repsir maintensnce)

Circle 1 4{f you STRONGLY AGREE with the ststement.

Circle 2 if you AGREE with the ststement.

Circle 3 4if you NEITHER AGREE OR DISAGREE with the ststement.
Circle & {f you DISAGREE with the statement.

Circle 5 4f you STRONGLY DISAGREE with the ststement.

Choice of test procedures 1 2 3 4 5
Cheice of test equipment selected 1 2 3 3 s
Progras test snd opersting instructiona 1 2 k) 4 5

Appropristeness of tests of ressomability for 1/0

vslidstion 1 2 3 4 5
Estsblishing tolersnce for sccuracy criterion 1 2 3 & 5
Top down testing 1 2 3 3 s
Testing snd msintenance history 1 2) 4 s
Quality of test programming 1 2 k] 4 5
Run time snalysis 1 2 k) 4 5
Retesting of sll modules on new dsts that intersct

vith wodified module 1 2 3 4 5
Bottom-up testing 1 2 k) 4 5
Testing s dig progzam in saall pieaces 1 2 k] & 5
Testing program st boundary vslues 1 2 k) 4 S
Checking angwers by hand 1 2 3 4 3

5

BEST COPY AVAILABIf 82

/3

Lack of exhaustive testing 1 2 3 4 s Documeatation vn interrupt processing 1 2 3 4 S
Using » simple versioo to test the basic design 1 2 3 4 [Static analysis of documentstion snd source code 1 2 3 4 s
Using test dats for each path 1 2 3 4 5 Quality of written documents 1 2 3 4 5
Adequate time for testing 1 2 3 4 [Docusentation of dats lsyouts 1 2 3 4 S
Esch test representing s differenting cless 1 2 3 4 5 Agreenent between comments and code 1 2 3 4 S
Uniformity of style snd appearance 1 2 3 & S
Use of mare c ts thsn ded 1 2 3 4 5
Programs documentation i important in understanding the system logic. Indenting comments snd source code the
Indiceve thr degree to which you agree or disagree that the named same amount 1 2 3 4 5
documentation characteristic would reduce system complexity. (Complexity Documentstion should start at design stage 1 2 3 4 5
is defined in terms of repair msintemsnce)
Circle 1 4if you STRONGLY AGREE with the statement.
Correctness is sn importsat characteristic of system development.
Circle 2 if you AGREE with the ststesent. N
. Several decisions that ave made to make the system function correctly ~
Circle 3 4f you NEITHER AGREE OR DISAGREE with the ststement.
slso affect its complexity. You are asked to indicste the degree to
Circle & 4if you DISAGREE with the ststement.
which you agree or disagree thst implementing the named charscteristic
Circle 5 4if you STRONGLY DISAGREE with the ststement.
for correctness would also reduce softwsre complexity. (Complexity is
interprated as repair maintenance)
Inadequate description of data environment 1 2 3 4 S
High self documentation value(# of comment Circle 1 if you STRONGLY AGREE with the statement.
lines per 100 lines of code). 1 2 3 4 [Circle 2 if you AGREE with the statement.
Documentation for individusl in tallation 1 2 3 4 5 Circle 3 4f you VEITHER AGREX OR DISAGREE with the ststemeat.
Development of operator and meintenance msnuals 1 2 3 4 S Circle 4 4if you DISAGREE vith the stetement.
Documentstion of input, output, and files handled Circle S 4if you STRONGLY DISAGREE with the statement.
by ths systea 1 2 3 4 [
Information opn specisl diagnostic codes and flags 1 2 3 4 5 Control structure to process priorities 1 2 3] 5
Documenting of complex logic, wioen used 1 2 3 4 s Conformity with dsts base rules 1 2 3 4 S
6 7

83

ErSC BEST COPY AVAILABLE

Aruitoxt provided by Eic:

84

Clerity in sddressing scheme 1 2 3 4 5
Propar use of registers 1 2 3 4 3 follovit acatements about clarity vould slso reduce Pyctem cosplexity.
Petching bed code instesd of rewriting it 1 2 3 4 5 (Complextty in defined oo Fepeir malntensnce)
Use of recursive procedures for recursively Circle 1 if you STRONGLY ASREE with the statement.
defined data structures 1 2 3 4 5 Circle 2 4if you AGREE with the statement.
Termioating input by end-of-file or marker, Circle 3 if you NEITHER AGREE OR DISAGREE with the ststement.
not by count 1 2 3 4 5 Circle & if you DISAGREE with the r:iatesent.
Identify bed output snd recover when poasibls 1 2 3 [5 Circle 5 if you STRONGLY DISAGREE with the stotement.
Initislize varisbles snd constsnts before use 1 2 3 4 5
Avoid off-by-one error 1 2 '3 4 5 Sequence of source code 1 2 3 4 [
Brench the right wsy on equality 1 2 3 4 3 Bigh GOTO deasity(¢ of GOTO statements per 100
Arithmatic with floating numbers 1 2 3 4 5 lines of code) 1 2 3 4 5
Compsrison of flosting point numbers for equality 1 2 3 4 5 Sscrifice clerity for efficiency 1 2 3 4 5
Making code right before making it fester 1 2 3 4 5 Trarefors hard logical expression to simple ones 1 2 3 4 5 w
Assure the correctness of solution st the Using mesningful stetement 1sbels 1 2 3 4 5 ~
design stage 1 2 3 4 5 Use of uniform input format 1 2 3 4 5
Relisbility is importsnt tlan efficiency 1 2 3 4 5 Using free-fors input when possible 1 2 3 ' s
Initislizing verisbles with executable code 1 2 3 4 S Using blank spsces in source code 1 2 3 4 5
Use of mixed dets types 1 2 3 4 5 Selecting mnemonic nsmes that won't be confused 1 2 3 4 5
Use of debugging compiler 1 2 3 4 5 Use of prefix or suffix on file names 1 2 3 4 S
Introducing debugging sids esrly 1 2 3 4 5 Using single statemeot per 1ine 1 2 3 4 S
Alphabetizing lists including srguments,
Parsmeters, sad declerstions 1 2 3 4 S
The level of clerity maintained during system development, to s grester Use of prr_uthesis to svoid ssbiguity 1 2 3 4 [3
extent, determines the e-‘a in maintenance, sfter the system goes into Indentation to show Program structure 1 2 3 4 S
production. Indicste the degree to which you sgree or dissgree that the Making code simple to understsnd 1 2 3 4 [
Use of prefered verisble type for subscripts 1 2 3 A S
8 9

85 BEST COPY AVAILABLE

ERIG 36

Aruitoxt provided by Eic:

Programeing style elementa enhance clarity and belp in understanding

software logic better. Indicste tbe degree to wbich you agree or

diasgree that the following set of statesentas would slso reduce software

complexity.

Circle
Circle
Circle
Circle

Circle

(Complexity ia fnterpreted aa repair maintenance)

1 if you STRONGLY AGREE with the statement.

2 if you AGREE with tbe atatement.

3 if you NEITHER AGREE OR DISAGREE with the atatement.
4 1f you DISAGREE with the statement.

S 1if you STRONGLY DISAGREE witb tbe atatement.

Keeping module size small (not to excede 100

executable atstementa) 1 2 3 4 5
Use of temporary variables 1 2 3 4 S
Replacing repetetive tasks by CALLs to functions 1 2 3 4 S
Avoiding FORTRAN srithmatic IF 1 2 3 4 S

s better algorithm

Use of variablea not conatants for parameters

Use of library routinea and functions when
available

Plan abesd for program changes

Use of compiler for aimple optimizstion

Block 1/0 efficiently

Use of load modules for repested runs

Use of large number of NOT conditional clsusea

Use of aeveral EJECT and SKIP statements

Haosgement plays an important role in aystes development

affect ayatem complexity. To wbat degree do you agree or disagree that

3 4 5
3 4 5
3 4 5
3 4 5
3 4 5
3 4 s |
3 4 5 |
3 4 5

and may alao

76

the following set of management related activitiea would reduce softwsre

O

complexity. (Complexity is defined as repsir maintensnce)

Use of unnecessary branches 3 4 5
Use of conditionsl branches as s substitute Circle 1 4if you STRONGLY AGREE with tbe statement.
for logical expression 3 4 5 Circle 2 if you AGREE with tbe statement.
Use of data arrays to avoid repetetive control Circle 3 if you NEITHER AGREE OR DISAGREE -ith the statement.
sequence 3 4 s Circle & if you DISAGREE with the statement.
Choice of data representation that makes the Circle 5 4if you STRONGLY DISAGREE with the statement.
pProgram simple 3 4 s
Making output self explanatory 3 4 s Hanagewent by objectives 1 2 3 4 5
Straie o reuse code instead of rearranging it 3 4 5 Phased methodology to develop aystem 1 2 3 L S .
Making special cases truly speciasl 3 4 s Favorable manag t envir ta 1 2 3 4 5
Don't diddle code to make it faster, find Fixed schslule to coaplete work 1 2 3 o S
1V 11

87

BEST COPY AVAILABLE

88

ERIC

Aruitoxt provided by Eic:

ERIC

Aruitoxt provided by Eic:

Homoger ~ous group of system developer

Tean concept of system development

Egoless progrsaming

Programmer’s motivatioa for task

Iaclusion of development staff in the testing team
Vertical and horizontal intersction of prograsmera
Well budgeting of the system

A beirarchical organization of programmers

Smill design teams

Differences over interpretation between

project manager and general management

12

89

LT T T R

woow»mon

BEST COPY AVAiLABLE

The questions below ask yqu respanses to enable us to see the
differences in opinions expressed hy groups representing various levels
of sex, educatfon, experience, and profession.

CIRCLE the response that describes you the best.

SEX: 1. MALE 2. FEMALE
EDUCATION:
1. BS in computer scifence
2. MS in computer science
3. Ph.D. 1n computer science
4. Computer coursework but no degree in Comp. Sc.
5. No formal education fn computer science

TYPE OF EMPLOYMENT:

1. Regular job
2. Student monthly
3. Student houriy

NATURE_OF JDB:

1. Related to software development/maintenance
2. NOT related to software deveiopment/maintenance
3. Any other, explain:

WORK DESIGNATION:

COMPUTER RELATED EXPERIENCE:

1. Less than 1 year
2. 1-2 years
3. 2-4 years
4.More than 4 years

Do you waut o copy of results? 1. YeS 2. KQ

13

30

77

2 A

BESTCOPYA'

FACTOR MATRICES

System Planning

ROTATED FACTOR MATRIX:

3

FACTOR

2

FACTOR

1

FACTOR

N0 IO DI — 0> 0
W IAPMAWOOM N O D ON D A
Ur/04143477245260 <
NN NM e VOO0 BN N0
66200211115355037
.......0.....0..0

3087322‘21316932?
66278535‘010ﬂc3368
36705261061156308
MM T 0.\43[4713895‘
013007776‘4250100
...l..lll..“ll..

6622‘6799‘2003778
60390990163396831
’112768?2232‘6‘9‘
9r)8.38/¢69‘055716‘7
Z-IS.Xv.UZ/.-lJ-IrJlJ.U.I'JSIwU
M I I I S

L LT ST L oL oL oL T T oL o
LLLLLLLLLLLLLLLLL
PPPPPPPPPPPPPPFPP

System Characteristics

ROTATEC FACTOR MATRIX:

3

FACTOR

2

FACTOR

1

FACTOR

PR Or- 2D DM

NI I 00D O > V=t

NWON O DT NRMT I3 O

Qo rnN 7271653299

N0 ~NLen oo

® o0 0 LA L R
]]

Mmunnmno NOMe—OOMoNw©
MNNO DN =0 F (U D 00 IO
389701934952672
T 000 ONWOT T OT 330
NV — AN DI Do~
T o8 s ® % 000004900

A O—mMmn ininry N O wo 0
‘929621920909‘
3\17!83286,«8811.2.)
CSe="own 82.)24..)/06).4
03520728?‘1077)1
n.onoooooono-oo
L] I 't

TOYII N O W A e -
XXX REEX X e x
SERXL XL XL < oL L
TTrrm= “HHHHHHHHH
LCLLLLLLLVLOLULLL L

System Design

ROTATED FACTOR MATRIX:

I'ACI"r

2 FACTOK 3 FACTOR &

FACTOR

1

FACTOR

T WD QU Ay TYCemOND L s o
< < P e A VLU N NS Y. Y AN DD
FIOANL TSI TN TIAD 3O WL T ey
141027’70‘5‘51‘2851 OGL~ —
.I.I.Jrul...JL.II..U.IO(.I./bCLU.I.IfJ.I
LR AL L I R I R e

LI A A)] 1 ' [}

TN DI DN N BN =™ DN O
RZPS-IOI*I*&-I-ISG-I?I*ZH MO DO N

033514.'050U7(41182Q(_015 TN
TRV =TI ONAN O rMemnow DO
N NN D DND O O™ NN O A, NN T3
=~ QAN OO N r—r= 011745267‘8732
01&)67619!2/._21102000‘122

337‘719“59‘1505559297‘
827(4615807'703129862360
‘6638110‘36302714‘653159
MR E=A T O N DD O e MIA M Ay DFMINO O
0““2006210‘[410187,1000
l....l.....ll‘l.‘....l.
t t s)

NORVONOODN OO SOMUNAD N = OMINO
8/36‘71491\(7)-‘65‘816 gl
NN 60006996717&;2235124 O
i d 053619710):!030‘57 NN e)

DENMT IO OO Oe=rutn
123‘567891’111111115152
LLLL hhhthhthhNhNh L2
COOD OO GGGGGGGGGGGGGoL oo
9= O g g ot - 98 0= 2l 5= 9g 9=t 9y S~
Sssssssssssssss- VBBV

EEEEEEEEEEEEEEEEEEE~EEEE
~Y-¥-] Sl -1~ Y-P-V-P-Y-Y-Ta cCocaaaaa

° 91

7

O

IC

Aruitoxt provided by Eic:

[E

4

FACTOR

3

BEST COPY AVAILABLE

2

System Testing
FACTOR

1

FACTOR

FACTCR MATRIX:

0542d15550055%41349

I e e e e e e e e (e e e O
pannan nunuunnvunnanna
wWwwwwww EEEEEEEEEEEEE
e b e e e e e e e e e

~
8(?3697:£651003962622Lu 0675\24{97614:qu066)ka
R73329399543CO957?U 0503324032620‘472579
0763738277F71613189 -3 725934R5422454635509
MO +—0O0e O C N NNINGT 3 =y — f=1 15?50696652’388931‘4
M T R s 60 [’E’OZOC“C’L}'-IZOOB}O
11 LN] [| (%) o-.ooooo.oooooooo-.-
1ia] << ‘ LI]]) LI } L}
VDT e YN U N DA -
NIRRT ONNRNMI DO
= 0965./.7.1.771..5.60175
O T O DO MNIN DTN 0NN
= AN OO AN ON D O
(=] LA L I N N T
240(87:9181447409&06 < [}] t s] ! ~
0171681529609171623 w 5851312699428225/953
013925979485&086L63 10371591612904767504
7036689729046809882 x 78216558606144306856
0512’51244535344100 o 70796295U976‘0090214
ooo-oooooooooooo-o < 18567050001111250121'
LI) L] o (%) oooooooo'oooc-ooooo-
e ~N < [N }] 1
+ NS MOAIN A OO I NN N O [7,] [
[1+] V= OO IO O 0O D vy O 7,
) o 22603112”8191183 [«3)
s k=4 V0 DWVOM OO N2 ONO <
@ = O OCMMDeN OO MmN D]
(=] L A A N Y 2 % 0o s e
N TV 1N 1N DB~ O OO NI 0 Con E < ') ' O ~
OVNDOOT O NI -0 ONOANIOTOD 3 w Qv OO MO OO OO Or e i O MO 2 A
VO OVN ™~ O~ OTMMO~NLNOM (8] -~ MMM AINAPN O DN~ MO A
TN O AN TN QD0 00N o | . [59363236‘569665908‘
NTOQEND M ID N M IND D2 o o o (=3 0160008556019466’003
O 20 s s s g e e [&5] [o 205263100U0466382U04
[} [N} 1 m () o-ooctccoooococoo-tu
D - =3 < LN § s] L] |}
»e 9155246081003313 Y} -
- > P90 00 T A MINICR O AY-T AT DN
7] - E INO O T ON DT 0T O +
D (-3 (=] 6575835558845542 v
w - TR ANA 900 DN DA >
T (=] LELEE I A N Y w
2/16063780662833201 x < LI -
OO0 r, LIV O N O0VMINMAS w oo 53622500593450‘86761
i diatl a ¥} NIV IM DN TM o tad ‘791733566819852179
VYO U0) ot 207 v On =0 =P o — ax 07945910654693671729
DO AN ANNINO IO ONMAY P X o 029‘1711008607186209
M R A A I T A A -hrhardia (%) [l -~ U12£3204896102015065
LN} < < (=] oooco-coooocoocooo-
“ ax < L]
LS
o o
w Q=N nNO (=]
Ll 121~45678914’11111 [
<< UUUUUU“UUULUUULU (54
L DL LLLVLVULLLLDOOOVOLO -
o OOOOOOOOOOOOOOWW [.
Q [-T-1-Y-Y-¥Y-Y-¥- O MmN OO
O NMT OO = @ascea o —NIM TN ON DO -ty
123456789'111111111 w
o=
<<
—
o
a

32

79

Aruitoxt provided by Eic:

E ©

BEST COPY AVAILABLE

System Clarity

ROTATED FACTOR MATRIX:

3

FACTOR

2

FACTOR

1

FACTOR

QN T NDYIT O DOINNT N
T FOOFT SAMIDNDOIOR
WV MNITJC O TO=r— DN OO
V™= A= G MO N0 COM NN~
M e OO O ONOOODN
® e o s o8 0o v e e g

LI O I I | 1)

TN M A ON NI M E=INN STNT
e VO ONCONOVO DR T
VO (O3 OO0 T A ON A DN MU
N0 IR DeOT 3 D= NTNMO
AN 3NV ONMODTINDOD
® 0 © ¢ 0 09 T s VNS TT OO

] [t 4

WV NP O NI O N O D

“9.1!311!52658:1(08

=N FONONONM O OO DO

N0 UT MO T O = NG DT

DN AN O D™= DN DO DNINNT

® ® o g 0 0P T 0 9T e R
[] * [}

QM rnw
TN MNT N OO =t v e
L ¥ . {-4-4.3-1- 3. 4. F. J- 4. 3.4.2.°3
AL £ L2l e L Ll T d
e Al dd DD DD DA i
WD W) W VL LWL WL LWL LD

Programming Style

ROTATED FACTOR MATRIX:

4

FACTOR

3

FACTOR

2

FACTOR

1

FACTOR

59557'0536701490053.4
M DO O DM N MBS M e 07— 1A~
NAMN S =MD SN TS IC O A O
NI OO A NN = PO A N O ry
3010111120?27005882.“
‘l.ll....ll‘.l...l‘.
] (] '

INTOVNNN AP e T D FNNIMDG R
DNR IR XM DI IM ONI I
N FOTNOT N DONT VNI
O~z v =M O VUM OM M TN
NMOOONDONOOVDOO 0
ML B R A I N R e

i 19)) 1) '

AL 2R AL 2K B A DU NI S A
1) L | 1)

P NDN Y AN N0 O = A D A0 000 O
0 OONT NN = D00 M NI = A O Oy
DT OOMNOTMIA AN O S M 30O M
NOP S BN TN VO NI DN
IO O NMNIN T 0N T TN e 3
LA A A R I A
1y N v

D= NMFLVON OO
1225%891111111,112
wwwuw EEEEEEEEEEEEEEEE
ol) e e d e o d b D i P UE S pFyF)
bad ok ok 2B o o F o3 23 PP bk ok o3 o3 23
P b e o e o o o o B o e o o Y - e o o e
IR BBV gl L 17 1717 Y7 7.1

System Management

ROTATED FACTOR FATRIX:

4

FACTOR 3 FACTOR

2

FACTOR

1

FACTOR

O MO D= I DN R ORW
T OM N T N O
M TN OM ™ O OT O
MM OTNO VO A NI~
DNMOONAT™ =i NOD O
.lll‘l........

) t 0 s

WNTON DO DNV FOO N2
LOONE=AX VO V3O~
AN A e 0 YA OOV
OO e v A 6O My I A 3C 1A
NI ITOMNOO wNnOoN
‘l.l......l..‘
' [}

ONT == ONMIT AN MOM
8.5901376796370
NOIANL = InA 00 D M. O
WOF DN 2aF ANO O
NDITNODINDNONIDD
L R A R T)

MM =AMT SN WO ONVIN
VO NIMIMIEC =00 O Aawe MM
NN NN NN OM NG
NN O ONANO IONA
N OMNE DME IO D T
®® 900000400000
' []

Oe=ryn 3
TNy VDN 0O Drg— e g v
Rttt (L PP TTTRTTITITIIIT]
LA A It U TU] [CAC AT T TR L |
LKL LC LR QAR QI
EETEZEEEFr LTZL
AL AL L L L L L
EXZEXXZLiEXTEELIX

80

Aruitoxt provided by Eic:

E ©

93

