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Syntax and Semantics in
Learning to Subtract

£

‘Lauren B. Resnick -
University of Pittsburgh -

_ Thls chlptet is concemed with the role of melnmg lnd undermndmg in the
~.:+ % -gequisition of computational skill: Until quite recently, discussions of meaning-
- - fulness in arithmetic leaming have been characterized by a confrontation between

those who advocate leaming algorithms and those who argue for leaming basic
_concepts. This confrontation, however, is neither necessary nor fruitful. In fact,
it serves to direct aitention away from the ways in which understanding and
. procedural skill may mutually support and influence one another.

DA Pmponeml of conceptually oriented instruction have frequently argued that a

" major cause of difficulty in leaming arithmetic is a failure to relate Tules of

... computational procedure to their underlying mllhemnucal concep!s Substantial

- efforts on the pan of mathematics educators have resulted in instrugtion intended
. 10 display for children the structure of |mpon|m concepts such as the base system
“ . and positional notation, on the' lssumpnon that procedural algorithms would be
easily acquired and lcwncd when the conceptual basis was obvious. The data
presented here show that intuitions conceming the importance of conceptual

- understanding are correct in a crucial respect: difficulties in learning are often a

- tesult of failure to understand the' concepis.oii which procedures are based. But
-~ the daia also show that even when the basic concepts are quite well undérstood,

A “they may remain unrelated to computational procedure. Thus the conceptual -
. teaching methods of the past were inadequate to the extent that they taught

- concepts instead of procedures and left it entirely to students to discover how
computational procedures could be derived from.the basic tructure of the
number and numeration system. Our research thu s an important new prob-

lem for mathematics instruction: devuin. melhods helps. dents to explicitly

Imk melnmg lnd pmcedulc S
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137 10. “SYNTAX AND SEMANTICS IN SUBTRACTION

DISTINGUISHING SYNTAX AND SEMANTICS

Written subtraction can be an'nlyi;d asan aigoﬁthm defined by a set of syntactic.
rules thst prescribe how problems should be written, an order in which.certain

- operations must be performed, and which kinds of symbols beléng in which

positions. Although the syntax msy reflect an underlying semantics, or meaning,
an algorithm need not include any explicit reference to the semantics in order to
be successfully performed. Figure 10.1 shows an algorithm for subtraction that is:

N

-

< -

Find rightmost column. - ST o
Mark it as sctive column. . .« .
y
m A
Active column: Writs &’
" small 1 to the left of
top digit. '
[}
' [ : ,
C Move one column left in
|  Active column: .| top numersl. Mark it ss A
Subtréct . borrow column.
T T .
D.. o : ‘ Yeos ,
" Active column: Write ‘ ::rmw :o::u:n
result below line. $ '"9_‘.ﬂ e
Move borrow marker
one column to ioft.

Move active marker - CoL
one column 1o left. _ LT,

© FIG. 10,1, - Syntactic algorithm for subtraction,

g
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enmely symacnc in nature. Followed smclly. itxcan solve any subtraction prob-

. lem written out in aligned column. format. Some of the synlacuc rules are

specnﬁedm the ﬁgure (e.8., wnung 1,inza particular position at H and reducing
by one at K). Other syntactic rulesthe algorithm obeys are not specified in the
figure. For example, there can be only one dlgn per column, and each column

~ must be acted upon at least once.

Because performing this algorithm lcqullcs no understanding of the base

~_system, | clgim that it includes no semantics. That is, the system perfonmng this ~

algorithm does not need to know such things as the fact that the small 1 inserted

. as pant of borrowing really represents 10 (when it.is in the rightmost, or units )

column), or'that borrowing involves an exchange of quantities between columns
that does not: change the total quantity represented. Even the reason for borrow-
ing is amyjtted. This kind of semantic knowledge would Jusnfy the syntax of the
algorithm, but the algorithm can be run without reference to the semantics. The

evidence |-present here suggests quite strongly that many children may learn

the symacuc constraints of written subtraction withont connecfng them 1o the
semantic information that underljes the algorithm. This can lead to systematic
errors in performance >

-

,Evndonce f0f the Syntactic Nature of Subtncuon Effon

Initial evidence for the syntactic nature of written submcnon errors comes from

+* the extensive work of Brown and his colleagues on. the nature of children’s errors

in subtraction (Brown & Burton,’ 1978). They have shown that. a substantial ° '
portion of children’s errors result not from random mistakes, bul from symmall-
cally following wrong proceduyes. * -

The wrong procedures are \ariants of correct ones; lhey are analogous to

-computer algorithms with bugs)in them. A finite number of bugs, which in

" various combinations make up geveral hundred *‘buggy algorithms,’” have been
‘identified for subtraction. Bugs presumably arisc when a subtraction problem is

“encountered for which the child’s algorithm is incomplete or inappropriate. The

child tries to lcspond anyway and either applies the incomplete algorithm leaving

out necessary-steps, or.tries to repair the algorithm to adjust to the new subtrac-" -

tion task, The resulting bug lcspecls some of the conslmms—symacnc and

. semantic—that are embedded in a full, correct algorithm, but violates olhers

(See Brown & VanLehn, this volume, for details of this *‘repair'” theory.)
By examining some common sublncnon bugs and consndcnng the possible

'ongms of each, it is possible to decide whether the bugs represent violations of

t

primarily semantic or syntactic constraints. This analysis, part of which is pre-
scmcd in the following section, suggests that most buggy algorithms respect the -
syntactic requirements of written subtraction, whereas the constraints that arc
relaxed are the ones that explcss the scmanucs of the base-ten system and of

LIRS
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139 10.. SYNTAXAND semmlcs IN susmcnon o

3 subtncuon This informal anllysns appears consonam with both Brown and
4 " . Vanlehn's theory and with another theory by Young and O’ Shea (1981). In the
latter theory children construct buggy algorithms because they either have'never

. leamed the complete standard algorithm or have forgotten parts of it..

' -Figure 10.2-names a nuinber of common bugs in order of  their flcquency.
describes them, and gives examples of each. In what follows, I consider posslblc
sources of thegc bugs and characterize each bug as semantic or syntactic in
character. . _ : -

1. Smaller-From-Larger. Repair (heory suggests that this very common
bug results from *‘swisghing arguments’’ to respond to a situation in which the

. system cannot :make its normal move of subtracting the bottom from the top

 number in a column. In other words, the system makes the test at B in Fig. 10.1,
but doesn't know how to borrow and decides that the subtraction should be done
in the oppofite direction. Young and, O'Shea s analysis suggests that this bug -
derives from simply not.making the test and is the normal or default way for
the system tq proceed unless the test is made and the various borrowing rules are
‘thereby evoked. In both of these interpretations all the syntax of written gubtrac- -
tion without borrowing is respected. What is violated is the constraint thll the .
‘bottom quantity as a whole, be subtracted from the top quantity as a whole. The

- semantics of muln-dngu subtraction inciudes the constraint that the columns, al-
“though handled one at a time, cannot be treated as if lhey were a slnng of
umclalcd single-digit subtraction problems. - .

2. Borrow-From-Zeqo Both repair theory and the Young nmUO'Shel s
i analysis suggest that this bug derives from forgetting the pan of the written
procedure that is cquivalent to steps M-J-K in Fig. 10.1 (moving the bogow .
markeruleft, and reducing the new column). The bug respects the syniactic
requirement that, in a borrow, there must be a crossed-out and rewritten numeral
to the left of the active column. It alsa respects the syntax of the special case of
zero, where the rewritten number is always 9. However, it ignores the fact that
‘ the 9 really results from borrowing one column further left (the hundreds column)
.* moving 100 as 10 tens into the téns column and then borrowing from the IOlens
lcavmg 9 tens, or 90 (writien as 9). : _ o

, 3. Borrow Across-Zero.. Repm lheory offers lwo dnffetcnl dcnvauons of
, lhns bug. The first is that this bug arises from the child’s scmh fora place to do
the dectemenung operation with the condition that the column not have a zero in
- the top humber. This would happen when the child doesn’t know how to handle
zeros or thinks they have ‘‘no value’’ and thus can be skipped. This solution
respects the syntactic ‘constraint that a small 1 must be written in the active .
solumn and that some other (nonzero) column must then be decremented. But the -

¢
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©. 1. Smaller: Fvom Larger. The .stu'dent subtraucts' the smaller digit in a column .
© ftrom the larger digit tegardless of which one is on top.

. sae SvY2
R 7y A |
. . 277 3v7

2. Borrow-From-Zero. When bouowmg from a column whose top dton is 0,
the student writes 9 but does not continue borrowing from the column to

i " the left of the 0. ‘m | | !ﬂbz
- -¢37 ~J96.
¢s $06
3. Borrow-Across-Zero. When the student needs 1o borrow from a column

whose top digit is 0, he skips that column and borrows from the next one.
{This bug requires a special “rulz for sutracting from O: either 0 — N =N

corQ -~ N-O)'
Zo2 WO
‘ By S £ XA
225 ) 30.9

-

" 4, Stog-Borrow: At Zéro. The student fails to decrement 0. although he adds
10 correctly to the top digit of the active cohimn. (This bug must be com-
bined with either 0 - N »'Ndr 0 - N=0.)

’ / 7,3-' JO7 -7

. 6. Do’ t-Decrement-2ero. When bonowm hom a column in which the top
" digit is 0, the student rewrites the 0 as 10 but does not changa the 10 to 9
* when incrimenting the active. column . .

S\ 1 | 405'

' " 8. 2er0- lmlud-Of Borrow. The student writes 0 as the answaer in any column in o

P which the bottom digit is larger than xhe top. . . .
775 ,-4_‘_5%—; ”
2/0 a? 00

" 1. Borrow-From-Bottom- lmlud-Of*‘vo it the top digit in the column bomg
.. - borrowed from is 0, the student borrows from the botlom dm’nt lmlud (Thu
- " bug must be combined with either 0 ~ N = N.or 0.— N.= 0.)

70,2 -
' . . » — y” Cw ) —yi r | ‘ .’.‘ “"'
S - ¥s¥ —7069

. ! b
T " . FIG. 10.2, . Descnptions and examples of common subtraction bugs, (From
} ‘Digpostic- models for procedural bugs in basic mathematics skills, "’ By ). S..
‘ Brown gnd R R. Bunon, Cognitive Science, 1978, 2, 133- -192 and {rom penonll o
’ commumunon with ). §. Brovm R.R. Burton.- de Vlnlchn) AP

.'/)". ',- S . N —- . v - . i4° " .
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semantic knowledge that lhc increment and decrement are actyally addition and
subtraction of 10 is ignored (or not known). Repair lheory s second derivation,

* which agrees with Young and O’Shea’s analysis, pmduces this bug by simply

deleting the rule that changes 0 to 9 (L in Fig. 10.1). This too is a complelely.
syntactic derivation, for it allows deletion of & rule without reference lo thc
semantic mformauon thll jusuﬁes the opemlon

’

4. S:op-Borrow-Al-Zero. Both repair theory and’ Young and O’Shea’s
analysis interpret this simply ofnitting a rule or an operation. Steps /1-J-K'
of Fig. 10.1 are simply skipped. ;Cy%u’yfnls to obey’ both syntactic and
semantic constraints. Syntactically it produces only the increment part of the
borrow operation—the | in the active column—but does not show a crossed-out

~ number or the change of a 0 to a 9. Semantically it violates-the justification for
.the borrow increment—that is, in order to add a quantity to the active column an

equwalcnlq\mmy must be sublucted from another column.

5. Don't- Decrement-Zero. The change of 0 to lO in this bug is the proper
*'semantic’ ' move after borrowing from the hundreds column. But it produces an
outcome that the child may not have encountered and thus does not respond to -
appropriately. Failureto change the 10 to 9 may result from a syntactic constraint
that_each column be operated on only. once. This syhtactic conslmm is not.
*correct,’’ but might be reasonably inferred from extensive experience with
problems that contain no zeros. If 50, the syntactic constraint is in duccl opposi-
tion to the semantic demands of the situation. Co \

6. Zero- In.nead-Of Bofrow. - Like Smaller-From- Larger, this bug simply
avoids the borrowing operation allogelher. while observing all of the important
syntactic constraints of operating’ within columns, writing only one srhall digit .
per column, and the like. This bug, however, does not violate the semantics of
the dlgll structure as blatantly as the Smaller-From-Larger bug. In fact, a child

_ producuig this bug may be following .a semantics of subtraction that gencrally L ‘
_ precedes any -understanding of ncglnve numbers. In this inferred semantics of o
~ subtraction, when a larger number must be: taken from a smaller, the dccremenl- ’

ing is begun’ and connnucd until there are no more Iefl—yleldmg zero as the
unswet : b :

o

7 Borrow-From-Bonom-Instcad-af Zero. This bug seeml purely symacnc S
* in the sense that the search for something to decrement seems to lead the child to

ignore the digit structure and the semantics of exchange that Jusuﬁes bonowmg '
within the top number. But it does produce a "‘funny-looking’ solution, so it

~ would probably be .generated only by a child whose syntact ‘rules did not

specifically require that all increments and dectcmenls be in the top number.

. I
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' A CLOSER LOOK AT CHILDREN'S SEMANTIC AND
" SYNTACTIC KNOWLEDGE :

If bugs result from weak application of semantic constraints, a first hypothesis is
that children are simply unfamiliar with the semantics of the base-ten syﬁlem.
" Data we have collected permit us to examine children’s semantic and syntactic
. knowledge quite directly. These data lead me to conclude that this simple
hypothesis is false—that instéad, children are likely to know a good deal about the
" base system but still be unable to use their semantic knowledge to support written
procedures for arithmetic. " : o
The data are from four children who were followed betweeizv November and.
May of the school year in which they first learned addition and subtraction with
‘regrouping. The children were all in a nongraded, individualized mathematics
curriculum ‘at the begjfining of the study. Three were second-graders and one was
a third-grader. In November these children had recently passed the criterion test
for a unit in which they were required to read and ‘write numerals up to 100 and to -
interpret these as compositions of tens and ones. We reinterviewed the children
in February. after cach had encountered instruction in addition and subtraction
- with regrouping but had not yet passed the criterion test for those skills, and
again in May, at which time all had passed the curriculum test for addition and
subtractjgh with regrouping. ' ' ' K o
All interview sessions were individually administered and s¢mistructured,
with a planned sequence of problems presented in a standard format. Probes by
the experimenter and some attempts to explain or even demonstrate a procedure
~ were permiited. Leaming obviously took place in the course of the interviews—
sometimes.in response 1o the experimenter's ‘‘teaching, " sometimes as a result
of inventions by the children, We. have used the speed and character of these -
~ leaming incidents to infer.the:children's knowledge base. ' *

" The.content varied over the three interview periods. In November, we focused
on the children's understanding:of the semantics of the base system. Most of the
tasks required each child to represent written numerals (10 through 99) in con-
crete forms and to add and subtract in the concrete represéntations. Dienes

" blocks, color-coded chips. bundles of sticks, or pennies and dimes were used for
* the representations. In February, virtually all the tasks were addition and subtrac- _
tion problems, presented in both written and concrete form. We paid particular .
attention to the extent to which the child made comlponeen'ces,("mlppings','),
between written and concrete representations of these processel. The May inter-
views replicated those of February but added a special éession in which the child
was asked to teach a hand puppet to add and subtract. This allowed the children

* to give explanations and justifications for their addition and subtraction proce-

dures in a less self-conscious way than by simply explaining to an adult why

[ ]

»




143 10 SYNTAX AND SEMANTICS IN sunmAcnon

certain routines were uued The muln of lhese mterv:ews utsummmzed in the

followmg secnon

.Slentice of Concme Repnunmionl of the Bue

System
Three of the four chnldren—-Amnndl. Alan, and Amon—demdnnmed nmmedme :

~ and strong knowiedge of the bue synem in concrete rgpresentations. They

showed this by:

lmmedmely using the dengmled color chip, bundle, or block shepe to
lepluem tens. % 4

2. Couming by tens and then ones as they '‘read’’ concrete dnplnys or

counted out the objects 10 construct those displays. .

3. When comparing concrete displsys, somenmes counting only the tens—
thus relying on a canonical (i.e., no more than nine items of any one denomina-
tion) display in whlch the repleeenmnon of the higher numbet will necessarily
have more tens.

4, When counting luge num\:en of unm. gmupmg them into pnles of ten, in
order to count by tens.

‘5. Recognizing the convemlonnlny of the’ codes. as when Amdndl said’ thnl -

the bnndles of slgcks mnghl have mne on' eleven sticks each, but: “'Let’s say they . '

lll have ten.’

[ .

One child, Alan, spparently leamed the power code in the course of the initial

. interviews. He began by counting all blocks, chips, etc., as units, but switchedto -

counting by tens when the experimenter asked him to tepluem a large number -

- and provided too few. blocks to represent it in units. His speed in picking up our

conventions suggests that it was only the conventions that he had to leam, not the -
base-ten semantics that they represented. By contrast the fourth child, Sandra,
seemed to be truly acquiring the semantic knowledge of the base system over the
course of the period in which we studied her. In November, although the experi-
menter's pr8mpls would lead her to count by tens and use this code’ for a few-
problems, she would revert to counting all denominations as ones whenever new

" representations were presented or the experimenter did not réemind her of the

conqvemmn With the Dienes bloclu she used a '‘compromise’’ solution, in _;
which each of the individual squares on the ten bar was counted. She thul )

~ respectéd the comemioml coding, but did not really benefit from its *‘ten-ness.’
". Even in May (although by this time she always used the code representations),

Sandra still counted the individual squares on the ten bar. Of the children in our

~ group, Sandra clearly had the weakest commlnd of the base-system ncmamics .
~ and the Ieul lendency 1o use it in conumcnng shortcuts. :

¢
I . ol . .
v. :
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Pfocedufe:(fof Adding and Subtm:tmg With Concfoto
Reprosenmlom -

In the Novembersinterviews lhg only addition and subtraction problems glven o

the children were in the coritext of store_game using. the penny-and-dime -
- representation. This was the representation with which all foux children had

seemed most comfortable. A"{}hﬂ children were in command of the basic seman-

" tics of addition and subtraction. That is, they knew how to add by combining and
 then recounting objects that originally represented two numbers, and they knew °

how to subtract by taking away a specified quantity ‘from a given representation

of number. All could do this without error for two-digit n:pn:semauons. as long/

as there was no need for n:groupmg

. Addmon The equivalerit of the carry in written addiuon is mdmg ien pen- _
- nies for a dime in the money representation. In November. .none of the children .

ever initiated a trade of pennies for dimes. However, when the expé’nmcmcr
said, *“The store won 't accept s0 many pennies; ** each child traded ten pennies
for a- dime without ‘further prompts.  Thus, - although the children knew that

exchanges were possible, they did not naturally tend to use the concrete repre-
sentations. in a manner that. comspondcd well to the mlet of the wnllen nl-

gorithm.

Further evidence fmm lhc pmlocols suggesu thnl a pn:fen:nce for canomcal ‘

form—which would match the written mode—appeared rather laie in_the de-
velopment of the children's, understanding of the base: lyllem For enmple.

Amanda, whose mental arithmetic performance and general facility with the +
 various concretc fepresentation tasks suggested a very early and strong command
- of the base system, seemed to have the least preference for canonical displaysin - -

November. She instead secmed to be experimenting with the various ways in

which a given ‘number could be represented: She constructed noncanonical dis-

plays on various problems and then converted them ta-canonical, or vice versa.

In general, she made far more trades and exchanges (always ten-for-one or '

one-for-ten, in keeping with her strong command, of the ten-ness in the base

~ system) than any, of the other chiidren. By February, however, Amands had -
begun to prefer canonical form. She initiated trades in adding and tepded to do

her trading sequentially—that is, each’ time that she accumulated ten |oclu ina
long addition problem, she lnded for the next block size.

. Sandra, the child who was still counting by ones in May and not using the
ten-ness of the system, did not at any time initiate trades to canonical form on her
own. But she did show a ‘response (o the experimienter’s rule of *‘np more than
" nine per column '’ that suggests that she had adopted the rule—without reference

to its rationale—as an arbitrary constraint to be followed at all costs. Tbe follow-
ing protocol: scgmcnl illustrates this: ‘ » 7 —
14 +9+33 S (Scu out one tens block and four units blocks. nine units blocks;
three tens blocks and three unhl blnclu) "I‘en. jwcnly. thiny, forty, lony
\ . ' \-

L]
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a

“vone, . . ﬁfly-one.. ;. fifty-six\" E: **Now.what if I told you there could not be
" more than ten in a column? Ho\ could you get rid of them?"’ §: (Hesitates.) E »
. . "*Could you trade? You could | ten onesforaten.’’ S: (Trades, putting the ten B
.= - in the tens column’) E: *‘Do you ave the sarne as before?”” §: (Counts by tens, ’
. oonumnng with the ones. ) "anty-s x E -"Sull the same" ® S' ”Yes v

K iy .

RN 49 s: (Sgts.out seveniens and ﬁve units.) *'l don’t have nine.” E: **Can you .
" trade one of lhese"" "Bln then l Would have ten”’ (n e more umts than allowed“v -
: .macolumn) s - ~_ . i

' Sandra chepted the: expenmenter S rule for addmon and lhen apphed itto sub- . :’.-:
" traction as well, showmg resnslance o the suggesuon thal she. trade lo solve a
subtraction problem.. S,
This performance suggests why nonpleference for canomcnly may be an |m-_,
* ‘portant developmental stage.: Perhaps- a strong rule specifying canonicity can
: . interfere wnlh learning about situations other than addition until children have o
. ocome to undersland the situations’ in whnch canomcny should be preferred. -

Subtracuon Theqeqmvalenl of bomowmg in concrele represenlauons isthe

process of gelung-morembylradmgaleniomumts. The-problem.initially
- posed to the children in November was to take 61 cents (which all of the children
“~ did by taking six dimes and one penny) and then give the expenmenler 37 cents.
There are two critical aspects of this performance. The first is whelf\er the. chnld

.., . initiates a trade-down or needs to be prompted. The second is whether the trade is

: ' “faxr"—n e., whether the child always makes. a one- -for-ten trade.

- In November, only Amanda (who had the most highly developed understand-

ing of the base system) both initiated the trade and made a one-for-ten trade with . - 1

«

no prompting or explanation. Sandra, the weakest of the four children, needed to
be explicitly told to trade on almost every trial. When unfair trades were made’
they almost always followed a pattern of lradmg the dime for only as many g
pennies as were needeéd to give the expenmenler the number she requested For -
example, in the 61 —.37 problem Alan traded a dime for six ‘pennies which,
‘together-with the penny he already had allowed hnm to glve seven penmes to the’ ‘
expenmenler _ - S
- The children |mproved belwoen November and May, so. that by May all bul : ‘
o ‘Sindra were initiating trades and making only fair trades. Even Sandra neceded
< ~only an initial and weak (*‘get more ") prompt. Because there is little practice in ‘
the children’s school curriculum on subtraction using these concrefe repre-:
sentations, it seems reasonable to suppose that the much more skillful and seman--
tically correct performance lhey all showed by May was not the result of practice
" . . on the subtraction routine-iiself, but of the development of general semantic
' knowledge of the base system and' subtraction. This suggests that the later trades
" are driven by the need to get more units (or tens) and that the requlremenls ‘of
' eqmvalent (one- for-len) trades: are well mlemahzed

Lo . 3 PR .
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';Semanttcs of the Wrtttng Code

"All the chtldren could i interpret written numbers as **x tens and y !
mance on- other tasks that tapped knowledge of the writing de however -
suggests that this may ‘not reflect a very rich knowledge of the semanttcs of o
wntten nunierals. We observed the following:
J’l—f};'i

- . ‘L. Three of the chtldren correctly represented two-digit numerals wtth con-
% crete representations on the first tnal .or after only a few prompts by the experi- -~ o
menter. They could also write the numerals when shown a. dtsplay inone of these .~ -
: concrete Fepresentations. This shows some knowledge of the writing code. How- W
- ever, this knowledge appeaned*to be: only weakly linked 10 the concrete repre:
- sentations. It was common for the chtldren to count all the chtps or blocks:
& - whether in canontcal form* or not, say- thé- numeral aloud, and: then wnte this T
nutheral without matchtng its digits to the concrete display.. 4
2. Three of the four children were able to use expanded notaiion cards to o
construct numerals For example, 98 was constructéd from 90 and.8, with the 8 oot
.. placed on top of the 0. There is some evidence, however, that the. solutions-to— : '
- these’ expanded notation problems were mgre syntacttc than semantic, as the
~ children seemed to be trythg dtfferent ways of putting the cards together until
they' found something that looked right.” All the children demonstrated: sore . _
dtfﬁculty with zeros (as in, the number 708) when’ ustng these cards T T
Two of- the chtldren (tncludtng the one who did' not use- expanded notatton

cards correctly) gave us spontaneous evidence of a decper understandtng of the
written code Thts came in the form of: \

3 -Occasional comments when workrng on ‘various prqblems For example
_rAlan, when comparing the numerals-9 and 90, said the 90 was larger because the
. .+ 9 ‘*doesn’t even have ten.”’ = - e :
- a4, Solvtng wmten problems mentally and then wnttng down the answers. .
* Amanda used | a mental arithmetic strategy “in whtch she pamttoned two-dtgtt"
numibers into tens and ones and then operated separately on tm:*two sets o( ' -
‘values. For example she solved 37 + 25 as follows: ““Thirty plus twenty is fifty. ' A
Fifty- scven. Fifty-seven, fifty-eight, fifty-nidte, sixty, sixty-one, stxty-two vt
Then she wrote 62 altgntng the digits in the proper columns ;

P

»

o~
Procedures for Written Subtraction and Addition s

‘Written addition and subtractton problems were first presented to the children in*
February and were repeated in May. Except fOr a few spectal probes, only
- two-digit problems in subtraction were used, so we. were unable to observe any of P
o the zero bugs described earlier. From these protocols, however, 'we can chart the
development of three key components of written algorithms: right-to-left rules of

Ly, »
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procedure, “the carry. procedure, and the borrowprocedure. ' Three of the
_ children—Sandra, Anton; and Alan—can be followed with respect to these com-
ponents. Amanda's use of menfal arithmetic allowed hef to avoid the written - -

algorithms altogether. - .

. .o o
e T ’ ’ e

- Right-1o-Left Direction. The three childrenall showed a. rather slow and

" Hesitant development of the right-to-left rules of procedure. Each had leamed in:

school that right to left is the "‘correct’* way to do the problems. When asked

.why they should'start at the right théy typically answered, **So you get the right
" answer"" or "“It's casier,”” but fiever,:*"To make borrowing or cdmying easier’’ or.
4 similar commient. In February”cachchild began by working left to right and .
switched to a right-to-left direction after encountefing difficulty -These $witches.
~ weie spontancous; the experimenter neversuggested working in the other direc-
- . tion: Thiey were not, however, full:fledged jnventions, as Rt is quite clear from

the protocols that a procedural rule. leamed earlier was being invoked to cope.

with difficulties encountered. . -

_ability to use the carry procedure in written addition.

Mapping

Carry Procedure. . Sandra, the weakest of ihe»iﬁlc‘e'in~ hér cqniﬁland of the '

semantigs of the-base system as represented in concrete.materials, pecformed the .
- carry procedure perfectly in February. (It had been taught to her in school by

then.) Anton, initially worked left to right, but quickly corrected himself. In,

February; Alan almosy completely avoiged carrying by counting on his fingers %

and ‘then writing the ‘answers, and he continued to. show: some- difficulty with

carrying in May. Amanda did not use the wrilten carrying algorithm at all, evén -

in May. Thus, strong semantic understanding (as shown by manipulations of the

concrete representations and use of mental arithmetic) in no-way guarantees S

Borrow Prdtedu:re. As ;ﬁigh[ ‘bé':cvxp'gcled.: this *p}ocgdure washnrdcr to

learn than carrying. Alan, Anton, and Sindra in the February and May interviews-
cach showed the Smaller-From-Larger bug, but _each then - spontancously

switched to a borrow operation. By May, Sandra and Anton were using the

correct, school-taught writien algorithai, notating both increments and decre-

ments. Alan repeatedly stated that he, was siipposed to borrow, but even in May

“he had some difficulty remembering the exact procedure. Amanda first per-
" formed in the borrow ﬁmcedure in May, with many false starts and bugs. Again,

the two children with the strongest knowledge of base system semantics—Alan

and Amanda—seemed to have the weakest control of the wrilten algorithm.

The final question o be addressed on the basis of these data is the €xtent to which

the children had connected their knowledge about the base system (as displayed
in their work with the concrete materials) and their knowledge about the written




LN
t nesmcx ;‘14_8

procedmes for subuacuon and nddmon A genetal lesponse can : be made by :
" - simply noting again the Iack- of correlation between. knowledge of lhe base- -
system semantics and knowledge of the writien- algorithms. .
' More - specifically, our interview. data’ permit a closet ‘examination of lhlee'
levels of mapping bel!veen the written algonlhms and the ¢ Coficrete materials: (1)
. ‘code mapping—the extent to which lhe ‘child recogmzes that the shape or color of
the concrete materials ‘codes lhe#same information as’position (column) in the A
. written.numerals; (2f result mapping—the extent to _Which .the child expects
. procedures in the written-system to yield the same answers as pmcedmes inthe
_ - concrete malemls. and (3). operations. mapping—the extent to. which the child - -
“can |denl|fy eqmvnlenl operations in‘the written and the concme sys(ems md can '
) model a written algorithm in a concrete mode. -
Code:mapping was atleast weakly present in ell lhe chlldren Thls was shown
- by their qulckly acquued ability to represent wyitten pumerals in concrete forms
and to write numerals that corresponded to the concrete representations. How-
- ever, none of the children msssled on an exacl comspondence belween the
‘wmten and the concrete form. _
. _* ' There were distinct differences among lhe fout chnldlen wnh tespecl toresult .. .
mappmg -Although we did not systemaucally probe for this, Amanda and Alan . - -
. - gave clear evidence of expecting blocks and writing to yield the same answers. .
" During the May interview, for example, Alan corrected his written subtraction
after doing the same. problem with blocks. He trusted his blocks answer, and
expecled wmmg\ and blocks to yield the same answer, showing this by’ doing 3 Wi
new or amended written procedure. Anton, by contrast, seemed undisturbed by‘ _
'gemng different answers in blocks than in written subtraction. .
, - "Although. Alan expecled the same answers from blocks and writing, he did not
.- use detailed operations mapping to correct his written algorithm. Instead, he
- seemed to search -his memory. for a previously leamned procedure that would
" correct his emors. There was. also other evidence that these childrep’ were not.
_i‘domg operauons mapping. With the posstb'le excepnon of Amanda in Mly. atno
. time did,we see the children examming the steps in a blocks piocedule asaway
. of helpmg themselves perform a written algomhm :

‘

{

LINKING SYNTAX AND SEMANTICS

If the plecedmg analysls is correcl then chlldlen s dlfﬁcully with place value in
addition and: subtraction does not necessanly derive from an absence of semantic .
knowledge about the base system. Rather, it results from an m:dequne linking

~of the semantics of the base system with the syntax of the written algorithms.

" This suggests that for many children who have difficulty leaming or remember-
ing the rules for written arithmetic, instruction that explicitly links semantic and
syntaclic knowledge may be useful In eddlhon. mmel instruction that stresses

v
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the semantic properties of the addition and subtraction algorithms should help . -
block the difficulties and buggy routines that might arise lalpf. N
We havé pilot tested with three other children a remedial teaching procedure
that expligitly forces a mapping at the operational level between block subtrac-
- tion and written subtraction. The procedure requires. that the child perform the
same problem using Dicnes blocks and writing,. alternating between the two .

 representations. The writing thus serves as a record of the blocks actions. Con- -
versely, the blocks justify the steps in the written algorithm. Figure 10.3 depicts :
the alternating blocks and written steps for a simple problem. We demonstrated. - ... ..
the procedure to the children along with a great deal of verbalization to explain. .~
‘why each step was taken. Following the demonstration there were repeated trials
in which the children did more and more of the work themselves. During this '
process more complex problems, including three-digit problems, were intro-.

Problem: 300 — 139  Blocks Action °'W£

— * Tha child: V i
_, I___’I _ _73 7 S Difplav: larger nﬁun’l@ctm block_s.

———= 2. Writes problem‘in column-aligned format.

,O0 3. Trades 1 hundred block;for 10 tens.

[ Aag Cuemmeem e
il ]

e, gu— )

: I] i % Notates the l?ade.
8o L9, . ol
o N , :
o, ‘Zﬂo 6. Trades 1 ten block for. 10 units blocks.
e ’_I,.——- Notates th, trade.
\ .

AR ) 7. 10n eachf denomination removes the
Y0 " rumber of blacks spacified in the bottom

- number. ’

= 8. In each column notites the number
/ » remaining. -

-

FIG. 103, Salution of s sibiraction problem with blocksand a-writlen sk -7 3 .
gorithm. ‘ ‘ : CTe T

17 '
>
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duced. Eventually the child took over the entire process of manipulating block's
and writing the corres ing algorithmic step. Typically, within about. forty
minutes each student was performing the task smoothly. At this point the blocks

could be removed (sometimes after a. brief intermediate period in which ’ T'imagi-

nary"* blocks were manipulated) and purely wriiten work undertaken.

The three children who have been raughr this mapping procedure each began "
,,wnh a different. dragnosed bug Laura was. daing Smallcr-From-Largcr Molly, D

Don - Dccrcmem -Zero; and Ann, Borrow- Across-Zero. Each ‘was brought back :
for a follow-up interview three tosix weeks after the ‘instrucixgn On this occa-
sion each performed 3 series of written problems ‘with ease.The bug was gone’

and no new ones had arisen. Further, each child remembered clearly what her -

original bug was and could expldm whm she had learned about why the bug was
wrong.

All three chrldren were qucstroned about what the various rhgns stood for,
why they were being crossed out and written in, etc. Their ansWers suggest that
they understood why the algorithm works, especially as their wording was not -
the same as the wording the expenmemer used dunng instruction. They were:

w correctly which blocks stood. for the special borrowing notation

drgrts (for example, a ten block for the small | quen before the units digit),
indicating a mapping between the two representations that had pot been present

prior (o instruction. Finally, each child showed some interesting pallem of trans-"

ferring semantic knowledge by inventing a procedure or an explanation that had
not been taught.

Molly’s performance was particularly stnlung. because she invented a justifi-.

. cation fora (correct) written notation that did- notexactly match thc one produced

during mapping instruction. The experimenter had asked her to do the problem, '

2003 — 1467, nnd she had wrmen

gas o
//lgéj ) : : .

’

- Under questromng, she’ said she had bormwen; on¢ thousamd; we then asked her: .

1o tell'us where that thousand hadl been placed She replied, "Well, 100 is right
here (pomtmg to the 1 of the 13 and to the 9 in the tens column), and 900 is right
hcrc (pointing to the 9 in the hundreds column)

»t
-

 WHY MAPPING WORKS -

There is, of qourse considerably more work to be done lo establish the range of

condiiions under which this kind- of mapplng instruction will be' effective. We

will want to explore what kinds of bugs this instruction'is capable of eliminating, -
and whavinitial knowiedge of place value and addition and subtraction semantics

" is required for mapping to- be effective. We- wrll ‘also ' need to enmme thc v

[y
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L

possnbnllly that certain bugs nnhclem in the blocks routines may unwmmgly be .

. adopted into the writing.algorithm along with all the semantic corrections. Fiwn

* nally, we will want to consider the possibility that other representations—sticks,
abaci, expanded notation, for example—may be equally or more powerful than

-+ Dienes blocks for the purposc discussed here, and the strong possibility that
. mappings t between thiree representations may be even more powcrful lhln belwecn_ _
. two in producing understanding of.the written algorithins. = © o
. There is, however, enough evidence now m hand sbgut the po\ﬁe:of mupp ‘ g 5
. & i instruction to wml ithll mg ] systematic! th'gory oW m ing; works 10~
i 2 4 & buildundérstanding’and (o éorreét pmedunbemé.mnhougha ﬂotwemp!
" formal theory here, in the remainder of this chapter I consider thepossible shape
- of such_explanatory theories. In the. process...] review_the kind of. nmpmnl.
- evidence that mighit sharpen the theory-building effort. '
There seem to be two possible accounts for lhe effects of mlppmg One, lhe :

. -prohibition explanation, focuscs on how pnnng of each’ step in the wmlen :
algorithm with a parallel slep in blocks mngm serve simply to prohnbu wrong R
opoerations in the writing. A second possibility, the enrichment explanation, nﬂ' : f,‘ g
that semantic knowledge initially embedded in thé blocks algorithm is, by map: - °
ping, apphed 10 ﬁmmmmhmwlrenmhemmdgg—*

structure then eliminates bugs.

Prohibition

It is possnble that most of the effect of the mapping instruction derives not from
acquiring a deep understanding of the semantics of subtraction, but simply from . R
the external constraints imposed by rules of the instructional situation. If the -
subtraction . with blocks is. performed comectly and if the rule of alterniting = .
opemlons in the blocks ang the written lcpm;enunon is followed exacily, most :
of the known written subt ation, bugs dre m)pohslb|¢ because ‘they. c;nnon bg AR
.modeled’ with blocks ‘without violating basic cxchinge pnncnpleu 'ﬂw way in’
which mapping between blocks and writing could prohibit wmmg bugs can besl
_ be appreciated by considering individual bugs. i ’
Smaller-From-Larger is prohnbned because in the blocks. submcuon routine .
~"only the top number is represented in the blocks. The task’ Lg fo remove the
. number of blocks specified in the bottom digits. As long as dfdngus of the top
number are represented in blocks before any subtraction operations begin, there
is no way of reversing top. and bottom digits in a pamculu column, because only
the top digit has been displayed. '
~The various bugs that arise when it is necessary to borrow from acolumn with
Zero as its top number are.also prohibited in the mapping situation, provided thie -
"child knows that a fair trade must be made. When working with blocks the
organizing goal is to get enough blocks to permit removing the specified number. o
L1 The;e bloeks must nlways come fmm the top numbet as u is, lhe only onc O
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represented. This constraint forces the. child to go left until biocks are found. The
child cannét add blocks to the zero column (Bofrow-From-Zero) until SOmelhmg
has been *‘borrowed "’ from the hundreds column. Similarly, Stops-Borrow-At-

Zero is prohibited because the child cannot add blocks to a column without

having borrowed from another column. Borrow-From-Bottom- Instead-Of-Zero
is prohibited because the bottom number is not even represented.” Bormow-
Across-Zero is prohibited by details of the exchange rules: having borrowed
from the_hundreds column, the normal exchange (which we assume the child
knows), will be for ten tens. Because the blocks have been amnged in columns

- for mappmg instyuction, the new blocks must be placed in the tens.column, and - B
. this in tum requires some notation in that column Also, a second trade is needed

to fulfill the goal of getting more blocks in 'the active column. This second trade

would have the effect of prohibiting Don 't-Decrement-Zero, whlch changesthe 0
to 10 but does not then decrement it to 9.

The point of this analysis is that it demonstrates that, to the extent thai the
rules of block exchanges and block subtraction are followed along with the rules
of mapping, most of the operations associated with buggy algorithms are simply
not possible.! Perhaps, then, the power of mapping instruction lies largely in

, providing a high-feedback environment in which the child’s normal routine is

prohibited and a new, permilted one is heavily practiced. _
. We are currently testing a form of pure prohibition instruction. Consideration
of Brown and VanLehn's theory of the origin of bugs leads us to expect that pure
prohibition instruction may elimisfate bugs in the short run, but the bugs may
reappear later or new buggy algorithms may replace them. Further, we expect
that little transfer or inveption of the kind shown by our three initial subjects will
occur. If, as Brown and\VanlLehn argue, bugs derive from children’s active
attempts to invent procedulcs for dealing with new %ituations, then prohlbmon of

~ wrong moves cannot by itself provide any basis for successful ‘rather than
‘ malndapuve inventions. An instructor can prohibit an operation in writing, but if

no new information is offered to the system, then the system will have no basis

_for responding with an appropriately modiﬁed set of opemlons

.

'Ennchmem

For these reasons, we are inclined to beheve that somelhmg more than pmhnb:
tion took pldce in our mapping instruction, that there was some kind of enrich-
ment of the knowledge structure that péi‘#mlled the children to build some new

. connections-and thus make sense of situations ncwly encountered some weeks

R A .
¥ -
- e pE

A

. 'A few bugs sre aokstnctly pmhtbned by the blocks. of lhc bugs shown in Fig. I0 2, Zero-
lmlud Of-Borrow (s phynully possible. If prohibiion were the only. way in which mapping of-
fected writing performance. one would: therefore. eapect this bug to remain intact even after
exlensive mapping practice  This has not yel beemyested in our wurk, as none of the children taught
thus far had these particular bup s the ouluel '> ’ -
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later. If we imagine that the children began the mapping instruction with an
already well-developed justification for the operations in block subtraction based
on the semantics of place value aftd: subtraction, our theory will need to show
how this semantic knowledge can be incorporated into_the knowledge structure
for written arithmetic as a resbit of mapping activity. Figure 10.4 shows the
mappmg links between a child's semantic knowledge and a written procedure.
. .The left side of Fig. 10.4 schematizes the semantic knowlcdge relevant to 17|
subtraction that is instantiated in the blocks routine. There are two aspects 10 this
" knowledge: (1) a goai structure for blocks subtraction and (2) knowledge aboutthe .
) kinds of ‘exchanges allowed wuhm the base-len system. Only knowledge directly .
@ relevant to borrowing is shown, not the underlylng knowledge about how base- C
“ten information is coded -in blocks. “The goal structure that controls: the
exchange/borrowing process is shown at the far left. Constraints on each goal are
shown 1o its right by a single arrow pointing to the goal. In each case a subgoal is
generated in order to meet the goal. The main goal (4) is to remove the bottom
quantity from the_top—which, it is assumed, has been ‘represented in blocks
according to the rules specified in the base-ten code. This main goal requires that
o there be at least as many objecis in the top of the actiye column as in the bottom.
Otherwise it is necessary lo get more blocks for the column (B), and this subgoal
must be achieved without changing the quantity as a whole (i.¢., while mqlmmn#

" ing equivalence). This can be accomplished through trading. The dotted smglc
arrow between getting more (B) and trading (C) reflects the finding,. described
carlier. that some children need prompting before they .initiate trades to solve
concrete subtraction problems. Trades are constrained by the requirement that |
there be both an increment and a decrement; and by the requirement that the trade - |
be ‘‘fair’’ (ten for one). The ten-for-one relauonshlp built into trades means that
the only way to decrément from the hundreds column and increment ip ‘the units
column 4s to do a double trade (D).

The_right side of Fig. 10.4 represents ‘the componenls of the written algonl‘ml‘
stripped down to include only the steps involved i in borrowmg The paths for
problems containing zeros and not containing zeros are shown in the left branch
and the right branch respectively. The operations in the two branches can be done
in several orders. but those shown are the orders frcquemly observed in al-

- gorithmic perfommnce Omlssmn of one or more operations will p‘roduc: buggy

B ulgonlhms ’

5 Operations-level mapping between blocks and written procedures would |iﬂl(
each operation. in the written’ procedure to a corresponding operation in blocks.,
The double arrows in Fig. 10.4 represent the kinds of links that mapping might
be expected to produce. First, the top-level goal of the blocks routine (4) be-
comes linked to the written algorithm. A particular effect of this is to motivate
testing (at a) whether the top number ip a column is greater than or equal to the
bottomi, thus reducing the probability that this crucial step will be omitted. The
next goal (B), getting more blocks, may also be linked to the written algorithm as
indicated by the dotted: box below a. Mlppmg of lhe mdmg goal (C), with jts
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FIG. Y0.4. Conceptus) llnk; facilitated by mapping.
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constraints, can be expected to produce a *‘chunking’’ of incrementing and
. . ‘decrementingin one's mental representation of the written algorithm. This
chunking in the algorithm is shown by the circles that now enclose steps band ¢
and steps d, e, and {. The chunking ensures that incrementing and decrementing:
~ are seen as complementasy actions. For problems with zeros in the top number,
the operations an zero are tied t6 the incrementing and decrementing operations
that surround them. In addition to organizing the sieps of borrowing into
chunks—thus probably. making omissions of individual steps less likely—the

" mapping has the effect of imposing the trading constraints (compensation, ten-

*for-one, and adjacency) on the written algorithm. Borrowing becomes, in effect,
understood as an analog of irading, and the rules of trading become available as
justification or.explanation of the steps.in borrowing. The links from the subop-
ergtions within D to specific steps in the d-e-f sequence suggest how this may '
viitk. Probably the most important aspect of the detailed mapping is that it
j{;‘éiplliﬂs" why O should be changed to- 9-—something that mystifies many

children, according to our interview data. ' ‘ \
" This kind of, enrichment of the knowledgs structure can be €xpected to make
the various'sieps in a correct writing algorithm casy to remember, because they
are embedded in a knowledge network that jistifies and explains them. Perhaps
_ more important, the enriched knowledge structure should provide a basis for .
modifying or building routines that would"make future repairs on subtraction
-algorithms .likely to produce correct rather than buggy routines. The effect of
enriched knowledge might 'be expected both at the point of generating possible
operations and a the point of testing them. The semantic knowledge available
from mapping would suggest potential incrementing and decrementing moves.
Constraints that are part of the scmantic knowledge would also serve to block.
possible incorrect operations that children might generiite. The parallel between
, this informal account of the effects of mapping and Brown and VanLehn's (this
"volume) formal account of the origin of -bugs suggests the possibility of a for-
malization of enrichment as an extension of their present repair theory. What is
needed to guide such an effort is direct observation of the invention and repair of
algorithms by children. ’ . .
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