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Syntax and Semantics in
Learning to Subtract

Lauren B. Resnick
University of Pittsburgh

This chapter is concerned with the role of meaning and understanding in the
acquisition of computational skill. Until quite reeently, discussions of meaning-
fulness in arithmetic learning have been characterized by a confrontation between
those who advocate learning algorithms and those who argue for learning basic
concepts. This confrontation, however, is neither necessary nor fruitful. In filar
it serves to direct attention away from the ways in which understanding and
procedural skill may mutually support and influence one another.

Proponents of conceptually oriented instruction-have frequently argued that a
major Cause of difficulty In learning arithmetic is a failure to relate toles of
computational prOcedure to their underlying mathematical concepts. Substantial
efforts on the part of mathematics educators hsve resulted in instruction intended
to display for children the structure of important concepts such as the base system
and poiitional notation, on theassumption that procedulal algorithmsmould be
easily acquired and retained when the conceptual basis wu obvious. The data
presented here show that, intuitions concerning the importance of conceptual
understanding are correct in a crucial respect: difficulties in learning are often a
result of failure to understand the concepts.oh which procedures are based. But
the data also show that even when the basic concepts are quite well understood, '
they may remain unrelated to computational procedure. Thus the conceptual
teaching methods of the past were inadequate to the extent that they taught
concepts Instead of procedures and left it entirely to students to discover how
computational procedures could be derived fro the basic tructure of the
number, and numeration system. Out research thu s an im rtant new prob-

lem for mathematics instruction: devising methods helps, dents to explicitly
link meaning and procedure.

'sk
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137 10. `SYNTAX AND SEMANTICS IN SUBTRACTION

DISTINGUISHING SyNTAX AND SMANTICS

Written subtraction CM be analyzed as an algorithm defined by a set of syntactie
rulei that prescribe how probkms should be written, an oral inwhich certain
operations must be performed, and which kinds of symbols belong in which
positions. Although the syntax may reflect an undeilying semantics, or meaning,

an algorithm need not include any explicit reference to the semantics in order io
be succeisfully performed. Figure 10.1 shows an algorithm for subtraction that is:

A.
Find rightmost column.
Mark it es active column.

A
lye column.

is bottom s
fop?

C.
Active column:
Subtract.

H..

Active column: Writs a'
small 1 to the left of_
top digit *

Move one column left in
top numeral. Mart it as
borrow column.

'Active column: Write
result below line.

M.
Moie borrow marker
ono column to left.

FIG. 10.1. Syntactic alsoriithm for subtraction;

);
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entirely syntactic in natute. followed strictly, itwan solve any subtraction prob-
km written oirt in aligned columm.format. Some of the syntattic rules are
specifiedinthe figure (e.g., writing -titbit paniculaipositioh at H and reducing
by one at K). Other syntactic ruler the algorithm Obeys are not specified in the
figure. For example, there can be onl y. one digit per column, and each column
must be acted upon at least once.

Because performing this algorithm requires no understanding of the base
system I claim that it includes no semantics. That is, the systaM performing this
algorithm does not need to know .such things as the fact that the small .1 inserted
as part of borrowing really, represents 10 (when it .is in the rightmost, or units
column), oethat borroWing involves an exchange oi quantities between columns
that does not change the total quantity represented. Even the reason for borrow-
ing is mired. Thi; kind of semantic knowledge would justify the syntax, of the
algorithm,, but the algorithm can be run without reference to the semantics. The
.eyidence Fpresent here suggests quite strongly that many children may learn
the syntactic constraints of written subtractioh without conneelling-thear to the
semantic- information that underlies the algorithm. This can lead tO systematic
errors in performance.
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Evidence for the Syntactic Nature of Subtraction Errors

Initial evidence for the syntactic nature of Written subtraction errors comes from
the extensive work of Brown and his colleagues on the nature of children's errors
in subtraction (Brown & Burton, 1978). They have shown that a substantial
portion of children's errors result not from random mistakes, but from systemari
rally following wrong procedtkes.

The wrong procedures are ariants of correct ones; they are analogous to
computer algorithms with bugs in them. A finite number of bugs, which in
various combinations make up veral hundred "bulgy algorithms," have been
identified for subtraction. Bugs presumably arise when a subtraction problem is

encountered for which the child's algorithm is incomplete or inappropriate. The
child tries to respond anyway and either applies the incomplete algorithm leaving

out necessary steps, or tries to repair the algorithm to adjust to the new subtrac-
tion task, The resulting bug respects some of the constraintssyntactic and

semantic:that are embedded in a full, correct algorithm, but violates others.
(See Brown & VanLehn, this volume, for details of this "'repair" theory.)

By examining some common subtraction bugs and considering the possible

origins of each, it is possible to decide whether the bugs represent violations of
primarily semantic or syntactic constraints. This analysis, pan of which is pre-
sented in the following section, suggests that most buggy algorithms respect the

syntactic requirements of written subtraction, whereas the constraints that are
relaxed are the ones that express the semantics of the base-ten system and of
"



139 10.. SYNTAX AND SEMANTICS IN SUBTRACTION

subtrgction. This informal analysis appears consonant with both Brown and
. VanLehn's theory and with another theory bit' Young and O'Shea (1981). In the

latter theory children construct buggy algorithms because they either havenever
learned the complete standard algorithm or have forgotten parts of it.

Figure 10.2 names a nuinber of common bugs in order of their frequency,
describes them, and gives examples of each. In what follows, I consider possible
sources of thehe bugs and characterize each bug as semantic or syntactic in
character.

I . Smaller-From-Larger. Repair theory suggests that this very common
bug resultsfrom "swishiog arguments" to respond to a situation in which the
system cannot pake its normal move of subtracting the bottom from the top
number in a column. in other words, the sYstem makds the test at B in Fig. 10.1,
but doesn't know how to bohowand decides that the subtraction should be done
in the oppofite direction. Young and. O'Shei's analysis suggests that this bug
derives from simply not. making the test and is the normal or default way for

the system tq proceed unless the test is made and the various borrowing rules are
thereby evoked. In both of these ihterPretations all the syntax of written subtrac-
tion without borrOwing is' respected. What is violated is the constraint that the ,
bottom quantity as a whole, be subtracted from the top quantity as a whole. The
semantics of multi-digit subtraction includes the constraint that the columns:al-
though handled One at a time, cannoi be treated as if they were a string of
unrelated single-digit subtraction problems.

2. Borrow-From-Zew. Both repair theory and the Young ansi/O'Shea
analysis suggest that this bug derives from forgetting the part of the written
procedure that is equiv.alent to steps M-J-K in Fig. .10.1 (moving the borrow
marker...left, and reducing the new column). The bug respects the syntactic
requirement that, in a borrow, there must be a crossed-out and rewritten numeral
to the left of the active column. It aim regiects the syntax of the special case of
zero, where the rewritten number is always 9. However, it ignores the fact that
the 9 really iesults from borrowing one column further left (the hundreds Column)
moving 100 as 10 tens into the tens column, and then borrowing from the 10 tens
leaving 9 tens, or 90 (written as 9).

;

3. Borrow-Across-Zero., Repaii theoty offers two different derivations of
this bug. The first is that this bug arises ftbm the child's search for a place to rto
the decremeniing operation with the condition that the column not have a zero in .
the top humber. This would happen, when the child doesn't know how to handle
zeros or thinks they have "no value" and thus can be skipped. This solution
respects the syntactic 'constraint that a small 1 must be written in the adtitfe
column and that some other (nonzero) column must then be decremented. But the



1, Sma ller-Froin-Larger. The student subtracts the smaller digit in a column
from the larger digit regardless of which one is on top.

. 2 4 J'114.2
7221_ 31

417
2. Borrow-From-Zero. When borrowing from a column whose top digit is 0,

the student writes 9 but does not continue borrowing from the column to
the left of the O.

41S1
-$437
a

3. Borrow-Across-Zero. When the student needs tO borrow from a column
whose top digit is 0, he skips that column and borrows from the next one.
(This bug requires a special -lull for suqtracting from 0: either 0 - N N
or - N O.) ex

71,"0,41
- 4ArG

4.2a S. 302
4, Stosi-Borrow-At-Zitro. The student fails to decrement 0, although he adds

10 correctly to tlie top digit of the active colUmn. (This bug must be com-
bined with either 13- - N N dr 0 N 0.)

7 3 40,51

5- Jo7
5. Doti't-Decrement-Zero. When borrowing from a column in which the top

digit is 0, the student rewrites the 0 as 10 but does not change the 10 to 9
when incrimenting the active column.-

*eI As

6: Zoro-lniteed-Of-Borrow. The student writes 0 as the answer in anY column in
which the bottom digit is larger than the top.

3-24
,

2 / 0 0
7. Borrow-From-Bottom-lnsteed-Of-iero. if the top 'digit in the column being

borrowed from is 0, the student borrows from the bottom digit instead. (This
bug must be combined with either 0 - N N or 0 N 0.)

FIG. 10.2, . Descnpuons and examples of common subtraction bugs, .(Fmm
-Diagnostiemodels for ptocedural buss on baste mtoamatics skills," By J. S,
Brown end R R .Bunon, Cognitive Science, 1978. 2, 155-192 and Qom personal
communication vutll J. S. Brown. R. R. Bunon..and K. Vinlehn.)
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semantic knowledge that the increment and decrement are actqally addition and
subtraction of 10 is ignored, (or not known).' Repair theory's second derivation,
which agrees with Young and O'Shea's analysis, produces this bug by simply
deleting the mle that changes 0 to 9 (L in Fig. 10.1). This too is a completely.
syntactic derivation, for it allows deletion of .a mle without referege to the
semantic information that justifies the operation.

4. Stop-Borrow-At-Zero. Both repair theory and' Young and O'Shea's
analysis interpret this simply ofnitiing a rule or an operation. Steps I-7.1-K'
of Fig. 10.1 are simply sk ped.
semantic constraints. Syntactically it produces only the increment part of the
borrow operationthe 1 in the active columnbut does not show a crossed,out
number or the change of a 0 to a 9. Semantically it violates the justification for
the borrow incrementthat is, in order to add a quantity to the active column an
e ququivalent antity must be subtracted from another column.

fails to obey both syntactic and

5. Don't-Decrement-Zero. The change of 0 to 10 in this bug is the proper
"semantic- move after borrowing from the hundreds column..put it produces an
outcome that the child may not have encountered and thus dols not respond to
appropriately. Failure to change the 10 to 9 may result from a syntactic constraint
that _each column be operated on only once. This sybtactic constraint is not
"correct," but might be reasonably inferred from extensive experience with
problems ihat contain no zeros. If so, the syntactic constraint is in direct opposi-
tion to the semantic demands of the situation.

6,, Zero-Instead-Of-Bolkow. Like Smaller-From-Larger, this bug- simply
avoids the borrowing operation altogether, while observing all of the important
syntactic Constraints of operating' within columns, writing only one stball.digit
per column, arid the like. This bug, however, does not violate the semantics of
the digit structure as blatantly as the Smaller-From-Larger bug. In fact, a child
producirig this bug may be following .a semantics of subtraction that generally
precedes any understanding of negative number's. In this'inferrid semantics of
subtraction, when a larger number must be taken froM a smaller, the decrement-
ing is begun' and continued until there are no more leftyielding zero as the
answer.

7, BorroW-From-Bottonqnstead-Of-Zero. This bug seems purely syntactic

in the sense' that the seuch for something to decrement seems to kad the child to
ignore the digit stmcture and the semantics of exchange that justifies borrowing
within the top number. But it does produce a "funny-lookingi' solution, so it
would probably be 'generated only by a child whose syntactPc rides did not
specifically require that all increments arid decrements be in the top number.

4
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A CLOSER LOOK AT CHILDREN'S SEMANTIC AND
SYNTACTIC KNOWLEDGE

If bugs result from weak application of semantic constraints, a first hypothesis is

that children are simply unfamiliar with the semantics of the base-ten syitem.

Data we have collected permit us to examine children's semantic and syntactic
knowledge quite directly. These data lead me to conclude that this simple
hypothesis is falsethat instead, children are likely to know a good deal about the

base system but still be unable to use their semantic knowledge to support written

procedures for arithmetic.
Tfre data are from four children who were followed betweet1 November and.

May of the school yea in which they first learned addition and subtraction with

regrouping. The child n welt all in a noniraded, individualized mathematics

curriculurrfat the beg' lung of the study. Three were second-graders and one was

a third-grader, In N ember these ehildren had recently passed the criterion test

for a unit in which they were required to read and write numerals up to 100 and to

interpret these as compositions of tens and ones. We rtinterviewed the children

in February, after each had encountered instruction in addition and subtraction

with regrouping but had not yet passed the criterion test for those skills, and

again in May, at which time all had passed the curriculum test for addition and

subtract0h with regrouping.
MI interview sessions were individually administered and semistnictured,

with a planned sequence of problems presented in a standard format. Probes by

the experimenter and some attempts to explain or even demonstrate a procedure

were permitted. Learning obviously took place in the course of the interviews
sometimes in response to the experimenter's -teaching," sometimes as a result
of inventions by the children. We, have used the speed and character of these

learning incidents to infer the children's knowledge base.
The content varied over the three interview periods. In November, we focused

on the children'S understandingof the semantics of the base system. Most of the

tasks required each child to represent written numerals (10 through 99) in con-

crete forms and to add and subtract in the concrete representations. Dienes
blocks, color-coded chips, bundles of sticks, or pennies and dimes were uted for

the representations. In Febniary, virtually all the tasks were addition and subtrac-

tion problems, presented in both written and concrete form. We paid particular

attention to the extent to Which the child made correspoVences,("mappings)
between written and concrete representations of these processet. The May inter-
views replicated those of February tiut added a special session in which the child
wag asked to teach a hind puppet to add and stibtract. This allowed the children

to give explanations and justificitions for their addition and subtraction proce-
dures in a less self-conscious way than by simply explaining to an adult why
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certain mutines Were used. The results of these interviews tutsummarized in the
following section.

Semantics of Concrete Representations of the Base
System

Three of the four childrenAmanda;Alan, and Antondemonstrated immediate
and strong knowledge of the base system in concrete representations. They
showed this by:

I , Immediately using the Oesignated 'color chip, bundle, or block shape to
represent tens.

2.. Counting by tens and then ones as they "read" concrete displays or
counted out the objects to construct those displays.. .

3. When comparing concrete displeys, sothetimes counting only the tens=
thus relying 'on a canonical (i.e., no more than nine items of any one denomina-
tion) display in which the representation of the higher eumberwill necesiarily
have moretens.

4, When counting large nuMbers of units, grouping them into piles of ten, in
order to count by tens.

5. ReCognizing the conventionality of thecodes, as when &minda said that
the bUndles of sticks might have nine or eleven sticks each, but: "Let's say they .

all have ten,"

One child, Alan, apparently learned the power code in the coinse of the initial
interviews. He began by counting all blocks, chips, etc., as units, but switched to
counting by tens when the experimenter asked him to represent a huge number
and provided too few. blocks to represent it in units. His speed in picking up our
conventions suggeststhat it was only the conventions that he had to learn, not the
base-ten semantics that they represented.' By contrast the fourth child, Sandra,
seemed to be truly acquiring the semantic knowledge of the base system over the
course of the period in which we studied her. In November, although the experi-
menter's pr8mpts would lead her to count by tens and use this code for a few
problems, she would reven to counting all denominations as ones whenever new
representations were presented or the experimenter did not remind her of the
convention. With the Dienes blocks she used a "compromise" solution, in
which each of the individual squares on the ten bar was counted. She thus
respected the conventional coding, but did not really benefit from its "ten-ness."
Even in May (although by this time she always used the code representations),
Sandra still counted the individual squares on the ten bar. Of the children in our
group, Sandra clearly had the weakest command of the base-system semantics
and the least tendency to use it in constricting shortcuts.

11
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Procedures(for Adding and Subtracting With Concrete
Representations
In the Novemberainterviewsthe only addition and subtraction problems giveoto,

the children were in the codtext of a store game using the penny-and-dime

representation. This was the representation with which all foinvhildren had
seemed most comfortable. Akthe children were in command Of the basic seman-

tics of addition and subtraction. That is, they knew how to add by combiningand

then recounting objects that originally represented two numbers, and they knew

how to subtract by taking away a specified quantity from a given representation

of number. All could do this without error for two-digit representations, as long

as there was no need for regrouping.

Addition, The equivalent of the carry in written addition is trading fen pen-
nies for a dime in the money representation. In November,.none of the children

ever initiated a trade of pennies for dimes. However, when the experimenter

said, 'The store won't accept so many pennies," each child !tided ten pennies

for a dime without 'further prompts. Thus, although the children knew that
exchanges were possible, they did not naturally tend to use the concrete repre-

ientations in a manner that corresponded well to the rules of the written al-,
gorithm. .

Further evidence from the protocols suggests that a preference for canonical

formwhich would match the written modeappeared rather late in the de- .

velopment of the children's, understanding of the base system, For example,
Amanda, whose mental arithmetic performance and general facility with the

various concrete representation tasks suggesteda.very early and strongcommand

of the base system, seemed to have the least preference for canonical displays in

November, She instead seemed tio be experimenting with the various ways in

which a given number could be represented: She constructed noncanonical dis-
plays on various problems and then converted them Pt:canonical, or vice versa.

In general, she made fax More trades and exchanges (always ten-for-one or
owe-for-ten, in keeping with her stmng command, of the len-ness in the base

system) than any of the other children. By February, however, Amanda had

begun to prefer canonical form. She initialed trades in adding and tepded .to do ,

her trading sequentiallythat is, each time that she accumulated tenblocks in a

long addition problem, she traded for the next block size.

Sandra, the child who wits Ann counting by ones in May and not using the

ten-ness of the system, did not at any time initiate trades to canonical form on her

own, But she did show a 'response to the'experiMenter's rule 6f "np more than

nine per column" that suggests that she had adopted the ruleWithout reference

to its rationaleas an arbitrary constraint to be followed at tll costs. The follow:

ing protocol segment' illustrates this:

+ 9 + 33 S..(Sels out one tens block and four units blocks: nine units blocks:

ihreC tens blocks and three units. blocks.) .Ten, swemy, thirty. forty, forty-
\

12
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\
'one, . fifty-one,1. .. fifty-six " E: "Now 'kiihat if I told you there could not tie

more than ten in a columni'Ho could You 'get rid of them?" S: (Hesitates.) E:
"Could you tride?Xiiii coUld trade ten ones for a tali." S.: (Trades, putting the ten
hi the tens column1 "Do you Iave the same as before?" 5: (Counts bY tent,
continuing with the ones.) ..*Fifty-i x." E: vStill_the saint?" "Yes."

. -

75 49: S: (Setxout seven WAS and five units.) "I don't .have nine. " E: "Can you
trade one of thew?" S:"But then I ifiriuld haveWn mdre units than alluwerr-
in a coluMn): -

.

Sandra accepted theex:Peiimenter's ruiesior addition and thefi .appliecf,it to sub- .

traction as weil, shoWing tesistance 116 the suggestion that she trade-to Solie a
subtraction probleni..

This perforMancesuggests Why nonpreference for canonicity may be an
. .

.-portint 'developmental stage.. Perhans a, strong rule specifying canonicity can
interfere with learning abnut situations other than addition until children have ,

Iconic to understand the situations- in which .anonicity. should be preferred. ."

Subtraction. Thezequivalent of borrowing in concrete representationsis the
process of getting-meni-iiiiits-hy-tradini-a-ten-for-teounits.
posed to the childreain No4ember was'to take 61 cents (which all of thechildren
did by 'taking six dimes and one penny) and then give the experimenter 37 cents.
There are two critical aspects of this perfoimance. The first is whether the child
initiates a trade-down,or needs to be prompted. The second is whether the trade is

whether the child always makes a one-for-ten trade.
In November, only Amanda (who had the most highly developed understand:.

ing of the base systeM) both initiated the trade and made a one-for-ten trade with
no prompting or explanation. Sandra, the weakest of the four children, needed to
be explicitly told to trade on almost every trial. When unfair trades were made
they almost alwáy f011owed a pattern of trading the dime for only as many .1
pennies as were needed to give the experimenter the number she requested: For
example, in the 61 .37 problem Alan traded a dime for six pennies which,
together. with the penny he already had, allowed him to give seven pennies to the

experimenter.
The children improved between' November and May, so that by May all but

tindra were initiating trades and making only fait .trades. Even Sandra needed
only an initial and weak ("get more ") prompt, Because there is little practice in
the children's school curriculum on subtraction using these concrete repre-
sentations, it seems reasonable to Suppose that die much more skillful and seman-
tically correct performaneethe§ all showed by May was not the result of practice
on the subtraction routineliself; but of the development of general semantic
knowledge of the base system and subtraction. This suggests that the later trades
are driven by the need to get more units (or tens) and that the requirements Of
equivalent (one-for-ten) trades' are well internalized.
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Semantics of the Writing Code

'All the Children could interpret written numbers as -x tens and y s." Perfor-
mance on .other tasks that tapped knowledge of the wfiting ode, hoWever,
suggests that this may not reflect a very rich knowledge of the semantics of

iwritten nunierals. We observed the following:
,-

Three of the children correctly. represented two-die numerals with con-
crete representations on the' first trial,or after only a few prompts by the experi-
menter. Theyeould also write the numerals when shown a displayin one of,these

, gonerete representatiOns. This shows some knowledge of the wfitingcode. How-
.

,
ever, ihis knowledge appeareir.t0 beOnly Weakly linked to the concrete repre-
sentations. It was Common .,for the children to Count all the chips or,blocki":,

44 whether in canonical form 'or not, say the- numeral aloud, and then write this
nurheral without matching its digits to the concrete display.

2. Three of the four children were able to use expanded nOtanon cards to
construct numerals. For example, 98 was constructed from 90 and8, with the 8

, placed on top of the 0. There is some evidence, however, that-the-solutions to
these expanded notation problems were mare syntactic than Semantic, as the
children seemed to be trYibg different ways of putting the cards together until
they found something that looked fight. All the children demonstrated smite
difficulty with zeros (as in the number 708) when using these cards.

Two of the ..children (including the one who did nost use expanded notation
cards correctly) gave us spontaneOus evidence of a deeiYer understanding of the
written code. This came in the form of:

3Occasional comments when working on various problems. For example,
:1Alan, when comparing ihe numerals 9 and 90, said the 90 Was larger becausethe
9 "doesnl eVen have ten."

,-Solving. Written problems mentally and then Writing down the answers.,
AManda used 'a mental arithmetic strategy in whieh she partitioned two-digit
nuMbers into teni and ones and then operated separately on tte Iwo sets o(
values. For example, she solved 37 ,+ 25 as follows Thirty plus twenty is tifty.
Fifty-seven. Fifty-seven, fifty-eight, fifty-nide, sixty, sixty-one, sixty-twO."
Then she wrote 62, aligning the digits in the proper columns.

Procedures for Written.Subtraction and Addition

Written addition and subtraction prolilems were first presented to the children in'
February and were repeated in May. Except fOr a few special probes, only
two-digit problems in subtraction were used, so we were unable to observe any of
the zero bugs described earlier'. From these protocolS, however,,we can chart the
developMent of three key components o( written algorithms: right-to-left rules of
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procedure, the carry procedure, and the borrOwprocedure. Three of the
childrenSandra. Anton, and Alancan be followed with respect to these coni-

ponents.. Amanda's use of menial arithmetic allowed her to avoid the written

algorithms altogether. . .

Right-to-Left Direction. The three children all showed a. rather slow aid
hesitant development of the right-to-left-rules of procedure. Each had learned in

school that right_ to left is the "coriect" way to do the problems. When asked

why theY should41211 at the right they typically answered, "So you get the right

answer" or "It's easier," but riever,-,"To make borrowing orcarrying easier" or

a similar cohmtent.. In February- eaclfchild began by working left to rfght And

switched to a right:to-left direction.after encountering difficulty.-These twitches

wek spontaneous; the experimenteeneversuggested Working in the other direc-

tion: They were not, howeier, fullIfledged inventions, as,-ft is quite clear from

the protocols that a procedural rule learned earlier was tieing invoked to dope,

with difficulties encountered.

Corry' Procedure. Sandia, the weakest of the three In her command of the

semantics of the.base system as represented in conckteinaterialt, performed the .

carry procedure perfectly in February. (It had been taught to her in school bit.

then.) Anton. initially worked left to right, but quickly corrected himself. In

February, Alan almost conipletely avoided carrying by counting on his fingers

and -then writing the 'answers, and he continued to show some difficulty with

carrying in May. Anianda did not use the written carrying algorithm at all, even

in May. Thus, strong semanttc understanding (as shown by manipulations of the .

concrete representations and use of mental arithmetic) in no way guarantees

ability to ute the carry procedure in written addition.

Borrow Procedure. As might be expected,. this 'procedure was harder to

learn than Carrying. Alan, Anton, and $andra in the February and May interviews

each !showed the Smaller-Froni-Larger hug, but each then spontaneously

switched to a borroW operation. By May, Sandra and Anton were using the

correct, school-taught written algorithric; notating both ineremehti and decre-,

ments. Alan repeatedly stated that he, was sapposed to borrow, but even in May

he had some difficulty remembering the exact procedure. Amanda first per-

formed in the borrow procedure in May, with many false starts and bugs. Again,

the two children with the strongest knowledge of base system senianticsAlan
and Amandateemed to have the weakest control of the, written algorithm.

Mapping

The final question to be addressed on the basis of these data is the extent to which

the children had connected their knowledge about the base system (as displayed

in their work with the concrete materials) and their knowledge about the written

15
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procedures for subtraction arpi addition.' A general response can be made by
, simply noting again the lack of correlation between. khowledge of the base-

system semantics and knowledge of the Written algorithms.
More specificaliy, our interview.data permit a eloier examination of" three

leyeli of mapping between the written algorithms and the concrete materials: (I)
code thapping=the extent to Which the'child recognizes that the shape or color of
the chncrete materials Codes tbet same information as position (column) in the
written numerals; (21 result mappingthe extent to.which Abe child expects
procedures in the written system to yield the same ansWers as procedures in the

. compete materiak; and (3) operations mappingthe extent lb. which the child
cap identify equivalent operations in the written and the conerete systeMs and can
model a written algorithm in a concrete mode:

Codt mapping wasillLient weakly present in ill the children. This was shown
by their qurckly acquired ability to represent written pumerals in concrete forms
and to write numerals that corresponded to the conerete representations. How-
ever, none of the Children insisted on an exact' cortespondefice between the
written and the concrete form. .

There were distinct differences among the four children with respect to result
Mapping. Although we did not systematically probe for this, Amanda and Alan
gave clear evidence of expecting blocks and writing to yield the same answers.
During the May interview ,. for example, AlaR Correctedhis written subtraction
after doing the same, problem with blocks. He misted his blocks answer, and
expected writing and blocks to yield the same answer,' showing this by'doing
new or amended written procedure. Anton, by contrast, seemed undisturbed by
getting different answers in blocks than in written subtraction.

Althoughlilan expected the same answers Trom blocks and writing, he did not
use detailed operations mapping to correct his written algorithm. Instead, he
seemed to search tis memory for a preViously learned procedure that would
conect his errors. There was also other evidence that these children. Were not

Idoing.operations mapping. With the possible exception of Amanda in May, at no
time did,we see the children examining the steps in a blicki procedure asa Way

, of helping themselves perform a written .algorithm.

LINKING SYNTA)( AND.SEMANTICS

If the preceding analysis is correct, then children's difficulty with place value in
addition' and subtraction does not 'necessarily derive finnt an absence of semantic
knowledge about the base system. Rather, it results frOM an inadequate linking
of the semantics of the base system with the syntax of the written algorithms.
This suggests that for Many children who have difficulty learning or remember-
ing the rules f9r written arithmetic, instruction that explicitly linki semantic aid
syntactic knowledge may be useful. In addifion, initial instruction that Wessel
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6

the semantic propenies of the addition and subtraction algorithms should help

block the difficulties and buggy routines that might arise later.
We have pilot tested withThree otheithildten a remedial teaching prtkedure

that explicitly forces a mapping at the operational level between block subtrac-

tion and written subtraction. The procedure requires, that the child perform the

same prohkm using Dienes blocks and writing, alternating betWeen the two
representations. The writing thus servei asA record, of:the btocks,ictions.

versely, the blocks justify the steps in the Written algorithin. :Figure 10.3 depicts

the alternating blocks and writt'en steps for a simple problem. We:demonstrated.

the procedure to the children along with a great deal of Verbalization to explain .

_why each step was taken. Folltiwing the demonstration there were repeated trials

in which the children did puke and mine of the Work themselves. During this

process more complex problems, including three-digit problents, were intro-

Problem: 300 2 139

,,... .., -

Blocks Action or Writing*ction
< 4%.Tn. child: -...

111 300
.... / 3?

. ,,
1. Displays larger number in blocks.

2. Writes problem'in columnalignad format.

,

..

000 A,,,,,
n n11 Yi
U U U / 3 9

,

3. Trades 1 hundred block* 10 tens
blocks. ' ,2-,.....

4. Notates the trade.

,D 0 0 0 ,

0 Ansi;

uu°0 ,X00
i 39

0 0 0 7 \

6. Trades 1 ten block for, 10 units blocks.

6. Notates the track.

0 0 0 21,(1900./

110 0 4..../

\ / 4/

7. In each denomination removes the
number of blocks specified in the bottom
number.

8. In each coluinn notites the nurnher
remaining.

,

FIG. 10.3 Solution of a auk/action probkm with blockirand a :written ai-

gorithm.
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duced. Eventually thc child took over the entire process of manipulating blocks
and writing the correspoqing algorithmic step. Typically. within about forty
minutes elicit student was performing the task smOothly. At thiS point the blocks
could be removed (sometimes after a brief intermediate period in which -imagi-
nary " blocks were manipulated) and purely written Work undertaken.

The threechildren whO have been taught this mapping procedure each began
with a diffelent diagnOsed 1)14 Lanni WascdOing 5maller-From-Larger;1M90y. I
Donl-Decrement-Zero; and Ann., BorloW-Across,-,acro, Each Was brought back
for a: follovi-up interview three tb;six weeks after The instruction. On this occa-
skin each performed series of written problems-With ease.lbe bug ,was gone
and no new ones had arisen. Further, each child reMembered clearly what her
original bug was and could explain what she had learned about why the bug was
wrong.

All three children were questioned about what the various digits stood for..
why they were being crossed out and written in, etc, Their anaers suggest that
they understood why the algorithm works, especially as their wording was not
the same as the wording the experimenter used during instrucbon. They Were
also able to show correctly which blocks:stood.fOr the special boiyowing notation
digits (for example, a ten block for the small 1 written before the units digit),
indicating a mapping between the two representations that had not been present
prior to instruction. Finally, each child showed some interesting pattern of transj"
ferring semantic knowledge by inventing a procedure or an explanation that had
not been taught.

Molly's performance was particularly striking., because she invented a justifi-
cation for a (collect) written notation that did '110 exactly match the one produced
during mapping instruction. The experimenter hid asked her to do the problem,
2003 1467. and she had written:

Aefiy

Under questioning. she said she had borrowe one thousand; we then asked her
to tell'us where that thousand hal been F!laced. She replied, "Well. 100 is right
here (pointing to the 1 of the 13 and to the 9 in the tens column), and 900 is right
here ,(pointing to the 9 in the hundreds column)."

.;

WHY MAPPING WORKS

There is, of course, considerably more work to be done to establish'the range of
conditions under which this kind, of mapping instruction will be effective. We
will want to explore what kinds of bugs this instruction is capable of eliminating,
and what initial knbwledge of pike Vallit and additiOn and subtlactiOn semantiCs
is required for mapping to be effective. We will also . need to examine the
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possibility that certain bugs inherent in the blocks routines may unwittingly be
adopted into the writing algorithm along with all the semantic corrections. fa.,
nally, we will want to consider the possibility that other representationssticks,
abaci, expanded notation, for eiamplemay be equally or more powerful than
Dienes blocks for the purpose discussed here, and the strong possibility that
mappings between three representatiOns may be even more powerful than betv!eee
twO in producing understandirig of the written algorithMs.

There is, however, enough evIdence now in hand 001 the ppiOer of mapping
instraction to warrant Ibuildint I irystematictliloiy of ho* matping 4rki to
buthfunderstandinrind to ;Arita raoceduralerro. . u ctio e aih I itot an Mrit.'' , tt,
formal theory here, in the remainder of this chapter 1 cOnsider ihepossible shape

evidence that might sharpen the theory-building effort.
There seem to be two possible accounts for the effects of mapping. One, the

prohibition explanation, focuses on how pairing of each 'step in the written
algorithm with a parallel step in blocks might serve simply to ,prohibit wrong
operations in the %girding. A seeorid possibility, the enrichment explanation, ia
that semantic knowledge initially embedded in the blocks algorithm is, by inaig
ping, applied to the rules fur writing so tharthe-newly-enrieheil--knOwled
structure then eliminates bugs.

Prohibition

It is possible that most of the effect of the mapping instrurtion 'derives not from
acquiring a deep understanding of the semantics of subtraction, but simply from -

the external constraints imposed by rules of the instructional situation. If the
subtraction with blocks is performed correctly and if the mle of alternating
operations in the blocks anti the written representation is followed exatily,.most
of the known written subduCtion, bugs are rnpossibl becauSe 'they c40noti,

modeled with blocts withOut vioiating basic exehringe principle& The':, way in
which mapping between biocks and writing could prohibit writing bugs can belt
be appreciated by considering individual bugs.

Smaller-From-Larger is prohibited because in the blocks subtraction routine
only the .top number is represented in the blocks. The tasfit* to remove the
number of blocks specified in the bottom digits. As long as redigits Of the top
dumber are represented in blocks before any subtraction operations begin, there
is no way of reversing top and bottom digits in a particular column, because only
the top digit has been displayed.

The various bugs that arise when it is necessary to borrow from a column with
zero as its top number art,also prohibited in the mapping situation, provided the
child knows that a fair trade must be made. When working with blocks the
organizing goal is to get enOugh blocks to permit removing the specified number..
These blocks must always come from the top:.number as h is the only one,

9
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"represented, This constraint forces-the child to go left until blocks are found. The
child cannot add blocks to the zero Column (Borrow-From-Zero) until something
has been borrowed" frdm the hundreds column. Similarly, Stops-Borrow-Ate-
Zero is prohibited because the child:cannot add blocks to a column without t
having borrowed from another column. Borrow-From-Bottoin-Instead-Of-Zero
is prohibited because the bottom number is not even represented.' ,Borrow-
Across-Zero i; prohibited by details of the exchange rules,: having borrowed
from the hundredi column, the normal exchange (which we assume the child
knows),-will be for,ten tens. Because the blocks have been arranged in columns
for mapping instruction, the nevi blocki must be placed in the tens column, and
this in turn requires some notation in that column. :Also, a second trade ii needed
to fulfill the goal of _getting more blocks in the active coluinn. This second trade
would have the effect of prohibiting Don't-Decrement-Zero, which changes the 0
to 10 but does not then decrement it to 9.

The point of this analysis is that it demonstrates that, to the extent that the
rules of block exchanges and block subtraction are followed along with the rules
of mapping, most of the operations associated with buggy algorithms are simply
not possible,' ,Perhaps, then, the power of mapping instruction lies largely in
providing a high-feedback environMent in which the child's normal routine is
prohibited and a new, permitted one is heavily practiced.
, We are currently testing a form of pure prohibition instruction. Consideration

of Brown and VanLehn's theory of the origin of bugs leads us to expect that pure
prohibition instruction may elimittate bugs in the short run, but the bugs may
reappear later or new buggy algorithms may ,replace them Further, we expect
that little transfer or invvion of the kind shown by our three initial subjects will
oicur, lf, as Brown aW,VanLehn argue, bugs derive from children's active
attempts to invent procedures for dealing with new situations, then prohibition of
wrong moves -cannot by itself provide any basis for successfUl.*/ather than
maladaptive inventions. An instructifir can prohibit an operation in Writing, but if
no new information is offered to the iystem, then the system will have no basis
for responding with an appropriately modified set of operations.

`Enrichment

For these reasons, we are inclined to believe that something more than prohibi-
tion took place in our mapping instruction, that there was some kind of. enrich-
ment of the knowledge structure that pittitted the children to build some new
connections and thus make sense of situations newly encountered some weeks

, 'A few bugs are MWstnctly prohibited,by the blOcks. Of the bugs shOWn in Fig. 10.2, Zero-

Instead-01-ftomjw s p4sically possible, If prohibition were the only. way in which Mapping af-
fected writing performance, one would.... therefore, expect this bug to remain intact even After .
extensive mapping practice This has not yabee ested in our work, as none of the children taught

thus far had these particular bugs at the outset

20
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laier, If we imagine that the children began the mapping instruction with an
already well-developed justification for the operations in block subtraction based
on the semantics of place value add, subtraction, our theory will need to show
how this semantic knowledge can be incorporated into the knov/ledge structure
for written arithmetic as a reshlt of mapping activity. Figure 10.4 shows the
mapping links between a child's semantic knowledge and a written procedure.

The left side of Fig. 10.4 schematizes the semantic knowledge relevant to
subtraction that is instantiated in the blocks routine. There are twii aspects to this
knowledge: (1) a goatstructure forblocks subtraction and (2) knowledge about the
kinds of-exchanges allowed within the base7ten System. Only knowledge directly
relevant to borrowing is shown, noi the underlying knowledge about how base-
ten information is coded in blocks. -The goal structure that controls' the
exchange/borrowing process is showdat the far left. Constraints on each goal are
shown to its right by a single arrow pointing to the goal. In each case a subgoal is
generated in order to meet the goal. The main goal (A) is to remove the bottom
quantity from the, top--which, it is assumed, has been 'represented in blacks
according to the rules specified in the.base-ten code. This main goal requires that
there be at least as.many objects in the top of the actiye column as in the bottom.
Otherwise it is necessary to get more blocks for the column (B), and this subgoal
must be'achieved without changing the quantity as a whole (i.e while maintain-
ing equivalence). This can be accomplished through trading. The dotted single
arrow between getting more (B) and trading (C) reflects the finding, desCribed
earlier,, that some children need prompting before they initiate trades to solve
concrete subtraction problems. Trades are constrained by the requirement that
there,be both an increment and a decrement:' and hy the requirement that the trade
be fair .(ten for one), The ten-for-one relationship built into trades means that
the only wa); to decrement from the hundreds column and increment in the units,
column is to do a double trade (0).

0+

Theright side of Fig, 10:' represents the components of the written algorittnt
stripped down to include only the steps involved in, borrowing. The paths for
problems containing zeros and not containing zeros are shown in the left branch
and the right branch respectively. The operations in the two branches can be done
in several orders, but those shown are the orders frequently observed in al,
gorithmic performance. Ornissidn of one or more operations will groduce buggy
algorithms.

Operations-level mapping, between blocks 2nd written procedures would link
each operation in the writtedprocedure to a corresponding operation in blocks.,
The double arrows in Fig, 10.4 represent the kinds of links that mapping might
be expected to produce. First, the top-level goal of the blocks routine (A) be-
comes linked to the written algorithm. A particular effect of 'this is to motivate
testing (at a) whether the top number in a column is greater than or equal to the
bottom thus reducing the probability that this crucial step will be omitted: The
next.goal (B). getting more blocks, may also be linked to the written algorithm as
indicated by the dotted, box below a. Mapping of the trading goal (C), with its
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constraints, can be expected to produce a "chunking" of incrementing and
.decrementing in one's mental representation of the written algorithm. This
chunking in the algorithm is shOwn by the circles that now enclose steps b and c

and steps d, e, and f. The chunking ensures that incrementing and decrementing

are seen as complementary actions. For problems with zeros in the top number,

the operations on zero am tied to the incrementing and decrementini operations

that surround them. In athlition jo organizing the steps of borrowing into
chunksthus probably. making Othissions of individual steps ku likelythe
mapping has the effect of imposing the trading constraints (compensation, ten-

for-one, and adjacency) on the written algorithm. Borrowing becomes, in effect,

understood as an analog of tradiag, and the rules of trading become available as

justification orexplanation of the stepain borrowing. The links from the subop-

erstions within D to specific steps in the d7e-f sequence suggest how this may.

. Probably the most important aspect of the detailed mapping is that it
eil.plitins" why 0 should be changed w 9something that mystifies many

ihiliiren, according to our interview data.
This kind of, enrichment of the knowledge structure can be eitpected to make

the various'itejis in a correct writing algorithm easy to remember, because they

are embedded in a knowledge network that jilstifies and explains them. Perhaps

mdre important, the enriched knowledge structure should provide a basis for
modifying or building routines that would`make future repairs on subtraction

algorithms likely to produce correct rather than bugiy routines. The effect rif

enriched knowledge might 'be expected both at ihe point of generating possible
operations and at the point of testing them. The semantic knowledge available

from mapping would suggest potential incrementing and decrementing moves.

Constraints that are part of the sernantic knowledge would also serve to block

possible incorrect operations that children might generite. The parallel between

this informal account of the effects of mapiiing and Brown anciVanLehn's (this

volume) formal account of the origin of bugs suggests the possibility of i for-
malization of enrichment as an extension of their_ present repair theory. Whit is

needed to guide such an effort is direct observation of the invention and rapair of

algorithms by children.
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