Personal computers and the many telecommunications options will have an important role in the facilitation of improved professional practice of adult educators. Three items are needed to set up for telecommunications: the personal computer, the modem, and a communications (software) package. Potential uses of personal computers by adult educators include bibliographic and information searches; bulletin boards to share information and networks; a more sophisticated use of the bulletin board notion; and data transfer and communication. Adult educators can use bulletin board systems to communicate at the local, regional, or national levels. Adult education organizations can apply computer technology as an information delivery tool, a linkage between agencies, and an enhancement to referral activities. Computers can also make easier a variety of administrative activities—budget planning, word processing, and data management. Implications related to telecommunication technology for adult educators are a need for information dissemination, a need to develop a linkage to commercial vendors of hardware and software, and a need for a national commitment to provide for computer literacy. (Appendixes include a bibliography, a glossary, and sample computer materials.) (YLB)
Personal Computers, Telecommunications, and the Adult Education Professional

Roger Hiemstra
Paul Ilsley
Burt Sisco
Dan Vertrees

Administrative and Adult Studies
Syracuse University
Syracuse, New York

A Presentation Made at the National Adult Education Conference
Louisville, Kentucky
November 8, 1984
INTRODUCTION

The computer revolution is rapidly finding ways to affect the lives of all citizens. It affects the way we bank, shop, and pay our bills. It impacts on us in the work place more each day, including the way we think about our jobs, the nature of our jobs, and even where we do our work. It also has overtones of "1984" in terms of information storage and accessibility which pose various moral and ethical issues that must be dealt with.

It has only been a short quarter of a century ago that a few manufacturers and universities began developing and using electronic computers. These massive first generation computers required considerable space, were quite slow in comparison with what we now are accustomed to, and required considerable data processing equipment in support of any computing activities. The large "main frame" operations of the sixties and the mini-computers of the seventies represented further advances in available computer technology. However, it was not until the late seventies and early eighties when the "microchip" enabled miniaturization of computers into today's products that the real impact of computers on everyday life began to take place. The advantages of individualization, portability, capability of operating with a variety of programming languages, and affordable prices have now put the computer within the reach of average citizens. The continual development of "chips" that are smaller and with even larger kilobytes of storage places future computer technology almost into the realm of incomprehensibility. Semiconductors using biological materials, such as protein-lipid membranes, "bio-chips," suggest that microcircuits as much as 500 times smaller than current silicon based chips are possible (Computerworld, 1983).

Thus, computers are exerting various forces that are altering society in many ways. It is the contention of the authors that these changes are especially important for professional educators, many of whom will be able to greatly alter the way they "do business." This presentation will focus therefore on the role of personal computers and the many telecommunication options in facilitating improved professional practice. Special attention will be given to the resources, practices, and needs of adult educators.

TECHNICAL ASPECTS OF TELECOMMUNICATIONS

Telecommunications is available for any person that has a personal computer and a few peripherals that can be attached to that machine. Basically, there is need for three items: 1) The computer, 2) a modem, and 3) a communications package for your particular computer. The following information might help in making an informed decision about how to set up for telecommunications.

The personal computer is the first piece of hardware (equipment) that is needed. Almost any computer can be made to work for telecommunications as long as it can be equipped with a
plug for communications. This plug is usually referred to in the industry as an RS-232C interface. It is also known as an asynchronous communications port or a serial port. This connector is very important since you can't hook up to a telephone line or another computer without it. Apple, IBM, and Commodore computers can all be hooked up by purchasing the RS-232C as an add-on package. Some computers like the Kay-Pro, Seequa Chameleon, Radio Shack Color Computer or Model 100, and the NEC PS B201 have the RS-232C already built in. This is convenient and a cost savings.

The modem is a piece of equipment that attaches to the computer and permits the computer to talk over a telephone line. The word modem stands for MODulate - DEModulate and describes what the equipment does to the signal so that it can be transmitted over telephone lines. The modem comes in two styles, internal and external. Computers with internal expansion slots can be provided with a modem that actually plugs into the inside of the machine. This is handy since the modem is then always with the machine, can be hooked to the telephone line, and all dialing and communicating can be done directly from the keyboard of the computer. An external modem hooks up to the RS-232C interface that we mentioned above. Some external modems can be automatically dialed and will automatically answer if someone calls the computer. Others hook to the telephone directly or via a sound coupler in such a way that you must dial the phone and connect the call yourself. The positive side of this type of modem is that it can serve as the modem for several computers whereas the internal modem is functional only with the computer in which it is installed.

Modems operate at different speeds. The most common at this time is what is known as a 300 BAUD modem. This means that the modem is capable of sending and receiving messages at the rate of 300 bits per second (bps). This translates to about 30 characters per second of transmission. The second most popular modem supported by the current state of telecommunications is the 1200 bps modem. This modem is capable of sending and receiving data at the rate of 120 characters per second. This is not the fastest modem by any means, but the data bases that are accessible to most users are available only in 300 and 1200 bps configurations. As a matter of fact, the 300 Baud modem is the best choice at this time due to the fact that it is supported by the most data bases, is cheaper to buy, and does everything the average user would want. The industry names for the different modems are: 1) Bell Standard 303 for the 300 bps modem and 2) Bell standard 212 for the 1200 bps modem. Although there are modems that are both 300 and 1200 bps, be careful when buying a 1200 bps modem to make sure that it also includes 300 bps. The two rates of speed use completely different circuitry and there is a chance that an inexpensive 1200 bps modem does not contain the 300 bps circuit.

The last thing that you need is a software package (the program to make the computer work) that supports telecommunications. There are two types of software packages that basically turn your computer into a remote terminal for the computer that you are calling. These two types are called either "smart" or "dumb." The dumb terminal lets you
communicate with the host computer but does not let you save any of the information that you see coming from the host computer. It is just a keyboard and screen. This is not very practical for the data base user since it often is necessary to have a hard copy of the information that is retrieved. The smart terminal is what is needed for a practical use of telecommunications as it lets you hook up to a host computer, transfer information to and from your computer’s disk drives and the host computer, print information as it comes to your computer from the host, and configure your computer to be virtually any other type of terminal. This package also makes it easy to transfer information directly from your microcomputer to another microcomputer by hooking them together at the RS-232 port. Depending upon the computer, this transfer can be done very rapidly – up to 19200 bps.

Now with a computer, modem, and communication package you are ready to hook up to the exciting world of bulletin boards, computer catalogs, news services, information data bases, Dow Jones-type services, the main frame computers of various organizations, and all of the rest of the world of telecommunications.

POTENTIAL USES

The four presenters all own one or more personal computers (there actually are nine such computers between us). We have therefore accumulated many, many hours of professional and personal experience with computers. We have discovered a number of ways we believe the personal computer can be used to not only make our professional lives better, but to also enhance our work in some ways we never could have predicted only a few years ago. Although we will focus at least our initial remarks on the telecommunication applications, we are prepared and will be pleased to describe the various other ways computers have influenced our lives.

Subsequently, we will describe three areas as central themes for our discussion and demonstration. They are intended to serve as general areas for discussion, interaction, and feedback.

AREA 1: BIBLIOGRAPHIC AND INFORMATION SEARCHES

We are fortunate at Syracuse University to have the majority of our needed library resources on-line. SULIRS (Syracuse University Library Information Research System) provides through telephone modem connection instant bibliographic search capabilities via author, title, subject, and other categories. The library is constantly expanding the material that is catalogued and eventually plans both an interactive and journal article titles storage capability. Students, faculty, and anyone else willing to pay phone costs can access the system.

Our Office of Sponsored Programs also provides a computerized search resource pertaining to funding possibilities. The interested faculty member or student can
search out government grants, scholarships, foundation research priorities, etc. The office also will provide template (boilerplate) information and general budget planning and preparation assistance via an interactive computer activity.

Other services that are available at this time outside of Syracuse University are the national on-line services that formerly were only available to institutions and libraries. ERIC searches, Social Science Citation Index searches, and various medically-related search programs are among the many data bases that are accessible through services such as BRS After Dark. These are the same services that are available to large institutions and library retrieval operations. Access in non-prime time also provides a cost saving for those who do repeated search operations.

AREA 2: BULLETIN BOARD AND NETWORKING

Computers can be used to share information with other people through the use of electronic bulletin boards (Ludden, Roudebusch, & Weaver, 1983). A Bulletin Board System is a shared system, usually free to the user, that is primarily maintained for the information and use of users within a specific geographic area. These systems offer the opportunity to communicate with other computer users regarding information exchange, system help, software exchange, and messages of any sort. They function much the same as the physical bulletin boards that one sees in various public locations. A user posts a message on the board and awaits an answer. In some ways the bulletin board system is like the early use of CB radio with specialized audiences communicating with some special jargon about subjects that interest them. Bulletin board systems also contain games, programs that are in the public domain, and, in some cases, on-line storage and work space. These systems are becoming more and more sophisticated and offer an inexpensive way to communicate with fellow computer users. There are literally hundreds of such systems in the country and the chances are good that there is one or more operating in the area where you live. Bulletin board systems are run typically by dedicated computer buffs who enjoy helping less ambitious users maximize their computer abilities.

Adult educators can utilize such systems to communicate with colleagues at the local level. The addition of telecommunication outreach quickly expands the level to regional or national areas. Another potential use would be to leave messages of various types for an office or organizational secretary or some comparable person to utilize in carrying out some of your professional responsibilities. You no doubt can think of other uses.

A somewhat more sophisticated use of the bulletin board notion is the development of networks. Networks that allow the exchange of information and services between computers already exist and will continue to grow. For example, Knight-Ridder plans to introduce Viewtron, a specialized terminal that converts a television set and telephone line into a computerized communications system for news, travel information, a reading service, an encyclopedia service, etc. (Mayer, 1983).
Syracuse University currently belongs to a sophisticated system called the BITNET Network. This system provides a networking link between many different organizations and institutions. For example, the majority of higher education institutions with graduate programs of adult education belong to BITNET. The ability to exchange adult education information across such a network is not yet developed well but the potential is practically unlimited. A related system is called EMAIL. This ties together the bulletin board notion with networking and facilitates the sending of electronic mail across a fairly large system. Other national networks, such as the Source and Compuserve, provide similar capabilities. Both Syracuse University’s and the University of Georgia’s Adult Education Programs currently are exploring the development of a system that will facilitate the transmission of journal articles, book reviews, and other scholarly information via electronic means.

AREA 3: DATA TRANSFER AND COMMUNICATION

An important feature of computers is that large amounts of data and information can be transferred quickly between two systems. With the proper hardware in place computer users can realize a savings in both time and money. Personal computer users might hook up their units to at least three sources: 1) data banks, 2) other personal computers, and 3) larger "mainframe" computers. When it comes to data banks we are just beginning to witness the birth of a new range of services. For example, computer users may "subscribe" to the Dow Jones listings, information sources, reference banks, shop-by-computer services, banking and money management systems, interactive multi-use games, or just plain computer assisted discussion groups. For a fee, adult educators may enjoy a range of services from these data banks, including weather and news reports, source material, new friends, computer advice, free programs, an order of flowers, an airline ticket, or the latest stock quotations.

In some offices many computers are always hooked together so that it is fast (a few seconds) and easy (pushing one or two keys) to transfer files, even whole manuscripts, for example, between units. At Syracuse University it is possible to transfer a manuscript directly to our printing service’s computer; they, in turn, will format, edit, and print it out in any final form we wish. It also is possible to transfer information between computers from long distances via telecommunications as described earlier. The utility of this convenience is that memos, letters, manuscripts, reports, etc. may be transferred from one location to another quickly and usually inexpensively. In addition, two-way communication via the keyboard can be accomplished. For instance, two co-authors some distance apart could work on a manuscript together, editing, changing, and finalizing the paper on the spot.

Thus, adult education organizations can apply computer technology as an information delivery tool, as a linkage between agencies, and to enhance referral activities. Computer also can facilitate a variety of administrative activities such as budget...
SOME ISSUES

The following are some of the issues that came to the authors' minds while brainstorming on the implications and questions for adult educators related to all this telecommunication technology. Your interaction and feedback is welcome.

1. We must proactively seize innovations and make them work for both the adult educator and the adult education client.

2. We must examine technological innovations to ensure that they don't create hostile environments for certain segments of the population.

3. We need to develop a process of information dissemination so that educational implications related to technology can be made available to all individuals in society.

4. We need to develop a linkage to commercial vendors of hardware and software so they can become involved in the development of materials, technology, and innovations friendly to all potential adult users.

5. We need to develop information that will be effective in facilitating policy makers, program planners, and others who in some way impact on the adult client.

6. What are the legal, moral, and ethical concerns that need to be addressed in conceiving of telecommunication uses of personal computers?

7. Is the language and technology required for the use of personal computers another literacy level that will further alienate certain segments of society?

8. What does the future hold in store and what are the implications for adult education? (summarized from Ludden, Roudebush, & Weaver, 1983)

More power for less money

Increased storage capacity

Introduction of new technologies (new chips, fiber optics, etc.)

Extension of the computer (voice recognition, computerized speech, visual pattern recognition, hydraulic arms and legs, and tactile recognition)

Computer networks
Intelligent computers (artificial intelligence).

9. There is a need for a national commitment to provide for computer literacy:

We need to find ways of overcoming costs so that a "haves" and "havenots" does not exist in terms of computer ownership and access.

Perhaps this includes working more closely with Japan.

Educators and manufacturers-engineers need to work together more closely.

Educators need to concentrate on how the computer can improve the learning process.

We must learn how to apply the computer to learning, not just using the computer as an aide to learning, especially in such areas as literacy education.

We must learn how to deal with the ethical and moral issues involved with computers.

We need a process of dissemination of the type of information generated in this presentation to planning and social agencies so that they can understand and use the technology.

REFERENCES

SELECT BIBLIOGRAPHY ON PERSONAL COMPUTERS, TELECOMMUNICATIONS AND THE PROFESSIONAL ADULT EDUCATOR

Prepared by:
Roger Hiemstra, Paul Ilsley, Burt Sisco and Dan Vertrees, Administrative and Adult Studies, Syracuse University Syracuse, New York

BOOKS

ARTICLES

Buttedahl, P.G. "Communications Technology and Adult Education: Can Participation Be Encouraged?" Lifelong Learning: The Adult Years, vol. 6, no. 10 (June 1983), pp. 4-6.

SELECTED PERIODICALS

A+ Micro Computing
Byte Micro Systems
Compute PC
Computerworld PC jr
Connect PC Tech Journal
Creative Computing PC Week
Educational Technology PC World
Electronic Learning in Cider Personal Computing
80 Micro Popular Computing
Microcomputer Communications Portable 100

INFORMATION UTILITIES

1. THE SOURCE
 1616 Andreson Road
 McLean, VA 22102

 Hours of Operation: 24 hours a day
 (down once or twice a week for maintenance. Usually Wednesdays
 and Thursday between 4:00 a.m. and 5:00 a.m.)
 Customer Support: 800/336-3300
 (24 hours a day) 703/734-7540 in Virginia
 Canadian callers may call collect

2. COMPUSERVE
 Compuserve Information Service
 5000 Arlington Centre Blvd.
 PO Box 20212
 Columbus, OH 43220

 Hours of Operation: weekdays 6:00 p.m. to 5:00 a.m. (your local time)
 all day weekends and holidays
 Customer Support: 800/848-8990 from anywhere in US and contiguous
 countries
 614/457-8650 when calling within Ohio
 Hours: 8 a.m. to midnight EST, Monday-Friday
 2 p.m. to midnight EST, weekends
INFORMATION UTILITIES (cont.)

3. DOW JONES NEWS/RETRIEVAL SERVICE
PO Box 300
Princeton, NJ 08540

Hours of Operation: 6:00 p.m. to 4:00 a.m. EST, seven days a week
Customer Support: 800/257-5114
609/452-1511 in New Jersey
Hours: 9 a.m. to 11 p.m. EST, Monday-Friday
9 a.m. to 5 p.m. EST, Saturday

GLOSSARY OF SELECTED TERMS

ASCII - American Standard Code for Information Interchange - the standard code understood by most computers, regardless of operating system.

AUTO ANSWER - AUTO DIAL - modems that will automatically answer another modem when it is called and will accepted automatic dial commands to connect with another computer.

BAUD - The term used to describe the rate at which information is transferred through a modem. To 600 BAUD it represents the bits per second sent through the modem. i.e., 300 BAUD = 300 BPS.

BELL 103 - The standard for sending information through the technique of frequency shift keying. This is the technology of the 300 BAUD modems.

BELL 212A - The standard for sending information at higher rates of speed using the technology of phase shifting rather than frequency shifting. These modems transfer information at 1200 BPS and up.

COMMUNICATIONS PROGRAM - Software or firmware that turns a personal computer into a data terminal. There are basically two types of terminal emulation programs, 1)smart terminal and 2)dumb terminal.

DATA SET - Another term that can be used to describe the modem.

DATA TERMINAL - The term used to describe the hardware that is sending data to the data set. for the purposes of this discussion it will be assumed to be a personal computer with a communications software package.
DISK - The storage medium where information is placed for permanent storage. It can be thought of as an electronic file cabinet where documents are stored.

DISK DRIVE - The device that records and plays back the information stored on the disks.

DOWNLOAD - The term for receiving information sent by another computer and saving it in memory or on disk.

DUMB TERMINAL - This terminal has very limited internal memory and does not have the ability to save any of the information being sent from the host. Generally when the information scrolls off of the terminal screen it is lost.

FIRMWARE - Program applications that are supplied in ROM packages.

HARDWARE - The machinery of the computer. This includes such items as keyboard, RAM, disk drives, monitor, CPU and the electronics of the computer.

MODEM - the device that MODulates and DEModulates the computer signal over standard telephone lines.

NULL MODEM - This is used between two computers when hooking the RS-232 ports together for direct information transfer. It basically fools the computers into thinking that there is a modem between them.

ON-LINE - Connected to another source. This is often used when the computer is hooked, by way of a modem, to a host computer.

PARALLEL DATA TRANSMISSION - The computer sends out information eight bits at a time, each with its own line for transmission. Generally the standard for personal computers is that serial transmission is used for communication, by modem or from computer to computer, and parallel is used to send information to a printer.

RAM - Random Access Memory - internal circuits that can be accessed either by writing to them or reading from them. The usable memory of the computer.

ROM - Read Only Memory - internal circuits that can only be read by the computer and can not have information written on them or changed.

RS-232C - The industry standard for communication interface between computer and modem, and computer and computer. This is also known as a serial communication port.
SERIAL DATA TRANSMISSION - The computer sends out one bit of information at a time in a sequential stream.

SMART TERMINAL - This is a terminal that can send information to a host computer and also receive information from a host computer. Some of the functions are the ability to save information sent by the host computer to the terminal's own storage medium (usually disks), ability to transfer information from the disks of the terminal to the host computer, and the ability to print the information that is coming from the host computer on a printer hooked to the terminal.

SOFTWARE - The programs that are loaded into the memory of the computer to serve special functions. In most cases the software applies to that material purchased on disk for application to a specific function.

UP-LOAD - The term for transmitting information from the memory of one computer to another computer.
Appendix A: Syracuse University Main Frame for General Computer Work

/LOGIN

LOGIN

JOB 17 Syracuse University 603A TTY2
#354111, 122
Password:

(15-Oct-84) Output Bins will be Re-alphabetized

On Wednesday morning (17-October) you will find that
the Machinery Hall printed output bins have been
re-alphabetized. No big thing!

The new arrangement will be strictly "top to bottom,
left to right".

Once you see it, the arrangement will be clear,
especially inasmuch as the bins will be numbered
as well as lettered.

(11-Oct-84) CAREERS IN MANAGEMENT INFORMATION SYSTEMS (MIS)

Speaker: Paul Hughes, Bristol Labs
7 P.M., Tuesday, 16-October, 101 HL.
Sponsored by DPMA

./

Job 17 User VRTREES D [561,122]
Logged-off TTY: at 10:02:11 on 23-Oct-84
Runtime: 0:00:00, KCS: 4, Connect time: 0:01:07
Disk Reads: 191, Writes: 5, Blocks saved: 2910
Year-To-Date Account Usage: 92%
C - MY RESEARCH HAS TO DO WITH THE CAREERS OF PRINCIPALS - WHAT PRINCIPALS HAVE DONE IN THEIR MOVEMENT IN THEIR CAREERS. AND I START WITH A SIMPLE QUESTION - HOW DID YOU GET TO THIS POSITION?

A - WELL, I STARTED - MY TEACHING CAREER STARTED OUT IN A SMALL RURAL SCHOOL DISTRICT IN SENBEC COUNTY - ROMULUS - AND WHEN I WENT TO COLLEGE I HAD NO INTENTION OF GOING INTO EDUCATION - NEVER TOOK AN EDUCATION COURSE IN MY LIFE. I GRADUATED FROM COLLEGE IN '68 WHICH WAS THE HEIGHT OF THE VIET NAM CRISIS AND JUST FIGURED IT WAS JUST A MATTER OF DAYS BEFORE I WAS DRAFTED AND SO I WENT BACK HOME FOR THAT SUMMER AND THE ATHLETIC DIRECTOR IN ROMULUS LIVED IN THE SAME TOWN THAT I LIVED IN AND HE SAID, WHAT ARE YOU GOING TO DO WITH YOURSELF NOW THAT YOU HAVE A DEGREE IN HISTORY AND YOU'RE SITTING AROUND WAITING FOR A JOB? AND I SAID, WELL, I HAD ALREADY SIGNED UP FOR O.C.S. - I FIGURED IF I WAS GOING TO GET DRAFTED I WAS AT LEAST GOING TO GO AS AN OFFICER. AND HE SAID, WHY DON'T YOU COME DOWN AND JUST TALK TO US. SO I WENT DOWN AND TALKED TO THEM AND THEY WERE CREATING A PROGRAM - IT WAS LIKE A RESOURCE ROOM - I THINK THEY WERE A LITTLE BIT OF THEIR TIME FOR SUCH A BACKWARDS DISTRICT - BUT THEY OFFERED ME THAT POSITION ALONG WITH THAT FOOTBALL COACHING JOB AND BEING AN EX-JOCK AND FIGURE, GOD, HERE'S A WAY TO REALLY GIVE IT A GOOD SHOT - SO I ACCEPTED THE POSITION AND BASED UPON THE POSITION I HAD THE DEFERMENT FOR FIVE YEARS OR WHATEVER IT WAS, EVERY YEAR I HAD TO REAPPLY, SO I TAUGHT IN THAT SITUATION FOR SEVEN YEARS AND DURING THAT TIME I BEGAN WORKING ON MY CERTIFICATION AND I REALLY DIDN'T INTENTIONALLY GO INTO ADMINISTRATION AT THAT TIME EITHER IT JUST SO HAPPENED THERE WERE A COUPLE OF COURSES THAT WERE OFFERED IN CANANDAIGUA, RAPS COURSE BEING ONE OF THEM, AND IT WORKED OUT NICELY. YOU KNOW, TWO WEEKS AND YOU GET SIX HOURS OUT OF THE WAY AND YOU STILL HAVE MOST OF THE SUMMER TO YOURSELF. SO I TOOK THOSE AND THEN KIND OF GOT TURNED ON TO - YOU KNOW, MAYBE ADMINISTRATION WOULDN'T BE A BAD DIRECTION TO GO. YOU KNOW, YOU LIKE BEING IN CHARGE OF THINGS - YOU LIKE DELEGATING, YOU KNOW, SEEING THINGS...
Appendix C: SULIRS Computerized Library Search Program

ENTER SEARCH: AU; KNOWLES, MALCOLM
SEARCHING "AU; KNOWLES"
SEARCHING "AU; MALCOLM"

17 ITEMS. PRESS RETURN FOR DISPLAY, OR S AND RETURN FOR NEW SEARCH:

1. KNOWLES, MALCOLM SHEPHERD
 ADULT EDUCATION MOVEMENT IN THE UNITED STATES
 NEW YORK, HOLT, RINEHART AND WINSTON, 1962
 LC5251.K73; 4TH FLOOR-BIRD; IN RESERVE ROOM-1ST FLOOR BIRD

2. KNOWLES, MALCOLM SHEPHERD, 1913-
 THE MODERN PRACTICE OF ADULT EDUCATION; ANDRAGOGY VERSUS PEDAGOGY
 NEW YORK, ASSOCIATION PRESS, 1970
 LC5215.K62; 4TH FLOOR-BIRD

3. KNOWLES, MALCOLM SHEPHERD
 HIGHER ADULT EDUCATION IN THE UNITED STATES; S1969
 LC5251.K56; 4TH FLOOR-BIRD

4. KNOWLES, MALCOLM SHEPHERD
 INTRODUCTION TO GROUP DYNAMICS; REV., NEW YORK, ASSOCIATION PRESS, 1972
 HM131.K62 1972; 4TH FLOOR-BIRD

5. KNOWLES, MALCOLM S
 INFORMAL ADULT EDUCATION; NEW YORK, ASSOCIATION PRESS, 1950
 LC5216.K6; 4TH FLOOR-BIRD

17 ITEMS. PRESS RETURN FOR DISPLAY, OR S AND RETURN FOR NEW SEARCH:
WELCOME TO THE OFFICE OF SPONSORED PROGRAMS' SEARCH SYSTEM.
WOULD YOU LIKE INSTRUCTIONS? NO
ENTER YOUR NAME.....ROGER HIEMSTRA
ENTER YOUR DEPARTMENT.....ADULT EDUCATION
THANK YOU
WOULD YOU LIKE THE SEARCH SYSTEM NEWS?(Y,N) Y
**
OCT 26, 1984
NCAR RESEARCH AVIATION FACILITY OPERATES FIVE AIRCRAFT IN SUPPORT OF FIELD
PROJECTS IN THE AREAS OF AIR CHEMISTRY, CLOUD PHYSICS, AIR MOTION (INCLUDING
MASS FLOW AND TURBULENT FLUX MEASUREMENTS), RADIATION, PHYSICAL OCEANOGRAPHY
AND AIR-CLOUD INTERACTION AND OTHER PROGRAMS WITHIN THE ATMOSPHERIC SCIENCES.
REQUESTS FOR NCAR FLIGHT SUPPORT FOR PROGRAMS WITHIN THE CONTEXT OF NSF
GRANTS SHOULD INCLUDE A COPY OF THE NSF PROPOSAL....IN ORDER TO BE CONSIDERED
BY THE APRIL 1985 MEETING, REQUESTS MUST BE SUBMITTED NO LATER THAN 2/8/85.
ADDITIONAL INFORMATION IS AVAILABLE FROM THE RESEARCH AVIATION FACILITY (303)
497-1036.

WOULD YOU LIKE TO DO A SEARCH?(Y,N) Y
WOULD YOU LIKE TO DO A PROPOSAL BUDGET?(Y,N) N
SEARCH SYSTEM OPEN
SEARCH BY [KEYWORD OR [ROOT-OF-WORD]...ADULT

KEYWORD?(RETURN TO STOP) ADULT
1) GT/ ADULT EDUCATION GRANTS TO STATES

********** SPONSOR NUMBER 1 **********
DD/ JUL 1
GT/ ADULT EDUCATION GRANTS TO STATES
RS/ FOR DESIGNATED STATE EDUCATION AGENCIES ONLY; A THREE-YEAR STATE PLAN IS REQUIRED.
AN/ TO EXPAND EDUCATIONAL OPPORTUNITIES AND ENCOURAGE THE ESTABLISHMENT OF PROGRAMS OF ADULT
EDUCATION TO THE LEVEL OF COMPLETION OF SECONDARY SCHOOL, MAKING AVAILABLE THE MEANS TO SECURE
TRAINING THAT WILL ENABLE ADULTS TO BECOME MORE PRODUCTIVE AND RESPONSIBLE CITIZENS. THIS PROGRAM
IS PROPOSED FOR FUNDING UNDER THE BLOCK GRANT PROGRAM.
TL/ PAUL V. DELKER, DIVISION OF ADULT EDUCATION SERVICES, OFFICE OF VOCATIONAL AND ADULT
EDUCATION, (202) 245-9793
OR/ DEPARTMENT OF EDUCATION
TP/ F
PG/ B4.002
LN/ WASHINGTON, DC
ZIP/ 20202
$$/ $72,375-$7,701,93 AVERAGE GRANT $1,666,667.
PM/ R
LBo AE ED SS SE EL

KEYWORD LIST:
\ADULT EDUCATION GRANTS TO STATES\ \DEPARTMENT OF EDUCATION\ \ADULT EDUCATION
\ADULT \SECONDARY SCHOOL\
Appendix E: Sample of BITNET Network Membership List

Below are the sites and computers which are connected via or associated with the BITNET network as of 19 Mar 84. (See also NOTES: at bottom.)

<table>
<thead>
<tr>
<th>Node</th>
<th>System</th>
<th>Connect</th>
<th>Location/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANLVM</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLOS</td>
<td>MVS</td>
<td>JES3</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLCMN</td>
<td>MVS</td>
<td>ANL/NJE</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLCMT</td>
<td>MVS</td>
<td>ANL/NJE</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLHEP</td>
<td>MVS</td>
<td>ANL/NJE</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLNS</td>
<td>MVS</td>
<td>ANL/NJE</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>ANLPHY</td>
<td>MVS</td>
<td>ANL/NJE</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>Boston University:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSTONU</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>Boston University</td>
</tr>
<tr>
<td>Brown University:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWNVM</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>Brown University</td>
</tr>
<tr>
<td>BROWNCS</td>
<td>UNIX</td>
<td>UREP</td>
<td>Brown University Computer Science Lab</td>
</tr>
<tr>
<td>Carnegie-Mellon University (CMU):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMCCTA</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Computation Center Tops-20 A</td>
</tr>
<tr>
<td>CMCCTD</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Computation Center Tops-20 B</td>
</tr>
<tr>
<td>CMCCTC</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Computation Center Tops-20 C</td>
</tr>
<tr>
<td>CMCCTE</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Computation Center Tops-20 D</td>
</tr>
<tr>
<td>CMCCTF</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Computation Center Tops-20 E</td>
</tr>
<tr>
<td>CMCCVA</td>
<td>VMS</td>
<td>MAILER</td>
<td>Computation Center VAX/VMS</td>
</tr>
<tr>
<td>CMCCVC</td>
<td>VMS</td>
<td>MAILER</td>
<td>Computation Center VAX/VMS</td>
</tr>
<tr>
<td>CMSC</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>CS Department Tops-20 (Arpa: CMU-CS-C)</td>
</tr>
<tr>
<td>CMCSPS</td>
<td>VMS</td>
<td>MAILER</td>
<td>Physics Department VAX/VMS</td>
</tr>
<tr>
<td>CMPSYA</td>
<td>VMS</td>
<td>MAILER</td>
<td>Psychology Department VAX/VMS</td>
</tr>
<tr>
<td>Case Western Reserve University (CWRU):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CWRU20</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Case Western Reserve - A</td>
</tr>
<tr>
<td>CWR20B</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Case Western Reserve - B</td>
</tr>
<tr>
<td>CWR20C</td>
<td>Tops-20</td>
<td>MAILER</td>
<td>Case Western Reserve - C</td>
</tr>
<tr>
<td>City University of New York (CUNY):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUNYVM</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>City University of New York</td>
</tr>
<tr>
<td>CUNYUTS</td>
<td>UNIX</td>
<td>MAILER</td>
<td>City University of New York (Amdahl Unix)</td>
</tr>
<tr>
<td>CUNYJES3</td>
<td>MVS</td>
<td>JES3</td>
<td>City University of New York (Wylbur under MVS)</td>
</tr>
<tr>
<td>CUNYVMS1</td>
<td>VMS</td>
<td>jnet</td>
<td>CUNY - Graduate Center</td>
</tr>
<tr>
<td>BBADMN</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Baruch College</td>
</tr>
<tr>
<td>B0003</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Baruch College</td>
</tr>
<tr>
<td>BC003</td>
<td>RSCS</td>
<td></td>
<td>alias for BKLYN</td>
</tr>
<tr>
<td>BC008</td>
<td>RSCS</td>
<td></td>
<td>alias for BKLYN</td>
</tr>
<tr>
<td>BKLYN</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Brooklyn College</td>
</tr>
<tr>
<td>BMACADM</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Boro of Manhattan Comm College</td>
</tr>
<tr>
<td>BMADMN2</td>
<td>RSCS</td>
<td></td>
<td>alias for BMJO2</td>
</tr>
<tr>
<td>BMJO2</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Boro of Manhattan Comm College</td>
</tr>
<tr>
<td>BX301</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Bronx Community College</td>
</tr>
<tr>
<td>CCNY</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - City College</td>
</tr>
<tr>
<td>HUNTER</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Hunter College</td>
</tr>
<tr>
<td>KB001</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Kingsborough Comm College</td>
</tr>
<tr>
<td>LEHMAN</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - Lehman College</td>
</tr>
<tr>
<td>NY001</td>
<td>VM/SP</td>
<td>RSCS</td>
<td>CUNY - NYC Technical College</td>
</tr>
</tbody>
</table>
Appendix F: Sample of EMAIL Users Guide

Introduction

The EMAIL command is a simple method of sending electronic mail to other computer users. Mail can be addressed to both local and remote users or any mixture of the two.

You can get online HELP about EMAIL by giving the command HELP CMS EMAIL.

I assume that you are familiar with XEDIT, the file editor for CMS, and that you already have a CMS account.

For further information about remote systems attached to BITNET, consult CCIS Memo GI39 "BITNET - National Network of University Computers." Print this memo with the command `MANUALS GI39`.

The EMAIL Command

The EMAIL command is patterned closely after the CMS NOTE command. If you are a NOTE user already, you should be able immediately to use EMAIL.

The following is a summary of the arguments and options of the EMAIL command.

```
EMAIL name... CC: name... (options...)
  options:
    Add
    Cancel
    FORWARD
    LOG | NOLog
    NOTEbook fn | NONotebook
    PROfile fn
    Replace
    REPLY
    SEND fn | fn ft | fn ft fm
    SUBject subject -text
      Options without effect (nops):
        ACK
        NOAck
        LONG
        Short
```

EFFECTIVE AUGUST 1, 1984, USING THE WATS 800 SERVICE TO CONNECT TO EASYLINK WILL CARRY A $.15 PER MINUTE SURCHARGE IN ADDITION TO THE $.15 CONNECT CHARGE CURRENTLY IN EFFECT. THIS SURCHARGE WILL APPLY ON ALL MESSAGES SENT TO AN EASYLINK MAILBOX OR TO A TELEX TERMINAL IN THE U.S., CANADA AND MEXICO.

ALSO EFFECTIVE AUGUST 1, 1984, MESSAGES LEFT IN YOUR MAILBOX AFTER 10 CALENDAR DAYS WILL BE FORWARDED TO YOU AS MAILGRAM MESSAGES AT A COST OF $.50 PER MESSAGE. BE SURE TO READ YOUR MAIL REGULARLY.

TIPS ABOUT EASYLINK SERVICE

HOW TO MAKE SURE THAT YOUR MESSAGE WAS DELIVERED:

IF YOU ADDRESS A MESSAGE TO A:
- TELEX/TWX NUMBER
- WORLDWIDE TELEX NUMBER
- EASYLINK NUMBER WHERE DELIVERY IS TO AN AUTO-ANSWER TERMINAL.
THE EASYLINK SERVICE WILL ACCEPT YOUR MESSAGE AND DIAL OUT TO DELIVER IT, USUALLY WITHIN A FEW MINUTES. HOWEVER, IF A TERMINAL IS BUSY OR OUT OF ORDER, EASYLINK WILL RETRY DELIVERING THE MESSAGE A NUMBER OF TIMES WITHIN TWO HOURS. IF THE MESSAGE STILL CANNOT BE DELIVERED AFTER THESE RETRIES, THE MESSAGE WILL BE CANCELLED AND A CANCELLATION NOTICE SENT TO YOU. A LIST OF THESE NOTICES IS ON PG. 5-2 IN YOUR EASYLINK USER GUIDE.

IF YOU WISH TO CONFIRM DELIVERY OF YOUR MESSAGE TO THE RECEIVER'S TERMINAL, USE THE 'NOTIFICATION OF DELIVERY' FEATURE. ENTER /HELP NTF AFTER A PTS PROMPT TO LEARN HOW TO USE NOTIFICATION OF DELIVERY.

THE FOLLOWING INSTRUCTIONS ARE AVAILABLE TO HELP YOU USE EASYLINK.

TO DISPLAY ANY OF THESE INSTRUCTIONS, ENTER THE COMMAND FOR THE DESIRED INSTRUCTION FOLLOWED BY A CARRIAGE RETURN OR A CARRIAGE RETURN AND A LINE FEED.

HELP INSTRUCTIONS

INTRODUCTION TO EASYLINK /HELP INTRO

ADDRESS TYPES

HOW TO SEND TO A TELEX I, TELEX II (TWX) OR EASYLINK NUMBER /HELP ADDRESS

HOW TO SEND TO A WORLDWIDE TELEX NUMBER /HELP WWW

HOW TO SEND A MAILGRAM /HELP ZIP

HOW TO SEND A TELEGRAM /HELP IRS

HOW TO SEND A CABLEGRAM /HELP INT