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Abstract

This paper describes a simulation of adults' retrieval of

arithmetic facts from a network-based memory representation. The

simulation is based on the process of spreading activation among related

nodes, and retrieves correct answers as the activation from a problem's

addends/multipliers intersects in the network. Two decision processes

are simulated. The first consists of an attempted matching of retrieved

and stated answers, essentially a process of number inequality

judgments. The second decision mechanism involves competition among

related nodes, based on levels of activation generated during the search

phase for both retrieved and stated answers. Both decision mechanisms

are necessary to predict the separate effects of split and confusions

which have been observed in the laboratory. The conclusion of the paper

discusses the relationship of the simulation to developmental processes in

mental arithmetic performance.
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This report describes a simulation model of memory retrieval,

specifically the retrieval from organized memory of simple addition and

multiplication facts. The empirical results modeled by this simulation

are found in several recent publications (e.g., Ashcraft & Stazyk, 1981;

Stazyk, Ashcraft, & Hamann, 1982) which examined the chronometric

aspects of adults' performance. A number of developmental investigations

of performance on the "basic arithmetic facts" have also been conducted

(e.g., Ashcraft & Fierman, 1982), and the final section of this report

considers the developmental implications of the model. The most basic

assumptions of the model are, first, that knowledge of arithmetic facts,

such as 4 + 3 = 7 and 5 X 6 = 30, is stored in interrelated network

representations in long term memory, and second that a process of

spreading activation through these networks is the mechanism for

accessing this information (e.g., Anderson, 1983; Collins & Loftus, 1975).

The three goals of the simulation project are: first, to demonstrate in

specific form the nature of a spreading activation model of mental

arithmetic performance; second, to account for three important reaction

time (RT) effects observed in laboratory investigations; and third, to

provide a basis from which developmental changes in performance can be

meaningfully understood.

This report is organized into four major sections. First, a brief

review is provided of the three most important empirical effects in this

area, the effects of problem size, split or symbolic distance, and

confusions. These three effects, robust empirical phenomena demonstrated

in both adult and child populations, are viewed as critical results for

any serious model of mental arithmetic. Following a description of the
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model, an account of its predictions across relevant experimental

conditions is presented. The success of the model both in performing

correctly on the relevant tasks and in predicting the three critical RT

effects is viewed as relatively strong support for the general search

and decision framework proposed by Ashcraft (1982). The lack of fit

between the model and the data are considered from the standpoint of the

adequacy of the theory of mental arithmetic, with attention to the

possibility that the departures reflect non-retrieval processing of

arithmetic facts. The final section of the report discusses some

possible directions of development for the simulation of mental

arithmetic performance, especially those aspects of the model which will

need attention for a more complete understanding of the development of

mental arithmetic processes. Specifically, the interplay between

declarative knowledge of the sort simulated here and "procedural"

knowledge of arithmetic algorithms and heuristics is considered in

final section.

Empirical Effects in Studies of Mental Arithmetic

Across a period of several years, we have been investigating the

chronometric effects obtained when children and adults are presented

with simple arithmetic facts in a laboratory situation. Our studies, as

well as those of other investigators (e.g., Svenson, 1975), have shown a

great consistency in major findings, and a theoretical proposal for

understanding these effects has been described in a recent review paper

(Ashcraft, 1982). The three results of particular significance that I

focus on here are the dependency of RT on the size of the problem being

processed, the variation of RT as a function of degree of incorrectness

this
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or "split" in false problems, and the intriguing relationships found in

RTs under conditions of addition and multiplication "confusions". These

effects are described briefly here, along with an account of their

relationship to the network-decision model presented in Ashcraft (1982).

Problem Size Effect

The most fundamental empirical result in the study of mental

arithmetic performance is the problem size effect. Stated simply, the

time to process a simple arithmetic problem, either in addition or

multiplication, increases as the size of the problem's answer increases.

This problem size effect is obtained regardless of the age group under

study, although its parameters vary developmentally. The effect emerges

in both laboratory tasks which characterize this area of research, the

production task, which requires generating the answer to a problem

(e.g., 4 + 3 = ?), and the verification task, which requires judging a

stated answer as true or false (e.g., 4 + 3 = 9).

It is widely agreed that the problem size effect derives from a

mental search or compute operation. Our empirical results (see the

extensive discussion in Ashcraft, 1982) have indicated that counting is not

a particularly common solution method to adults when processing the

basic arithmetic facts (Ashcraft & Stazyk, 1981; Stazyk et al., 1982). As

a consequence, we have proposed a model of adult processing based on

fact retrieval from organized memory. In this model, the problem size

effect is attributed to the search stage of processing. During this stage,

retrieval is assumed to operate on a memory representation of addition

(and multiplication) facts, a representation organized as an interrelated

network of nodes. Upon presentation of a simple problem, say 4 + 5 = 9,
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the model claims that a directed search through memory is initiated,

activation spreading from the "parent" nodes of 4 and 5 to the "families"

linked to those nodes, the "4 + " facts and the " + 5" facts. When an

intersection of these two sources of activation occurs, then the correct

answer has been located in the network. Importantly, the time to achieve

an intersection is assumed to vary directly as a function of "semantic

distance", the distance traversed through the network from the origin to

the intersection node. While various structural variables (like the sum or

the correct product) provide an index of this search distance, Stazyk et

al. pointed out that equally predictive results are obtained when

normatively derived measures of problem difficulty are used.

Accordingly, the problem size effect in this simulation is a

reflection of semantic distance traversed during an intersection search

in the network of stored facts. This intersection search process is

assumeu to be operative in all retrievals of simple addition and

multiplication facts; that is, the somewhat larger addition problems

studied in Ashcraft and Stazyk's Experiment II revealed similar evidence

of the distance effect in search, where the size of the unit's column

addition contributed to the prediction of overall RT (for example, the

embedded 4 + 3 = 7 in the problem 14 + 13 = 27). Thus, the principle of

the simulation, spreading activation, is conceptualized as common to not

only the basic addition and multiplication facts but also to more

complex problems using the facts as components. Secondly, the empirical

evidence suggests that search processes as conceived here are general to

both the verification task (true/false judgments) as well as the

production task. No important differences, other than the absence of a
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true/false decision stage in production, have been isolated in our

studies of this task factor (Ashcraft & Bartolotta, Note 1; Fierman,

1980).

Symbolic Distance/Split Effect in Decision

On the presumption that the search stage of processing passes the

correct answer to the decision mechanism, a same/different judgment must

occur during decision in order for the subject to respond correctly.

Somewhat surprisingly, this decision process does not reveal a simple

yes/no RT function, but instead a function which depends on the

magnitude of difference between the retrieved answer and the answer

stated in the stimulus (Moyer ck Landauer, 1967). In the Ashcraft and

Battaglia (1978) report, problems wrong by I or 2 (verification task) were

approximately 130 msec slower than their true counterparts, while those

wrong by 5 or 6 were only 30 msec slower. Ashcraft and Stazyk examined

splits of 1, 5, 9, and 13, and found comparable RT effects at the three

lower values of split. In its basic form, then, the split effect reveals a

decrease in decision time as the numerical difference between correct

and incorrect answers increases.

According to several theorists (see Banks, 1977, for a review), this

effect is one of discriminability between symbolic (number) stimuli, such

that the nearer two stimuli are on some mental continuum of magnitude,

the more difficult the resultant discrimination between them. Banks, Fujii,

and Kayra-Stuart (1976), Friedman (1978), Holyoak and Walker (1976) and

others have documented this inverse relationship between symbolic

distance and decision time in tasks involving comparisons on dimensions of

time, temperature, size, and even evaluative dimensions lacking any

10
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obvious numerical referents. Thus, the split or symbolic distance effect is

more indirect than some process of computing differences between

correct and stated answers; indeed, a subtraction-like basis for the effect

is totally implausible in tasks like those used by Helyoak and Walker

(decide "Which is hotter lukewarm or torrid"). This effect of split,

furthermore, applies to multiplication performance as well as addition

(Stazyk et al., 1982), and reveals a proportional basis for the effect (that

is, the proportion by which the split departs from the correct answer

seems to be the operative factor, rather than simply the numerical

difference). The split effect has never failed to emerge quite strongly in

our experiments, and in fact is especially pronounced in children of early

grade school age. The simulation to be presented, clearly, must predict

this symbolic distance effect in performance.

Effects of Confusions

In a little noticed paper, Winkelman and Schmidt (1974) found

evidence of significant interrelationships in memory between addition

and multiplication knowledge. In their report, some distractor stimuli

were given answers correct under the alternate arithmetic operation,

such as 4 + 5 = 20 and 6 X 3 = 9. Their results showed a marked slowing

of RT as a function of these "associative confusions", a slowing taken

as evidence for associations between the two operations in memory (or

more precisely, competing associations between paks of numbers, say 4

and 5, where the association to 9 through addition competes with the

other to 20 through multiplication). In our own work, a comparable

confusion effect was obtained in a study of multiplication (which avoided

the cross-operation manipulation in Winkelman and Schmidt's procedures).

1
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Specifically, Stazyk et al. found that multiplication problems given an

incorrect answer which was a multiple of one of the problem's numbers

(e.g., 7 X 8 = 49) were up to 300 msec slower than distractors which did

not use a multiple as the incorrect answer. This confusion effect obtained

whether the stated answer was too small or too large, thus ruling out a

counting-up explanation of the effect. Duffy and Fisher (Note 2) have

reported the same confusion effect, as well as significant slowing of RT

when a legal vs. illegal (e.g., 35 vs. 33) false answer is presented. In short,

significant interrelationships among multiplication facts slow down the

retrieval of this knowledge when competing information is activated.

In the absence of more recent data (but see Bartolotta, Note 3), both

the within-operation and cross-operation confusion effects are viewed as

important to an adequate theory. This importance goes beyond the mere

requirement that a model should predict1the observed effects, however. In

particular, the assumption that interrelated information is highly similar and

hence confusable is a hallmark of network approaches to memory

representations. The emergence of such relatedness or "confusion" effects in

empirical studies constitutes compelling evidence for a network

representation of arithmetic facts. ConsVently, the present simulation

embodies relatedness among nodes as,a fundamental structural assumption.

The Simulation Model

Figure 1 illustrates the overall theoretical approach to mental

arithmetic performance taken in the simulation. The figure is from

Ashcraft's review of chronometric evidence in the development of mental
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arithmetic processes. The descriptive model in the figure shows a

standard four stage information processing model of performance, with

sequential arrangement of encoding, search, decision, and response stages.

As illustrated, the stimulus problem is first encoded, then passed to a

search/compute stage. Time for completion of stage two is predicted to

be a ioint function of memory retrieval time and "procedural knowledge"

involvement. That is, as the subject's verification or production

performance depends more heavily on aspects of procedural knowledge

like counting, estimating, or solving by a rule, the reaction time

increases.

Figure 1 about here

Search time through the declarative knowledge structure is assumed

to be more rapid than solving via some procedural basis like counting, and

further is viewed as a reflection of semantic distance in the network of

stored facts 1 Activation originating from the problem's numbers spreads

through the network of stored facts, with retrieval dependent on finding

an intersection. Once the search stage is completed, output to the

decision mechanism includes the correct answer, as retrieved from the

network, and information concerning the levels of activation generated by

the search. Upon making a decision as to the correctness of the stated

answer (assuming a verification task), control is passed to the response

stage for preparation for the relevant response. As is standard in such

models, overall RT is assumed to be the additive combination of times for

each of the four stages.

1
-al.
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The major activities of interest in this illustration, and in the

simulation, are those associated with the intermediate search/compute

and decision stages. No particularly relevant information exists on the

encoding and response phases of performance in these tasks, so the

simulation is silent on these processes. Figure 2 presents a summary

flow chart of processing activities in the simulation, with RT

prediction equations at the bottom.

Figure 2 about here

Network Structure

M discussed above, the governing assumption embedded in the

simulation is the notion of network storage of addition and

multiplication facts in a semantic-like interrelated structure. In the

model, two "mental tables" exist, one for addition and one for

multiplication. Each table is a 10 X 10 matrix of entries, with column

and row headings of the digits zero through nine. These headings,

hereafter referred to as "parent nodes", are the entry points of the

search process. Each parent points to the entries stored along its

column or row, referred to as the parent's "family" of facts. Thus, the

digit 4, when it appears as the first addend (or multiplier) in a

problem, corresponds to the parent node of the "4 + b" family of entries

(or the "4 X b" family in multiplication). The family corresponds to the

10 combinations 4 + b where b.(0,1,2...9). Likewise, if the second

addend (multiplier) in a problem is 7, the parent node for the "+ 7" facts

points to the ten entries for "a + 7", where a=(0,I,2...9).

14
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Each table in this, scheme consists of 100 nodes, the 100 possible

intersections of the two parents a and b. Each node contains two pieces

of information, the first of which is the correct answer to the

particular combination of a and h under the appropriate operation

(addition or multiplication). It seems entirely appropriate to store all

of the correct answers as part of the model's initial configuration,

given the virtually perfect performance evidenced by adults on simple

addition and multiplication tasks, whether speeded or not. Such

presetting of answers is a questionable procedure in developmental

contexts, of course; see the discussion in the final section.

The second piece of information stored in each node is a distance

value, representing the accessibility of the node in question. in a very

direct way, this feature of the model corresponds to the significant

predictor variables selected in regression analyses of the problem size

effect on RT. Our early research indicated that the square of the correct

sum of an addition problem provided the best index of distance (Ashcraft

& Battaglia, 1978), as did correct product in multiplication problems

(Stazyk et al., 1982). As Stazyk et al. point out, however, normatively

derived measures of distance are equally useful in predicting empirical RT

functions. Moreover, a more plausible theoretical rationale can be stated

for using difficulty ratings, as opposed to structural variables like correct

sum or product. As in like situations which used normatively-based

estimates of semantic distance (e.g., Ashcraft, 1976; Glass, Holyoak,

O'Dell, 1974; Loftus & Suppes, 1972; Whaley, 1978), it is assumed here

that subjects' ratings are relatively straightforward indices of strength in

memory (but see the final discussion for a significant exception). Such
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strength, further, is widely assumed to vary with important variables like

frequency of exposure, age of acquisition, and practice. While the

ultimate reason for accessibility values is not elucidated by this

assumption, of course, it does suggest certain testable empirical effects.

For instance, problems of higher accessibility are more likely to have

been encountered frequently during instruction, or to have been

"invented" prior to instruction; accessibility values should be altered by

extensive practice, or for that matter, extensive neglect.

The particular values used in the present model were derived from

subjective ratings of difficulty of the basic 100 facts in addition and

multiplication (Ashcraft dc Hamann, Note 4; see also Resnick dc Ford,

1982, for citations to similar studies). These difficulty ratings, gathered

on a 1 to 9 scale, have been converted to "accessibility" scores

(expressed as percentages), with the least difficult problems having the

highest accessibility. As a consequence, distances are superimposed on the

10 X 10 answer matrices, functionally yielding irregularly shaped table

representations. That is to say, entering the usual printed addition table

at its 0,0 origin, the "city block" distance to the 6 + 8 = 14 node, for

example, is exactly twice the distance to the 4 + 3 = 7 node (or any node

with an answer equal to 7). Literal table models of mental representation

involve the same distance scheme. In the mental tables simulated 'here,

however, the distance to any particular node is not directly proportional

to the city block location of the node, but instead is directly proportional

to the accessibility of the node. Figure 3 illustrates the simulation's

coding of the answer-accessibility values for the problem 4 + 3 = 7, along

with a depiction of the relevant nodes in the multiplication table for the

.1 6
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twin prchlem 4 X 3 7.

Figure 3 about here

13

Two important and related ramifications of this distance scheme

require elaboration here, since the non-linear (non-proportional) shape of

the mental table is the most easily misinterpreted aspect of the model.

Ashcraft and Battaglia referred to a mental table which was "stretched"

in the region of larger sums. This stretching was a post hoc modification

of the literal square addition table which was suggested by the problem

size effect we obtained, RT proportional to the square of the problem's

sum. Examination of the table of

non-linear effect derives from

problems; the "stretching" is

problems. Furthermore, the

distances used here suggests that this

increasing difficulty of the larger

nicely captured by subjects' ratings on the

distance-based representation of problems

accounts for the "tie" effect found repeatedly in the RT data. In a

literal-distance mental table, a tie problem like 9 + 9 18 requires a

lengthy search according to the city block distance scheme, a search

distance proportional to 18. Since tie problems generally require only a

fairly constant and quite short amount of time in the RT studies, this

effect is usually taken as evidence against mental table approaches. In

the present simulation, however, distances for tie problems are quite

short, reflecting subjects' judgments that these are relatively easy

problems. No special tailoring of the tables is necessary for tie problems,

in other words, to generate predictions of short search distances (and

rapid RTs) -- the effect follows naturally from the accessibility values.
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The second important ramification of the present distance-based

approach involves relationships among problems. Structurally, both in

literal table approaches and in the present simulation, a problem like 4

+ 4 = 8 is adjacent to 4 + 3 = 7, by virtue of its status as the successor

to 4 + 3 in the "4 + " family. ("Next" relations, pointing forwards and

backwards along columns and rows, are assumed throughout the networks.

These denote pathways along which the activation spread takes place.)

While such adjacency indicates a strong interrelationship between

problems, the functional degree of interrelatedness during processing

depends not only on structural proximity but also on accessibility. A

concrete example will be useful to illustrate this point. The accessibility

value for the tie problem 4 + 4 = 8 is 85 (out of 100). Two nodes away,

for 4 + 2 = 6, accessibility is 84; two nodes in the other direction,

accessibility is 76 for 4 + 6. Thus, while the two problems are equidistant

from 4 + 4 in the structural sense, their functional relatedness to 4 + 4 is

not symmetrical since they differ in accessibility from the parent nodes.

During search, the fact that 4 + 6 and 4 + 2 are two nodes away from the

stimulus problem 4 + 4 will be modulated by the differential accessibility

of the problems. Thus, the structural relationships encoded in the

networks, both "next" and the location equivalences of the addition and

multiplication forms of a problem (the answer to 5 + 8 occupys the same

location in the addition network as the 40 does in the multiplication

network; this relation is termed "other operation"), are modified by the

relevant distances associated with the nodes. This feature of the model

results in quite specific predictions about inter-problem priming,

especially within the multiplicatiorroperatitirr:*"*.
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Search Processes

At the conclusion of the encoding phase, the simulation accesses

the procedural knowledge component to begin central processing of the

stimulus. At present, this component consists only of a call to the

search/retrieval process, resulting in initiation of network retrieval.

This does not imply that adults' knowledge about arithmetic is believed

to have only this search procedure available. Instead, this reflects the

overall intention of the simulation to explore the power of a

network-based retrieval model as an explanation of arithmetic

performance. To foreshadow one of the modifications of the model offered

below, there are data which suggest that network retrieval is not the

process by which adults perform multiplication problems of the form a X

0 = 0. Similar arguments might be drawn to force other "special cases"

in arithmetic to be computed via some small set of rules (for instance,

any problem involving a zero or one as an addend/multiplier; see

Ashcraft, in press, and Baroody, in press). While the model illustrated

in Figure I intended such rules to be available for these cases, the

unelaborated simulation is intentionally lacking in those processes. By this

method, the range of applicability of the network search scheme may be

determined more directly, to be followed by modifications for special

cases and other exceptions.

At a general level, the operation of the search stage consists of

parallel searches through the networks as a function of the numbers

stated in the problem. Activation is passed from each of the three

sources a, b, and c (in the problem a +/X b = c), in amounts dictated by

the accessibilities of the encountered nodes. That node receiving the

13
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highest amount of activation during this search, termed x here, represents
'-

the sorigest intersection of activations, and is taken by the simulation

as the correct answer to the stimulus problem. This node propogates a

decreasing gradient of activation to its neighbors, those nodes along both

families of facts denoted by the "next" relation, with amounts of

activation dependent on structural proximity and individual node

accessibility. A comparable gradient is also generated by the "C-nodes"

which were activated2, that is, all nodes with answer values equal to c.

Overall then, the networks accumulate activation from the three separate

sources a, b, and c. The search stage is completed when the scan through

the networks identifies the most highly activated node. The answer and

accessibility values stored at that node represent the correct answer to

the stimulus problem and the search distance to that problem,

respectively.

The details of this spreading activation process illustrate the

interplay of distance and degree of relatedness in the search stage as

it is conceived here (the simulation program executes sequentially, of

course, although the net effect of processing is a simulation of

parallel search). Activation is passed from the first and then second

parent nodes in the problem to each family member, and then from each

C-node in the networks as well. Note that this spread occurs in both the

addition and multiplication networks, although at only half the normal

amount in the irrelevant operation (as determined by the operator sign +

or X in the stimulus). The C-nodes transmit only half the amount of

activation to their neighbors that parent nodes do, since the answer in

a verification problem is the uncertain and possibly incorrect element of

r
:L)
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the stimulus. A decreasing gradient of activation is generated around the

most highly activated family member, and around each C-node as well,

simulating the activation of related nodes in the network structure.

Assuming that some node has been activated to at least the criterion

level of 100, retrieval of the corect answer has been accomplished. (Note

that at least two sources of activation are necessary for a node to pass

criterion. Since many nodes will be doubly activated in this fashion, the

important "node of intersection" is a convenient short-hand term for that

one node, in the full set of nodes which has exceeded criterion, that has

the highest activation level. Not surprisingly, the full set of intersection

nodes becomes important during the decision stage.)

A concrete example of these processes may clarify the activity

simulated during search here. Referring to the values in Figure 3, the

processing of the problem 4 + 3 = 7 results in activation of all ten

family members along the "4 +" row, the ten nodes along the "+ 3"

column, the corresponding 20 nodes in the multiplication network, and

the eight nodes (six in addition, two in multiplication) having 7 stored

as the answer. The activation levels generated by parents, for

convenience, equal the accessibility values associated with each node

(e.g., 84 for 4 + 2 = 6, 87 for 1 + 3 = 4). Since activation is summative,

the fact that the 4 + 3 = 7 node is twice activated by the spreading

activation from parent nodes means that its accessibility value of 81 is

doubled, yielding 162. Finally, each C-node receives half the amount of

activation denoted by its accessibility value, this activation also summing

with any generated from the parent nodes. Concretely then, the target

node for 4 + 3 = 7 will have achieved an activation level of
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approximately 202, the sum of 81 + 81 + half of 81. Assuming that this is

the greatest amount of activation in the networks, this node then

activates it5 neighbors through the "next" relations in a decreasing

fashion, nearest nodes receiving a larger proportion than further nodes.

Specifically, nodes which are immediately adjacent to the highest node of

intersection receive 90% of their previous values; those two nodes away

receive 80%, and so forth. Exactly the same sort of gradient is applied to

the nodes adjacent to the activated C-nodes, with the same summation

rule applying throughout. By this means, the activation levels in the

networks at the completion of search represent both the inherent

accessibilities of the nodes, as measured normatively, and the structural

relatedness of the various problems to the retrieved target node, as

indexed by proximity. Relationships to nodes in the alternate arithmetic

operation (the multiplication network when an addition problem was

presented, and vice versa) are captured by the parallel activation of both

networks. Thus, when 4 + 3 = 7 is presented, the most highly activated

node in the multiplication network is the C-node 12 for 4 X 3 = 12.

The search processes described here simulate a spreading activation

search in two principle ways. First, the answer to a problem is indeed

retrieved by the intersection process generated by the three activation

sources. In other words, an arithmetic fact is being retrieved from an

organized memory representation by means of spreading activation, rather

than by some numerical computation process. As one illustration, if

answers (C-nodes) are weighted as heavily as parent nodes in the search,

the simulation incorrectly retrieves the highest node as the correct

answer; that is, if the 8 in 4 + 3 = 8 is accorded equal importance, then
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the C-node 8 at 4 + 4 receives the greatest amount of activation. In this

situation, the simulation eventually "decides" that 8 is the correct answer

to the problem. Second, the node retreived by the search process

propogates activation through the network according to the embedded

relationships among the facts, the "next" and "other operation" relations.

The important consequence of this is that other arithmetic facts which

are related to the retrieved fact have been activated by the search. This

generates a reasonable and precise basis for the important decision stage

effects to be described and simulated below.

Decision Stage Processes

The decision stage of the simulation receives from the search

component the retrieved answer x from the network of stored facts. The

task of the decision stage is to determine if this retrieved answer

matches the answer stated in the stimulus problem; i.e., for a problem a +

b = c, the decision stage evaluates the equation x.c? At the end of the

decision stage, a judgment is reached as to the correctness of the

stimulus problem, and this decision, true or false, is passed on to the

response stage. An early version of the simulation revealed the need for

two separate decision mechanisms, one functioning on the basis of

activation levels generated during search, and one functioning on the

basis of a numerical inequality judgment procedure. Both are reported

here, along with an argument that both processes are characteristic of

each decision making event in the empirical research. Conflicts over the

different RT predictions represent a major set of new hypotheses

generated by the simulation model.

Decision Process I Symbolic Distance/Split Mechanism
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In this first decision mechanism, the simulation attempts to match

the answer retrieved from memory, x, to that presented in the stimulus,

c. The matching process is viewed as comparable to that in the number

comparison literature (e.g., Banks, 1977). That is, x and c are both

accessed on some mental representation of numerical magnitude, and their

Identity (in the case of a match) is noticed. In Bank's terminology, x and

c are located on the mental number line, and are found to occupy the

same location. Under a match condition, the process is assumed to require

only some constant amount of time, independent of the numerical values

used.

finder mismatch conditions, this decision process will have accessed

two separate number line locations, one each for x and c, and the

resultant "mismatch" decision is the product of a discrimination between

the two locations. As the number comparison literature indicates, such

discriminations become less dif ficult, and less time consuming, as the two

locations become more separated on the number line (recall from above

that we found a 100 msec advantage for problems with splits of 5 or 6,

vs. 1 or 2, in our first study of mental 'addition). According to Banks

(1977), this discrimination process operates on a subjective number line

which is compressed at the larger end of the scale that is, larger

numbers occupy progressively "closer" locations. Thus, discriminations

between pairs of locations are not simply a function of split. Instead, the

compression makes discriminations between locations increasingly difficult

as the numbers increase in size. Stated simply, it is harder to discriminate

between 8 and 9 than between 1 and 2, despite the adjacency of the

numbers, since 8 and 9 are closer together on the number line. Such a

9
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scheme inplies a relative or proportional effect of split the numerical

difference between numbers is weighted by the size of the numbers

themselves.

Stazyk et al. found exactly this sort of proportional split effect in

their study of multiplication. Accordingly, the process implemented here

is a proportional one, that is one in which differences between correct

and stated answers are weighted by the size of the correct answer; in the

simulation, this effect is approximated by the formula 1 - ((x-c)/x). Thus,

an addition problem wrong by Only 1 experiences a rather large decision

stage adjustment due to the difficulty of the discrimination, and the

adjustment is magnified in larger problems. For example, the problem 4 +

5 = 8 generates a proportional split 1-(1/9) = 8/9. This proportion is

magnified for larger problems; for 9 + 7 = 17, it is 1 - (1/16) = 15/16.

Alternately, a problem wrong by 8, like 4 + 5 = 1, has only a small

correction due to the simplicity of the discrimination, indicated by the

proportion 1- (8/9) = 1/9. Its larger counterpart, 9 + 7 = 8, generates the

proportion I - (8/16) = 1/2.

Notice that the operative factor in this sort of scheme is one of

difficulty in decision making. That is, the effect of the mental comparison

of x and c, whenirt hey do not match, is to make a decision more difficult

to reach, by virtue of the more difficult discrimination required. Small

values of split, in particular, are instrumental in this slowing down of the

decision mechanism, in that they are so near the correct value that the

discrimination is difficult. Whereas factors such as repetition or priming

exert a facilitative effect on search processes, decision processes seem

more prone to effects in the opposite direction. This orientation is
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represented here by rendering tne decision making process more difficult to

complete (and by adding time to the estimated RT for that stage).

Decision Process II Activation Mechanism

As in the previous decision process, the activation mechanism

process receives the correct answer to the stimulus problem from the

search stage. Unlike the previous decision mechanism, the process based

on activation relies only on the search-generated amounts of activation

for judging a problem as correct or incorrect. In brief, this mechanism

compares the activations for the node x, the retrieved answer, and the

most highly activated C-node, the most likely intersection node whose

answer value equals c. Decision stage difficulty, and predicted RT, is a

function of differences in the levels of activation for these two nodes.

Consider the operation of this decision mechanism when the

stimulus problem is true. At the end of search, the retrieved answer x is

passed to the mechanism for evaluation. The amount of activation

associated with this x node, termed x a
, is an indicator of how strongly

"suggested" the answer value is for the stimulus. The decision process

conskts of a comparison of this x activation level with the highest

activation level achieved by a C-node, the latter being the most strongly

suggested node where the answer equals the stated answer in the

stimulus. Under the true or match condition, the most highly activated

C-node is the same as the x node passed from the search stage. Since the

two activations being compared are in fact the same, the decision

mechanism has evidence that the retrieved node x is the same as C.

Consequently, the x=c? equation is evaluated as true, since xa=ca is true,

and the decision mechanism judges the stimulus problem to be correct.
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Decision time in this situation is a constant value.

Consider now the situation when the stimulus problem was

incorrect. As always, the search stage passes the value x to decision,

along with the amount of activation which has accrued at that node.

Furthermore, since c was the answer indicated in the stimulus, the-.

decision mechanism accesses that C-node with the highest amount of

activation, this being the most likely answer node if c is truly the correct

answer (a scan of the set of intersection nodes where the answer equals c

identifies this most highly activated C-node). The decision process now

compares the associated activation values of the two nodes x and c, and

finds them to be different. This is the basic evidence necessary to judge

the stimulus problem incorrect. As was the case for decision process I,

the amount of time necessary for this mismatch judgment is an inverse

function of the difference, although for process II the relevant difference

is in terms of activation levels. Specifically,

determined by the formula 1 - ((xa - ca)/xa).

inequahty process, the more discrepant the two activation levels, the less

likely that c is a "reasonable" competitor for the correct answer; stated

in Pandemonium-like terms, a value for ca which is quite different from

x does not "demand" or shout for the close attention that a very similara
activation level would.

The general consequence of this procedure is often quite similar

to that found in the numerical inequality process a C-node which

differs substantially from x will have received less activation during

search, and therefore yields less competition during the decision making

process. For instance, when 8 + 7 = 10 is presented, xar 171 and sa= 80

decision time here is

As in the numerical
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(compare with x
a

= 195 and ca = 102 for 8 + 7 = 14, a closer C-node

which receives greater activation). On the other hand, certain situations

in the empirical data, particularly when the confusion effect is

considered, indicate the need for the both the activation mechanism as

well as the simpler numerical inequality process. These situations are

discussed in the next section.

In summary, two different decision processes are implemented in

the present simulation, one based on the notion of comparisons along a

symbolic magnitude dimension, and one based on relative levels of

activation produced by the search stage. Both processes reflect the

general orientation that decision making can be made more difficult by

several factors, with a consequent slowing of decision times.

Behavior of the Simulation and an Elaborated Model

Before turning to the specific effects to be accounted for by the

model, the effects of problem size, split, and confusions, it is

important to mention a global aspect of the simulation's behavior. The

model as it stands performs correctly on the stimulus problems given to

it. This statement means more than simply that the simulation program

executes correctly. It means that our network-based approach to

arithmetic fact retrieval can be simulated in a psychologically

plausible fashion, without undue or unreasonable assumptions. This is

not to deny that factors other than retrieval may be important in

adults' processing of simple arithmetic facts, as the elaborated model

below attests. This is simply to say that no recourse to counting or

computational procedures is necessary to provide an account of

9 7,u
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verification of addition and multiplication problems.

Problem Size Effect

At a somewhat more detailed level, the simulation accounts for the

problem size effect very wel13. As mentioned, the predicted search time

in the model is a function of the target node accessibility, weighted by

an appropriate coefficient (see Figure 2). Figure 4 illustrates the

observed and predicted data points for the addition problems 0 + 0

through 9 + 9; Figure 5 shows these scores for the same problems in

multiplication. The solid curves in the figures are the empirical functions

found in Ashcraft and Stazyk (1981) and Stazyk et al. (1982),

respectively. The most interesting and important aspects of the

similarities here derive from the distance scheme employed in the

simulation. Whereas the empirical functions on the graphs are predicted

regression lines based on the structural variables sum squared and correct

product, respectively, the predicted data points are derived solely from

the normatively-obtained difficulty ratings (Ashcraft <It Hamann, Note 4).

Clearly, the majority of the predicted data points fall close to the

empirical regression functions, indicating the appropriateness of the

normative ratings as indices of search distance through the network

representation. It is especially interesting that the RT predictions based

on rated difficulty yield the exponential pattern of RTs obtained in the

empirical studies, since the exponential shape has been taken as evidence

against computation mechanisms like counting (see Ashcraft dt Battaglia,

1978). Just as clearly, there are systematic departures from the empirical

functions in the predicted data points, departures which necessitate the

elaboration described later.

9(j
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Figures 4 and 5 about here

Split Effect

Recall that Decision Process 1 simulates a symbolic distance

effect in the decision stage. That is, decision difficulty and time are

inverse functions of split, the difference between the correct and

stated answers weighted by the absolute magnitude of the correct answer

(see Figure 2). The reasoning behind this process is that numbers which

are close on the symbolic magnitude continuum are difficult to

discriminate, generating slow decision times. Figure 6 illustrates the

performance of the simulation on the set of addition and multiplication

problems formed with the digits 4 and 5, with answers varying from a

split of 1 to a split of 12. Compared to the predicted RT of 1080 msec

for the true 4 + 5 = 9, a split of 1 (4 + 5 = 8 or 10) generates a 133 msec

slowing of RT under decision process 1 (solid functions). The amount of

slowing, indicating difficulty in decision making, decreases as split

increases, as has been found repeatedly in our empirical studies (see

especially Ashcraft & Stazyk, 1981). One minor feature of note is that

this split effect is generated on a proportional basis here, whereas our

studies of addition have examined split only on an absolute,

non-proportional basis. It would appear that the Stazyk et al. suggestion

of a proportional scheme for both addition and multiplication was a

reasonable interpretation of their data. Figure 7 shows comparable

predictions for the addition and multiplication problems formed with the

digits 8 and 7.

3 u
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Figures 5 and 6 about here

As the figures show, Decision Process 11 (dotted functions)

generates RT predictions in addition which are often quite similar to

those from model I, although the functions are rather irregular in shape.

he source of the irregularity in process Il's predictions is accrued

activation at C-nodes, of course. Thus for 8 + 7, the absence of the

answers 22 and 23 in either network means no activation will have

accrued to these C-nodes, leading to the prediction of rapid RT due to

lack of competition. The elevated prediction at c=4 for the problem 4 +

5 (compared to c=3) is due to the presence of a C-node equal to 4 on the

family of answers "4 + b"; this C-node not only receives activation as a

family member, it also transmits activation back towards the x node

(notice that an answer equal to 3 is not in either set of family members).

It is not known whether the smoothly decreasing split function or the

more irregular activation function is more accurate under the addition

operation, since no studies are available which have varied split in such a

systematic fashion. It is entirely possible that the standard procedure of

averaging RTs across problems, with split held constant, has obscured

these irregular patterns. These possibilities have become apparent only

through the development of the present model.

On the other hand, Process II does make several incorrect

predictions under the multiplication operation when the simple split effect

is considered. For instance, the problem 4 X 5 = 22 is predicted by

process II to be quite rapidly rejected, since no C-node competition
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exists. As Stazyk et al., showed, however, there is an effect of split in

multiplication which is independent of the "legality" or presence of

answers in the table. This failure is specific to multiplication, since only

some of the numbers in the range 0 to 100 occur as answers in the

multiplication table. In other words, while a problem like 8 X 7 = 52 is

rather difficult for subjects to reject (see Experiment I in Stazyk et al.),

the activation-based decision process experiences no difficulty in

rejecting the stated answer of 52. The simple reason for this is that 52 is

not an available value of c in the multiplication (or addition) table, so no

activation accrues to any C-node in either table. This is in fact a general

aspect of the simulation's performance to multiplication problems; only

those incorrect problems with legal multiplication answers experience

decision stage difficulty due to spreading activation. Interestingly, values

of c which are legal but unrelated to the stimulus (e.g., 4 X 5 = 21) do

generate slower RT predictions than those for illegal values of c (4 X 5 =

23), an effect termed the "privileged answer" effect by Duffy and Fisher

(Note 2).

Confusion Effect

Despite the incorrect predictions generated by the activation

process under simple split conditions, the figures also illustrate the

success of this process, and the relative failure of the simpler split

model, under conditions of "confusions". To repeat, stimulus problems

given a value for c which is correct under another operation, such as 4 +

5 = 20, are found to require a great deal of extra processing time in the

empirical/esearch (Winkelman & Schmidt, 1974). Furthermore, the

confusion effect emerges quite strongly even without this

4,
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"cross-operation" manipulation; Stazyk et al. found that values of c which

are multiples of either a or b (for example, 6 X 7 = 36) yielded up to a

300 msec slowing of RT.

As the figures illustrate, both of these confusion types are

predicted by the activation mechanism II. For the 8 X 7 problem set, for

instance, each stated answer which is a multiple of either 8 or 7 (e.g.,

32, 40, 48) shows a slowing of predicted RT, contrasted with the split

process predictions. Furthermore, the cross-operation confusions are

invariably predicted to be quite lengthy, especially in addition (e.g., 4 + 5

= 20). Decision process 1 fails to predict any special slowing for such

problems. The reason for this is quite clear for 4 + 5 = 20, the answer

is wrong by 11, thus the proportional adjustment (in a sense an index of

how much difficulty is generated by the split) is 1 - ((9 - 20)19) = -2/9

(since split is bi-directional, the absolute value of x-c is always taken).

Stated simply, decision process I judges 20 to be too far from 9 to

produce much decision difficulty. Obviously, such a simple mechanism

misses an important aspect of the stimulus, that the numbers 4, 5, and 20

are highly related under the multiplication operation.

It is exactly this "other operation" relation which is captured by

the networks simulated here, and by the parallel activation of the

multiplication network during search. This parallel activation is

functional in a problem like 4 + 5 = 20 since the activation of the

C-node 20 combines with the parent node activation in the multiplication

table. Thus, the 4 X 5 = 20 node in the multiplication network becomes

the strongest competitor during decision due to the "other operation"

relation from the 4 + 5 = 9 node, and to the activation of all C-nodes
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with answers equal to 20. Furthermore, the accurate predictions of the

confusion effect within the same arithmetic operation reflect the other

important network relation captured by the simulation, that successor

nodes along families are interrelated (in the "semantic relatedness" sense).

Thus, Kintsch's (1974) generalization, that semantic relatedness slows

negative decisions, applies fully to the present model, and to mental

arithmetic performance in general.

Pragmatically, the longer of the two RT predictions at any problem

seems to model the empirical effects. While this scheme "works", it lacks

a satisfactory theoretical rationale. One way to develop such a rationale

would be to consider the decision stage subject to various factors which

retard the decision making process, as suggested above. On this view, two

factors which increase the difficulty of decision making have been

simulated here, nearness of a stated and retrieved answer on the mental

number line, which implies difficulty in discrimination, and similarity of

stated and retreived answers from the standpoint of search-generated

activation levels, again with an implied difficulty in conflict

resolution or decision making. If the decision stage is conceptualized

as one which is easily disrupted by competing information, then both

processes may be manifestations of the same underlying activity. A

second possibility for unifying these effects4 also exists. We may

reconceptualize the symbolic distance effect (Banks, 1977) as an effect

of spreading activation along the mental continuum of number magnitude

itself. On such a view, the value x sent to the decision stage activates

its representation on the subjective number line, and propogates a

gradient of activation to its neighbors. Clearly, when split is small, the
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location on the number line which corresponds to c is likely to have

received some of this spread of activation, yielding the sort of

competition that process II involves. Note that such a scheme will even

predict the slowness of an illegal multiplication answer like 41 for 7

X 6 since 41 is quite near 42 on the number line, the decision

process will require more time to perform the relevant discrimination.

Such a spreading activation process along the mental number line would

of course be joined with search-generated activation levels in decision

making. That is, the lesser activation of 36 from the x value 42 along the

number line (in the problem 7 X 6) would be modified by the amount of

activation accumulated during search at the C-node 36 in the network.

Thus this reinterpretation still requires a number line (process I) and an

activation-based (process II) comparison for decision making. The

advantage, however, would be that both processes stem from the same

overall notion of spreading activation through mental representations of

number.

Lack of Fit and an Elaborated Model

The most disturbing lack of fit between predicted and observed

data in the simulation (see Figures 4 and 5) occurs for those problems in

addition and multiplication which involve a or b values of zero or one.5

The simulation generally predicts RTs which are too fast for these

problems. The most clear-cut example of this is the set of multiplication

problems involving a or b values of zero. As Stazyk et al. (see also

Parkman, 1972) found, these problems were quite slow to verify, with RTs

ranging from 1100 to 1750 msec., and quite prone to error. And yet, in

the simulated data, these problems uniformly fall below the regression

JtJ
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curve, with very rapid predicted RTs.

The reason for this discrepancy involves the subjectively derived

difficulty measures which are used for network distance estimates.

Despite the fact that they perform quite slowly to problems like 7 X 0 =

0, subjects rate these problems as quite easy on the original scale

from 0 to 9, 7 X 0 = 0 has a mean difficulty rating of .42. Our

suspicion, noted in Stazyk et al., is that subjects' ratings for these

problems derived from their knowledge of the rule that "anything times

zero is zero", a simple rule suggesting low difficulty. We thus confront

the question of how many of the simple facts in addition and

multiplication were rated via such rules, and how seriously the ratings

should be taken.

Several investigators (see l3aroody, in press, for example) have

suggested a rule-based "procedural knowledge" basis for perform,. -:e to

these simple problems, and the model in Figure I specifically included

such rule-based heuristics and algorithms as

knowledge. It seems very appropriate, then, to

part of mature subjects'

conclude that the lack of

fit illustrated in Figures 4 and 5 is largely due to the absence of such

rule-based performance in the simulation. Specifically, the simulation now

retrieves the answer 0 to the problem 7 X 0, with search distance

estimated by ole rated difficulty value. If this difficulty value is in fact

derived from rule knowledge, then it should be a poor estimate of search

distance per se. It seems that a more adequate model should isolate

problems like the zero facts in multiplication as "special cases", to be

processed via the procedural knowledge component rather than the usual

network retrieval process.
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I have elaborated the present simulation model to incorporate this

notion of procedural-based performance for four notable "special cases"

in addition and multiplication, addition or multiplication by zero or

one. The elaboration involves two important elements -- first, a

reasonable method by which the need for rule-based processing can be

determined, and second a set of procedures which specify the rules used

for such processing. The first element, serving to "call" the procedural

knowledge routines, is handled as follows. It seems dear that problems

like the zero facts in multiplication are not nearly as easy as

subjects' ratings would suggest. In other words, if we rely on ratings

like 1.54 for the problem 5 X 5, we cannot take seriously the .42 for 7

X 0. Accordingly, all difficulty ratings for the special cases where

either a or b equals 0 or 1 have been altered; in the accessibility metric

used here, these problems have been reassigned the arbitrary value of 30.

The processing consequence of this is that any such problem will fail to

achieve the activation criterion of 100 during search; in psychological

terms, these problems have such low accessibility levels that they cannot

be retrieved from the network. Upon such retrieval failure, the procedural

knowledge component of the simulation is re-entered, and the set of rules

for the special cases is accessed6.

I include only a set of three "procedures" in the current elaborated

model, since no especially compelling evidence exists to suggest other

more sophisticated procedures (but see for example Groen & Poll, 1974,

or Resnick & Ford, 1982, for such procedures in subtraction). The three

components are (1) a general counting procedure, (2) a rule for

multiplication by zero, and (3) a rule for multiplication by 1. By a
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matching process, in which the values for a and b as well as the sign

(operator) are considered, the procedural component selects one of these

three procedures to use in solving the problem. Thus, the presence of the

multiplication sign eliminates the first component from consideraton, and

a multiplication sign and a 1 eliminates the second component as well.

The presence of the addition sign invariably calls the counting rule,

regardless of the a and b values. No reasonable basis for estimating the

time parameters for the two multiplication rules is available at present,

although I suspect that rule 3 will generate faster responding than rule 2.

On the other hand, the counting algorithm in component 1 functions at

the rate of 200 msec. per increment, this on the evidence contained in

Ashcraft and Bartolotta's (Note 5) experiment. In all cases, the relevant

procedural knowledge is accessed, and a correct answer x is generated.

This value is passed to a skeleton decision stage for the x=c? comparison

(the full set of decision stage processes, especially those involving

activation levels, cannot apply since network activation was abandoned

midstream).

While it is somewhat unfortunate that such a post hoc revision of

the network distances and the internal processes of the simulation is

necessary, it is probably desirable from a psychological standpoint that

such elaborations be explicitly included in the model. That is, even though

most arithmetic performance on the simple facts of addition and

multiplication may be accomplished via fact retrieval, subjects are

perfectly capable of generating a rule-based explanation for their

performance (Ashcraft dc Hamann, Note 6; for instance, justifying 11 as

the sum of 8 + 3 by saying "You can count up three like 9, 10, 11, and
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you have it."). Furthermore, in the discussion below, it is argued that the

development of arithmetic performance in children is largely a shift from

various rule-based procedures like counting to search proces.,P as simulated

here. It would be unreasonable to assert that rules used by children are

totally lost from the knowledge base simply because a new basis for

performance is acquired later.

Discussion

This final section begins by considering several relatively simple

modifications of the simulation which would extend its generality to

different tasks and experimental situations. This is followed by a more

substantive consideration of developmental issues in arithmetic

performance, and the sorts of elaborations necessary for the present

simulation.

Discussion

This final section begins by considering several relatively simple

modifications of the simulation which would extend its generality to

different tasks and experimental situations. This is followed by a more

substantive consideration of developmental issues in arithmetic

performance, and the sorts of elaborations necessary for the present

simulation to provide a useful account of the development of arithmetic

knowledge and performance.

To begin with, the original purpose of the simulation was to model

network retrieval and decision processes in adults (Ashcraft, 1982; Stazyk

et al., 1982). Not surprisingly, various methodological and design

characteristics of the original experiments appear in the simulation, at
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least by default. To take just two examples, our experiments have always

tested subjects in only one of the two arithmetic operations at a time,

either addition or multiplication. There is no evidence on the sorts of

modifications that might be necessary to simulate performance on mixed

trial procedures. Secondly, we have carefully avoided stimulus sequences

in which there is any repetition of numbers from one trial to the next.

While there are indications that repetition effects will appear in RT

measures (see Ashcraft Sc Battaglia, 1978, for instance), these are outside

the scope of the present model.

Somewhat more generally, however, the simulation can be easily

extended to make useful predictions in different kinds of tasks. For

instance, Ashcraft and Stazyk's Experiment 2 tested subjects on addition

problems with sums up to 30, rather than merely on the basic addition

facts with sums up to 18 (we had stimuli such as 14 + 13 = 27 and 16 + 9

= 25). No particularly major overhaul of the simulation is necessary in

order for it to process these kinds of problems, especially since the

problem size effect found for these larger problems is well predicted by

distance estimates to the simple combinations addressed here. Nor would

the simulation require major reworking to yield predictions on a task

which asked if any. simple arithmetic relationship obtains for a set of

numbers ("yes for '5 6 11', "no for '8 7 41'). Clearly, the model would

predict that time to make a "yes" decision would be a function of node

accessibility, and time for "no" decisions a function of split and confusion

factors. No priority of one operation over another would be predicted, the

decision being governed instead by the highest accessibility (shortest

time) for a relevant intersection. Such a task might also reveal more

J
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clearly the role of the hypothesized "global evaluation" process (Ashcraft

& Stazyk, 1981) in arithmetic knowledge and performance.

Finally, our experiments have never inquired systematically into

the possible effects of residual activation on later performance,

although both facilitation and inhibition effects across trials have

been demonstrated in other areas (for instance, semantic relatedness

effects from trial n to trial n+I have been demonstrated by Ashcraft,

1976; Haviland & Clark, 1974; and Loftus & Loftus, 1974). The simulation

now behaves as if each trial were unrelated its predecessor, although

only a minor modification is required to prevent the networks from

reverting to inactivation prior to a new trial. This modification would

simulate an hypothesized decay of activation process (see Collins &

Loftus, 1975, for example), but would require further empirical work to

determine suitable decay paramet!rs.

At a much broader level, more extensive modifications to the

simulation would be required to simulate the effects obtained in

developmental investigations of arithmetic performance. Ashcraft (1982)

has presented a table showing the developmental progression of the

problem size effect from grade I through college. The major change,

aside from a decrease in the intercept estimates, is a flattening of the

problem size effect. In other words, as children grow older and more

experienced, the problem size effect becomes attenuated (although it of

course remains highly significant). I have suggested that part of this

speeding is a consolidation of the fact retrieval process, particularly

in elementary grades (Ashcraft & Fierman, 1982). Note that consolidation

is essentially an issue of overlearning or mastery, and would be
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represented appropriately by strengthening initially low accessibility

values in the networks. Yet another part of the remaining developmental

change would appear to reflect increasing automaticity (see also Resnick

(lc Ford, 1982), such that children's retrieval from about the sixth grade

level becomes less conscious and more automatic. So far, this prediction

has not been tested. It is unclear how an increase in automaticity could

be represented in the model (except by the trivial method of revising the

coefficients which govern the RT predictions).

More important than these changes, however, is the issue of

children's knowledge about arithmetic, the "proceduraP' component of

Figure I. There is extensive evidence, certainly for children up through

about third grade, that retrieval is not the only, or even the major,

process by which simple addition is performed. As Groen and Parkman

(1972) found, first graders' performance is best predicted by a counting

variable (also Gelman (lc Gallistel, 1978; Ginsburg, 1977; Siegler, Note

7). Indeed, many such informal procedures appear to be available to

children as they perform the simple arithmetic problems. This assortment

of procedural knowledge is acknowledged in Figure 1, but is represented

in the simulation only by the minor rules for performance to "special

cases". For children, there are probably many other classes of problems

which are routinely performed via procedural knowledge, and at early

stages of arithmetic instruction only a very few problems stored in the

networks (see Baroody, in press). A viable developmental model of

performance must reflect this rich variety of performance bases in

children.

The elaborated model presented here can serve as a guide to such a
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developmental model of arithmetic performance. Obviously, the simple

counting algorithm used here for "special cases" could be applied to an

addition problem, with predictable consequences for search time and

network activation levels. The evidence suggests that this surely is a

commonly used element of children's processing. More generally, by

carefully analyzing children's performance to simple arithmetic problems,

a comparatively small number of general purpose rules (heuristics and

algorithms in Figure 1) may be identified, and then included in the

simulation. Each of these would include not only the action to be taken

as a consequence of accessing the rule (counting up by ones, for

example), but also some index of the strength of the rule. Attention to

such a "precedence" scheme among rules would not only dictate which of

several possibly relevant rules would be selected for a particular problem

(see Anderson, 1982), but also would then provide a more meaningful way

of approaching the proposed developmental shift from rule-based

performance to fact retrieval. Note that the current scheme, retrieval

failure followed by rule-based performance, achieves a degree of support

from Siegler's (Note 7) study of pre-schoolers; his data indicated that any

overt strategy for addition problems required more time than basic fact

retrieval for these children, and also was accompanied by one or more

indications of literal counting (use of fingers, for example). On the other

hand, there may be cases in which a procedure has been "overlearned"

(e.g., to add 9, first add 10 then count back 1) to a degree that a

stimulus like 6 + 9 might trigger the special rule first, bypassing the

normal precedence of retrieval over procedural solution.

At this point, it would be entirely speculative to assert that
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attempted retrieval always occurs before rule-based attempts at solution.

It is certainly conceivable that some "overlearned" rules are accessed

first if their precedence values exceed that of the fact retrieval

procedure. The issue of precedence among the various components of

procedural knowledge, including differential precedence for the fact

retrieval .0isicess, counting, rules for special cases, and so forth, may

indeed be a very promising one for models of developmental change in

arithmetic processing.

4 4
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Footnotes

1. Fact retrieval is an elementary procedure, as conceived here,

which directs the search attempt through the declarative knowledge

store. Since its involvement in every fact retrieval operation is a

constant component of the search, the retrieval procedure per se does not

add to the search time in a way which can be separated from the network

search time. Unless noted otherwise, the term "procedural knowledge" in

this paper follows the usage suggested in Figure 1 -- that is, the term is

reserved for non-retrieval procedures such as counting, estimating, or

solving by a rule. Thus the terms declarative knowledge and procedural

knowledge correspond, respectively, to "knowledge of arithmetic facts"

and "knowledge about arithmetic".

2. Why shouldn't all nodes which have received activation, all

family members and C-nodes alike, propogate a spread of activation to

their neighbors, instead Of the current scheme of all C-nodes but only the

highest node of intersection from the set of family members? The two

reasons for this entail economy of program execution and net efffect on

processing. When the first parent node activates its family, all 10 columns

in each table contain an active element; likewise for all 10 rows when

the second parent activates its family. Thus, each of the 100 elements in

a table is on both a column and a row which would receive activation

from a family member. An initial version of the simulation propogated

activation from each family member, in the usual decreasing gradient

fashion. This scheme required excessive amounts of execution time for the
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program, since each of the 200 "grandchild" nodes (parent node to family

member, family member to its family members) was being updated once as

a grandchild of parent #1 and a second time as a grandchild of parent #2

(and then often as a neighbor of the C-nodes as well). Such massive

activation spreading, furthermore, had no functional effect on later

processing; the entire network was boosted in activation with this

exhaustive spread, but the relative levels of activation between any pair

of nodes were not appreciably different from those found in the simpler

scheme now used. Since the extra computational effort yielded no

functional differences, the more complete activation spreading procedure

was dropped.

3. Absolute values of predicted RT should not be taken as seriously

as relative RT effects, such as the problem size or confusion effect,

which model the empirical RT differences between pairs of stimuli or

experimental conditions. Such relative comparisons are appropriate for

any orthogonal contrasts from the model, since the same internally

consistent metric has been used throughout. Note also that the RT

predictions are in a sense estimates of population effects that is, no

error variance is added to the predicted scores. Accordingly, no tests of

significance between observed and predicted data are reported,

4. 1 thank Jim Greeno for this insight.

5. Predictions for tie problems (the circled points in Figures 4 and

5) are somewhat slow in the simulation, although as a class they are

faster than non-tie problems. The remaining facilitation in observed RTs

may be due to the perceptual ease of encoding repeated digits for a and

b.

elo
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6. Miller, Perlmutter, and Keating (in press) tested adults in a

production task, and found the "zero" multiplication facts to be quite

rapid. They suggest that the slowness of these problems in Parkman's

(1972) and Stazyk et al.'s (1982) data is an artifact of the verification

task. It is not at all clear how suCh a reliable artifact might arise, or

how it should be modeled. If accessibility values for these problems are

indeed high, then some decisional uncertainty would be implicated in the

verification task. Alternately, a procedural solution for these problems

might occur prior to a retrieval attempt, with the same sort of derision

stage uncertainty slowing down verification RT. In any event, the

uncertainty of the decisions, contrasted with the other multiplication

facts, surely suggests that something is unusual for these problems.

A .... i
II
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Figure Captions

1. Information processing model of mental arithmetic knowledge and

performance (from Ashcraft, I982).

2. Summary of processing in the simulation model, with predicted

RT equations.

3. Network representation of addition and multiplication tables for

the problem 4 + 3 = 7 and 4 X 3 = 7. The "next" relationship points

'north, south, east, and west' from each node; since all adjacent nodes

are so interconnected, the "next" pointers are not displayed. Similarly, an

"other operation" pointer connects each node to its corresponding location

in the alternate table.

4. Observed and predicted RT scatterplots for the problem size

effect in addition. Circled points are tie problems (e.g., 4 + 4 = 8); points

flanked with dashes are those with a zero addend (e.g., 7 + 0 = 7). The

solid function is the best fitting regression line from Ashcraft & Stazyk

(1981), which used correct sum squared as the predictor variable.

5. Observed and predicted RT scatterplots for the problem size

effect in multiplication. Circled points are tie problems (e.g., 4 X 4 = 16);

points flanked by dashes are those with a zero multiplier (e.g., 7 X 0 =

0). The solid function is the best fitting regression line from Stazyk et al.

(1982), which used correct product as the predictor variable.

6. Predicted RTs for the set of problems formed with the digits 4

and 5 (e.g., 4 + 5 = c, 4 X 5 = c). The values of c simulated on the two

halves were incremented by one's.

7. Predicted RTs for the set of pr .11ems formed with the digits 8

and 7 (e.g., 8 + 7 = c, 8 X 7 = c). The values of c simulated for the
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addition problems were incremented by ones's; under multiplication, values

of c were incremented by four's, so interpolation in the multiplication

function under process Il is not accurate.
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PROCEDURAL KNOWLEDGE:

Call Search

tdl = kp DI + kd
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SEARCH:
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DECISION:

II
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RESPONSE:
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RT = te + ts + td + tr

True RT = K + ks xa where K = ke + kd + kr

False-I RT = + ks xa + kp

False-II RT 1S. + ks xa + tcp



Legend: Time to encode the stimulus, to is

Time for search is a search constant, ks,

value of the node of intersection, xa
Time to decide "true" under both models is a constant, kd. Under

Process I, time to decide "false" is the same decision constant plus time

to make the numerical magnitude comparison, a difference value Di times

the proportion coefficient kr Under Process II, time to decide "false" is

the decision constant kd plus the difference value DI! times the

proportional coefficient. For Process I, the difference value depends on x

and s, the correct and stated answers, respectively. For Process II, the

difference values depends on the levels of activation of these two nodes.

Time to respond is a constant value, kr

a constant value ke

times the accessibility

Figure 2
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