This curriculum guide contains operational guidelines to help local administrators, teacher educators, and industrial arts teachers in the State of Louisiana determine the extent to which their technical drafting courses are meeting the needs of the youth they serve. It consists of a discussion of course prerequisites, goals, content, and implementation as well as 14 units devoted to various subject areas addressed in technical drafting courses. Covered in the individual units are rules and regulations, sketching, drafting room safety, lettering techniques, care and use of equipment, geometric construction, orthographic projection, dimensioning/size description, pictorial drawings, sectional drawings, auxiliary drawings, thread representations, and working drawings. Each unit contains objectives, time allotments, suggested topics, student activities, teacher activities, and resources. Among those items appended to the guide are information sheets, explanations of various drafting procedures, a course evaluation sheet, suggested projects, a sample lesson plan, sample tests, suggested student expectations, a list of tools and equipment, and resources.
STATE OF LOUISIANA
DEPARTMENT OF EDUCATION

BULLETIN NO. 1686

INDUSTRIAL ARTS CURRICULUM GUIDE
IN
BASIC TECHNICAL DRAFTING

Issued by
Office of Vocational Education
N. J. Stafford, Jr., Ed.D.
Assistant Superintendent
J. KELLY NIX
State Superintendent

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY
S. Elbert"
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."
EQUAL OPPORTUNITY STATEMENT

In compliance with Title VI, Title IX and Section 504 of the Rehabilitation Act of 1973 this Educational Agency upholds the following policy:

This is an Equal Opportunity Institution and is dedicated to a policy of non-discrimination in employment or training. Qualified students, applicants or employees will not be excluded from any course or activity because of age, race, creed, color, sex, religion, national origin, or qualified handicap. All students have equal rights to counseling and training.

This guide was printed at a cost of $5.30 per copy by the Department of Education for the purpose of improving Vocational Education programs under the authority of P.L. 94-482 as amended and regulations issued thereunder. This material was printed in accordance with the standards for printing by state agencies established pursuant to R.S. 43:31.
PREFACE

This course is designed to have students learn about various fields of industry and manufacturing such as woodworking, construction, metalworking, plastics, graphic arts, crafts, power, electricity and other subjects taught in industrial arts programs. It is hoped that the instructor will have students design and make "mini" projects related to as many specific subject areas as possible. Students should be encouraged to experiment and do further study to enhance their understandings of materials, processes, and products of industry.

Each student should be taught basic sketching and drawing skills to become familiar with the language of industry. Students should become knowledgeable of the functions of industry with respect to planning, production, quality control, marketing and career opportunities offered in the world of work. By teaching basic concepts in the many fields, instructors can relate and show similarities and relationships to emphasize commonalities in industry and manufacturing in America.

As the first course offering in the secondary school curriculum, this course can be used effectively by any age group, including both male and female students. By making instruction interesting, instructors will attract students into other specialized Industrial Arts courses or continue their education in specific vocational courses at the Comprehensive High School, Career Campus or Vocational-Technical School.
Foreword

This publication is a guide for the improvement of instruction in Industrial Arts Education for the State of Louisiana. It should be of benefit to industrial arts teachers, supervisors, counselors, and administrators. These operational guidelines will help local administrators, teacher educators, and industrial arts teachers to determine the extent to which their programs are meeting the needs of our youth. Industrial Arts Education Programs must be organized to meet the needs of all students.

A constant concern for educators is the construction and revision of curriculum. Industry and technology are the core of industrial arts instruction. Both are constantly changing; therefore, curriculum and instruction must change in order to provide students a realistic and accurate understanding of industry and its function in our complex technological society.

J. KELLY NIX
State Superintendent of Education
ACKNOWLEDGEMENTS

This publication represents the cooperative efforts of personnel in the Louisiana Industrial Arts Association and the Industrial Arts Section in the Office of Vocational Education, Louisiana State Department of Education. Special recognition goes to Dr. Thomas Eppler, Northwestern State University, Regional Co-Director; Dr. Vincent F. Kuetemeyer, Louisiana State University, Regional Co-Director; Mr. Thomas Landry, University of Southwestern Louisiana, Regional Co-Director; and Dr. James W. Trott, Louisiana State University, Project Coordinator-Director who served as Project Director in the development of the guide. Special commendation goes also to members of the writing team who worked diligently to make this publication a reality.

The following teachers spent many hours writing, field testing, and finalizing these guidelines. They are: Vincent D. Tuminello, Charles Powell, and John Aubespin.

N. J. Stafford, Jr., Ed.D.
Assistant Superintendent
Office of Vocational Education
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Chart</td>
<td>2</td>
</tr>
<tr>
<td>Course Description</td>
<td>3</td>
</tr>
<tr>
<td>Target Grade Levels</td>
<td>3</td>
</tr>
<tr>
<td>Prerequisite</td>
<td>3</td>
</tr>
<tr>
<td>Goals and Objectives</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Course Outline</td>
<td>5</td>
</tr>
<tr>
<td>Time Allotment</td>
<td>18</td>
</tr>
<tr>
<td>Unit Teaching Guide</td>
<td></td>
</tr>
<tr>
<td>Unit I Rules and Regulations</td>
<td>19</td>
</tr>
<tr>
<td>Unit II Safety in the Drafting Room</td>
<td>20</td>
</tr>
<tr>
<td>Unit III Introduction</td>
<td>21</td>
</tr>
<tr>
<td>Unit IV Lettering Techniques</td>
<td>22</td>
</tr>
<tr>
<td>Unit V Sketching</td>
<td>23</td>
</tr>
<tr>
<td>Unit VI Care and Use of Equipment</td>
<td>24</td>
</tr>
<tr>
<td>Unit VII Geometric Construction</td>
<td>28</td>
</tr>
<tr>
<td>Unit VIII Orthographic Projection</td>
<td>29</td>
</tr>
<tr>
<td>Unit IX Dimensioning/Size Description</td>
<td>30</td>
</tr>
<tr>
<td>Unit X Pictorial Drawings</td>
<td>33</td>
</tr>
<tr>
<td>Unit XI Sectional Drawings</td>
<td>35</td>
</tr>
<tr>
<td>Unit XII Auxiliary Drawings</td>
<td>37</td>
</tr>
<tr>
<td>Unit XIII Thread Representations</td>
<td>38</td>
</tr>
<tr>
<td>Unit XIV Working Drawings</td>
<td>39</td>
</tr>
<tr>
<td>Appendix</td>
<td>40</td>
</tr>
<tr>
<td>Lettering; Border Lines and Title Strip, Centering</td>
<td></td>
</tr>
<tr>
<td>Multiview Drawings; Centering an Isometric Drawing</td>
<td></td>
</tr>
<tr>
<td>Course Evaluation; Grading Chart; Suggested Projects</td>
<td></td>
</tr>
<tr>
<td>Sample Lesson Plan; Scale Exercise Sample Tests; Rules and Regulations; Suggested Student Expectations; Measuring Achievement; Tools and Equipment; Resources</td>
<td></td>
</tr>
</tbody>
</table>
Title:

Basic Technical Drafting

Course Description:

Basic Technical Drafting is designed to give the student a general overview of the basic concepts that are common to the broad field of technical drawing. Drafting is used by engineers, designers, architects, and other individuals to describe the size, shape, and other details of manufacturing that cannot be effectively described with the written words of a language. However, one need not be engaged in one of these vocations to benefit from experiences in the drafting field. The ability to read and understand drawings that are concerned with the assembly, installation, and operation of common household products is becoming increasingly important as these items become more complex. For this reason drafting should be one of the first areas to be offered in the industrial arts program and should be open to males and females.

Target Grade Levels:

Grades 9 - 12.

Prerequisite:

None

General Program Goals and Objectives:

In Basic Technical Drafting, students will become acquainted with occupational opportunities in this field of work, and should develop an appreciation for drafting as a universal means of communication. Experiences will be provided to develop in each student the ability to read drawings and to visualize relationships between objects and working drawings. The study cannot be in depth, but it must be thorough enough to develop the ability to express ideas graphically and to solve everyday problems through the use of drawing.

Specific Objectives:

1. To develop skills in the proper use of drafting tools and materials.
2. To develop an understanding of the technical aspects of drafting.
3. To develop an appreciation for the value and worth of good designing.
4. To foster an understanding of the importance of drafting in industry.
5. To develop worthy leisure-time interests.
INTRODUCTION TO BASIC TECHNICAL DRAFTING

Basic Technical Drafting is a course in general drafting designed to give students a broad overview of drafting fields. The content is such that it has value for those who plan to work in any phase of industry, including positions in engineering, management, education, skilled or semi-skilled occupations, office work, sales and promotion, service and repair, and many other fields. Each student is given the opportunity to develop the ability to express his ideas in pictorial form, to describe the shape of objects through the use of drawings, and to read and to understand projection methods and blue prints. Technical accuracy is necessary, and related mathematics, science, and technical vocabulary are taught simultaneously with practical activities.

This curriculum guide and outline will serve as a guide for teaching Basic Technical Drafting. The implementation of the objectives and activities presented in this guide is recommended for continuous systematic and sequential development of the basic technical drafting student.

This curriculum guide will cover two semesters of work for one unit of credit. This course is open to ninth, tenth, eleventh and twelfth grade students. The class should meet one hour per day, five days per week for thirty-six weeks (180 days).
I. STATE, PARISH, LOCAL SCHOOL, AND CLASSROOM LEGAL RULES AND REGULATIONS

II. SAFETY IN THE DRAFTING ROOM
 A. Student Responsibilities
 B. Safe Use of Equipment
 C. Safe Use of Individual Drafting Equipment
 D. Room Arrangement Safety
 E. Housekeeping Safety
 F. Personal Safety

III. INTRODUCTION
 A. History of Drafting
 1. Earliest forms of communications
 a. Drawings on cave walls
 b. Drawings on clay tablets, parchment, or papyrus, wood and slabs of lime-stone
 2. Evolution of modern drafting
 a. DaVinci, Leonardo
 b. Monge, Gaspard (1746-1818)
 c. Crozet, Claude - (1816)
 d. West Point
 e. Today's drafting
 B. Types of Drawings
 1. Artistic
 a. Aesthetic ideas
 b. Philosphic expressions
 2. Technical
 a. Exact representation
 b. Standardized
 c. Accuracy
C. Careers in Drafting

1. Opportunities
 a. Aeronautical
 b. Electrical and electronics
 c. Mechanical
 d. Sheet metal
 e. Architectural
 f. Map
 g. Structural
 h. Pipe

2. Types of training
 a. High school followed by apprenticeship
 b. Technical/Trade School--Technician
 c. College/University--Engineering

3. Qualifications
 a. Accuracy
 b. Neatness
 c. Aptitude

IV. LETTERING TECHNIQUES

A. Types of Lettering

1. Single stroke commercial gothic
 a. Vertical
 b. Inclined

2. Architectural

B. Guidelines

1. Horizontal
2. Vertical
3. Inclined

C. Lettering Instruments

1. Ames Lettering Guide
2. Braddock-Rowe Triangle
3. Professional Lettering Instruments
 a. Leroy Lettering Set
 b. Koh-I-Nor Set
 c. Wrico Set
4. Plastic lettering templates
V. SKETCHING

A. Purpose
1. To communicate ideas
2. To determine time element
3. To record ideas
4. To simplify a technical discussion

B. Aids in Sketching

1. Paper and cardboard guides
 a. Straight
 b. Folded
2. String compass

C. Lines, Straight

1. Horizontal
2. Vertical
3. Inclined

D. Lines, Curved

1. Circle
2. Arcs

VI. CARE AND USE OF EQUIPMENT

A. Drawing Desk

B. Drawing Boards

1. Type of boards
 a. Bass wood
 b. Soft pines
 c. Metal edge
2. Size of board
 a. 18" x 24"
 b. 24" x 36"

C. T-Square

1. Types of T-squares
 a. Plastic
 b. Metal
 c. Wood
2. Sizes of T-squares
 a. 24"
 b. 36"
3. Parallel bar
4. Drafting machine
5. Aligning paper
6. Drawing horizontal lines

D. Drawing Paper/Film/Cloth

1. Kinds of paper
 a. White
 b. Tinted
 c. Tracing
 d. Vellum
 e. Polyester
2. Drawing paper sizes
 a. First series
 (1) 8½" x 11"
 (2) 11" x 17"
 (3) 17" x 22"
 (4) 22" x 34"
 (5) 34" x 44"
 b. Second series
 (1) 9" x 12"
 (2) 12" x 18"
 (3) 18" x 24"
 (4) 24" x 36"
 (5) 36" x 48"
3. Mounting the paper
 a. Tape
 b. Tacks

E. Pencil

1. Types of pencils
 a. Pentel
 b. Lead-holder
 c. Wood pencil
2. Leads
 a. Degrees of hardness
 b. Sharpening
3. Drawing lines
4. Lettering
F. Triangles

1. Types of triangles
 a. 30° x 60° - clear
 b. 45° - clear

2. Sizes
 a. 8"
 b. 10"
 c. 12"

3. Vertical lines

4. Inclined lines

5. Parallel

6. Perpendicular

G. Erasers

1. Types of erasers
 a. Art gum
 b. Plastic

2. Erasing shields
 a. Metal
 b. Plastic

H. Irregular Curves

1. Types of curves
 a. French curve
 b. Adjustable--flexible
 c. Ship curve

2. Connecting plotted points

I. Case Instruments

1. Minimum requirement
 a. Compass
 (1) Types of compasses
 (a) Large bow
 (b) Small bow
 (c) Drop bow
 (d) Friction
 (e) Beam
 (2) Sharpening compass lead
 (a) Chisel point
 (b) Conical point
 b. Divider
 (1) Types of Dividers
 (a) Friction
 (b) Proportional
 (2) Transferring distances
 (3) Dividing lines and arcs into equal segments

2. Advanced equipment optional
J. Scales

1. Types of scales
 a. Architect
 b. Engineer
 c. Metric
 d. Combination

2. Materials of scales
 a. Wood
 b. Plastic
 c. Metal

3. Shapes of scales
 a. Triangular
 b. Flat
 c. One bevel
 d. Two bevel
 e. Four bevel

K. Drawing Techniques

1. Keeping drawings clean
 a. Dusting powder
 b. Fix-it spray

2. Drawing straight lines
 a. Horizontal
 b. Vertical
 c. Inclined
 d. Parallel
 e. Perpendicular
 f. Angles
 g. Pencil rotation

3. Drawing curve lines
 a. Arcs
 b. Circles
 c. Irregular curves

4. Border line and title strip
5. Problem centering

VII. GEOMETRIC CONSTRUCTION

A. Importance of Geometry

1. A study of size and shape
2. Solving drawing problems
B. Application of Geometry

1. Bisecting lines and angles and arcs
2. Dividing lines, angles and arcs into equal parts
3. Erecting perpendicular
4. Parallel lines
5. Construction of geometric figures
 a. Square
 b. Hexagon
 c. Octagon
 d. Pentagon
6. Tangent lines and circles

VIII. ORTHOGRAPHIC PROJECTION/MULTIVIEW DRAWING/SHAPE DESCRIPTION

A. Projection Box/Six Possible Views

1. Front view
2. Top view
3. Right side view
4. Left side view
5. Rear
6. Bottom

B. Drawing of An Object Using Third Angle Projection

1. Frontal
2. Horizontal
3. Profile

C. Choice of Views

1. Most descriptive view
2. Number of views necessary

D. Location of View

E. Mathematical Layout of Views

1. Centering within working area
2. Spacing between views

F. Alphabet of Lines

1. Construction lines
2. Border lines
3. Object lines
4. Hidden lines
5. Center lines
6. Guide lines

IX. DIMENSIONING-SIZE DESCRIPTION

A. Importance of Dimensions
 1. To be accurate in size description
 2. To complete description of object

B. Alphabet of Lines
 1. Extension lines
 2. Dimension lines
 3. Center lines
 4. Leaders

C. Termination of Dimension Lines
 1. Arrowheads
 2. Dot
 3. Diagonal line

D. Direction of Dimension Figures
 1. Unidirectional system
 2. Aligned system

E. Dimensioning Angles
 1. Linear dimensioning
 2. Coordinate dimensioning

F. Dimensioning Arcs and Circles

G. Finish Symbols
 1. Finish marks
 2. Surface roughness

H. Geometric Breakdown
 1. Size dimension
 2. Location Dimension

I. Notes
 1. Local
 2. General
J. Dimension Figures

1. Whole numbers
 a. Feet
 b. Inches
2. Fractions

K. Abbreviations

1. Diameter
2. Radius
3. Required
4. Chamber
5. Countersink
6. Counterbore
7. Degree
8. Material
9. Reference
10. Spot face
11. Stock
12. Thread
13. Center line
14. Millimeter

L. Methods of Dimensioning

1. Consecutive
2. Progressive

M. Limit Dimensioning

N. Tolerance

1. Unilateral
2. Bilateral

O. Decimal System

P. Metric System

X. PICTORIAL DRAWING

A. Use of Pictorial Drawings

1. Supplement to working drawings
2. Enables layman to visualize the design represented
B. Types of Pictorial Drawings

1. Oblique
 a. Cabinet
 b. -Cavalier
2. Isometric
3. Perspectives
 a. One point
 b. Two point

C. Oblique Axes

1. Variation of direction
2. Variation of angle

D. Isometric Axis

1. Variation of direction
2. Angle of axes

E. Lines in An Isometric Drawing

1. Isometric
2. Non-isometric

F. Angles in Pictorial Drawings

G. Arcs and Circles in Pictorial Drawings

1. Rhombus
2. Four center approximate ellipse

H. One Point Perspective Drawing

1. Front view projection
 a. Horizon line
 b. Vanishing point
 c. Group line
2. Station point projection
 a. Horizon line
 b. Ground line
 c. Vanishing point
 d. Top view
 e. Picture plan line

I. Two Point Perspective

1. Ground line
2. Picture plane line
XI. SECTIONAL DRAWINGS

A. Purpose of Section Drawings

1. Show interior details of an object
2. Show the complex operation of an object

B. Cutting Plane Line

1. Show edge of cutting plane
2. Location of cutting plane line
3. Equal dash cutting plane line
4. Alternate dash cutting plane line

C. Section Lining Symbols

1. General purpose symbol
 a. 45° angle section lining
 b. 1/8" section line spacing
 c. Opposite angle section lining
2. Other symbols—see reference material

D. Types of Sections

1. Full section
2. Half section
3. Offset section
4. Broken out section
5. Remove section

E. Conventional Break

1. S-break
 a. Pipe
 b. Solid
2. Rectangular break

XII. AUXILIARY DRAWINGS

A. Purpose of An Auxiliary

1. Describes true size and shape of an inclined surface
2. Describes special features of an object not perpendicular to the normal plane of projection

B. Kinds of Auxiliary Views

1. Primary auxiliary
2. Secondary auxiliary

C. Methods of Construction

1. Folding plane
2. Center line
3. Reference line

D. Steps of Constructions

E. Plotting Curves

XIII. THREAD REPRESENTATION

A. History and Functions of the Threaded Fasteners

1. Archimedes
2. Leonardo da Vinci
3. Whitworth
4. William Sellers

B. Standardization

1. American standard screw thread
2. Unified screw thread
3. ANSI metric fasteners standard

C. Application of Screw Threads

1. Hold parts together
2. Adjust parts
3. Transmit power

D. Thread Terminology

1. Thread nomenclature
2. Thread notes

E. Types of Thread Fasteners

1. Bolts
 a. Hex head
 b. Square
2. Screws
F. Schematic Representation
 1. Internal
 2. External

G. Simplified Representation
 1. Internal
 2. External

XIV. WORKING DRAWINGS

A. Application of Working Drawings
 1. To show size, shape and specifications of an object
 2. To show how an object is serviced or put together

B. Methods of Layout for Working Drawings
 1. Detail drawing
 2. Assembly drawing

C. Specifications
 1. Materials and parts lists
 2. Notes
BASIC TECHNICAL DRAFTING
SUGGESTED TIME ALLOTMENT

The suggested time frame for Basic Technical Drafting is 166 days. The remaining 14 days are to be used as necessary for the opening and closing of the Drafting Laboratory, school functions, and in units where the instructor feels additional time is needed.

If time dictates that this course must be taught in one semester, rather than a full 180 day school year, Units I through X (Rules and Regulations -- Pictorial Drawings), should be covered.
<table>
<thead>
<tr>
<th>UNIT I</th>
<th>RULES AND REGULATIONS</th>
<th>2 Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTIVES/TIME ALLOTMENT</td>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
</tr>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>State Rules</td>
<td>Read and sign rules and regulations hand-out sheet.</td>
</tr>
<tr>
<td>Identify the State, Parish, School and room rules and regulations that apply to the drafting room.</td>
<td>Parish Rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>School Rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classroom Rules</td>
<td></td>
</tr>
</tbody>
</table>
UNIT II SAFETY IN THE DRAFTING ROOM 1 Hour

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>Student Responsibilities</td>
<td>Read and sign safety hand-out sheet.</td>
<td>Demonstrate the correct way to use classroom equipment, such as the paper cutter.</td>
<td>Unit 1, Lesson 3 pp. 1-3</td>
</tr>
<tr>
<td>Identify the safety rules and regulations that apply to the drafting room.</td>
<td>Safe use of individual drafting equipment.</td>
<td>Safety test</td>
<td>Make bulletin boards using a comic strip type of character showing hazards that apply to a drafting class.</td>
<td></td>
</tr>
<tr>
<td>Room arrangement safety</td>
<td>Housekeeping safety</td>
<td></td>
<td>Demonstrate the safe use of student equipment.</td>
<td></td>
</tr>
<tr>
<td>Personal Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT III INTRODUCTION 1 Hour

OBJECTIVES/TIME ALLOTMENT

<table>
<thead>
<tr>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| A. History of Drafting
 1. Earliest Forms of Communications
 a. drawings on cave walls
 b. drawings on clay tablets
 c. parchment, papyrus, wood, and slabs of limestone
 2. Evolution of Modern Drafting
 a. DaVinci, Leonardo
 b. Monge, Gaspard
 c. Crozet, Claude
 d. West Point
 e. Today's Drafting | Read Chapter.
 Answer study questions. | Exhibit collection of artistic and technical drawings throughout the classroom. | (1) pp. 1-6
(2) pp. 1-14
(3) Unit 1, Lesson 1
(4) pp. 1-9 |
| B. Types of Drawings
 1. Artistic
 a. aesthetic ideas
 b. philosophic expression
 2. Technical
 a. exact representation
 b. standardized
 c. accuracy | Write a short paper on "The Evolution of Modern Drafting." | Gather and disseminate information about different drafting careers. |
| C. Careers in Drafting
 1. Opportunities
 a. aeronautical
 b. electrical/electronic
 c. mechanical
 d. sheet metal
 e. architectural
 f. map
 g. structural
 h. pipe
 2. Types of Training
 a. high school-apprenticeship
 b. trade school-technician
 c. college/university-engineer | Visit school guidance counselor. | Have an advanced drafting student speak to the class on what he/she learned from his/her basic drafting course and why he/she is taking advanced drawing. |
| 3. Qualifications
 a. accuracy
 b. neatness
 c. aptitude | Complete student lab projects and assignments.
 Unit Test | Display drawings that will show acceptable and unacceptable quality. | (1) p. 2
(2) p. 7
(3) Unit 1, Lesson 2
(4) pp. 2, 3, 6
(5) p. 6 |

Upon completion of this unit, the student will be able to:

1. Outline a brief history of drafting;
2. Identify the major types of technical drawings;
3. Identify the various careers available in the drafting occupations.

Read Chapter.
Answer study questions.
Write a short paper on "The Evolution of Modern Drafting."
Visit school guidance counselor.
Complete student lab projects and assignments.
Unit Test
UNIT IV LETTERING TECHNIQUES 10 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>A. Types of Lettering</td>
<td>Read Chapter; answer study questions; complete hand-out sheets. Use single-stroke commercial gothic, vertical and inclined lettering numerals, and fractions on lettering sheets. Draw horizontal, vertical, and inclined guidelines.</td>
<td>Demonstrate, and have each student learn the correct strokes for each letter of the alphabet and numerals.</td>
<td>(1) p. 53</td>
</tr>
<tr>
<td>Construct vertical or inclined, single-stroke commercial gothic lettering, numerals and fractions, including proper spacing and guidelines; Identify and select the proper lettering instruments; Letter notes, titles, and other information required on drawing.</td>
<td>B. Guidelines</td>
<td>Draw horizontal, vertical, and inclined guidelines.</td>
<td>Demonstrate the correct method for drawing guidelines using the Ames Lettering Guide. Show and explain the different type of professional lettering instruments; such as the Leroy Set.</td>
<td>(2) p. 53</td>
</tr>
<tr>
<td></td>
<td>C. Lettering Instruments</td>
<td>Complete student lab projects and assignments. Unit Test.</td>
<td></td>
<td>(3) Un. 3, Le. 5</td>
</tr>
<tr>
<td></td>
<td>2. Braddock-Rowe Triangle</td>
<td></td>
<td></td>
<td>(5) p. 48</td>
</tr>
<tr>
<td></td>
<td>3. Professional Lettering Instruments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Leroy Lettering Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Koh-I-Nor Set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Wrico set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Plastic lettering templates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) p. 53 (2) p. 530, 531 (3) Unit 3, Le. 1 (4) pp. 55-59 (5) p. 450, App. 1, 2, 3, 4, 5, 6, 7 (1) p. 54 (2) p. 531 (3) Un. 3, Le. 5 (4) pp. 57-58 (5) p. 47
UNIT V SKETCHING 5 Hours

OBJECTIVES/TIME ALLOTMENT

Upon completion of this unit, the student will be able to:

- Diagram how sketching aids creative communication;
- Identify and apply various types of sketching aids;
- Sketch simple objects using correct line techniques.

TOPICS

<table>
<thead>
<tr>
<th>A. Purpose</th>
<th>B. Aids in Sketching</th>
<th>C. Lines--Straight</th>
<th>D. Lines--Curved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. to communicate ideas</td>
<td>1. paper and cardboard guides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. to save time</td>
<td>a. straight</td>
<td>1. horizontal</td>
<td></td>
</tr>
<tr>
<td>3. to record ideas</td>
<td>b. folded</td>
<td>2. vertical</td>
<td></td>
</tr>
<tr>
<td>4. to simplify a technical discussion</td>
<td>3. inclined</td>
<td>1. arcs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. string compass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Sketch assigned problems using learned sketching techniques.
| | Complete student lab projects and assignments.

STUDENT ACTIVITIES

- Read Chapter.
- Answer study questions.
- Sketch straight lines.
- Sketch arcs, circles, and other curves.
- Sketch assigned problems using learned sketching techniques.
- Complete student lab projects and assignments.
- Unit Test

TEACHER ACTIVITIES

- Show examples of professionally prepared technical sketches.
- Demonstrate the correct procedure for sketching various lines.
- Demonstrate the construction and use of sketching aids, such as a string compass.

RESOURCES

- (1) pp. 7-17
- (2) pp. 15-37
- (4) pp. 28-35
- (5) pp. 25-30
- (1) pp. 10, 12, 13
- (2) pp. 20-21
- (4) pp. 30-32
- (5) p. 27
- (1) pp. 9, 12, 14
- (2) pp. 19-21
- (4) pp. 31-33
- (5) pp. 25-28
UNIT VI CARE AND USE OF EQUIPMENT 10 Hours

OBJECTIVES/TIME ALLOTMENT

Upon completion of this unit, the student will be able to:

Name the various basic drafting instruments, equipment and materials, and describe the use of each;

Select the proper drawing material for specific types of drafting projects;

Demonstrate the proper use of drafting instruments as a means of preparing accurate, readable, technical drawings.

TOPICS

<table>
<thead>
<tr>
<th>A. Drawing Desk</th>
<th>B. Drawing Board</th>
<th>C. "T" Square</th>
<th>D. Drawing Paper/Film/Cloth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Chapter, answer study questions</td>
<td>Using a drawing board as an aid, demonstrate how it is to be used.</td>
<td>With a "T" square as a visual aid, describe its parts and proper use.</td>
<td>Using examples of various papers, explain the use of each.</td>
</tr>
<tr>
<td>Adjust desk top to desired height/angle.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES

- "T" Square
 1. types of "T" squares
 a. plastic
 b. metal
 c. wood
 2. sizes of "T" squares
 a. 24" b. 36"
 3. parallel bar
 4. drafting machine
 5. aligning paper
 6. drawing horizontal lines

TEACHER ACTIVITIES

- "T" Square

RESOURCES

1. p. 20
2. p. 44
3. p. 15
4. p. 16
5. p. 7
<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| **b. second series** | 1. 9" x 12"
2. 12" x 18"
3. 18" x 24"
4. 24" x 36"
5. 36" x 48" | Mount paper on board. | Using a drawing board, "T" square, and tape, demonstrate the proper method for mounting the paper on the drawing board. | (1) p. 22
(2) pp. 45-47
(4) pp. 10-11
(5) p. 9-10 |
| | 3. mounting the paper
a. tape
b. tacks | Mount paper on board. | Display various types of lead holders and pencils. | |
| **E. Pencil** | 1. types of pencils
a. Pentel
b. lead-holder
c. wood pencil | Disassemble and reassemble Pentel pencil and reload with lead. | Display various types of lead holders and pencils. | (1) p. 22
(2) pp. 45-47
(4) pp. 10-11
(5) p. 9-10 |
| | 2. leads
a. degrees of hardness
b. sharpening | Sharpen pencil. | Demonstrate the correct method for disassembling, reassembling and loading the Pentel. | |
| | 3. drawing lines | Draw horizontal lines. | Show correct method for sharpening leads. | |
| | 4. lettering | Draw guide lines. | |
| **F. Triangles** | 1. types of triangles
a. 30° - 60°
b. 45° | Draw 30° and 60° lines. | Use large scale model of triangles to demonstrate each one of these can be made from wood, paper, or plastic. | (1) p. 28
(2) p. 49
(4) p. 17
(5) p. 16 |
| | 2. sizes of triangles
a. 8"
b. 10"
c. 12" | Draw 45° lines. Draw 15° and 75° lines using triangle combinations. | |
| | 3. vertical lines | Draw vertical lines. | |
| | 4. inclined lines | Draw inclined lines. | |
| | 5. parallel lines | Draw parallel lines. | |
| | 6. perpendicular lines | Draw perpendicular lines. | |
UNIT VI CARE AND USE OF EQUIPMENT (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Erasers</td>
<td>1. types of erasers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. art gum</td>
<td>Erase Lines.</td>
<td></td>
<td>(1) pp. 31, 32</td>
</tr>
<tr>
<td></td>
<td>b. plastic</td>
<td></td>
<td></td>
<td>(2) p. 48</td>
</tr>
<tr>
<td></td>
<td>2. erasing shield</td>
<td></td>
<td></td>
<td>(4) p. 20</td>
</tr>
<tr>
<td></td>
<td>a. metal</td>
<td></td>
<td></td>
<td>(5) pp. 14, 15</td>
</tr>
<tr>
<td></td>
<td>b. plastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Irregular curves</td>
<td>1. types of curves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. french curve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. adjustable curve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. ships curves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. connecting plotted points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Case Instruments</td>
<td>1. minimum requirement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. compass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) large bow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) small bow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) drop bow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) friction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) beam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) sharpening compass lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) chisel point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) conical point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. dividers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) types</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) friction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) proportional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) transferring distances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) dividing lines and arcs into equal segments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. advanced equipment optional</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40
UNIT VI CARE AND USE OF EQUIPMENT (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
</table>
| J. Scales | 1. types of scales
a. architects
b. engineers
c. metric
d. combination
2. materials of scales
a. wood
b. plastic
c. metal
3. shapes of scales
a. triangular
b. flat
c. one bevel
d. two bevel
e. four bevel
| Complete scale measuring exercise. | Large models of scales may be used for classroom demonstration. | (1) pp. 33-37 | (2) pp. 53-57 |
| K. Drawing Techniques | 1. keeping drawings clean
a. dusting powder
b. fix-it spray
2. drawing straight lines
a. horizontal
b. vertical
c. inclined
d. parallel
e. perpendicular
f. angles
g. pencil rotation
3. drawing curved lines
a. arcs
b. circles
c. irregular curves
4. border lines and title strip
5. problem centering | Apply dusting powder to drawing surface. Spray finished drawing.| Demonstrate correct pencil angle and stroke direction. | (4) pp. 12-15 |

Large models of scales may be Appendix

Appendix

Complete student lab projects and assignments.

Unit Test.
UNIT VII GEOMETRİC CONSTRUCTION 7 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify lines, angles, and geometrical figures commonly used in drafting;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate the proper use of geometric construction as a tool in developing technical drawings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Importance of Geometry</td>
<td>Read Chapter. Answer study questions.</td>
<td>Construct models of different geometric shapes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. a study of size and shape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. solving drawing problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. bisecting lines, angles and arcs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. dividing lines, angles, and arcs into equal segments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. erecting perpendiculars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. parallel lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. construction of geometric figures</td>
<td>Construct squares, hexagons, octagons and pentagons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. hexagon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. octagon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. pentagon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. tangent arcs and circles</td>
<td>Construct tangent arcs and circles. Complete student lab projects and assignments. Unit Test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) p. 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) pp. 68, 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) p. 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) p. 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) pp. 69-81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) pp. 70-85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) pp. 40-54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) pp. 60-64</td>
<td></td>
</tr>
</tbody>
</table>
UNIT VIII ORTHOGRAPHIC PROJECTION/MULTIVIEW DRAWING/SHAPE DESCRIPTION 10 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>A. Projection Box</td>
<td>Read Chapter.</td>
<td>Construct a projection box for demonstration purposes.</td>
<td>(1) pp. 86-88</td>
</tr>
<tr>
<td></td>
<td>1. front view</td>
<td>Answer study questions.</td>
<td></td>
<td>(2) pp. 92-93</td>
</tr>
<tr>
<td></td>
<td>2. top view</td>
<td></td>
<td></td>
<td>(5) pp. 32-33</td>
</tr>
<tr>
<td></td>
<td>3. right side view</td>
<td>Use third angle projection.</td>
<td>Construct models of various problems to clarify students' understanding of surface relationship.</td>
<td>(1) pp. 84, 85</td>
</tr>
<tr>
<td></td>
<td>4. left side view</td>
<td>Show height, width, and depth projection between views.</td>
<td></td>
<td>(2) pp. 90-91</td>
</tr>
<tr>
<td></td>
<td>5. rear view</td>
<td>Choose proper views.</td>
<td>Work an example problem step-by-step with students.</td>
<td>(4) p. 39</td>
</tr>
<tr>
<td></td>
<td>6. bottom view</td>
<td>Choose proper number of views.</td>
<td></td>
<td>(5) pp. 33, 34</td>
</tr>
<tr>
<td></td>
<td>B. Drawing an Object Using Third Angle Projection</td>
<td>Locate views properly.</td>
<td>Show a comparison of good and bad line quality.</td>
<td>(1) p. 88</td>
</tr>
<tr>
<td></td>
<td>1. frontal</td>
<td></td>
<td></td>
<td>(2) p. 95</td>
</tr>
<tr>
<td></td>
<td>2. horizontal</td>
<td></td>
<td></td>
<td>(5) p. 34</td>
</tr>
<tr>
<td></td>
<td>3. profile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Choice of Views</td>
<td>D. Location of Views</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. most descriptive view</td>
<td>Center a 3 view drawing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. number of views necessary</td>
<td>Use construction lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT IX DIMENSIONING LE DESCRIPTION

20 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>A. Importance of Dimensioning</td>
<td>Read chapter.</td>
<td></td>
<td>(1) p. 141</td>
</tr>
<tr>
<td></td>
<td>1. accuracy in size description</td>
<td>Answer study questions.</td>
<td></td>
<td>(2) p. 107</td>
</tr>
<tr>
<td></td>
<td>2. completion of description of object</td>
<td></td>
<td></td>
<td>(3) p. 59</td>
</tr>
<tr>
<td></td>
<td>B. Alphabet of Lines</td>
<td></td>
<td></td>
<td>(4) p. 48</td>
</tr>
<tr>
<td></td>
<td>1. extension lines</td>
<td>Use extension lines.</td>
<td></td>
<td>Appendix</td>
</tr>
<tr>
<td></td>
<td>2. dimension lines</td>
<td></td>
<td></td>
<td>(1) p. 142</td>
</tr>
<tr>
<td></td>
<td>3. center lines</td>
<td>Use dimension lines.</td>
<td></td>
<td>(2) p. 108</td>
</tr>
<tr>
<td></td>
<td>4. leaders</td>
<td>Use leaders.</td>
<td></td>
<td>(4) p. 61</td>
</tr>
<tr>
<td></td>
<td>C. Termination of Dimension Lines</td>
<td>Draw arrowheads.</td>
<td></td>
<td>(5) p. 49</td>
</tr>
<tr>
<td></td>
<td>1. arrowhead</td>
<td></td>
<td></td>
<td>(1) p. 144</td>
</tr>
<tr>
<td></td>
<td>2. dot</td>
<td></td>
<td></td>
<td>(2) p. 111</td>
</tr>
<tr>
<td></td>
<td>3. diagonal line</td>
<td></td>
<td></td>
<td>(4) p. 60</td>
</tr>
<tr>
<td></td>
<td>D. Direction of Dimension Figures</td>
<td>Use the Unidirectional system.</td>
<td></td>
<td>(5) p. 48</td>
</tr>
<tr>
<td></td>
<td>1. unidirectional system</td>
<td>Use the aligned system.</td>
<td></td>
<td>(1) p. 145</td>
</tr>
<tr>
<td></td>
<td>2. aligned system</td>
<td></td>
<td></td>
<td>(2) p. 117</td>
</tr>
<tr>
<td></td>
<td>E. Dimensioning Angles</td>
<td>Dimension angles using the linear and coordinate methods.</td>
<td></td>
<td>(4) pp. 61-63</td>
</tr>
<tr>
<td></td>
<td>1. linear dimensioning</td>
<td></td>
<td></td>
<td>(5) pp. 48-49</td>
</tr>
<tr>
<td></td>
<td>2. coordinate dimensioning</td>
<td></td>
<td></td>
<td>(1) p. 146</td>
</tr>
<tr>
<td></td>
<td>F. Dimensioning Arcs and Circles</td>
<td>Dimension arcs and circles.</td>
<td></td>
<td>(2) p. 114</td>
</tr>
<tr>
<td></td>
<td>G. Finish Symbols</td>
<td>Use finish symbols.</td>
<td></td>
<td>(4) p. 61</td>
</tr>
<tr>
<td></td>
<td>1. finish marks</td>
<td>Use surface roughness symbols.</td>
<td></td>
<td>(5) p. 48</td>
</tr>
<tr>
<td></td>
<td>2. surface roughness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Geometric Breakdown</td>
<td>Use size and location dimensions.</td>
<td></td>
<td>(1) pp. 148-151</td>
</tr>
<tr>
<td></td>
<td>1. size dimension</td>
<td></td>
<td></td>
<td>(2) pp. 112 & 115</td>
</tr>
<tr>
<td></td>
<td>2. location dimension</td>
<td></td>
<td></td>
<td>(4) pp. 61-63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5) p. 48</td>
</tr>
</tbody>
</table>
UNIT IX .dimensions/size description (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. local</td>
<td></td>
<td>Use local and general notes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. general</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Dimension Figures</td>
<td></td>
<td>Dimension with whole numbers and fractions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. whole numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Abbreviations</td>
<td></td>
<td>Use proper abbreviations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. radius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. countersink</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. counterbore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. spot face</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. stock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. thread</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. center line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. millimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Methods of Dimensioning</td>
<td></td>
<td>Use consecutive and progressive methods of dimensioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. consecutive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. progressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Limit dimensioning</td>
<td></td>
<td>Use limit dimensioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Tolerance Dimensioning</td>
<td></td>
<td>Use unilateral and bilateral tolerance dimensioning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. Decimal System</td>
<td></td>
<td>Use decimal dimensioning.</td>
<td>Display decimal (equivalent) chart.</td>
<td></td>
</tr>
<tr>
<td>OBJECTIVES/TIME ALLOTMENT</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>UNIT IX DIMENSIONING/SIZE DESCRIPTION (Continued)</td>
<td>P. Metric System</td>
<td>Use metric dimensioning. Complete student lab projects and assignments. Unit Test.</td>
<td>Metric converter may be used to show relationship between metric and English measurements.</td>
<td>(2) PP. 56, 536-539 (4) p. 64 (5) p. 69</td>
</tr>
<tr>
<td>TOPICS</td>
<td>STUDENT ACTIVITIES</td>
<td>TEACHER ACTIVITIES</td>
<td>RESOURCES</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>A. Use of Pictorial Drawings</td>
<td>Read chapter. Answer study questions. Collect examples of pictorial drawings.</td>
<td>Display various types of pictorial drawings.</td>
<td>(1) p. 307 (2) p. 230 (4) p. 97 (5) p. 72</td>
<td></td>
</tr>
<tr>
<td>1. To supplement working drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. To enable laymen to visualize the design represented</td>
<td></td>
<td></td>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>1. oblique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. cabinet</td>
<td></td>
<td></td>
<td>(1) p. 311 (2) pp. 234-235 (4) p. 101 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>b. cavalier</td>
<td></td>
<td></td>
<td>(1) p. 311 (2) p. 235 (4) pp. 104-105 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>2. isometric</td>
<td></td>
<td></td>
<td>(1) pp. 312-321 (2) pp. 236-242 (4) p. 103 (5) pp. 74-75</td>
<td></td>
</tr>
<tr>
<td>3. perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. one point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. two point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Oblique Axis</td>
<td>Use the various oblique axes.</td>
<td></td>
<td>(1) p. 311 (2) pp. 234-235 (4) p. 101 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>1. variation of direction</td>
<td></td>
<td></td>
<td>(1) p. 311 (2) p. 235 (4) pp. 104-105 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>2. variation of angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Isometric Axis</td>
<td>Use the various angles of the isometric axis.</td>
<td></td>
<td>(1) p. 311 (2) pp. 234-235 (4) p. 101 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>1. variation of direction</td>
<td></td>
<td></td>
<td>(1) p. 311 (2) p. 235 (4) pp. 104-105 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>2. angle of axis</td>
<td></td>
<td></td>
<td>(1) pp. 312-321 (2) pp. 236-242 (4) p. 103 (5) pp. 74-75</td>
<td></td>
</tr>
<tr>
<td>E. Lines in an Isometric Drawing</td>
<td>Construct drawings with isometric and non-isometric lines.</td>
<td></td>
<td>(1) p. 311 (2) pp. 234-235 (4) p. 101 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>1. isometric</td>
<td></td>
<td></td>
<td>(1) p. 311 (2) p. 235 (4) pp. 104-105 (5) p. 73</td>
<td></td>
</tr>
<tr>
<td>2. non-isometric</td>
<td></td>
<td></td>
<td>(1) pp. 312-321 (2) pp. 236-242 (4) p. 103 (5) pp. 74-75</td>
<td></td>
</tr>
<tr>
<td>F. Angles in Pictorial Drawings</td>
<td>Construct arcs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Arcs and Circles in Pictorial Drawings</td>
<td>Construct circles in pictorial drawings.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT X PICTORIAL DRAWINGS (Continued)

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. One-Point Perspective Drawing</td>
<td>1. front view projection a. horizon line b. vanishing point c. ground line 2. station point projection a. horizon line b. ground line c. vanishing point d. top view e. picture plane line</td>
<td>Construct one-point perspective drawings.</td>
<td></td>
<td>(1) pp. 322-326 (2) pp. 244-247 (4) p. 103 (5) p. 81</td>
</tr>
<tr>
<td>I. Two-Point Perspective</td>
<td>1. ground line 2. picture plane line 3. horizon line 4. station point 5. two vanishing points 6. line of sight/true length line 7. top view 8. elevation view</td>
<td>Construct two-point perspective drawings.</td>
<td></td>
<td>(1) p. 232 (2) pp. 246-251 (4) p. 103 (5) p. 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT XI SECTIONAL DRAWINGS

OBJECTIVES/TIME ALLOTMENT

Upon completion of this unit, the student will be able to:

- Draw the various types of sectional views and breaks and dimension each type;
- Identify the different materials by the use of section lining symbols;
- Describe the advantages of sectional drawings;
- Use the correct symbols and lines to communicate the interior details of an object through the use of standard sectioning properties.

<table>
<thead>
<tr>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Purpose of Sectional Drawings</td>
<td>Read chapter. Answer study questions. Collect examples of sectional drawings from magazines.</td>
<td>Model cut-aways or object may be used to show interior detail such as small engines, values, etc.</td>
<td>(1) p. 193</td>
</tr>
<tr>
<td>1. show interior detail of an object</td>
<td></td>
<td></td>
<td>(2) p. 173</td>
</tr>
<tr>
<td>2. show the complex operation of an object</td>
<td></td>
<td></td>
<td>(4) p. 89</td>
</tr>
<tr>
<td>B. Cutting Plane Line</td>
<td>Draw cutting plane lines.</td>
<td>Scribe students triangles with a line 1/8: from edge to be used for section lining. A large bow compass can be used for this procedure.</td>
<td>(5) p. 55</td>
</tr>
<tr>
<td>1. show edge of cutting plane</td>
<td></td>
<td></td>
<td>(1) p. 193</td>
</tr>
<tr>
<td>2. location of cutting plane</td>
<td></td>
<td></td>
<td>(2) p. 175</td>
</tr>
<tr>
<td>3. equal dash cutting plane line</td>
<td></td>
<td></td>
<td>(4) p. 92</td>
</tr>
<tr>
<td>4. alternate dash cutting plane line</td>
<td></td>
<td></td>
<td>(5) p. 56</td>
</tr>
<tr>
<td>C. Section Lining Symbols</td>
<td>Draw the various section lining symbols.</td>
<td></td>
<td>(1) pp. 193-201</td>
</tr>
<tr>
<td>1. General purpose symbol</td>
<td></td>
<td></td>
<td>(2) pp. 176-182</td>
</tr>
<tr>
<td>a. 45° angle section lines</td>
<td></td>
<td></td>
<td>(4) p. 92</td>
</tr>
<tr>
<td>b. 1/8" section line spacing</td>
<td></td>
<td></td>
<td>(5) p. 56</td>
</tr>
<tr>
<td>c. opposite angle section line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. other symbols-see reference material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Types of Sections</td>
<td>Construct full, half, offset, broken-out, and removed section drawings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. full section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. half section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. offset section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. broken-out section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. removed section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) p. 193 (2) p. 173 (4) p. 89 (5) p. 55 (1) p. 193 (2) p. 175 (4) p. 92 (5) p. 56
UNIT XI SECTIONAL DRAWINGS (continued)

<table>
<thead>
<tr>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Conventional Breaks</td>
<td>Construct conventional breaks.</td>
<td></td>
<td>(1) pp. 201-202</td>
</tr>
<tr>
<td>1. "S" break</td>
<td></td>
<td></td>
<td>(2) pp. 184-186</td>
</tr>
<tr>
<td>a. pipe</td>
<td></td>
<td></td>
<td>(5) p. 56</td>
</tr>
<tr>
<td>b. solid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. rectangular break</td>
<td>Complete student lab projects and assignments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Test.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT XII AUXILIARY VIEWS

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>A. Purpose of an Auxiliary View</td>
<td>Read chapter.</td>
<td>Large scale models may be used to show the relationship of inclined surfaces and the necessity for showing true size and shape.</td>
<td>(1) p. 213</td>
</tr>
<tr>
<td>Illustrate the purpose of auxiliary views and apply the principles of auxiliary projection in the construction of auxiliary view drawings;</td>
<td>1. describes true size and shape of an inclined surface</td>
<td>Answer study questions.</td>
<td>(2) p. 137</td>
<td></td>
</tr>
<tr>
<td>Explain the relationship of the auxiliary plane to the regular planes of projection;</td>
<td>2. describes special features of an object not perpendicular to the normal planes of projection</td>
<td></td>
<td>(4) pp. 90-91</td>
<td></td>
</tr>
<tr>
<td>Demonstrate the use of three types of auxiliary reference planes;</td>
<td>B. Kinds of Auxiliary Views</td>
<td></td>
<td>(5) p. 53</td>
<td></td>
</tr>
<tr>
<td>Illustrate a curved surface on an auxiliary plane.</td>
<td>1. primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. folding plane line</td>
<td></td>
<td>(2) p. 139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. center line</td>
<td></td>
<td>(4) pp. 90-91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. reference line</td>
<td></td>
<td>(5) pp. 53-55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Steps in Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Plotting Curves</td>
<td>Plot curves on auxiliary view drawings.</td>
<td></td>
<td>(1) p. 215</td>
</tr>
<tr>
<td></td>
<td>Complete student lab projects and assignments.</td>
<td></td>
<td>(2) p. 139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Test.</td>
<td></td>
<td>(4) p. 93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) p. 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) p. 217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) p. 142</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) p. 94</td>
<td></td>
</tr>
</tbody>
</table>
UNIT XIII THREAD REPRESENTATION 10 Hours

<table>
<thead>
<tr>
<th>OBJECTIVES/TIME ALLOTMENT</th>
<th>TOPICS</th>
<th>STUDENT ACTIVITIES</th>
<th>TEACHER ACTIVITIES</th>
<th>RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upon completion of this unit, the student will be able to:</td>
<td>A. Development and Functions of Threaded Fasteners</td>
<td>Read chapter. Answer study questions.</td>
<td>Build a display board showing the various types of threaded fasteners.</td>
<td>(1) p. 239 (2) p. 192</td>
</tr>
<tr>
<td>Describe the basic use of threaded fasteners;</td>
<td>B. Standardization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make drawings of threads using the simplified and schematic types of thread representation;</td>
<td>1. American Standard screw threads 2. Unified screw threads 3. ANSI metric fasteners standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Give a brief outline of the development and functions of threaded fasteners.</td>
<td>C. Application of Screw Threads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. hold parts together 2. adjust parts 3. transmit power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Thread Terminology</td>
<td>Write thread notes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. thread nomenclature 2. thread notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Types of Threaded Fasteners</td>
<td>Draw square and hex bolt heads.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. bolts a. hex head b. square head 2. Screws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Schematic Representation</td>
<td>Draw internal and external schematic thread representations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. internal 2. external</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Simplified Representation</td>
<td>Draw internal and external simplified thread representations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. internal 2. external</td>
<td>Complete student lab projects and assignments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit Test.</td>
<td></td>
</tr>
</tbody>
</table>
UNIT XIV WORKING DRAWINGS

OBJECTIVES/TIME ALLOTMENT

Upon completion of this unit, the student will be able to:

- Identify the major types of working drawings and describe the purpose of each;
- Draw an approved type of title block, bill of materials, and other schedules necessary in making a finished working drawing.
- Produce a working drawing as assigned.

TOPICS

<table>
<thead>
<tr>
<th>A. Application of Working Drawings</th>
<th>B. Methods of Layout for Working Drawings</th>
<th>C. Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. to show size, shape and specifications of an object</td>
<td>1. detail drawing</td>
<td>1. materials and parts list</td>
</tr>
<tr>
<td>2. to show how an object is serviced or put together</td>
<td>2. assembly drawing</td>
<td>2. notes</td>
</tr>
</tbody>
</table>

STUDENT ACTIVITIES

- Read Chapter.
- Answer study questions.
- Layout detailed and assembly drawings.
- Layout materials and parts list.
- Letter all necessary notes on a working drawing.
- Complete student lab project and assignments.
- Unit Test

TEACHER ACTIVITIES

- Display various professional drawings depicting detail and assembly representations with notes, specifications, and title blocks.
- Read Chapter.
- Answer study questions.
- Layout detailed and assembly drawings.
- Letter all necessary notes on a working drawing.
- Complete student lab project and assignments.
- Unit Test

RESOURCES

- Display various professional drawings depicting detail and assembly representations with notes, specifications, and title blocks.
- (1) pp. 267-271
- (2) pp. 214-215
- (1) pp. 269-274
- (2) pp. 216-222
- (1) p. 279
- (2) pp. 222-224
THE FIRST GROUP OF LETTERS SELECTED FOR STUDY AND PRACTICE ARE THOSE FORMED BY INCLINED AND HORIZONTAL LINES. STUDY THE SHAPE, PROPORTION, AND ORDER OF STROKES FOR EACH LETTER. THEN TRY TO MAKE EACH LETTER AS NEARLY LIKE THE COPY AS YOU CAN.

IN THE SPACE BELOW, FORM WORDS AND SENTENCES USING ONLY THE LETTERS PRACTICED ON THIS SHEET
The second group of letters selected for study and practice are those which have strokes varying from the standard 67½°.
THE FOLLOWING LETTERS ARE FORMED BY A COMBINATION OF CURVED AND SLANT STROKES. STUDY THE SHAPE, PROPORTION, AND ORDER OF STROKES OF EACH LETTER. MAKE THE LETTERS AS NEARLY LIKE THE COPY AS YOU CAN.
GROUPS N, M, & W - O, C, Q, G & S

The letters N, M, and W are studied together because of the similarity of strokes and the added widths of the M and the W.

Wide spacing: Closed side next to a closed side.

Narrow spacing: Open side next to an open side.

The letters O, C, Q, G, & S are formed with curved strokes.
DIMENSION NUMBERS MUST BE CORRECTLY SHAPED TO CONVEY CLEAR, ACCURATE INFORMATION.

NARROW SPACING

MEDIUM SPACING

NARROW SPACING

NARROW SPACING

NARROW SPACING

NARROW SPACING

NARROW SPACING

NARROW SPACING

SCHOOL

LETTERING SHEET 5

DATE

HOUR

QUALITY

NAME
CARE SHOULD BE TAKEN TO GROUP THE LETTERS INTO WORDS SO THAT THE SPACES BETWEEN THE LETTERS APPEAR EQUAL.

YOU WILL FIND THAT YOU CAN IMPROVE YOUR SPACING BY OBSERVING THESE THREE SIMPLE RULES.

ONE—WHEN THE OPEN SIDE OF A LETTER (FOR EXAMPLE, E—OPEN SIDE), IS NEXT TO THE OPEN SIDE OF ANOTHER LETTER (FOR EXAMPLE, OPEN SIDE — T), USE A NARROW SPACE.

TWO—WHEN THE OPEN SIDE OF A LETTER IS NEXT TO THE CLOSED SIDE OF ANOTHER (FOR EXAMPLE, CLOSED SIDE — H), USE A MEDIUM SPACE.

THREE—WHEN A CLOSED SIDE IS NEXT TO A CLOSED SIDE (FOR EXAMPLE, HE), USE A WIDE SPACE.

THE SPACE BETWEEN WORDS IS EQUAL TO THE HEIGHT OF THE LETTER.
COMPLETE DIMENSIONS ARE MADE UP OF EXTENSION LINES, DIMENSION LINES, ARROWHEADS, FIGURES, NOTES AND FINISH MARKS.

The ratio of the height of the fraction to the whole number is five spaces to three.

A clear space should be left above and below the division line of the fraction.

COMPLETE THE GIVEN DIMENSIONS

FINISH MARK TO INDICATE SURFACES TO BE MACHINED

SURFACE ROUGHNESS SYMBOL USED TO MEASURE QUALITY OR DEGREE OF ROUGHNESS

THE CHARACTER "&" IS THE SYMBOL FOR THE WORD AND.
Suggested Method for Centering a Three View Orthographic Projection Problem within the Working Space on a Drawing Sheet.

Horizontal Spacing:

Step 1: Add Width of object
 Space between views
 + Depth of object
 Total space to be used

Step 2: Subtract the total space to be used from the horizontal working space.

Step 3: Divide the remainder by two (2), which will result in the horizontal spacing figure.

Vertical Spacing:

Step 1: Add Height of object
 Space between views
 + Depth of object
 Total space to be used

Step 2: Subtract the total space to be used from the vertical working space.

Step 3: Divide the remainder by two (2), which will result in the vertical spacing figure.
Horizontal Spacing:

- **Step # 1** Add
 \[
 \begin{array}{c}
 3 \\
 +2 \\
 \hline
 6
 \end{array}
 \]

- **Step # 2** Subtract
 \[
 \begin{array}{c}
 10\frac{1}{2} \\
 -6 \\
 \hline
 4\frac{1}{2}
 \end{array}
 \]

- **Step # 3** Divide
 \[
 4\frac{1}{2} \div 2\frac{1}{2} = 2\frac{1}{8}
 \]

 2\frac{1}{8} Spacing Figure

Vertical Spacing:

- **Step # 1** Add
 \[
 \begin{array}{c}
 2 \\
 +2 \\
 \hline
 5
 \end{array}
 \]

- **Step # 2** Subtract
 \[
 \begin{array}{c}
 7-3/8 \\
 -5 \\
 \hline
 2-3/8
 \end{array}
 \]

- **Step # 3** Divide
 \[
 2-3/8 \div 2 = 1-3/16
 \]

 1-3/16 Spacing Figure
Centering Problem Example:

Paper Size 8½" x 11"
Border Line 1/4"

Title Strip Placed Horizontal at Bottom of Sheet

PROBLEM: To center a three view drawing.

Top View

Front

R. Side

Width

Height

Depth

Working Space

Horizontal = 10½"
Vertical = 7-3/8"

(Space between views will—or should be—determined by the drawer.)
The space between the views may differ. The vertical space can be larger

smaller than the horizontal space.
Suggested Method for Centering an Isometric Drawing Within the Working Space on a Drawing Sheet.

Horizontal Centering

Step 1: Using light construction lines, layout the width and depth of the object (as shown in Figure 1).

Step 2: Measure the distance "x" (as shown in Figure 2) and divide this figure by 2.

Step 3: This distance (1/2x) is now laid-off from the vertical border lines toward the center of the paper (as shown in Figure 3). This will center the problem horizontally.

Vertical Centering

Step 1: Layout the height and depth of the object (as shown in Figure 4).

Step 2: Measure the distance "Y" (as shown in Figure 5) and divide this figure by two.

Step 3: This distance (1/2Y) is now laid-off from the top border line and the top line of the title strip (as shown in Figure 6). This will center the problem horizontally.

Placing the Problem on the Sheet

Step 1: Transfer distance "A" (as shown in Figure 7). This will locate the starting point of the isometric axis.

Step 2: From the starting point found in Step 1, construct the isometric axis and develop the isometric box (Figure 8), from which the problem will be further developed.
Purpose:

This evaluation is an effort by your instructor to ascertain his/her teaching effectiveness and the usefulness of course materials. It is designed to provide suggestions on how the course can be improved and be made more relevant to students' needs. Your cooperation will be greatly appreciated.

Instructions:

Below are a list of qualities dealing with the course and the instructor. You are asked to evaluate these qualities on a scale of four to one. Four is the highest ranking, and one is the lowest ranking. Any comments you wish to add may be included on the back of this sheet.

1. The class sessions and lectures were well organized.
2. The course textbook was very helpful as a learning device.
3. The course was interesting and enjoyable.
4. The course material satisfied my educational needs in this area.
5. The tests used in the course contributed to greater learning.
6. Material presented in the course was easy to learn and to apply.
7. The instructor displayed a sense of professionalism and dignity in the class.
8. The instructor seemed personable and genuinely interested in students.
9. The instructor has a thorough knowledge of his subject matter.
10. The variety of presentational methods was good.
11. The instructor displayed a sense of humor.
12. The instructor was clear in his explanation of course material and assignments.
13. The instructor always seemed prepared for class meetings.
14. The instructor always displayed a pleasant appearance in dress.
15. The instructor encouraged all students to participate.

<table>
<thead>
<tr>
<th>Rankings</th>
<th>Highest</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
GRADING CHART FOR TECHNICAL DRAFTING

<table>
<thead>
<tr>
<th>Work is above Criticism</th>
<th>A in every item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacking slightly in not</td>
<td>B more than 1 item</td>
</tr>
<tr>
<td>Lacking slightly in not</td>
<td>C more than 2 items</td>
</tr>
<tr>
<td>Lacking seriously in one</td>
<td>D item generally lacking</td>
</tr>
</tbody>
</table>

This kind of work should be done over
- Crumpled, Inaccurate, Carelessly lettered, Crumpled, Omitted drawing, Guide lines.
- Ragged edges, Do not roll drawings, Highland drawing

Other considerations: Industry, speed, judgment, application, general knowledge, consideration of others, and teacher.

<table>
<thead>
<tr>
<th>Neatness</th>
<th>Accuracy</th>
<th>Line Quality</th>
<th>Lettering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neatness -</td>
<td>The absence of undesirable marks from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Measuring</td>
<td>5. Finger marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Needlepoints</td>
<td>6. High spot rubs (T-square)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Tacking</td>
<td>7. Crumpling from rolling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Erasures</td>
<td>8. Soil or markings in any way</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy -</td>
<td>The measure of perfection in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Tangency</td>
<td>5. Balancing views</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Dimensioning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Quality</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Quality-</td>
<td>The quality of and conventional correctness of lines:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Construction conforming to standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Weight conforming to standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Uniform weight of same class lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Clean cut and not worked over</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Limitations correct for center lines, extension, and other lines with breaks.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lettering</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lettering</td>
<td>The quality of the free-hand work on plate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Standard inclination (vertical or incline lettering)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Consistent inclination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Standard height for purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Consistent height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Guide lines used consistently throughout drawing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Lettering composition—correct spacing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Work spacing as necessary to drawing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Spelling</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suggested projects and drawing assignments for Basic Technical Drafting course:

Unit 4 - Lettering

Handout sheet - (Appendices. 1, 2, 3, 4, 5, 6, and 7)

Unit 5 - Sketching Problems

Fig. 2-75 (2, 38)
Fig. 2-82 (2, 38)
Fig. 2-83 (2, 38)
Fig. 2-93 (2, 38)

Unit 6 - Core and Use of Equipment

Fasten drawing sheet to board. Fig. 3-9 (2, 46)
Draw lines with T-square and triangle. Fig. 3-23 (2, 52)
Divide circle into 24 angles of 15°. Fig. 3-23 (2, 52)
Draw parallel lines. Fig. 3-24 (2, 52)
Draw perpendicular lines. Fig. 3-25 (2, 53)
Complete scale exercises. Handout sheet. (Appendix 8)
Draw circles and arcs. Fig. 3-44 (2, 59)
Draw sheet metal pattern. Fig. 3-58 (2, 64)
Draw template. Fig. 3-65 (2, 64)
Draw international danger road sign. Fig. 3-68 (2, 64)
Draw highway warning sign. Fig. 3-69 (2, 64)
Draw armature support. Fig. 3-72 (2, 65)
Draw round gasket. Fig. 3-75 (2, 65)

Unit 7 - Geometric Construction

Bisect a straight line. Fig. 4-4 (2, 71)
Bisect an angle. Fig. 4-15 (2, 74)
Divide a line into equal spaces. Fig. 4-5 (2, 71)
Erect a perpendicular. Fig. 4-7 (2, 72)
Draw parallel lines. Fig. 4-12 (2, 73)
Draw a square. Fig. 4-23 (2, 77)
Draw a pentagon. Fig. 4-27 (2, 78)
Draw a hexagon. Fig. 4-28, 4-29 (2, 78)
Draw an octagon. Fig. 4-31 (2, 79)
Construct an arc tangent to two straight lines. Fig. 4-38 (2, 81)
Construct an arc tangent to two given arcs. Fig. 4-40 (2, 82)
Unit 8 - Orthographic Projection/Multi-View Drawing - Shape Description

- Draw step block. Fig. 5-38 (2, 102)
- Draw V-block. Fig. 5-40 (2, 102)
- Draw cradle. Fig. 5-43 (2,102)
- Draw shaft support. Fig. 5-53 (2, 104)
- Draw swivel arm. Fig. 5-55 (2,104)

Unit 9 - Dimensioning--Size Description

- Draw and fully dimension dovetail slide. Fig. 5-48 (2,104)
- Draw and fully dimension base. Fig. 5-52 (2,104)
- Draw and fully dimension double shaft support. Fig. 6-87 (2,136)
- Draw and fully dimension pipe support. Fig. 6-91 (2,136)
- Draw and fully dimension stop plate. Fig. 5-92 (2,136)

Unit 10 - Pictorial Drawing

- Draw an oblique of the spacer. Fig. 12-58 (2,253)
- Draw an oblique of the idler spool. Fig. 12-58 (2,253)
- Draw an oblique of the bearing. Fig. 12-60 (2,255)
- Draw an isometric of the concrete step. Fig. 12-57 (2,252)
- Draw an isometric of the brace. Fig. 12-57 (2,252)
- Draw an isometric of the cube. Fig. 12-14 (2,236)
- Draw an isometric of the post support. Fig. 12-28 (2, 254)
- Draw a 1-point perspective of letter N. Fig. 12-61 (2, 256)
- Draw a 2-point perspective of V-block. Fig. 12-61 (2, 256)

Unit 11 - Sectional Drawings

- Draw the break symbols for cylinders and pipes. Fig. 9-46 (2, 186)
- Draw "A" full section. Fig. 9-49 (2, 187)
- Draw "D" half section. Fig. 9-49 (2, 187)
- Draw "J" full section. Fig. 9-49 (2, 187)
- Draw "L" half section. Fig. 9-49 (2, 187)
- Draw "E" offset section. Fig. 9-50 (2, 188)
- Draw "K" full section. Fig. 9-50 (2, 189)
- Draw adjusting plate-broken-out. Fig. 9-55 (2, 189)

Unit 12 - Auxiliary Drawings

- Draw auxiliary drawings for the six problems. Fig. 7-32 (2,150)

Unit 13 - Thread Representation

- Draw schematic representation of Fig. 10-48. (2, 210)
Unit 13 (Continued)

Draw simplified representation of Fig. 10-49. (2, 210)
Draw simplified representation of regular hexagonal nut. Fig. 10-51 (2, 211)
Draw schematic representation of regular square bolt. Fig. 10-53 (2, 211)

Unit 14 - Working Drawings

Draw the trammel. Fig. 11-20 (2, 226)
Draw the level. Fig. 11-25 (2, 228)
EXAMPLE OF DAILY LESSON PLAN

COURSE: BASIC TECHNICAL DRAFTING

TEACHER: GPADE 9 - 12

LESSON TITLE: DATE

RESOURCES AND MATERIALS:

TEXTBOOK: MECHANICAL DRAWING 8th ED - FRENCH
ARCHITECTURE - KICKLIGER
MACHINE DRAFTING - YANKEE

STUDENT NEEDS:

DRAWING EQUIPMENT TOOL TRAY TEXT BOOK
PENCIL/PEN DRAWING BOARD HANDOUT SHEETS
NOTEBOOK REFERENCE MATERIAL

TEACHER NEEDS:

BLACKBOARD TRANSPARENCIES HANDOUT SHEETS
OVERHEAD CHALK/MARKERS FILMSTRIP
CASSETTE PLAYER TEXT/ANSWER SHEET PROJECTOR
MODELS/WOOD/METAL/ 16 mm PROJECTOR SLIDE PROJECTOR
PAPER

ANTICIPATORY SET: INSTRUCTIONAL PRE-VIEW REVIEW QUESTIONS/ANSWER SHEET DISCUSSION

BEHAVIORAL OBJECTIVE: STUDENT WILL BE ABLE TO:

INPUT:

EXPLANATION ILLUSTRATION LECTURE/DISCUSSION
READ CHAPTER AUDIO-VISUAL GROUP WORK
DEMONSTRATION PRESENTATION DISCUSSION/TEACHER/
COMPLETE HANDOUT CHALKBOARD STUDENT
SHEET DEMONSTRATION AND DRAWING PRESENTATION

CHECK FOR UNDERSTANDING:

ORAL SIGNALS/QUESTIONS SILENT SIGNALS WRITTEN SIGNALS

GUIDED PRACTICE:

TEACHER ACTIVITIES:

SUPERVISE INDIVIDUAL LABORATORY (STUDENTS)
WORK STATION
SUPERVISE GROUP LABORATORY WORK
SOLVING DRAWING ASSIGNMENT PLAN
ANSWERING STUDY QUESTIONS CHAPTER PAGE
SKETCHING/SOLVING PROBLEM ASSIGNMENT

EVALUATION/CLOSURE:

QUIZ TEST UNIT QUESTIONS/ANSWERS PROBLEM SOLVING
STUDENT LABORATORY PROJECTS/ASSIGNMENTS SKETCHES
HOMEWORK PRACTICE ASSIGNMENTS

HOMEWORK ASSIGNMENT:

READ CHAPTER PAGE
COMPLETE HANDOUT SHEET
COMPLETE SKETCH SHEET

COMMENTS:

NOTES:
SCALE EXERCISE

<table>
<thead>
<tr>
<th>SCALE</th>
<th>LENGTH</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6″ = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2″ = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/16" = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2″ = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8" =1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4″ = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/32" = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4" =1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3″ = 1'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1″ = 1″</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure the distance between the vertical lines using the given scale. Place the length measurement in the center blank and the ratio above the line on the right.
Suggested Classroom Rules and Regulations Students Should Follow

1. Talking is absolutely forbidden:
 - whenever the teacher is talking.
 - whenever any test, examination or quiz is in progress.
 - whenever any other student has the floor.
 - whenever there is any kind of audio-visual presentation in progress, such as a film, filmstrip, etc.

2. Do not talk loudly.

3. Do not make disrespectful remarks to the teacher.

4. Do not bring radios, tape players, or other entertainment devices to class.

5. Do not leave paper or trash in the desks or on the floor.

6. Do not mark or otherwise deface school property. This includes desks, floors, walls, chairs, books, etc.

7. Do not move to another seat other than the one assigned to you without prior approval of the teacher.

8. Do not be tardy to class.

9. Do not leave the classroom without a hall pass.

10. Do not congregate in the doorway before or after class.

11. Do not enter the office and storage room, and do not open cabinets without prior permission to do so.

12. Do all work in class under the teacher's supervision. Only supplementary work or drawings may be done outside of class.

13. Complete all makeup work no later than five days after an absence.

14. Do not do work from other classes in the drafting class without special permission.

15. Other than for official meetings, do not leave to go to another teacher's room without a written note from that teacher and approval from the drafting teacher.
16. Use cover sheets for all quizzes and tests.

17. Use five minutes at the end of each hour to cleanup and put away equipment and materials (only five (5) minutes)—a signal will be given by the teacher for the start of this cleanup.

18. Remain seated at your desk until dismissed by the teacher (not when the bell rings).

19. Be sure that your desk and stool is in order before leaving the class.

20. Enter and exit through the front door only.
I. Students will be expected to bring the following materials to class each day:

1. notebook
2. pencil
3. textbook (when issued)
4. drawing equipment and materials

II. Students will be expected to be in their assigned seats and prepared to begin class when the tardy bell rings.

III. Students will be courteous and respectful to their classmates as well as to the teacher during class activities by listening while others speak.
MEASURING ACHIEVEMENT

The following are sample or suggested test questions for each unit of study. The following test questions are by no means complete nor exhaustive. They are merely a representation of some of the better material available. Also included are suggested directions for examinations.

General Directions

This test consists of five parts: true and false, matching, multiple choice, completion, and listing. There will be 50 minutes allotted for the test. Read the instructions carefully. If there are questions, please ask them before the class starts the test. If there are urgent questions while taking the test, raise your hand. Upon completion of the test, turn your paper over and remain quietly in your seat. Begin.

True and False Test:

Read the complete statement. If the statement is true, circle the T; if the statement is false, circle the F.

Matching:

In the blank at the left of the item number, record the letter of the description in the right column which identifies the item.

Multiple Choice:

In the blank at the left of the item number, record the letter of the answer that makes the statement correct.

Completion:

Fill in each blank with a word or words that complete(s) the statement correctly.

Listing:

In the spaces provided, list concisely the information called for in each question.
BASIC TECHNICAL DRAFTING

Exam Unit II

Safety in the Drafting Room

1. List four pieces of equipment that can be hazardous when used improperly.
 1.
 2.
 3.
 4.

2. List four personal safety practices that are to be followed.
 1.
 2.
 3.
 4.

3. List four things that can create hazards related to improper student behavior and room arrangement.
 1.
 2.
 3.
 4.
Sample Test Questions for Unit 4
Lettering Techniques

1. Guide lines for lettering should be drawn so that they are barely visible.
2. Guide lines should be erased once the lettering is constructed.
3. "Single stroke" means that the widths of the lines which form the letters do not vary.
4. To keep your pencil point sharp when lettering, the pencil should be rotated every few strokes.
5. Guide lines should be drawn for both the tops and bottoms of letters.
6. A combination of both vertical and inclined lettering may be used on any one drawing.
7. The center column of holes on the Ames lettering guide is for guide lines for fractions.
8. Pencil letters can be best made with a medium-soft pencil with a conical point.
10. The complete height of a fraction is the height of the whole numeral.
11. The widest letter in the alphabet is the widest letter in the alphabet.
12. On working drawings, letters are generally made high.
13. For capital letters, the central horizontal stroke of the letters B, E, H, and F are drawn slightly the center line.
14. To give a pleasing appearance, the area between each letter must appear to be.
Answers to sample test questions.

1. T
2. F
3. T
4. T
5. T
6. F
7. T
8. T
9. Five
10. Twice
11. W
12. 1/8"
13. Above
14. Equal
Sample Test Questions for Unit 5
Sketching

1. In freehand sketching, long lines are generally drawn in a single stroke from left to right.
 T F

2. Sketches are drawn in proportion; however, in some cases a freehand sketch is drawn approximately to scale on section paper.
 T F

3. When drawing a straight line, it helps to keep your eye on the pencil point and the beginning point.
 T F

4. The isometric sketch is the most used pictorial sketch.
 T F

5. One of the following is not needed for sketching:
 (a) any pencil
 (b) pencil eraser
 (c) compass
 (d) paper

6. One of the following is not a good way to sketch straight lines:
 (a) freely sketched
 (b) dash to dash
 (c) overlapping dashes
 (d) with a straight edge

7. What type of pencil point is best for sketching?
 (a) chisel
 (b) flat
 (c) conical
 (d) none of these
Unit 5 Sketching

Answers to sample test questions.

1. F
2. T
3. F
4. T
5. C
6. D
7. C
1. A pencil is rotated when drawing a line:
 (a) to relieve pressure on the fingers
 (b) to prevent wear and tear on the lead
 (c) to produce a uniform line
 (d) to make the pencil point last longer.

2. A divider is used to:
 (a) transfer a dimension
 (b) take measurement directly from the architect scale
 (c) draw circles
 (d) prick holes in the paper.

3. Triangles are used in conjunction with the T-square:
 (a) to draw vertical lines
 (b) to draw margin lines
 (c) to draw lines of 90°, 60°, 45°, 30°, 15°, 75°
 (d) all of the above.

4. When drawing a circle the compass is set to:
 (a) half the radius
 (b) half the circumference
 (c) half the diameter
 (d) the diameter.

5. The irregular or French curve is used for:
 (a) drawing circles
 (b) drawing non-circular curves
 (c) (a) and (b) above
 (d) none of the above.
Answers to sample test questions.

1. C
2. A
3. D
4. C
5. B
Sample Test Questions for Unit 7
Geometric Construction

1. Construct a line parallel to the given line AB and through point C.

2. Construct a line parallel to the given line and 1/2" perpendicular distance from it.

3. Construct a line perpendicular to the given line.

4. Construct a 7/8" diameter circle tangent to the given line.

5. Construct a hexagon with the distance across flat equal to 1".
Sample Test Questions for Unit 8
Orthographic Projection (Shape Description)

1. Which of the following planes is not a principal plane in orthographic projection?
 (a) horizontal
 (b) profile
 (c) oblique
 (d) frontal

2. In orthographic projection, what relationship exists between the projectors (projection lines) and the principal planes?
 (a) 45 degrees
 (b) 90 degrees
 (c) parallel
 (d) no relationship

3. Each orthographic view has two dimensions. In the spaces below, list the dimensions (height, width, or depth) contained in each view.

<table>
<thead>
<tr>
<th>View</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) top</td>
<td></td>
</tr>
<tr>
<td>(b) front</td>
<td></td>
</tr>
<tr>
<td>(c) bottom</td>
<td></td>
</tr>
<tr>
<td>(d) rear</td>
<td></td>
</tr>
</tbody>
</table>

4. List the six views possible in orthographic projection.
 (a) (d)
 (b) (e)
 (c) (f)
Answers to sample test questions.

1. C

2. B

3. **View**

 Dimensions

 (a) Top width depth
 (b) front width height
 (c) bottom width depth
 (d) rear width height

4. Front, top, r-side, L-side rear, bottom
Sample Test Questions Unit 9
(Dimensioning (Size Description))

1. Dimension lines indicate:
 (a) axis of symmetry
 (b) visible edge of an object
 (c) the portion of an object has been cut away

2. Dimensions on an object describe:
 (a) shape of the object
 (b) indicates scale of the object
 (c) that the surface is to be finished
 (d) that the surface has been machined

3. Dimension lines should be:
 (a) not more that ¼" from the object lines
 (b) at least 3/8" from the object lines
 (c) at least ¼" apart
 (d) 1/8" from the object

4. The circle is dimensioned from:
 (a) center to center
 (b) edge to edge
 (c) leader to leader
 (d) none of these

T F 5. The dimension must be terminated by a short flanged arrowhead.
T F 6. The two systems of dimensioning are aligned and unidirectional.
T F 7. On circular-end parts, the center to center dimension is generally
given instead of an overall dimension.
T F 8. Leaders should never be vertical or horizontal.
T F 9. The height of whole numbers is half the size of fractions.
T F 10. Vertical guide lines are just as important as horizontal guide lines.
Unit 9 Dimensioning (Size Description)

Answers to sample test questions.

1. B
2. B
3. B
4. T
5. F
6. T
7. T
8. T
9. T
10. F
Sample Test Questions for Unit 10
Pictorial Drawing

1. In an isometric drawing of a cone, the three principal planes appear:
 (a) equally foreshortened
 (b) true size
 (c) unequally foreshortened
 (d) 30 degrees with each other

2. The angles between isometric axis are:
 (a) 30 degrees
 (b) 60 degrees
 (c) 120 degrees
 (d) 150 degrees

3. The four-center ellipse method cannot be used when:
 (a) used on an oblique drawing
 (b) used on an isometric
 (c) used on a perspective
 (d) used on the profile plane of an isometric

4. What is the most common type of oblique projection?

5. Are oblique dimensions always in the same plane as the extension lines?
 T F

6. Oblique drawing can be projected at any angle other than 90°.
 T F

7. Two types of oblique drawings are cavalier and cabinet.
 T F

8. The depth axis in oblique drawings are always drawn full size.
 T F
Unit 10 Pictorial Drawing

Answers to sample test questions.

1. A
2. C
3. C
4. Cavalier
5. Yes
6. T
7. T
8. F
Sample Test Questions for Unit 11
Sectional Drawings

T F 1. A section is used to show the inside of the object more clearly.
T F 2. A half-section means half of the object is removed.
T F 3. If a view is complicated, it may be necessary to show more than
one section.
T F 4. Cutting planes may not be bent or offset.
T F 5. It is permissible for cutting planes to cross each other.

6. When drawing a half section:
 (a) half of the view is elevation and half is section
 (b) a center line is used to divide the sections
 (c) it shows the interior and exterior at the same time
 (d) all of the above are true
 (e) (a) and (c) are true

7. When dimensioning holes located an equal distance from the center
 of a piece:
 (a) they should be located on a bolt circle
 (b) the term "Equally spaced" should not be used
 (c) tolerancing is not necessary
 (d) coordinate dimensioning should be used

8. Hidden lines may be shown:
 (a) on the cut surface because that is the clearest place
 to show them
 (b) on the orthographic views only
 (c) on all sections for clarity
 (d) on the cut surface only when required for clarity
Unit 11 Sectional Drawings

Answers to sample test questions.

1. T
2. F
3. T
4. F
5. T
6. D
7. A
8. D
Sample Test Questions for Unit 12
Auxiliary Drawings

T F 1. Reference planes are always at right angles between the primary view and auxiliary view.

T F 2. Measurements are always made at right angles to the reference lines, or parallel to the projections lines.

T F 3. Auxiliary views are never classified according to the principal dimensions of the object shown in the auxiliary view.

T F 4. A normal is a projection that has the viewing direction perpendicular to, and made on a plane parallel to the object face.

T F 5. In practice, hidden lines are omitted in auxiliary views.

6. An ___________________ surface is a surface that is at an angle to two of the principal planes of projection and perpendicular to one principal plane of projection.

7. Two methods commonly used for developing an auxiliary view are the ___________________ line method and the ___________________ plane method.

8. A surface that is at an angle to all three of the principal planes of projection is called ___________________ or ___________________ surface.
Unit 12 Auxiliary Drawings

Answers to sample test questions.

1. T
2. T
3. F
4. T
5. T
6. Inclined
7. Folding, reference
8. Skew oblique
Sample Test Questions for Unit 13
Thread Representation

1. Threaded fasteners are used to:
 (a) make adjustments and transmit motion
 (b) assemble parts and apply pressure
 (c) make measurements
 (d) all of the above
 (e) none of the above

2. The American National thread system consists of:
 (a) national coarse thread
 (b) Whitworth thread
 (c) national fine thread
 (d) answers (a) and (b)
 (e) answers (a) and (b)

3. The outside diameter of a thread may be expressed at:
 (a) pitch
 (b) root diameter
 (c) minor diameter
 (d) major diameter
 (e) pitch diameter

4. The number of threads per inch depends on:
 (a) the crest
 (b) the pitch
 (c) the root
 (d) all of the above
 (e) none of the above

5. Bolts and nuts are represented as:
 (a) unfinished
 (b) semi-finished
 (c) finished
 (d) all of the above
 (e) none of the above

6. Left-hand threads are indicated by the initials:
 (a) LHH
 (b) LH2
 (c) LHT
 (d) LHL
 (e) LH
Thread Representation

Answers to sample test questions.

1. D
2. E
3. D
4. D
5. D
6. E
Sample Test Questions for Unit 14
Working Drawings

1. If more than one detail is used in a drawing and details are drawn to different scales, the correct practice is to:

(a) place all scales in title block
(b) show principal detail scale with notation "and noted" in the title block
(c) show the scale only under detail
(d) show the scale of main detail with a notation "and noted" and other scales under each detail

2. Which of the following is not a feature of a detail drawing?

(a) one or more views
(b) auxiliary views
(c) sectional views
(d) installation dimensions

3. A characteristic of a detail assembly drawing is:

(a) it includes both the assembly and construction details of the parts
(b) it minimizes confusion by eliminating hidden lines
(c) a parts list is combined with a materials list
(d) it specifies exactly how a component is to be installed

4. Which of the following is not a feature of a detail drawing?

(a) auxiliary views
(b) sectional views
(c) orthographic drawing
(d) installation dimensions
Unit 14 Working Drawings

Answers to sample test questions.

1. D
2. D
3. A
4. D
BASIC TECHNICAL DRAWING
TOOLS AND EQUIPMENT

Classroom Tools and Equipment Provided by the School include:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drafting Table</td>
<td>25</td>
<td>30" x 42" w/five storage drawers</td>
</tr>
<tr>
<td>Drafting stools</td>
<td>25</td>
<td>Steel frame 30"</td>
</tr>
<tr>
<td>Blueprint machine</td>
<td>1</td>
<td>60"</td>
</tr>
<tr>
<td>Paper cutter</td>
<td>1</td>
<td>36"</td>
</tr>
<tr>
<td>Pencil sharpener</td>
<td>1</td>
<td>General purpose</td>
</tr>
<tr>
<td>Supply storage cabinet</td>
<td>1</td>
<td>Metal</td>
</tr>
<tr>
<td>Drawing storage cabinet</td>
<td>1</td>
<td>Metal</td>
</tr>
<tr>
<td>Teacher desk w/chair</td>
<td>1</td>
<td>Wood</td>
</tr>
<tr>
<td>Drawing board</td>
<td>25</td>
<td>18" x 24" wood/metal edge</td>
</tr>
<tr>
<td>Drawing paper</td>
<td>200 sheets</td>
<td>8½ x 11" tracing</td>
</tr>
<tr>
<td>Drawing paper</td>
<td>200 sheets</td>
<td>11" x 17" white</td>
</tr>
<tr>
<td>Drawing paper</td>
<td>100 sheets</td>
<td>18" x 24" tracing</td>
</tr>
</tbody>
</table>
The following is a list of tools and equipment to be furnished by the student enrolled in a basic technical drafting course:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of drawing instruments</td>
<td>1</td>
<td>General purpose</td>
</tr>
<tr>
<td>T-square</td>
<td>1</td>
<td>24" plastic</td>
</tr>
<tr>
<td>Triangle</td>
<td>1</td>
<td>45° - 10" clear</td>
</tr>
<tr>
<td>Triangle</td>
<td>1</td>
<td>30° x 60" - 8" clear</td>
</tr>
<tr>
<td>Scale</td>
<td>1</td>
<td>Architect plastic</td>
</tr>
<tr>
<td>Dust brush</td>
<td>1</td>
<td>8" horsehair</td>
</tr>
<tr>
<td>Erasing shield</td>
<td>1</td>
<td>Metal</td>
</tr>
<tr>
<td>Ames Lettering Guide</td>
<td>1</td>
<td>Clear plastic</td>
</tr>
<tr>
<td>Protractor</td>
<td>1</td>
<td>General purpose, clear plastic</td>
</tr>
<tr>
<td>Irregular</td>
<td>1</td>
<td>8" clear plastic</td>
</tr>
</tbody>
</table>
The following is a list of consumable supplies to be furnished by the student enrolled in a basic technical drafting course.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drafting tape</td>
<td>1 roll</td>
<td>3/4" 60 yards</td>
</tr>
<tr>
<td>Eraser</td>
<td>1</td>
<td>Plastic</td>
</tr>
<tr>
<td>Eraser</td>
<td>1</td>
<td>Art gum</td>
</tr>
<tr>
<td>Sandpaper pad</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dusting powder</td>
<td>1</td>
<td>12 oz. bottle</td>
</tr>
<tr>
<td>Pentel</td>
<td>1</td>
<td>.05 MM</td>
</tr>
<tr>
<td>Leads</td>
<td>2 ea.</td>
<td>4H, 2H, HB</td>
</tr>
<tr>
<td>Illustration Board</td>
<td>1</td>
<td>18" x 24" white</td>
</tr>
</tbody>
</table>
RESOURCES

The following list of Resource Materials is by no means complete or exhaustive. The list merely represents a compilation of relevant and readily-available resources frequently used by drafting teachers.

