The Relationship between Directional Heading of an Automobile and Steering Wheel Deflection. Applications of Calculus to Engineering. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 506.

This document looks at specific applications of calculus to engineering. It is noted that for an automobile traveling at constant speed, the mathematical relationship between the directional heading and the angular deflection of the steering wheel can be calculated with respect to time. An analysis is presented which derives the relationship from basic geometrical and kinematic principles. The derivation is seen as an example of calculus use in the mathematical modeling of dynamic systems. This module contains both exercises and a model exam, with answers provided for both at the conclusion of the document. (MP)
THE RELATIONSHIP BETWEEN DIRECTIONAL HEADING OF AN AUTOMOBILE AND STEERING WHEEL DEFLECTION

by John E. Prussing

Department of Aeronautical and Astronautical Engineering
University of Illinois
Urbana, Illinois 61801

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. THE MATHEMATICAL MODEL 1
 2.1 The Directional Heading and the Angular Deflection of the Steering Wheel 1
 2.2 The Angular Deflection of the Front Wheels 2
 2.3 Relating the Change in Heading to the Steering Wheel Deflection 4
3. APPLICATION OF THE MATHEMATICAL MODEL 7
4. MODEL EXAM .. 11
5. ANSWERS TO EXERCISES 14
6. ANSWERS TO MODEL EXAM 15

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it. Minor changes have been made to improve reproduction quality.

Points of view or opinions stated in this document do not necessarily represent official NIE position or policy.
Title: THE RELATIONSHIP BETWEEN DIRECTIONAL HEADING OF AN AUTOMOBILE AND STEERING WHEEL DEFLECTION

Author: John E. Prussing
Department of Aeronautical and Astronautical Engineering
University of Illinois
Urbana, Illinois 61801

Review Stage/Date: III 6/5/80

Classification: APPL CALC/ENGINEERING

Prerequisite Skills:
1. Know the definition of even function.
2. Be able to calculate with the series \(\tan \delta = \frac{6^3}{3} + \frac{25.5}{15} + 1.75/15 + \ldots \)
3. Use a calculator to calculate with the approximation \(\tan \delta = \delta \) (radian measure, small angles).
4. Be able to use l'Hôpital's rule in simple cases.
5. Be able to integrate and differentiate elementary functions.

Output Skills:
1. Know what assumptions lead to the equation that relates \(\theta(t) \) and \(\phi(t) \), and how the equation is derived.
2. Find automobile headings for given wheel deflection functions and initial conditions.

Other Related Units:

©1980 EDC/Project UMAP
All rights reserved.
1. INTRODUCTION

For an automobile travelling at constant speed, the mathematical relationship between the directional heading of the auto, as measured for example by a magnetic compass on the dashboard, and the angular deflection of the steering wheel can be calculated by an integration with respect to time. To see this, consider the example of a constant steering wheel deflection. As the auto travels in the resulting circular turning path over the ground, the heading changes linearly with time, i.e., the heading varies at a constant rate. Since the time integral of a constant is a linear function of time, this suggests that the heading is in some way related to the integral over time of the steering wheel deflection. In the analysis that follows we will derive this relationship from basic geometrical and kinematic principles. The derivation is an example of the use of calculus in the mathematical modeling of dynamic systems.

2. THE MATHEMATICAL MODEL

2.1 The Directional Heading and the Angular Deflection of the Steering Wheel

Let the directional heading of the auto be denoted by \(\theta(t) \). A convenient reference direction for \(\theta = 0 \) is the direction of magnetic north. Thus \(\theta = \pi/2 \) corresponds to the auto's heading east, \(\theta = \pi \) to its heading south, and so forth. The range of values of heading is \(0 \leq \theta < 2\pi \).

Let the steering wheel angular deflection be denoted by \(\phi(t) \), where \(\phi = 0 \) corresponds to the neutral position of the steering wheel (no turning), a positive value denotes a turn from the neutral position to the right, and a negative value a turn to the left. The range of values of steering wheel deflection is \(-\phi_{\text{max}} \leq \phi \leq \phi_{\text{max}} \), where the value of \(\phi_{\text{max}} \) depends on the particular type of auto, but is typically greater than \(2\pi \). As one would expect, the value \(\phi_{\text{max}} \) is related to the minimum turning radius \(R_{\text{min}} \) for the auto. For sports cars the value of \(\phi_{\text{max}} \) is usually smaller than it is for passenger cars. For a 1965 Porsche, \(\phi_{\text{max}} \) is about 7 radians (400°) and \(R_{\text{min}} \) is 5.5m. For a 1974 Volvo sedan, \(\phi_{\text{max}} \) is about 4π radians (720°) and \(R_{\text{min}} \) is 4.8m.

Note that the steering wheel deflections \(\phi = 0 \) and \(\phi = 2\pi \) are not equivalent (unlike \(\theta = 0 \) and \(\theta = 2\pi \) which are). The auto's response to \(\phi = 2\pi \) (a circular turning path to the right) is greatly different from its response to \(\phi = 0 \) (a straight line path).

2.2 The Angular Deflection of The Front Wheels

The effect of a steering wheel deflection \(\phi \) is an angular deflection of the front wheels of the auto. This angle, measured with respect to the fore-aft center line of the auto, is denoted by \(\delta \).

Because of the mechanical linkage between the steering wheel and the front wheels, the value of \(\delta \) is proportional to the steering wheel deflection \(\phi \),

\[
(1) \quad \delta = G \phi.
\]

The constant of proportionality \(G \) is called the gear box ratio. Its value depends on the gear ratio of the steering system for a particular auto. A typical value of \(G \) is 1/20, that is, a 20° change in the steering wheel deflection \(\phi \) results in a 1° change in front wheel angle \(\delta \). Thus a typical value of \(\phi_{\text{max}} \) corresponding to \(\phi_{\text{max}} = 720° \) is 36°. Equation (1) permits us to calculate \(\phi \) by dividing \(\delta \) by \(G \).
Figure 1. The "biCycle model" of a turning automobile has a single front wheel and a single rear wheel. The angular deflection δ of the front wheel is measured against the fore-aft center line of this automobile. The wheelbase is the length l, the turning radius is R.

Figure 1 shows a simplified geometrical model of an auto traveling in a circular turning path of radius R. Because the turning radius R is typically much larger than the width of the auto, the outside wheels and the inside wheels experience essentially the same conditions. For this reason one can analyze the problem using a "bi-Cycle model" for the auto, having a single front wheel and single rear wheel as shown. The angular deflection δ of the front wheel is shown in Figure 1. The wheelbase of the auto is the distance between the front and rear axles.

From the geometry of Figure 1 it is evident that

$$\tan \delta = \frac{l}{R}.$$

If the turning radius R is large compared with the wheelbase l, which is usually two or three meters, then δ is a small angle and one can calculate it reliably the approximation

$$\tan \delta \approx \delta.$$

Exercises:

1. Investigate the error in the approximation $\tan \delta \approx \delta$ by defining a relative error $e(\delta) = (\tan \delta - \delta)/\tan \delta$.
 a) Show that $e(\delta)$ is an even function of δ, that is, $e(-\delta) = e(\delta)$.
 b) Using l'Hôpital's rule, calculate $\lim_{\delta \to 0} e(\delta)$.
 c) Show that $e(\delta)$ is small for $-\pi/2 < \delta < \pi/2$ by using the infinite series $\tan \delta = \delta + \delta^3/3 + 2\delta^5/15 + 17\delta^7/315 + \ldots$, which converges for $|\delta| < \pi/2$.
 d) Calculate numerical values for $e(\delta)$ in 5° increments for $0 < \delta < 30^\circ$.

2. The maximum steering wheel deflection ϕ_{max} corresponds to the minimum turning radius R_{min}.
 a) Use Equations (1) and (2) to show that
 $$G = \frac{l}{\phi_{\text{max}} R_{\text{min}}}.$$
 b) For the data for ϕ_{max} and R_{min} given previously for a 1965 Porsche, calculate the value of G for $l = 2.1$ m.
 c) Calculate G for a 1974 Volvo sedan having $l = 2.6$ m.
 d) If you have access to a car, calculate G for it.

2.3 Relating the Change in Heading to the Steering Wheel Deflection

The angle δ defined by Equation (2) is called the Ackerman Angle. For turns at speeds low enough to avoid side slipping so that we don't have to oversteer, (which are the only speeds we shall consider), the Ackerman Angle is simply equal to the angle of the front wheel
as shown in Figure 1. For high speed turns centrifugal force effects become important and the front wheel angle is equal to the Ackerman Angle plus a correction for the effect of centrifugal force.

![Diagram](https://via.placeholder.com/150)

Figure 2. The directional heading \(\theta(t) \) of an automobile is its "compass" heading, measured clockwise in radians from magnetic north. The value of \(\theta(t) \) shown above is about 0.6 radians.

Figure 2 shows the directional heading angle \(\theta(t) \) of the auto as it travels at constant speed \(V \) in a circular arc of radius \(R \), corresponding to a constant front wheel angle \(\delta \).

Since the steering has no effect on the rear wheels the fore-aft centerline of the auto is always normal to the radius of the turning circle (See Figure 1) and the angle between the radius of the turning circle and the East-West reference line is also \(\delta(t) \). In a small time interval \(\Delta t \) the heading changes by an amount \(\Delta \theta \) and the distance travelled along the circumference of the circle is simply \(R \Delta \theta \). The constant speed \(V \) is the distance travelled \(R \Delta \theta \) divided by the time interval \(\Delta t \):

\[
R \frac{\Delta \theta}{\Delta t} = V,
\]

By taking the limit as \(\Delta t \to 0 \) one obtains the instantaneous time rate of change of the heading as

\[
(4) \quad \frac{d\theta}{dt} = \frac{V}{R}
\]

Equation (4) makes physical sense: the larger the speed \(V \) the faster the heading changes, the smaller the turning radius \(R \) the faster the heading changes.

By combining Equations (1) through (4) we can relate the rate of change of heading (called the yaw velocity in vehicle dynamics) to the front wheel angle \(\delta \) and hence to the steering wheel angular deflection \(\phi \):

\[
(5) \quad \frac{d\theta}{dt} = \frac{V}{R} \tan \delta = \frac{V}{R} \delta = \frac{VG}{K} \phi.
\]

The constant of proportionality \(VG/K \) depends on the speed, gear box ratio, and wheelbase of the auto. To simplify the notation, let us denote the constant \(VG/K \) by \(K \). Since \(G \) is dimensionless, \(V \) has units of, say, meters per second, and \(\delta \) has units of meters, the constant \(K \) has units of inverse seconds. One can interpret \(1/K \) as the time it takes the heading to change by \(\pi \) radians when the steering deflection \(\phi \) is held constant at \(\pi \) radians.

When we rewrite Equation (5) in terms of \(K \), we obtain

\[
(6) \quad \frac{d\theta}{dt} = K \phi(t)
\]

If we then integrate both sides of Equation (6) from 0 to \(t \) we obtain the equation

\[
(7) \quad \theta(t) - \theta_0 = K \int_0^t \phi(t) \, dt,
\]

where \(\theta_0 = \theta(0) \) is the heading at an initial time \(t = 0 \), and a dummy variable of integration \(r \) has been used in Equation (7) so that we will not confuse the variable of integration with the upper limit of integration \(t \).

For any steering wheel deflection function \(\phi(t) \), Equation (7) tells us that the change in heading \(\theta(t) - \theta_0 \)
is proportional to the area under the curve $\phi(t)$ from
$\tau = Q_{m_0}$ to $\tau = t$.

3. APPLICATION OF THE MATHEMATICAL MODEL

Consider the case in which the auto is initially travelling at a constant heading θ_0, with $\phi = 0$. This satisfies the basic relationship of Equation (6) since θ is constant for $\phi = 0$. Assume that at $t = 0$ the steering wheel is suddenly deflected to an angle ϕ_0 and held at that angle for t_0 seconds. Then the steering wheel is suddenly restored to $\phi = 0$. The graph of $\phi(t)$ for this case is shown in Figure 3.

What heading $\theta(t)$ corresponds to the deflection $\phi(t)$?

To express θ in terms of ϕ we first write down Equation (6) for the two time intervals $0 \leq t \leq t_0$ and $t > t_0$.

For the given deflection function, this results in the pair of equations:

\begin{align}
\frac{d\theta}{dt} &= k\phi_0, & 0 \leq t \leq t_0, \\
\frac{d\theta}{dt} &= 0, & t > t_0.
\end{align}

We then integrate both sides of Equation (8) from 0 to t to get

\begin{align}
\theta(t) - \theta(0) &= K\phi_0 t, & 0 \leq t \leq t_0, \\
\theta(t) &= K\phi_0 t_0 + \theta_0, & t > t_0.
\end{align}

Finally, we integrate both sides of Equation (9) from t_0 to t to obtain

\begin{align}
\theta(t) - \theta(t_0) &= 0, \\
\theta(t) &= \theta(t_0), & t > t_0.
\end{align}

The value of $\theta(t_0)$ in Equation (13) may be found by substituting t_0 for t in Equation (11). This yields

\begin{align}
\theta(t_0) &= K\phi_0 t_0 + \theta_0, \\
\theta(t) &= K\phi_0 t_0 + \theta_0, & t > t_0.
\end{align}

As a pair, Equations (11) and (15) tell us that

\begin{align}
\theta(t) &= \begin{cases} \\
K\phi_0 t + \theta_0, & 0 \leq t \leq t_0, \\
K\phi_0 t_0 + \theta_0, & t > t_0.
\end{cases}
\end{align}

Example 1. An automobile travels initially at a constant heading $\theta_0 = \pi/4$, with $\phi = 0$. At $t = 0$, the steering wheel is suddenly deflected to an angle of $\phi_0 = \pi/2$, and is held there for $t_0 = 2$ seconds. Then the steering wheel is restored to $\phi = 0$. If the automobile travels at a constant speed $V = 13$ m/s, (29 mph), and if $k = 2.6$ m and $G = 1/20$, find $\theta(t)$ for $t > 0$.

Solution. We first calculate

\begin{align}
K &= \frac{V}{k} = \frac{13}{2.6} \approx 5.0. \\
\tau &= \frac{t}{2.6}.
\end{align}
Equation (16) then yields

\[
\theta(t) = \begin{cases}
\frac{\pi}{8} t + \frac{\pi}{4}, & 0 \leq t \leq 2 \\
\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}, & t > 2
\end{cases}
\]

Thus the heading \(\theta(t) \) changes linearly from its initial value of \(\pi/4 \) (northeast) to a final value of \(\pi/2 \) (east). The change in heading (\(\pi/4 \) radians) is the area under the curve \(\phi(t) \) of Figure 3 (\(\pi \) radians-seconds) times \(K \) (equal to \(1/4 \) s\(^{-1}\)).

Exercises:

3. An automobile travels initially at a constant heading \(\theta_0 = \pi/2 \), with \(\phi = 0 \). At \(t = 0 \), the steering wheel is suddenly deflected to an angle of \(\phi_o = \pi/4 \), and is held there for \(t_o = 6 \) seconds. Then the steering wheel is abruptly restored to \(\phi = 0 \). If the automobile travels at the constant speed of \(V = 14 \) m/s, and if \(l = 2.1 \) m and \(G = 1/20 \), find the heading \(\theta(t) \) for \(t > 0 \).

4. We wish to change the value of \(t_o \) and \(\phi_o \) in Example 1 so that the automobile will have a final heading of \(\theta = \pi \). Find a relationship between \(t_o \) and \(\phi_o \) that will achieve this.

5. For a steering wheel deflection function shown in Figure 4,

\[
\phi(t) = \begin{cases}
\phi_o & 0 \leq t \leq t_o \\
-\phi_o & t_o \leq t \leq 2t_o \\
2t_o & t \leq 4t_o
\end{cases}
\]

Figure 4. The steering wheel deflection function of Exercise 5.
4. MODEL EXAM

1. Automobile turning specifications are sometimes given in terms of a steering factor, defined as the number of turns of the steering wheel necessary to establish a 30 foot (9.14 m) constant radius turn. For a 1980 Datsun 210 wagon the steering factor is 0.67, the wheelbase \(l \) is 2.33 m. and \(R_{\text{min}} = 4.88 \text{ m}.

a. Calculate the gearbox radius \(G \).
b. Calculate the maximum front wheel deflection angle \(\delta_{\text{max}} \).
c. Calculate the maximum steering wheel deflection angle \(\phi_{\text{max}} \).

2. For an automobile travelling at constant speed the steering wheel deflection \(\phi(t) \) is given by:

\[
\phi(t) = \begin{cases}
\frac{\pi}{2} & 0 < t < t_0 \\
\frac{\pi}{4} & t_0 < t < 2t_0 \\
\frac{\pi}{2} & t > 2t_0
\end{cases}
\]

a. By using the functional relationship of Equation (6) determine which of the following graphs corresponds to the heading \(\theta(t) \).
b. If \(G = 1/20 \) and \(l = 3 \text{ m}. \), what is the speed \(V \) of the auto?

3. During a testing run of the auto the heading \(\theta(t) \) is recorded to be:

\[
\theta(t) = \begin{cases}
\frac{K_0}{t_0} \left(\frac{t^2}{2} + \theta_0 \right) & 0 \leq t \leq t_0 \\
\frac{K_0}{2} \left(2t - t_0 \right) + \theta_0 & t_0 < t < 2t_0 \\
\frac{3K_0}{2} \left(t - t_0 \right) + \theta_0 & t > 2t_0
\end{cases}
\]

What is the corresponding steering wheel deflection \(\phi(t) \) during each time interval?

4. An auto is travelling at an initial constant heading \(\theta_0 \). Let us model a realistic "right turn at the next corner" by the steering wheel deflection shown, where \(t = 0 \) marks the beginning of the turn and \(t = t_0 \) the end of the turn.

\[
\phi(t) = \begin{cases}
\phi_0 \sin \pi \left(\frac{t}{t_0} \right) & 0 \leq t \leq t_0 \\
0 & t > t_0
\end{cases}
\]

a. Determine the heading \(\theta(t) \) during the interval \(0 \leq t \leq t_0 \) using the relationship of Equation (6).
b. What is the final heading of the auto?
c. If $\phi_0 = \pi$ and $K = \frac{1}{4} \text{s}^{-1}$, what is the required value of t_0 for a $90^\circ \left(\frac{\pi}{2} \text{ radian}\right)$ change in the heading?

5. ANSWERS TO EXERCISES

1. a) $e(-\delta) = [\tan(-\delta) - (-\delta)]/\tan(-\delta)$. Since $\tan(-\delta) = -\tan\delta$, $e(-\delta) = e(\delta)$
b) $\lim_{\delta \to 0} e(\delta) = \lim_{\delta \to 0} (\sec^2 \delta - 1)/\sec^2 \delta = 0$
c) $e(\delta)$ is an even function of δ and for $\delta > 0$, $\tan \delta > \delta > 0$.
d) $\begin{array}{cccccc}
\delta & 0^\circ & 5^\circ & 10^\circ & 15^\circ & 20^\circ & 25^\circ & 30^\circ \\
e(\delta) & 0 & 0.0025 & 0.0102 & 0.0230 & 0.0409 & 0.0643 & 0.0931 \\
\end{array}$

2. a) $G = 0.055$; b) $G = 0.043$

3. $\theta(t) = \frac{\pi}{12} t + \frac{\pi}{2}$, $0 \leq t \leq 6$
 $\theta(t) = \frac{\pi}{2} t \frac{\pi}{2} = \pi$, $t > 6$

4. $\theta(t) = K_0 t$, $t_0 \phi_0 = \pi$; $t_0 \phi_0 = 3\pi$

5. Final value is $\theta = \theta_0$ since the area under the curve $\phi(t)$ is zero.

6. a) α has dimensions of inverse time since the exponent must be dimensionless.
b) $t = 1/\alpha$
c) $\theta(t) = \phi_0 + \frac{K\phi_0}{\alpha} (1 - e^{-\alpha t})$
d) $\lim_{t \to \infty} \theta(t) = \phi_0 + \frac{K\phi_0}{\alpha}$; the area under the curve $\phi(t)$ is finite.

7. $\phi_0 = 1.5 \text{ radians} \approx 86^\circ$
6. ANSWERS TO MODEL EXAM

1. a. \(G = \frac{\phi}{\phi R} = \frac{2.33}{2\pi(0.67)(9.14)} = 0.06 \)

b. \(\delta_{\text{max}} = \frac{\phi}{\phi R_{\text{min}}} = \frac{2.33}{4.88} = 0.48 \text{ radians} = 27^\circ \)

c. \(\phi_{\text{max}} = \frac{\delta_{\text{max}}}{G} = 8 \text{ radians} = 458^\circ \)

2. a. Case B. Since \(\dot{\theta} = k\phi \) the slope of the heading \(\theta(t) \) in the interval \(10 \leq t \leq 20 \) must be half of what it is in the interval \(0 \leq t \leq 10 \).

b. \(K = \frac{V_G}{\xi} = \frac{1}{10} \) from the proportionality between \(\dot{\theta} \) and \(\phi \).
Thus \(V = 6 \text{ m/s} \).

3. By differentiating the heading \(\theta(t) \) one finds:
\[
\phi(t) = \begin{cases}
\frac{\phi}{t_0} & 0 \leq t \leq t_0 \\
\phi_0 & t_0 < t < 2t_0 \\
0 & t > 2t_0
\end{cases}
\]

4. a. \(\theta(t) = \theta_0 + \frac{K\phi_0 t_0}{\pi} \left(1 - \cos \pi \frac{t}{t_0}\right) \)

b. \(\theta(t_0) = \theta_0 + \frac{2K\phi_0 t_0}{\pi} \)

c. \(t_0 = \pi \text{ sec} = 3.14159 \text{ sec} \).
STUDENT FORM 1
Request for Help

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.

<table>
<thead>
<tr>
<th>Your Name</th>
<th>Unit No.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Middle</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>Lower</td>
<td>OR</td>
<td>OR</td>
</tr>
</tbody>
</table>

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box.

- [] Corrected errors in materials. List corrections here:

- [] Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:

- [] Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.)

Instructor's Signature

Please use reverse if necessary.
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?
 - Not enough detail to understand the unit
 - Unit would have been clearer with more detail
 - Appropriate amount of detail
 - Unit was occasionally too detailed, but this was not distracting
 - Too much detail; I was often distracted

2. How helpful were the problem answers?
 - Sample solutions were too brief; I could not do the intermediate steps
 - Sufficient information was given to solve the problems
 - Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
 - A Lot
 - Somewhat
 - A Little
 - Not at all

4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?
 - Much Longer
 - Somewhat Longer
 - About the Same
 - Somewhat Shorter
 - Much Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)
 - Prerequisites
 - Statement of skills and concepts (objectives)
 - Paragraph headings
 - Examples
 - Special Assistance Supplement (if present)
 - Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)
 - Prerequisites
 - Statement of skills and concepts (objectives)
 - Examples
 - Problems
 - Paragraph headings
 - Table of Contents
 - Special Assistance Supplement (if present)
 - Other, please explain

Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)