The principal focus of this brief report is on findings and observations from relatively recent research on the learning of mathematics. The distinction between learning and the concepts of curriculum and instruction is first reviewed. Then Piaget's theory of intellectual development is discussed, with the conclusion that it does not provide a basis for determining readiness for mathematics instruction. The contribution of information processing theory is then noted. Four additional observations from contemporary research concern the following: the focus on individuals (versus groups), behavioral objectives, invention or construction of knowledge by young children, and metacognition. A list of references is included. (MNS)
The Learning of Mathematics

Twenty years ago Macdonald (1965) pointed to the unfortunate fact (equally true years previously and years since) that "There is no consistently clear distinction in the use of much educational terminology. One definition of curriculum may well turn out to be the same as the next definition of instruction, and this definition of instruction could quite likely be synonymous with another's definition of teaching" (p 2). Macdonald then characterized teaching as the behavior of the teacher, learning as the change in learner behavior, and instruction as the pupil-teacher interaction situation (p 6).

The distinction between teaching and learning, for instance, has been phrased in somewhat similar ways by others at later times. "By teaching I mean any activity on the part of one person intended to influence learning on the part of another" (Gage, 1978, p 14), and "Learning is a change in human disposition or capability, which persists over a period of time, and which is not simply ascribable to processes of growth" (Gagne, 1977, p 3).

In keeping with such distinctions, the principal focus of this present report is upon findings and observations associated with relatively recent research on the learning of mathematics and is not intended to embrace research on mathematics teaching and instruction. Closely related to these distinctions is another one stressed by Gage (1984) and by Bruner (1964) a theory of learning is descriptive rather than prescriptive, as is the case for a theory of teaching or a theory of instruction.

Speaking of theories

Piaget and the Learning of Mathematics

Piaget's "theory" is a theory of intellectual development. It is not a theory of learning or of teaching or of instruction or of curriculum — neither in general nor with respect to mathematics in particular. But many investigations and much writing have been directed toward hypothesized implications of Piaget's theory for mathematics learning, teaching and instruction, for the nature and sequence of curricular content, and for classroom structure, organization and management. And concerns have been expressed regarding ways in which Piaget's theory has been applied to aspects of education in general (Sullivan, 1967) and to aspects of mathematics education in particular (Weaver, 1972).

Frequently it has been suggested that certain Piagetian tasks (conservation tasks, for instance) provide a good basis for determining students' readiness for learning one aspect or another of school mathematics. But Heibert and Carpenter (1982) have indicated that "The available research evidence suggests that ... Piagetian tasks are not useful readiness measures. [With respect to the question of whether] Piagetian tasks can be used to identify children who will be unable to benefit from instruction in mathematics, all the available evidence clearly suggests that the answer is no; many children who fail Piagetian tasks are able to learn mathematical concepts and skills" (pp. 339-340).

Such evidence is not to be construed as refuting Piaget's theory of intellectual development, nor is it to be construed as reflecting unfavorably upon the nature of school mathematics. It simply indicates that a certain kind of "match" simply does not seem to exist. And this is part of the reason why many persons now are turning away from rather than looking toward Piaget for help in dealing with issues associated with mathematics learning (and teaching and instruction).

A Different Direction

Kirby and Biggs (1980) indicated that "Cognition returned to psychology in the 1960s and flourished in the 1970s, permitting most areas of psychology its metaphor, information processing, became dominant in that discipline." (p. x1) More directly to the point, Groen and Kieran (1983) pointed out that "A few years ago, research on children's mathematics was dominated by Piaget. To many in the field, the task was to extend Piaget's theory or reinterpret it. In contrast, the research described in this volume relegates Piaget to the background. Information-processing theory, broadly conceived, has replaced the Piagetian framework as a broad explanatory model. The significance of information-processing theory in cognitive development has grown concomitantly with a retreat from the Piagetian framework." (pp. 351-352)

Within the contemporary context of "cognitive science" emphasis is placed upon "understanding" and "comprehension" — recalling Brownell (1935) and his exposition of the "meaning theory" 50 years ago! The learning of mathematics, and research associated with such learning, is more and more commonly being described or explained in relation to a system that includes provisions for the intake of information, for its "chunking" within a working memory, and for interaction there with other information stored within and retrieved from a long-term memory.

It is not at all surprising that an information-processing system often is associated closely with, and described in terms related to, a computer or microcomputer system.

Some Additional Noteworthy Observations

1 Contemporary research associated with the learning of mathematics is much more likely to focus upon individuals than upon groups. That is to say, learning is an individual phenomenon, and although much learning takes place within the context of groups such as classes, the focus of attention is not upon the group/class but upon individuals.

2 Contemporary research associated with the learning of mathematics looks beyond observable performance on so-called "behavioral objectives" for its data base. Romberg and Carpenter (in press) have indicated that "internal cognitive processes are acknowledged Rational task analysis, which is based on a logical analysis by experts, has evolved to empirical task analysis, which focuses on what children actually do when they solve mathematics problems" (p 852). Some of this "doing" may be observable in a student's overt acts, but much of the doing may be terms of a student's observable but self-reportable thinking.

3 There is a growing body of evidence that young children invent or construct much of their own mathematical knowledge, and that they come to school with some well-developed, although understandably immature, ways of dealing with various mathematical situations. We do not seem to take full advantage of children's conceptions in our programs of mathematics teaching and instruction.

4 The term metacognition refers to a person's awareness of and sensitivity to her or his mental processes, and includes the ability to monitor and control (to some degree) such processes. There is growing evidence that learning associated with problem solving is facilitated or enhanced by student's increased awareness of metacognitive aspects of the problem-solving process. Also, there is evidence that some of the differences between expert and novice problem solvers may be attributed to differences in metacognitive skill.

In Conclusion

Romberg and Carpenter (in press) believe that "We currently know a great deal more about how children learn mathematics than we know about how to apply this knowledge to mathematics instruction. Research is clearly needed to explore how knowledge of
REFERENCES


This digest was prepared by J. F. Weaver, Professor Emeritus, University of Wisconsin-Madison. It provides information on the current status of thinking about how mathematics is learned. While it reflects the relationship of learning with several specific curriculum and instruction concerns, its primary focus is on how theories of learning mathematics have changed direction and the implications of such changes for teachers and others who study how children learn mathematics.