Several extended caution indices (ECIs) have been introduced earlier as a link between two distinctly different approaches: one based on standard statistics and the other, a model-based approach, utilizing item response theory (IRT). Expected values and variance of some ECIs are derived and their statistical properties are compared and discussed. Then, standardized ECIs are introduced and their distributions are investigated. It turns out that the standardized ECIs fit normal distributions well. A comparison of detection rates among appropriateness measures based on IRT theory is carried out with the signed-number data set. There is no noticeable difference in their detection rates using the 80 percent intervals. (Author)
STANDARDIZED EXTENDED CAUTION INDICES
AND
COMPARISONS OF THEIR RULE DETECTION RATES

KIKUMI K. TATSUOKA
MAURICE M. TATSUOKA

Approved for public release; distribution unlimited.
Reproduction in whole or in part permitted for any
purpose of the United States Government.

This research was sponsored by the Personnel and Training
Research Program, Psychological Sciences Division, Office
of Naval Research, under Contract No. N000-14-79-C-0752.
Contract Authority Identification Number NR 150-415.
Copies of this report may be requested from:

Kikumi K. Tatsuoka
252 ERL
103 S. Mathews
University of Illinois
Urbana, IL 61801
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>Research Report 82-4-ONR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>Standardized Extended Caution Indices and Comparisons of their Rule Detection Rates</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>Kikumi K. Tatsuoka & Maurice M. Tatsuoka</td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>Computer-based Education Research Laboratory, 103 S. Mathews, 252 ERL, U of Illinois, Urbana, IL 61801</td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>Personnel and Training Research Programs, Office of Naval Research (Code 442), Arlington, VA 22217</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>14</td>
</tr>
<tr>
<td>15. DISTRIBUTION STATEMENT (of this report)</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>expected values, extended caution index, variances, item response theory, standardized appropriateness measures, detection rate of aberrant response patterns, signed-number subtraction.</td>
</tr>
</tbody>
</table>

ABSTRACT (Continue on reverse side if necessary and identify by block number)

Several extended caution indices (ECIs) have been introduced earlier as a link between two distinctly different approaches: One based on the standard statistics and the other, a model-based approach utilizing item response theory (IRT). Expected values and variances of some ECIs are derived and their statistical properties are compared.
and discussed. Then, standardized ECIs are introduced and their distributions are investigated. It turns out that the standardized ECIs fit normal distributions well. A comparison of detection rates among appropriateness measures based on IRT theory is carried out with the signed-number dataset. There is no noticeable difference in their detection rates using the 80% intervals.
Acknowledgement

This research was sponsored by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, under contract No. N00014-79-C-0752.

Several of the analyses presented in this report were performed on the PLATO® system. The PLATO® system is a development of the University of Illinois, and PLATO® is a service mark of Control Data Corporation.

The authors gratefully acknowledge the painstaking and creative computer programming carried out by Robert Baillie on both the PLATO and CYBER 175 systems. Delwyn Harnisch provided us with estimated parameter values for the NAEP data. Gerard Chevalaz plotted the graphs of the standard errors of ECI1-4 in Appendices VII through X, using the SPSS package. Louise Brodie did the painstaking typing of the manuscript, replete with equations, on the PLATO system. We are indebted to Roy Lipschutz for the artwork.
Abstract

Several extended caution indices (ECIs) have been introduced earlier as a link between two distinctly different approaches: one based on standard statistics and the other, a model-based approach utilizing item response theory (IRT). Expected values and variances of some ECIs are derived and their statistical properties are compared and discussed. Then, standardized ECIs are introduced and their distributions are investigated. It turns out that the standardized ECIs fit normal distributions well. A comparison of detection rates among appropriateness measures based on IRT theory is carried out with the signed-number dataset. There is no noticeable difference in their detection rates using the 80% intervals.
Captions of Figures

Figure 1: Expectation of ECI4 Plotted Against the True Score

Figure 2: The Standard Error of ECI4 Plotted Against the True Score

Figure 3: The Standard Error of ECI1 Plotted Against the True Score

Figure 4: The Standard Error of ECI2 Plotted Against the True Score

Figure 5: Goodness of Fit Test for the Normal Distribution: The Stepfunction is a Cumulative Distribution of ECI4_Z: The Smooth Curve is a Theoretical Curve

Figure 6: Goodness of Fit Test for the Normal Distribution: The Stepfunction is the Cumulative Distribution of ECI2_Z

Figure 7: Plot of ECI4 Against True Score for the Modified Dataset ("+"") and Erroneous Rules ("0"), and 80% Probability Interval (-1.55, 1.59)

Figure 8: Plot of ECI2 Against True Score for the Modified Dataset ("+"") and Erroneous Rules ("0"), and 80% Probability Interval (-1.56, 1.59)
Introduction

An increasing number of researchers have begun to show interest in using response patterns of n items for analyzing performance on test scores. By so doing, more information is obtainable than by using only traditional total scores. Tatsuoka and her colleagues (Birenbaum & Tatsuoka, 1982a, b; Tatsuoka & Tatsuoka, 1982a) have demonstrated that some wrong rules of arithmetic computations (fractions and signed-numbers) can produce the right score of 1 on as much as 60% of the test items. If many students apply a variety of wrong rules consistently throughout the test, then these faulty rules cause a serious problem by violating the unidimensionality assumption of a dataset. After rescoring these correct responses obtained by faulty rules, the dataset became nearly unidimensional. They have developed several indices to detect aberrant response patterns resulting from consistent application of wrong rules (Tatsuoka & Tatsuoka, 1982b) and have shown one of them, the individual consistency index (ICI), to spot more than 90% of such aberrant response patterns (Tatsuoka & Tatsuoka, 1981).

Rudner (1982) investigated the detection rates of various personal indices (norm conformity index, caution index, personal biserial and appropriateness measures based on item response theory) and found that the indices based on IRT are more efficient for detecting anomalous response patterns than those based on observed item response and summary statistics. However, estimating parameters of IRT models requires a substantial number of subjects while it is often impossible to have such a large sample size in many classroom settings.
Sato (1975) developed the caution index in conjunction with S-P curve theory and successfully used it for diagnosing students' performance and evaluating instructional materials in Japan. Harnisch and Linn (1981) demonstrated its usefulness by applying it to a NAEP dataset (National Assessment of Educational Progress). Although their analysis is based on a large dataset, their results show clearly that analysis of response patterns as a whole provides very useful information associated with individual differences, curriculum differences and school differences.

The concepts of S-P curve theory and caution index have been extended to the continuous domain of IRT models from the approach based on the discrete summary statistics by Tatsuoka and Linn (1982). They have developed five alternative indices and named them extended caution indices 1, 2, 3, 4 and 5. In this paper, further statistical properties of ECI1, 2, and 4 will be discussed and their detection rates will be compared.

Statistical Properties of Extended Caution Indices

Definition of the Extended Caution Indices

A group of extended caution indices (ECI) has been introduced as a link between two distinct approaches of detecting aberrant response patterns (Tatsuoka & Linn, 1981). One is based on the use of binary response patterns and their standard summary statistics (Sato, 1975; van der Flier, 1977; Tatsuoka & Tatsuoka, 1980, 1982a), while the other is a model-based approach. In the latter, the patterns of probabilities that are derived from item response theory are utilized in calculating appropriateness measures together with observed binary response patterns.
ECIs are an extension of Sato's caution index to the approach used in IRT. In this section, three of the five ECIs will be investigated in terms of their expected values, variances, and advantages and disadvantages.

Let y_{ij} for $i=1,...,N; j=1,...,n$ be the binary score of subject i to item j, y_i be the ith row sum, and y_j the jth column sum of the data matrix (y_{ij}). Let P_{ij} be the probability of subject i answering item j correctly, which may be based on the one-, two- or three-parameter logistic model. That is,

$$P_{ij} = c_j + \frac{1 - c_j}{1 + \exp[-a_j (\theta_i - b_j)]}$$

where $c_j = 0$ and $a_j = 1$ for the one-parameter logistic model; $c_j = 0$ for the two-parameter logistic model. Thus, two data matrices -- one comprising observed binary scores of n items for N subjects (y_{ij}) and the other consisting of (P_{ij}) -- may be introduced. We refer to (y_{ij}) as the observed binary matrix and (P_{ij}) as the probability matrix.

Let G_j be the jth element of a vector approximating the group response curve (GRC) for item j, and T_i be that of the vector for the test response curve (TRC) for subject i. Then

$$G_j = \frac{1}{N} \sum_{i=1}^{N} P_{ij}$$

$$T_i = \frac{1}{n} \sum_{j=1}^{n} P_{ij}$$

In other words, G_j for item j and T_i for subject i are the jth column sum and the ith row sum, respectively, of the probability matrix (P_{ij}).

Three of the five ECIs are defined as complements of the ratio of two covariances between various pairs of row vectors taken from the two matrices.
\[
\text{ECI}_{1i} = 1 - \frac{\text{cov}(y_i, \bar{y})}{\text{cov}(\bar{p}_i, \bar{y})} \quad (1)
\]
\[
\text{ECI}_{2i} = 1 - \frac{\text{cov}(\bar{y}, \overline{G})}{\text{cov}(G, \bar{p}_i)} \quad (2)
\]
\[
\text{ECI}_{3i} = 1 - \frac{\text{cov}(\bar{y}, \overline{p_i})}{\text{cov}(G, \bar{p}_i)} \quad (3)
\]

where \(y_i = (y_{i1}, y_{i2}, \ldots, y_{in})\), the vector of binary scores for subject \(i\) or the \(i\)th row vector,

\(\bar{y} = (y_1, y_2, \ldots, y_n)\), the column-sum vector in the observed binary matrix,

\(\bar{p}_i = (p_{i1}, p_{i2}, \ldots, p_{in})\), the probability vector from the \(i\)th row in the probability matrix, and

\(G = (G_1, G_2, \ldots, G_n)\), the GRC vector which is the column-sum vector of \((p_{ij})\). Expression (1) is defined by forming the ratio of the following covariances: the numerator is the covariance of subject \(i\)'s response pattern and the column-sum vector over \(n\) items in \((y_{ij})\), and the denominator is the covariance of the \(i\)th row probability vector derived from a logistic model and the column-sum vector in \((y_{ij})\). Expressions (2) and (3) have the same denominator, the covariance of the GRC vector and the \(i\)th probability vector, and the numerators are covariances of the response pattern vector with the GRC vector and the probability vector, respectively.

When \(y_i\) consists of all 1s or 0s, the second terms of the ECI\(s\) become undetermined.
The expectations of EC11, EC12, and EC14

In this section, the expectations and variances of the three ECIs given by Equations (1), (2) and (3) will be derived. The actual values of the ECIs for subject i can be calculated by replacing the item and person parameters with their estimated values ̂a_j, ̂b_j and ̂θ_i based on the maximum likelihood method. It is known that the maximum likelihood estimates of item and person parameters satisfy the likelihood conditions (Lord and Novick, 1968) given in Equations (4).

\[
\sum_{j=1}^{n} \hat{a}_j \hat{y}_{ij} = \sum_{j=1}^{n} \hat{b}_j \hat{y}_{ij} = \sum_{j=1}^{n} \hat{y}_{ij} = \sum_{j=1}^{n} \sum_{j=1}^{n} g_{ij} y_{ij} \]

Since the ECIs are functions of the person parameter θ_i, the conditional expected values and variances of the ECIs for a fixed ability level will be introduced. Hereafter, the circumflex on ̂P_{ij} (and its ith-row vector ̂P_i) will be omitted to simplify the notation.

EC11

The conditional expectation of the first ECI defined in Equation (1) is given by the following:

\[
E(\text{ECI}\,|\,\theta_i) = 1 - E \left(\frac{\text{cov}(y_k, y_j)}{\text{cov}(\hat{P}_i, y_j)} \,|\, \theta_i \right)
\]

\[
= 1 - \frac{E[\text{cov}(y_k, y_j|\theta_i)]}{\text{cov}(\hat{P}_i, y_j)}
\]

(5)
The observed vector y_k is a random vector at the level θ_1 and the expectation is obtained over k. Now, we have to find the expectation in the numerator of the second fraction, $E[\text{cov}(y_k, y_\cdot)\mid \theta_1]$. First, the covariance of y_k and y_\cdot is rewritten as the summation of the product of the deviations:

$$E[\text{cov}(y_k, y_\cdot)\mid \theta_1] = E\left[\frac{1}{n} \sum_{j=1}^{N} (y_{kj} - p_{kj})(y_\cdot j - p_\cdot j)\mid \theta_1\right] / n$$

where p_{kj} is the i:th row mean of (y_{ij}) and $p_\cdot j$ is the mean of the row means or column means as follows,

$$p_\cdot j = \frac{1}{n} \sum_{j=1}^{N} p_{kj} = \frac{1}{N} \sum_{i=1}^{n} p_{kj}.$$

By using the second members of Equations (4), this expectation reduces to the covariance of P_{kj} and y_\cdot. Thus, the conditional expectation of ECI_1 at the fixed level i becomes zero, as summarized in Equation (6).

$$E(ECI_1\mid \theta_1) = 1 - \frac{\text{cov}(P_{kj}, y_\cdot)}{\text{cov}(P_{kj}, y_\cdot)} \equiv 0.$$ (6)

The conditional variance of ECI_1 at the fixed level i is

$$\text{Var}(ECI_1\mid \theta_1) = E(ECI_1 - E(ECI_1\mid \theta_1))^2.$$ (7)

By substituting the result from (6), the conditional variance (7) becomes $E(ECI_1^2\mid \theta_1)$. That is:

$$E(ECI_1^2\mid \theta_1) = E\left(\left[1 - \frac{\text{cov}(y_k, y_\cdot)}{\text{cov}(P_{kj}, y_\cdot)}\right]^2\mid \theta_1\right)$$

$$= -1 + \frac{E[\text{cov}^2(y_k, y_\cdot)\mid \theta_1]}{\text{cov}^2(P_{kj}, y_\cdot)}$$ (8)

where we have again used the fact that $E[\text{cov}(y_k, y_\cdot)] = \text{cov}(P_{kj}, y_\cdot)$. The numerator of the last term of Equation (8), however, can be expanded
to the sum of the diagonal and off-diagonal terms, and then by applying
the conditions given in Equations (4), we obtain Equation (9).

$$
\frac{1}{n^2} E\left[\sum_{j=1}^{n} (y_{kj} - P_{1.})(y_{j} - P_{..}) \right]^2 \left[\theta_1 \right]
$$

$$
= \frac{1}{n^2} E\left[\sum_{j=1}^{n} (y_{kj} - P_{1.})^2(y_{j} - P_{..})^2 \left[\theta_1 \right] \right]
$$

$$
+ \frac{1}{n^2} E(\sum_{j \neq h} (y_{kj} - P_{1.})(y_{kh} - P_{1.})(y_{j} - P_{..})(y_{h} - P_{..}) \left[\theta_1 \right])
$$

(9)

The first term, the diagonal part inside the parentheses of the above
equation, is:

$$
E\left[\sum_{j=1}^{n} (y_{kj} - P_{1.})^2(y_{j} - P_{..})^2 \left[\theta_1 \right] \right]
$$

$$
= \sum_{j=1}^{n} (y_{j} - P_{..})^2 E\left[(y_{kj} - P_{1.})^2 \left[\theta_1 \right] \right]
$$

$$
= \sum_{j=1}^{n} (y_{j} - P_{..})^2[P_{ij}(1 - P_{ij}) + (P_{ij} - T_i)^2]
$$

The second term inside the parenthesis is:

$$
E\left(\sum_{j \neq h} (y_{kj} - P_{1.})(y_{kh} - P_{1.})(y_{j} - P_{..})(y_{h} - P_{..}) \left[\theta_1 \right] \right)
$$

$$
= \sum_{j \neq h} (y_{j} - P_{..})(y_{h} - P_{..})(P_{ij} - T_i)(P_{ih} - T_i)
$$

Adding the results of the two expectations gives Equation (10).

$$
\frac{1}{n^2} E\left[\sum_{j=1}^{n} (y_{kj} - P_{1.})(y_{j} - P_{..}) \right]^2 \left[\theta_1 \right]
$$

$$
= \frac{1}{n^2} \left[\sum_{j=1}^{n} (y_{j} - P_{..})(P_{ij} - T_i) \right]^2 + \frac{1}{n^2} \left[\sum_{j=1}^{n} (y_{j} - P_{..})^2P_{ij}(1 - P_{ij}) \right]
$$

$$
= \text{cov}^2(y_{..}, P_{1.}) + \frac{1}{n^2} \sum_{j=1}^{n} (y_{j} - P_{..})^2 \sigma_{ij}^2
$$

(10)
Substituting (10) in Equation (8), the variance of ECI becomes:

\[
\text{Var}(ECI) = -1 + \frac{\text{cov}^2(y, P_i) + \sum_{j=1}^{n} \sigma^2_{ij} (y_j - \mu_j)^2 / n^2}{\text{cov}^2(P_i, y)}
\]

\[
= \frac{\sum_{j=1}^{n} \sigma^2_{ij} (y_j - \mu_j)^2}{n^2 \text{cov}^2(P_i, y)}
\]

\[(11)\]

ECI2

The conditional expectation of the second ECI is given by

\[
E(ECI_2|\theta_1) = 1 - E\left[\frac{\text{cov}(y_k, G)}{\text{cov}(G, P_i)}|\theta_1\right]
\]

\[
= 1 - \frac{E[\text{cov}(y_k, G)|\theta_1]}{\text{cov}(G, P_i)}
\]

\[(12)\]

But

\[
E[\text{cov}(y_k, G)|\theta_1] = \frac{1}{n} \sum_{j=1}^{n} E[\frac{1}{n} (y_{kj} - P_i)(G_j - T)|\theta_1]
\]

\[
= \frac{1}{n^2} \sum_{j=1}^{n} E[(y_{kj} - P_i)(G_j - T)|\theta_1]
\]

\[
= \frac{1}{n^2} \sum_{j=1}^{n} (P_i G_j - T)(G_j - T) = \text{cov}(P_i, G),
\]

where

\[
T = \frac{\sum_{i=1}^{N} T_i}{N} = \frac{\sum_{j=1}^{n} G_j}{n}
\]

By substituting this result in Equation (12), we get (13).

\[
E(ECI_2|\theta_1) = 1 - \frac{\text{cov}(P_i, G)}{\text{cov}(G, P_i)} = 0
\]

\[(13)\]
The conditional variance of \(ECI_2 \) is given by Equation (14),

\[
\text{Var}(ECI_2|\theta_1) = E[(ECI_2 - E(ECI_2)|\theta_1)^2|\theta_1) = E(ECI_2^2|\theta_1)
\]

\[
= -1 + \frac{E[\text{cov}^2(y_k, G)|\theta_1]}{\text{cov}^2(G, P_i)}
\]

Equation (14)

The expectation of the squared covariance of \(y_k \) and \(G \) can be simplified and given by Equation (15).

\[
E[\text{cov}^2(y_k, G)|\theta_1] = \text{cov}^2(P_i, G) + \frac{1}{n^2} \sum_{j=1}^{n} \sigma_{ij}^2 (G_j - T)^2
\]

Equation (15)

By substituting (15) in (14), we get (16).

\[
\text{Var}(ECI_2|\theta_1) = \frac{\sum_{j=1}^{n} (G - T)^2 \sigma_{ij}^2}{n^2 \text{cov}^2(G, P_i)}
\]

Equation (16)

\(ECI_4 \)

The conditional expectation of \(ECI_4 \) is

\[
E(ECI_4|\theta_1) = 1 - E[\frac{\text{cov}(y_k, P_i)|\theta_1}{\text{cov}(G, P_i)}]
\]

Equation (17)

where \(y_k \) is a random variable from the distribution of binary responses to \(n \) items at the fixed ability level \(i \). Since the denominator of the expected value, \(\text{cov}(G, P_i) \), is fixed at level \(i \), the second term will be simply the expectation of the numerator divided by the covariance of \(G \) and \(P_i \), \(E[\text{cov}(y_k, P_i)|\theta_1]/\text{cov}(G, P_i) \).
But \(E(y_{kj} - p_i, \theta_1) = P_{ij} - T_1 \) because of Equations (4)

Therefore,

\[
E(ECI4|\theta_1) = \Phi_1 - \frac{\text{cov}(p_i, p_j)}{\text{cov}(G, p_j)}
\]

\[
= 1 - \frac{\text{Var}(p_i)}{\text{cov}(G, p_j)}
\]

(18)

The conditional variance of ECI4 is given by Equations (19).

\[
\text{Var}(ECI4|\theta_1) = E[(ECI4 - E(ECI4))^2|\theta_1]
\]

(19)

Substituting the expectation of ECI4 from Equation (18), (19) becomes

\[
\text{Var}(ECI4|\theta_1) = E\left[\frac{\text{cov}(p_i, p_j)}{\text{cov}(G, p_j)} - \frac{\text{cov}(y_k, p_i)}{\text{cov}(G, p_j)} \right]^2|\theta_1
\]

A straightforward expansion of the inside of the parentheses leads to Equation (20).

\[
\text{Var}(ECI4|\theta_1) = \frac{E[\text{cov}^2(y_k, p_i)|\theta_1]}{\text{cov}^2(G, p_j)} - \frac{\text{cov}^2(p_i, p_j)}{\text{cov}^2(G, p_j)}
\]

(20)

The numerator of the first term, \(E[\text{cov}^2(y_k, p_i)|\theta_1] \), can be simplified in the same manner as in the case of ECI1.

\[
E[\text{cov}^2(y_k, p_i)|\theta_1]
\]

\[
= \frac{1}{n^2} E[\sum_{j=1}^{n}(y_{kj} - p_{i,})(p_{ij} - T_1)]^2|\theta_1
\]

\[
= \frac{1}{n^2} E[\sum_{j=1}^{n}(y_{kj} - p_{i,})^2(p_{ij} - T_1)^2|\theta_1
\]

\[
+ \frac{1}{n^2} E[\sum_{j\neq h}(y_{kj} - p_{i,})(y_{kh} - p_{i,})(p_{ij} - T_1)(p_{ih} - T_1)|\theta_1]
\]

10
Because of local independence and Equation (4), we obtain the following two relations:

\[E \left[\sum_{j=1}^{n} (y_{kj} - P_{i.})^2 (P_{ij} - T_{i})^2 \right] = \sum_{j=1}^{n} \left(\sigma_{ij}^2 + (P_{ij} - T_{i})^2 \right) (P_{ij} - T_{i})^2 \]

and

\[E \left[\sum_{j \neq h} (y_{kj} - P_{i.})(y_{kh} - P_{h.})(P_{ij} - T_{i})(P_{ih} - T_{i}) \right] = \sum_{j \neq h} (P_{ij} - T_{i})^2 (P_{ih} - T_{i})^2 | \theta_1 \]

By adding the results, we obtain

\[E[\text{cov}^2(y_k, P_\ell) | \theta_1] \]

\[= \frac{1}{n^2} \sum_{j=1}^{n} (P_{ij} - T_{i})^2 \left(\frac{1}{n^2} \sum_{j=1}^{n} \sigma_{ij}^2 (P_{ij} - T_{i})^2 \right) \]

\[= \text{Var}^2(P_{ij}) + \frac{1}{n^2} \sum_{j=1}^{n} \sigma_{ij}^2 (P_{ij} - T_{i})^2 \quad (21) \]

By substituting (21) in (20), we get Equation (22), the variance of ECI4.

\[\text{Var} (ECI4 | \theta_1) = \frac{\text{cov}^2(P_{i}, P_{ij}) + \frac{1}{n^2} \sum_{j=1}^{n} \sigma_{ij}^2 (P_{ij} - T_{i})^2}{\text{cov}^2(G, P_{i})} - \frac{\text{cov}^2(P_{i}, P_{ij})}{\text{cov}^2(G, P_{i})} \]

\[= \frac{\Sigma \sigma_{ij}^2 (P_{ij} - T_{i})^2}{n^2 \text{cov}^2(G, P_{i})} \quad (22) \]
Comparison of Some Statistical Properties of the Three Indices

ECI1, ECI2, and ECI4

Comparison of the Standard Errors

The conditional expectations of the three indices are different in a manner that suggests that ECI1 and ECI2 are similar to each other, while ECI4 stands alone. ECI1 and ECI2 have the constant expectation zero, regardless of the level of person parameter θ_i. On the other hand, the expectation of ECI4 is a function of θ_i, as shown in Figure 1 for the dataset obtained from a 32-item signed-number subtraction test. The x-axis represents true scores and the y-axis the 127 students' expected ECI4 values. The curve in Figure 1 decreases monotonically as the true score decreases. The standard error of ECI4 is the square root of expression (22) and is also a function of θ. Figure 2 shows the relationship between the standard error and the true scores. (The estimated true score of IRT was used instead of θ_i so as to have a value between 0 and 1, which facilitates comparison across different tests.)

For students whose true scores are extremely high or low, the standard-error curve rises sharply, while for average scores, it becomes rather flat.

Figures 3 and 4 are plots of the standard errors [square roots of expression (11) and (16)] of ECI1 and ECI2 against true score as the x-axis. They are almost identical curves that are nearly horizontal for the average true scores but increase rather rapidly at both the high and low extremes of true scores.
FIGURE 1: Expectation of ECI4 Plotted Against the True Score
FIGURE 2: The Standard Error of ECI4 Plotted Against the True Score
ECI1 and ECI2 correlate highly ($r = .97$, see Appendix XI) and have the same constant expectation of zero. Moreover, their standard errors have almost identical curves when plotted against true scores, so we will drop ECI1 hereafter and make comparisons between ECI2 and ECI4. Since ECI2 is defined by using the elements in the probability matrix (P_{ij}), the investigation of ECI2 and ECI4 will be more interesting.

Standardized Extended Caution Indices, ECI_{2z} and ECI_{4z} and their Density Functions

ECIs can be standardized by subtracting their expected values and then dividing it by their standard errors. Equations (23) and (24) are the standardized extended caution indices ECI_{2} and ECI_{4}.

$$ECI_{2z} = \frac{ECI_{2} - E(ECI_{2} | \theta_{i})}{SE(ECI_{2} | \theta_{i})} = \frac{ncov(P_{i} - \bar{y}_{i}, \bar{G})}{\sqrt{\sum_{j=1}^{n} \sigma_{ij}^2 (P_{ij} - T)^2}}$$

$$ECI_{4z} = \frac{ECI_{4} - E(ECI_{4} | \theta_{i})}{SE(ECI_{4} | \theta_{i})} = \frac{ncov(P_{i} - \bar{y}_{i}, \bar{P}_{i})}{\sqrt{\sum_{j=1}^{n} \sigma_{ij}^2 (P_{ij} - T_{i})^2}}$$

As can be seen in Equations (23) and (24), the second variables of the covariances in the numerators are \bar{G} and \bar{P}_{i}, respectively. The denominator for ECI_{2z} involves the group-oriented vector $\bar{G} - T_{i}$ while that for ECI_{4z} involves the individual-oriented vector at the level i, $\bar{P}_{i} - T_{il}$. Tatsuoka and Linn (1982) argue that ECI_{4} may correspond to the individual consistency index (ICI) introduced in Tatsuoka & Tatsuoka (1980, 1982a) while ECI_{2} may function similarly to the group dependent
FIGURE 3: The Standard Error of ECI1 Plotted Against the True Score
FIGURE 4: The Standard Error of EC12 Plotted Against the True Score
indices, i.e., Sato's caution index (1975) or the norm conformity index (Tatsuoka & Tatsuoka, 1980, 1982a). The ICI has proven to be effective in spotting the aberrant response patterns resulting from consistent application of erroneous rules of operation (Tatsuoka & Tatsuoka, 1981). Our prediction with regard to detection rates of erroneous rules of operation is that ECI4 should be better than ECI2.

It should be noted that the scale of the original ECIs are functions of θ but those of the standardized ECIs no longer depend on θ. As a result, two ECI4z (or ECI2z) values obtained from different θ levels are comparable in terms of the extent of anomaly they signify. However, the density functions of ECI2z and ECI4z have to be investigated in order to determine their differences statistically.

Figures 5 and 6 show the goodness-of-fit test of the normal distribution for ECI2z and ECI4z. Appendices I and II give the tests of the normal distribution for ECI1z and 1z (Levine & Drasgow's standardized appropriateness measure, 1982), while Appendices III, IV and V give the goodness-of-fit tests of beta distributions for ECI1z, ECI2z, and ECI4z. The data used in these figures are based on 2,400 students' scores obtained from a math test (National Assessment of Educational Progress series, mathematics for 13 year olds, Booklet 4). As can be seen in the figures, both the standardized ECIs fit normal distributions well. Similar results are obtained from the NAEP data, Booklet 5.

Appendices VII, VIII, IX and X give the standard errors of ECI1z, ECI2z, and ECI4z and the expectation of ECI4z, obtained from the NAEP data. Although the NAEP data is used for testing "goodness of fit" of the ECIs with theoretical distributions, we will go back to the signed
FIGURE 5: Goodness of Fit Test for the Normal Distribution:
The Stepfunction is a Cumulative Distribution of EC14:
The Smooth Curve is a Theoretical Curve
FIGURE 6: Goodness of Fit Test for the Normal Distribution:
The Stepfunction is the Cumulative Distribution of ECI2 z
number data in order to investigate the detection rate of aberrant response patterns by the standardized ECIs. In the next section, a brief description of the dataset and procedure for the comparisons will be described.

A brief description of the dataset

Birenbaum and Tatsuoka (1982a) have demonstrated that the traditional zero-one scoring of incorrect and correct answers does not reflect a student's performance correctly because several erroneous rules frequently yield the right answer for some problems. By extensive error analysis performed on the original dataset (the 127 eighth graders test scores for signed-number subtraction problems) Birenbaum and Tatsuoka (1980) identified erroneous rules that were consistently applied by certain students. They rescored ones to zeros for items that students got right for the wrong reasons. The dataset used in Figures 1 through 4 are the modified dataset in which the scores of zero-one should reflect more accurately the student's performance than the original dataset of \(N = 127 \). The modified dataset was much more nearly unidimensional and had higher item-item and item-total correlations than the original, while the item-means and standard deviation remained almost the same (Birenbaum & Tatsuoka, 1982a). Fifteen erroneous rules were randomly selected from the 45 erroneous rules listed in Tatsuoka & Tatsuoka (1981) and responses based on these were added to the modified dataset. We refer to the new dataset of \(N = 142 \) as "Bugdata" hereafter.
Comparison of detection rates of ECI2z and ECI4z with respect to their 80% intervals

By using the item parameters estimated from the modified dataset, ECI2z and ECI4z for the 142 subjects in the bug dataset were calculated and plotted against the true scores. Figure 7 is the scatter plot of ECI4z against the true scores and Figure 8 is ECI2z against the same true scores. The 15 bugs are marked by a small circle "o" with the numbers and 89 real data points are marked by a plus sign "+" without being numbered.

The 80% intervals for both the ECIs and 1z are constructed and listed in Table 1 along with the means and standard deviations of the indices. These are the intervals within which, theoretically, the values of the indices associated with 80% of the non-aberrant responses should fall. The intervals are marked by broken lines in Figures 7 and 8. We may choose, as a convenient decision rule, to classify response patterns with index values outside these intervals as "aberrant." The proportions of real response patterns classified as "aberrant" (which are essentially false alarm rates) by the four indices that are shown in Table 2 along with the proportions of the 15 bugs that are detected.

The unstandardized ECI4 seemed to have the best detection rates in comparison with the other four ECIs (Tatsuoka & Linn, 1982) but lost its high rate after it was standardized. Exactly the same dataset is used in both the cases, the standardized and unstandardized fourth extended caution index. In Table 2, the false alarm rates of the four indices...
FIGURE 7: Plot of ECI4 z Against True Score for the Modified Dataset (+) and Erroneous Rules (O), and 80% Probability Interval (-1.55, 1.59).
FIGURE 8: Plot of ECI2 z Against True Score for the Modified Dataset ("+"), and Erroneous Rules ("O"), and 80% Probability Interval (-1.56, 1.59).
Table 1
The 80% Intervals of ECI$_1z$, ECI$_2z$, ECI$_4z$ and lz.

<table>
<thead>
<tr>
<th>Indices</th>
<th>Mean</th>
<th>S.D.</th>
<th>80% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECI$_1z$</td>
<td>.001</td>
<td>1.105</td>
<td>(-1.414, 1.416)</td>
</tr>
<tr>
<td>ECI$_2z$</td>
<td>.020</td>
<td>1.230</td>
<td>(-1.555, 1.594)</td>
</tr>
<tr>
<td>ECI$_4z$</td>
<td>.019</td>
<td>1.229</td>
<td>(-1.554, 1.593)</td>
</tr>
<tr>
<td>lz</td>
<td>.017</td>
<td>.619</td>
<td>(-.775, .809)</td>
</tr>
</tbody>
</table>
Table 2
Detection Rates of Erroneous Rules by Four Personal Indices Based on Item Response Theory with Bugdataset

<table>
<thead>
<tr>
<th></th>
<th>Real Students</th>
<th>Erroneous Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 89</td>
<td>N = 15</td>
</tr>
<tr>
<td>ECI1z</td>
<td>.22</td>
<td>.60</td>
</tr>
<tr>
<td>ECI2z</td>
<td>.15</td>
<td>.53</td>
</tr>
<tr>
<td>ECI4z</td>
<td>.17</td>
<td>.67</td>
</tr>
<tr>
<td>lz</td>
<td>.18</td>
<td>.67</td>
</tr>
</tbody>
</table>
vary around 20% as they should, while the correct detection rate fluctuates around 60%. Considering the fact that the false alarm rate for the 89 students by using ICI with total scores (ICI ≥ .90 and scores lower than a certain criterion, Tatsuoka & Tatsuoka, 1981) was less than 5%, the results summarized in Table 2 are not as good as we had expected. One reason for the low detection rates may be the fact that the modification procedure of rescoring in the original dataset was carried out by an intuitive error analysis, and hence there are some responses affected by persistent misconceptions left in the modified dataset. Table 3 lists the percentage of "bugs" left in the modified dataset. The total number of bugs (including repetitions) has become 42. The mean absolute value of ECI4 in the two groups described in Table 3 are 3.141 for the bugs that were not found in the modified dataset, 1.353 for the bugs left in. However, the value of ECI4, 1.353, is still substantially high in comparison with the majority of real responses in the modified dataset.

Insert Table 3 about here

Summary and Discussion

The extended caution indices, ECI1, ECI2 and ECI4 are standardized by the usual transformation,

$$ECI_m^z = \frac{ECI_m - E(ECI_m|\theta_1)}{SE(ECI_m|\theta_1)}$$

for m=1, 2, and 4.

The conditional expectation of ECI4 is a function of the \(\theta \) level, but those of the other two ECIs are identically zero. If we sample two students from different \(\theta \) levels, then it is dangerous to compare their ECI4 values in order to determine which student’s response patterns is more aberrant than the other. Moreover, the standard errors of all
Table 3

Percentage of Each Bug that was not Rescored and Remained in the November Modified Dataset (n = 8, N = 89) 356 Sets of Responses

<table>
<thead>
<tr>
<th>Bugs</th>
<th>%</th>
<th>Total Scores</th>
<th>*ECI4</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3.728</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4.309</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4.259</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>3.059</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>3</td>
<td>4.045</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>-1.247</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>1.338</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

*Mean of Group 1 = 3.141 S.D. = .503
Mean of Group 2 = 1.353 S.D. = .240
three ECIs are functions of Θ_1 and have U shaped trend curves. This explains the past findings that the correlation of personal indices, such as the caution index, NCI, or ICI, with total scores vary according to the shapes of the total-score distributions. The findings are that if the total-score distribution has a negative skewness, then the correlation is positive, if the distribution is positively skewed, then a negative correlation results (Harnisch & Linn, 1981; Tatsuoka & Tatsuoka, 1980). Since the ECIs are natural extensions of the caution index, we can safely impute some behaviors of ECIs to these discrete personal indices as well. ECIs provide inflated values at both the extremely high and low total scores. With the standardized ECIs, the bias of the values at the extreme scores is corrected, and moreover the responses from different levels of Θ can be compared safely.

It would be ideal if the theoretical distribution of the standardized extended caution indices could be derived algebraically, but goodness-of-fit tests of the ECIs with normal distributions provide satisfactory evidence that they may follow approximately normal distributions.

Regarding the detection rates of "bugs", they are unexpectedly low. We have tried to find the reason for this by investigating each response pattern in the modified dataset. The results indicate that if an otherwise normal dataset includes a considerable number of aberrant response patterns, then these patterns are no longer detectable with high probability by the ECI approach. A new method to detect such aberrant response patterns should be investigated in the future.
Rudner (1982) recently conducted a Monte Carlo study to compare the detection rates of various indices. He found that the indices based on item response theory performed consistently better with his data than the indices based on sample statistics alone. But IRT is not always applicable in practice. An advantage of ECIs in comparison with other appropriateness indices or Wright's index is that they can start from the caution index when a sample is small. Then it can be shifted to ECIs as the sample size becomes larger without loss of continuity because ECIs are natural extensions of the S-P curve theory. However, further investigation of the relationships between the original caution index and the ECIs will be needed.
References

Appendices
Captions of Appendices

Appendix I: Goodness of Fit Test for the Normal Distribution: The Stepfunction is the Cumulative Distribution of $E_{CI1}z$

Appendix II: Goodness of Fit Test for the Normal Distribution: The Stepfunction is the Cumulative Distribution of lz

Appendix III: Goodness of Fit Test for the Beta Distribution: The Stepfunction is the Cumulative Distribution of E_{CIz}

Appendix IV: Goodness of Fit Test for the Beta Distribution: The Stepfunction is the Cumulative Distribution of E_{CI2z}

Appendix V: Goodness of Fit Test for the Beta Distribution: The Stepfunction is the Cumulative Distribution of E_{CI4z}

Appendix VI: Plot of lz Against True Score for the Modified Dataset ("+") and Erroneous Rules ("0"), and 80% Probability Interval (-.78, .81)

Appendix VII: Standard Error of E_{CI1}

Appendix VIII: Standard Error of E_{CI2}

Appendix IX: Standard Error of E_{CI4}

Appendix X: Plot of Expectation of E_{CI4} Against True Score

Appendix XI: Correlation Matrix of Standardized ECIs and lz with Bugdata
APPENDIX I: Goodness of Fit Test for the Normal Distribution
The Stepfunction is the Cumulative Distribution of ECII z
APPENDIX III: Goodness of Fit Test for the Normal Distribution
The Stepfunction is the Cumulative Distribution of z
APPENDIX III: Goodness of Fit Test for the Beta Distribution:
The Stepfunction is the Cumulative Distribution of ECI z
APPENDIX IV : Goodness-of-Fit Test for the Beta Distribution
The Stepfunction is the Cumulative Distribution of ECII z

\[a = 4.89 \]
\[b = 6.62 \]
\[N = 2400 \]
APPENDIX V: Goodness of Fit Test for the Beta Distribution
The Stepfunction is the Cumulative Distribution of ECI4 z
APPENDIX VI: Plot of J_z Against True Score for the Modified Dataset ("+") and Errorness Rules ("O"), and 80% Probability Interval (−.78, .81).
Appendix VII

Standard Error of ECII
Appendix VIII

Standard Error of ECI2

![Graph showing the relationship between True Score and Standard Error of ECI2.](graph.png)
Appendix IX

Standard Error of ECI4
Appendix X

Plot of Expectation of ECI4 Against True Score
Appendix XI
Correlation Matrix of Standardized ECIs and lz
With Bugdata

<table>
<thead>
<tr>
<th></th>
<th>EC1</th>
<th>EC2</th>
<th>EC3</th>
<th>EC4</th>
<th>Total Score</th>
<th>True Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.99</td>
<td>0.92</td>
<td>0.88</td>
<td>-0.11</td>
<td>-0.14</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.93</td>
<td>0.88</td>
<td>0.19</td>
<td>-0.11</td>
<td>-0.14</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.83</td>
<td>0.19</td>
<td>0.22</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
</tbody>
</table>
Distribution List

Navy

1 Meryl Baker
NPRDC
Code P309
San Diego, CA 92152

1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgrad Schl
Monterey, CA 93940

1 Chief of Naval Education Liaison Office
Air Force Human Resource Lab
Flying Training Division
Williams AFB, AZ 85224

1 CDR Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217

1 Dr. Pat Federico
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Norman Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Malby
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 Cpt. Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding &
Drydock Co.
Newport News, VA 23607

1 Library, Code P201
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. William Nordbrook
Instructional Program Dev.
Bldg 90 NET-PDCD
Great Lakes Naval Training Cnt
Great Lakes, IL 60088

1 Ted M. I. Yellen
Technical Information Office
Code 201
Navy Personnel R&D Center
San Diego, CA 92152

1 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR West
1030 East Green St.
Pasadena, CA 91106

1 Office of Naval Research
(442 PT)
800 N. Quincy Street
Arlington, VA 22217

1 Office of Naval Research
(442 PT)
Personnel & Training Research Programs
800 N. Quincy Street
Arlington, VA 22217

5
1	Chief of Naval Operations
	Res. Devel. & Studies Branch
	(OP-115)
	Washington, DC 20350

1	Lt. Frank C. Petho, MSC, USN, Ph.D.
	Selection and Training Res. Div.
	Human Performance Sciences Department
	Pensacola, FL 32508

1	Dr. Bernard Rimland (03B)
	Navy Personnel R&D Center
	San Diego, CA 92152

1	Dr. Worth Scanland, Director
	Research, Dev., Test, & Eval.
	N-5
	Naval Ed. & Training Command
	NAS, Pensacola, FL 32508

1	Dr. Alfred F. Smode
	Training Analysis & Ev. Grp. (TAEG)
	Dept. of the Navy
	Orlando, FL 32813

1	Dr. Richard Sorensen
	Navy Personnel R&D Center
	San Diego, CA 92152

1	Dr. Ronald Weitzman
	Code 54 WZ
	Dpt. of Admin. Sci.
	U.S. Naval Postgrad. Schl.
	Monterey, CA 93940

1	Mr. John H. Wolfe
	Code P310
	Navy Personnel R&D Center
	San Diego, CA 92152

1	Dr. Robert Wisher
	Code 309
	Navy Personnel R&D Center
	San Diego, CA 92152

1	Dr. Martin F. Wiskoff
	Navy Personnel R&D Center
	San Diego, CA 92152

1	Army
	Technical Director
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	James Baker
	Systems Manning Tech
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dr. Beatrice Farr
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dr. Myron Fischl
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dexter Fletcher
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dr. Michael Kaplan
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dr. Milton S. Katz
	Training Tech. Area
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Laurel Oliver
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333

1	Dr. Harold F. O'Neil, Jr.
	Attn. PERI-OK
	Army Res. Inst.
	5001 Eisenhower Ave.
	Alexandria, VA 22333
1 Mr. Robert Ross
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Robert Sasmor
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

1 Dr. Joseph Ward
Army Res. Inst.
5001 Eisenhower Ave.
Alexandria, VA 22333

Air Force

1 AF Human Resources Lab.
AFHRL/MPD
Brooks AFB, TX 78235

1 AF Office of Sci. Res.
Life Sciences Directorate, NL
Bolling AFB
Washington DC 20332

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, Washington DC 20332

1 Res. & Measurement Div.
Res. Branch, AFMPC/MPCYPR
Randolph AFB, TX 78148

1 Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

1 Dr. Marty Rockway
Technical Director
AFHRL(OT)
Williams AFB, AZ 58224

Marines

1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

1 Major Howard Langdon
HQ, Marine Corps OTTI 31
Arlington Annex
Columbia Pike at Arlington Ridge Rd.
Arlington, VA 20380

1 Director, Off. of Manpwr Util.
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134

1 HQ, Marine Corps
Code PML-20
Washington, DC 20380

1 Special Ast. for Marine Corps
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 Maj. Michael Patrow, USMC
HQ, Marine Corps
(Code MPI-20)
Washington DC 20380

1 Dr. A.L. Slafkosky
Scientific Advisor (Code RD-1)
HQ, Marine Corps
Washington, DC 20380

Coast Guard

1 Chief, Psych. Res. Branch
Coast Guard (G-P-1/2/TP42)
Washington, DC 20593

1 Thomas A. Warm
Coast Guard Inst.
P.O. Substation 18
Oklahoma City, OK 73169
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Susan Chipman</td>
<td>Learning & Development NIE 1200 19th St. NW Washington, DC 20208</td>
</tr>
<tr>
<td>John Mays</td>
<td>National Inst. of Ed. 1200 19th St. NW Washington, DC 20208</td>
</tr>
<tr>
<td>Richard McKillip</td>
<td>Personnel R&D Center Personnel Management 1900 E. St. NW Washington, DC 20415</td>
</tr>
<tr>
<td>William J. McLaurin</td>
<td>66610 Howie Court Camp Springs, MD 20031</td>
</tr>
<tr>
<td>Dr. Arthur Melmed</td>
<td>National Inst. of Ed. 1200 19th St. NW Washington, DC 20208</td>
</tr>
<tr>
<td>Dr. Andrew R. Molnar</td>
<td>Sci. Ed. Dev. & Res. NSF Washington, DC 20550</td>
</tr>
<tr>
<td>Dr. Joseph Psotka</td>
<td>NIE 1200 19th St. NW Washington, DC 20208</td>
</tr>
<tr>
<td>Wallace Sinaiko</td>
<td>Program Director MRHS Smithsonian Institution 801 N. Pitt Street Alexandria, VA 22314</td>
</tr>
<tr>
<td>Dr. Vern W. Urry</td>
<td>Personnel R&D Center Office of Personn. Mngmnt. 1900 E St. NW Washington, DC 20415</td>
</tr>
<tr>
<td>Frank Withrow</td>
<td>US office of Ed. 400 Maryland Ave. SW Washington, DC 20202</td>
</tr>
<tr>
<td>Dr. Joseph L. Young</td>
<td>Dir. Memory & Cognitive Processes NSF Washington, DC 20550</td>
</tr>
<tr>
<td>Other Department of Defense</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>Cameron Station, Bldg 5 Alexandria, VA 22314 Attn:TC</td>
</tr>
<tr>
<td>Dr. William Graham</td>
<td>Testing Directorate MEPCOM/MEPCT-P Ft. Sheridan, IL 60037</td>
</tr>
<tr>
<td>Dr. Wayne Sellman</td>
<td>Office of the Asnt. Sec. of Defense (MRA & L) Room 2B269, The Pentagon Washington, DC 20301</td>
</tr>
<tr>
<td>DARPA</td>
<td>1400 Wilson Blvd. Arlington, VA 22209</td>
</tr>
<tr>
<td>Non Government</td>
<td></td>
</tr>
<tr>
<td>Dr. James Algina</td>
<td>University of Florida Gainsville, FL 32611</td>
</tr>
<tr>
<td>Dr. Erling B. Andersen</td>
<td>Dept. of Statistics Studiestraede 6 1455 Copenhagen DENMARK</td>
</tr>
</tbody>
</table>
1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Thomas Anderson
CSK
174 Children's Res. Lab.
51 Gerty Drive
Champaign, IL 61820

1 Dr. John Annett
Dept. of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 1Psych. Res. Unit
Dept. of Defense (Army)
Campbell Park Offices
Canberra ACT 2600
AUSTRALIA

1 Dr. Allan Baddeley
Medical Res. Council
Applied Psych. Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Patricia Baggett
Dept. of Psych.
University of Colorado
Boulder, CO 80309

1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Issac Bejar
Educational Testing Serv.
Princeton, NJ 08450

1 Dr. Menucha Birenbaum
School of Ed.
Tel Aviv University
Ramat Aviv - Box 39040
Tel Aviv 69978
ISRAEL

1 Dr. Werner Birke
DezWP im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn 2
WEST GERMANY

1 Dr. Darrel Bock
Dept. of Ed.
University of Chicago
Chicago, IL 60637

1 Liaison Scientists
Office of Naval Research
Branch Office, London
Box 39 FP0
New York, NY 09510

1 Dr. Lyle Bourne
Dept. of Psych.
University of Colorado
Boulder, CO 80309

1 Dr. Walter Bogan
4615 N. Park Ave, no. 1611
Chevy Chase, MD 20015

1 Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52240

1 Dr. John S. Brown
XEROX Palo Alto Res. Cnt.
3333 Coyote Rd.
Palo Alto, CA 94304

1 Dr. C. Victor Bunderson
WICAT Inc.
University Plaza, Suite 10
1160 S. State St.
Orem, UT 84057

1 Dr. Leigh Burstein
Dept. of Education
University of California
Los Angeles, CA 90024

1 Dr. John B. Carroll
Psychometric Lab
Univ. of N. Carolina
Davie Hall 013A
Chapel Hill, NC 27514
<table>
<thead>
<tr>
<th>Dr. Paul Games</th>
<th>Dr. Kristina Hooper</th>
</tr>
</thead>
<tbody>
<tr>
<td>403D Carpenter</td>
<td>Clark Kerr Hall</td>
</tr>
<tr>
<td>University Park, PA</td>
<td>University of Calif.</td>
</tr>
<tr>
<td>16802</td>
<td>Santa Cruz, CA</td>
</tr>
<tr>
<td>Dr. Robert Glasar</td>
<td>Dr. Paul Holtzman</td>
</tr>
<tr>
<td>LRDC</td>
<td>Decision Systems</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>MFI</td>
</tr>
<tr>
<td>3939 O'Hara St.</td>
<td>100 S. Wacker Drive</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>15213</td>
<td>60606</td>
</tr>
<tr>
<td>Dr. Bert Green</td>
<td>Dr. Lloyd Humphreys</td>
</tr>
<tr>
<td>John Hopkins University</td>
<td>421 Psychology</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>Charles & 34th St.</td>
<td>Champaign, IL</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>61820</td>
</tr>
<tr>
<td>Dr. James Greeno</td>
<td>Prof. Raimo Konttinen</td>
</tr>
<tr>
<td>LRDC</td>
<td>or Library</td>
</tr>
<tr>
<td>3939 O'Hara St.</td>
<td>Institute for Ed Research</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>University of Jyvaskyla</td>
</tr>
<tr>
<td>15213</td>
<td>40100 Jyvaskyla</td>
</tr>
<tr>
<td>Dr. Ron Hambleton</td>
<td>FINLAND</td>
</tr>
<tr>
<td>School of Education</td>
<td>Library</td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td>HumRRO/Western Division</td>
</tr>
<tr>
<td>Amherst, MA</td>
<td>27857 Berwick Drive</td>
</tr>
<tr>
<td>01002</td>
<td>Carmel, CA</td>
</tr>
<tr>
<td>1</td>
<td>93921</td>
</tr>
<tr>
<td>Dr. Delwyn Harnisch</td>
<td>Dr. Steven Hunka</td>
</tr>
<tr>
<td>ICBD</td>
<td>Dept. of Education</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>University of Alberta</td>
</tr>
<tr>
<td>51 Gerty Drive</td>
<td>Edmonton, Alberta</td>
</tr>
<tr>
<td>Champaign, IL</td>
<td>CANADA</td>
</tr>
<tr>
<td>61801</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Chester Harris</td>
<td>Dr. Earl Hunt</td>
</tr>
<tr>
<td>School of Education</td>
<td>Dept. of Psychology</td>
</tr>
<tr>
<td>University of California</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Santa Barbara, CA</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>93106</td>
<td>98105</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Jack Hunter</td>
</tr>
<tr>
<td>Dr. Barbara Hayes-Roth</td>
<td>2122 Coolidge St.</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td>Lansing, MI</td>
</tr>
<tr>
<td>1700 Main St.</td>
<td>48906</td>
</tr>
<tr>
<td>Santa Monica, CA</td>
<td>Dr. Ed Hutchins</td>
</tr>
<tr>
<td>90406</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td>1</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>Dr. Frederick Hayes-Roth</td>
<td>92152</td>
</tr>
<tr>
<td>The Rand Corporation</td>
<td></td>
</tr>
<tr>
<td>1700 Main St.</td>
<td></td>
</tr>
<tr>
<td>Santa Monica, CA</td>
<td></td>
</tr>
<tr>
<td>90406</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dr. Dustin H. Heuston</td>
<td>Dr. Huynh Huynh</td>
</tr>
<tr>
<td>Wicat, Inc.</td>
<td>College of Education</td>
</tr>
<tr>
<td>Box 986</td>
<td>University of South Carolina</td>
</tr>
<tr>
<td>Orem, UT</td>
<td>Columbia, SC</td>
</tr>
<tr>
<td>84057</td>
<td>29208</td>
</tr>
</tbody>
</table>
1 Professor John A. Keats
University of Newcastle
AUSTRALIA 2308

1 Jeff Kelety
Dept. of Instr. Tech.
University of S. Calif.
Los Angeles, CA 92007

1 Dr. Walter Kintsch
Dept. of Psych.
University of Colorado
Boulder, CO 80302

1 Dr. David Kieras
Dept. of Psych.
University of Arizona
Tucson, AZ 85721

1 Dr. Stephan Kosslyn
Harvard University
Dpt. of Psych.
33 Kirkland St.
Cambridge, MA 02138

1 Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

1 Dr. Marcy Lansman
Dpt. of Psych. NI 25
Univ. of Washington
Seattle, WA 98195

1 Dr. Jill Larkin
Dpt. of Psych.
Carnegie Mellon Univ.
Pittsburgh, PA 15213

1 Dr. Alan Lesgold
LRDC
Univ. of Pittsburgh
Pittsburgh, PA 15260

1 Dr. Michael Levine
Dept. of Ed Psych
210 Education Bldg.
University of Illinois
Champaign, IL 61801

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
NETHERLANDS

1 Dr. Robert Linn
210 Education
University of Illinois
Urbana, IL 61801

1 Bob Loo, Ph.D.
Department of Psychology
The University of Calgary
2920 - 24th Ave. NW
Calgary, Alberta
CANADA T2N 1N4

1 Dr. Frederick M. Lord
Educational Testing Ser.
Princeton, NJ 08540

1 Dr. Drew Malizio
American Counc. on Ed.
No. 1 Pont Circle, #20
Washington, DC 20036

1 Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08540

1 Dr. Scott Maxwell
Dpt. of Psych.
Univ. of Houston
Houston, TX 77004

1 Dr. David McArthur
CSE 145 Moor Hall
UCLA
Los Angeles, CA 90024

1 Dr. Samuel T. Mayo
Loyola U. of Chicago
820 N. Michigan Av.
Chicago, IL 60611

1 Dr. Erik McWilliams
Science Ed. Dev. & Res.
National Science Foundation
Washington, DC 20550

1 Dr. Peter Mich
Ed Psych
Enderis Hall 719
University of Wisconsin
P.O. Box 413
Milwaukee, WI 53201
Dr. David Miller
Graduate School of Ed.
UCLA
Los Angeles, CA 90024

Dr. Mark Miller
TI Computer Sci. Lab
C/O 2824 Winterplace Circle
Plano, TX 75075

Dr. Allen Munro
Behv. Tech. Lab.
1845 Elena Ave. 4th floor
Redondo Beach, CA 90277

Dr. Anthony J. Nitko
School of Ed.
Division of Ed. Studies
University of Pittsburgh
5003 Forbes Quadrangle
Pittsburgh, PA 15260

Dr. Donald A. Norman
Dpt. of Psych. C-009
Univ. of Calif.
La Jolla, CA 92093

Dr. Melvin Novick
356 Lindquist Cntr for Measur.
University of Iowa
Iowa City, IA 52242

Dr. Jesse Orlansky
Inst. for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

Dr. Seymour A. Papert
MIT
Artific. Intelli. Lab.
545 Technology Square
Cambridge, MA 02139

Wayne M. Patience
American Council on Education
GED Testing Service, suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. James Pellegrino
Univ. of Calif.
Dpt. of Psych.
Santa Barbara, CA 93106

Mr. Luigi Petrullo
2431 N. Edgewood St.
Arlington, VA 22207

Dr. Martha Polson
Dpt. of Psych.
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Posner
Dpt. of Psych.
Univ. of Oregon
Eugene, OR 97403

Dr. Peter Polson
Dpt. of Psych.
University of Colorado
Boulder, CO 80309

Dr. Diane M. Ramsey-Klee
R-K Res. & System Design
3947 Ridgemont Dr.
Malibu, CA 90265

Minrat M. L. Rauch
P II 4
Bundesministerium der
Verteidigung
Postfach 1328
D-53 Bonn 1
GERMANY

Dr. Mark D. Reckase
Ed Psych Dept.
University of Missouri
4 Hill Hall
Columbia, MO 65211

Dr. Lauren Resnick
LRDC
University of Pittsburgh
3939 O'Hara St.
Pittsburgh, PA 15213

Dr. Mary Riley
LRDC
Univ. of Pittsburgh
3939 O'Hara St.
Pittsburgh, PA 15213
1 Dr. Andrew M. Rose
American Inst. for Res.
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Leonard L. Rosenbaum
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Ave.
Murry Hill, NJ 07974

1 Dr. Lawrence Rudner
403 Elm Ave.
Takoma Park, MD 20012

1 Dr. David Rumelhart
Cntr. for Human Info.
Univ. of Calif.
La Jolla, CA 92039

1 Dr. J. Ryan
Dept. of Ed.
University of S. Carolina
Columbia, SC 29208

1 Dr. Fumiko Samejima
Dept. of Psychology
U. of Tennessee
Knoxville, TN 37916

1 Dr. Alan Schoenfeld
Dpt. of Mathematics
Hamilton College
Clinton, NY 13323

1 Dr. Robert J. Seidel
Instr. Tech. Group
HUMARRO
300 N. Washington St.
Alexandria, VA 22314

1 Dr. John Serber
University of Wisconsin
Dept. of Ed Psych
Milwaukee, WI 53201

1 Dr. Shigemasa
University of Tohoku
Dept. of Ed Psych
KaWauchi, Sendai 980
JAPAN

1 Dr. Edwin Shirkey
Dept. of Psychology
University of Centl Florida
Orlando, FL 32816

1 Dr. Ed Smith
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

1 Dr. Richard Snow
School of Ed.
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

1 Dr. David E. Stone
Hazeltine Corp.
7680 Old Springhouse Rd.
McLean, VA 22102

1 Dr. Patrick Suppes
Inst. for Math. Studies
in Soc. Sci.
Stanford University
Stanford, CA 94305

1 Dr. Hariharan Swaminathan
Lab. of Psychom. & Evl. Res.
School of Ed.
University of Massachusetts
Amherst, MA 01003

1 Dr. Brad Sympson
Psychometric Research Group
Ed. Testing Service
Princeton, NJ 08541
1 Dr. David Thissen
Dept. of Psychology
U. of Kansas
Lawrence, KS 66044

1 Dr. John Thomas
IBM Thomas Watson
Res. Cnt.
P.O. Box 218
Yorktown Heights, NY 10598

1 Dr. Perry Thorndyke
The Rand Corp.
1700 Main St.
Santa Monica, CA 90406

1 Dr. Robert Tsutakawa
Dept. of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Howard Wainer
Division of Psychological Studies
Ed. Testing Service
Princeton, NJ 08540

1 Dr. Keith Wescourt
Information Sciences Dpt.
The Rand Corp.
1700 Main St.
Santa Monica, CA 90406

1 P.O. White
Dept. of Psychology
Institute of Psychiatry
DeCrespigry Park
London SE5 8AF
ENGLAND

1 Dr. Susan Whitely
Psychology Dept.
University of Kansas
Lawrence, KS 66044

1 Wolfgang Wildgrube
Streitdraefteamt
Box 20 50 03
D-5300 Bonn 2
WEST GERMANY

1 Dr. Steven Wise
Dept. of Guid. & Ed Psych
S. Illinois University
Carbondale, IL 62901