The experiment reported here investigated how verbalization of subtraction with regrouping operations influenced learning disabled students' self-efficacy and skillful performance, and also explored how effort attributional feedback affected these achievement behaviors. Learning disabled students (N=90) from grades 6 through 8 received training and solved problems over six 45-minute sessions. Some students verbalized aloud while solving problems (continuous verbalization); those in a second condition verbalized only during the first half of training (discontinued verbalization); students in a third condition did not verbalize (no verbalization). All students were periodically monitored and either received effort feedback during the first half of training, effort feedback during the second half of training, or no effort feedback. Continuous verbalization led to higher self-efficacy, and effort feedback promoted these achievement behaviors more than no feedback. Delivering effort feedback during the first half of training enhanced effort attributions. Findings support the notion that private speech can help regulate task performance. References, footnotes, and a data table are appended. (Author/CL)
Strategy Training and Attributional Feedback

With Learning Disabled Students

Dale H. Schunk and Paula D. Cox

College of Education
University of Houston
Houston, TX 77004

Abstract

This experiment investigated how verbalization of subtraction with regrouping operations influenced learning disabled students' self-efficacy and skillful performance, and also explored how effort attributional feedback affected these achievement behaviors. Students received training and solved problems over sessions. Some students verbalized aloud while solving problems (continuous verbalization); those in a second condition verbalized only during the first half of training (discontinued verbalization); students in a third condition did not verbalize (no verbalization). All students were periodically monitored and either received effort feedback during the first half of training, effort feedback during the second half of training, or no effort feedback. Continuous verbalization led to higher self-efficacy and skillful performance than did discontinued and no verbalization; each type of effort feedback promoted these achievement behaviors more than no feedback. Delivering effort feedback during the first half of training enhanced effort attributions.
Strategy Training and Attributional Feedback
With Learning Disabled Students

According to Bandura (1982a, 1982b), psychological procedures change behavior in part by creating and strengthening self-efficacy, or one's perceived performance capabilities in a given activity. Self-efficacy is hypothesized to influence choice of activities, effort expended, persistence, and task accomplishments. Although self-efficacy originally was employed to help explain coping behaviors in fearful situations, its use has been extended to other contexts including cognitive skill learning (Schunk, 1985).

The present study tested some predictions of the self-efficacy model with learning disabled students, who perform below their measured abilities but do not possess intellectual deficits. Especially when facing difficult tasks, they often are inattentive and display lackadaisical efforts (Licht, 1984; Torgesen & Licht, 1983). These behavioral deficits may occur in part because such students hold self-doubts about their capabilities to perform well (Boersma & Chapman, 1981; Licht, 1984). Interventions that promote students' perceived capabilities (i.e., self-efficacy) might help to remedy behavioral dysfunctions (Schunk, 1985).

Much classroom learning involves understanding how to apply task strategies. In mathematics, students who fail to acquire algorithmic knowledge through normal instructional procedures may benefit from explicit strategy training that includes verbalizing aloud the solution steps and their application to problems. Such overt verbalization is a form of private speech, which refers to the set of speech phenomena that has a behavioral self-regulatory function but is not socially communicative (Vygotsky, 1962; Zivin, 1979). Overt verbalization can facilitate learning because it directs
students' attention to important task features and, as a type of rehearsal, assists strategy encoding and retention (Schunk, 1982). As a means of regulating one's task performance, verbalization also can convey to students a sense of personal control over learning, which promotes self-efficacy (Bandura, 1982a; Schunk, 1982).

Verbalization seems most beneficial for students who typically perform in a deficient manner (Denney & Turner, 1979). Positive effects of verbalization on performance have been obtained with children who do not spontaneously rehearse material to be learned (Asarnow & Meichenbaum, 1979), impulsive subjects (Meichenbaum, 1977), and remedial students (Schunk, 1982). Verbalization also has helped mentally retarded and emotionally disturbed students acquire mathematical skills (Grimm, Bijou, & Parsons, 1973; Johnston, Whitman, & Johnson, 1980; Whitman & Johnston, 1983). Learning disabled students, who often do not use efficient plans while learning, might benefit from verbalization to the extent that it helps them work at tasks in a systematic manner (Hallahan, Kneedler, & Lloyd, 1983; Wilder, Draper, & Donnelly, 1984).

One purpose of the present study was to determine how verbalization during cognitive skill learning influenced students' self-efficacy and skills. Students received subtraction training over six sessions. One group of students verbalized aloud while solving problems during all sessions, a second group verbalized aloud during the first half of the training program (first three sessions) but not during the second half, and students in a third condition did not verbalize. Although it was expected that the two verbalization conditions would develop higher self-efficacy and skills than the no verbalization condition, the present study tested the hypothesis that
continuity of verbalization was less important than verbalization itself (i.e., the two verbalization conditions would not differ). It was expected that overt verbalization during the first half of training would help students learn how to work subtraction problems in a strategic (algorithmic) fashion. To the extent that students could then shift this means of regulating their task performance to a covert level, we felt that continued verbalization would offer no benefits. Research shows that once strategic task behaviors are instilled overt verbalization may be discontinued with no performance decrement (Harris, 1982; Meichenbaum, 1977).

A second purpose of this study was to investigate how the sequence of effort attributional feedback affected students' self-efficacy and skills. Attributional theories postulate that individuals form causal attributions (i.e., perceived causes) for the outcomes of their actions (Kelley & Michela, 1980). In achievement contexts, students often attribute their successes and failures to ability, effort, task difficulty, and luck (Weiner, 1979). Effort is presumably under volitional control and amenable to change. Research shows that linking past failures with insufficient effort promotes effort attributions and persistence (Andrews & Debus, 1978; Dweck, 1975), and that effort feedback for prior successes enhances children's motivation, self-efficacy, and skills (Schunk, 1985).

In the present study, students either periodically received attributional feedback linking their successful problem solving with effort during the first half of the training program, received effort feedback during the second half of training, or did not receive effort feedback. It was expected that effort attributional feedback would promote students' self-efficacy and skills. Effort feedback might be especially beneficial with learning disabled
students, who often do not place sufficient emphasis on effort as a cause of outcomes (Butkowsky & Willows, 1980; Licht, 1984; Pearl, Bryan, & Donahue, 1980).

A condition in which students received effort feedback throughout training was not included because our central concern was to determine how the sequence, rather than the amount, of effort feedback affected achievement outcomes. It was predicted that effort feedback during the first half of training would raise self-efficacy and skills better than later effort feedback. We expected that effort feedback for early successes would be viewed as credible by students, given that they lacked skills and needed to expend effort to perform well. As students improved their skills and perceived that they were becoming more competent, decreasing the salience of effort as a cause of success by discontinuing effort feedback may better substantiate their perceptions of competence (Schunk, 1984). The belief that one can perform well with less effort builds self-efficacy more than when greater effort is required (Bandura, 1982b). Conversely, effort feedback for later successes could lead students to doubt their capabilities. They might wonder why they still have to work hard and whether they can sustain the level of effort needed for success (Schunk, 1984).

Method

Subjects

The sample included 90 students drawn from six middle schools (grades 6 to 8). Ages ranged from 11 years 2 months to 16 years 2 months (M = 13 years 7 months); 12% of the subjects had repeated at least one grade. The 51 boys and 39 girls represented different ethnic backgrounds as follows: 68% white, 15% black, 11% Hispanic, 6% Asian. The socioeconomic status of children, as
gauged by school personnel, was 65% middle class, 28% lower middle class, and 7% lower class. These ethnic background, socioeconomic status, and gender percentages approximated those of the school district's middle school learning disabled population.

All students previously had been classified by the school district as learning disabled in mathematics according to state guidelines (Texas Education Agency, 1983). The district followed a two-stage evaluation sequence. Initially, the student's physical condition, typical behavior, intelligence, and emotional stability were assessed with a teacher referral form, parent form, behavior rating, hearing and vision tests, and the WISC-R (Wechsler, 1974). During the second stage, the student's academic achievement was assessed (Woodcock & Johnson, 1977). A student was classified as learning disabled in mathematics when his or her mathematical achievement score was more than one standard deviation (at least 16 points) lower than his or her intelligence score. The intelligence scores of students in this sample ranged from 80 - 115 ($M = 93$); mathematical achievement scores ranged from 65 - 90 ($M = 75$). All subjects received daily special education services in mathematics; 48% of the subjects also received reading instruction in resource rooms.

Students' resource room mathematics teachers initially identified 100 students who had encountered difficulties learning subtraction with regrouping skills. This selection procedure was followed because this study focused on processes whereby self-efficacy and skills could be developed when they were low. Five students were excluded from this initial sample due to absences, and five others were randomly excluded to equalize the cell sizes.
Stratégy Training

8

Materials

Attributions. The attribution measure consisted of four scales on a sheet of paper (Schunk, 1984). Each scale ranged in 10-unit intervals from not at all (0), through intermediate values (40-60), to a whole lot (100). The four scales were labeled good at it (i.e., ability), worked hard (effort), easy problems (task), and lucky (luck). Label order was counterbalanced on four different forms.

This attributional assessment is an example of a structured unidimensional scale (Elig & Frieze, 1979). Such scales assume independence of ratings and allow attributions to be assessed separately. A structured scale was chosen because children seem to understand it more readily than an unstructured assessment (Diener & Dweck, 1980). Structured unidimensional scales yield attributional dimensions similar to those of structured ipsative scales, in which an individual judgment influences other judgments (Maruyama, 1982).

In previous research with students younger than those in the present study (Schunk, 1984), students readily understood the meaning of the scales and experienced no difficulties completing the instrument. Prior to the Schunk (1984) study, a separate reliability assessment was conducted with 15 students who did not participate in that study. The test-retest reliability coefficient was .80.

Self-efficacy. The self-efficacy test assessed students' perceived capabilities for correctly solving different types of subtraction problems. For this assessment, 25 scales were portrayed on five sheets of paper (five scales per page). Each scale ranged in 10-unit intervals from not sure (10), through intermediate values (50-60), to really sure (100). The stimulus
Strategy Training

9

materials comprised 25 sample pairs of subtraction problems; each pair of problems was shown on a separate index card. The two problems constituting each pair were similar in form and operations required, and corresponded to one problem on the ensuing skill test although they involved different numbers. Reliability was assessed in conjunction with previous research using 17 children who did not participate in that study (Bandura & Schunk, 1981). The test-retest reliability coefficient was .82.

Subtraction skill. The skill test comprised 25 problems ranging from two to six columns. The problems tapped various regrouping operations ordered from least to most difficult as follows: regrouping once, regrouping caused by a zero, regrouping twice, regrouping from a one, and regrouping across zeros (Friend & Burton, 1981). Of these 25 problems, 12 were similar to some of the problems that subjects solved during the ensuing training sessions, whereas the other 13 were more complex. For example, during training students solved problems that required regrouping twice; some skill test problems required regrouping three times.

There were two forms of the skill test (pretest and posttest) to eliminate possible effects due to problem familiarity. These parallel forms were developed in previous research (Bandura & Schunk, 1981); the two forms correlated highly ($r = .87$) in a reliability assessment conducted in conjunction with that study.

Training materials. Six sets of instructional material were used. Each set incorporated one subtraction with regrouping operation ordered from least-to-most difficult as follows: regrouping once in two-column problems, regrouping once in three-column problems, regrouping caused by a zero,
regrouping twice, regrouping from a one, regrouping across zeros (Friend & Burton, 1981).

The format of each instructional set was identical. The first page of each set contained a full explanation of the relevant regrouping operation, along with two examples illustrating the application of the solution strategy. The following six pages each contained several similar problems to be solved using the designated strategy. The problems portrayed on these six pages did not become progressively more complex, but rather required that students utilize the solution strategy exemplified on the first (explanatory) page. Students worked on one set of material during each training session (e.g., during session one students solved problems requiring regrouping once in two-column problems). Each set included sufficient problems so that students could not finish it during the session.²

Procedure

Pretest. Children were administered the pretest individually by one of six female adult testers drawn from outside the school. In administering the pretest, testers followed a script to insure standardization across subjects. For the attributional assessment, the tester showed the paper to the student and explained that it showed four things that can help students work problems. The tester pointed out the numerical and verbal designators on each scale and explained that the higher the number a student marked on a scale, the more important he or she felt that factor was in helping him or her solve problems. The tester also provided two examples of how hypothetical students might mark the scales (e.g., a student marked 90 for worked hard because he thought that was very important, 70 for lucky because he thought that was pretty important
40 for easy problems because he felt that was somewhat important, and 10 for good at it because he did not think that was important).

The tester then said to students, "I'd like you to think about the work you do in math. For example, suppose you did really well in math; that is, you worked a lot of problems correctly or you got a high score on a test. Why do you suppose that might happen?" The tester explained that marks did not have to add to a certain number (e.g., 100). Students privately recorded their ratings. Subjects understood these directions and did not experience difficulties completing their four judgments.

Students next received the self-efficacy assessment. They initially received practice with the scale by judging their certainty of successfully jumping progressively longer distances. In this concrete fashion, students learned the meaning of the scale's direction and the different numerical values.

Following this practice, students were briefly shown the 25 sample pairs of subtraction problems for about 2 s each. This brief duration allowed assessment of problem difficulty but not actual solutions; thus, students judged their capability to solve different types of problems rather than whether they could solve any particular problem. The tester advised students to be honest and mark the efficacy value that corresponded to their level of certainty for being able to correctly solve the type of problem depicted. After privately making each judgment, students covered it with a blank sheet of paper to preclude observation of prior efficacy ratings from affecting subsequent judgments. The 25 judgments were summed and averaged.

The skill test was administered immediately following the efficacy assessment. Each of the 25 problems was portrayed on a separate sheet of
paper. The tester presented each problem to students one at a time, and verbally instructed students to examine each problem and to place the page on a completed stack when they finished solving the problem or chose not to work on it any longer. Students were given no performance feedback on the accuracy of their solutions. The measure of skill was the number of problems solved correctly.

Training sessions. Following the pretest, students were randomly assigned within gender and school to one of nine experimental conditions \((n = 10\) per condition) according to a 3 (continuous verbalization - discontinued verbalization - no verbalization) \(\times 3\) (first half effort feedback - second half effort feedback - no effort feedback) factorial design. All students received the subtraction training program during 45-minute sessions on six consecutive school days.

Training sessions were conducted by one of six female adult proctors drawn from outside the school. For any given child, the same proctor administered all six training sessions. The child's training proctor had not administered the pretest to the child and was unaware of the child's pretest performance. At the start of each session, students met in small groups of four to five with their proctor. Each proctor administered the different treatments to preclude confounding proctors with treatments. Proctors followed a script to insure standardized implementation of treatments across subjects.

Except as noted below, the format of each training session was identical. The proctor initially reviewed the explanatory page by verbalizing aloud the solution steps and their application to the sample problems. Following this instructional phase (about 5 min), the proctor gave the appropriate
verbalization instructions (described below). All students in each small group received the same verbalization instructions; had students in the same small group been assigned to different verbalization conditions, they might have wondered why some were not instructed to verbalize. Students then solved the practice problems while the proctor observed (about 5 min); students assigned to one of the verbalization treatments verbalized aloud while solving these problems. The proctor then stressed the importance of performing the steps as shown on the explanatory page, seated subjects at individual desks that were separated from one another, and moved out of sight. Students solved problems alone during the remainder of the session (about 35 min). If they were baffled on how to solve a problem they could consult the proctor who reviewed the troublesome operation.³

Treatment conditions. At the start of the first training session, the proctor told students assigned to the continuous verbalization treatment:

I'm really interested in knowing what students think about as they solve problems. So as you're working problems I'd like you to think out loud; that is, say out loud what you're thinking about, just like I did while I was solving problems. You'll probably be thinking about what to do next, what numbers to use, how much is one number minus another, and so on. Remember, say out loud what you're thinking about, just like I did.

Students were not instructed to verbalize any specific words, because we did not want to constrain the nature of their verbalizations (Schunk, 1982). Rather, the instructions were designed to convey that students should freely verbalize while solving problems. The proctor asked students to verbalize aloud while solving the practice problems to ensure that they understood these
instructions. At the start of each of the five subsequent training sessions, the proctor reminded students to verbalize aloud while solving problems.

Students' verbalizations were not continuously monitored during the sessions (e.g., tape recorded). We felt that such monitoring could prove distracting and thereby alter the nature of the verbalizations. Two sources of evidence indicated that subjects verbalized aloud while solving problems and that their verbalizations focused on the application of regrouping steps to the problems they solved. One source was the periodic proctor monitoring to deliver the attributional feedback (described below). A second source was brief questioning by the proctor at the end of each training session (e.g., "What kinds of things did you say out loud while solving problems?").

Students assigned to the discontinued verbalization condition received the same instructions and postsession questioning as above during the first three training sessions. At the start of the fourth session, the proctor asked these subjects to discontinue overt verbalization as follows:

You've been talking out loud while solving problems for quite a while, and I've appreciated it because it's helped me learn what students think about as they solve problems. From now on, I'd like you to solve problems without talking out loud. I'm sure that you'll be thinking and working just like before, but now please don't talk out loud as you solve problems.

At the start of the next two training sessions, the proctor reminded subjects not to verbalize aloud. The proctor continued to emphasize that while solving problems students should follow the solution steps portrayed on the explanatory page, so that students would not interpret the nonverbalization instructions to mean that they were to abandon the solution
strategy. At the end of the second three training sessions, the proctor questioned subjects about their work (e.g., "What kinds of things did you think about while solving problems?").

Students assigned to the no verbalization treatment received the same training procedures as above but were never instructed to verbalize. This treatment was comparable to students' regular resource room mathematics instruction, and no student assigned to this treatment verbalized aloud while solving the practice problems. Prior to students solving problems on their own, the proctor remarked, "For the rest of this period you'll be working problems on your own. As you work problems, remember to follow the steps shown on this first page." During the periodic monitoring of these students, proctors did not observe any instances of overt verbalization. At the end of each training session, the proctor questioned students about their work (e.g., "What kinds of things did you think about while solving problems?").

All students who participated in this study received periodic monitoring by their proctor while individually solving problems during each of the six training sessions. Each proctor monitored the performance of her students five times (about every 6-7 min) during each of the six training sessions (30 times total) by walking up to each student and asking, "What page are you working on?" Students then replied with the page number. The attributional treatments were distinguished by the proctor's statement following the student's reply.

During the first three training sessions, the proctor remarked, "You've been working hard," to students assigned to the first half effort feedback treatment. The proctor delivered this statement rather matter-of-factly and without accompanying social reinforcement (e.g., smiles or pats), after which
the proctor immediately departed. During the last three sessions, the proctor did not deliver effort feedback but instead acknowledged the student's reply with performance feedback (e.g., "That's fine." or "OK.") and then departed. Performance feedback was delivered during the second half of training to preclude students from interpreting the discontinued effort feedback to mean that they were not performing as well as before, which could influence self-efficacy and skill development and thereby mask potential effects of the effort feedback (Schunk, 1984). In summary, students assigned to this treatment received 15 effort feedback statements spread over the first three training sessions.

Subjects assigned to the second half effort feedback treatment received only performance feedback during the first three sessions. During the second half of the training program (sessions four through six), the proctor instead delivered effort feedback. These students, therefore, also received 15 effort feedback statements, but the statements were spread over the last three training sessions. Students assigned to the no effort feedback treatment received performance feedback during all six training sessions. The proctor never delivered effort feedback.

Posttest. Each student received the posttest from the same tester who administered his or her pretest. The tester was not aware of the student's verbalization and effort feedback treatment assignments, nor of how the student performed during the training program. Tests and training materials were scored by an adult who had not participated in the data collection and who was unfamiliar with the purpose of the study.

Students' attributions for their problem solving during training were assessed following the last session. The procedures were similar to those of
the pretest except that the tester asked subjects to think about their work during the training sessions and mark how much they thought each factor helped them solve problems.

Self-efficacy and subtraction skill were assessed on the next day. The instruments and procedures were identical to those of the pretest except that the parallel form of the skill test was used to eliminate possible problem familiarity.

Results

Means and standard deviations of all measures are presented by treatment condition in Table 1. Preliminary analyses of variance were conducted using the following experimental factors: verbalization (continuous - discontinued - none); effort feedback (first half - second half - none). These analyses revealed no significant between-condition differences on any pretest measure or on any subject measure (gender, age, standardized mathematical achievement scores, intelligence scores). There also were no significant differences on any pretest or posttest measure due to tester or school.

Insert Table 1 about here

Self-efficacy/skill

Intracondition changes (pretest to posttest) on each measure were evaluated using the t test for correlated scores (Winer, 1971). Each of the three verbalization conditions and the three effort feedback conditions made significant improvements in both self-efficacy and subtraction skill (all ps < .01 except p < .05 on self-efficacy for the no feedback condition).
Posttest self-efficacy and skill were analyzed with a 3 (continuous verbalization - discontinued verbalization - no verbalization) x 3 (first half effort feedback - second half effort feedback - no effort feedback) multivariate analysis of covariance using the corresponding pretest measures as covariates. MANCOVA yielded significant main effects for verbalization, Wilks's $\Lambda = .642$, $F(4, 156) = 9.69$, $p < .001$, and effort feedback, $\Lambda = .740$, $F(4, 156) = 6.34$, $p < .001$; the verbalization x effort feedback interaction was nonsignificant. Univariate F tests (ANCOVAs) yielded significant main effects on posttest self-efficacy due to verbalization, $F(2, 80) = 11.00$, $p < .001$, and effort feedback, $F(2, 80) = 8.43$, $p < .001$ ($MS_e = 218.04$). Dunn's multiple comparison procedure (Kirk, 1982) showed that continuous verbalization led to significantly higher self-efficacy than did discontinued verbalization and no verbalization ($p < .01$), and that each effort feedback treatment resulted in significantly higher self-efficacy than did no feedback ($p < .01$).

On the measure of posttest skill, ANCOVA also yielded significant main effects due to verbalization, $F(2, 80) = 16.26$, $p < .001$, and effort feedback, $F(2, 80) = 9.65$, $p < .001$ ($MS_e = 14.30$). Dunn's procedure showed that the continuous verbalization condition significantly outperformed both the discontinued verbalization condition and the no verbalization conditions ($p < .01$); each effort feedback treatment led to significantly higher subtraction performance than did no effort feedback ($p < .01$).

Attributions

Within-condition changes (pretest to posttest) on each attribution revealed a significant increase in effort attributions for the first half effort feedback treatment ($p < .05$). The four posttest attributions were
analyzed with MANCOVA using pretest attributions as covariates. This analysis yielded a significant main effect for effort feedback, $A = .746$, $F(8, 148) = 2.92$, $p < .01$; both the verbalization main effect and the verbalization \times effort feedback interaction were nonsignificant. Univariate F tests (ANCOVAs) on each posttest attribution revealed a significant main effect for effort feedback on effort attributions, $F(2, 80) = 9.98$, $p < .001$, $MS_e = 450.05$. Dunn's procedure showed that students who had received effort feedback during the first half of training made significantly higher effort attributions than did students who received feedback during the second half of training ($p < .05$) and those not receiving feedback ($p < .01$).

Training Performance

To determine whether treatments differentially affected students' rate of problem solving during the training sessions, the total number of problems that students completed was analyzed with a 3×3 ANOVA. This analysis yielded significant main effects for verbalization, $F(2, 81) = 5.12$, $p < .01$, and effort feedback, $F(2, 81) = 4.64$, $p < .05$ ($MS_e = 1470.01$); the verbalization \times effort feedback interaction was nonsignificant. Multiple comparisons showed that continuous verbalization subjects completed significantly more problems during training than did no verbalization students ($p < .05$), and that students who received effort feedback during the first half of training solved significantly more problems than did subjects who did not receive effort feedback ($p < .05$). These differences were not attained at the expense of accuracy; identical results were obtained using the proportion of problems solved correctly (i.e., number solved correctly divided by total number completed).
The number of problems that students completed during the first half of training was analyzed with ANOVA, which yielded significant main effects due to verbalization, $F(2, 81) = 3.80, p < .05$, and effort feedback, $F(2, 81) = 4.72, p < .05$ ($MS_e = 551.26$); the interaction was not significant. Multiple comparisons showed that the continuous verbalization treatment led to significantly more rapid problem solving than did no verbalization ($p < .05$), and that students who received effort feedback during the first half of training completed significantly more problems than did subjects in the no feedback condition ($p < .05$). The same pattern of results was obtained using the proportion of problems solved correctly.

ANOVA applied to the number of problems completed during the second half of training also yielded significant main effects for verbalization, $F(2, 81) = 5.52, p < .01$, and effort feedback, $F(2, 81) = 3.90, p < .05$ ($MS_e = 340.31$), but the interaction was nonsignificant. Dunn's procedure showed that continuous verbalization subjects significantly outperformed discontinued verbalization ($p < .05$) and no verbalization students ($p < .01$). Identical results were obtained using the proportion of problems solved correctly.

Discussion

The present study shows that overt verbalization of problem solution steps, along with their application to problems, facilitates task performance, self-efficacy and skills. These findings are consistent with previous work demonstrating that verbalization often is beneficial for students who typically perform in a deficient manner (Denney & Turner, 1979; Meichenbaum, 1977; Schunk, 1982), and support the idea that private speech can help to regulate task performance (Vygotsky, 1962; Zivin, 1979). Learning disabled students often are inattentive to task instructions and display lackadaisical
efforts while working at tasks (Licht, 1984; Torgesen & Licht, 1983). It has been suggested that verbalization might assist these students to work in a more systematic manner (Hallahan et al., 1983).

Although this study shows that overt verbalization is beneficial for training students to use a strategy, it does not specify the process by which verbalization promotes achievement outcomes. One possibility is that verbalization helps to focus students' attention on important task features and, as a form of rehearsal, assists strategy encoding and retention (Schunk, 1982). It also is possible that verbalization conveys to students a sense of personal control over learning outcomes, because verbalization makes salient a strategy that can facilitate problem solving (Schunk, 1982). As students effectively utilize the strategy, they are apt to develop higher self-efficacy for continuing to perform well (Bandura, 1982a; Schunk, 1985).

The discontinued verbalization treatment did not enhance achievement outcomes compared with merely receiving training (i.e., the no verbalization condition). A lower level of problem solving during the second half of training, relative to that experienced by continuous verbalization students, should not have promoted self-efficacy or subtraction skills as well. It is possible that, despite proctor instructions to the contrary, discontinued verbalization students abandoned the strategic approach to problem solving when instructed to no longer verbalize aloud. They may have had difficulty internalizing the strategy; that is, they may not have produced or utilized covert instructions to regulate their performances (Wilder et al., 1984). They also may have believed that, although the strategy was useful, other factors (e.g., effort) were more important for solving problems. Children often have naive ideas about when a strategy may be useful (Wellman, 1983).
Brown and her colleagues have emphasized that cognitive skills training needs to include three components: instruction and practice in applying a strategy, training in self-regulated implementation and monitoring of strategy use, and information on strategy value and on the range of tasks to which the strategy can be applied (Brown, Campione, & Day, 1981; Brown & Palincsar, 1982; Brown, Palincsar, & Armbuster, 1984). When students receive only the first (skills training) component, as in the present study, they may not utilize the strategy on their own because they do not fully understand how and when to apply the strategy or that strategy use greatly improves their performance (Baker & Brown, 1984). Regarding the latter point, explicitly linking strategy use with better performance may enhance the effects of strategy training. For example, the trainer could remark after a student correctly solved a problem, "That's correct. You got it right because you applied the steps in the right order."

One suggestion for facilitating students' self-regulated strategy use is to have them cognitively transform the strategy (Borkowski & Cavanaugh, 1979). Greater cognitive activity can lead to better strategy encoding, retention, and retrieval (Borkowski & Cavanaugh, 1979). A procedure that has been effectively employed to develop self-regulation is self-instructional training, which comprises modeling, guided practice, faded self-guidance (i.e., verbalizations are faded to whispers), and covert (silent) self-instruction (Meichenbaum, 1977). There is evidence that this procedure can help students with cognitive deficits (e.g., educable mentally retarded, learning disabled, remedial), who may not make proper use of verbal mediators to regulate their task performances (Harris, 1982; Johnston et al., 1980; Whitman & Johnston, 1983; Wilder et al., 1984).
This study also demonstrates that effort attributional feedback for students' problem solving successes led to higher self-efficacy and subtraction skills. As students solve problems, they begin to develop self-efficacy for performing well. Telling them that effort is responsible for their successes conveys that they are developing skills and that they can continue to perform well with hard work (Schunk, 1984). The perception of skill improvement can raise self-efficacy and lead to greater skill development (Schunk, 1985).

It is somewhat surprising that there was no difference in training performance, self-efficacy or skill between the two effort feedback conditions. We thought that effort feedback for early successes would be viewed as credible by students, but that discontinuing effort feedback would decrease the salience of effort as a cause of success. The perception of less effort for success raises self-efficacy more than when greater effort is required (Bandura, 1982b). Conversely, effort feedback for later successes might lead students to question their capabilities, because they could wonder why they still had to work hard to succeed (Schunk, 1984). Such self-doubts should not result in high self-efficacy (Schunk, 1985).

One possible explanation for these results is that because students had a learning disability in mathematics, they likely had to expend effort to solve problems throughout the training program. Receiving effort feedback for later successes may have seemed just as credible to these students as early effort feedback seemed to subjects receiving it during the first half of training. Rather than questioning their capabilities, students who received later effort feedback may have interpreted it as indicating that they were becoming more skillful.
It is interesting that only students in the first half effort feedback treatment showed a significant gain in effort attributions, which suggests that early effort feedback served to highlight the role of effort as a cause of success. This finding is noteworthy, because research demonstrates that learning disabled students are less likely to attribute outcomes to effort than are their nondisabled peers (Butkovsky & Willows, 1980; Licht, 1984; Pearl et al., 1980). Training procedures that help learning disabled students attribute outcomes to effort have important teaching implications.

No verbalization x effort feedback interactions were obtained on any measure. Given the difficulty of the task for the present sample, only limited gains in subtraction skills and self-efficacy may have been possible. Had the study been conducted over a longer period, it is possible that continuous verbalization plus second half effort feedback might have led to the largest increases in self-efficacy and skills, assuming that students still needed to expend effort to succeed.

The lack of interactions should not imply that verbalization and effort feedback are interchangeable procedures. Verbalization is useful for training students to systematically use a task strategy, whereas effort feedback can motivate students to continue working diligently at the task. No amount of effort feedback will promote self-efficacy and skills if students do not understand how to apply a task strategy. Effort feedback is useful as an adjunct to a sound instructional program.

To sound a precautionary note, however, we believe that effort feedback for the same task over an extended period is not necessarily desirable, even with learning disabled students. The present task likely engendered a self-focus; students worked alone and could have compared their present
performance to how they had performed previously. As students become more skillful over time, they ought to solve problems with less perceived effort. In a resource room, students also could compare their performances with those of their peers. Students actually might feel less efficacious if they continually received effort feedback, because they might wonder why they had to work hard to succeed when their peers demonstrated comparable performance but did not receive effort feedback.

Future research needs to explore what effort attributional feedback means to students. In school, the meaning of attributional feedback stems largely from interactions with teachers. Teachers often combine effort with praise in hopes of encouraging learning disabled students to persevere at tasks (e.g., "That's good. You're really working hard."). Praise can convey how the teacher views student abilities (Weiner, Graham, Taylor, & Meyer, 1983). Especially when students believe that a task is easy, praise combined with effort information signals low ability. The present results suggest that students did not interpret effort feedback as indicating low ability; first half feedback students did not place less emphasis on ability as a cause of success. Effort feedback over an extended period might imply lower ability among learning disabled students if they believed that their skills had improved considerably.

Consistent with previous similar research, this study supports the idea that, although self-efficacy in influenced by prior performances, it is not merely a reflection of them (Schunk, 1982, 1984). Students who received effort feedback during the second half of training did not differ in training performance from subjects who never received effort feedback, but the former subjects subsequently judged self-efficacy higher. This finding is not
surprising. Efficacy appraisal is an inferential process that involves judging the relative contributions of factors such as attributions, amount of external aid received, situational circumstances under which the performances occurred, and changes in performance patterns (Bandura, 1982b; Schunk, 1985).

The present results have implications for teaching. Learning disabled students who were deficient in subtraction skills benefited from verbalizing aloud while solving problems and from receiving feedback that linked their successful problem solving with their efforts. Both procedures can be easily implemented in resource rooms. At the same time, the utility of verbalization as a remedial procedure would be enhanced if research demonstrates that verbalizations can effectively be faded to a covert level, because many students verbalizing simultaneously could prove distracting to some. Teachers also need to know how other forms of attributional feedback (e.g., ability) affect students' self-efficacy. For example, Schunk (1984) found with children in regular classes that ability feedback for early successes enhanced self-efficacy and skillful performance better than effort feedback. Understanding how learning disabled students utilize private speech and interpret attributional feedback would have important implications for teaching.
References

Footnotes

1We decided not to include a condition in which students verbalized only during the second half of the training program. Although this condition would have created a more balanced experimental design, we felt that the best way to determine the effects of continuity of verbalization was to compare these effects with those due to discontinued verbalization. Theory and research on verbalization suggest that it may be beneficial as a means of instilling strategic behaviors, and that once these behaviors have been acquired students can regulate their performances covertly (Meichenbaum, 1977; Zivin, 1979). We also felt that asking students to begin verbalizing after they had been silently solving problems for three sessions might prove confusing and actually disrupt their performances. From an applied perspective, knowing the effects of discontinued verbalization is important; an entire class verbalizing aloud would undoubtedly prove distracting to some students.

2Copies of all test instruments and training materials are available from the first author.

3Students who were having difficulty solving problems also could consult the proctor during the periodic monitoring conducted in conjunction with the attributional feedback. Of the 90 students in the final sample, 10 consulted the proctor at various times during the training program; they were proportionately distributed throughout the treatment conditions.
Table 1

Descriptive Statistics — Means (and Standard Deviations) for All Measures as a Function of Experimental Treatment

<table>
<thead>
<tr>
<th>Measure</th>
<th>Phase</th>
<th>Continuous</th>
<th>Discontinued</th>
<th>None</th>
<th>First Half</th>
<th>Second Half</th>
<th>None Half</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Efficacy (Average judgment per problem; 0 (low) - 100)</td>
<td>Pretest</td>
<td>56.4 (28.7)</td>
<td>55.3 (27.0)</td>
<td>56.9 (25.3)</td>
<td>55.0 (30.7)</td>
<td>57.7 (25.9)</td>
<td>55.9 (24.0)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>83.8 (15.6)</td>
<td>68.5 (19.3)</td>
<td>68.1 (18.2)</td>
<td>78.7 (18.2)</td>
<td>77.2 (18.4)</td>
<td>64.4 (17.8)</td>
</tr>
<tr>
<td>Skill (Number of correct solutions on 25 problems)</td>
<td>Pretest</td>
<td>8.8 (6.0)</td>
<td>8.3 (7.9)</td>
<td>8.7 (7.3)</td>
<td>9.0 (7.4)</td>
<td>9.1 (7.8)</td>
<td>7.7 (5.8)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>17.9 (4.2)</td>
<td>13.2 (6.1)</td>
<td>12.7 (5.7)</td>
<td>16.3 (6.3)</td>
<td>15.8 (5.5)</td>
<td>11.7 (4.5)</td>
</tr>
<tr>
<td>Ability (0 (low) - 100)</td>
<td>Pretest</td>
<td>57.0 (34.3)</td>
<td>51.3 (29.7)</td>
<td>53.7 (28.6)</td>
<td>54.7 (30.1)</td>
<td>54.0 (32.2)</td>
<td>53.3 (30.7)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>72.7 (22.3)</td>
<td>58.0 (31.1)</td>
<td>58.3 (28.2)</td>
<td>65.3 (29.3)</td>
<td>64.7 (29.1)</td>
<td>59.0 (25.9)</td>
</tr>
<tr>
<td>Effort (0 (low) - 100)</td>
<td>Pretest</td>
<td>73.3 (26.6)</td>
<td>73.7 (27.7)</td>
<td>69.3 (26.9)</td>
<td>74.7 (28.0)</td>
<td>73.7 (26.2)</td>
<td>68.0 (28.7)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>74.0 (27.2)</td>
<td>73.0 (24.8)</td>
<td>73.3 (24.5)</td>
<td>87.3 (15.5)</td>
<td>72.7 (23.9)</td>
<td>60.3 (27.7)</td>
</tr>
<tr>
<td>Task (0 (low) - 100)</td>
<td>Pretest</td>
<td>68.7 (26.6)</td>
<td>72.3 (24.9)</td>
<td>71.0 (23.0)</td>
<td>73.7 (24.4)</td>
<td>72.0 (23.4)</td>
<td>66.3 (26.2)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>66.7 (23.5)</td>
<td>72.0 (24.3)</td>
<td>71.7 (22.0)</td>
<td>72.0 (24.0)</td>
<td>68.3 (21.0)</td>
<td>70.0 (24.9)</td>
</tr>
<tr>
<td>Luck (0 (low) - 100)</td>
<td>Pretest</td>
<td>50.0 (28.5)</td>
<td>54.0 (29.8)</td>
<td>56.0 (27.9)</td>
<td>55.7 (30.3)</td>
<td>53.3 (27.8)</td>
<td>51.0 (28.2)</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>44.7 (36.0)</td>
<td>53.3 (28.6)</td>
<td>51.3 (27.4)</td>
<td>47.3 (28.6)</td>
<td>43.0 (30.1)</td>
<td>59.0 (25.4)</td>
</tr>
<tr>
<td>Training Performance (Number of problems completed)</td>
<td>---</td>
<td>171.1 (35.3)</td>
<td>152.8 (35.1)</td>
<td>139.6 (46.9)</td>
<td>168.9 (35.0)</td>
<td>155.8 (44.8)</td>
<td>138.8 (38.8)</td>
</tr>
</tbody>
</table>

Note. N = 90; n per treatment = 30.