This curriculum guide contains materials for a 13-unit course in advanced metals, the second metals course in the industrial arts curriculum for grades 10-12. It is intended for use by industrial arts teachers, supervisors, counselors, administrators, and teacher educators. A two-page course overview provides a brief course description; indicates target grade level, prerequisites, course goals, and course objectives; presents an introduction to the course; and suggests a time frame. The detailed, 21-page course outline follows. A unit teaching guide in a column format relates objectives to topics, student activities, teacher activities, and resources. The 13 units cover these topics: general safety, careers, planning, advanced metal working tools, sheet metal work and layout, metallurgy and heat treating, casting, welding, machinery, materials testing, finishing, automation technology, and safety review. Extensive appendixes include sample materials, forms, and information related to classroom management; crossword and wordfind puzzles with solutions; safety and machine handouts/transparency masters; suggested project listings (project and sources); and lists of these types of resources: films, computer periodicals, and periodicals for metals instructors. A bibliography is provided. (YLB)
STATE BOARD OF ELEMENTARY AND SECONDARY EDUCATION

Member

Mr. Jesse H. Bankston
Dr. John A. Bertrand
Bro. Felician Fourrier, S.C., Vice-President
Mr. Milton Hamel
Mrs. Gloria J. Harrison
Mrs. Martha Scott Henry
Dr. Claire R. Landry, President
Mr. Jack Pellegrin
Mr. A. J. "Sookie" Roy, Jr.
Mr. Keith Johnson
Mrs. Marie Louise Snellings, Secretary-Treasurer

Congressional District

6th
7th
At-large
4th
At-large
At-large
1st
3rd
8th
2nd
5th

EQUAL OPPORTUNITY STATEMENT

In compliance with Title VI, Title IX and Section 504 of the Rehabilitation Act of 1973, this Educational Agency upholds the following policy: THIS IS AN EQUAL OPPORTUNITY INSTITUTION AND IS DEDICATED TO A POLICY OF NONDISCRIMINATION IN EMPLOYMENT OR TRAINING. QUALIFIED STUDENTS, APPLICANTS OR EMPLOYEES WILL NOT BE EXCLUDED FROM ANY COURSE OR ACTIVITY BECAUSE OF AGE, RACE, CREED, COLOR, SEX, RELIGION, NATIONAL ORIGIN, OR QUALIFIED HANDICAP. ALL STUDENTS HAVE EQUAL RIGHTS TO COUNSELING AND TRAINING.

This public document was published at a total cost of $2,625; 700 copies of this public document were published in this 1st printing at a cost of $3.75 each. The total cost of all printings of this document, including reprints is $2,625. This document was published by Louisiana Department of Education, Office of Vocational Education, Post Office Box 94064, Baton Rouge, Louisiana 70804 for the dissemination of vocational education curriculum materials for new and changing occupational fields under authority of Public Law 94-482. This material was printed in accordance with the standards for printing by state agencies established pursuant to R.S. 43:31.
TABLE OF CONTENTS

Foreword ... 1
Acknowledgements ii
Course Flow Chart 1
Course Description 2
Target Grade Levels 2
Prerequisite 2
Goals and Objectives 2
Introduction 3
Suggested Time Allotment 3
Course Outline 4
Unit Teaching Guide 27
 Unit I General Safety 27
 Unit II Careers 28
 Unit III Planning 29
 Unit IV Advanced Metalworking Tools 31
 Unit V Sheet Metalwork and Layout 33
 Unit VI Metallurgy and Heat Treating 37
 Unit VII Casting 40
 Unit VIII Welding 42
 Unit IX Machinery 52
 Unit X Materials Testing 59
 Unit XI Finishing 60
 Unit XII Automation Technology 61
 Unit XIII Safety Review 62
Appendix 1 Classroom Management 63
Appendix 2 Crossword and Wordfind Puzzles ... 79
Appendix 3 Safety and Machine Pictures 120
Appendix 4 Suggested Project Listings 152
Appendix 5 Resources 157
Bibliography 166

This publication is a guide for the improvement of instruction in Industrial Arts Education for the State of Louisiana. It should be of benefit to industrial arts teachers, supervisors, counselors, and administrators. These operational guidelines will help local administrators, teacher educators, and industrial arts teachers to determine the extent to which their programs are meeting the needs of our youth. Industrial Arts Education Programs must be organized to meet the needs of all students.

A constant concern of educators is the construction and revision of curriculum. Industry and technology are the core of industrial arts instruction. Both are constantly changing; therefore, curriculum and instruction must change in order to provide students a realistic and accurate understanding of industry and its function in our complex technological society.

THOMAS G. CLAUSEN, Ph.D.
STATE SUPERINTENDENT OF EDUCATION
ACKNOWLEDGEMENTS

This publication represents the cooperative efforts of personnel in the Louisiana Industrial Arts Association and the Industrial Arts Section in the Office of Vocational Education, Louisiana State Department of Education. Special recognition goes to Project Director, Dr. Thomas L. Eppler, Northwestern State University, who was instrumental in the development of the guide. Special commendation goes also to the following writing team members who worked diligently to produce this guide: William Bostick, Michael Gassen, Charles Johnson, and Jeff Laughlin.

Elaine Webb, Ed.D.
Assistant Superintendent
Office of Vocational Education
Title:

Advanced Metals

Course Description:

Advanced Metals, the second metals course in the Industrial Arts curriculum, is designed for the student with a continuing interest in Metalworking and involves the exploration of the areas of Sheet metal, Metallurgy, Casting, Welding, Machining, Materials Testing, Finishing, Safety, and the use of tools, machines, and materials to plan, design, and construct metal products in the above areas.

Target Grade Levels:

Grades 10 - 12

Prerequisite:

Basic Metals

Course Goals:

In Advanced Metals the student will become acquainted with career opportunities available in the fields of Sheet metal, Metallurgy, Casting, Welding, Machining, Testing, and Finishing and will be exposed to the importance each field has on life. Also, laboratory experiences will be provided to give a variety of advanced "hands-on" working knowledge of tools, machines, and equipment to develop an understanding of the Metals Industries.

Course Objectives:

To develop an awareness of the impact of metalworking on society.

To provide experiences in several metalworking areas so as to develop an understanding of the technology in the metal industries.

To develop an awareness of the impact of metalworking on society.

To provide experiences in several metalworking areas so as to develop an understanding of the technology in the metal industries.

To develop safe work habits.

To increase understanding of the occupational requirements and opportunities in the metal fields.
To teach the necessary related information and develop the essential skills needed in the design, fabrication, heat treating, welding, machining, and finishing of industrial products for pre-vocational and avocational pursuits.

Introduction

This is an age of metal. In almost every activity of our lives we use metal articles which, in turn, were made by metal machines. The metalworking industries in the United States employ more workers than any other industries. Highly specialized metal trades and industries offer many worthwhile careers. By studying and participating in the various Advanced Metal areas as outlined in this course, students will have the opportunity to advance their knowledge and further develop the manipulative skills used in the metalworking industries.

Advanced Metals is designed as the second phase for a student who is entering the highly skilled field of metals. The course is broken down into six major fields: Advanced Metalworking Tools, Sheet Metalwork and Layout, Metallurgy and Heat Treating, Casting, Welding, and Machining.

The student will be re-exposed to the fundamental practices of these fields, but will study more technical knowledge in these fields and receive valuable "hands-on" experience through the construction of individual projects. Also the students will be instructed in the planning and finishing of their project. In addition to these areas, safe use of all and power tools, equipment, and material handling will be taught in the course.

Suggested Time Allotment

The suggested time frame for Advanced Metals is 174 days. The remaining six days are to be used as necessary for the opening and closing of the metals laboratory, school functions, and in units for which the instructor feels additional time is needed.
ADVANCED METALS

I. GENERAL SAFETY

A. General Safety

1. Course syllabus
2. Classroom rules and regulations
3. General safety

II. CAREERS IN METALWORKING

A. Levels of Skills

1. Semi-skilled
2. Skilled
3. Technicians
4. Professions

B. Occupations

1. Steelworker (structural)
2. Welder
3. Tool and die maker
4. Sheet metal technician
5. Machinist
6. Machine operator
7. Boiler maker
8. Molder
9. Pipe fitter
10. Plumber
11. Millwright
12. Pattern maker
13. Metallurgical engineer
14. Aerospace engineer
15. Instrument technician
16. Industrial technologist
17. Computer programmer
18. Industrial engineer
19. Set-up worker
20. Helpers

C. Methods of Training

1. High school
2. Vo-Tech school
3. College
4. Apprenticeship
5. On-the-job training
C. Marking Tools

1. Surface gauge
2. "Ruler" height gauge
3. "Wedge"
4. Dividers
5. Scriber (scratch awl)

V. SHEET METALWORK AND LAYOUT

A. Pattern Making

1. Parallel line development
 a. prisms
 b. cylinders
 c. truncated objects
2. Radial line development
 a. cones
 b. funnels
 c. pyramids
3. Triangulation
 a. offsets
 b. transitionals
 c. tapers

B. Hand Tools

1. Hand snips
 a. straight
 b. circular
 c. double-cutting
 d. hawk-bill
 e. aviation
 (1) straight
 (2) left cut
 (3) right cut
 f. compound lever slitting
 g. bench shears
2. Nibblers
3. Punches
 a. solid
 b. hollow
 c. hand-lever
 d. chassis
4. Sheet metal gauges
 a. U.S. Standard (ferrous)
 b. English Standard Wire (non-ferrous)
5. Hammers
 a. rivet
 b. setting
 c. raising
 d. ball-peen
e. mallets
 (1) rubber
 (2) leather
 (3) plastic
 (4) wood
 (5) brass
 (6) lead
f. planishing
g. forming
h. cross-peen
i. straight-peen
6. Hand seamer
7. Hand groover
8. Soldering copper
9. Safety

C. Machines and Equipment

1. Machines
 a. squaring shear
 b. bar folder
c. box and pan brake
d. slip roll forming machine
e. combination rotary machine
 (1) burring
 (2) wiring
 (3) crimping
 (4) setting down
 (5) double seaming
f. tab notcher
g. bench nibbler
h. turret punch
i. ring and circle shear
j. portable power shears
k. cornice brake
l. press brake
m. power slitting shear
n. grooving machine
o. Pittsburgh lock forming machine
p. bench shear
q. throatless bench lever shears
r. coper

2. Equipment
 a. universal stake holder
 b. stakes
c. bench plates

3. Safety

D. Bending and Shaping Operations

1. Hems
 a. single
 b. double
2. Edges
 a. wired
 b. burred
 c. crimped
3. Seams
 a. lap
 b. flat-lock groove
 c. double seam
 d. corner seam
 e. Pittsburgh lock
 f. double bottom
 g. lap strip
4. Safety
E. Sheet Metal Fastening
1. Riveting
 a. solid rivets
 (1) tinners
 (2) flathead
 (3) roundhead
 (4) countersunk
 b. pop
 c. explosive rivet
 d. rivet set
2. Screwing
3. Soldering
 a. flux
 b. solder
4. Spot welding
5. MIG welding
6. TIG welding
7. Safety

VI. METALLURGY AND HEAT TREATING
A. Mechanical Properties
1. Hardness
2. Toughness
3. Britteness
4. Elasticity
5. Tensile strength
6. Malleability
7. Compression strength
8. Ductility
9. Machinability
10. fusibility
11. rigidity
B. Physical Properties
1. Melting point
2. Specific gravity
3. Thermal expansion
4. Thermal conductivity
5. Electrical conductivity
6. Corrosion resistance
7. Weight
8. Color
9. Density

C. Classifications

1. Ferrous
 a. iron
 (1) iron ore
 (2) pig iron
 (3) cast iron
 (4) wrought iron
 (5) steel
 b. steel
 (1) carbon
 (a) mild
 (b) medium
 (c) high
 (2) alloy
 (a) high speed
 (b) special
 (3) ways to make steel
 (a) Bessemer converter
 (b) open hearth
 (c) electric furnace
 (d) basic oxygen process
 (e) crucible furnace

2. Non-ferrous
 a. aluminum
 b. tin
 c. zinc
 d. copper
 e. lead
 f. silver
 g. others - see appendix

3. Alloys
 a. stainless steel
 (1) molybdenum steel
 (2) titanium steel
 (3) vanadium steel
 (4) tantalum steel
 (5) chromium steel
 b. nickel steel
 (1) monel
 (2) inconel
 (3) hastelloy
 c. magnesium steel
D. Identification

1. Surface appearance
2. Sound
3. Spark test
 a. color
 b. length
 c. shape
 d. number
4. Melting point
5. Grain structure
 a. pearlite
 b. ferrite
6. Color coding
7. Chip test
8. Magnetic test
9. Fracture test
10. Density or specific gravity
11. Chemical
12. Flame
13. Number system
 a. S.A.E.
 b. A.I.S.I.

E. Heat Treating

1. Types
 a. annealing
 b. normalizing
 c. tempering
 d. hardening
 e. case hardening
 (1) cyaniding
 (2) carburizing
 (3) nitriding
 (4) flame hardening
 (5) induction
 (6) laser
 (7) electron beam
 f. spheroidizing
 g. stress relieving

VII. CASTING

A. Sand Casting

1. Patterns
 a. simple (one piece)
 b. split
 (1) positive draft
 (2) negative draft
2. Tools
 a. flask
 b. sprue and riser
 c. ram
 d. bottom board
 e. fiddle
 f. strike off bar
 g. lifter, slick, and oval

3. Molding sand
 a. tempering sand

4. Furnace equipment
 a. crucible furnace
 b. tongs
 c. crucible

5. Safety

B. Shell-Mold Casting
 1. Resin-coated sand
 2. Heated pattern
 3. Smoother finish
 4. Thin shelled
 5. Half molds

C. Die Casting
 1. Air injected
 2. Hot chamber (plunger)
 3. Cold chamber

D. Permanent-Mold Casting
 1. Accurate (± 0.010")
 2. Gravity
 3. Reusable mold
 a. graphite
 b. metal
 4. Release agent
 5. Not suitable for thin walls

E. Investment Casting (Lost Wax Process)
 1. Shell molding
 2. Flask molding
 3. Patterns
 a. wax
 b. plastic
 c. frozen mercury

F. Plaster Mold Casting
 1. Reusable pattern (few times)
 2. Cast metals with low melting points (400° - 1700° F.)
G. Centrigugal Casting (Rotated on Longitudinal Axis)

H. Centrifugal Casting (Central Sprue)

I. Slush Casting (Hollow Casting)
 1. Slip molding
 2. Dipping

J. Silicone Rugger Molding
 1. Used for prototypes
 2. Good surface finish
 3. Cast metals of low melting points

VIII. WELDING

A. Safety
 1. Oxyacetylene welding safety
 2. Cylinder handling safety
 3. Arc welding safety
 4. Basic electrical safety
 5. Fire prevention safety
 6. General precautions

B. General Welding Shop Tools and Equipment
 1. Cylinders
 a. oxygen
 b. air
 c. fuels
 d. inert gases
 2. Regulators
 a. single-stage
 b. double-stage
 c. flow meters
 3. Hoses
 a. colors
 b. size
 c. coupling
 4. Proper clothing
 a. gloves
 (1) leather
 (2) cotton
 (3) asbestos
b. eye protection
 (1) safety glasses
 (2) goggles
 (3) face shields
 (4) hoods
c. footwear
d. shirts
e. pants
f. bib, jackets, or aprons

5. Welding machines
 a. transformer - A.C.
 b. motor - generator - D.C.
 c. rectifier - A.C. and D.C.

6. Chipping hammers

7. Tip cleaners

8. Strikers (flint lighter)

9. Tongs

10. Brushes
 a. stainless steel
 b. carbon steel

11. Grinders
 a. bench
 b. side
 c. die

12. Oxy-acetylene tips
 a. heating
 b. welding
 c. cutting

C. Oxy-Fuel Welding and Cutting and Brazing

1. Fuel gases
 a. acetylene
 b. mapp (methylacetylene propadiene)
 c. propane
 d. natural gas
 e. hydrogen
 f. others

2. Characteristics of a good weld
 a. consistent width
 b. straightness
 c. slightly crowned
 d. fused to base metal
 e. clean appearance

3. Weld quality factors
 a. proper flame adjustment
 b. angle of tip
 c. distance from work
 d. speed of travel
 e. movement of tip
4. Means of selecting tip size
 a. metal thickness
 b. size of welding rod
5. Means of selecting rod size
 a. properties of base metal
 b. thickness of metal
6. Flame types
 a. neutral
 b. oxydizing
 c. carburizing
7. Causes of backfires
 a. dirty tip
 b. loose tip
 c. bad O-rings in torch
 d. improper pressure
 e. hot tip
 f. tip too close to metal
 g. kink in hose
 h. leak in hose
8. Results of flashbacks
9. Steps to follow in case of flashback
 a. close oxygen torch valve
 b. close acetylene torch valve
 c. release oxygen regulator screw
 d. release acetylene regulator screw
 e. inspect equipment
10. Differences between fusion welding and brazing
 a. the temperature of the process
 b. the principle of the joint
11. Composition of brass
 a. copper
 b. zinc
12. Three proper methods of physically cleaning metal for brazing
 a. file
 b. sand
 c. grind
13. Factors relating to joint strength
 a. clean metal
 b. correct heat
 c. joint structure
 d. proper amount filler rod
14. Characteristics of a good oxy-acetylene cut
 a. no slag
 b. square face
 c. straight path
 d. sharp edges
 e. properly shaped drag lines
15. Pressure control mechanisms for cutting torches
 a. pre-heat oxygen valve
 b. torch body oxygen valve
 c. torch body acetylene valve
 d. oxygen high pressure cutting lever

16. Cutting tips
 a. several sizes
 b. various shapes
 c. pre-heat orifice
 (1) several
 (2) smaller
 (3) heats metal to kindling point (1600° F.)
 d. cutting orifice
 (1) larger
 (2) high pressure pure oxygen

17. Reasons for poor cuts
 a. preheat flames too small
 b. cutting speed too slow
 c. preheat flames too long
 d. cutting oxygen pressure too low
 e. cutting oxygen pressure too high
 f. cutting speed too fast
 g. motion of travel unsteady
 h. cut lost and not carefully restarted

D. Shielded Metal Arc welding

1. Types of electrodes
 a. non-consumable (refractory)
 (1) tungsten - 6100° F. melting point
 (2) carbon - 6512° F. melting point
 b. consumables (filler metal)

2. Currents
 a. alternating (AC)
 b. Direct (DC)
 (1) negative polarity electrode (straight)
 (2) positive polarity electrode (reverse)

3. Factors to consider when setting amperage
 a. thickness of metal
 b. size of metal
 c. type of joint
 d. size of electrode
 e. type of electrode
 f. length of cable

4. Duty cycle
5. Electrode angles
6. Arc lengths
7. Reasons for poor welds
 a. current too low
 b. current too high
 c. arc length too long
 d. arc length too short
 e. speed too slow
 f. speed too fast
 g. improper angle
 h. improper electrode type
 i. improper electrode size
 j. improper base metal preparation

8. Arc welding joints and welds
 a. butt
 b. fillet
 c. edge
 d. flange
 e. lap
 f. bead
 g. tack
 h. corner
 i. weave
 j. pad
 k. multipass
 l. plug

9. Welding positions
 a. flat
 b. vertical
 c. horizontal
 d. overhead

10. Electrode selection
 a. comparison of bare electrodes to covered electrodes
 b. filler rod composition
 (1) mild
 (2) stainless
 (3) cast iron
 (4) non-ferrous
 (5) low hydrogen
 c. coverings
 (1) function
 (2) composition
 d. size

11. Methods of striking arc
 a. tapping
 b. scratching

12. Lens shade selection

13. Electrode identification
 a. number - AWS
 b. Color marking - NEMA
 (1) end
 (2) spot
 (3) group
14. Arc cutting

E. Tungsten Inert Gas Welding - GTAW - TIG

1. Shielding gases
 a. argon
 b. helium
 c. CO₂
2. Current usages
3. Advantages
4. Power supply controls
5. Torches
6. Nozzle types
7. Electrodes
8. Fillers
9. Characteristics of good welds
10. Reasons for poor welds

F. Metal Inert Gas Welding - GMAW - MIG

1. Major parts
2. Advantages
3. Applications
4. Characteristics of good welds
5. Effects of wire stickout
6. Causes of poor welds
7. Types of wires
8. Factors in selection of filler wire
9. Major parts of equipment
10. Shielding gases

G. Resistance Welding

1. Spot welding
2. Seam welding
3. Flash-butt welding
4. Projection welding
5. Percussion welding
6. Upset welding

H. Other Welding Processes

1. Ultrasonic welding
2. Friction welding
3. Forge welding
4. Explosion welding
5. Diffusion welding
6. Cold welding
7. Electron beam welding
8. Electroslag welding
9. Induction welding
10. Laser-beam welding
11. Thermit welding
12. Submerged-arc welding
13. Plasma-arc welding

I. Welding Print Reading

J. Principal Weld Defects

1. Incomplete fusion
2. Lack of fusion
3. Undercutting
4. Slag inclusions
5. Porosity
6. Cracking
7. Dimensional defects
8. Britteness

IX. MACHINING

A. Power Sawing

1. Power hacksaw
 a. dry cutting
 b. wet cutting
 c. cutting speed
 d. blades
 (1) length
 (2) tooth pitch
 c. safety
2. Horizontal band saws
 a. advantages over power hacksaw
 (1) smaller kerf
 (2) increased cutting speed
 (3) feed and speed control
 b. safety
3. Abrasive cutoff saws
 a. fixed head
 b. oscillating head
 c. size
 d. safety
4. Vertical band saws
 a. types of cutting
 (1) straight-line cuts
 (2) angular cuts
 (3) curved-line cuts
 (4) internal-contour cutting
 b. band filing
 c. band polishing
 (1) abrasive belt
 (1) special guide for saw
 d. safety
B. Drilling Machines

1. Handfed drill press
 a. step pulley
 b. variable speed pulley
2. Back-geared upright drill
3. Gang drill
4. Multiple-spindle drill
 a. multiple drill bits
 b. same time drilling
5. Radial drill press
6. Turret drill press
7. Twist drills
 a. straight-shank drill
 (1) four flute
 (2) three flute
 (3) two flute
 (4) oil hole
 (5) subland drill
 b. taper shank drills
 c. center drill
 d. counter sinks
8. Drilling operations
 a. countersinking
 b. reaming
 c. counterboring
 d. spotfacing
 e. boring
 f. tapping

C. Lathes and Lathe Operations

1. Kinds of lathes
 a. manually operated lathe
 b. screw machines
 c. turret lathes
 d. tracer lathe
 e. numerically controlled lathes
 f. CNC
2. Lathe operations
 a. facing
 b. counter boring
 c. threading
 (1) inside
 (2) outside
 d. tapering
 e. turning between centers
 f. knurling
 (1) straight
 (2) diamond
3. Parts of lathes
 a. headstock
 b. tailstock
 c. gear box
 d. apron
 e. ways
 f. lead screw
 g. compound rest
 h. power-feed clutch
 i. see Appendix for pictures and complete nomenclature

4. Mounting tools and fixtures
 a. three-jaw chuck
 b. four-jaw chuck
 (1) universal
 (2) independent
 c. face plates
 d. lathe dogs
 (1) bent-tail lathe dog
 (2) clamp type
 e. collet
 (1) round
 (2) square
 (3) hexagon
 f. centers
 (1) live
 (2) dead
 g. spindle chuck
 h. thread gauge
 i. dial-indicator gauge
 j. steady rest
 k. following rest

5. Cutting tools
 a. materials
 (1) high-speed steel
 (2) cast alloys
 (3) cemented carbide
 (4) ceramics
 (5) diamond
 b. types of cutting tools and tool holders
 (1) left-hand
 (2) right-hand
 (3) round-note
 (4) left-hand facing
 (5) right-hand facing
 (6) cut-off tool
 (7) threading
 (8) boring tool
 (9) inside threading
c. cutting-tool terms
 (1) cutting edge
 (a) side
 (b) end
 (2) face
 (3) flank
 (4) nose
 (5) relief
 (a) side
 (b) end
 (6) rake
 (a) side
 (b) end

D. Milling Machines and Milling Operations

1. Types of machines
 a. column and knee
 b. bed

2. Kinds of machines
 a. vertical mill
 b. horizontal mill
 c. combination horizontal, vertical

3. Types of milling cutters
 a. plain-milling cutters
 b. side-milling cutters
 c. angular-milling cutters
 d. end mills
 e. formed cutters
 f. face-milling cutters
 g. special cutters

4. Cutter holding devices
 a. collets
 b. arbors

5. Machine adjustments and controls
 a. knee elevations
 b. table movements
 (1) cross-feed handwheel
 (2) longitudinal-feed control
 c. spindle speed adjustment
 d. feed adjustment
 e. feed direction

6. Milling operations
 a. cutting keyways
 b. slotting
 c. facing
 d. milling grooves
 e. indexing or dividing
 (1) sides
 (2) holes
 f. straddle milling
 g. cutting gears
 h. up milling
 i. down milling
E. Shapers and Shaping

1. Kinds of shapers
 a. horizontal shapers
 b. vertical shapers

2. Parts of shaper
 a. base
 b. table
 c. ram
 d. tool head assembly

3. Machine adjustments
 a. tool slide position
 b. horizontal table movement
 c. table elevation
 d. length of stroke
 e. position of stroke
 f. cutting speed selection
 g. feed adjustment

4. Special forged tools
 a. round-nose tool
 b. side-cutting tool
 c. gooseneck tool (flat cuts)

5. Shaper cuts
 a. vertical cut
 b. angular cut
 c. horizontal cut
 d. angular dovetail cut

F. Ultra Modern Machining Processes

1. Electrical discharge machining (EDM)
2. Electrochemical machining (ECM)
3. Electron beam machining (EBM)
4. Laser beam machining (LBM)
5. Ultrasonic machining (USM)
6. Chemical machining (CHM)

G. Numerical Control and Automation

1. Lathes
2. Milling machines
3. Drilling machines
4. Combination machines

X. MATERIAL TESTING

A. Nondestructive

1. Magnetic particle
2. Radiographic
 a. x-ray
 b. gamma ray
3. Penetrant
4. Ultrasonic
5. Eddy current
6. Leak test
7. Hardness
 a. Brinell
 b. Rockwell
 c. Vickers
 d. Shore Scleroscope
8. Thermal and infrared
9. Microwave
10. Strain sensing
 a. brittle coatings
 b. photo-elastic coatings
 c. resistance strain gauges
11. Visual

B. Destructive Testing

1. Free-bend test
2. Root-, face-, and side-bend test
3. Fatigue test
4. Longitudinal- and transverse-shear test
5. Guided-bend test
6. Fillet-weld break test
7. Etching
8. Impact test
 a. Izod
 b. charpy
 c. Nick-break test

XI. FINISHING

A. Kinds of Finishing

1. Grinding
2. Polishing
3. Brushing
4. Sanding
5. Buffing
6. Burning
7. Electroplating

B. Application Techniques

1. Brushing
2. Spraying
 a. pressure feed
 b. suction feed
 c. electrostatic
 d. aerosol
 e. flame
3. Powder fusion coating
4. Dip or flow coating
5. Roller coating
6. Tumbling

C. Protective Metal Finishes

1. Primers
2. Metal enamels
3. Lacquers
4. Galvanizing
5. Tin coating
6. Parkerizing

XII. AUTOMATION TECHNOLOGY

A. Robotics

1. Welding
2. Parts manipulation
3. Finishing
4. Hazardous material handling
5. Quality control

B. Computers

1. Computer numerical control (CNC)
2. Computer aided design (CAD)
3. Computer aided manufacture (CAM)

XIII. SAFETY REVIEW

A. General Shop and Lab Safety
B. Personal Safety
C. Tool and Equipment Safety
D. Housekeeping Practices
E. Sheetmetal Safety
F. Heat Treating Safety
G. Casting Safety
H. Oxy-Fuel Processes Safety
I. Arc Welding Safety
J. TIG and MIG Safety
K. Electrical Safety
L. General Machine Shop Safety
M. Machine Operation Safety
 1. Buffers
 2. Drill presses
 3. Grinders
 4. Milling machines
 5. Shapers
 6. Lathes
N. Fire Safety
UNIT I: GENERAL SAFETY
3 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| The student should be able to: | A. General Safety
1. Course syllabus
2. Classroom rules and regulations
3. General safety | Students will make themselves knowledgeable of all classroom rules and regulations and general safety.
Students will be required to take and pass the rule and safety test at a percentage set by the instructor.
Test No. 1 - Unit 1 | Construct and pass out course syllabus, and discuss rules and regulations.
See Appendices 1 and 3 for classroom rules and basic safety rules.
See Appendix 2 for Word Find Puzzle on General Safety. | See Appendix
Book 2, pp. 3-7
Book 4, Unit 2
Book 7, Unit 3
Book 70, Unit V p. 25 |
Unit II: Careers in Metalworking

3 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td>A. Levels of Skills</td>
<td>Invite job consultant to speak on different jobs related to metalworking.</td>
<td></td>
<td>Book 1, Book 2, p. 4, Book 3, Unit 11, Book 4, Unit 1, Book 7, Unit A-1</td>
</tr>
<tr>
<td>Identify the various levels of skill within the metalworking industries.</td>
<td>1. Semi-skilled 2. Skilled 3. Technicians 4. Professions</td>
<td>List some occupations in metalworking.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>List some occupations in metalworking.</td>
<td>B. Occupations</td>
<td>Students should list all jobs with metal interaction they can think of.</td>
<td>Lead a discussion on various metalworking occupations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students should list all jobs with metal interaction they can think of.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students should identify the skill level of the occupation given.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Have students research and write a paper on the occupation of their choice including: Job requirements Educational requirements Working hours and conditions Job pay Training requirements</td>
<td>Grade research papers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

34

35
UNIT III: DRAWING AND PLANNING

OBJECTIVES

The student should be able to:

- Review of Working Drawing
 1. Assembly drawing
 2. Detail drawing
 a. dimensions
 b. views
 3. Isometric

- Apply the principles of design in the project drawing.

- Read a rule to 1/32".

- Make a working drawing of his project from a picture or replica.

TOPICS

<table>
<thead>
<tr>
<th>A. Review of Working Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assembly drawing</td>
</tr>
<tr>
<td>2. Detail drawing</td>
</tr>
<tr>
<td>a. dimensions</td>
</tr>
<tr>
<td>b. views</td>
</tr>
<tr>
<td>3. Isometric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Basic Principles of Design and Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alphabet of lines</td>
</tr>
<tr>
<td>2. Proportion</td>
</tr>
<tr>
<td>3. Balance</td>
</tr>
<tr>
<td>4. Emphasis</td>
</tr>
<tr>
<td>5. Texture</td>
</tr>
<tr>
<td>6. Color</td>
</tr>
<tr>
<td>7. Function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Review of Measurement and Shop Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reading a rule (review)</td>
</tr>
<tr>
<td>a. 6" rule to 1/32"</td>
</tr>
<tr>
<td>b. Metric: 1 meter to 1 millimeter</td>
</tr>
<tr>
<td>2. Shop math review</td>
</tr>
<tr>
<td>a. linear foot problems</td>
</tr>
<tr>
<td>b. square foot problems</td>
</tr>
<tr>
<td>c. calculating total cost from unit cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Individual Project Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Selection of project</td>
</tr>
<tr>
<td>2. Rough sketch</td>
</tr>
<tr>
<td>3. Teacher's evaluation of sketch</td>
</tr>
<tr>
<td>4. Final drawing (working)</td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES

- Have students design (draw) a small project, then as a group refine their product.

- Students should draw a ruler in their notebook to study and identify readings.

- Have students gather project pictures, e.g. catalogs, magazines, newspaper.

TEACHER ACTIVITIES

- Show the differences of the types of drawings.

- See Appendix 1 for ruler test.

- Draw an enlarged ruler on the board. Call on students to identify parts.

- Show pictures of past projects (slide show).

RESOURCES

- Book 1, p. 123
- Book 2, pp. 61-66
- Book 3, p. 22
- Book 4, p. 50
- Book 1, p. 124
- Book 2, pp. 8-11
- Book 3, p. 22
- Book 4, p. 50
- Book 1, pp. 123 & 365
- Book 2, pp. 75-78
- Book 3, p. 50
- Book 4, p. 57
- Book 1
- Book 2, p. 67
- Book 3, p. 13
- Book 4, p. 66
UNIT III: DRAWING AND PLANNING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>set up and fill out a bill of material when planning a project.</td>
<td>E. Bill Materials</td>
<td>Have students fill out a bill of materials and figure total cost for project.</td>
<td>Draw bill of material on the board or make a handout sheet to give to students.</td>
<td>Book 1, pp. 43-47</td>
</tr>
<tr>
<td></td>
<td>1. Part number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Number of pieces (quantity)</td>
<td></td>
<td></td>
<td>Book 4</td>
</tr>
<tr>
<td></td>
<td>3. Part name</td>
<td></td>
<td>See Appendix for sample form.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Size: thickness, width, length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Unit cost</td>
<td></td>
<td>See Appendix 1 for bill of material form.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Total cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>list the steps of procedure in building a project.</td>
<td>F. Plan of Procedure</td>
<td>Complete bill of material by adding the plan of procedure for designed project.</td>
<td>Develop handout sheet to show your format.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Operations (list)</td>
<td></td>
<td></td>
<td>Book 1, p. 69</td>
</tr>
<tr>
<td></td>
<td>2. Tools (list)</td>
<td></td>
<td></td>
<td>Book 3, pp. 43,425</td>
</tr>
<tr>
<td></td>
<td>3. Equipment (list)</td>
<td></td>
<td></td>
<td>Book 4</td>
</tr>
</tbody>
</table>
UNIT IV: ADVANCED METALWORKING TOOLS 7 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td>A. Precision Measurement Tools</td>
<td></td>
<td>Demonstrate the proper technique for holding and reading the outside micrometer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Micrometers</td>
<td>Have students measure different items in the lab.</td>
<td></td>
<td>Book 1, pp. 365, 378</td>
</tr>
<tr>
<td></td>
<td>a. depth</td>
<td></td>
<td></td>
<td>Book 2, pp. 100-104</td>
</tr>
<tr>
<td></td>
<td>b. thread</td>
<td></td>
<td></td>
<td>Book 3, pp. 54, 89, 323</td>
</tr>
<tr>
<td></td>
<td>c. outside</td>
<td></td>
<td></td>
<td>Book 4, p. 30b</td>
</tr>
<tr>
<td></td>
<td>d. inside</td>
<td></td>
<td></td>
<td>Book 1, pp. 67, 75</td>
</tr>
<tr>
<td></td>
<td>e. vernier</td>
<td></td>
<td></td>
<td>Book 2, pp. 543-550</td>
</tr>
<tr>
<td></td>
<td>2. Calipers</td>
<td>Identify the calipers.</td>
<td>Show different uses for calipers.</td>
<td>Book 1, pp. 67, 75</td>
</tr>
<tr>
<td></td>
<td>a. vernier</td>
<td></td>
<td></td>
<td>Book 2, pp. 543-550</td>
</tr>
<tr>
<td></td>
<td>b. hermaphrodite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. outside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. inside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. vernier bevel protractor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. machinist</td>
<td></td>
<td></td>
<td>Book 2, p. 81</td>
</tr>
<tr>
<td></td>
<td>b. engineers</td>
<td></td>
<td></td>
<td>Book 3, p. 52</td>
</tr>
<tr>
<td></td>
<td>4. Dial-indicator</td>
<td></td>
<td></td>
<td>Book 4, p. 62</td>
</tr>
<tr>
<td></td>
<td>5. Gauges</td>
<td>Identify the clamps and jigs by name in your shop.</td>
<td>Show transparencies of different clamps and fixtures.</td>
<td>Book 1, p. 365</td>
</tr>
<tr>
<td></td>
<td>a. go-nogo</td>
<td></td>
<td></td>
<td>Book 2, pp. 88, 362</td>
</tr>
<tr>
<td></td>
<td>b. ring</td>
<td></td>
<td></td>
<td>Book 3, p. 82</td>
</tr>
<tr>
<td></td>
<td>c. plug</td>
<td></td>
<td></td>
<td>Book 4, pp. 62, 386</td>
</tr>
<tr>
<td></td>
<td>d. feeler gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. drill and wire gauge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Combination set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. center head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. protractor head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. square head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Clamps, Jigs, and Fixtures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. V-block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Parallel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Locking pliers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Step block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Drill press clamps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Drill press vise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Strap clamps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify the different calipers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identify the different parts of the combination sets.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recognize the different tools by sight.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40
UNIT IV: ADVANCED METALWORKING TOOLS (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| | a. u-clamps
| | b. plain clamps
| | c. gooseneck
| | d. finger
| | e. screw heel
| | f. double finger
| 8. | 9. | 10. | 11. | 12. Machine vises |

Select and use the correct marking tool for their job.

C. Marking Tools
1. Surface gauge
2. Vernier height gauge
3. Trammel
4. Dividers
5. Scribe (scratch awl)

Point out the different capabilities and functions of each marking tool.

Test No. 2, Units 3 and 4

Book 1, p. 367
Book 2, pp. 87, 92
Book 3, p. 49
Book 4, p. 60
UNIT V: SHEET METALWORK AND LAYOUT

10 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td>A. Pattern Making</td>
<td>Lay out line developments on paper for notebook.</td>
<td>Lecture discussion on procedures for line development</td>
<td>Book 1, p. 123, Book 2, pp. 228-232, Book 3, p. 155, Book 4, pp. 173-178</td>
</tr>
<tr>
<td></td>
<td>1. Parallel line development</td>
<td></td>
<td>Filmstrips if available in your area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. prisms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. truncated objects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Radial line development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. cones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. funnels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. pyramids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Triangulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. offsets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. transitionals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. tapers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Hand Tools</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. straight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. circular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. double-cutting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. hawk-bill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. aviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) straight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) left cut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) right cut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. compound lever slitting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. bench shears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Nibblers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Punches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. solid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. hollow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. hand-lever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. chassis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resources
- Book 1, p. 123
- Book 2, pp. 228-232
- Book 3, p. 155
- Book 4, pp. 173-178

- Book 1, pp. 133-169
- Book 2, p. 238
- Book 3, p. 162
- Book 4, pp. 180-202

- Book 1, p. 142
- Book 2, p. 236
- Book 3, p. 129
- Book 4, p. 181
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>name and identify each type of hand tool.</td>
<td>5. Hammers a. rivet b. setting c. raising d. ball-peen e. mallets (1) rubber (2) leather (3) plastic (4) wood (5) brass (6) lead f. planishing g. forming h. cross-peen i. straight-peen</td>
<td>Identify hammers on tool rack. Describe individual uses.</td>
<td></td>
<td>Book 1, p. 152 Book 2, p. 235 Book 3, pp. 58, 222 Book 4, p. 74 Book 2, p. 261</td>
</tr>
<tr>
<td>safely perform all required operations on machines.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT V: SHEET METALWORK AND TOOLS

<table>
<thead>
<tr>
<th>e. combination rotary machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) burring</td>
</tr>
<tr>
<td>(2) wiring</td>
</tr>
<tr>
<td>(3) crimping</td>
</tr>
<tr>
<td>(4) setting down</td>
</tr>
<tr>
<td>(5) double seaming</td>
</tr>
<tr>
<td>f. tab notcher</td>
</tr>
<tr>
<td>g. bench nibbler</td>
</tr>
<tr>
<td>h. turret punch</td>
</tr>
<tr>
<td>i. ring and circle shear</td>
</tr>
<tr>
<td>j. portable power shears</td>
</tr>
<tr>
<td>k. cornice brake</td>
</tr>
<tr>
<td>l. press brake</td>
</tr>
<tr>
<td>m. power slitting shear</td>
</tr>
<tr>
<td>n. grooving machine</td>
</tr>
<tr>
<td>o. Pittsburgh lock forming machine</td>
</tr>
<tr>
<td>p. bench shear</td>
</tr>
<tr>
<td>q. chroanless bench</td>
</tr>
<tr>
<td>r. coper</td>
</tr>
<tr>
<td>Identify (name) and describe the use of each stake.</td>
</tr>
<tr>
<td>2. Equipment</td>
</tr>
<tr>
<td>a. universal stake holder</td>
</tr>
<tr>
<td>b. stakes</td>
</tr>
<tr>
<td>c. bench plates</td>
</tr>
<tr>
<td>3. Safety</td>
</tr>
<tr>
<td>D. Bending and Shaping Operations demonstrating proper sheet metal safety.</td>
</tr>
<tr>
<td>1. Hems</td>
</tr>
<tr>
<td>a. single</td>
</tr>
<tr>
<td>b. double</td>
</tr>
<tr>
<td>2. edges</td>
</tr>
<tr>
<td>a. wired</td>
</tr>
<tr>
<td>b. burr Ged</td>
</tr>
<tr>
<td>c. crimped</td>
</tr>
<tr>
<td>Safely perform all required operations on machines.</td>
</tr>
<tr>
<td>Safely perform all bending operations demonstrating proper sheet metal safety.</td>
</tr>
<tr>
<td>Perform operations on practice sheets.</td>
</tr>
<tr>
<td>List and describe each machine and its use in student notebook.</td>
</tr>
<tr>
<td>Draw picture of stakes in notebook.</td>
</tr>
<tr>
<td>Practice bending operations during lab exercises.</td>
</tr>
<tr>
<td>Demonstrate the use of the more common stakes.</td>
</tr>
<tr>
<td>Demonstrate bending operations.</td>
</tr>
</tbody>
</table>

Resources

- Book 1, pp. 134-183
- Book 2, p. 239
- Book 3, pp. 162, 187
- Book 4, pp. 180-202
- Book 1, p. 151
- Book 2, p. 247
- Book 3, p. 168
- Book 4, p. 184
- Book 1, pp. 165-169
- Book 2, p. 232
- Book 3, pp. 168-193
- Book 4, pp. 188, 191-196
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. seams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. lap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. flat-lock groove</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. double seam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. corner seam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Pittsburgh lock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Double bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Lap strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Set and form solid rivets.
- Identify the different types of solid rivets.
- Operate the spot welder on different thicknesses of sheet metal.

E. Sheet Metal Fastening

1. Riveting
 - solid rivets
 - pop rivets
 - explosive rivets
 - rivet set

2. Screwing

3. Soldering
 - flux
 - solder

4. Spot welding
5. MIG welding
6. TIG welding
7. Safety

- List rivets and describe the setting operations in notebook.
- Spot weld practice sheets together to eliminate burn through.

- Demonstrate setting solid rivets.
- Demonstrate proper spot welding techniques.
- See Appendix 4 for suggested sheet metal projects.
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>list the three classifications of metals.</td>
<td>C. Classifications 1. Ferrous a. iron (1) iron ore (2) pig iron (3) cast iron (4) wrought iron (5) steel b. steel (1) carbon (a) mild (b) medium (c) high (2) alloy (a) high speed (b) special</td>
<td>Look up and tell the differences in the kinds of steel.</td>
<td></td>
<td>Book 1, pp. 3, 8-27</td>
</tr>
<tr>
<td>list different metals in each classification.</td>
<td></td>
<td></td>
<td></td>
<td>Book 2, pp. 30-34</td>
</tr>
<tr>
<td>tell the different kinds of steel.</td>
<td></td>
<td></td>
<td></td>
<td>Book 3, p. 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 4, pp. 32-36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 4, p. 41</td>
</tr>
</tbody>
</table>
UNIT VI: METALLURGY AND HEAT EATING (Continued)

OBJECTIVES

<table>
<thead>
<tr>
<th>Topics</th>
<th>Student Activities</th>
<th>Teaching Activities</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the ways to make steel and explain one.</td>
<td>(3) ways to make steel (a) Bessemer converter (b) open hearth (c) electric furnace (d) basic oxygen process (e) crucible furnace</td>
<td>List and explain in notebook the ways to make steel.</td>
<td>Book 1, pp. 4-14</td>
</tr>
<tr>
<td>List three of the five stainless steels given.</td>
<td>2. Non-ferrous a. aluminum b. tin c. zinc d. copper e. lead f. silver g. others—see appendix</td>
<td>List or telling of other non-ferrous metals.</td>
<td>Book 2, pp. 34, 41</td>
</tr>
<tr>
<td>Identify metals by one or more of the identification processes.</td>
<td>3. Alloys a. stainless steel (1) molybdenum steel (2) titanium steel (3) vanadium steel (4) tantalum steel (5) chromium steel b. nickel steel (1) monel (2) inconel (3) hastelloy c. magnesium steel</td>
<td>See appendix for list of metals.</td>
<td>Book 3, p. 32</td>
</tr>
<tr>
<td>List some identification processes.</td>
<td>4. Identification (1) Surface appearance (2) Sound (3) Spark test a. color b. length c. shape d. number (4) Melting point</td>
<td>After lecture and notes have students identify different metals by one of the identification processes.</td>
<td>Book 4, p. 36</td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES

- (3) ways to make steel
 - (a) Bessemer converter
 - (b) open hearth
 - (c) electric furnace
 - (d) basic oxygen process
 - (e) crucible furnace

- Non-ferrous
 - a. aluminum
 - b. tin
 - c. zinc
 - d. copper
 - e. lead
 - f. silver
 - g. others—see appendix

- Alloys
 - a. stainless steel
 - (1) molybdenum steel
 - (2) titanium steel
 - (3) vanadium steel
 - (4) tantalum steel
 - (5) chromium steel
 - b. nickel steel
 - (1) monel
 - (2) inconel
 - (3) hastelloy
 - c. magnesium steel

- Identification
 1. Surface appearance
 2. Sound
 3. Spark test
 - a. color
 - b. length
 - c. shape
 - d. number
 4. Melting point

TEACHING ACTIVITIES

- Ask for other nonferrous metals.
- See Appendix 1 for metals definitions.

RESOURCES

- Book 1, pp. 4-14
- Book 2, pp. 34, 41
- Book 3, p. 32
- Book 4, p. 36
- Book 1, pp. 17-18
- Book 2, pp. 56-59
- Book 3, pp. 39-43
- Book 4, pp. 45-50
- Book 1, pp. 17-18
- Book 2, pp. 44-45
- Book 3, p. 40
- Book 4, pp. 42-44
- Book 16, pp. 607-616
UNIT VI: METALLURGY AND HEAT TREATING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Grain structure</td>
<td>a. pearlite
b. ferrite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Color coding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Chip test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Magnetic test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Fracture test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Density or specific gravity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Flame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Number system</td>
<td>a. S.A.E.
b. A.I.S.I. #14 shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Heat Treating</td>
<td>1. Types</td>
<td>In the student notebook, list and define the types of heat treating.</td>
<td>Lecture, discussion</td>
<td>Book 1
Book 2, p. 56
Book 3
Book 4</td>
</tr>
<tr>
<td></td>
<td>a. annealing
b. normalizing
c. tempering
d. hardening
e. case hardening
(1) cyaniding
(2) carburizing
(3) nitriding
(4) flame hardening
(5) induction
(6) laser
(7) electron beam
f. spheroidizing
g. stress relieving</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT VII: CASTING 5 Hours

OBJECTIVES

The student should be able to:

1. list and explain the different types of patterns
2. Identify tools used in foundry area.
3. correctly temper molding sand.

TOPICS

<table>
<thead>
<tr>
<th>A. Sand Casting</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Patterns</td>
<td>Have students design and make a one-piece and two-piece pattern (possible group work).</td>
<td>Lecture, discussion</td>
<td>Book 1, p. 199-206</td>
</tr>
<tr>
<td>a. simple (one piece)</td>
<td></td>
<td>Show the difference between positive and negative draft.</td>
<td>Book 2, pp. 266-275</td>
</tr>
<tr>
<td>b. split</td>
<td></td>
<td></td>
<td>Book 3, p. 291</td>
</tr>
<tr>
<td>(1) positive draft</td>
<td></td>
<td></td>
<td>Book 4, p. 233</td>
</tr>
<tr>
<td>(2) negative draft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tools</td>
<td>Show how to temper molding sand.</td>
<td>Demonstrate the procedures (step by step) of sand casting.</td>
<td></td>
</tr>
<tr>
<td>a. flask</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. sprue and riser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. ram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. bottom board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. fiddle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. strike off bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. lifter, slick, and oval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Molding sand</td>
<td>Light and turn off furnace using proper safety guidelines.</td>
<td>Pour hot metal on a piece of clothing and shoe and demonstrate need for protective clothing.</td>
<td></td>
</tr>
<tr>
<td>4. Furnace equipment</td>
<td></td>
<td>See Appendix 3 for casting safety.</td>
<td></td>
</tr>
<tr>
<td>a. crucible furnace</td>
<td></td>
<td></td>
<td>Book 1, p. 230</td>
</tr>
<tr>
<td>b. tongs</td>
<td></td>
<td></td>
<td>Book 2, pp. 277-278</td>
</tr>
<tr>
<td>c. crucible</td>
<td></td>
<td></td>
<td>Book 3, p. 306</td>
</tr>
<tr>
<td>5. Safety</td>
<td></td>
<td></td>
<td>Book 4, p. 258</td>
</tr>
<tr>
<td>B. Shell-Mold Casting</td>
<td>Lecture, notes</td>
<td>Lecture, discussion</td>
<td>Book 1, p. 228</td>
</tr>
<tr>
<td>1. Resin-coated sand</td>
<td></td>
<td></td>
<td>Book 2, p. 282</td>
</tr>
<tr>
<td>2. Heated pattern</td>
<td></td>
<td></td>
<td>Book 3, p. 304</td>
</tr>
<tr>
<td>3. Smoother finish</td>
<td></td>
<td></td>
<td>Book 4, p. 258</td>
</tr>
<tr>
<td>4. Thin shelled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Half molds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Die Casting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Air injected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Hot chamber (plunger)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cold chamber</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES

- Have students design and make a one-piece and two-piece pattern (possible group work).
- Show how to temper molding sand.
- Light and turn off furnace using proper safety guidelines.
- Demonstrate the procedures (step by step) of sand casting.
- Pour hot metal on a piece of clothing and shoe and demonstrate need for protective clothing.

RESOURCES

- Book 1, p. 199-206
- Book 2, pp. 266-275
- Book 3, p. 291
- Book 4, p. 233
- Book 1, p. 230
- Book 2, pp. 277-278
- Book 3, p. 306
- Book 4, p. 258
- Book 1, p. 228
- Book 2, p. 282
- Book 3, p. 304
- Book 4, p. 258
UNIT VII: CASTING

OBJECTIVES

<table>
<thead>
<tr>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| **D. Permanent-Mold Casting** | Have students design an investment-type of casting and cast out of lead. | Demonstrate a form of investment casting. | Book 1, p. 227
Book 3, p. 305
Book 4, p. 256 |
| 1. Accurate (± 0.010"") | | |
| 2. Gravity | | |
| 3. Reusable mold a. graphite b. metal | | |
| 4. Release agent | | |
| 5. Not suitable for thin walls | | |
| **E. Investment Casting (Lost Wax Process)** | Lecture, notes * | Lecture, discussion on each type of casting | Book 1, p. 231
Book 2, pp. 279-280
Book 3, p. 307
Book 4, p. 259 |
| 1. Shell molding | | |
| 2. Flask molding | | |
| 3. Patterns a. wax b. plastic c. frozen mercury | | |
| **F. Plaster Mold Casting** | Have students design an investment-type of casting and cast out of | See Appendix 4 for suggested projects on casting. | Book 1, p. 229
Book 2, p. 287 |
| 1. Reusable pattern (few times) | Lead. | | |
| 2. Cast metals with low melting points (400° - 1700° F.) | | |
| **G. Centrifugal Casting (rotated on longitudinal axis)** | | |
| **H. Centrifuge Casting (central sprue)** | | |
| **I. Slush Casting (hollow casting)** | | |
| 1. Slip molding | | |
| 2. Dipping | | |
| **J. Silicone Rugger Molding** | | |
| 1. Used for prototypes | | |
| 2. Good surface finish | | |
| 3. Cast metals of low melting points | | |

Test No. 4, units 6 and 7
UNIT VIII: WELDING
20 Hours

OBJECTIVES

The student should be able to:

- pass a test on the material to the satisfaction of the teacher.
- explain the makeup and fabrication of the various cylinders.
- recognize the types of regulators for various needs.
- match the hose with the use.
- discuss the need for and kinds of clothing needed for various operations.

TOPICS

A. Safety
1. Oxyacetylene welding safety
2. Cylinder handling safety
3. Arc welding safety
4. Basic electrical safety
5. Fire prevention safety
6. General precautions

B. General Welding Shop Tools and Equipment
1. Cylinders
 - a. oxygen
 - b. air
 - c. fuels
 - d. inert gases
2. Regulators
 - a. single-stage
 - b. double-stage
 - c. flow meters
3. Hoses
 - a. colors
 - b. size
 - c. coupling
4. Proper clothing
 - a. gloves
 - (1) leather
 - (2) cotton
 - (3) asbestos
 - b. eye protection
 - (1) safety glasses
 - (2) goggles
 - (3) face shields
 - (4) hoods

STUDENT ACTIVITIES

- Study units.
- Take test.
- Construct a model.
- Use in practice.

TEACHER ACTIVITIES

- Demonstrate explosive power of oxyacetylene gases with balloons (color code balloons).
- 1st balloon 6" dia. - oxygen
- 2nd balloon 5" dia. - acetylene
- 3rd balloon 3" dia. - 1/2 mixture
- Ignite them in order.
- Lecture, discussion
- Use in practice.
- Set good example.

RESOURCES

- Book 1, pp. 249-255
- Book 2
- Book 3, pp. 384, 386
- Book 4, pp. 268, 279
- Book 36, p. 23
- Book 72, p. 111
- Book 74, pp. 1A-25A
- Book 1, pp. 249-284
- Book 2, p. 199
- Book 3, pp. 383-394
- Book 4, p. 269
- Book 2, p. 201
UNIT VIII: WELDING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| understand the need for these items. | c. footwear
d. shirts
e. pants
f. bib, jackets, or aprons | | | |
| differentiate between the various types of machines and their uses. | 5. Welding machines
a. transformer - A.C.
b. Motor - Generator-D.C.
c. Rectifier - A.C. and D.C. | List examples of use on tests. | | Book 1, p. 266
Book 2, pp. 206-207
Book 3, pp. 382-389
Book 4, p. 269 |
| know when to use each of the tools. | 6. Chipping hammers
7. Tip cleaners
8. Strikers (flint lighter)
Book 4, p. 279 |
| recognize and use the various tips, as well as describe the parts and adjustments. | 10. Brushes
a. stainless steel
b. carbon steel
11. Grinders
a. bench
b. side
c. die | | | |
| name several examples of fuel gases and their specific characteristics. | 12. Oxyacetylene
a. heating
b. welding
c. cutting
C. Oxy-Fuel Welding and Cutting and Brazing
1. Fuel gases
a. acetylene
b. Mapp. (methylacetylene propadiene)
c. propane
d. natural gas
e. hydrogen
f. others | Student notebook | Lecture, discussion | Book 1, pp. 256-296
Book 2, pp. 195-206
Book 3, pp. 383-393
Book 4, p. 269
Book 16, pp. 81-174
Book 19, pp. 3-5
Book 74, pp. 1D-90D
Book 36, pp. 135-214 |
UNIT VIII: WELDING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. list several characteristics of a good weld.</td>
<td>2. Characteristics of a good weld</td>
<td>Show examples.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. consistent width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. straightness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. slightly crowned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. fused to base metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. clean appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Weld quality factors</td>
<td>Use in practice.</td>
<td>Demonstrate using proper safety to show by example.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. proper flame adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. angle of tip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. distance from work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. speed of travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. movement of tip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Means of selecting tip size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. metal thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. size of welding rod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. properties of base metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. thickness of metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Flame types</td>
<td>Set torch for each type and use each when necessary.</td>
<td>Demonstrate or show pictorial examples.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. oxidizing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. carburizing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Causes of backfires</td>
<td></td>
<td>See Appendix 3 for welding chart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. dirty tip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. loose tip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. bad O-rings in torch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. improper pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. hot tip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. tip too close to metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. kink in hose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. leak in hose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>explain flashbacks and corrective procedures.</td>
<td>explain flashbacks</td>
<td>Stress importance and methods of prevention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Results of flashbacks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Steps to follow in case of flashback</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. close oxygen torch valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. close acetylene torch valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. release oxygen regulator screw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. release acetylene regulator screw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. inspect equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>describe the difference between each process.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Differences between fusion welding and brazing</td>
<td>Student notebook</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. the temperature of the process</td>
<td>Lecture, discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. the principle of the joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Composition of brass</td>
<td>Practice each process.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. copper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. zinc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discuss the relationship of each of these items to joint strength.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Three methods to properly physically clean metal for brazing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. file</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. sand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. grind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name several characteristics of a good oxy-acetylene cut.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Factors relating to joint strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. clean metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. correct heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. joint structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. proper amount filler rod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. no slag</td>
<td>Show examples.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. square face</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>identify and explain use of each pressure control mechanism.</td>
<td>c. straight path d. sharp edges e. properly shaped drag lines</td>
<td>Student notebook</td>
<td>Lecture, discussion, demonstration</td>
<td>Show illustrations of various shapes of tips.</td>
</tr>
<tr>
<td>15. Pressure control mechanisms for cutting torches</td>
<td>a. pre-heat oxygen valve b. torch body oxygen valve c. torch body acetylene valve d. oxygen high pressure cutting lever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Cutting tips</td>
<td>a. several sizes b. various shapes c. pre-heat orifice (1) several (2) smaller (3) heats metal to kindling point (1600°F.) d. cutting orifice (1) larger (2) high pressure pure oxygen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Reasons for poor cuts</td>
<td>a. preheat flames too small b. cutting speed too slow c. preheat flames too long d. cutting oxygen pressure too low e. cutting oxygen pressure too high f. cutting speed too fast g. motion of travel unsteady h. cut lost and not carefully restarted</td>
<td>Critique cuts to find causes of problem.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

70
UNIT VIII: WELDING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Shielded Metal Arc Welding</td>
<td>1. Types of electrodes</td>
<td>Show examples of electrodes and describe when used.</td>
<td></td>
<td>Book 1, pp. 315-336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 2, pp. 206-214</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 3, pp. 394-400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 4, pp. 279-388</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 16, pp. 217-253</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 36, pp. 319-318</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 74, pp. 1E-123E</td>
</tr>
<tr>
<td></td>
<td>a. Nonconsumable (refractory)</td>
<td></td>
<td>Lectue, discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Tungsten-6100°F.</td>
<td>Explain when each current would be used and the disadvantages of each and how they function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Carbon-6512°F.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Consumables (filler metal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Currents</td>
<td>Decision when to use the different currents to best advantage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Alternating (AC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Direct (DC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Negative polarity electrode (straight)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Positive polarity electrode (reverse)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Factors to consider when setting amperage</td>
<td>Experiment with different variables to see effects.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Thickness of metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Size of metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Type of joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Size of electrode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Type of electrode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. Length of cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Duty cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Electrode angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Arc lengths</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Reasons for poor welds</td>
<td>Identify reasons for poor welds on some sample plates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Current too low</td>
<td></td>
<td>Show examples.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Current too high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Arc length too long</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Arc length too short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>e. speed too slow</td>
<td>Practice making the various joints and welds.</td>
<td>Lecture discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. speed too fast</td>
<td></td>
<td></td>
<td>Show examples of different welding joints.</td>
<td></td>
</tr>
<tr>
<td>g. improper angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. improper electrode type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. improper electrode size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. improper base metal preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Arc welding joints and welds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. butt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. fillet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. lap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. bead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. tack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. corner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. weave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. pad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. multipass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Welding positions</td>
<td>Practice welds in different positions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. flat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. overhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Electrode selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Comparison of bare electrodes to covered electrodes</td>
<td></td>
<td></td>
<td>Show examples of the different types and sizes of rods.</td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>b. filler rod composition</td>
</tr>
<tr>
<td>(1) mild</td>
<td>(1) mild</td>
<td>(1) mild</td>
<td>(1) mild</td>
<td>(1) mild</td>
</tr>
<tr>
<td>(2) stainless</td>
<td>(2) stainless</td>
<td>(2) stainless</td>
<td>(2) stainless</td>
<td>(2) stainless</td>
</tr>
<tr>
<td>(3) cast iron</td>
</tr>
<tr>
<td>(4) non-ferrous</td>
<td>(4) non-ferrous</td>
<td>(4) non-ferrous</td>
<td>(4) non-ferrous</td>
<td>(4) non-ferrous</td>
</tr>
<tr>
<td>(5) low hydrogen</td>
</tr>
<tr>
<td>c. coverings</td>
<td>c. coverings</td>
<td>c. coverings</td>
<td>c. coverings</td>
<td>c. coverings</td>
</tr>
<tr>
<td>(1) function</td>
<td>(1) function</td>
<td>(1) function</td>
<td>(1) function</td>
<td>(1) function</td>
</tr>
<tr>
<td>(2) composition</td>
<td>(2) composition</td>
<td>(2) composition</td>
<td>(2) composition</td>
<td>(2) composition</td>
</tr>
<tr>
<td>d. size</td>
<td>d. size</td>
<td>d. size</td>
<td>d. size</td>
<td>d. size</td>
</tr>
<tr>
<td>a. tapping</td>
<td>a. tapping</td>
<td>a. tapping</td>
<td>a. tapping</td>
<td>a. tapping</td>
</tr>
<tr>
<td>b. scratching</td>
<td>b. scratching</td>
<td>b. scratching</td>
<td>b. scratching</td>
<td>b. scratching</td>
</tr>
<tr>
<td>Student notebook</td>
<td>Student notebook</td>
<td>Student notebook</td>
<td>Student notebook</td>
<td>Student notebook</td>
</tr>
<tr>
<td>a. number - AWS</td>
</tr>
<tr>
<td>b. color marking - NEMA</td>
</tr>
<tr>
<td>a. argon</td>
<td>a. argon</td>
<td>a. argon</td>
<td>a. argon</td>
<td>a. argon</td>
</tr>
<tr>
<td>b. helium</td>
<td>b. helium</td>
<td>b. helium</td>
<td>b. helium</td>
<td>b. helium</td>
</tr>
<tr>
<td>c. CO₂</td>
<td>c. CO₂</td>
<td>c. CO₂</td>
<td>c. CO₂</td>
<td>c. CO₂</td>
</tr>
</tbody>
</table>

Identify basic common electrodes and their characteristics.

Select the proper shielding gas for the job.

Make transparencies.

Book 1, p. 339
Book 2, p. 215
Book 3, p. 401
Book 4, p. 292
Book 16, p. 289
Book 36, pp 378-423
Book 74, pp. 17-1227

Show examples.
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinguish between good and bad welds.</td>
<td>8. Fillers</td>
<td>Practice welding.</td>
<td>Show examples of good and bad welds.</td>
<td>Book 1, p. 346</td>
</tr>
<tr>
<td></td>
<td>10. Reasons for poor welds</td>
<td></td>
<td></td>
<td>Book 3, p. 401</td>
</tr>
<tr>
<td></td>
<td>F. Metal Inert Gas Welding - GMAW-MIG</td>
<td></td>
<td>Discuss effects of stickout.</td>
<td>Book 4, p. 292</td>
</tr>
<tr>
<td></td>
<td>1. Major parts</td>
<td></td>
<td>Show examples of welds.</td>
<td>Book 16, p. 351</td>
</tr>
<tr>
<td></td>
<td>2. Advantages</td>
<td></td>
<td>Lecture, discussion</td>
<td>Book 36, pp. 337-387</td>
</tr>
<tr>
<td></td>
<td>3. Applications</td>
<td></td>
<td></td>
<td>Book 74, pp. 123F-347F</td>
</tr>
<tr>
<td></td>
<td>4. Characteristics of good welds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Effects of wire stickout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Causes of poor welds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Types of wires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Factors in selection of filler wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Major parts of equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Shielding gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Resistance Welding</td>
<td></td>
<td>Research different areas for local use.</td>
<td>Book 1, p. 353</td>
</tr>
<tr>
<td></td>
<td>1. Spot welding</td>
<td></td>
<td>Discuss various types and their applications.</td>
<td>Book 3, p. 404</td>
</tr>
<tr>
<td></td>
<td>2. Seam welding</td>
<td></td>
<td></td>
<td>Book 16, p. 410</td>
</tr>
<tr>
<td></td>
<td>3. Flash-but welding</td>
<td></td>
<td></td>
<td>Book 4, pp. 289-290</td>
</tr>
<tr>
<td></td>
<td>4. Projection welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Perussion welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Upset welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Other Welding Processes</td>
<td></td>
<td>Research applications for industry.</td>
<td>Book 1, pp. 339-360</td>
</tr>
<tr>
<td></td>
<td>1. Ultrasonic welding</td>
<td></td>
<td>Give explanation of welding processes and examples of uses.</td>
<td>Book 2, p. 217</td>
</tr>
<tr>
<td></td>
<td>2. Friction welding</td>
<td></td>
<td></td>
<td>Book 3, pp. 400-408</td>
</tr>
<tr>
<td></td>
<td>3. Forge welding</td>
<td></td>
<td></td>
<td>Book 4, pp. 289-294</td>
</tr>
<tr>
<td></td>
<td>4. Explosion welding</td>
<td></td>
<td></td>
<td>Book 16, pp. 456-563</td>
</tr>
<tr>
<td></td>
<td>5. Diffusion welding</td>
<td></td>
<td></td>
<td>Book 36, pp. 483-495</td>
</tr>
<tr>
<td></td>
<td>6. Cold welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>9. Induction welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Laser-beam welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Thermit welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Submerged-arc welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Plasma-arc welding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>read welding prints with the aid of a symbols chart.</td>
<td>I. Welding Print Reading</td>
<td>Discuss print symbols</td>
<td>Book 74, pp. 1C-39C</td>
<td></td>
</tr>
<tr>
<td>list major weld defects.</td>
<td>J. Principal Weld Defects</td>
<td>Show examples of each.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Incomplete fusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Lack of fusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Undercutting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Slag inclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. porosity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. cracking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. dimensional defects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. brittleness</td>
<td>Test No. 5, Unit 8</td>
<td>See Appendix 4 for suggested projects.</td>
<td></td>
</tr>
</tbody>
</table>
UNIT IX: MACHINING 20 Hours

OBJECTIVES

The student should be able to:

1. Identify the different kinds of power sawing.
2. Explain the function and advantages of each kind of sawing.
3. Set up and cut different shapes of metal.
4. Change blade on all kinds of power saws.

TOPICS

<table>
<thead>
<tr>
<th>A. Power Sawing</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power hacksaw</td>
<td>Lecture, writing notes in notebook</td>
<td>Have a student remove and replace blade on each machine.</td>
<td>Book 1, pp. 35-40</td>
</tr>
<tr>
<td>a. dry cutting</td>
<td></td>
<td></td>
<td>Book 2, pp. 372-378</td>
</tr>
<tr>
<td>b. wet cutting</td>
<td></td>
<td></td>
<td>Book 3, pp. 84-86</td>
</tr>
<tr>
<td>c. cutting speed</td>
<td></td>
<td></td>
<td>Book 4, p. 410</td>
</tr>
<tr>
<td>d. blades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) tooth pitch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Horizontal band saws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. advantages over power hacksaw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) smaller kerf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) increased cutting speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) feed and speed control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Abrasive cutoff saws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. fixed head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. oscillating head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Vertical band saws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. types of cutting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) straight-line cuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) angular cuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) curved-line cuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) internal contour cutting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. band filing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEACHER ACTIVITIES

- Lecture, discussion, demonstration
- See Appendix for safety chart.
- Demonstrate the proper way to position different shapes of metal for cutting on each machine.
- Demonstrate the proper way to remove and replace broken blades on each machine.
- Show proper maintenance procedures for each saw.
- Lecture, discussion
- Demonstrate proper way to cut round stock.

RESOURCES

- Book 1, pp. 37
- Book 2, p. 376
- Book 3, p. 85
- Book 4, p. 413
OBJECTIVES
- Identify drilling machines in lab.
- Clamp up and drill holes in any shape stock.
- Identify the different types of twist drills.
- Name all drilling operations and explain what they are.

TOPICS
- c. Band polishing
 1. Abrasive belt
 2. Special guide for saw
- d. Safety

STUDENT ACTIVITIES
- Show clamping procedure for odd-shaped stock.
- List and describe the types of twist drills in student notebook.
- Show procedure for different drilling operations.

TEACHER ACTIVITIES
- Demonstrate the proper way to drill all shapes of stock.
- Demonstrate the different drilling operations and explain speeds and lubrication.

RESOURCES
- Book 1, pp. 399-422
- Book 2, pp. 386-410
- Book 3, pp. 86-98
- Book 4, pp. 381-395
UNIT IX: MACHINING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name some kinds of lathes.</td>
<td>C. Lathes and Lathe Operations 1. Kinds of lathes a. manually operated lathe b. screw machines c. turret lathes d. tracer lathe e. numerically controlled lathes f. CNC</td>
<td>List and describe lathe operations in student notebook.</td>
<td>Show film series on lathes if available in your area.</td>
<td>Book 1, pp. 426-441</td>
</tr>
<tr>
<td>List the basic lathe operations.</td>
<td>2. Lathe-operations a. facing b. counter boring c. threading (1) inside (2) outside d. tapering e. turning between centers f. knurling (1) straight (2) diamond g. drilling h. reaming</td>
<td>Practice different lathe operations on scrap material.</td>
<td>Demonstrate and explain all lathe operations showing proper safety procedures.</td>
<td>Book 2, pp. 413-414</td>
</tr>
<tr>
<td>Identify the different parts of the lathe.</td>
<td>3. Parts of lathes a. headstock b. tailstock c. gear box d. apron e. ways f. lead screw g. compound rest h. power-feed clutch i. see Appendix for pictures and complete nomenclature</td>
<td>List the parts of the lathe on handout sheet.</td>
<td>See Appendix 3 for lathe safety.</td>
<td>Book 3, pp. 331-344</td>
</tr>
</tbody>
</table>

86
UNIT IX: MACHINING (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>set up and use all mounting tools and fixtures available in lab.</td>
<td>4. Mounting tools and fixtures</td>
<td>Show proper use for setting up mounting fixtures.</td>
<td>Demonstrate and explain the purpose of each mounting fixture</td>
<td>Book 1, pp. 449-456</td>
</tr>
<tr>
<td></td>
<td>a. three-jaw chuck</td>
<td></td>
<td></td>
<td>Book 2, pp. 421-429</td>
</tr>
<tr>
<td></td>
<td>b. four-jaw chuck</td>
<td></td>
<td></td>
<td>Book 3, pp. 444-469</td>
</tr>
<tr>
<td></td>
<td>1) universal</td>
<td></td>
<td></td>
<td>Book 4, pp. 350-353</td>
</tr>
<tr>
<td></td>
<td>2) independent</td>
<td></td>
<td></td>
<td>Book 44, pp. 202-218</td>
</tr>
<tr>
<td></td>
<td>c. face plates</td>
<td></td>
<td></td>
<td>Book 46, pp. 145-168</td>
</tr>
<tr>
<td></td>
<td>d. lathe dogs</td>
<td></td>
<td></td>
<td>See Appendix 2 for puzzles on machining.</td>
</tr>
<tr>
<td></td>
<td>1) bent-tail lathe dog</td>
<td></td>
<td></td>
<td>Book 1, pp. 441-449</td>
</tr>
<tr>
<td></td>
<td>2) clamp type</td>
<td></td>
<td></td>
<td>Book 2, pp. 430-434</td>
</tr>
<tr>
<td></td>
<td>e. collet</td>
<td></td>
<td></td>
<td>Book 3, pp. 328</td>
</tr>
<tr>
<td></td>
<td>1) round</td>
<td></td>
<td></td>
<td>Book 4, pp. 250-353</td>
</tr>
<tr>
<td></td>
<td>2) square</td>
<td></td>
<td></td>
<td>Book 44, pp. 213-219</td>
</tr>
<tr>
<td></td>
<td>3) hexagon</td>
<td></td>
<td></td>
<td>Book 46, pp. 145-152</td>
</tr>
<tr>
<td></td>
<td>f. centers</td>
<td></td>
<td></td>
<td>Lecture, discussion</td>
</tr>
<tr>
<td></td>
<td>1) live</td>
<td></td>
<td></td>
<td>Book 1, pp. 441-449</td>
</tr>
<tr>
<td></td>
<td>2) dead</td>
<td></td>
<td></td>
<td>Book 2, pp. 430-434</td>
</tr>
<tr>
<td></td>
<td>g. spindle chuck</td>
<td></td>
<td></td>
<td>Book 3, pp. 328</td>
</tr>
<tr>
<td></td>
<td>h. thread gauge</td>
<td></td>
<td></td>
<td>Book 4, pp. 250-353</td>
</tr>
<tr>
<td></td>
<td>i. dial-indicator gauge</td>
<td></td>
<td></td>
<td>Book 44, pp. 213-219</td>
</tr>
<tr>
<td></td>
<td>j. steady rest</td>
<td></td>
<td></td>
<td>Book 46, pp. 145-152</td>
</tr>
<tr>
<td></td>
<td>k. following rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| | (5) right-hand facing
(6) cut-off tool
(7) threading
(8) boring tool
(9) inside threading
c. cutting-tool terms
(1) cutting edge
 (a) side
 (b) end
(2) face
(3) flank
(4) nose
(5) relief
 (a) side
 (b) end
(6) rake
 (a) side
 (b) end | Identify parts of cutting tool model. | Make a model of each cutting tool taken out of 1½" x 1½" pine.
(Color code parts.) | Book 1, pp. 487-489
Book 2, pp. 453-458
Book 3, p. 351
Book 4, p. 372
Book 44, p. 308 |
| | D. Milling Machines and Milling Operations
1. Types of machines
a. column and knee
b. bed
2. Kinds of machines
a. vertical mill
b. horizontal mill
c. combination horizontal, vertical
3. Types of milling cutters
a. plain-milling cutters
b. side-milling cutters
c. angular-milling cutters
d. end mills
e. formed cutters
f. face-milling cutters
g. special cutters | List and describe the types and kinds of milling machines in student notebook. | Lecture, discussion, demonstration
Show film on milling machines if available in your area. | Book 1, pp. 485, 494, 499
Book 2, pp. 468-473
Book 3, pp. 352-353
Book 4, pp. 361-363
Book 44, p. 319
Book 46, p. 235 |
<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjust the milling machine</td>
<td>Cutter holding devices</td>
<td>Set up the cutters on the different holding devices.</td>
<td>Show all adjustments and controls are used on the machine.</td>
<td>Book 2, p. 467</td>
</tr>
<tr>
<td>for any type of cut ±0.010.</td>
<td>a. collets</td>
<td></td>
<td></td>
<td>Book 4, p. 376</td>
</tr>
<tr>
<td></td>
<td>b. arbor</td>
<td></td>
<td></td>
<td>Book 44, p. 313</td>
</tr>
<tr>
<td></td>
<td>Machine adjustments and controls</td>
<td></td>
<td></td>
<td>Book 46, p. 252</td>
</tr>
<tr>
<td></td>
<td>a. knee elevations</td>
<td></td>
<td></td>
<td>Book 1, p. 499</td>
</tr>
<tr>
<td></td>
<td>b. table movements</td>
<td></td>
<td></td>
<td>Book 2, pp. 458-459</td>
</tr>
<tr>
<td></td>
<td>(1) cross-feed hand-wheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) longitudinal-feed control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. spindle speed adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. feed adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. feed direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Machine adjustments and controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. knee elevations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. table movements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) cross-feed hand-wheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) longitudinal-feed control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. spindle speed adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. feed adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. feed direction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Milling operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. cutting keyways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. slotting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. facing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. milling grooves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. indexing or dividing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) sides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) holes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f. straddle milling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g. cutting gears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h. up milling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. down milling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>List, describe milling operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in student notebook.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Shapers and Shaping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Kinds of shapers</td>
<td>In student notebook, list and describe the parts, adjustments, and cuts for the shaper.</td>
<td>Discuss the use of the shaper.</td>
<td>Book 1, pp. 482-484</td>
</tr>
<tr>
<td></td>
<td>a. horizontal shapers</td>
<td></td>
<td></td>
<td>Book 2, pp. 490-495</td>
</tr>
<tr>
<td></td>
<td>b. vertical shapers</td>
<td></td>
<td></td>
<td>Book 3, pp. 344-350</td>
</tr>
<tr>
<td></td>
<td>2. Parts of shaper</td>
<td></td>
<td></td>
<td>Book 4, p. 366</td>
</tr>
<tr>
<td></td>
<td>a. base</td>
<td></td>
<td></td>
<td>Book 44, p. 273</td>
</tr>
<tr>
<td></td>
<td>b. table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. ram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. tool head assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| show how to make all machine adjustments. | 3. Machine adjustments
a. tool slide position
b. horizontal table movement
c. table elevation
d. length of stroke
e. position of stroke
f. cutting speed selection
g. feed adjustment
4. Special forged tools
a. round-nose tool
b. side-cutting tool
c. gooseneck tool (flat cuts)
5. Shaper cuts
a. vertical cut
b. angular cut
c. horizontal cut
d. angular dovetail cut
F. Ultra Modern Machining Processes
1. Electrical discharge machining (EDM)
2. Electrochemical machining (ECM)
3. Electron beam machining (EBM)
4. Laser beam machining (LBM)
5. Ultrasonic Machining (USM)
6. Chemical Machining (CM)
G. Numerical Control and Automation
1. Lathes
2. Milling machine
3. Drilling machine
4. Combination machines
| if available, demonstrate the different kinds of adjustments.
| See Appendix 4 for suggested machining projects. | | |
| set up shaper for each kind of cut. | | | |
| name three of the six modern machining processes | | | Book 1, p. 534
Book 2, pp. 514–525
Book 3, pp. 361–366
Book 4, p. 416
Book 44, p. 466
Book 46, pp. 421–450
Book 1, p. 525
Book 2, pp. 526–540
Book 3, pp. 409–410
Book 4, p. 435
Book 44, p. 486
Book 46, p. 341 |
UNIT X: MATERIAL TESTING 3 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The student should be able to:</td>
<td>A. Nondestructive</td>
<td>Student notebook</td>
<td>Lecture discussion</td>
<td>Book 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do magnetic particle testing.</td>
<td></td>
<td>Book 2, pp. 557-563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do penetrant testing (diesel oil).</td>
<td>Do penetrant testing (diesel oil).</td>
<td>Book 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do leak test (balloon).</td>
<td>Explain principles of ultrasonics.</td>
<td>Book 4, pp. 323-333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Destructive Testing</td>
<td>Explain hardness testing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 46, p. 327</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 52, whole book</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 56, pp. 71-95</td>
</tr>
<tr>
<td>list several processes in non-destructive testing.</td>
<td>1. Magnetic particle</td>
<td>Do magnetic particle testing.</td>
<td>Lecture discussion</td>
<td>Book 1</td>
</tr>
<tr>
<td></td>
<td>2. Radiographic</td>
<td>Do magnetic particle testing.</td>
<td></td>
<td>Book 2, pp. 557-563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do penetrant testing (diesel oil).</td>
<td>Do penetrant testing (diesel oil).</td>
<td>Book 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do leak test (balloon).</td>
<td>Explain principles of ultrasonics.</td>
<td>Book 4, pp. 323-333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Book 46, p. 327</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 52, whole book</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Book 56, pp. 71-95</td>
</tr>
<tr>
<td>explain how several of these processes work and their typical applications.</td>
<td>3. Penetrant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Ultrasonic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. eddy current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. leak test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. hardness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Brinell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Rockwell</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Vickers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Shore scleroscope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Thermal and infrared</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Microwave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Strain sensing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. brittle coatings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. photo-elastic coatings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. resistance strain gauges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. visual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do visual tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>list several processes in destructive testing.</td>
<td>Do free-bend test (in vise).</td>
<td></td>
<td>Construction guided-bend tester.</td>
<td></td>
</tr>
<tr>
<td>explain how several of these processes work and their typical applications.</td>
<td>Do free-bend test (in vise).</td>
<td></td>
<td>Construction guided-bend tester.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do fatigue tests (bending wire).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECTIVES

The student should be able to:

- list and explain the different kinds of finishing.
- list and describe different application techniques.
- finish a project using techniques described in lecture.

TOPICS

A. Kinds of Finishing
- 1. Grinding
- 2. Polishing
- 3. Brushing
- 4. Sanding
- 5. Buffing
- 6. Burning
- 7. Electroplating

B. Application Techniques
- 1. Brushing
- 2. Spraying
 - a. pressure feet
 - b. suction feed
 - c. electrostatic
 - d. aerosol
 - e. flame
- 3. Powder fusion coating
- 4. Dip or flow coating
- 5. Roller coating
- 6. Tumbling

C. Protective Metal Finishes
- 1. Primers
- 2. Metal enamels
- 3. Lacquers
- 4. Galvanizing
- 5. Tin coating
- 6. Parkerizing

STUDENT ACTIVITIES

- List and define in student notebook the kinds of finishing and techniques of application.
- Experiment: take some scrap steel and prepare it with different methods (see A). Then finish a small section of each with different application techniques using as many finishes (see C) as possible.

TEACHER ACTIVITIES

- Lecture, discussion
- Discuss the different advantages of the application techniques.
- See Appendix 2 for puzzles on finishing.

RESOURCES

- Book 1, p. 513
- Book 2, pp. 347-351
- Book 3, pp. 231-271
- Book 4, p. 441
- Book 46, p. 395
- Book 53, whole book
UNIT XII: AUTOMATION TECHNOLOGY

OBJECTIVES

The student should be able to:

- Demonstrate a working knowledge of the use of robots in industry.
- Demonstrate knowledge of the role of the computer in automation.

TOPICS

A. Robotics
- 1. Welding
- 2. Parts manipulation
- 3. Finishing
- 4. Hazardous material handling
- 5. Quality control

B. Computers
- 1. Computer numerical control (CNC)
- 2. Computer aided design (CAD)
- 3. Computer aided manufacture (CAM)

STUDENT ACTIVITIES

<table>
<thead>
<tr>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teacher Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain film/films.</td>
</tr>
<tr>
<td>Make handouts from appendix.</td>
</tr>
<tr>
<td>Make transparencies from appendix.</td>
</tr>
</tbody>
</table>

RESOURCES

- Book 14, p. 499
- Book 38, Articles Appendix
- Book 2, p. 520
- Book 44, p. 492

Notes:

- Test no. 7, Units 10, 11, 12
- Obtain working robot model from Radio Shack.
- Demonstrate computer capabilities.
- Obtain permission of local industry for field trip.
- Obtain guest speaker.
- See Appendix 5 for material on robotics.

BEST COPY AVAILABLE
OBJECTIVES

The student should be able to:

- pass all safety tests given by teacher.

TOPICS

- A. General Shop and Lab Safety
- B. Personal Safety
- C. Tool and Equipment Safety
- D. Housekeeping Practices
- E. Sheetmetal Safety
- F. Heat Treating Safety
- G. Casting Safety
- H. Oxy-fuel Processes Safety
- I. Arc Welding Safety
- J. TIG and MIG Safety
- K. Electrical Safety
- L. General Machine Shop Safety
- N. Machine Operation Safety
 1. Buffers
 2. Drill presses
 3. Grinders
 4. Milling machines
 5. Shapers
 6. Lathes
- N. Fire Safety

STUDENT ACTIVITIES

- Read, review safety handout.
- Test - safety

TEACHER ACTIVITIES

- Make safety handout to include all safety area.
- See all of Appendix 3 for safety rules.
- See Appendix 2 for puzzles on safety.

RESOURCES

- Book 70, Safety Manual
APPENDIX 1

CLASS MANAGEMENT
I. Expectations:
 A. Have a notebook and pencil in class each day.
 B. Have this general information sheet with you each day.
 C. Be in your seat ready to begin class when the tardy bell rings.
 D. Be respectful and listen when others are speaking.
 E. Bring an excuse for those days absent.

II. Materials for Metals courses:
 A. Notebook (100 page spiral)
 B. Pen or pencil every day
 C. Finishing materials for projects (as required by project)
 D. Lab fee (if required for your course)

III. Grades are determined by the following:
 A. Class participation
 B. Tests and quizzes
 C. Written work, notebook, and projects
 D. Attitude toward work and classroom rules
 E. Work done above and beyond the basic requirements
 F. Grading scale (Type in your own grading scale.)

IV. Classroom Rules

 The following of these rules is important to you as a student. Abiding by
 the general classroom rules will make your classroom experience more enjoyable,
 safer, and more rewarding.

 1. Comply with the requests of the teacher.
 2. Bring your notebook and pencil to class every day.
 3. Do not make smart remarks to the teacher.
 4. Talking is not allowed:
 when the teacher is talking.
 when tests are being given.
 when another student is talking.
 during an audiovisual presentation (film, filmstrips).
 5. You may not leave the room without permission and a hall pass.
 6. Be in your seat when the tardy bell finishes ringing or you will be marked
 tardy.
 7. Do not leave the room after class until you are dismissed.
 8. You must have an excuse for being late to class.
 9. Do not use obscene language.
 10. All school rules apply in the classroom-lab as well.
 11. The shop office is off limits.
 12. All paper, trash, etc. must be picked up before class is dismissed.
 13. Do not stand in the doorway before class.
 14. Do not play in shop, this is the most dangerous place in school.
 15. If for any reason you are failing or falling behind, you must be responsible
 to attack this problem in a systematic way.
 A. Confer with your teacher and get his recommendations.
 B. Report the matter to your parents promptly.
 16. Accept helpful criticism gracefully. Remember that your behavior reflects you.

MAKEUP TESTS: (Type your rules for giving makeups.)
PARENTAL PERMISSION SLIP

Metalsville High School
Metals Lab
Mr. Angle Iron

Parents: ____________________________ is enrolled in our industrial arts program and will have the opportunity to use various tools and equipment such as:

1. Lincoln arc welder
2. TIG Welder
3. MIG Welder
4. Pedestal grinder
5. Drill Press
6. Jig saw
7. Portable power grinder
8. Portable drill
9. Portable sheet metal cutter
10. Gas Furnace
11. Gas Welders
12. Bar folder
13. Shears
14. Presses
15. Brakes
16. Roll formers

Appropriate instruction in the proper use of the tools and equipment is given and close supervision is maintained. Every precaution is taken to prevent accidents. We are asking your cooperation in impressing your child with the importance of being careful. It is mandatory that all students accept the obligation to obey the safety rules designed to protect them and others.

You are welcome to visit our industrial arts facilities. Please check through the main office.

__________ has our/my permission to operate the equipment equipment in the metals laboratory at Metalsville High School. It is understood that instruction in its safe operation will be given before he/she is allowed to use any piece of equipment and that he/she will be properly supervised at all times.

In the case of an accident, it is preferred that he/she be given treatment by:

Dr: ___
Dr: ___
Our home phone number is: _______________________
Our work phone number is: _______________________

If neither parent/guardian can be reached at the above numbers, please notify: ____________________________ at ____________________________
(responsible person) (telephone number)

Date: _______________ Signed: _______________________
(father/guardian)

Address: __________________________
Student's birthday: ________________

Please advise me of any physical handicaps or medical problems which need to be brought to my attention so that measures may be taken to ensure safe working conditions for your child.

Thank you,

(father/guardian)
SHOP FEE LETTER TO PARENTS
(example)

To: All Parents of Metals Students
From: Mr. Angle Iron, Metals Instructor
 Metalsville High School
Subject: Shop Fees for Metals Class

As stated in the Metalsville High Handbook, students enrolled in industrial arts are required to pay shop fees.

In the industrial arts courses, Metals I and II, students are required to pay for materials they use on projects that they are allowed to take home.

No set fee is required from students in this Metals course, because the students are required to construct two projects of their choice with the approval of the teacher. The projects must meet the requirements of the course. However, the students are required to pay for the materials used or wasted in the construction of the project. The cost of the projects will vary from project to project and from student to student.

The student will know the approximate cost of the project before he or she begins the construction.

Thank you for your cooperation.

Sincerely,

Angle Iron
Metals Instructor

Parent's signature: ____________________________ Date: ____________________

PLEASE RETURN THIS SHEET
LIST OF METALS

actinium
aluminum
americium
antimony
arsenic
barium
berkelium
beryllium
bismuth
cadmium
calcium
californium
cerium
cesium
chromium
cobalt
copper
curium
dysprosium
einsteinium
erbium
europium
fermium
francium
gadolinium
gallium
germanium
gold
hafnium
holmium
indium
iridium
iron
lanthanum
lead
lithium
lutecium
magnesium
manganese
mendelevium
mercury

molybdenum
neodymium
neptunium
nickel
niobium
nobelium
osmium
palladium
platinum
plutonium
polonium
potassium
praseodymium
promethium
protactinium
radium
rhenium
rhodium
rubidium
ruthenium
samarium
scandium
silver
sodium
strontium
tantalum
technetium
terbium
thallium
thorium
thulium
tin
titanium
tungsten
uranium
vanadium
ytterbium
yttrium
zinc
zirconium
BILL OF MATERIAL

Name of Project___

Student's Name ___________________________ Date Started ________________

Grade Level ___________________________ Date Completed ________________

Course __________________________________ Project Grade ______________

Instructor's Approval ______________ Bill of Material Grade ____________

MATERIALS LIST

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>NO. OF PIECES</th>
<th>SIZE T"</th>
<th>W"</th>
<th>L"</th>
<th>NAME OF PART</th>
<th>TYPE OF MATERIAL</th>
<th>UNIT COST</th>
<th>TOTAL COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL
PLAN OF PROCEDURE

STUDENT'S NAME

NAME OF PROJECT

TOOLS AND MACHINES REQUIRED

1. ____________________________ 6. ____________________________
2. ____________________________ 7. ____________________________
3. ____________________________ 8. ____________________________
4. ____________________________ 9. ____________________________
5. ____________________________ 10. ____________________________

OPERATIONS PERFORMED

1. ____________________________
2. ____________________________
3. ____________________________
4. ____________________________
5. ____________________________
6. ____________________________
7. ____________________________
8. ____________________________
9. ____________________________
10. ____________________________

PLAN OF PROCEDURE

1. ____________________________
2. ____________________________
3. ____________________________
4. ____________________________
5. ____________________________
6. ____________________________
7. ____________________________
8. ____________________________
9. ____________________________
10. ____________________________
<table>
<thead>
<tr>
<th></th>
<th>Shop Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shop Foreman</td>
</tr>
<tr>
<td>2.</td>
<td>Sweeper</td>
</tr>
<tr>
<td>3.</td>
<td>Tool cabinets 1 & 2</td>
</tr>
<tr>
<td>4.</td>
<td>Large tables</td>
</tr>
<tr>
<td>5.</td>
<td>Tool cabinets 3 & 4 and goggle cabinet</td>
</tr>
<tr>
<td>6.</td>
<td>Arc welding tables & welders</td>
</tr>
<tr>
<td>7.</td>
<td>Tool cabinets 4 & 5</td>
</tr>
<tr>
<td>8.</td>
<td>Sweeper</td>
</tr>
<tr>
<td>9.</td>
<td>Soldering table</td>
</tr>
<tr>
<td>10.</td>
<td>Gas welding tables & torches</td>
</tr>
<tr>
<td>11.</td>
<td>Tool cabinets 6 & 7</td>
</tr>
<tr>
<td>12.</td>
<td>Machines</td>
</tr>
<tr>
<td>13.</td>
<td>Tables</td>
</tr>
<tr>
<td>14.</td>
<td>Pick up with dust pan</td>
</tr>
<tr>
<td>15.</td>
<td>Paint cabinet</td>
</tr>
<tr>
<td>16.</td>
<td>Sweeper</td>
</tr>
<tr>
<td>17.</td>
<td>Housekeeper</td>
</tr>
<tr>
<td>18.</td>
<td>Issue and receive projects & housekeeper</td>
</tr>
<tr>
<td>19.</td>
<td>Window closer</td>
</tr>
<tr>
<td>20.</td>
<td>Hand tool cleaner</td>
</tr>
<tr>
<td>21.</td>
<td>Machines</td>
</tr>
<tr>
<td>22.</td>
<td>Foreman of all tool cabinets control panels (locks cabinet at 7th period)</td>
</tr>
<tr>
<td>23.</td>
<td>Sweeper</td>
</tr>
<tr>
<td>24.</td>
<td>Cleans lathe</td>
</tr>
</tbody>
</table>

Everyone has a secondary job: That of the person above you when that person is absent.
I understand the safety demonstrations given for the operations and equipment listed below. I have also completed the safety tests that apply to the operations and equipment listed.

My signature on each of the listed items means that I understand how to perform these operations safely and I understand how to use the tools and equipment safely. My signature also means that I agree to use all the safety precautions I have learned; I agree to report any unsafe conditions to my instructor; and I will discuss anything I am unsure about with my instructor.

<table>
<thead>
<tr>
<th>DESCRIPTION OF EQUIPMENT OR OPERATION</th>
<th>DATE</th>
<th>STUDENT’S SIGNATURE</th>
<th>INSTRUCTOR’S INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FROM: School

INSTRUCTOR: ___________________________ STUDENT: ___________________________

CLASS: ___________________________ PERIOD: ___________________________

SUBJECT: ACCIDENT PREVENTION

This notice is to inform you that has repeatedly demonstrated an unwillingness to cooperate with the school's efforts to maintain a safe environment for the students and the staff of this school. Although all students are instructed in the procedures necessary to assure their safety and the safety of those around them, has, on numerous occasions, chosen to ignore or violate these safety procedures.

If there is no improvement in attitude and in the level of cooperation, it may become necessary to restrict this student from further participation in class activities and projects. The result may be a failing grade or dismissal from this class. If you wish to have a conference regarding this matter, please so indicate below.

Please discuss this matter with , and sign this notice indicating that you, the parent or guardian, have read the notice and that you accept full responsibility and liability in the event of personal injury or property damage resulting from your son/daughter/ward's carelessness.

Parent/Guardian's Signature: ___________________________

Date: ___________________________

Yes, I would like to make an appointment to discuss this matter. I may be reached at phone number between the hours of _______

I have discussed this notice with my parent or guardian, and I understand clearly what it means.

Student's Signature: ___________________________

Date: ___________________________

Copies of this notice have been sent to the office of the principal.
SOME OF TODAY'S INDUSTRIAL METALS

1. Aluminum - 1/3 weight of steel - 168 lbs./cubic foot, conductive, corrosive-resistant; used in aircraft alloys, wire, foil, and cooking utensils; melts at 1720° F.

2. Cadmium - Soft, bright, corrosive-resistant; used in solder, atomic-power control, and plating; melts at 1490° F; weight/cubic foot = 540 lbs.

3. Chromium - Bright, corrosive-resistant; used in stainless steels and plating; melts at 2940° F; weight/cubic foot = 443 lbs.

4. Cobalt - Used as alloy element in tool steels; oxidation resistant at red heat; melts at 2696° F; weight/cubic foot = 555 lbs.

5. Copper - Second in conductivity; ductile; used for electrical work and as alloying agent in bronze and brass; melts at 1981° F; weight/cubic foot = 558 lbs.

6. Gold - Most ductile and malleable; used in jewelry and coinage; melts at 1945° F; weight/cubic foot = 1206 lbs.

7. Iron - Most versatile structural metal; used in steel alloys; melts at 2795° F; weight/cubic foot = 409 lbs.

8. Lead - Soft, toxic, high corrosion resistance; used in paints, radiation shields, gasoline, and alloys of copper and tin; melts at 622° F; weight/cubic foot = 708 lbs.

9. Magnesium - 1/3 lighter than aluminum; used in aluminum, zinc, and manganese alloys and chemicals; melts at 1204° F; weight/cubic foot = 1091 lbs.

10. Molybdenum - Most available high-temperature metal; used in steel alloys and high temperature forgings; melts at 4750° F; weight/cubic foot = 636 lbs.

11. Nickel - Most versatile alloy metal, corrosive-resistant; used in steel alloys and for electroplating; melts at 2646° F; weight/cubic foot = 555 lbs.

12. Platinum - Highest resistance to corrosion; used in jewelry, alloys, electrical contacts, chemical equipment; melts at 3190° F; weight/cubic foot = 1333 lbs.

13. Radium - Radioactive; used in luminous paints and cancer treatments; melts at 1760° F; weight/cubic foot = 312 lbs.
14. Silicon - Most abundant metal, brittle, heat-, corrosion-resistant; used as ferro-silicon to add elasticity to steel and as high-temperature coating for steel and molybdenum; melts at 2590° F; weight/cubic foot = 151 lbs.

15. Silver - Highest thermoelectric conductivity; used in coinage, jewelry, silverware, alloys, and silver plating; melts at 1761° F; weight/cubic foot = 645 lbs.

16. Sodium - Soft, highly reactive with air and water; used in aluminum-silicon alloys, liquid-metal heat exchangers in atomic power plants, and in making tetra-ethyl lead; melts at 208° F; weight/cubic foot = 61 lbs.

17. Tin - Bright, soft, corrosive-resistant; used in solders, bearings, type metal, and plating; melts at 449° F; weight/cubic foot = 359 lbs.

18. Thorium - Radioactive, potential source of atomic energy; used to add strength to magnesium and life to heat-resistant alloys; melts at 3350° F; weight/cubic foot = 705 lbs.

19. Titanium - Lightweight, strong, corrosive-resistant; used in high-strength aluminum alloys, high temperature titanium carbides, nonstructural sheet in jet engine shells, ducting and fittings; melts at 3300° F; weight/cubic foot = 281 lbs.

20. Tungsten - Highest known melting point - 6100° F; used in steel alloys, lamp filaments, and plating; weight/cubic foot = 1204 lbs.

21. Uranium - Radioactive, fissionable, source of atomic energy; melts at 2071° F; weight/cubic foot = 1166 lbs.

22. Vanadium - Soft, corrosive-resistant; used to add toughness to tool and die steels, shafts, springs, and bearings; melts at 3110° F, weight/cubic foot = 372 lbs.

23. Zinc - Bluish-white, resist atmospheric corrosion; used in alloys of aluminum, magnesium, and copper, as well as for dry batteries and galvanizing; melts at 797° F; weight/cubic foot = 446 lbs.
INDUSTRIAL ARTS

i. Teacher Readiness

A successful first meeting with your students is important. The first impression of you as a teacher is a lingering impression. Most of the qualities that denote a good teacher will be required in handling your first encounter with a new group of students.

The chief thing to be tested, however, will be your ability to foresee, and your skill to prepare for that which you have foreseen.

As a check upon your readiness to meet the class for the first time, the following points may be of value:

1. Visualize the class as fully as possible, as to age, training, temperament, aptitudes, and the like. Previous records will assist here.

2. Be certain that equipment and tools are in perfect condition.

3. Have a definite plan for the work for the semester.

4. Have material on hand and ready for the first piece or pieces of work to be done.

5. Have a written lesson plan of procedure for the first class meeting.

6. Have the needed tools and other devices on hand for the first lesson.

7. Be ready to assign students to working places and lockers.

8. Plan a definite method for getting acquainted with the class.

9. Prepare to be glad to see the students arrive and to let them know it.

10. Have a definite plan for standards of order and discipline, and be prepared to put this plan in operation from the start.
Techniques for Maintaining Interest

The following suggestions are offered for maintaining interest and keeping it at a high pitch over a long period of time.

1. Call class together at the beginning of each period.

2. Have a definitely planned small unit of instruction ready for presentation for each class meeting before students go to work.

3. Make each presentation different from that of the day before. This can be brought about by difference in subject matter or in manner of presentation.

4. Use a variety of teaching aids both for instruction and for stimulating interest.

5. Draw upon popular magazines, motion pictures, newspapers, school shop magazine, etc. for examples of application to work which students are doing.

6. Rotate students' jobs in class maintenance at frequent intervals.

7. Indicate or present difficult, but interesting, problems for solutions by class, encouraging problem solving.

8. Use chalkboard sketches for stimulating interest.

9. Give recognition to students' effort. Do so often.

10. Keep a progress chart. Students like to see their degree of progress indicated by marks.

11. Let students assist in solving problems rather than simply telling them what to do.

12. Assign work so that each student can experience success.

13. Keep an atmosphere of joy and accomplishment in the class at all times.

14. Make the work of the class progress as rapidly as possible.

15. Use questions freely to stimulate thinking and sustain interest.
COURSE EVALUATION

Purpose:
This evaluation is an effort by your instructor to ascertain his teaching effectiveness and the usefulness of course materials. It is designed to provide suggestions on how the course can be improved and be made more relevant to students' needs. Your cooperation will be greatly appreciated.

Instructions:
Below are a list of qualities dealing with the course and the instructor. You are asked to evaluate these qualities on a scale of four to one. Four is the highest ranking, and one is the lowest ranking. Any comments you wish to add may be included on the back of this sheet.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Rankings</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The class sessions and lectures were well organized.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The course textbook was very helpful.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The course was interesting and enjoyable.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. The course material satisfied my educational needs.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. The tests used in the course contributed to greater learning.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Material presented in the course was easy to learn and to apply.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. The instructor displayed a sense of professionalism and dignity in the class.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. The instructor seemed personable and genuinely interested in students.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. The instructor has a thorough knowledge of his subject matter.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. The variety of presentation methods was good.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. The instructor displayed a sense of humor.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. The instructor was clear in his explanation of course material and assignments.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. The instructor always seemed prepared for class meetings.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. The instructor was always well dressed.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. The instructor provided for all students to participate.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. The instructor was patient and resourceful.</td>
<td>4 3 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 2

CROSSWORD AND WORD FIND PUZZLES
Crossword Puzzle

MICHAEL R. KOZAK

ACROSS
1. Side cutting
6. Practical education (abbr.)
7. Alternating current (abbr.)
9. Scliers
11. National course (abbr.)
12. Washer
13. National Institute of Education (abbr.)
16. Open-end wrench
18. Program of work (abbr.)
20. Weight
23. Tool
26. Stock
27. Screw
28. High carbon steel
31. Inside diameter (abbr.)
32. Key
35. Pitch gauge
39. Finish a drilled hole
41. Protective coating on steel and iron
44. 3 1/2
45. Chamfer a hole
48. Goggles protect your
51. Several twist

DOWN
1. Center
2. Spanner wrench
3. Ammoniac
4. Industrial technology (abbr.)
5. Chief ingredient in pewter
6. Ball-
7. Oldest metal known to man
8. Right
9. Stock
10. Stock
11. Steel
12. Teaching assistant (abbr.)
13. Carbon steel
14. Flat
15. File
16. Layout
17. Chisel
18. Thin metal sheet or rib
19. Machine
20. Teaching assistant (abbr.)
21. Carbon steel
22. Flat
23. File
24. Production industries (abbr.)
25. Inter-
26. Production industries (abbr.)
27. Round
28. Cold-rolled (abbr.)
29. Treatment
30. Production industries (abbr.)
31. Production industries (abbr.)
32. Production industries (abbr.)
33. Production industries (abbr.)
34. Production industries (abbr.)
35. Production industries (abbr.)
36. Production industries (abbr.)
37. Production industries (abbr.)
38. Production industries (abbr.)
39. Production industries (abbr.)
40. Production industries (abbr.)
41. Production industries (abbr.)
42. Production industries (abbr.)
43. Production industries (abbr.)
44. Production industries (abbr.)
45. Production industries (abbr.)
46. Production industries (abbr.)
47. Production industries (abbr.)
48. Production industries (abbr.)
49. Production industries (abbr.)
50. Production industries (abbr.)
51. Production industries (abbr.)
52. Production industries (abbr.)
53. Production industries (abbr.)
54. Production industries (abbr.)
55. Production industries (abbr.)
56. Production industries (abbr.)
57. Production industries (abbr.)
58. Production industries (abbr.)
59. Production industries (abbr.)
60. Production industries (abbr.)
61. Production industries (abbr.)
62. Production industries (abbr.)
63. Production industries (abbr.)
64. Production industries (abbr.)
65. Production industries (abbr.)
66. Production industries (abbr.)
67. Production industries (abbr.)
68. Production industries (abbr.)
69. Production industries (abbr.)
70. Production industries (abbr.)
71. Production industries (abbr.)
72. Production industries (abbr.)
73. Production industries (abbr.)
74. Production industries (abbr.)
75. Production industries (abbr.)
76. Production industries (abbr.)
77. Production industries (abbr.)
78. Production industries (abbr.)
79. Production industries (abbr.)
80. Production industries (abbr.)
ANSWERS: METALS 1
ACROSS
1. Intimate mixing of molten metal
4. Weld deposit left after a weld pass
5. Type of inspection done with no equipment
8. Historical event that accelerated the development of MIG and TIG
10. Bottom of weld
11. Welding position
12. Type of joint
13. Welding position
15. Flow of electricity through an air gap
16. Depression at the toe of a weld which is below the surface of the base metal
19. Fusibility is the ease with which metal will
20. Welding has two major functions—fabrication and
21. To separate metal
22. Type of weld used in T-joints
25. Direct current
26. Used to mark layout lines on metal
27. Fuel, heat, and oxygen produce
28. Zn
30. Penetrant test (abbr.)
31. Nondestructive testing (abbr.)
33. Electroslag welding (abbr.)
34. Type of weld bead made without transverse oscillation
36. Alloy of tin and lead
38. Nickel (symbol)
40. Welding goggles protect these.
41. Welding is a form of resistant welding.
43. Welding position
45. Welding in a joint that lacks fusion
46. TIG
47. Acetylene, propane and Mapp

48. Interchangeable heads of torch handle
49. Nonmetallic layer that forms on the top of a weld
51. Beveled opening provided between two metals to be joined
52. Nonmetallic matter trapped inside the weld
54. Distance down from the surface of metal to where fusion ceases
58. Shielded metal arc welding
59. American Welding Society (abbr.)
61. MIG
62. Never used to lubricate regulators
63. Used to ignite gas
64. Mixture of iron and carbon

DOWN
1. Metals containing iron
2. Weld that is not continuous
3. Metal that does not contain iron
4. A sequence of weld bead, one on top
5. Welding position
6. The of the tip is determined by the diameter of the opening at the end.
7. Liquid penetrant test (abbr.)
8. Assembly whose parts are welded together
9. Opposition to electron flow
14. Cubic feet __ hour
17. Not available (abbr.)
18. Cross-sectional measure of rod
21. Three forms of iron—steel, wrought, and
23. Cylinders are _____ in cross-sectional area.
24. Depression at the end of the weld bead
27. Iron (symbol)
29. Where three sides of a piece of metal meet
30. Presence of voids in the metal or weld
35. Act or condition of sticking together, fusion
36. Tin (symbol)
37. Pieces of metal to weld together for testing or practice
39. Type of weld done in a hole
40. Type of joint
42. American Welding Society (abbr.)
GENERAL WELDING PUZZLE (Continued)

DOWN

44. GTAW
45. When not in use, _____ the cylinder valves.
50. To soften metal
53. Submerged arc welding (abbr.)
54. Longitudinal progression of a welding operation
55. Type of temporary weld
56. A bend _____ is a type of destructive testing.
57. GMAW
58. Stud welding (abbr.)
60. Aluminum (symbol).
Machine Lathe X-word Puzzle

By Earl O. Hagen

ACROSS
1. A taper _____ may be used to turn a taper.
4. A chuck _____ tightens the workpiece in a chuck.
8. The type of center that does not turn.
9. Use a faceplate and a _____ when turning between centers.
10. To face-off a workpiece you _____ feed the tool bit.
12. The _____ box transmits power to the lead screw.
13. The _____ of the lathe determines the size.
14. Never leave the chuck _____ in the chuck.
15. Turning and _____ are operations performed on the lathe.
16. The bull-gear _____ pulsed out to use the back gears.
18. A machine tool is used for _____ metal.
19. A _____ chuck needs a draw bar.
21. Three jaw _____ chuck.
22. The part of the lathe that has set-over screws.
26. The apron _____ is used for manual movement of the carriage.

DOWN
2. TPF
3. Blanks, for gears are mounted on a _____ for turning and facing.
4. Knurling is done with a _____ tool.
5. The compound _____ holds the tool post.
6. V-shaped tracks on the bed are called _____.
7. Feeding the tool along the workpiece is called _____ feed.
11. Centers with bearings are called _____ centers.
17. The half _____ lever is used for thread cutting.
20. A cone pulley uses a _____ belt.
23. The lathe _____ is the long part that rests on four legs.
25. Mount the tool bit with its cutting edge _____ line with the centers.
*DIRECTIONS: Find the listed words in the puzzle above.
Old... search all directions.

Metals - Word Search II

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
</tr>
</thead>
</table>

P. E N N D A E R H T O C R Y O L I T E O X I D E X T E R	
R E F L E X I B L E W T I G E R S M I R R O R S T O P S	
O P U T C I L I T Y E B M A N G A N E S E L A S T I C	
P H Y S I C O S T E N B I X Q E L I F B L O L S A T A	
E T E C H N O L O G I C A L M O L Y B D I N U P C N	
R U E K H N S O L I D D U L S E M E O U S C A M B E H N	
T N K H N S I L I C O N X W O A A G N A T O I P R E O	
I G E L I T N T D I T H I R R U B R O W H O N D A K B	
L S T L O N E T I G S Y T I E Z L L L A N O G A T C O S	
S T Y A N O R O F O G D E G O M A E R O S L O G I S T H	
O E X P E L T D I R E R E H S A W A R E L Y E V E R T E	
C N D O R N A M E N T A L T O N T O A T C T R A M M E L	
U O E R H L O A S T D U F F I E S M A C K I L N O U N I	
P U R G E C D O L M O D I A M E T E R T C O A U N O X	
O L D K I O K E W P I X I O Z C P S R Y K G O O D B T H L	
A G A G E L O U S T D B T Y E O W D N A I T B U R N I N	
I L R W X I N D U C T I O N O E T D R I R A I D O A A R	
L D E Y O N D E D O I T D I A G O N A L L O P I C K L E	
V E S T O G G L E O T A N Y O P C A L L L L V E R B P N	
E C T L O B U B B L N L N O L E Y X A O E N A M E L O G	
R E L L I P S E A T Y E T U L F H X Y S Z F L A N G E E	

Technological	Oxidation	Pitch	Platinum	Octagonal
Solidifies	Induction	Helix	Oxide	Tang
Millwright	Chromium	Acme	Bauxite	Diagonal
Ornamental	Nickel	Thread	Ore	Flexible
Forging	Vanadium	Creast	Alumina	Bolt
Hydraulic	Tungsten	Axis	Cryolite	Stud
Mold	Inert	Hypotenuse	Properties	Washer
Purge	Molybdenum	Taper	Electrolytic	Grip
Malleable	Ductility	Ream	Cupola	Schroll
Gage	Brittle	Flute	Trammel	Planish
Silicon	Elastic	Seam	Dye	Enamel
Manganese	Socket	Pewter	Hermaphodite	Kiln
	Diameter	Tin	File	Pickle
		Gold	Burr	Drill
		Silver	Ellipse	Cast
METALS PUZZLE 1

0 K G D U M G X E M J S I H U R A D I O G R A P H Y T B E
F D E A J S L X K Q U T O P Y F T L J H H T M C F U Y H S R I C
N B E I F H A P A C S G T G Z G X R P U L P F P Q R Z Z S A
R O T A L U G E R R A T U U B O L D R C U M I H D E Z I I A Y
V M D U Y C N E U Q E R F Q R P Y C T D F Q Z A I R C I K Q Q B
M D Y I N S O Z T W T W S J Y Q Z H W M D V N Q B G C O Y V
A C E T Y L E N E B A W C C C Y R T N K T N I I T D N E N J T Y
F A V U F Y T Y Z D Z A I H Y E I M M : U D U P F I R F I S C O
V S B F M G G K B T F J X N V I K X S U S Q C E J W S V L D O W
W L P E G K U U X B E C K M E S R D D N F M C D N W O A N V I L
D P I N V M T R R R G Z X D T S B R L E I J C R P D D N X X
V D X I J D D L N T W E O L L T F E M T T G E D G J U X C H U T
L F O W O F B I P F V R E U K M T K D A I T N E P G J F A B L C
I G N V F R N Z E C N W K B A T X U B X C L A M L D E H I U H A
W S L G H Z K P R T E H X Y N X T R J O H G Y I K X C E P O T
R E M P H J E V Y M A T N K H P B Q B T Y S N U A Y U B U R Y P A
Z N W T C H G D I E O N M H J C J W Z R G Z Z O L M H Q F T I
A L F C V H N L M I L E S I H C T C I N B D S E H Z A C I Q O F
Z C Y Y H L S O S O V S R H E L B I C U R C N T E O R T T U F I
F X K M N R L I N T Q B S L M S Z X M S K X T R C G Q V M A S I Y
Y D Q P S A L C O P E R N W S O D E H A U A W I R E K E K M G
X Y S C O E L L N M Q D Z N Z S C M P T Z B E M L V X D L O L
H S R Y S I Z B Q A T Y V M T R O A E N A D H E R A U Q S T Q L

THERE ARE 45 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

ACETYLENE
BRASS
CALIPER
CHISEL
COPPER
DIE
ELECTRODE
FORGE
FREQUENCY
GEAR
LATHE

ACETYLENE
ANVIL
BRASS
BRONZE
CALIPER
CENTER
CHISEL
CHUCK
COPPER
CRUCIBLE
DIE
DIVIDERS
ELECTRODE
FLANGE
FORGE
FOUNDRY
FREQUENCY
FURNACE
GEAR

MANDREL
PATTERN
BRASS
PNEUMATIC
CALIPER
PUNCH
CHISEL
REGULATOR
COPPER
SHEARS
DIE
SQUARE
ELECTRODE
TAILSTOCK
FORGE
TITANIUM
FREQUENCY
TUNGSTEN
GEAR
VERNIER
LATHES

CIRCLE WORDS IN PUZZLE ABOVE.
MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ____________________________

129
Solution
METALS PUZZLE 1A

.......
G...L....R
E...U....E
TALUGER...M...D
YNEUQERF...A....I
N....I....DVN...GC
AETYLENE...C....R....NI...DN..N
...T...A...E...UD...I...R..I
....S...N...T...O...E...R...EZ
....NG...T...N...S...E...C...
L.
E...U...E...R...N...MC...N...OANVIL
...T...R...D...T...R...EI...R
....LN...OL...ETTG...G...U...C
...I...P...R...U...T...AI...NE...FA
....E...UT...T...M...T...A...
....R...CN...A...UB...A...L...L
SAFETYCRP...E...R...N...F...KP
...L...TEH...N...O...I...CE
....E...ATN...P...Y...N...U...UR
....IEO...LRZ...LMH
...LMILES1HC...D...E...AC
...SOS...S..HELBIURCNT...T
TR...TB...E...
....UR...H
....OCC...A...R...E....OA...E
....CIE...I...A...T...S...FM
....KKR...N....S...M...SR...N
PLCOPPER...S...E...AWIRE...E
....E....T...E...
....A...HERAUGS...ALS

89

130
Here are the words to look for:

- ACETYLENE
- BRASS
- CALIPER
- CHISEL
- COPPER
- DIES
- ELECTRODE
- FORGE
- FREQUENCY
- GEAR
- LATHE
- ANVIL
- BRONZE
- CENTER
- CHUCK
- CRUCIBLE
- DIVIDERS
- FLANGE
- FOUNDRY
- FURNACE
- KNURL
- LUBRICANTS
- MANDREL
- PATTERN
- PNEUMATIC
- PUNCH
- REGULATOR
- SHEARS
- SQUARE
- TAILSTOCK
- TITANIUM
- TUNGSTEN
- VERNIER
- ZINC
- MICROMETER
- PLASMA
- PRECISION
- RADIOGRAPHY
- SAFETY
- SHEETMETAL
- STAINLESS
- TEMPERING
- TRAMMEL
- ULTRASOUND
- WIRE

Circle words in puzzle above:
Words may be horizontal, vertical, diagonal, forward, or backward.

Name: ____________________________
Solution

METALS PUZZLE 16

<table>
<thead>
<tr>
<th>E</th>
<th>R</th>
<th>A</th>
<th>S</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>U</td>
<td>C</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>V</td>
<td>C</td>
<td>Q</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>O</td>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>T</td>
<td>Z</td>
<td>A</td>
<td>T</td>
<td>E</td>
</tr>
<tr>
<td>N</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>T</td>
<td>E</td>
<td>G</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>F</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>A</td>
<td>P</td>
<td>T</td>
<td>O</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
<td>C</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>L</td>
<td>N</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>I</td>
<td>T</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>F</td>
<td>O</td>
<td>L</td>
</tr>
<tr>
<td>V</td>
<td>U</td>
<td>I</td>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>N</td>
<td>E</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>D</td>
<td>K</td>
<td>I</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>U</td>
<td>N</td>
<td>E</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>S</td>
<td>R</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>H</td>
<td>T</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>N</td>
<td>T</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Z</td>
<td>U</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>O</td>
<td>C</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>R</td>
<td>P</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>E</td>
<td>T</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>U</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>N</td>
<td>R</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

FREQUENCY

- R
- I
- B
- U
- N
- E
- L
- D
- A
- S
- M
- P
- T
- C
- O
- L
- A
- M
- S
- C
- E
- A
- C
- K
- E
- R
- E
- M
- C
- I
- O
- M
- P
- L
- A
- S
- M
- A
- S
- A
- S
- S
GENERAL SAFETY TERMS #1

EXOAFUWKFFCLOKDGUQZJFYCUKFDUAIHK
XEWIATYSLSIQRWECBOPLAZKOFEBLKWG
FKIGAFQKYAVYMTDDIDGZHWMULFGJWJRHH
FWSIMHHGFOIISEKNNQZBKGETTHVRHEKH
MGHPBUUEKUOOGXSGFOSICOFOGNOJLYEQQZ
DVFTTYTAVUHJHWTLWWXXEKYSOAYTNUWWM
KPAJYYJOTZPHCOADPDUSTEFIDNIZPHZ
KLGWUSWRXNNVWFRSMOCQIEIDSOHIXZG
XFTNVIETIEKJAKAHMSGSHROJHJICZGKF
JGESFEPUGBYLMGSAITZNPOTACYOELDO
HLYTAIADOJKJDNABEFPFPRAMYRY猫
COHUSEKPEINGBFRLSAGLMTXOZ0NRLB
UWERQUEPMENTSNIEESHQINEYNUAILGBD
MBRSRRURBJHTXJNTRSTTYOIGIDHVROUT
IUUWEOHWCQHFSBSYIDNGFPNAGPIFRCK
ITRHXPFLOOTUTVVLBENPX0IAREQAXY
RHYAOTJLDVUXNEEIVHWMONUWWYESORJGRX
GNITURALPNLGSMMNROTARIPSERLTNC
JQSSXTEHOYSCAWHJE0GCAIPHTSYECSTO
RUVXNAFRULESBRTSMSXNTDWYSHOPKDCXK
EPUALCWOIATYJROSIIFOFIUUEYOVZUJUT
WTWNAUDEBYKEGNIITHGILMSKCUCYCRY
OCETWRWNKYVSLQ2ZRRHAUUAFTKDZXGMYTY
PABHAFBNRHXMEJIYXIQFOHLMRUCSWNSS
KIQZDSQORAACSXDQORTFDOWNBRNHZKYN
MHIUVTARIYASTGBQPUMLTYIQDFKRYFI0
RHHJNAKNQGMFIRNIOSTNEMTSUJDATLWFW
AIWERTRZNFLUNIWSYSCDCEMERGENCYWUXT
ZYOOGVRYRUAJECW2OQVAPORHRZNEVDYCBJ
CVBHERFZLZUIUOUXUCUIOPGVENVBFPX
GAYTAXAFVLMRTYVAEHDKMUUGVOE2OLH
LDJGALXABDPMCMCHXIVHWMR0NRCTIV

THERE ARE 40 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

- ADJUSTMENTS
- CHIPS
- COLORCODE
- DUST
- EMERGENCY
- FLAMMABLE
- HARMFUL
- HEAT
- HORSEPLAY
- INJURY
- LABORATORY
- MACHINE
- POSTERS
- RESPIRATOR
- SAFETY
- SHARP
- SHOP
- STORAGE BINS
- TOOLS
- VAPOR

BURRS
- CLEANING
- CUTTING
- ELECTRICITY
- EQUIPMENT
- FUMES
- HAZARDOUS
- HEAVY
- HOUSEKEEPING
- INSTRUCTOR
- LIGHTING
- NOISE
- POWER
- RULES
- SAFETYLINES
- SHOCK
- STORAGE
- STUDENTS
- TOXIC
- VENTILATION

CIRCLE WORDS IN PUZZLE ABOVE:

WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ____________________________

133
GENERAL SAFETY TERMS#2

THERE ARE 40 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

ADJUSTMENTS BURRS
CHIPS CLEANING
COLOR CODE CUTTING
DUST ELECTRICITY
EMERGENCY EQUIPMENT
FLAMMABLE FUNES
HARMFUL HAZARDOUS
HEAT HEAVY
HORSEPLAY HOUSEKEEPING
INJURY INSTRUCTOR
LABORATORY LIGHTING
MACHINE NOISE
MATERIALS POWER
RESPIRATOR RULES
SAFETY SAFETYLINES
SHOP SHOCK
STORAGE STUDENTS
TOOL TOXIC

CIRCLE WORDS IN PUZZLE ABOVE:

WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ____________________
SHEET METAL TERMS #1

U Z B R Z W G N K P Q X T A Y Z J W M E A Y I Y T C E Y N E M
H K T V I O O S Y O U F F R F P U A G T H A H K S M X A I Q P H
A U F B O Z Y V O I O V P T V F M R C A L B R S F L C Q L C N H
E H O F R A R M K V Z K A Q A E N L I K Y S L O Z Q S R V F U P
M M N L N D D D V J F K V J Y A Z W I N U I U L L S O I C U O A
E A A M E P F Q A E H I A B K G G W B X Q P G D P A E J T I Q O
G M I O H S G N I D L E W T O P S C G A I A T N A E E I W I N Q
Y I I R V R U A H N B B G E P B W F X L I E Y F T E N D C B Y
E U P U U V J E O K I B J O P A O Z V H R V O Z N N A S Y M Y A
M B P E X O M N Q F D F K L O W I R S X T H T R E D L O F R A B
K I U J N N R J G D D W I R E G A T E B T X R Q E B J B X M
F A H Y Y K Y N I T E V I R I L R N P N I D C P G O Z B T Z
W I L X K Z Y W O U X K A C O V N R G O E R U Z T M Q A H F P O
W C M F P A W Y M U Q Y U F Q I O H E E Y N J G X E R N E Z I E

There are 27 words here - can you find them?

Here are the words to look for:

AVIATIONSNIPS **Barfolder**
BARFOLDER **BRAKE**
DOUBLESEAM **GALVANIZED**
HANDSEAMER **HEM**
MALLET **NIBBLER**
NOTCHER **PATTERN**
PATTERN **POPRIVET**
RIVETING **SEAM**
SOLDERINGCOPPER **SPINNING**
SPOTWELDING **SQUARINGSHAEAR**
STAKES **TEMPLATE**
TINSNIPS **TRIANGULATION**
USSTANDARD **WIREGAGE**

CIRCLE WORDS IN PUZZLE ABOVE:
Words may be horizontal, vertical, diagonal, forward, or backward.

NAME:

137
I S H E E T M E T A L T E R M S #2

THERE ARE 27 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

AVIATIONSNIPS
BARFOLDER
BARFOLDER
DOUBLESEAM
HANDSEAMER
MALLET
NOTCHER
PATTERN
RIVETING
SOLDERINGCOPPER
SPOTWELDING
STAKES
TINSNIPS
USSTANDARD
WIRING

BARFOLDER
BRAKE
GALVANIZED
HEM
NIBBLER
PATTERN
POPRIVET
SEAM
SPINNING
SPARINGSHEAR
TEMPLATE
TRIANGULATION
WIREGAGE

CIRCLE WORDS IN PUZZLE ABOVE:

WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ___________________________
HEAT TREATING AND FORGING TERMS

W P P J V H F C Y G O S X U G Q B I B T R M B F K N S Q N U K
O E H R A H E Y N B H A V D Z W D G D S Z H A Y F Y Q H N B C
V X B M N U O H F I P Q R U C H I G N I L E A N N A R X I B D
Y I O W H H O D W F T E C D Y S S T R B P P L U B V U A A L T J
X F C K V H R V O Z S V Y J Z U P P I S X L H Y T B C V C I R P
P K E D B I S Y C X X R X V W N U V C R V K G V B I K V S W U
P O V D Z Y D K G K C L K F Q D O C B E I I V L Y D Y G L R C
A J F F S S B S V H U Z N Y M L T I D L P L D H T R V H B D R M
I N O A L R V G C Q C U C H S Z E F N G Z X H I O Z O H M Q H F
N I B M C H X V N M V C P D K O T I Y I O A N N E S F K R C X E
E T R M Y G G S S I S Q I N V N T N Z R G O E O J U N O D E B
S T A O N E N R T Y W G B L G X G T D M A E B N O R T C E L E
K S A D T Q P R M G V D E D F N H H V V F Y A S S D S W W S T
T P E V U N N G P E C A N R U F O H U G I J H W W H I L E I B K
B U P I V P L A E F A Q T T L F O R G I N G M A U X M L L E L
A T X E F X G H R S W U W O C E T K M L W K E P R G R A O L Q D F
S S H R T P A Z I D Y Z K T S X A B G U M Q W Y I U D Z P C T U
C O N I N F O E G R L A C R O I S H A W S Y C G D T H G D V Y

THERE ARE 27 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

ANNEALING
BLACKSMITH
CARBURIZING
DROPFORGING
EXTRUSION
FORGING
GRAIN
HARDYHOLE
INDUCTION
NORMALIZING
ROCKWELL
SPHEROIDIZING
TEMPERING
UPSETTING

ANVIL
CARBON
CASEHARDENING
ELECTRONBEAM
FLAMEHARDENING
FURNACE
HARDENING
HEATTREATING
KASENIT
QUENCHING
SLEDGES
SWAGING
TONGS

CIRCLE WORDS IN PUZZLE ABOVE:
WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ________________________________
HEAT TREATING AND FORGING TERMS #1

D N
O G
P H
F S
O U
R M
I
G T
S
I
X
K
N E
C
G
L
I
Z
B
N
A
I
G
V
I
D
H
R
B
C
A
I
A
M
U
S
L
E
R
A
R
C
S
L
E
D
G
E
R
D
L
I
T
I
G
N
U
F
L
A
M
E
H
A
R
D
E
N
I
G
Z
I
I
N
O
G
Q
H
N
Z
H
I
O
N
B
P
I
A
N
R
E
T
R
I
S
N
R
G
O
S
T
A
T
T
G
G
D
M
A
E
B
N
O
R
T
C
E
L
E
A
E
C
G
N
I
N
E
D
R
A
H
E
S
A
C
Y
K
K
S
H
E
H
S
W
P
P
E
C
A
N
R
U
F
O
W
E
U
E
T
L
F
O
R
G
A
L
I
N
A
E
N
G
H
G
HEAT TREATING AND FORGING TERMS #2

THERE ARE 27 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

ANNEALING ANVIL
BLACKSMITH CARBON
CARBURIZING CASEHARDENING
DROPFORGING ELECTROBEAM
EXTRUSION FLAMEHARDENING
FORGING FURNACE
GRAIN HARDENING
HARDYHOLEHEATING HEATTREATING
INDUCTION KASENIT
NORMALIZING QUENCHING
ROCKWELL SLEDGES
SPHEROIDIZING SWAGING
TEMPERING TONGS
UPSETTING

CIRCLE WORDS IN PUZZLE ABOVE:
WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME:
HEAT TREATING AND FORGING TERMS #2

<table>
<thead>
<tr>
<th>TINESSAK</th>
<th>JIN</th>
<th>PNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>HMA</td>
</tr>
<tr>
<td>E</td>
<td>EU</td>
<td>ENL</td>
</tr>
<tr>
<td>L</td>
<td>DP</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>RS</td>
<td>ABE</td>
</tr>
<tr>
<td>M</td>
<td>AE</td>
<td>IIN</td>
</tr>
<tr>
<td>E</td>
<td>HT</td>
<td>DOIL</td>
</tr>
<tr>
<td>H</td>
<td>ET</td>
<td>IRIZC</td>
</tr>
<tr>
<td>A</td>
<td>SI</td>
<td>QTNOI</td>
</tr>
<tr>
<td>O</td>
<td>RANICGRN</td>
<td>U</td>
</tr>
<tr>
<td>N</td>
<td>DCGNE</td>
<td>GE</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>NE</td>
</tr>
<tr>
<td>N</td>
<td>CARBURIZING</td>
<td>H</td>
</tr>
<tr>
<td>I</td>
<td>OINGO</td>
<td>T</td>
</tr>
<tr>
<td>G</td>
<td>PGN</td>
<td>T</td>
</tr>
<tr>
<td>NAFURNACE</td>
<td>F</td>
<td>IG</td>
</tr>
<tr>
<td>W</td>
<td>NIARGOT</td>
<td>E</td>
</tr>
<tr>
<td>N</td>
<td>G</td>
<td>AERAM</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>RE</td>
</tr>
<tr>
<td></td>
<td>NLH</td>
<td>N</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>U</td>
<td>VD</td>
</tr>
<tr>
<td>HTIMSKCALBC</td>
<td>NR</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

103

144
CASTING TERMS #1

EDWULACPMDQBJIAKWLQPLHNM
GSWYJCVNZRXZJGEBONEFVNYHLNIRLWC
FDXGRXSMFGEAYATTMOLDYLAMUYOSE
ECZQQXNPDXZGEOWZEDRIGUMOFB
MTDSGFHDCUZGEOFTTAMWTSYWLZOMK
GETXFRHRZSRAZMLTUJBZGVLFLSST
CDRBCENTRIFUGALDONAWAREXBNFPMQPHH
COREMYRHZKWLJETBRRPKHDHSOHACKLFJH
FJHMOSERVHIHELHNAUYUFFEOTRSDADOIY
GWAUDQZIBMICAOPBPSPACEYDSTSDUUIC
KRUBZAKDNLXPRMBFCLDQGWETBTTOKNLO
WOTDUIJTABMZROIWVTEEFTGRZGVEGFADJE
FKVYJRSFCFAEMWBDWJLDLNMSRVCVGRKARUN
VDLOMLLEHSPGELJADMEMFSMZYPSALYQZ
LTSTSSTWTQDYMKBGRGWMWAVVOAAAYTZQZNVQQX
WOXJWHVBBCTKNADNGKLCPFKPWGR
YAKMEUSCALEUKCBECLDCTGQEDUGISMDN
CHDXHWWXLUGBMDHARZIVTUULGACGYKBND
CTLYUYADBNIIOYIQUOBFDMGYVTAEUFET
USRDOSSIVQNOLTYCSYISBOXEDTSNTDR
EJYQRSMTMZWFVVOAIKAFRLKSLCXGTXQX
COPEGSZTHEEBEBEGBOLEIJLWDGNGKRIAH
KXGUARQPFZFOGHSALUUBPNHARKAMHNPN
PHNCSKEKEYEWQSNTEQTRZGLXAADEBSEOG
VEQQLWLEPFNQBTKZMFUIXONBXLQZXUR
DISJAETNVZYSFMMEQCQXUMZCRWNPZV
DZDGMJXGYSCRFIVJVJNKFWVEYCCPVWSGB
OJKEVQIDQDVAVUYWMCXTTFAJQWFLWHNNNQQ
YXULMXRTGQONCACAHWFVQRKEQKYZIBZGO
DCNDRTAZPUQBDCKKWASBLCAYGGKAZFJN
LWBFATIBKIQITRSBNGLKDQWBMQSTMFTV
AUHVKOZEBZCXWCYJHHUITLCTCDRXAUY

THERE ARE 24 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

CENTRIFUGAL COPE
CORE CRUCIBLE
DIECASTING DRAG
FIREBRICK FOUNDRY
GREENSAND INVESTMENT
LADLE MOLD
PATTERN PATTERNMAKER
PERMANENT PLASTERMOLD
PYROMETER RAMMER
SANDCASTING SCALE
SHELLMOLD SLAG
TONGS TUMBLING

CIRCLE WORDS IN PUZZLE ABOVE:
WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME:

104

145
CASTING TERMS #1

R
E
M O L D
T
E
S
C E N T R I F U G A L D R A G M
O N A
P
P
C O R E M
A
N
Y
T
A
F
A
P
T
S
O
U
R
M
E
T
R
D
N
D
R
D
O
L
M
L
L
E
H
S
P
A
M
S
M
Y
S
C
A
L
D
T
D
C
A
N
R
U
F
M
E
S
T
C
I
F
L
L
I
D
I
N
A
R
G
L
G
E
M
I
A
N
C
S
E
T
R
G
E
L
E
N
M
R
C
K
T
S
A
D
J

105 146
CASTING TERMS #2

Y E F G T W Y M B F I R E B R I C K L E D I T U O J G A F H D U
O W U I N M J U Y C X V L L A I D S V N G V C J W J C U I A Y D
U Q D J H L A D E E H D M X P R R W O K V R V O W B N X H V B
A B G O C K C D U H S H L N E E P Z Y C E L X Q W D R E Y H N I
W I D A U C B L I I D G S O K W A P D Q E D M X X J X F C X Y
Q B P L I L R F L C D O N Q T A Y N T R U H I K R D J J W T M Q C
E X C N E I H R D T T Q E E T D L O M L L E H S M Y L C L W T
Z U F D S S O F T R B P W D G L S I F H E R X A Y W P R P B O P
J G F D F W E G E G F P T H N S N O N G G T Y Q K C L D A U O B
T C H D H W A E E Y I Y V A P I C D P R T G L E M A S G J U A N
O H J X E N O O Z Y T I L C N N S Z P N E K E S W C P W F C V F
V I C N S H T Y E S A R L T B T X F H D T A C Y R R N A E S Q
B H U A Y F D D T E O A S Q Z S I V S A S A S L G M H L X B K L W X
B J S X R I N J V F W M H X M Y E K Q K C Z Q H S R L T X B W E
Y W D M F U O U G V L W Z S K H G H V H J Q X R X I W F X A L N
B U P V Y V F E N W U W S X R L S G Z M G H L C Z S A C O P Y

THERE ARE 24 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

CENTRIFUGAL COPE
CORE CRUCIBLE
DIECASTING DRAG
FIREBRICK FOUNDRY
GREENSAND INVESTMENT
LADLE MOLD
PATTERN PATTERNMAKER
PERMANENT PLASTERMAKER
PYROMETER RAMMER
SANDCASTING SCALE
SHELLMOLD SLAG
TONGS TUMBLING

CIRCLE WORDS IN PUZZLE ABOVE:
WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: _______________________

147

106
WELDING TERMS #1

...Y S X R...
A T I EU G...
O R I N RL O...
E F GB N...
X A G U G...
I L U T O T H...
D O L G E GT C...
I P A A N N J R...
C Z T S T E I O...
H I O H LNK T I L...
I N R E Y IE G N D...
P G L T R R NM T A...
P I E T DOR RE LL...
I U C S U GT I...
N MA C T L...
G Y SKN AT TUF T I...
D XHB P C U N T...
A O AA O EAM PER AGE S I SY...
E S M T L ROI E T N E RUC BE M W E E JI OV...
M E E C P P D N...
E WELD ING R L T I A LN...
T D P R L G...
A G WI O N...
L N O EN D E...
I N EUTRAL L S G E G...
Z CAR BURIZING B D NU ORG Y...
A R T I G O...
WELDING TERMS #2

Welding

There are 37 words here — can you find them?

Here are the words to look for:

AMPERAGE ARGON BEAD BRAZING CARBURIZING CURRENT DIRECT CURRENT FILLER ROD FUSION GOGGLES HELIUM INERT GAS HIG OXIDIZING OXYGEN REGULATOR STRIKING TIG WELDING

Amperage Argon Bead Brazing Carburizing Current Direct Current Filler Rod Fusion Goggles Helium Inert Gas Hig Oxidizing Oxygen Regulator Striking Tig Welding

ARC BASEMETAL BLOWPIPE BUTT JOINT CHIPPING HAMMER CUTTING TORCH ELECTRODE FLUX GLOVES GROUND HOSE LAP JOINT NEUTRAL OXYACETYLENE POLARITY SPOT WELDING TANKS WELDABILITY

Circle words in puzzle above:

Words may be horizontal, vertical, diagonal, forward, or backward.

NAME: ____________________________

151
MACHINING TERMS

T S E R Y D A E T S C L C Y N E T K P S B Y D X O I V R D E F W
C B A W O C A Z F T A U K Z Z U T W D R E T N E C S X L E H W
Z X H A D W F P O X Z O I C J Z Q Q G B U F F I F D M O L B S U
F W W X J B D G K E Z Y W F T X R L L I M D E O D E E U R J Y K
L D I C L G K S C F K G E X Y K F I Q P A A B A L O R P E I M B P H J S
L K H Q I O N U K T G Q N I W R F U P Y J B O R I N G Y S Y A F
N F H U C I N R N P W A N T P I E H L X J C T E R D Q C S O A U
Z S D I U L F G N I T T U C T P M A L C P A R T S X U P C V V G
Q T Z V W R C T I V D E P R Y K G O D I Y P B N M H T Z W W V F
W B Z F I I R J W P Q T E R A G N U I V Q A U O D E G F I S D
O N K B S V M R F Y C C Q C L Q U D C X Q G C C G N E Y Y F U L
W K E M A M C N I T A I N G E H P K Q G U N L A D E H D N
G A N G D R I L L A A K L L C Q R W A L W M M A E D M B E E I A
T N A L O O C Y S Q Y I G M A O P H E L T S S L T R S E S S S B
E L O E G K U A O Z K S Y C W G Y Y R X X D M H L P X D C X O S
K K S Y H Q P F Z A A J P R F Z Q K D F K H F E O U R U I E L N
V U P E T E C R G N R N K F W T N V N D F T E I O H L W M P O H P
O K F R Y Z C X I U B V D B J X R B E Q H F X J H Y W B E B P T

THERE ARE 45 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

APRON BANDSAW CARRIAGE COLLET COOLANT CUTTINGFLUIDS DRILLPRESS FACEPLATE FLUTES INDEXING INDEXING LATHE LIVECENTER MILLING POWERFEED PULLEY REAMING SPEED STEADYREST TAILSTOCK TAPPING VISES

ARBORS BORING CENTER COMPOUNDREST COUNTERBORING DIVIDING ENDMILL FEED GANGDRILL KNURLING LATHEDOG LUBRICANTS PARALLELS POWERHACKSAW RADIUS TOOL SHAPER SPINDLE STRAPCLAMP TANG TAPPING THREADING UPMILLING

CIRCLE WORDS IN PUZZLE ABOVE:

WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ____________________________

BEST COPY AVAILABLE
MACHINING TERMS #2

There are 45 words here. Can you find them?

Here are the words to look for:

APRON
BANDSAW
CARRIAGE
COLLET
COOLANT
CUTTINGFLUIDS
DRILLPRESS
FACEPLATE
FLUTES
INDEXING
LATHE
LIVECENTER
MILLING
POWERFEED
PULLEY
REAMING
SPEED
STEADYREST
TAILSTOCK
TAPERING
THREADDIAL
TWISTDRILL
VISES

CIRCLE WORDS IN PUZZLE ABOVE:

Words may be horizontal, vertical, diagonal, forward, or backward.

NAME: ___________________________
FINISHING TERMS

There are 25 words here - can you find them?

Here are the words to look for:

- Abrasive
- Buffing
- Dipping
- Electroplating
- Engraving
- Filing
- Grinding
- Nitricacid
- Polishing
- Primer
- Solvent
- Stencil
- Wirebrush
- Anodizing
- Burnishing
- Electroforming
- Enamed
- Etching
- Finishing
- Lacquered
- Painted
- Powdercoat
- Rust
- Spraying
- Thinner

Circle words in puzzle above:

Words may be horizontal, vertical, diagonal, forward, or backward.

Name: ___________________________
FINISHING TERMS N2

C K Y E C A F N B W X I Z B Y D K X B X A A L E F D O M M C D R U
U I H Q M D Y K V E C R G S I Z J T T G S S L
K Z G I G Y E X W R E S L E A X T Y E U A V O D W J N H K N T B
X O H B I K K R B G Z P R D E I O N P I M V I A X O G J G C M
I M U Q F N I G D N P I O I Y O M I F D V A E P M J R T D N I V
P W F F Q O D Z I B X V N X V I M A Q V E B N M V Y X M P T H L
W O I A U H Y Y V P L B J Q R J G N T N X T E F O D E T N M I
D G R S E J R U B U L R Q Q N W P D X G H N C V C Q O I K S D X
I U D X R R F U I F T B H U P C J C Q Z B O A V H M J B K Q Y Y
Y Q D C V E A S E H K E R N J L P Y N I W I I D T V D M G H Z G
R Z M X Y G J L H P N W L R L A Y I M Y K Z R G G R T H N Q K N
U D V X K S R Z R M B F N D M S S G R L S N I E X F L J H I Q T
N B X P E L Y C T D M F J Q I E K Z T M D G N F C Q L O S O H A
Z O V O X K Z P M S G E O N L G H H F B X N V Q G Y Y Q I O R L
F O T I V Y A Z N H C U F I Y N J C W L A O J V S D N P O N H O
K T K F Q R C R M N V S F E L E R F E D H E K E J U R H B T I T
Y S I Q O W T R R I M I A R E J J D E C G X W G R G P C E E D C
M H Y Y F L D Z I U X I N G F N P U V F Q H I Y H L C W L Y Y L
R N H D D P W F D B U K B I N E P V A D M R H W E I E U T K Y E
B Q K B D B O O W K L V N W R E I N J J Y V C I L U G L P G P H

THERE ARE 25 WORDS HERE - CAN YOU FIND THEM?

HERE ARE THE WORDS TO LOOK FOR:

ABRASIVE
BUFFING
DIPPING
ELECTROPLATING
ENGRAVING
FILING
GRINDING
NITRIC ACID
POLISHING
PRIMER
SOLVENT
STENCIL
WIREBRUSH
ANODIZING
BURNISHING
ELECTROFORMING
ENAMELED
ETCHING
FINISHING
LACQUERED
PAINTED
POWDERCOAT
RUST
SPRAYING
THINNER

CIRCLE WORDS IN PUZZLE ABOVE:

WORDS MAY BE HORIZONTAL, VERTICAL, DIAGONAL, FORWARD, OR BACKWARD.

NAME: ______________________

118
159
APPENDIX 3

SAFETY AND MACHINE PICTURES
SAFETY INSTRUCTIONS COMMON TO ALL SHOP/LAB AREAS

Almost all accidents that occur in vocational education and industrial arts labs and shops are attributable to one of the causes listed below:

1. Taking unnecessary chances
2. Getting in too big a hurry
3. Showing off
4. Lack of information
5. Preoccupation
6. Distraction of attention
7. Fear
8. Experimenting
9. Failure to follow instructions
10. Poor discipline
11. Defective machinery
12. Improperly guarded machinery
13. Faulty layout
14. Faulty installation
15. Physical defects in material on machine parts
16. Excitement
17. Selfishness
18. Improper clothing
19. Poor health

Note that approximately 20 percent of all accidents are caused by mechanical failure (unsafe conditions), whereas approximately 80 percent of all accidents are caused by human failure (unsafe acts).
The safety regulations that follow offer specific, tangible suggestions for avoiding these common pitfalls and reducing the chance of accident and/or injury.

It is suggested that these safety instructions be used as examples in writing instruction sheets for each school situation, or that these safety instruction sheets be copied directly and used in the instructional program.

General Safety Instructions

1. No horseplaying or practical joking in any shop area.
2. Never take chances.
3. Observe all posted safety notices and posters.
4. Know where fire extinguishers are located and how to use them.
5. Ensure that the ventilation system is operating for your work station or area.
6. Secure approval of your instructor on all work you plan to do. This applies to all projects and assignments in which you use shop equipment and tools.
7. Report immediately to your instructor upon incurring any injury, even though slight.
8. Caution any person you see violating a safety rule.
9. Report to the instructor any equipment that does not seem to work properly.
10. Keep tools and materials from projecting over the edge of benches, whenever possible, so someone will not walk into them and get injured.
11. Follow prescribed safety instructions in handling large, heavy, and long pieces of material. In general, never carry material over six feet in length or over 50 pounds in weight without assistance.
12. Practice designated procedures to use in case of earthquake, fire, or other emergency.
13. Walk, do not run, in all shop areas.
14. Be considerate of the safety of others.
15. Adhere to safety rules pertinent to a specific shop.

16. Report unsafe conditions to the instructor.

17. Never throw any object in the shop; an accident or an injury may result.

18. Never use compressed air for other than specific purposes.

19. Make certain hands and tools are free of oil and grease.

20. Clean work stations and place tools in the proper areas at the end of each class period.

21. Study fire regulations pertinent to the shop so that you can assist in closing windows, making proper exits, etc.

22. If you feel ill, do not operate a machine. Report to your instructor.

23. Use proper lifting techniques when moving heavy objects.

24. Never treat or remove particles from the eye. See your instructor or school health personnel for immediate attention.
Safety Instructions for Personal Protection

1. Wear proper eye protection while participating in activities that may endanger your eyes.

2. Be sure clothes are safe and suitable for shop work. Remove or fasten any loose clothing. Roll loose sleeves above your elbows. Keep hair away from equipment in operation. Students with long hair must confine their hair in nets or caps when around tools and equipment.

3. Remove rings, bracelets, watches, and other jewelry when working in labs/shops.

4. Wear gloves when materials such as rough boards or metal which are subject to burrs or sharp edges, glass, or other such materials are handled.

5. Wear protective clothing and equipment for the use for which it is intended. Avoid wearing gloves or anything else that may be pulled into a machine.

6. Wear a respirator when harmful dust or fumes exist.

7. Use face shields during hazardous operations in cutting metal, wood, or similar material.

8. Never use flammable liquids for cleaning purposes.

9. Wear rubberized protective equipment when working with electricity.

10. Wear ear protection when excessive noise is encountered.

11. Wear helmets and hand shields when performing operations that produce intense radiant energy like arc welding and heavy gas cutting.

12. Wear canvas or heavy cotton work gloves for operations when the main hazards are blisters caused by friction. When heat is involved, as in foundry work, a more protective type of glove or mitten should be worn.

13. Wear safety shoes with steel toes when lifting heavy objects or working around them.

14. Wear shop coats, aprons, or coveralls for general body protection against dirt and grease.

15. Remove ties when working around machine tools or rotating equipment.

16. Use soap and water frequently as a method of preventing skin disease.
Safety Instructions for Use of Equipment and Tools

1. Use the right tool for the job.

2. Never leave a machine while it is running.

3. Observe rules governing operators' zones around tools and machines.

4. Use a brush or piece of wood to clear away dry chips from your machine or bench. (The machine must be turned off and must have come to a complete stop.)

5. Secure permission from your instructor for using machines and have special set-ups approved.

6. Do not use tools or equipment until you have received instruction relative to safe handling.

7. If you are not operating power tools or are observing the operation thereof, keep clear of operators.

8. Do not stop or start a machine for another person except in an emergency.

9. Operate machines one person at a time.

10. Do not use machines for trivial operations or when hand tools would best accomplish the task.

11. Do not tamper with adjustments or play with machinery at any time. Serious accidents may result.

12. Do not lean on machines. You may press a switch or throw a control which, upon starting, could endanger the safety of the operator or damage the machine.

13. Stop all power machinery to oil, adjust, or clean.

14. Allow revolving machinery to stop on its own. Resist the desire to grab chucks, spindles, or other rotating parts with the hand.

15. Use power tools only when your instructor is present in the room.

16. Set up shields to stop flying chips, sparks, or particles.

17. Replace grinding wheels showing cracks, those out of balance, or those worn too small to allow proper clearance (not more than 1/8") between the tool rest and stone.

18. Keep cutting tools sharp.
19. Never mount a grinding wheel unless the speed of the motor and the speed of the wheel are known and the two are appropriate.

20. When starting a machine, allow it to reach its operating rpm before using it.

21. When finished with a tool, clean and return it to its proper location.

22. Ensure that vise handles hang free when not in use.

23. Know and follow the specific requirements of the kind of machine you are operating.

24. Enclose all gears, moving belts, and other power transmission devices, or erect barricades to prevent contact.

25. Operate equipment only after passing a test for safe operation for that machine.

26. Do not use defective tools, machines, or other equipment.

27. Do not remove guards and safety devices.

28. Observe specific safety zones designated by the instructor and become familiar with color codes.

29. Do not talk with other students while operating machines.

30. Observe safety rules posted at or near potentially hazardous machines.

31. Do not operate any machine until you have received proper instruction, and fully understand how to operate it.

32. Have your instructor check special machine setups.

33. Check machines and make all adjustments before turning on the power.

34. Make sure no one is in the way before turning on the power.

35. Be sure the guards are in place and function properly.

36. Start and stop your own machine and remain with it until it has come to a complete stop.

37. Never leave a running machine unattended.

38. Allow a safe distance between your hands and blades, cutters, or moving parts. Keep your fingers in such a position that there is no danger of their slipping into the cutter or moving parts.
39. Keep machines clear of tools, stock, and other items.

40. Keep the floor around the tools free of liquids, scraps, tools, and other material.

41. Give the machine your undivided attention when using it. Never look away for any reason.

42. Notify your instructor of any breakage or malfunction.

43. Allow all machines to come to a complete stop before removing work or making a new setup.

44. Use the proper size and type of hand tool for the specific task.

45. Make sure that all cutting tools are sharp and in good condition before using them.

46. Use the handles of edged or pointed tools, with sharp points or edges pointed away from you and others.

47. When using sharp-edged tools, be sure to direct their action away from yourself and your classmates.

48. Clamp small work on a bench, or secure it in a vise, when using gouge or wood chisel or driving screws.

49. Control chisels, gouges, and carving tools with one hand while the other supplies the power.

50. When chipping or cutting with a cold chisel, arrange your work so that classmates are protected from flying chips.

51. Pass tools to other persons with handles forward.

52. Carefully read instruction sheets before operating machines.

53. Avoid using wrenches that do not properly fit the nuts, bolts, or other objects.

54. Develop a respect for machine tools and understand their purpose.

55. Recognize the distinctive sound of a properly adjusted and smooth-running machine tool.
Shop Housekeeping Practices

1. Keep your work station clean and orderly.

2. Keep passageways clear to allow easy movement while working and to allow for a rapid exit in case of an emergency.

3. Keep the floor clear of scraps and litter.

4. Keep bench and cabinet drawers and locker doors closed to avoid hazards while walking.

5. Wipe up any liquids spilled on the floor immediately; then apply oil-absorbing compound to the area.

6. Avoid storing or placing objects overhead, except where adequate storage space is provided.

7. Provide a nonskid surface for floors.

8. Sweep daily and periodically clean all shop/lab work areas.

10. Ventilate shops properly. Serious disorders can be caused by uncontrolled vapors, mists, gases, and fumes.

11. Keep shop areas neat and orderly in appearance at all times. Cluttered or dirty shops are good sites for accidents. Neat and orderly shops help eliminate unsafe working conditions.

12. Maintain proper light levels in shops and study areas. Sight is essential for safety. Keep windows, light bulbs, reflectors, and walls bright but without glare. Replace burned out bulbs at once.

13. Daily remove all sawdust, shavings, metal cuttings, and other waste materials.

14. Place all scrap stock in the designated containers.

15. Keep the classroom and shop orderly and clean with all tools and materials in their proper place.

16. Do not throw anything on the floor. Put it in the trash can.

17. Keep all clean-up equipment in its proper place when not in use.
SHEET METAL SAFETY

1. Sheet metal can cause serious cuts. Handle it with care. Wear steel reinforced gloves when possible.
2. Treat every cut immediately, no matter how minor.
3. Remove all burrs from the metal sheet before attempting further work on it.
4. Use a brush to clean the work area. NEVER brush metal with your hands.
5. Use tools that are sharp.
6. Keep your hands clear of the blade on the squaring shears.
7. A serious and painful foot injury will result if your foot is under the foot pedal of the squaring shears when a cut is made.
8. Do not run your hands over the surface of sheet metal that has just been cut or drilled. Painful cuts can be inflicted by the burrs.
9. Get help when cutting large pieces of sheet metal. Keep your helper well clear of the shears when you are making the cut.
10. Keep your hands and fingers clear of the rotating parts on forming machines.
11. Place scrap pieces of sheet metal in the scrap box.
12. Do not use tools that are not in first-class condition—hammer heads loose on the handle, chisels with mushroomed heads, power tools with guards removed, etc.
13. Wear goggles when in the shop.

HEAT TREATING SAFETY

1. Heat treating involves metal heated to very high temperatures. Handle it with the appropriate tools.
2. Wear goggles and the proper protective clothing, i.e. gloves and apron, but never an apron that is greasy or oil soaked.
3. Never look at the flames in the furnace unless you are wearing tinted goggles.
4. Do not try to light the furnace until you have been instructed in its operation. If you are not sure how it should be done, ask for further instructions.
5. Be sure the area is properly ventilated.
6. DO NOT use potassium cyanide as a case-hardening medium.
7. Do not stand over the quenching bath when immersing work.

CASTING SAFETY

1. Never pour a casting unless you are wearing protective clothing and goggles.
2. Moisture and molten metal react violently. Under no condition should moist or wet metal be added to molten metal.
3. Place hot castings where they will not cause accidental burns or fires.
4. Keep the foundry area clean.
5. Be sure your safety clothing is in first-class condition.
6. Do not talk with anyone while pouring a casting.
7. Stand to one side of the mold as you pour, never directly in front of it. Steam is generated during the pouring operation and may scald you. Molted metal may spurt from the mold if it is too moist.
8. Clamp or weight down molds of large castings to prevent the mold from floating and permitting molten metal to escape from the mold at the parting line.
GENERAL SAFETY INSTRUCTIONS FOR OXYACETYLENE WELDING AND CUTTING

1. Operate only with your instructor's permission and after you have received instruction.

2. Remove jewelry, eliminate loose clothing, and confine long hair.

3. Close the cylinder valve and replace the protective cover before moving the cylinder.

4. Fasten cylinders with a chain or other suitable device as a protection against falling or rolling.

5. Inspect all hoses before using.

6. Make sure that all hoses are properly connected and that all connections are tight.

7. Report any leaking of the cylinders or the connections to the teacher immediately.

8. Make sure that you have ample ventilation while welding.

9. Keep all flammable material away from welding area.

10. When preparing to weld, release the regulator pressure screw first; then, open cylinder valves gradually.

11. Open the acetylene cylinder valve one and one-fourth turns or less. Keep the wrench in place so that the valve may be shut off quickly, if necessary.

12. Keep the acetylene pressure in the hose below 15 pounds per square inch.

13. Use a friction torch lighter to light the torch.

14. Close the acetylene valve first if the torch backfires.

15. Make certain the lighted torch always points away from yourself and others.

16. Keep the sparks and the flame away from the cylinders.

17. Close the cylinder valves when you have finished your welding job.

18. Quench the section of the metal that has been welded, or mark it with chalk, or soapstone the word "hot" on the metal, if it is necessary for you to leave your work.

19. Always use the proper eye protection, including the proper shade of lenses when welding and cutting, or safety glasses or goggles when chipping and grinding.
20. Do not allow oil to come in contact with hoses or equipment.

21. Keep the cylinder caps on the bottles when not in use.

22. Confine all cutting and welding to the designated area in the shop.

23. Do not weld galvanized metal without the proper ventilation.

24. Do not weld or cut on a closed container without your instructor's approval.
A complete welding process chart. (Courtesy of The American Welding Society.)
TRANSPARENCY MASTER

OXY-ACETYLENE WELDING
GENERAL SAFETY INSTRUCTIONS FOR ELECTRIC ARC WELDING

1. Obtain permission from your instructor before using an electric welder.

2. Wear a hood with a proper observation window, treated gauntlet gloves, and treated leather apron. All assistants and observers must also wear this equipment.

3. Wear rubber soled shoes, without tracks, when electric welding.

4. When operating the electric welder, allow no one to look at the arc without the dark shield.

5. Make sure electric welding is done only in a correctly constructed booth or room, or behind proper screens.

6. Make sure there is ample ventilation while welding.

7. Keep all flammable material away from the work area.

8. See that the floor area is free of all obstructions.

9. Report to the instructor at once if the electrode holder, the holder cable connection, the cable terminals at the welding machine, the ground clamps, the lugs, or the cable get hot.

10. While removing the scale from the work, wear ordinary safety glasses or goggles.

11. Have a fire extinguisher handy when electric welding.

12. Hang up the electrode holder and turn off the welder when work is being changed or when work has been completed.

13. Keep your sleeves and pants' cuffs rolled down and your collar buttoned up.

14. Be sure that the tops of your shoes are covered while welding.

15. Keep the cable from contacting any hot metal.

16. Keep any electrode stubs off the floor. They could easily cause a slip or fall.

17. Avoid the inhalation of fumes while welding galvanized steel, phosphor bronze, and stainless steel.
SAFETY INSTRUCTIONS FOR OPERATING THE TIG AND MIG WELDERS

1. Operate only with your instructor's permission and after you have received instruction.

2. Remove jewelry, eliminate loose clothing, and confine long hair.

3. Wear additional protective welding clothing, including a helmet, a long-sleeved jacket, and gloves to prevent burns from ultraviolet and infrared rays emitted while arc welding.

4. Ensure that the helmet used for TIG or MIG welding is equipped with a minimum number 12 density shade.

5. Be certain that the welder equipped with a high frequency stabilizing unit is installed, maintained, and used according to the recommendations of both the manufacturer and the Federal Communications Commission.

6. Never touch the tungsten electrode or MIG wire while the welder is turned on. It is electrically "hot" and can cause a serious shock.

7. Never use the high frequency when performing shield metal arc (stick electrode) welding.
Electrical Safety Instructions

1. Know where electrical circuit breakers are located for an emergency shutoff.

2. Keep electrical boxes closed.

3. Ground all portable and stationary power tools.

4. Keep hoses and electrical cords from becoming tripping hazards.

5. Do not use electric drills or any other electrical apparatus while standing on wet floors.

6. Cords are to be disconnected when portable tools are not in use.

7. Check for frayed electrical cords.

8. Disconnect electrical power equipment before oiling, cleaning, or making adjustments.

9. Do not use extension cords for permanent connections.

10. Ground all motors, fuse boxes, switch boxes, and other electrical equipment.

11. Assume that an electrical apparatus is "hot" and treat it as such.

12. Use a test lamp or a suitable meter for testing a circuit.

13. Never turn on a switch unless you know what it operates.

14. Turn off power when replacing a fuse.

15. Locate and correct the fault that caused the circuit breaker to open or the fuse to blow before turning on the power.

16. Be sure a circuit is protected against an overload by a fuse or circuit breaker of correct circuit-carrying capacity.

17. Make changes in the wiring of a circuit only when the power is turned off.

18. Select and use wire of the correct current-carrying capacity.
GENERAL SAFETY INSTRUCTIONS FOR THE MACHINE SHOP

1. Keep your work area free from scraps of metal stock.
2. Keep metal cutting tools sharp.
3. Always put a handle on a file before you use it.
4. Grind mushroom heads and all burrs off cold chisels, center punches, and other small hand tools.
5. Never try to hold a piece of metal in your hand while it is being machined. Use a fixture or a clamp to hold the workpiece.
6. Wear appropriate gloves when handling hot metals.
7. Always wear eye protection. A sliver of metal in the eye can cause blindness.
9. Exercise caution when using portable hand tools, spot welders, electric shears, and the like. (These tools operate on at least 110 volts of electricity. This charge can either kill or cause a serious shock or burns under certain conditions.) Make sure that the power cords are in good working condition and that plugs are not broken. Keep cords away from oil and hot surfaces.
10. Be sure that your hands are dry before using an electrical power tool.
11. Never use measuring tools on metal while it is being machined.
12. Always keep machine guards in place. They were put there for your protection.
13. Operate a machine only after you have received instruction on its use. Remember that you must know what you are doing before you start a machine.
14. Stop a machine before oiling it.
15. Never "feel" the surface of a metal while it is being machined.
16. Clean chips off with a brush, never with a rag or your hand.
17. Never allow anyone to stand near a machine that you are operating.
18. Handle files carefully since they are brittle. They can shatter in your hands. Always use a file with a handle.
19. Wear protective clothing when working with hot metals.

20. Wear a face mask when there is a danger of flying chips.

21. Wear goggles when grinding metals.

22. Do not attempt to oil, clean, adjust, or repair any machine while it is running. Stop the machine and lock the breaker box in the "off" position.

23. Get help for handling long or heavy pieces of material. Follow safe lifting practices, lifting with your legs, not your back.

24. Do not talk to others when they are operating machines.
SAFETY INSTRUCTIONS FOR OPERATING THE DRILL PRESS

1. Wear proper eye protection.

2. Hold material securely with a vise or clamps.

3. Select a properly sharpened bit. For metal, center punch when a hole is to be drilled.

4. Adjust the table or the depth stop to avoid drilling into the table.

5. Select the correct speed, normally slower for metal—faster for wood. The larger the bit, the slower the speed.

6. Be certain that the table and head of the drill press are secure.

7. Select the correct size and the kind of drill for the work. Be sure it is sharp.

8. Select the designated coolant for the drill press and apply it to the drill point as needed. (No coolant is used when drilling wood.)

9. See that the belt guard is in place.

10. Remove the chuck key immediately after using it.

11. Keep hands away from the revolving spindle, chuck, drill, and chips.

12. Operate the feed handle so that the drill cuts evenly into the work.

13. Ease up on the feed pressure when the drill begins to break through the material.

14. Back the drill out as soon as the hole is drilled.

15. Allow the drill press to stop before attempting to remove the work, chips, or cuttings. Do not stop the revolving chuck with your hands.

16. Use a brush to remove the chips or the shavings.

17. Keep the floor clean around the drill press.

18. Step away immediately if the work comes loose and is caught in the drill. Shut off the power, if possible, without endangering yourself.
TRANSPARENCY MASTER

DRILL PRESS
SAFETY INSTRUCTIONS FOR OPERATING THE GRINDER

1. Obtain permission from the instructor before operating a grinder.
2. Wear proper clothing.
3. Wear a face shield, safety glasses, or goggles and use a glass safety guard on a grinder.
4. See that the guard is in place.
5. Set tool rest 1/16" to 1/8" from the wheel.
6. Dress the wheel when necessary.
7. Make sure that no one except you is inside the operator's zone.
8. Adjust the grinder for your job before turning the power on.
9. Stand to one side of the wheel when turning the power on. The wheel may be cracked, causing it to break up.
10. Turn on the power after permission is given.
11. Keep your hands away from the wheel while it is in motion.
12. Hold the work with your hands. Ask permission to grind small pieces.
13. Use only the face of the wheel.
14. Press materials against the wheel with the correct amount of pressure.
15. Keep the work in motion across the face of the wheel.
16. Do not grind on the side of the grinding wheels.
17. Stand to one side when starting the machine.
18. Discard or report grinding wheels that are excessively small or cracked.
19. Hold small work pieces with a "vise grip" type of pliers.
20. Do not leave the machine until the grinding wheels have come to a complete stop.
TRANSPARENCY MASTER

PEDESTAL GRINDER
SAFETY INSTRUCTIONS FOR OPERATING THE BUFFER

1. Obtain permission from your instructor before using the buffer.
2. Wear a face shield, safety glasses, or goggles.
3. Hold work with both hands.
4. Secure special instruction and permission from your instructor before buffing small pieces.
5. Make sure that no one except you is inside the operator's zone.
6. Turn on the power only after permission is given.
7. Apply the compound sparingly.
8. Keep your hands away from the wheel while it is in motion.
9. Hold the work below center (horizontal axis) as the wheel revolves toward you.
10. Buff the flat surfaces from the center toward the lower edge. Sharp edges should point downward.
11. Press the material against the wheel with the correct amount of pressure.
12. Turn off the power after using the buffer.
13. Clean the buffer and the area with a brush.
SAFETY INSTRUCTIONS FOR OPERATING THE MILLING MACHINE

1. Obtain permission from the instructor before using the milling machine.
2. Wear a face shield, safety glasses, or goggles.
3. Make adjustments or set up only when the machine is at a dead stop.
4. Use correct fitting wrenches on machine parts.
5. Handle all cutters carefully.
6. Use only a soft hammer or mallet to seat work against the parallels or the bottom of the vise.
7. Select the proper cutter. Be sure it is sharp.
8. Be sure the job is securely fastened.
9. Make certain that the work, milling machine table, and any holding device will clear the arbor and support during the cut.
10. Set the machine for the proper depth of cut.
11. Disengage handles when the automatic feed is to be used or the table is to be locked.
12. Select the correct feed.
13. Make sure that no one except you is inside the operator's zone.
14. Stand to one side of the machine.
15. Turn on the power after permission is given.
16. Be sure that the cutter is turning in the proper direction.
17. Feed against, or opposite to, the direction of the rotation of the cutter.
18. Use a brush to remove chips from work when the machine is at rest.
19. Keep the floor clean around the machine.
20. Turn off the power after using the milling machine and remain there until the machine has stopped.
22. Clean the machine and the area with a brush.
23. Be sure the cutter is tightly held in the collet and the material is securely held by a vise, clamps, or magnetic chuck.

24. Check the spindle rotation, speed, depth of cut and all power feed adjustments before starting the cut.

25. Keep your hands away from the cutter. Remove the chips with a brush after the machine is turned off.

26. Once a cutting pass is made, do not back out or return to the starting position without proper clearance.

27. Do not climb cut without specific permission.

28. Check the depth and the width of the cut, the cutter rotation, plus the speed of the cutter and the power feed before starting the machine.

29. Never clear chips away while the machine is in operation. Keep your hands away from the chips and the point of operation.
SAFETY INSTRUCTIONS FOR OPERATING A METALWORKING SHAPER

1. Obtain permission from your instructor before using the shaper.
2. Protect your eyes with a face shield, safety glasses, or goggles.
3. Be sure fences and guards are fastened tightly in place.
4. Make adjustments or set up only when the machine is at a dead stop.
5. Use a soft hammer or a mallet to set work on the parallels.
6. Secure work firmly in the machine.
7. Select the proper tool for the job.
8. Set the machine for the proper depth of cut.
9. Be sure that ram and head will clear your work and any holding device.
10. Use the proper file to remove sharp burrs and corners to prevent fingers from being cut.
11. Make sure that no one except you is inside the operator's zone.
12. Check to see that the lever is in a neutral position before starting the motor.
13. Stand to one side of the machine.
14. Turn on the power after permission is given.
15. Keep your hands away from the cutting tool and the line of travel of all moving parts.
16. Turn off the power after using the shaper and stand by until the machine has stopped.
17. Clean the machine and the area with a brush.
18. Make sure all guards are secure before starting the machine.
19. Do not lay either the tools or tooling on any part of the machine.
20. Never remove chips while the machine is in motion.
TRANSPARENCY MASTER

FEED SCREW DIAL AND CRANK
SAWEL HEAD
TOOL LIFTER
TOOL POST
V.S.

RAM ADJUSTING SHAFT
ELECTRICAL CLUTCH AND BRAKE CONTROL
START AND STOP BUTTONS
OIL PRESSURE GAUGE

GEAR SHIFTER LEVER
BACK GEAR SELECTOR LEVEL
POWER CROSS FEED SELECTOR
STROKE ADJUSTING SHAFT
STROKE INDICATOR DIAL
POWER RAPID TRAVERSE LEVER
CROSS FEED ENGAGEMENT LEVER
RAIL ELEVATING MANUAL CONTROL
CROSS FEEDING MANUAL CONTROL

METALWORKING SHAPER
SAFETY RULES TO BE OBSERVED WHILE OPERATING THE MACHINE LATHE

1. Obtain permission from the instructor before operating the lathe.

2. Wear proper clothing.

3. Wear a face shield, safety glasses, or goggles.

4. Clamp the tailstock and adjust the tool rest before starting the lathe. Be sure the chuck key is removed.

5. Turn the lathe by hand while putting on or removing a face plate or chuck. Power is never to be used.

6. Make any adjustment of the cutting tool or measurements on the work when the lathe is not running.

7. Remove chips from the work and from the machine with a brush. Fingers should never be used.

8. Always keep your left arm and body a safe distance from the lathe dog.

9. Never reverse the lathe until it has fully stopped.

10. Remove the tool bit from the holder when taking work from the lathe or changing chucks.

11. If you are in doubt about what to do, ask the instructor.
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Book Number</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>THREE DRAWER TOOL BOX</td>
<td>64</td>
<td>224 - 226</td>
</tr>
<tr>
<td>CONTEMPORARY CHANDELIER</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>BARN SHAPED MAILBOX</td>
<td>66</td>
<td>88 - 89</td>
</tr>
<tr>
<td>PORTABLE BARBECUE GRILL</td>
<td>66</td>
<td>52 - 54</td>
</tr>
<tr>
<td>EARLY AMERICAN MAIL BOX</td>
<td>66</td>
<td>22</td>
</tr>
<tr>
<td>TANK WITH WIRED EDGE</td>
<td>12</td>
<td>178</td>
</tr>
<tr>
<td>RECTANGULAR DUCTELBOW</td>
<td>12</td>
<td>179</td>
</tr>
<tr>
<td>ROUND TEE</td>
<td>12</td>
<td>190</td>
</tr>
<tr>
<td>THREE-PIECE ELBOW</td>
<td>12</td>
<td>192 - 194</td>
</tr>
<tr>
<td>ROUND FITTING BY TRIANGULATION</td>
<td>12</td>
<td>205 - 208</td>
</tr>
<tr>
<td>PAPER PAD</td>
<td>3</td>
<td>434</td>
</tr>
<tr>
<td>PATIO LAMP</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>HUNTER'S SEAT AND SHELLBOX</td>
<td>3</td>
<td>440</td>
</tr>
<tr>
<td>BUCKET</td>
<td>12</td>
<td>265</td>
</tr>
<tr>
<td>FUNNEL</td>
<td>12</td>
<td>266 - 267</td>
</tr>
<tr>
<td>WASTE BASKET</td>
<td>12</td>
<td>268 - 271</td>
</tr>
<tr>
<td>TOOL BOX</td>
<td>12</td>
<td>273 - 275</td>
</tr>
<tr>
<td>BOX WITH SLIDING TOP</td>
<td>12</td>
<td>279</td>
</tr>
<tr>
<td>PATIO LAMP</td>
<td>3</td>
<td>437</td>
</tr>
<tr>
<td>CHARCOAL SCOOP</td>
<td>65</td>
<td>44</td>
</tr>
<tr>
<td>COFFEE SERVER</td>
<td>65</td>
<td>36</td>
</tr>
<tr>
<td>PATIO DUST PAN</td>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>Item</td>
<td>Book Number</td>
<td>Page Number</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>GOBLET</td>
<td>64</td>
<td>161 - 166</td>
</tr>
<tr>
<td>DESK PEN BASE</td>
<td>2</td>
<td>580</td>
</tr>
<tr>
<td>DOOR KNOCKER</td>
<td>67</td>
<td>81 - 82</td>
</tr>
<tr>
<td>CASTMASTERS</td>
<td>67</td>
<td>65 - 68</td>
</tr>
<tr>
<td>DOORKNOCKER</td>
<td>65</td>
<td>71</td>
</tr>
<tr>
<td>BOOKENDS</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>NAMEPLATE</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>WELDING PROJECTS</td>
<td>Book Number</td>
<td>Page Number</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BAG CART</td>
<td>68</td>
<td>26 – 27</td>
</tr>
<tr>
<td>PORTABLE GRILL</td>
<td>68</td>
<td>30 – 31</td>
</tr>
<tr>
<td>HOSE CART</td>
<td>68</td>
<td>20 – 21</td>
</tr>
<tr>
<td>TABLE LAMP</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>BASKETBALL GOAL</td>
<td>69</td>
<td>222 – 223</td>
</tr>
<tr>
<td>UTILITY TRAILER</td>
<td>69</td>
<td>234 – 235</td>
</tr>
<tr>
<td>NATURAL GAS BARBEQUE</td>
<td>69</td>
<td>106 – 107</td>
</tr>
<tr>
<td>GAS, WOOD, AND SMOKER BARBECUE</td>
<td>69</td>
<td>120 – 124</td>
</tr>
<tr>
<td>HAND TRUCK</td>
<td>65</td>
<td>38</td>
</tr>
<tr>
<td>UTILITY TRAILER</td>
<td>69</td>
<td>264 – 265</td>
</tr>
<tr>
<td>CAR RAMPS</td>
<td>69</td>
<td>200 – 201</td>
</tr>
<tr>
<td>OXYACETYLENE CUTTING AND WELDING TABLE</td>
<td>69</td>
<td>204 – 205</td>
</tr>
<tr>
<td>TWO-WHEEL UTILITY TRAILER</td>
<td>68</td>
<td>12 – 13 sec. II</td>
</tr>
<tr>
<td>WELDING TABLE</td>
<td>68</td>
<td>2 – 3 sec. II</td>
</tr>
<tr>
<td>Item</td>
<td>Book Number</td>
<td>Page Number</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CAMERA TRIPOD</td>
<td>64</td>
<td>211 - 213</td>
</tr>
<tr>
<td>CANDLESTICKS</td>
<td>64</td>
<td>186 - 189</td>
</tr>
<tr>
<td>HAMMER HEAD</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>PEEN HANDLE</td>
<td>63</td>
<td>12</td>
</tr>
<tr>
<td>PARALLEL CLAMP</td>
<td>63</td>
<td>22</td>
</tr>
<tr>
<td>TAP WRENCH</td>
<td>63</td>
<td>40 - 42</td>
</tr>
<tr>
<td>SURFACE GAUGE</td>
<td>63</td>
<td>60 - 64</td>
</tr>
<tr>
<td>DRILL PRESS VISE</td>
<td>65</td>
<td>28 - 29</td>
</tr>
<tr>
<td>CHAIN BREAKER</td>
<td>64</td>
<td>220 - 222</td>
</tr>
<tr>
<td>ADJUSTABLE SQUARE</td>
<td>4</td>
<td>283</td>
</tr>
<tr>
<td>SOLID SQUARE</td>
<td>4</td>
<td>282</td>
</tr>
<tr>
<td>SCRIBER</td>
<td>4</td>
<td>283</td>
</tr>
<tr>
<td>MEAT TENDERIZER</td>
<td>4</td>
<td>490</td>
</tr>
<tr>
<td>PHONE FINGER</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>CONTEMPORARY CANDLESTICKS</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>PUNCH HAMMER</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>MUG</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td>PICTURE FRAME CLAMP</td>
<td>65</td>
<td>54</td>
</tr>
<tr>
<td>GAVEL PAPERWEIGHT</td>
<td>65</td>
<td>41</td>
</tr>
<tr>
<td>TWO PIECE VISE</td>
<td>65</td>
<td>18 - 19</td>
</tr>
<tr>
<td>BUFFING HEAD</td>
<td>65</td>
<td>12</td>
</tr>
<tr>
<td>SERVING TRAY</td>
<td>65</td>
<td>6</td>
</tr>
</tbody>
</table>
APPENDIX 5

RESOURCES: FILM, COMPUTER PERIODICALS, ROBOTICS
RESOURCES FOR FILMS

Modern Talking Picture Service
5000 Park Street North
St. Petersburg, Florida 33709
813/541-5763
RESOURCES OF MANUFACTURING

CNC - Robotics - CAD - Computers

1. Brodhead-Garrett
 1-800-841-4967

2. EMCO-Lux Corporation
 P. O. Box 07824
 2050 Fairwood Avenue
 Columbus, Ohio 43207

3. Technovate, Inc.
 910 S. W. 12 Avenue
 Pompano Beach, Florida
 305/946-4470

4. Cincinnati Milacron
 Industrial Robot Division
 215 S. West Street
 Lebanon, Ohio 45036

5. Bridge Port Machines
 500 Lindley Street
 Bridgeport, Connecticut 06606
 205/367-3651

6. Paxton-Patterson
 5719 West 65th Street
 Chicago, Illinois 60638
 1-800-323-8484
1. Abraxas
 P. O. Box 1416
 Eugene, Oregon 97449
 503/485-6747

2. MIND
 Statewide Teaching Aids
 P. O. Box 8241
 Alexandria, Louisiana 71360
 318/445-2572

3. Career Aids, Inc.
 8959 Lurline Avenue, Dept. M
 Chatsworth, California 91311
 818/341-8200

4. Goodheart-Willcox Company
 123 W. Taft Drive
 South Holland, Illinois 60473
 1-800-323-0440

5. Apple-Swap
 607 Sycamore
 Starkville, Mississippi 39759

6. MECC Software
 State Department of Education
 Baton Rouge, Louisiana

7. CENLA Professional Development Center
 Dr. Bob Gillan
 PDC, TEC - Northwestern State University
 Natchitoches, Louisiana 71497
 318/357-4182
COMPUTER PERIODICALS

Classroom Computer News
51 Spring Street
Watertown, MA 02172

Educational Computer
P. O. Box 535
Cupertino, CA 95015

Electronic Learning
902 Sylvan Avenue
Englewood Cliffs, NJ 07632

School Microware Reviews
Dresden Associates
P. O. Box 246
Dresden, ME

The Computing Teacher
Department of Computer & Information Services
University of Oregon
Eugene, OR 97403

Electronic Education
Electronic Communications
Suite 220, Executive Center Drive
Tallahassee, FL 32301

School Microware Directory
Dresden Associates
P. O. Box 246
Dresden, ME 04342

T.H.E. Journal
Information Synergy
P. O. Box 992
Acton, MA 01720

Robotics Age
174 Concord Street
Peterborough, NH 03458
603/924-7136
APPLE-SWAP
INFORMATION SHEET

APPLE-SWAP (Software With A Purpose) is an international software clearinghouse for educational programs developed on and for the Apple microcomputer. The stated objective is to assist teachers, administrators, parents, but most importantly, students in the advancement of facilitative learning experiences with the Apple. It was founded in 1980 by Dr. Dan Brook, Associate Professor and Assistant Department Head of the Vocational Education and Technology Department at Mississippi State University, and Mr. Larry Anderson, former industrial arts teacher, middle school principal, and now instructor in the VED Department with Dr. Brook. We hope that many of the advantages gained as a result of using APPLE-SWAP will be carried over into the entire school environment.

The clearinghouse was originally designed for Industrial Arts teachers, but later was expanded to serve all Vocational Education. However, as the requests kept coming from other areas, we decided to make it cover all facets of education. We are here to serve anyone who wants help -- and at a VERY reasonable cost!!!

We have set forth some rules governing our software exchange library. The first time you use the library, you should send 2 disks and $2. One of your disks should be blank. It will be kept here to help the library expand. The other disk should have your contributed public domain programs on it. If you don't have any programs to send in the first time, we will be expecting you to contribute later. We will take your programs off, place them into the library, then copy the volumes you requested on your disks and return it to you.

On the first exchange, we always send our Introductory Disk (Vol. 10) on the front side of your disk, but we will copy the volume of your choice on the back of the disk. We will copy entire disk volumes, not individual programs.

Each time after your first exchange, you will send $1 per disk side you want copied. For example, 1 side and $1, 2 sides and $2, 3 sides and $3, etc. Please remember that we will copy two volumes per disk, so request two volumes from the library list for each diskette you send. The library list is available for a fee of $1 which covers duplication costs. Updates to the original list will be made available periodically. We feel that it is a good idea to share APPLE-SWAP programs with other teachers in your locality.

Some of you have asked, "Can we request the entire library at one time?" The answer is, "Yes!"

We trust that this information has been helpful in explaining our position and our work with APPLE-SWAP. If we can be of service, don't hesitate to let us know.

APPLE-SWAP
607 Sycamore
Starkville, MS 39759

Dr. Dan Brook 323-7000 (Home)
325-2281 (Work)

Mr. Larry Anderson 324-0677 (Home)
325-2281 (Work)

BEST COPY AVAILABLE
The publishers of Softdisk Magazine* (Apple Format) and MAG-80 (TRS-80 III or IV Format) have authorized me to share a single issue of their electronic magazine with our schools. Mail 2 disks for the Softdisk or c.e for the MAG-80 to the PDC for your copies of these outstanding educational buys.

Subscriber info:
Softdisk, 3811 St. Vincent, Dept. 511, Shreveport, La. 71108 (12 issues - $55.00)
MAG-80, Dept. B., P.O Box 8470, Bossier City, La. 71113 (12 issues - $90.00)

PUBLIC DOMAIN SOFTWARE AVAILABLE

Our Apple Compatible library continues to grow providing us with more software to share with you. Below is a general listing of the 140+ disks available:
Education - 40
Graphics - 6
Utilities - 10
Business & Stat - 16
Home & Hobby - 4
Novelties - 4
Games-Misc. - 13/Fantasy/Adv. - 21
Electronic Magazines/Club Disks - 26
We have ten TRS-80 III & IV disks and really need contribution in this area.
Send your disks (including any public domain programs that you have) to the PDC and specify your interest based on the above categories.
**Commodore support is planned for spring/summer.

RESOURCE GUIDE

A resource guide containing suggestions on hardware purchase planning, software selections, and a list of administrative software packages is available from the Florida Department of Education. To obtain this guide, write or call:
Chase W. Crawford
Management Systems & Services
Florida State Department of Education
Tallahassee, FL. 32301
904/487-2280

TEACHING TIPS

J.L. Hammett Microcomputer Division has a Curriculum Idea Sheet on using particular software packages in the classroom. Copies may be requested from:
Curriculum Idea Sheet
Microcomputer Division
J.L. Hammett Co.
Box 545
Braintree,MA. 02184

COMPUTER CLUB KITS.

Apple Computer Kits for elementary and secondary levels are available through request of the principal on school letterhead, name of sponsor is required. Write to:
Apple Computer Club, Box 94d, Lowell, MA.
01853

COMPUTER FILM

"Tender Loving Computers" is a free film for educators to use to inform teachers and parents how children are preparing to live in a computerized world. Write: Mattel Toys, 50 Rosecrans Ave., Hawthorne, CA. 90250.
Send for your subscription to the following:

Machinery, 200 Madison Ave.; New York, NY 10016

Industrial Arts & Voc. Ed., 866 3rd Ave., New York, NY 10022

Industrial Teacher, 1201 16th North West, Washington, D.C. 20036

Industrial Design, P. O. Box 2153, Radnor, PA 19089

Industrial Finishing, Hitchcock Pub. Co., Wheaton, IL 60187

School Shop, B:x 8623, Ann Arbor, MI 48107

Stabilizer, Lincoln Electric Co., 22787 St. Clair Ave., Cleveland OH 44117

The Home Shop Machinist, Vollage Press, Inc., P. O. Box 968, Traverse City, MI 49684
BIBLIOGRAPHY

3b. Workbook.

4b. Workbook.

5b. Workbook.

7b. Workbook.

11b. Workbook and Teachers Guide.

35b. Workbook (student).

36b. Workbook (student).

39b. Workbook (student).

40b. Workbook (student).

46b. Workbook (student).

