If a loss function is available specifying the social cost of an error of measurement in the score on a unidimensional test, an asymptotic method, based on item response theory, is developed for optimal test design for a specified target population of examinees. Since in the real world such loss functions are not available, it is more useful to reverse this process; thus a method is developed for finding the loss function for which a given test is an optimally designed test for the target population. An illustrative application is presented for one operational test. (Author)
ESTIMATING THE IMPUTED SOCIAL COST
OF ERRORS OF MEASUREMENT

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N0014-80-C-0402.

Contract Authority Identification Number
NR No. 150-453

Frederic M. Lord, Principal Investigator

Educational Testing Service
Princeton, New Jersey

October 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
ESTIMATING THE IMPUTED SOCIAL COST OF ERRORS OF MEASUREMENT

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-80-C-0402.

Contract Authority Identification Number
NR No. 150-453

Frederic M. Lord, Principal Investigator
Educational Testing Service
Princeton, New Jersey

October 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Estimating the Imputed Social Cost of Errors of Measurement

Frederic M. Lord

Educational Testing Service
Princeton, New Jersey 08541

Personnel and Training Research Programs
Office of Naval Research
Arlington, Virginia 22217

Abstract

If a loss function is available specifying the social cost of an error of measurement in the score on a unidimensional test, an asymptotic method, based on item response theory, is developed for optimal test design for a specified target population of examinees. Since in the real world such loss functions are not available, it is more useful to reverse this process; thus a method is developed for finding the loss function for which a given test is an optimally designed test for the target population. An illustrative application is presented for one operational test.
Abstract

If a loss function is available specifying the social cost of an error of measurement in the score on a unidimensional test, an asymptotic method, based on item response theory, is developed for optimal test design for a specified target population of examinees. Since in the real world such loss functions are not available, it is more useful to reverse this process; thus a method is developed for finding the loss function for which a given test is an optimally designed test for the target population. An illustrative application is presented for one operational test.
Estimating the Imputed Social Cost of Error

For a unidimensional test, the error of measurement is the difference between the examinee's true ability and the estimate of this ability represented by the examinee's test score. Discrepancies between the examinee's true ability and the examinee's test score may lead to erroneous (misclassification, erroneous acceptance or rejection) decisions. There is an expected social cost associated with any particular combination of $(\hat{\theta}, \theta)$. This cost is given by some loss function $L(\hat{\theta}, \theta)$.

The obvious problem, here called Problem 1, is: Given the loss function $L(\hat{\theta}, \theta)$, how can we build an optimal n-item test that will minimize the expected loss over a specified target population of examinees, subject to certain constraints on the statistical characteristics of the items in the available item pool? Using item response theory, [Lord, 1980; Hulin, Drasgow, and Parsons, 1983], a solution of this problem will be given here for a unidimensional test.

Unfortunately, in practice it is unlikely that $L(\hat{\theta}, \theta)$ will be known to the test designer. Sometime of practical value can still be salvaged, however, if we can deal with Problem 2: Given an existing unidimensional test and a specified target population of examinees, find the loss function $L(\hat{\theta}, \theta)$ for which this test is optimally designed test. If the

*The theoretical work in Sections 1-4 was supported by contract N00014-80-C-0402, project designator NR 1-50-453 between the Office of Naval Research and Educational Testing Service. The empirical work, using ETS data, was supported by funds. The writer is very much indebted to Martha L. Stocking, who was responsible for obtaining the empirical results reported in Section 5.
loss function found for Problem 2 does not agree with our intuitive notions as to what is appropriate, we will probably redesign future test forms to avoid this discrepancy.

In order to solve Problem 2, it is necessary first to solve Problem 1; this is done in the first section. The solution to Problem 2 is outlined in the second section. Invariance under transformations of the ability scale is discussed in Section 3. In Section 4, a method for estimating the ability distribution of the target population is discussed. An illustrative application to an actual test is given in Section 5. The final section briefly discusses some implications for optimal test design.

It is assumed here that all item parameters have been determined by pretesting to sufficient accuracy so that they can be treated as known. The illustrative example and some of the discussion are based on the three-parameter logistic model of the item response function (which the reader is assumed to be familiar), but the proofs of the main results are much more general. The examinee’s actual score \(\hat{\theta} \) is assumed to be the maximum likelihood estimate of \(\theta \), calculated from the examinee’s responses to the \(n \) test items.

1. Minimizing Expected Loss

For a group of examinees at a given ability level \(\theta \), the conditional expected loss is by definition
\[\delta(L|\theta) = \int L(\hat{\theta}, \theta) \phi(\theta|\theta) \, d\theta \quad (1) \]

where \(\phi(\theta|\theta) \) is the conditional distribution of \(\theta \) and \(\delta \) denotes expectation. If the distribution of ability \(\theta \) in the target population is denoted by \(g(\theta) \), then the overall (unconditional) expected loss is by definition

\[\delta(L) = \int \delta(L|\theta) g(\theta) \, d\theta \quad (2) \]

This is the quantity to be minimized by optimal test design.

Loss Function

Certain reasonable assumptions will be made about the loss function:

1. \(L(\theta, \theta) = 0 \) (because when \(\theta = \theta \), there is no error of measurement and hence no loss due to error of measurement).

2. When \(\theta \neq \theta \), \(L(\theta, \theta) > 0 \).

3. When \(\theta \) is near \(\theta \), the loss function and its first two derivatives with respect to \(\theta \) are continuous, the third derivative is bounded. [These conditions will guarantee the convergence of (3).]

4. The loss function does not change too sharply with changes in \(\theta \) (as will be discussed later).

For fixed \(\theta \), expand \(L(\theta, \theta) \) in powers of \(\theta - \theta \), obtaining

\[L(\theta; \theta) = L(\theta, \theta) + (\theta - \theta)L'(\theta, \theta) + \frac{1}{2} (\theta - \theta)^2 L''(\theta, \theta) + \ldots \]
where \(L'(\theta, \theta) \) and \(L''(\theta, \theta) \) denote successive derivatives of \(L(\theta, \theta) \) with respect to \(\theta \), evaluated at \(\hat{\theta} = \theta \). The first term vanishes because there is no error of measurement when \(\hat{\theta} = \theta \). The second term vanishes because for fixed \(\theta \), \(L(\hat{\theta}, \theta) \) has a minimum at \(\hat{\theta} = \theta \). Consequently,

\[
L(\hat{\theta} - \theta) = \frac{1}{2} (\hat{\theta} - \theta)^2 L''(\theta; \theta) + \text{higher order terms.} \tag{3}
\]

Higher powers of \((\theta - \hat{\theta}) \) can be neglected if \(n \) is not too small, since \(\theta \to \hat{\theta} \) in probability as \(n \to \infty \) [Lord, 1980, p. 59].

When (3) is substituted into (1), \(L'(\theta, \theta) \) comes out from under the integration sign. It is then apparent that asymptotically (that is, for large \(n \))

\[
\delta(L \mid \theta) = \frac{1}{2} L''(\theta, \theta) \operatorname{Var}(\theta \mid \theta) \tag{4}
\]

In item response theory, the asymptotic (conditional) variance of \(\theta \) is the reciprocal of the test information function \(I(\theta) \) [Lord, 1980, Section 5.3]. Thus we shall rewrite the expected loss (2) as

\[
\delta(L) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{L''(\theta; \theta) p(\theta)}{I(\theta)} d\theta. \tag{5}
\]

Information Function

The item response function \(P_i' \equiv P_i(\theta) \) is the probability of a correct response to item \(i \) by a randomly chosen examinee at ability level \(\theta \). The information function is
Ordinarily \hat{P}_i depends on an item difficulty parameter b_i. Furthermore, b_i is typically simply a translation parameter: it affects P_i only through the difference $\theta - b_i$. In this standard situation, b_i also affects P'_i only through the difference $\theta - b_i$. Thus the area under any function F of P_i and P'_i over the whole range of θ.

\[
\int_{-\infty}^{\infty} F(\theta - b_i) \, d\theta = \int_{-\infty}^{\infty} F(\theta) \, d\theta
\]

is independent of b_i. The area under the test information function thus does not depend on b_i in these typical models, which will be assumed here.

In the special case where $P_i(\theta)$ is the three-parameter logistic function.

\[
P_i(\theta) = c_i + \frac{1 - c_i}{1 + \exp[-1.7a_i(\theta - b_i)]}
\]

we have

\[
P'_i = \frac{1.7a_i}{1 - c_i} Q_i(P_i - c_i)
\]
and

\[I(\theta) d\theta = \int_{-\infty}^{\infty} \frac{p_i^2}{\pi_i \phi_i} d\theta = \int_{-\infty}^{\infty} \frac{p_i^2}{\phi_i} d\theta = \int_{-\infty}^{\infty} \frac{1}{\phi_i} d\theta = \int_{-\infty}^{\infty} \frac{1}{\phi_i} dP_i = \int_{-\infty}^{\infty} \frac{1.7a_i}{l - c_i} \frac{1}{\phi_i} dP_i = \int_{-\infty}^{\infty} \frac{1.7a_i}{l - c_i} [P_i - c_i \log P_i] dP_i \]

\[\sum_{i=1}^{n} \frac{1.7a_i}{l - c_i} (1 - c_i + c_i \log c_i) \quad (8) \]

This area does not depend on \(b_i \).

Test Constraints

There are always constraints on the availability of items for test construction. Item writers can control to a considerable extent the difficulty level of the items they write. The discriminating power of the available items, however, can ordinarily be increased only by writing more items and then discarding a larger percentage of the items written—an expensive procedure.

It will be assumed here that the test developer has available an unlimited pool of items at whatever difficulty levels he or she may specify. The items in the pool have already been pretested; faulty items, especially those with low discriminating power, have already been discarded. The test developer is to build parallel forms of a test from the item pool, selecting items only on the basis of their difficulty \(b_i \).
so that each parallel form has the same distribution of b_i. Items
cannot be selected on the basis of their discriminating power, since all
items not discarded after pretesting must eventually be used. In the actual
test produced, the frequency distribution of other item parameters, such as
item discriminating power, is to be the same as in the total pool of pre-
tested items. It will be assumed here that in the item pool the distribution
of other item parameters is independent of the item difficulty b_i. This
assumption should be checked empirically for any practical application.

This assumption may fail to hold because of the essential nature of
the test items; often it also fails to hold simply because pretest item-
test biserials have been used instead of the IRT discrimination parameter
a_i to exclude poorly discriminating items from the available item pool.
When item-test biserials are used in this way for multiple-choice items,
the harder the item, the higher the a_i parameter must be for the item
to escape exclusion from the item pool. This is true because among items
with identical a_i, the more guessing the lower the item-test biserial.

It follows from these assumptions that the total area under the
test information function is fixed. The task of the test developer is to
minimize $S(L)$ by choice of b_i ($i = 1, 2, \ldots, n$); no other relevant
variables are available to the test developer for achieving this minimization.

Minimization

By the Cauchy inequality,

$$\int \frac{L''g}{I} \cdot I \geq (\int \sqrt{I''g})^2$$
Here, the first integral is twice the expected loss (5) written in abbreviated notation. Transposing, we have

\[\int \frac{L''}{I} g \leq \left(\int L'' g \right)^{\frac{1}{2}} \int I \]

(9)

In Problem 1, \(L''(\theta, \theta) \) and \(g(\theta) \) are known, furthermore \(\int_{-\infty}^{\infty} I(\theta) d\theta \) is fixed by the reasoning of the last two subsections. It follows that if there is an \(I(\theta) \) such that equality holds in (9), then this is the \(I(\theta) \) that minimizes the expected loss (5). Equality will hold in (9) provided

\[I(\theta) \text{ is proportional to } \sqrt{L''(\theta, \theta) g(\theta)} \]

Monetary Units

The loss function \(L(\theta, \theta) \) is necessarily expressed in terms of some arbitrary unit (dollar, peso, ...). It may be convenient to choose this unit so that the area under \(\sqrt{[L''(\theta, \theta) g(\theta)]} \) is equal to \(\int_{-\infty}^{\infty} I(\theta) d\theta \), this last being a known and fixed quantity determined by \(n \) and by the item parameters, excluding the \(b_1 \), of the item pool. Once this choice of unit has been made, the expected loss will be minimized if the test developer can build a test with

\[I(\theta) = \sqrt{L''(\theta, \theta) g(\theta)} \]

(10)
Building the Test

Birnbaum [1968, Section 20.6] suggested an effective cut-and-try method for building a test having approximately a prespecified target information function. The method is outlined in Lord [1980, Section 5.4]. The method follows easily from the fact that the test information function is simply a sum of the information functions

\[\sum (P_i^2 P_i) \] of the items included in the test.

The method is effective provided the target information curve is not too irregular and does not vary too rapidly as a function of \(\theta \).

The results obtained here hold under this condition. If the target curve is too irregular, it will not be possible to build a test having the desired information function by selecting items on \(b_1 \) from the available item pool.

Practical Procedure (Summary)

Given \(L(\theta, \theta) \) and \(g(\theta) \), to build \(k \) parallel test forms of length \(n \) that approximately minimize the expected loss:

1. Plot \(a_1 \) and \(c_1 \) against \(b_1 \) to verify that the distribution of \(a_1 \) and \(c_1 \) in the item pool is approximately the same at all levels of \(b_1 \), as assumed in the subsection titled Test Constraints.

2. Compute

\[
\int_{-\infty}^{\infty} I(\theta) \, d\theta = \frac{n}{M} \sum_{i=1}^{M} \int \frac{P_i^2}{P_i Q_i} \, d\theta
\]

where \(M \) is the number of items in a large item pool. Note that this integral does not depend on the distribution of \(b_1 \) in the pool.
3. Choose monetary units so that

\[\int_{-\infty}^{\infty} \sqrt{L''(\theta, \theta) g(\theta)} \, d\theta \]

is equal to

\[k \int_{-\infty}^{\infty} I(\theta) \, d\theta \]
for some integer \(k \).

4. Selecting items only on their \(b_i \), use Birnbaum's method to select a pool of \(nk \) items such that the sum of the \(nk \) item information functions is approximately equal to \(\sqrt{L''(\theta, \theta) g(\theta)} \).

5. Divide the \(nk \) selected items into \(k \) test forms of \(n \) items each, all approximately parallel to each other.

2. The Loss Function for Which a Given Test Is an Optimal Test

If a given test is an optimal test, then (10) holds and

\[L''(\theta, \theta) = \frac{I^2(\theta)}{g(\theta)} \]

(11).

Consequently, the loss function is given approximately by (3) and (11):

\[L(\theta, \theta) = \frac{1}{2} \frac{I^2(\theta)}{g(\theta)} (\theta - \hat{\theta})^2 \]

(12).
For fixed θ, this is the equation of a parabola. When n is not too small, $\hat{\theta}$ will be close to θ and (12) will provide an adequate approximation to the loss function for those values of θ that are likely to be observed. For $\hat{\theta}$ close to θ, the desired loss function can be computed from (12) for any given test, provided $g(\theta)$ is specified.

3. Transformation of the Score Scale

Loss functions have an invariance property that is important in dealing with problems of test design. Consider the social cost in dollars of an error of measurement at a given ability level. If the error of measurement (the discrepancy between the actual test score and the true ability of which it is an estimate) is specified as a multiple of its standard error, asymptotically (for large n) the loss in dollars will be the same no matter what scale is used for measuring ability.

Instead of using the θ scale of ability, suppose we use the number-right true-score scale, given by the monotonic continuous transformation

$$
\xi = n \sum_{i=1}^{n} p_i(\theta) \tag{13}
$$

The examinee's obtained score should now be taken to be

$$
\hat{\xi} = \sum_{i=1}^{n} p_i(\theta) \tag{14}
$$
(Note that we need to use here the maximum likelihood estimator of, defined by (14), not the examinee's number of right answers.) If
\[\theta \] differs from \(\theta \) by \(K \) times \(S.E.(\theta|\theta) \), then, asymptotically,
\[\xi \] will differ from \(\xi \) by \(K \) times \(S.E.(\xi|\xi) \). Asymptotically,
\[K[S.E.(\theta|\theta)] \] is actually the same error of measurement on the \(\theta \) scale
as \[K[S.E.(\xi|\xi)] \] is on the \(\xi \) scale; thus the social consequences of
this error will be the same regardless of the scale used.

Let \(\theta(\xi) \) denote the inverse of transformation (13). Expressed on
the \(\xi \) scale, the loss function (12) becomes

\[L_\xi(\xi, \xi) = \frac{1}{2} \left(\frac{1}{2} \int \frac{\theta(\xi)}{g[\theta(\xi)]} \left[\theta(\xi) - \theta(\xi) \right]^2 dt \right) \]

where \(g() \) and \(I() \) denote the same functions as previously. This
equation could be used as it stands, but for reasons of symmetry, it may
be preferable to expand it for fixed \(\xi \) in powers of \(\xi - \xi \). The result
is found to be

\[L_\xi(\xi, \xi) = \frac{1}{2} \left(\frac{1}{2} \int \frac{\theta(\xi)}{g[\theta(\xi)]} \left[\frac{d\theta(\xi)}{dt} \right] \left[\xi - \xi \right]^2 dt \right) \]

Equation (15) is used here to represent the loss function when the
obtained score is \(\xi \) rather than \(\theta \). This transformation has an
advantage for presenting experimental results, since the number-right
score scale is more familiar to us than the \(\theta \) scale.
Note again that the actual monetary loss is the same regardless of the scale against which it is plotted. This invariance makes the loss function much more useful for guiding test design than the information function. Expressed on the \(\Theta \) scale, the test information function for \(\Theta \) is typically a bell-shaped curve; expressed on the \(\xi \) scale, the test information function for \(\xi \) is necessarily a U-shaped curve [Lord, 1980, Chapter 6]. This lack of invariance makes it difficult to use the test information function as a convincing basis for test design.

4. Estimating the True \(g(\Theta) \)

By its definition, expected loss (2) requires specification of the distribution \(\Theta \) in the target population. It is important to note that the distribution of \(\Theta \) in the target population is not an adequate estimate of \(g(\Theta) \), the true distribution of \(\Theta \). The reason is that \(\Theta \) contains errors of measurement and thus has a larger variance than \(\Theta \). Since \(g(\Theta) \) appears in the denominator of (12), it is particularly important to estimate \(g(\Theta) \) as accurately as possible.

To obtain the numerical results of Section 5, the true distribution of number-right true score (13), here denoted by \(f(\xi) \), was estimated by Method 20 [Lord, 1980, Chapter 16]. Since \(\xi \) is necessarily \(\xi > \xi_0 \) and \(\xi \leq c_i \), an estimated lower limit for \(\xi \) was set at \(\xi_0 + c_i \), where \(c_i \) represents the estimated \(c \) parameter of item \(i \). For purposes of Section 5 all
item parameters were estimated under the three-parameter logistic model (7) by the computer program LOGIST [Note 1].

The required estimate of $g(\theta)$ for the target population was obtained from the Method 20 estimate of $f(\xi)$ by the relation

$$g(\theta) = f(\xi) \frac{df}{d\theta}.$$ \hspace{1cm} (16)

The derivative in (16) is the derivative of (13), estimated in practice by computing $F_p^1(\theta)$ from estimated item parameters.

5. Illustrative Example

A representative sample of 19,949 examinees tested in 1981-82 was obtained for the Sentence Sense test in Form 3EJP of the New Jersey College Basic Skills Placement Test. This competency test consists of 35 four-choice items requiring the examinee to distinguish correct from incorrect English expression. The test is used primarily to assign certain entering college students to remedial English classes.

The item responses of all 19,949 examinees were analyzed, using LOGIST to estimate the item parameters of all items in the test. The true distribution of θ for the target population was estimated as described in Section 4 (for this purpose, a response chosen at random from the four choices was supplied wherever an examinee failed to respond to an item). The test information function (6) was calculated from the estimated item parameters. Finally, the loss function for which the test is an optimally designed test was estimated by (12).
Figure 1 shows the actual distribution of number-right scores (frequency polygon), the number-right true-score distribution estimated by Method 20 (solid curve), and the corresponding fitted distribution of (observed) number-right scores (dotted curve). The modal score is 31 right answers out of a possible 35. The chi square between observed and fitted number-right score distributions is at the 86th percentile of the chi square distribution with 18 degrees of freedom. In view of the large sample size (N = 19,949), this seems an adequate fit, as in indeed suggested visually by the agreement shown in Figure 1.

The estimated loss function (12) for which the test is an optimally designed test is plotted in Figure 2 against the \(\theta \) and \(\hat{\theta} \) Scales. The direction of the \(\theta \) scale is reversed from the conventional direction in order to improve visibility. Loss is shown on the vertical scale. In this and the next figure, the parabola for any given \(\theta \) is drawn only for \(\theta \) values within two standard errors of the true \(\theta \).

The figure shows that the Sentence Sense test is built as if it were important to measure accurately at high ability levels as well as at low ability levels. Clearly, this is not appropriate for a competency test—the test should assign high losses to errors of measurement at low ability levels but not at high ability levels. The more difficult items in the test should be replaced by easier items.

The estimated loss function (15) for which the test is an optimally designed test is plotted in Figure 3 against number-right true score and
Figure 1. Frequency distributions of true and observed number-right scores for NJCBSPT Sentence Sense, Form 3EJP, N = 19949.
Figure 2. Loss function for NJBSCPT, 3EJP, Sentence Sense, \(N = 19949 \).
Figure 3. Estimated Loss Function for NJBSCPT, 3EJP, Sentence Sense, N = 19949, as a function of true score (\(\xi\)) and estimated true score (\(\hat{\xi}\)).
estimated number-right true score. For ease of viewing, both scales at the bottom of the figure run in the opposite direction from the scales at the bottom of Figure 2. This plot is easier to interpret than Figure 2 since we are more accustomed to the number-right score scale than to the θ scale. The plot looks very different from Figure 2 because:

1. The loss function for a number-right score of 34 is not shown. The loss function for this score is rather high and would obscure too much of the rest of the figure.

2. A wide range at the high end of the θ scale is compressed into a small range of number-right scores, as shown in the following table:

<table>
<thead>
<tr>
<th>ξ</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
<th>26</th>
<th>28</th>
<th>30</th>
<th>32</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>-5.2</td>
<td>-3.1</td>
<td>-2.4</td>
<td>-1.9</td>
<td>-1.6</td>
<td>-1.3</td>
<td>-1.0</td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Again, it appears that the test discriminates at high true score levels, where discrimination is not really desired. The loss function at $\xi = 34$ (not plotted) shows a loss of approximately 100 when ξ is two standard errors from ξ. For number-right scores of 30 and below, the shape of the loss function seems very appropriate for a competency test, with very high losses attributed to errors of measurement at low score levels.
6. Discussion

In the case of a minimum competency test, the social losses arising from errors of measurement will be high for examinees near the cutting score, which is always near the low end of the score scale. Social losses will be near zero for examinees far from the cutting score, since decisions about these examinees will not be changed by small errors in their scores.

For a college admissions test, it would seem reasonable to expect that errors of measurement in the scores of high ability students will result in relatively high social losses. Somewhat lower social losses should be expected to result from errors in the scores of low ability students.

In the case of grade school tests of 'ability' or of vocabulary, it has sometimes been argued that, to be fair, the standard error of measurement of the test score should be roughly the same for each individual (see, for example, Hulin et al., 1983, p. 90). The first difficulty with this approach is that its implications for test design when the test score is θ are completely different than when the test score is ξ or simply the number of right answers. Although equality of standard errors of measurement at all ability levels has strong intuitive appeal, there is no clear way to decide whether this equality should hold on the θ scale, or on the number-right score scale, or on some other scale. It cannot hold simultaneously on two different scales unless one scale is a linear transformation of the other.
In any case, any goal of equal standard errors of measurement at different ability levels is completely incompatible with the goal of minimizing expected social loss due to errors of measurement. If we wish to minimize social loss, we must, other things being equal, mobilize our test development resources so as to measure most accurately at those ability levels where the most people are found. We cannot waste items in order to secure accurate measurement at ability levels where only a few people will be affected, unless, of course, there is a very high loss function at these ability levels. In a word, accuracy of measurement in sparsely populated stretches of the ability range must be sacrificed, other things being equal, in order to obtain more accurate measurement in heavily populated stretches.

As a concrete example, consider a vocabulary test for grade 5 and suppose our test is built to minimize overall expected loss. Suppose also, as might be reasonable for such a test, that the expected loss at a fixed ability level is constant across ability levels, so that, by (12),

$$\delta[L(\theta, \theta) | \theta] = \frac{1}{2} \frac{I^2(\theta)}{g(\theta)} \delta[(\theta - \theta)^2 | \theta] = \frac{1}{2} \frac{I^2(\theta)}{g(\theta)} \frac{1}{I(\theta)} = k$$

where k is some constant. It follows that:

$$\text{Var}(\theta | \theta) = \frac{1}{I(\theta)} = \frac{1}{2k g(\theta)}$$

Imputed Social Cost

22

26
Since \(g(\theta) \) is small for extreme \(\theta \), the standard error of measurement, \(\sqrt{\text{Var}(\hat{\theta} | \theta)} \), will in this case be very much larger for examinees with extreme \(\theta \) than for examinees with moderate \(\theta \). Thus in this case the goal of equal standard errors of measurement at all ability levels is utterly incompatible with minimizing overall expected loss. This is simply an illustration of the fact that if we wish to minimize overall expected loss, our measurement effort must be concentrated on the sub-ranges of ability that are most highly populated in the target population.

To summarize, in respect to a unidimensional test:

1. Given the loss function, the distribution of ability in a target population, and certain constraints on the available item pool, a method has been described for designing a test that will minimize expected loss.

2. Given a test and also the distribution of ability in the target population, a method has been described for finding the loss function for which this test is an optimally designed test given certain constraints on the available item pool.

3. Minimizing social loss is in general incompatible with equal measurement accuracy across examinees. To minimize social loss, measurement accuracy must be high (other things being equal) over ability ranges that are heavily populated, and relatively low over ranges that are sparsely populated.
Reference Note

Wingersky, M. S., Barton, M. A., & Lord, F. M. LOGIST user's guide.
References

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Ed Aiken</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Arthur Bachrach</td>
<td>Environmental Stress Program Center, Naval Medical Research Institute, Bethesda, MD 20014</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Meryl S. Baker</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Lindsay Baker</td>
<td>Naval Research Branch Office London, Box 39, FPO-New York, NY 09510</td>
</tr>
<tr>
<td>1</td>
<td>Lt. Alexander Borry</td>
<td>Applied Psychology Measurement Division, NAVAL, NAS Pensacola, FL 32508</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Breaux</td>
<td>NAVTRAESPCE, Code N-095R, Orlando, FL 32813</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Robert Carroll</td>
<td>NAVOP 115, Washington, DC 20370</td>
</tr>
<tr>
<td>1</td>
<td>Chief of Naval Education and Training Liaison Office</td>
<td>Air Force Human Resource Laboratory, Flying Training Division, Williams Air Force Base, AZ 85224</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Stanley Collyer</td>
<td>Office of Naval Technology, 800 N. Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>1</td>
<td>CDR Mike Curran</td>
<td>Office of Naval Research, 800 North Quincy Street, Code 270, Arlington, VA 22217</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Tom Duffy</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Richard Elster</td>
<td>Department of Administrative Sciences, Naval Postgraduate School, Monterey, CA 93940</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Pat Federico</td>
<td>Code P13, Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Cathy Fernández</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. John Ford</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Jim Hollan</td>
<td>Code 14, Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Ed Hutchins</td>
<td>Navy Personnel R&D Center, San Diego, CA 92152</td>
</tr>
</tbody>
</table>
1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. Peter Kincaid
Training Analysis & Evaluation Group
Department of the Navy
Orlando, FL 32813

1 Dr. R. W. King
Director, Naval Education and Training Program
Naval Training Center, Bldg. 90
Great Lakes, IL 60088

1 Dr. Leonard Kroeker
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. William L. Maloy (02)
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

1 Dr. Kneale Marshall
Chairman, Operations Research Dept.
Naval Post Graduate School
Montevey, CA 93940

1 Dr. James McBride
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. William Nordbrock
1032 Fairlawn Avenue
Libertyville, IL 60048

1 Library, Code P201L
Navy Personnel R & D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R & D Center
San Diego, CA 92152

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

1 Special Asst. for Education and Training (OP-01E)
Room 2705-Arlington Annex
Washington, DC 20370

1 LT Frank C. Petho, MSC, USN
CNET (N-432)
NAS
Pensacola, FL 32508

1 Dr. Bernard Rimland (OIC)
Navy Personnel R & D Center
San Diego, CA 92152

1 Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

1 Dr. Worth Scanland, Director
CNET (N-5)
NAS
Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode, Director
Training Analysis and Evaluation Group
Department of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R & D Center
San Diego, CA 92152
1. Dr. Frederick Steinheiser
CNO – OP115
Navy Annex
Arlington, VA 20370

1. Mr. Brad Symson
Naval Personnel R & D Center
San Diego, CA 92152

1. Dr. Frank Vicino
Naval Personnel R & D Center
San Diego, CA 92152

1. Dr. Edward Wegman
Office of Naval Research (Code 41S & P)
800 North Quincy Street
Arlington, VA 22217

1. Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Services
U.S. Naval Postgraduate School
Monterey, CA 93940

1. Dr. Douglas Wetzel
Code 12
Navy Personnel R & D Center
San Diego, CA 92152

1. Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

1. Mr. John H. Wolfe
Navy Personnel R & D Center
San Diego, CA 92152

1. Dr. Wallace Wulfeck, III
Navy Personnel R & D Center
San Diego, CA 92152

1. Dr. H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

1. Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BCB, Building 2009
Quantico, VA 22134

1. Headquarters, U.S. Marine Corps
Code MPI-20
Washington, DC 20380

1. Special Assistant for Marine Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

1. Dr. A. L. Slafkosky
Scientific Advisor
Code RD-1
HQ, U.S. Marine Corps
Washington, DC 20380

1. Major Frank Yohannan, USMC
Headquarters, Marine Corps
(Code MPI-20)
Washington, DC 20380

1. Technical Director
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1. Mr. James Baker
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1. Dr. Kent Eaton
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Army

1 Dr. Beatrice J. Farr
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Myron Fischl
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Director, Training Research Lab
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Commander, U.S. Army Research Institute
ATTN: PERI-BR (Dr. Judith Orasenu)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Psotka
ATTN: PERI-IC
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joyce Shields
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Hilda Wing
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Wisher
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air Force Human Resources Laboratory
AFHRL/MPD
Brooks Air Force Base, TX 78235

1 Technical Documents Center
Air Force Human Resources Laboratory
WPAFB, OH 45433

1 U.S. Air Force Office of Scientific Research
Life Sciences Directorate, NL
Bolling Air Force Base
Washington, DC 20332

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks Air Force Base, TX 78235

1 Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

1 Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332
Air Force

1 Dr. Genevieve Haddad
 Program Manager
 Life Sciences-Directorate
 AFOSR
 Bolling AFB, DC 20332

1 Dr. T. N. Longridge
 AFHRL/OTE
 Williams AFB, AZ 85224

1 Dr. Roger Pennell
 Air Force Human Resources Laboratory
 Lowry AFB, CO 80230

1 Dr. Malcolm Ree
 AFHRL/NP
 Brooks Air Force Base, TX 78235

1 LT Tallarigo
 3700 TCHTW/ITGHR
 Sheppard AFB, TX 76311

1 Dr. Joseph Yasatuke
 AFHRL/LRT
 Lowry AFB, CO 80230

Department of Defense

12 Defense Technical Information Center
 Attn: TC
 Cameron Station, Building 5
 Alexandria, VA 22314

1 Dr. Craig I. Fields
 Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209

1 Dr. William Graham
 Testing Directorate
 MEPCON/MEPCPT-P
 Ft. Sheridan, IL 60037

Department of Defense

1 Mr. Jerry Lehnus
 HQ MEPCOM
 Attn: MEPCPT-P
 Ft. Sheridan, IL 60037

1 Military Assistant for Training
 and Personnel Technology
 Office of the Under Secretary of
 Defense for Research and Engineering
 Room 30129, The Pentagon
 Washington, DC 20301

1 Dr. Wayne Sellman
 Office of the Assistant Secretary of Defense (MRA&L)
 2B269 The Pentagon
 Washington, DC 20301

1 Major Jack Thorpe
 DARPA
 1400 Wilson Blvd.
 Arlington, VA 22209

Civilian Agencies

1 Dr. Patricia A. Butler
 NIE-BRN Bldg., Stop #7
 1200 19th Street, NW
 Washington, DC 20208

1 Dr. Susan Chipman
 Learning and Development
 National Institute of Education
 1200 19th Street NW
 Washington, DC 20208

1 Dr. Arthur Helmed
 724 Brown
 U.S. Department of Education
 Washington, DC 20208

1 Dr. Andrew R. Molnar
 Office of Scientific and Engineering
 Personnel and Education
 National Science Foundation
 Washington, DC 20550
Civilian Agencies

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Vern W. Urry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Personnel R & D Center</td>
</tr>
<tr>
<td></td>
<td>Office of Personnel Management</td>
</tr>
<tr>
<td></td>
<td>1900 E Street, NW</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20415</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Mr. Thomas A. Warm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Coast Guard Institute</td>
</tr>
<tr>
<td></td>
<td>P.O. Substation 18</td>
</tr>
<tr>
<td></td>
<td>Oklahoma City, OK 73169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Frank Withrow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S. Office of Education</td>
</tr>
<tr>
<td></td>
<td>406 Maryland Avenue, SW</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Joseph L. Young, Director</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Memory and Cognitive Processes</td>
</tr>
<tr>
<td></td>
<td>National Science Foundation</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20550</td>
</tr>
</tbody>
</table>

Private Sector

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. R. Darrell Bock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Education</td>
</tr>
<tr>
<td></td>
<td>University of Chicago</td>
</tr>
<tr>
<td></td>
<td>Chicago, IL 60637</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Robert Brennan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American College Testing Programs</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 168</td>
</tr>
<tr>
<td></td>
<td>Iowa City, IA 52243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Glenn Bryan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6208 Poe Road</td>
</tr>
<tr>
<td></td>
<td>Bethesda, MD 20817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Ernest R. Cadotte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University of Tennessee</td>
</tr>
<tr>
<td></td>
<td>Knoxville, TN 37916</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Pat Carpenter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. John B. Carroll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>409 Ellioté Road</td>
</tr>
<tr>
<td></td>
<td>Chapel Hill, NC 27514</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Norman Cliff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>University of Southern California</td>
</tr>
<tr>
<td></td>
<td>University Park</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Allan M. Collins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bolt, Beranek, and Newman, Inc.</td>
</tr>
<tr>
<td></td>
<td>50 Moulton Street</td>
</tr>
<tr>
<td></td>
<td>Cambridge, MA 02138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Lynn A. Cooper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LRDC</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>3939 O'Hara Street</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Patricia Baggett</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>University of Colorado</td>
</tr>
<tr>
<td></td>
<td>Boulder, CO 80309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Isaac Bejar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ 08541</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Menucha Birenbaum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>School of Education</td>
</tr>
<tr>
<td></td>
<td>Tel Aviv University</td>
</tr>
<tr>
<td></td>
<td>Tel Aviv, Ramat Aviv 69978</td>
</tr>
<tr>
<td></td>
<td>ISRAEL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Dr. Lynn A. Cooper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LRDC</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>3939 O'Hara Street</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
</tbody>
</table>
Private Sector

1 Dr. Hans Crombag
Education Research Center
University of Leyden
Boerhaavelaan 2
2334 EN Leyden
THE NETHERLANDS

1 Dr. Dattprasad Divgi
Syracuse University
Department of Psychology
Syracuse, NY 13210

1 Dr. Susan Emberton
Psychology Department
University of Kansas
Lawrence, KS 66045

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Benjamin A. Fairbank, Jr.
McFann-Gray and Associates, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Prof. Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Dexter Fletcher
COWAT Research Institute
1875 S. State Street
Orem, UT 84057

1 Dr. John R. Frederiksen
Bolt, Beranek, and Newman
50 Moulton Street
Cambridge, MA 02138

Private Sector

1 Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

1 Dr. Robert Glaser
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. Bert Green
Department of Psychology
Johns Hopkins University
Charles and 34th Streets
Baltimore, MD 21218

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 92010

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. Jack Hunter
2122 Coolidge Street
Lansing, MI 48906

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

1 Dr. Douglas H. Jones
10 Trafalgar Court
Lawrenceville, NJ 08648
Private Sector

1 Prof. John A. Keats
Department of Psychology
University of Newcastle
Newcastle, New South Wales 2308
AUSTRALIA

1 Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703

1 Dr. Pat Langley
The Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Alan Lesgold
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Building
University of Illinois
Champaign, IL 61801

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
NETHERLANDS

1 Mr. Phillip Livingston
Systems and Applied Sciences Corporation
6811 Kenilworth Avenue
Riverdale, MD 20840

Private Sector

1 Dr. Robert Lockman
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. Frederic N. Lord
Educational Testing Service
Princeton, NJ 08541

1 Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands, Western Australia 6009
AUSTRALIA

1 Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08541

1 Dr. Scott Maxwell
Department of Psychology
University of Notre Dame
Notre Dame, IN 46556

1 Dr. Samuel T. Mayo
Loyola University of Chicago
820 North Michigan Avenue
Chicago, IL 60611

1 Mr. Robert McKinley
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

1 Dr. Robert Misley
711 Illinois Street
Geneva, IL 60134

1 Dr. Allen Munro
Behavioral Technology Laboratories
1845 Elena Avenue, 9th Floor
Redondo Beach, CA 90277
<table>
<thead>
<tr>
<th>Private Sector</th>
<th>Private Sector</th>
</tr>
</thead>
</table>
| 1. Dr. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069 | 1. Dr. Thomas Reckhauser
University of Texas, Dallas
Marketing Department
P.O. Box 698
Richardson, TX 75080 |
| 1. Dr. Donald A. Norman
Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92039 | 1. Dr. Andrew Reese
American Institutes for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007 |
| 1. Dr. Melvin R. Novick
356 Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242 | 1. Dr. Ernst Z. Rothkopf
Bell Laboratories
Murray Hill, NJ 07974 |
| 1. Dr. James Olson
WICAT, Inc.
1875 S. State Street
Orem, UT 84057 | 1. Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012 |
| 1. Dr. Wayne H. Patience
American Council on Education
GED Testing Service, Suite 440
One-Dupont Circle, NW
Washington, DC 20036 | 1. Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208 |
| 1. Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207 | 1. Prof. Funiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916 |
| 1. Dr. James W. Pellegrino
University of California
Santa Barbara
Department of Psychology
Santa Barbara, CA 93106 | 1. Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 61820 |
| 1. Dr. Mark D. Reckase
ACT
P.O. Box 168
Iowa City, IA 52243 | 1. Dr. Lowell Sehoer
Psychological and Quantitative
Foundations
College of Education
University of Iowa
Iowa City, IA 52242 |
| 1. Dr. Lauren Resnick
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15261 | 1. Dr. Robert Seidel
Instructional Technology Group
HUNRRO
300 N. Washington Street
Alexandria, VA 22314 |
<table>
<thead>
<tr>
<th>Private Sector</th>
<th>Private Sector</th>
</tr>
</thead>
</table>
| Dr. Kazuo Shigematsu
University of Tohoku
Department of Educational Psychology
Kawauchi, Sendai 980
JAPAN | Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801 |
| Dr. Edwin Shirkey
Department of Psychology
University of Central Florida
Orlando, FL 32816 | Dr. Patrick Suppes
Institute for Mathematical Studies
in the Social Sciences
Stanford University
Stanford, CA 94305 |
| Dr. William Sims
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311 | Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003 |
| Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314 | Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801 |
| Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305 | Dr. Maurice Tatsuoka
220 Education Building
1310 S. Sixth Street
Champaign, IL 61820 |
| Dr. Kathryn T. Spoehr
Psychology Department
Brown University
Providence, RI 02912 | Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044 |
| Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520 | Dr. Douglas Towne
University of Southern California
Behavioral Technology Labs
1845 S. Elena Avenue
Redondo Beach, CA 90277 |
| Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311 | Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201 |