Abstract

This article presents a meta-analysis of the effects of examiner familiarity/unfamiliarity on children's performance during individual testing. Data came from 22 controlled studies involving 1489 subjects. In a typical study, the effect of examiner familiarity raised test performance by .35 standard deviations. Differential performance favoring the familiar examiner condition was greater when subjects: (1) were of low socioeconomic status; (2) were tested on comparatively difficult tests; and (3) knew the examiner for a relatively long duration. The relationship of familiarity to examinee's handicapped status was not clear. The effects of examiner familiarity demonstrate the importance of contextual factors in testing and question the positivistic view that the test instrument is the single most important variable determining test performance.

(Author/BS)
The Importance of Context in Testing:
A Meta-Analysis

Douglas Fuchs and Lynn S. Fuchs
Peabody College, Vanderbilt University

Requests for reprints should be sent to Douglas Fuchs, Box 328,
Department of Special Education, Peabody College, Vanderbilt University,
Nashville, TN 37203.
Abstract

This article presents a meta-analysis of the effects of examiner familiarity on children's test performance. The data for the meta-analysis came from 22 controlled studies involving 1489 subjects. In the typical study, the effect of examiner familiarity raised test performance by .35 standard deviations. Differential performance favoring the familiar examiner condition was greater when subjects (a) were of low SES status, (b) were tested on comparatively difficult tests, and (c) knew the examiner for a relatively long duration. Implications are discussed for scientism, the popular epistemological basis for understanding testing, and for practice.
The Importance of Context in Testing: A Meta-Analysis

Positivism, or scientism, is the epistemological basis for the mainstream tradition in the social sciences (Adorno, Albert, Dahrendorf, Habermas, Pilot, & Popper, 1976; Bernstein, 1978). The positivistic ideal is the formulation of universal laws, which are free of the restraints of particular contexts, and therefore applicable to all. Hence, limiting, if not eliminating, contextual influence is a key feature of our standard methods of experimental design, measurement, and statistical analysis (Mishler, 1979).

Scientism also appears to govern the manner in which we administer tests, as well as our understanding of what occurs during testing. Evidence for this may be found in the most recent draft of the Joint Technical Standards for Educational and Psychological Testing (AERA, APA, & NCME, 1984), where, on page 1, the test situation is described as a formal experiment. This perspective requires the examiner (i.e., unbiased investigator) to administer the test instrument according to explicit non-varying instructions (i.e., experimental treatment) in a controlled setting (i.e., laboratory). As in all scientific endeavors, these attempts to objectify and standardize the test situation are made, in part, to isolate the variable of interest, the test, from other contextual or situational variables. By promoting the independence and importance of the test instrument, we attempt to demonstrate a cause and effect relationship between test performance and whatever examinee characteristic the test claims to measure.

It is a fundamental presumption of the positivistic perspective that we may conceptualize the test setting in this "decontextualized" manner; that
extra-test factors can be controlled, their effects on performance neutral-
ized. Specific related assumptions concerning the behavior of test partici-
pants are that (a) the examiner-examinee relationship is static, uni-
directional, and predictable, with the examiner controlling the testing by
manipulating materials, questions, and feedback, while the examinee passively
observes and responds; (b) examiners objectively and reliably administer the
instrument and score performance; (c) test developers and test participants
share similar interpretations of important elements of testing, such as the
purposes of testing and the meaning of test instructions; and (d) the examinee
attends to variables in the test setting accorded importance by test construc-
tors and examiners, and ignores those stimuli to which examiners and develop-
ers assign scant importance.

It is testimony to positivism's powerful influence on testing that these
assumptions infrequently have been explored. Nevertheless, a growing corpus
of empirical studies calls these assumptions into question. First, this
research suggests that examiners and examinees participate in dynamic,
bidiirectional, and idiosyncratic relationships, resulting in unpredictable
behavior (Fuchs, Zern, & Fuchs, 1983; Mehan, 1978; Roth, 1974). Second,
examiners' scoring may be influenced by pretest information on examinees
(Bahad, Mann, & Mar-Hayim, 1975; Fiscus, 1975; Hersh, 1971; Schroeder &
Kleinsasser, 1972), as well as by examinee characteristics (Fuchs & Fuchs,
1984; Masling, 1957). Third, test performance can be affected: (a) by
examinees' interpretation of the purpose of testing (Deyhle, 1983; Goodnow,
1976), comprehension of test instructions (Abramyan, 1977; MacKay, 1974;
Mehan, 1978), anxiety (Sarason, 1980), and pretest contact with examiners
Test Procedure

(Fuchs, Fuchs, Power, & Dailey, in press); and (b) by examiners' personality (Exner, 1966; Feldman & Sullivan, 1971; Sacks, 1952), reinforcement (Ayllon & Kelly, 1972; Taylor & White, 1981; Tiber & Kennedy, 1964), attitudes about the legitimacy of testing (Horne & Garty, 1981), the order in which they administer tests of varying difficulty (Zigler & Butterfield, 1968), and their choice of test location (Labov, 1973; Seitz, Abelson, Levine, & Zigler, 1975; Stoneman & Gibson, 1978).

Such findings challenge positivism's decontextualized view of testing, and simultaneously corroborate a competing notion that contextual variables, including test participants' unique experiential backgrounds, mediate between the test instrument and performance. Comparative research in cognition (see Cole & Means, 1981) corroborates this idea and suggests further that various groups of examinees may respond differently to contextual variables in assessment. If this were true, then situational factors systematically may enhance the performance of certain groups and/or consistently depress the performance of others. In such cases, situational variables would represent systematic sources of error or bias.

Despite the possibility and importance of such an occurrence, this type of test situation, or test procedure, bias generally has gone unexplored (Flaugher, 1978). One of the few exceptions has been the issue of the effects of examiner unfamiliarity on test performance. Interest in this facet of the test procedure probably has been spurred by one or more of the following. First, examiner unfamiliarity often has been perceived as an important and desirable characteristic of standard testing (cf. Standards for Educational
and Psychological Tests, 1974), thereby making it a conspicuous component of
the test procedure. Second, and in apparent contradiction, there is a long-
standing developmental notion that, because children derive much of their
comprehension and feeling about a situation from significant adults in that
setting (Freud, 1921/1922; Piaget, 1965), examiner attributes, as well as
behaviors, are pivotal to examinee performance. Finally, psychological re-
search into related but substantively different areas, such as the effective-
ness of adults' social reinforcement on children's performance (cf. Stevenson,
1965), has demonstrated indirectly the importance of the tester's familiarity;
unfamiliarity.

Nevertheless, there has been no previous quantitative integration of the
effects of examiner unfamiliarity on children's performance. Therefore, the
purpose of the present study was to conduct a meta-analysis on this topic,
specifically focusing on whether examiner unfamiliarity exerts a bias against
select subgroups, such as low-SES and handicapped children.

Methodology

Search Procedure

The search for pertinent studies comprised a five-step procedure. First,
employing the Thesaurus of Psychological Index Terms (APA, 1982), multiple
descriptors were generated for key topic-related terms. For example, rapport
alternately was identified by "examiner-examinee interaction," "interpersonal
factors," and "situational factors." Second, in June 1982, the descriptors
facilitated a computer search of three on-line data bases: ERIC (Educational
Resources Information Center, from 1966); Psych Info (Psychological Abstracts
Information Service, from 1967); and Dissertation Abstracts International
(from 1927). Following Dusek and Joseph (1983), the descriptors were entered into the computer as isolated words or phrases to promote a comparatively broad search.

Third, employing similar key descriptors, a manual search was conducted of 12 educational, psychological, and speech/language journals for the years 1965-1982, inclusive. (If a journal began publication after 1965, all of its volumes were explored.) These journals were: American Journal of Mental Deficiency, Child Development, Developmental Psychology, Exceptional Children, Journal of Abnormal and Social Psychology, Journal of Consulting and Clinical Psychology, Journal of Experimental Child Psychology, Journal of Genetic Psychology, Journal of Speech and Hearing Disorders, Language, Speech, and Hearing in the Schools, Merrill Palmer Quarterly, and Psychology in the Schools. Fourth, the reference sections were explored for selected textbooks on psychological and educational assessment, such as Sattler's (1974) Assessment of Children's Abilities. Finally, titles in the references of investigations discovered by these efforts were pursued.

Criteria for Relevant Studies

A study was considered for inclusion if it compared examiner familiarity to unfamiliarity in terms of effects on examinees' performance during individualized testing. For reasons discussed by Cooper (1982), "familiarity" was defined broadly, including either children's personal acquaintanceship with the examiner or their prior contact with a rather well-defined class of adults, such as white middle-class females, of which the examiner was a member. "Test performance" was defined as examinees' performance on one or more IQ, speech/language, or educational achievement test, or on experimental tasks.
meant to simulate test items found in such measures. This definition of test performance helps to distinguish the studies in the present review from those that describe determinants of children's responsiveness to adults' social reinforcement (cf. Stevenson, 1965). In similar fashion to some of the investigations under review, the social reinforcement literature explores the effects of negative, positive, and an absence of prior contact with an experimenter on children's performance. However, these studies typically employ persistence and/or rate of performance on relatively simple motoric tasks, such as marble dropping (cf. Stevenson & Kennedy, 1966) or underlining Ss (e.g., Rosenkrantz & Van De Riet, 1974). We believe such tasks are fundamentally different from the more complex and demanding requirements in IQ, speech/language, and educational achievement assessments, and probably contribute to a qualitatively different experience for test participants. The resulting sample included 24 studies of the effects of examiner familiarity/unfamiliarity on children's test performance.

Data Extracted from Each Study

The effects of examiner familiarity and examiner unfamiliarity were noted in each study. Effects for five studies were unclear and, in each case, an attempt was made to obtain additional information from the investigator. One researcher could not be reached and one did not respond, reducing the sample from 24 to 22 studies (see the Appendix). Many of the 22 studies reported more than one effect. In such instances, each effect was coded separately. In all, the 22 studies yielded 38 effects of examiner familiarity/unfamiliarity.

Effects of examiner familiarity and unfamiliarity were related to one composite procedural variable and nine substantive variables. The composite pro-
cedural variable indicates the overall methodological quality of each investigation. It was based on an aggregation of nine design-related characteristics. These methodological characteristics, as well as the standards against which they were judged to generate an overall quality index, follow:

1. **Assignment of subjects to examiners.** It was necessary for subjects to be assigned randomly to examinees.

2. **Assignment of subjects to treatments.** Investigators were required to assign subjects randomly to experimental conditions, or to use a repeated measures design.

3. **Examiner expectancy.** Researchers were expected to insure that examiners were blind to the general experimental questions and, specifically, to the familiar/unfamiliar nature of the test conditions.

4. **Fidelity of treatment conditions.** Investigators employing a personal acquaintanceship definition of familiarity were required to make explicit that unfamiliar examiners were strangers to examinees and that examiner familiarity either represented a long-term acquaintanceship between test participants or was the resultant of an experimentally-induced procedure.

5. **Multiple treatment effects.** Studies were evaluated as acceptable when effects of the familiar/unfamiliar examiner conditions did not appear to be confounded with other factors, such as the gender of familiar and unfamiliar testers.

6. **Number of examiners.** It was judged important that there be a minimum of two familiar and two unfamiliar examiners.

7. **Order of testing.** Studies employing a repeated measures design were required to counterbalance testing in familiar and unfamiliar examiner conditions.
8. **Scoring.** It was necessary that scores be calculated by a blind procedure.

9. **Technical adequacy of dependent measure.** At a minimum, a study was expected to use measures with indices for internal or test-retest reliability exceeding .69.

Interrater agreement on each of these dimensions, based on two raters' scores on six randomly selected studies (26% of the sample), ranged from .67 to 1.00. Average agreement across all nine methodological characteristics was .83.

The substantive variables noted in each study included the following:

1. **Duration of treatment.** This refers to the amount of time in which either (a) examiners and examinees became personally acquainted or (b) examinees became familiar with a type of examiner. We stratified the duration of the acquaintanceship period into five levels, ranging from less than 16 minutes to more than 20 hours. This stratification does not distinguish between long-term familiarity (such as exists between teacher and student) and experimentally-induced familiarity.

2. **Examiners' professional familiarity with subjects.** Examiners were classified as "professionally familiar" with subjects if they had previous experience with a type of child of which subjects were exemplars. Examiners were identified as "professionally unfamiliar" if they had no prior experience with a group of children of which subjects were members.

3. **Examiners' training.** A distinction was made between examiners who were trained formally as professional testers (e.g., school psychologists and speech clinicians) and those who were not (e.g., classroom teachers and mothers).
4. **Familiarity-inducing activity.** This refers to whether the examiner interacted with or simply observed the examinee during the familiarizing phase of the study. Long-term acquaintanceship always was defined as interactional in nature.

5. **Handicapped status.** Subjects were identified as either handicapped or nonhandicapped. No distinction was made with respect to specific categories of exceptionality (e.g., mental retardation vs. learning disabilities) or to degree of handicapping condition (e.g., mild vs. profound).

6. **Subjects' CA.** Subjects' CA, ranging from 2 to 16 years, was converted into months and treated as a continuous variable.

7. **Subjects' SES.** Initially, subjects' SES was classified in terms of either (a) poverty level, (b) mix of poverty level and working class, (c) middle-class, or (d) upper middle-class. For purposes of analysis, a and b were collapsed, as were c and d, creating two SES categories: low and high.

8. **Test location.** Location was classified as either familiar or unfamiliar to the examinee.

9. **Type of test.** Dependent variables were classified as IQ tests, speech/language tests, or isolated tasks, which were taken from, or created to closely resemble certain dimensions of IQ, speech/language, or educational achievement tests.

As a reliability check, two raters independently coded the nine substantive characteristics in six randomly selected studies (26% of the sample). Interrater agreement for each of the study features ranged from .67 to 1.00. Average agreement across all nine substantive variables was .93.
Characteristics of the Sample

Of the 22 investigations included in this review, 18 were published studies and 4 were unpublished studies. Among the published articles, 17 appeared in 14 different journals; 1 study was published in a book. Three of the 4 unpublished investigations were doctoral dissertations; 1 study was included in the proceedings of a conference. Nineteen of the 22 studies were dated after 1970; the earliest was dated 1929. Also, 19 of the 22 studies defined examiner familiarity in terms of an examinee's personal acquaintance with the examiner; in 3 investigations examinees became familiar with a type of examiner, of which their eventual tester was an exemplar. Among the 19 investigations employing a personal acquaintance definition of familiarity, examiners and examinees were long-term acquaintances in 8 studies, familiarity was experimentally induced in 10 investigations, and, in 1 study, the procedure facilitating personal familiarity was unclear. A total of 1489 subjects participated in these studies. Thirty-two percent of the subjects were male; 30% were female. Researchers did not report the sex of 38% of the subjects.

Results

Overall Effects

Results of the 22 studies were combined to provide three interrelated aggregate descriptions of the effects of examiner familiarity: unbiased effect size, percentage of distribution nonoverlap, and meta-analytic Z.

Unbiased effect size. A mean effect size was derived by determining the standard mean difference between examinees' scores in the familiar and unfamiliar examiner conditions and dividing this difference by the standard dev-
viation of the examinees' scores in the unfamiliar condition (see Glass, McGaw, & Smith, 1981). Before averaging effect sizes, each one was converted to an unbiased effect size (UES) to correct for the inconsistency in estimating true from observed effect sizes (Hedges, 1981). The mean difference between the biased and unbiased effect sizes was small (\(\bar{x} = .019, SE = .005 \)), as has been demonstrated elsewhere (e.g., Bangert-Drown, Kulik, & Kulik, 1983). Nevertheless, the UES was employed in all analyses to insure mathematical tractability of the data. For purposes of analysis, an effect was given a positive sign if examinees achieved higher scores in the familiar condition.

For 32 of 38 effect sizes in the sample, examiner familiarity had a positive impact on test performance; 6 effect sizes indicated the effect of examiner familiarity was negative. The average UES was .35 (SD = .47; SE = .076), \(t(37) = 4.67, p < .001 \).

Percentage of distribution nonoverlap. The percentage of distribution nonoverlap, or \(U_3 \) statistic (Cohen, 1977), denotes the percentage of the group with the smaller mean that is exceeded by 50% of the people in the larger-meaned group. The \(U_3 \) statistic indicated that the upper 50% of the distribution of scores in the familiar examiner condition exceeded 64% of the distribution of scores in the unfamiliar examiner condition. Given an IQ test with a population mean of 100 and a standard deviation of 15, the use of a familiar examiner would raise the typical score from 100 to 105.25, or from the 50th to approximately the 64th percentile.

Meta-analytic \(Z \). Results from the 22 studies were combined to determine the unweighted Stouffer meta-analytic \(Z_{ma} \) (Rosenthal, 1978). This statistic permits computation of the probability that the combined effect of children's
greater performance in the familiar examiner condition would occur by chance. It was derived by changing the p values of all effects to z scores, summing them, and dividing this sum by the square root of the number of studies included. When calculating a z score for studies in which multiple dependent variables were analyzed, a median p value was calculated for each study and its associated z score was used in the meta-analysis (see Rosenthal & Rubin, 1978). The resulting z_{ma} was 7.20, $p < .001$.

Credence in a statistically reliable meta-analytic z may be compromised by the suspicion that researchers do not report nonsignificant results (Greenwald, 1975). Rosenthal (1979) described a method for determining the number of unreported null effects that would be needed to reduce a meta-analytic z to nonsignificance. The larger this "fail-safe N," the more confidence one can have in the reliability of a meta-analytic result. This investigation's fail-safe N was 418. As a rule of thumb, Rosenthal suggested that a meta-analytic z be regarded as resistant to the "file drawer problem" of unreported null results if the fail-safe N exceeds $5k + 10$, where k is the number of reported effects. In the current study this requisite number was 205. Thus, the fail-safe N of 418 was more than twice as large.

Relation between VES and Study Characteristics

Methodological quality of studies. The methodological quality of each of the 22 studies was quantified employing a four-step procedure. First, every investigation was analyzed in terms of the nine design-related characteristics and criteria described above. These design features were coded acceptable (0 points) unacceptable (1 point), or not applicable. As mentioned, the mean interrater agreement for the codings across the nine
methodological characteristics was .83. Second, a weight of 1 or 2 was
assigned to each methodological characteristic. "Technical adequacy of
dependent measure," "assignment of subjects to treatments," and "assignment
of subjects to examiners" received a weight of 2; the remaining six design
characteristics received a weight of 1. Third, a composite score was gen-
erated for each study by multiplying the coded values (0 or 1) by the
assigned weights (1 or 2), summing these products, and then dividing the sum
by the number of applicable study characteristics. Finally, a frequency dis-
tribution of these composite scores was generated. It indicated that 55% and
45% of investigations received composite scores above .7 (low quality)
and below .7 (high quality), respectively.

Twenty-one effect sizes were assigned the status of low quality, with
an average effect size of .51 (SD = .50); 17 effect sizes were assigned the
status of high quality, with a average effect size of .17 (SD = .37). The
correlation between the studies' quality ratings and UESs was -.38 (p < .05).

Substantive features of studies. Analytic were conducted to determine
whether substantive features of the studies mediated the findings of the
meta-analysis. Correlations were run to determine which of the substantive
variables were related to examiner familiarity outcomes. Table 1 displays
the means and standard deviations of the UESs, and correlations of the UESs
with the nine substantive features coded in the meta-analysis.

Insert Table 1 about here

Three of the 9 substantive variables correlated significantly and moder-
ately with UES: Duration of Familiarity, SES, and Type of Test (see Table 1).
These correlations indicated that stronger performance with the familiar examiner was related to (a) examiner-examinee familiarity of comparatively long duration, (b) examinees' low SES status, and (c) relatively demanding tests. A substantive feature correlating in weak fashion with UES was Examiners' Professional Training (see Table 1).

Duration of Familiarity, SES, and Type of Test were entered as predictor variables into a forward stepwise multiple regression. Subjects' CA also was employed as a predictor because, among the remaining substantive variables, it demonstrated the highest correlation ($r = .21$) and claimed 38 effect sizes. These four predictor variables correlated weakly among themselves; correlations ranged from .12 to -.11, with a median correlation coefficient of .12.

Each of the equations, displayed in Table 2, indicate that the predictor variables were statistically significant in explaining the variance in the UES. In the last equation, incorporating all four variables, SES, Duration of Familiarity, CA, and Type of Test explained 22%, 8%, 7%, and 5% of the variance, respectively. However, the regression was calculated on a relatively small number of effect sizes and, as a consequence, findings may be unstable (Kerlinger & Pedhazur, 1973). Thus, in summarizing and decomposing the linear dependency of the UES on the four predictor variables, results from the regression should be viewed as a heuristic addition to the foregoing correlational analysis.

Insert Table 2 about here

Insert Table 2 about here

This meta-analysis indicated that examinees achieve higher scores when tested by familiar than unfamiliar examiners. The magnitude of this differential performance was both statistically and practically significant. However, caution should be exercised in interpreting examinees' stronger performance in the familiar examiner condition because larger effect sizes were associated with studies of relatively weak methodologies. Additionally, it is unclear whether, and if so to what extent, these results are robust. Although examinees' higher scores with familiar examiners appeared unrelated to whether testers were professionally trained or not, the low number of effect sizes associated with trained ($N = 3$) and untrained ($N = 8$) testers undermines confidence in this correlation. Similarly, we are unable to determine possible moderating or mediating effects of examiners' professional familiarity/ unfamiliality with the group of children of which the examinee was a member. This is because only one study reported a controlled contrast of this examiner-related characteristic.

On the other hand, duration of the familiarity-inducing activity was associated in a strong, positive fashion with effect size. This relation suggests examiner familiarity is a legitimate and important construct. In addition to duration of familiarity, the nature of the test instrument seemed to mediate examinees' differential performance: Examinees performed stronger in the familiar condition when tested on a difficult measure (e.g., an IQ test); however, such differential performance lessened when the measure was comparatively simple (e.g., a speech test). This result is consonant with empirical evidence in the social reinforcement literature, which suggests prior contact with an experimenter increases the level of subjects' respond-
ing on complex, but not on simple tasks (Crow, 1964; Rosenkrantz & Van De Riet, 1974). Rosenthal (1980) has suggested an explanation for this pattern of findings: Examiner unfamiliarity engenders anxiety in examinees, and whereas this anxiety enhances motivation to do well on simple tasks, it interferes with the higher order thinking required by complex tasks. Thus, examiner familiarity is presumed to vitiate examinees' anxiety and its negative influence on complex task performance.

The most important subject variable to intercede between examiner familiarity and test performance was SES. Correlational analysis indicated that low SES children's differential performance in favor of the familiar-examiner was greater than that of high SES children. This result suggests examiner unfamiliarity selectively depresses the scores of low SES children.

Enhancing the importance of this finding is that most examiners in clinical and educational settings are strangers to the children they test. This has been substantiated directly by reports of practicing professionals (Fuchs, 1981). Indirect evidence comes from an analysis (Fuchs, Fuchs, Dailey, & Power, 1983) of the user manuals of 20 well-known intelligence and speech/language measures: Only 2 manuals suggested that examiners establish pretest contact with their examinees. Moreover, the Standards for Educational and Psychological Tests (1974) seem to discourage examiner familiarity, as reflected in a call for "impersonal" procedures (p. 64) and in a recommendation that testers "minimize" (p. 63) any effect they may have on children's performance. Therefore, on normative tests, the suboptimal performance of low SES children may be compared to the maximal performance of
other groups, such as high SES examinees. If so, examiner familiarity is a source of systematic error or bias.

Our findings of apparent test procedure bias may explain at least partially why, on average, low SES children obtain lower IQ scores than high SES children, a phenomenon first described by Binet (see Lippmann, 1976) and repeatedly corroborated since then (e.g., Masland, Sarason, & Gladwin, 1978; Tyler, 1965). A frequent estimate of the magnitude of this difference in IQ performance has been one standard deviation (e.g., Christiansen & Livermore, 1970; Jensen, 1970). Low SES children's test performance conventionally has been interpreted as a rather straightforward demonstration of those skills and abilities that the tests claim to measure. Typically, their comparatively poor showing on these tests has been attributed primarily to either poor genes or a disadvantaged environment (see Nichols, 1978).

Nevertheless, current findings question such interpretations that presume a cause and effect relation between children's cognitive processes and their performance on tests that purportedly measure salient cognitive and/or academic abilities. Our results indicate that at least one extra-test factor, examiner unfamiliarity, also affects the performance of select groups of children. For low SES pupils, the effect size associated with examiner familiarity was .5, which is the equivalent of a difference of approximately 8 points on a standardized IQ test with a mean of 100 and standard deviation of 15. Furthermore, as mentioned above, a growing literature suggests there may be additional contextual variables constituting the typical test situation, which influence certain pupils' performance. Thus, one legitimately might wonder how much of the reported difference between low and high SES children's IQ
performance may be explained by differential responses to contextual variables. Until we know the answer to such a question, attributing this discrepancy to a difference in the group's ability level seems precipitous.

Although subjects' SES was related strongly to UES, their handicapped/nonhandicapped status was not. However, this finding may be misleading. Among the relatively few studies employing handicapped subjects, speech and/or language-impaired children consistently performed more strongly with the familiar examiner, whereas mentally retarded children either performed stronger with the unfamiliar examiner or did not demonstrate differential performance. Thus, by combining results from the few investigations involving speech and/or language-impaired, mentally retarded, and other handicapped children, this meta-analysis may be masking possible interaction effects between type of handicap and the familiarity/unfamiliarity of the examiner. Future research might experimentally test such a possibility.

In sum, the effects of examiner familiarity demonstrate the importance of contextual factors in testing. Such factors seem to intercede between the test and performance, questioning the positivistic view that the test instrument is the single most important, if not the exclusive, variable to determine test performance. Although this proposition contradicts traditional thinking about the test situation, it is not new. More than a decade ago, Cronbach (1971) stated that the test is only one element in a procedure, and the validity of data obtained in educational and psychological assessment is dependent upon the procedure as a whole. However, adopting this perspective will be difficult. It not only complicates interpretation of test performance, it also presumes the existence of an adequate database on contextual
effects, which has yet to be developed. Nevertheless, accuracy in interpreting test results requires that we acknowledge the importance of context in assessment and continue the challenging task of defining the relation between situational factors and test performance.
References

University of Minnesota, Institute for Research on Learning Disabilities.

Appendix

22 Studies of Examiner Familiarity

Kline, E.L. (1929). The effect of familiarity with the examiner upon
Stanford-Binet test performance. Teachers College Contributions to Education, 381, entire issue.

Additional information on the Back and Dana, Feldman and Sullivan, and Irons published studies was obtained from the following fugitive sources:

Table 1
Means, Standard Deviations, and Correlations of UESs by Substantive Features of the Studies

<table>
<thead>
<tr>
<th>Substantive feature</th>
<th>(\bar{X})</th>
<th>SD</th>
<th>N</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of familiarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 16 minutes</td>
<td>.09</td>
<td>.62</td>
<td>7</td>
<td>.47**</td>
</tr>
<tr>
<td>Between 16 and 120 minutes</td>
<td>.13</td>
<td>.13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Between 121 minutes and 10 hours</td>
<td>.62</td>
<td>.41</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Between 11 and 20 hours</td>
<td>.75</td>
<td>.46</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>More than 20 hours</td>
<td>.52</td>
<td>.50</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Examiners' professional familiarity with subject type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familiar</td>
<td>.26</td>
<td>.37</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Unfamiliar</td>
<td>.17</td>
<td>---</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Examiners' Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professionally trained</td>
<td>.31</td>
<td>.32</td>
<td>3</td>
<td>.20</td>
</tr>
<tr>
<td>Professionally untrained</td>
<td>.06</td>
<td>.52</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Familiarity-inducing activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction</td>
<td>.35</td>
<td>.47</td>
<td>37</td>
<td>.08</td>
</tr>
<tr>
<td>Observation</td>
<td>.58</td>
<td>---</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Handicapped Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handicapped</td>
<td>.31</td>
<td>.37</td>
<td>11</td>
<td>.16</td>
</tr>
<tr>
<td>Nonhandicapped</td>
<td>.39</td>
<td>.51</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Subjects' CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>.53</td>
<td>.50</td>
<td>17</td>
<td>-.40**</td>
</tr>
<tr>
<td>High</td>
<td>.24</td>
<td>.40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Test location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familiar</td>
<td>.26</td>
<td>.34</td>
<td>13</td>
<td>.19</td>
</tr>
<tr>
<td>Unfamiliar</td>
<td>.43</td>
<td>.17</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Type of test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQ</td>
<td>.54</td>
<td>.54</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Speech/language</td>
<td>.19</td>
<td>.35</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Isolated tasks</td>
<td>.24</td>
<td>.19</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

*Given the distribution of effect sizes across values of these variables, the related correlations are likely to be unstable. The same may be true for other variables such as Test Location.

bSince subjects' CA was treated as a continuous variable, there are no group means to report.

* \(p < .05 \).

** \(p < .01 \).
Table 2

Results of Multiple Regression on Predicting UESs

<table>
<thead>
<tr>
<th>Source</th>
<th>Multiple R</th>
<th>R^2 Cumulative</th>
<th>R^2 Change</th>
<th>F_a</th>
<th>p_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFS</td>
<td>.47</td>
<td>.21</td>
<td>.22</td>
<td>10.37**</td>
<td>10.37**</td>
</tr>
<tr>
<td>Duration</td>
<td>.55</td>
<td>.30</td>
<td>.08</td>
<td>7.61**</td>
<td>3.99*</td>
</tr>
<tr>
<td>CA</td>
<td>.61</td>
<td>.37</td>
<td>.07</td>
<td>6.66**</td>
<td>3.62*</td>
</tr>
<tr>
<td>Type of Test</td>
<td>.65</td>
<td>.42</td>
<td>.05</td>
<td>5.91**</td>
<td>2.69*</td>
</tr>
</tbody>
</table>

aF value is for the regression equation.
bF value is for the contribution of each variable.

$p < .05$.

$p < .001$.