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PREDICTING CUMULATIVE AND MAJOR GPA

OF UCI ENGINEERING AND COMPUTER SCIENCE MAJORS

This prediction study was initiated by the University of

California, Irvine's Office of Undergraduate Admissions to

determine appropriate admissions policies for oversubscribed

majors at UCI. Oversubscribed majors are those in which the

number of eligible freshmen applications exceeds the number that

can be enrolled. Currently there are two oversubscribed majors

at UCI: Engineering (ENG) and Information and Computer Science

(ICS). While UC has a general policy of accepting every eligible

applicant, it may not be possible to admit every eligible

student in his/her first choice of major on a particular campus.

In the case of oversubscribed majors,.each campus adopts its own

supplementary procedures admission, following broad guidelines

established by UC. The current study was an examination of the

usefulness of a statistical regression approach to identify those

prospective Engineering and ICS applicants who would be most

likely to succeed at UCI.

The specific purpose of this study was to determine the

extent to which preadmissions measures such as high school grade

point average (GPA) and admissions test scores could be used to

predict college GPA. If a strong relationship was found for past

UCI students, then the preadmisSions measures of current

applicants could be used to predict their UCI GPA's and thus

estimate their chances of succesF at UCI. This problem was

studied using the technique of multiple regression which

maximizes the correlation between a given criterion variable

(college GPA) and certain predictor variables (preadmissions

measures). The size of the multiple correlation, which varies

between zero and one, indicates the extent to which the criterion

can be predicted using a linear combination of the predictors.
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In this study two criterion variables were selected:

cumulative GPA and major GPA. Both of these were, measured at the

end of the sophomore year at UCI. The five predictor variables

were: high school GPA in the UC required pattern of "A-F"

courses, verbal and quantitative scores from the Scholastic

Aptitude Test, and achievement test scores zom the College Board

Mathematics Achievement Test (Level 1 or 2) and the English

Composition Achievement Test.
1

Engineering and ICS majors were analyzed separately. For

eacli criterion variable, the following questions were of interest:

1. Can the criterion variable be reliably predicted using a

linear combination of the predictors?

2. What is the fewest number of variables needed to reliably

predict the criterion? What are these variables?

3. Can the criterion variable be reliably predicted using a

linear combination of the predictors for subgroups of

students?

4. What is the fewest number of variables needed to reliably

predict the criterion for subgroups? What are these

variables?

5. Are there any significant differences in the obtained

multiple correlations across independent subgroups?

6. To what extent can the overall regression equation, obtained

using the entire sample, predict subgroup means?
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METHOD

Sub ects

Two cohorts of UCI Engineering and ICS students were

combined across years to increase the sample sizes for subgroup

analyses. The first cohort group entered UCI as freshmen in

fall quarter 1980 and were still enrolled at UCI in spring

quarter 1982. The second cohort entered as freshmen in fall 1981

and were still enrolled in spring 1983. Students were classified

as Engineering or ICS majors if they had declared majors in

either the School of Engineering or the Derirtment of Information

and Computer Science for at least one quarter during their

freshmen or sophomore years. The sample was restricted to those

Engineering and ICS majors who had scores on all the variables in

the study.

For analysis purposes, the two majors were further divided

into subgroups: men, women, Educational Opportunity Program
2

(EOP) students, Student Affirmative Action3 (SAA) students,

Asians,
4

and Whites. EOP and SAA students are eligible for

special state- and University-funded programs which are designed

to improve their chances of success in college and are therefore

of special in*erest in this study. Ethnicity information was

taken from the student's UC application.

Variables

Two criterion variables were chosen for this study: (1)

sophomore cumulative GPA (CUMGPA), and (2) sophomore major GPA

(MAJGPA). The major GPA included grades from all service courses

required for Engineering or ICS, not just those courses in the

major subjects, including mathematics for ICS majors and

mathematics, physical science, and chemistry for Engineering

majors. UCI course grades can range from 4.00 (A) to 0.00 (F)

with partial credit for plus and minus grades (e.g., A- = 3.67).
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Five predictor variables were used: (1) high school GPA

from courses taken after the ninth grade in the UC-specified

"A-F" pattern of course and verified by transcripts (AFGPA), (2)

SAT-V, (3) SAT-M, (4) the College Board Mathematics Achievement

Test, either Level 1 or 2 (MATHACH), and (5) The College Board

English Composition Achievement Test (ENGACH). The SAT and

College Board scores have a maximum range of 200-800 with a

theoretical population mean of 500 and standard deviation of

100. High school GPA had a maximum value of 4.00 no extra

points awarded for honors courses).

Analytical Procedures

The method of analysis chosen for-this study was multiple

regression which optimizes the correlation between the criterion

(college GPA) and a linear combination of the predictors (high

school GPA and admissions test scores). The linear combination

of predictors, and its associated weights for each of the

predictors, is designed to yield the highest possible correlation

wit) the criterion. The "best" regression equation was defined,

in this study as the one in which the multiple correlation

coefficient R is significantly different from zero and which

contains the fewest number of predictors (that is, additional

variables do not significantly improve the value of R2
).

A total of 28 (2 majors X 2 criterion variables X 7

subgroups) stepwise regressions were calculated using SPSS

(Release 8) on UCI's PRIME. A maximum of five regression

equations (five predictors) were generated for each of the 28

conditions. The stepwise regression procedure used by SPSS

follows the forward selection procedure (See Pedhazur, 1982, p.

154) in which the first variable to enter the equation is the one

with the highest zero-order correlation (r) with the criterion

variable, the second is the one with the highest partial

correlation with the criterion after partialing out the variable

already in the equation, and so on.

7



Three of the maximum of five stepwise regression equations

were of interest in this study: (1) the equation with only one

variable, the single best predictor, (2) the "optimal" or best

equation with one to four variables in which the addition of

another variable would not add significantly to the prediction,

and (3) the equation with all five variables or the full model.

These three equations were compared for differences in their

ability to predict the criterion.

Three statistics were calculated for each regression

equation: (1) the multiple correlation coefficient R, (2) R2 or

the amount of criterion score variance that can be accounted for

or explained by the linear combination of predictors, and (3) the

standard error of estimate (SE) which is in criterion score (GPA)

units. The SE can be used to determine the accuracy of the

prediction equation. Two-thirds of the time on the average, we

would expect the actual GPA of an individual to be within one SE

of the predicted GPA; ninety-five percent of the time it would be

within two SE's of the predicted GPA. The weights in each

regression equation can be examined to determine the relative

contribution of each variable to the linear prediction. When

unstandardized weights were calculated, each regression equation

also contained a constant (C).

To determine if the prediction equations were statistically

significant, each R
2
was tested against zero following Pedhazur

(1982, p. 57). The significance test used to determine the

optimal regression equations was a test in the increment in R2

due to the addition of the next variable (Pedhazur, 1982, p. 62).

Regression equations from independent subgroups were compared by

testing differences in R's using the Fisher Z transformation

(Reynolds, 1982, p. 209). The significance level for each test

was set at .05.

8
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RESULTS

Means Standard Deviations, and Intercorrelations

Tables 1 and 2 contain tne means and standard deviations for

all variables in the study for all groups and subgroups. In the

Engineering sample, 21% were women and 79% were men. In the ICS

sample, 44% were women ane 56% were men. The se,J-reported

ethnicity of the Engineering majors was: 28% Whi,e, 25% Asian,

14% SAA (American Indian, Black, Chicano, Latino, or Pilipino),

and 33% Other or not reported. The ethnicity of ICS majors was:

52% White, 31% Aisan, 10% SAA, and 7% Other or not reported.

Engineering and ICS majors had almost identical mean scores

on the preadmissions measures. Their mean high school GPA's were

quite similar (ENG = 3.64 and ICS = 3.62) and were almost one

standard deviation above the nation mean high school GPA of 3.06

(standard deviation = .60) as.reported by all students taking the

SAT in 1980 and 1981 ( College Bound Seniors, 1980, 1981).

For both majors, the mean SAT-M scores (EIG = 598 and ICS =

596) were considerably higher than the mean SAT-V scores (454 for

both ENG and ICS). The national means, averaged over 1980 and

1981 for comparability with the.UCI samples, were 466 for the

SAT-M and 424 for the SAT-V.

The mean achievement test scores show the same pattern as

the aptitude test scores, with the means on the Mathematics

Achievement Test considerably above the means on the English

Composition Achievement Test. Again, there were virtually no

differences between the two majors on either achievement test.

The 1980/81 national average for those students who elected to

take the Mathematics Achievement Test (either Level 1 or Level 2)

was 596; the national average for the English Composition

Achievement Test was 515. Thus the UCI means were virtually

identical with the national average on the Mathematics Test but

slightly below the national average on the English Composition

Test.
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The same pattern of differences between quantitative and

verbal tests can be seen across the various subgroups. The

largest differences between verbal and quantitative scores were

found for Asian students. For Asian Engineering majors these

differences were statistically significant (using one-tailed t

tests between SAT-M and SAT-V and between the two achievement

tests). For Asian ICS students there was a significant difference

between mean SAT scores, but not between mean achievement test

scores.

On the two criterion variables, cumulative and major-GPA,

the ICS major received slightly higher UC1 graaes, on the

average, then did the Engineering majors. Compared to high

school GPA's, the UC1 CPA's for both majors were consistently

lower (about .80 lower) and twice as variable.

Table 3 contains the first order correlations among the

variables for all Engineering and ICS majors. The correlation

matrices for subgroups showed similar patterns and are not

repeated here. Inspection of the correlation matrices indicates

there is considerable intercorrelation or high multicolinearity

among the predictor variables, especially between the two

quantitative tests (SAT-M and Mathematics Achievement) and

between the two verbal tests (SAT-V and English Composition

Achivement Test). High multicolinearity poses several problems

in multiple regression (see Pedhazur, 1982, p. 232). For

instance, high intercorrelations make variables redundant. Thus

after one is entered into equation, the second may not be able to

make any further contribution to she prediction. This can lead

to reversals of the signs of weights and other interpretation

problems.

The following sections describe the results of the stepwise

regression procedures for Engineering and ICS majors.

10



Engineering Majors
9

Cumulative GPA. Table 4 contains the stepwise regression

results for predicting the sophomore cumulative GPA of Engineering

majors. The best predictor is the Mathematics Achievement Test

which has a correlation of .52 with cumulative GPA. Using the

Mathematics Achievement Test alone accounts for 28% of the

criterion score variance. The standard error of estimate is .47

grade points.

The optimal equation contains only two of the five predictor

variables. The addition of high school GPA significantly

improves the prediction of cumulative GPA over using the

Mathematics Achievement Test alone. The addition of the three

other predictor variables did not add significantly to the

equation. The optimal equation increases the multiple

correlation to .62, has a standard error .44 grade points, and

accounts for 38% of the criterion score variance.

Table 4 also contains the results obtained when all five

predictors are entered into the equation. This equation is

presented for comparison purposes only since the addition of the

last three variables did not significantly improve the amount of

prediction, nor did any of the statistics (R, R2 or SE) change

more than .01. The high multicolinearity among predictors may be

contributing to the negative weights in the full regression

equation.

The optimal regression equations for each of the six

subgroups of engineering majors are presented in Table 5. All of

the subgroup multiple R's were significantly different from

zero. When multiple R's from independent groups were compared,

there were no significant differences.
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For all subgroups, cumulative GPA could be reliably

predicted using at most one or two predictors. For five of the

subgroups, these variables were the Mathematics Achievement Test

alone or in combination with the high school GPA. The only

exception was the SAA subgroup; their best predictor was the

English Composition Achievement Test. The small size of the SAA

sample may have contributed to the non-significance of additional

predictors.

The overall regression equation, based on the full sample of

Engineering majors, was applied to each of the subgroups.- The

predicted subgroup means were all within .06 grade points of the

obtained means. There were slight overpredictions for men, SAA

students, and Whites, and slight underPredictions for women, EOP

students, and Asians.

Cumulative GPA for Engineering majors can, then, be reliably

predicted (R=.62) using a linear combination of the Mathematics

Achievement Test and high school GPA, plus a constant:

CUMGPA = .59694(AFGPA) + .00264(MATHACH) - .98639 (ENGINEERING)

This equation has a standard error of estimate of .44 grade

points and explains 38% of the criterion score variance. The

addition of SAT-M, SAT-V, and the English Composition Achievement

Test did not significantly improve the prediction. There were no

significant differences in multiple R's across independent

subgroups. For each subgroup, at most two variables were needed

to predict cumulative GPA. Using the overall regression equation

did not seriously affect the accuracy of the predictions for

subgroups.

12
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Major GPA. Table 6 contains the stepwise regression results

for predicting sophomore major GPA for Engineering majors. The

best 1)redictor is the Mathematics Achievement Test which has a

correlation of .55 with the criterion. It accounts for 31% of

the variance of major GPA and has a standard error of estimate of

.55 grade points.

In the optimal equation, high school GPA adds to the

Mathematics Achievement Test to produce a multiple correlation

of .62 with major GPA. Together these two variables explain 38%

of the criterion score variance and reduce the standard error to

.52 grade points. The addition of subsequent variables did not

significantly improve the prediction.

There were virtually no changes in R, R2 or the SE when all

five predictor variables were included. Again, the negative

weights in the full model are probably related to the problem of

high multicolinearity among the predictors.

Results for subgroups are presented in Table 7. The

multiple R's were all significantly different from zero. For all

subgroups, the single best predictor was the Mathematics

Nchievement Test. The second significant predictor was high

school GPA. There were no significant differences in multiple

R's across independent subgroups.

The overall regression equation was used to predict subgroup

means. All of the predicted means were within .08 grade points

of the obtained means. There were slight overpredictions for

women, SAA students, and Whites, and underpredictions for EOP

students and Asians. There were no differences in means for men.

13
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The major GPA of engineering majors can, then, be reliably

predicted (R=.62) using a linear combination of the Mathematics

Achievement Test and high school GPA; plus a constant:

MAJGPA = .59999(AFGPA) + .00350(MATHACH) - 1.60200 (ENGINEERING)

This equation explains 38% of the criterion score variance

and has a standard error of .52 grade points. Additional

predictors did not significantly improve the prediction. There

were no significant differences in multiple R's across

independent subgroups. The most powerful predictor for all

subgroups was the Mathematics Achievement Test. The overall

prediction equatinr fairly accurately predicted scores for

subgroups.

Computer Science Majors

Cumulative GPA. Table 8 contains the results of the stepwise

regression procedure for predicting the sophomore cumulative GPA

of ICS majors. High school GPA was the best predictor of

cumulative GPA with a correlation of .41 which accounts for 17%

of the criterion score variance. The standard error of estimate

using high school GPA alone was .45 grade points.

The optimal regression equation adds the Mathematics

Achievement Test to high school GPA. The two-variable equation

increases the multiple correlation to .51 and explains 26% of the

criterion score variance. The standard error is reduced to .43

grade points.

Although the addition of subsequent predictors did not

significantly improve the prediction, the results with all five

predictors are presented in Table 8 for comparison purposes. The

addition of three more variables did not change the multiple R,

R
2 or the standard error of estimate. The negative weights in

full model are probably due to the high multicolinearity among

predictors and to the fact that none of the last three variables

are adding a reliable amount to the prediction equation.

14
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Table 9 contains the optimal regression equations for each

of the six subgroups of ICS majors. The multiple R's for all

subgroups, except SAA students, were significantly different from

zero. There. were no significant differences among the multiple

correlations when independent groups were compared. Cumulative

GPA could be reliably predicted with at most two variables: high

school GPA alone or in combination with the Mathematics

Achievement Test or SAT-M.

Using the overall regressional equation to predict subgroup

means resulted in predicted mean GPA's within .13 grade points of

tie observed means. The overall regression equation

ov#:rpredicted for men, EOP students, and SAA students, and

underpredicted for women and Whites. There was no difference

between predicted and obtained means for Asians using the overall

regression equation.

Cumulative GPA, then can be reliably predicted (R=.51) for

this sample of ICS majors using a linear combination of high

school GPA and the Mathematics Achievement Test, plus a constant:

CUMGPA = .50266(AFGPA) + .00155(MATHACH) + .13139 (ICS)

This equation accounts for 26% of the criterion score

variance and has a standard error of .43 grade points. The

addition of SAT scores and the English Composition Achievement

Test did not improve the prediction of cumulative GPA. Among

independent subgroups, there were no significant differences in

the multiple correlations. At most, two variables were needed to

reliably predict cumulative GPA for the subgroups. The overall

regression equation predicted subgroup means fairly accurately.

15



14
Major GPA. Table 10 contains the stepwise regression results

for predicting sophomore major GPA for ICS majors. The best

predictor of major GPA is the Mathematics Achievement Test score

with a correlation of .51. When used alone, this variable ac-

counts for 25% of the criterion score variance and has a standard

error of .56 grade poirts.

The optimal regression equation is a statistically

significant improvement over the use of the Mathematics

Achievement Test alone. Together these two variables increase

the multiple correlation to .58 while reducing the standard error

of estimate to .53 grade points. The optimal equation accounts

for 34% of the criterion score variance. Additional variables

did not significantly improve the prediction.

For comparison purposes, the regression equation with all

five predictors is included in Table 10. The addition of these

variables only slightly affected the multiple R, R2 and the

standard error. Again, the negative weights are probably due to

the high multicolinearity among the predictors plus the

non-significant contribution of the variables added after the

first two.

Table 11 contains the optimal regression equations for each

of the six subgroups of computer science majors. The multiple R's

for all subgroups were significantly different from zero.

Comparing independent subgroups, there were no significant

differences in the magnitude of the multiple R's. For five of

the subgroups, major GPA could be reliably predicted using at

most two variables: high school GPA alone or in combination

with the Mathematics Achievement Test or SAT-M. For women

computer science majors, a third variable, SAT-V, made a

significant contribution to the prediction.
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Applying the overall optimal regression equation to each of

the subgroups resulted in predicted mean GPA's for the subgroups

within .17 grade points of the obtained means. The largest

difference was an overprediction of .17 grade points for the SAA

mean. There were overpredictions for men and Whites, and

underpredictions for women, EOP students, and Asians.

We can conclude, then, that major GPA for this sample of ICS

majors can reliably predicted (R=.58) using a linear combination

of high school GPA and the Mathematics Achievement Test, plus a

constant:

MAJGPA = .55617(AFGPA) + .00299(MATHACH) - 1.05756 (ICS)
.

This equation accounts for 34% of the criterion score

variance and has a standard error of estimate of .53 grades

points. Adding SAT-M, SAT-V and the English Achievement Test did

not significantly improve the prediction. There were no

significant differences in multiple R's among independent

subgroups. Applying the overall regression equation to the

subgroups did not significantly alter predicted subgroup means.

17
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DISCUSSION OF THE RESULTS

The results of this study indicate that cumulative GPA and

major GPA of these samples of UCI Engineering and ICS majors can

be reliably predicted using a linear combination of two

preadmissions measures: high school GPA and the Mathematics

Achievement Test. None of the other three predictor variables

(SAT-M, SAT-V, English Composition Achievement Test) added

significantly to the predictions. Thus, only two of the five

preadmissions measures contributed significantly to the

predictions.

For Engineering majors, the single best predictor of both

cumulative and major GPA was the MatheMatics Achievement Test,

followed by high school GPA. None of the other variables added

significantly to the predictions. Both criterion scores could be

predicted to the same extent; that is, the multiple correlations

for cumulative and major GPA were both equal to .62.

For ICS majors, major GPA was slightly more predictable than

cumulative GPA (R=.58 compared to R=.51). For cumulative GPA,

the high school GPA was the single best predictor, followed by

the Mathematics Achievement Test. For major GPA the relative

importance of these two predictors was reversed; the Mathematics

Achievement Test was the best predictor, followed by high school

GPA. No other variables significantly improve the predictions.

Cumulative and major GPA can also be reliably predicted by

for subgroups of Engineering and ICS majors with at most two

variables, with the one exception of predicting major GPA of

women ICS majors. The two variables that consistently appeared

in the subgroup equations were again the Mathematics Achievement

Test and the high school GPA. Siace there were no significant

differences in R's across independent groups, we can conclude

that the UCI CPA's of all subgroups were equally predictable.

Using the overall regression equation to predict subgroup means

did not appreciably affect the subgroup predictions. Thus, it is

not necessary to use separate regression equations for each

subgroups.

18
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The magnitude of the multiple correlations found in this

study compare favorably to median correlations across similar

studies (see Breland, 1979; Ford and Campos, 1977). However,

very few studies have examined the predictive power of the

achievement tests. Similarly, there have been very few studies

conducted within major fields, despite the fact that such studies

have been strongly recommended (Breland, 1979).

The applicability of these results to subsequent samples of

Engineering and ICS majors needs to be demonstrated by cross- -

validation studies. It is to be expected that there will-be some

shrinkage in the size of the multiple correlations when the

equations of this study are applied to subsequent samples.

However, the College Board has found that, in general, colleges

which use the SAT and the high school record to predict freshmen

GPA generally find that the results are fairly stable from year

to year. Cross-validation studies should also be conducted to

determine if the same prediction patterns are observed across

subgroups and to confirm or discount some of the anomalies ob-

served with the smaller groups. Use of the overall regression

equation for subgroups should also be re-examined within the

context of over- and underprediction for certain groups.
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FOOTNOTES

1
The University of California requires each applicant to

submit test scores from either the Scholastic Aptitude Test or the

American College Testing program, plus scores from three College

Board achievement tests. Two of the achievement tests must be

Mathematics (level 1 or 2) and English Composition.

2
EOP students must meet low income requirements and/or have

membership in one of the SAA groups.

3 SAA students are defined by UC to include: American

Indians, Blacks, Chicanos, Latinos, and Pilipinos.

4Asians include Chinese, East Indians, Japanese, Koreans,

Polynesians, and other Asians, excluding Pilipinos.
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Table 1

Mean Scores for Engineering Majors

Group n

VARIABLES

AFGPA SAT-M SAT-V MATHACH MACH CUMGPA MAJGPA

All 296

M 3.64 598 454 603 469 2.77 2.69

SD .32 86 119 86 113 .55 .66

Women 62

M 3.74 576 469 578 487 2.81 2.65

S5 .31 89 110 93 111 .42 .65

Men 234

M 3.61 604 450 610 464 2.76 2.70

Si) .32 84 121 83 113 .59 .67

EOP 96

M 3.55 527 369 578 397 2.69 2.59

SD .36 94 117 87 102 .58 .70

SAA 41

M 3.50 529 426 529 427 2.46 2.30

SD .37 99 94 83 96 .49 .67

Asian 74

M 3.64 608 382 621 408 2.89 2.83

SD .32 82 128 82 97 .63 .71

White 84

M 3.66 614 512 611 524 2.76 2.67

S5 .30 71 77 76 90 .50 .60

22
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Table 2

Mean Scores for Information and
Computer Science Majors

Group n

VARIABLES

AFGPA SAT-M SAT-V MATHACH ENGACH CUMGPA MAJGPA

All 238

M 3.62 596 454 596 472 2.87 2.74
SD .33 92 129 97 110 .49 .65

Women 104

M 3.65 556 416 556 439 2.87 2.66
SD .33 88 133 90 114 .45 .62

Men 134

M 3.59 627 483 626 498 2.88 2.79

SD .33 82 117 91 100 .52 .68

EOP 65

M 3.52 547 347 557 382 2.75 2.56
SD .38 91 128 100 104 .47 .65

SAA 23

M 3.51 514 476 527 467 2.58 2.12

S5 .40 94 99 91 83 .41 .56

Asian 74

M 3.66 594 364 598 411 2.90 2.83

S5 .34 92 139 102 120 .53 .61

White 123

M 3.60 617 508 609 514 2.93 2.81

SD .32 83 89 90 86 .46 .64
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-Table 3

Intercorrelations Between Variables
for Engineering and ICS Majors

Variable 2 3 4 5 6 7

ENGINEERING MAJORS ( n = 296)

1. AFGPA .27 .25 .34 .30 .48 :45

2. SAT-M .40 .79 .44 .43 .45

3. SAT-V .30 .81 .21 .18

4. MATHACH .39 .52 .55

5. ENGACH .30 .27

6. CUMGPA .92

7. MAJGPA

ICS MAJORS ( n = 238)

1. AFGPA .23 .15 .24 .25 .41 .39

2. SAT-M .44 .82 .49 .35 .48

3. SAT-V .40 .85 .23 .16

4. MATHACH .45 .39 .51

5. ENGACH .26 .23

6. CUMGPA .86

7. MAJGPA
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Table 4

Stepwise Regression Equations
for Cumulative GPA of Engineering Majors (n = 296)

Equation ka R R2 SE Var r

Weights

Percent
ContributionB Beta

Single 1 .52 .28 .47 MATRACH .52 .00339 .52416 100%
Predictor C = .72789e

Optimal 2 .62 .38 .44 KATHACH .52 .00264 .40730 54
Equations AFGPA .48 .59694 .34669 46

C = -.98639

Full 5 .62 .39 .44 MATHACH .52 .00232 .35800 37
Model

d
AFGPA .48 .58527 .33991 35
ENGACH .30 .00063 .12745 13
SAT-V .21 -.00051 -.10840 11

SAT-M .43 .00029 .04461 5

C = .97837

a
k = number of variables in the equation.

b
B weights are unstandarized; beta weights are standarized.

Increment in R2 due to addition of next variable was not significant (p > .05).

d
Full model uses all 5 predictor variables.

e
C = constant for the unstandardized equation.

NOTE: Optimal equation significantly improves prediction over single predictor; full
model does not add significantly to optimal equation.
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Table 5

Optimal Regression Equationsa
for Cumulative GPA of
Engineering Subgroups

Group n R R
2

SE Var
Percent

Contribution

Women 62 .48 .23 .58 MATHACH 100%

Men 234 .65 .42 .45 MATHACH 57
AFGPA 43

EOP 96 .61 .37 .46 MATHACH 67
AFGPA 33

SAA 41 .59 .34 .40 ENGACH 100

Asian 84 .64 .41 .49 MATHACH 62
AFGPA 38

White 143 .62 .38 .39 AFGPA 62
MATHACH 38

a
in R2Increment n R due to addition of next variable was not

significant (p > .05).
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Table 6

Stepwise Regression Equations
for Major GPA of Engineering Majors (n = 296)

Equation le R R2 SE Var r

Weightsb

Percent
ContributionB Beta

Single 1 .55 .31 .55 MATHACH .55 .00426 .55186 100%

Predictor C = .12103e

Optimal 2 .62 .38 .52 MATHACH .55 .00350 .45331 61

Equations AFGPA .46 .59999 .29236 39

C = -1.60200

Full 5 .62 .39 .52 MATACH .55 .00316 .40930 42

Model AFGPAAFGPA .46 .60282 .29374 30

SAT-V .18 -.00068 -.12285 13

ENGACH .27 .00057 .09754 10

SAT-M .45 .00042 .05456 6

C = .97799

a
k K = number of variables in the equation.

b
B weights are unstandarized; beta weights are standarized.

c
Increment in R

2
due to addition of next variable was not significant (p > .05).

d
Full model uses all S predictor variables.

e
C = constant for the uLgt:adardized equation.

NOTE: Optimal equation significantly improves prediction over single predictor; full

model does not add significantly to optimal equation.
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Table 7

Optimal Regression Equationsa
for Major GPA of Engineering Subgroups

Group n R R2 SE Var
Percent

Contribution

Women 62 .48 .23 .58 MATHACH 100%

Men 234 .66 .43 .51 MATHACH 58
AFGPA 42

EOP 96 62 .38 .56 MATHACH 70
AFGPA 30

SAA 41 .57 .33 .56 MATHACH 100

Asian 84 .64 .41 .55 MATHACH 61

White 143 .59 .35 .53

AFGPA

AFGPA

39

51
MATHAC H 49

a
Increment in R 2

due to addition of next variable was not
significant (p % .05).
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Table 8

Stepwise Regression Equations
for Cumulative GPA of ICS Majors (n = 238)

Equation ka R2 SE Var r

Weightsb

Percent
ContributionB Beta

Single 1 .41 .17 .45 AFGPA .41 .61308 .41268 100%
Predictor C = .65671e

Optimal 2 .51 .26 .43 AFGPA .41 .50266 .33835 53
Equation' MATHACH .39 .00155 .30532 47

C = .13139

Full 5 .51 .26 .43 .AFGPA .41 .50129 .77343 42

Model
d

PIATHACH .39 .00117 .23055 30

SAT-V .23 .00035 .09103 12

SAT-M .35 .00038 .07108 9

ENGACH .26 -.00020 -.04381 6

C = .77390

a
k = number of variables in the equation.

b
B weights are unstandarized; beta weights are standarized.

c Increment in R2 due to addition of next variable was not significant (p > .05)-

d
Full model uses all 5 predictor variables.

e
C = constant for the unstandardized equation.

NOTE: Optimal equation significantly improves prediction over single predictor; full
model does not add significantly to optimal equation.
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Table 9

timal Regression Equationsa
or Cumu ative GPA of ICS Su groups

Group n R R
2

SE Var
Percent

Contribution

Women 104 .51 .26 .43 AFGPA 62%
SAT-M 38

Men 134 .54 .30 .44 MATHACH 53
AFGPA 47

EOP 65 .38 .14 .44 AFGPA 100

SAA 23
b

.33 .11. .40 AFGPA 100

Asian 74 .51 .26 .46 AFGPA 54
SAT-M 46

White 123 .55 .30 .39 AFGPA 52
MATHACH 48

a
in R2Increment n R due to addition of next variable was not

significant (p > .05).

b R was not significantly different from zero (p > .05).
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Table 10

Stepwise Regression Equations
for Major GPA of ICS Majors (n = 238)

Equation k
a

R
2

SE Var

Weightsb

Percent
Contributionr B Beti.

Single 1 .51 .26 .56 MATHACH .51 .00346 .51169 100%

Predictor C = .66705e

Optimal 2 .58 .34 .53 MATHACH .51 .00299 .44310 61

Equation AFGPA .39 .55617 .28177 39

C = -1.05756

Full 4 .59 .35 .53 MATHACH .51 .00217 .32201 36

Model
d

AFGPA .39 .55543 .28140 31

SAT-M .48 .00140 .19557 22

SAT-V .16 -.00049 -.09561 li

C = -1.17911

a
k = number of variables in the equation.

b
B weights are unstandarized; beta weights are standarized.

Increment in R2 due to addition of next variable was not significant (p > .05).

d
In the full model, only 4 predictors entered the equation with the SPSS default for

adding another variable pet at F = .01.

e
C = constant for the unstandardized equation.

NOTE: Optimal equation significantly improves prediction over single predictor; full
model does not add significantly to optimal equation.
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Table 11

EOptimal Regression Equationsa
r Major GPA of ICS Subgroups

Group n R R2 SE Var
Percent

Contribution

Women 104 .59 .35 .51 SAT-M 47%
AFGPA 35
SAT-V 19

Men 134 .60 .36 .55 MATHACH 62
AFGPA 38

EOP 65 .56 .32 .54 SAT-M 52
AFGPA 48

SAA 23 .56 .32 .48 AFGPA 100

Asian 74 .64 .40 .46 SAT-M 61
AFGPA 39

White 123 .56 .32 .53 MATHACH 64
AFGPA 36

a
Increment in R

2 due to addition of next variable was not
significant (p > .05).

32

30


