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1. Overview

This paper is one of a pair which, together, try to delineate some

of the psychological and methodological issues related to the use of '\

certain "verbal Aethods" (clinical interviews and pritocol analyses) for

research into human problem solving processes. The two papers share the

r-N.N
same fouftdation, the premise that "purely cog9itive" behavior is extrdmely

rare, and that what is often takera for pure cognition is actually shaped --

if not distorted -- by a variety of factors. The companion paper, "On the

Analysis of Two-Person Problem Solving Protocols," (note 1) discusses the aims.

rationales, and details of a particular protocol analysis sc.nt:fle. That

framework was%designed to elucidate the nature of certain strategic (and

for the most part "purely cognitive") decisions madetby college students

in the process of solving difficult mathematics problems. It explores

the role that those strategic decisions play in the students' success or

failure This paper tries to place such methodologies in a much broader

context, in an attempt to explicate some of the "driving forces" that

generate the behaviors that we see. To put it briefly, the idea considered

here is that the cognitive behaviors customarily studied in experimental

fashion take place within, and are shaped by, a broad social-cognitive and

metacognitive matrix. That is, the tangible cognitive actions that we

observe are often the result of consciously or unconsciously held beliefs

about (a) the task at hand, (b) the social envirorment within which the

task takes place, and (c) the individual problem solver's perception of

self and his or her relation to the task and the environment. It is argued

that the behaviors we see must be interpreted in that light.

This is an exploratory discussion, an attempt to characterize' some
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of the dimensions of the matrix within which pure cognitions reside. The

discussion takes place in two parts. In the first part I shall try to

"outline the three levels of analysi? I think may be necessary to fully make

sense of verbal data, even when one's intentions are "purely cognitive."

These levels are described in section 2, and a brief analysis of some

protocols from that perspective is then given in section 3. In the second

s
part, I shall try to broaden. the di's-eussion and flesh out some of the

dimensions of the matrix. Mucn of what follows is highly speculative, and

a good deal of the "evidence" anecdotal. The idea is to point out some of

the pitfalls in current lines of inquiry, and to map out some (one hops)

useful directions for future inquiry.

2. Background; a Framework

'I wish to suggest here that three separate levels or types of analysis

may be necessary in order to obtain an accurate interpretation of students'

problem solving performance from the analysis of "verbal data" that they

produce while solving problems.* There are:

A. An analysis of "tactical knowledge, including facts, procedures,

domain-specific knowledge, and "local" heuristics;

3. An analysis of "control" knowledge and behavior, including

"Strategic" or "executive" behavior and conscious metacogattiye

knowledge; ar

*There are, of course, m,...ylevels of analysis beyond those discussed here.

At the microscopic level, see Monsell's [1981] review of what he calls the

"nuts and bolts of cognition:" representations, nrocesses, and memory

mechanisms. At the very macroscopic level, there is the broad set of social

cooperative behaviors within which "real" problem solving actions often

take place. These too are beyond the scope of this study. Here we shall

focus on analyzing the protocols obtained from students under relatively

ideal laboratory situations.



C. An analysis'of consciously and unconstiously held belief systems,

and the way that they "drive" proble0 solving behavior.

Each of these categories is described below. As background, however, it

is important to characterize some of the defining properties of the first

two categories, "tactical!' and "strategic" knowledge and decisions. Roughly,

the distinction is as follows. A strategic decision is a global choice,

one that in a substantive way affects the direction of a problem solution

and the allocation of resources (including time) to be used in a solucion.

These "control" decisions include selecting goals and deciding to pursue

or abandon particular (large-scale) courses of action. In short, they are

decisions about what to do in a solution. In contrast, tactical knowledge

and procedures are used to implement the strategic decisions. They deal
4

with how to do what has been decided at theAtrategic level. Suppose, for

example, that a student working on a problem decides to calculate the area

of a particular region, or to "lock at an easier related problem." If

doing so will occupy, say, five or more of the allotted twenty minutes for

solving the problem, that decision is strategic: it, alone, may "make or

break" the solution. On the other hand, the decisions regarding how to

implement that choice -- for example, whether to calculate the dimensions

of the region by trigonometry or analytic geometry, or which easier related

problem to explore -- are tactical. Note that in the latter case, the

implementation of a problem solving heuristic is considered a tactical

matter. This is non-standard.Some elaboration of the three categories follows.

A. On Tactical Knowledge

As suggested above, this category is quite broad. It includes a

number of subcategories covering the rangE of facts and procedures that



are available to the individual for implementation in a problem solution.

A characterization of many of the relevant issues is given by Simon in his

(1979) review article, "Information processing models of cognition."

Simon is primarily concerned with psychological and AI simulations of expert

problem solving performance-in semantically rich domains. HeSescribes

the key issues as follows. "The central research questions are two:

(a) how much knowledge does an expert or professional in the domain have

stored in LTM [long term memory], and (b) how is that knowledge organized

and accessed so that it can be brought to bear on specific problems?"

The focus here is somewhat differenttince we are interested in analyzing

students' performance to determine sources of both success and failure.

But many of the issues are the same.

To begin with, one needs to know what domain-specific knowledge is

accessible to the problem solver. If a student is solving a straightedge-

and-compass construction problem from plane geometry, for example, (see

protocols 1 and 2)' does he or she know that the radius of a circle is per-

pendicular to the tangent line at the point of tangency? Whether the

student chooses to use that fact is another matter, to be discussed later.

But (obviously) a solution that depends on that particular piece of

knowledge may evolve in radically different ways if the student does or

does not have it, and an evaluation of the solution depends on an adequate

characterization of the knowledge base. Similar comments apply to procedures

relevant for the solution of a problem. In the example just cited, does

the student know how to construct a perpendicular to a given line through

a given point? If the student does not recall the construction, does he

or she know that it can be done, so that deriving the construction is a
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possibility? Or must that too be discovered? These factors determine the

potential evolution, and characterization, of a problem solving session.

After the question of the posession of factual and procedural knowledge

comes the question of access to it. The student may know that similar triangles

have certain properites, for example, but will the student "see" or even

look for similar triangles in a,particular circumstance? Much-"expert"

performance in given domains is attributed to the posession of certain

problem soNing schemata; this is, indeed, the foundation of much AI research.

Questions of how to represent such "compiled" knowledge are open. Among

the approaches to representation "particularly worth describing [are]

the predicate calculus, productiOn systems, semantic networks,and frames"

(Walker, 1981). All of these approaches, take as given that there are certain

regularities in experts' perceptions of problem situations, and of appropriate

behavior in them. This perspective is substantiated in various ways in

the literature, for example with experimental results that experts in

physics (Chi; Feltovich, and Glaser, 198X) and mathematics (Schoenfeld

and Herrmann, impress) see through the "surface structure" of problems to

perceive 'deep structure" similarities and approach the problems accordingly.

Moreover, students develop problem schemata that may or may not be consistent

with those of experts (Hinsley, Hayes, and Simon, 1977; Si'ver, 1979), and

these s^hemata change with experience (Schoenfeld and - Herrmann, in press).

For a characterization of the role of schemata in students' mathematical

problem solving performance, see Silver (in press).
r.

There is yet one more level of tactical behavior, that of implementing

certain problem solving heuristics. Examples of these will be seep in

protocols 1 and 2. a sense, these are nearly on a par with domain-



specific schemata. For example, it is useful to assume that one has the

desired object and then to determine the properties it must have" is a

heuristic typically valuable. in straightedge-and-compass constructions.

Its domain- specific implementation {draw the figure and see what properties

it has) is quite similar to the implementation of domain-specific schemata,

such as "look for congruent tri.ngles when faced with a problem of this

nature." 'Thesepheuristics, like the other categories of knowledge described

above, fall into the category of tools., ,otentially accessible to the problem

solver. An inventory of these tools provides a characterization of what

the problem solver might be able to use in approaching a problem. Which

of tbese tools are selected or discarded, how such decisions are made, and

what the impact of such decisions on the problem solving process is, is

the next level of analysis.

B. On "Control" Knowledge and Behavior

Two students, trying to determine the characteristics of the largest

triangle that can be inscribed in a given circle, guess that the equilateral

is the desired triangle and set out to calculate its area. They,get enmeshed

in calculations and, when the 20-minute videocassette recording their

performance runs out of tape, are still calculating.' Asked whet good the

answer will do them, they cannot say. This is an extreme (aTthough not .

atypical) example of what might be called an "executive" or "control"

malfunction: one bad decision, unmonitored and unchecked, dooms an entire

solution to failure. What the students actually kr and what they might

Have done given the opportunity to employ that knowledge, becomes a moot

question. In contrast an expert working on an unfamiliar problem generates

a dozen potential "wild goose chases," but rejects all of them after
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brief consideration. With some clumsiness, he solves a problem the students

did not -- although he began working on the problem with much less domain-

specific knowledge than the students "objectively" had at their disposal.

4 It can be argued that the expert's success and the students' failure were

due respectively to the presence and absence of productive "metacognitive"

behaviors (Schoenfeld, in press).

One of the early researchers to stress the importance of metacognition

as a major-factor in cognitive performance,-Flavell (1976, p. 232) characterized

it as follows:

I am engaging fn metacognition...if I notice that I am having more
trouble learnirigA than B; if it strikes me that I should double-
check C before accepting it as a fact...metacognition refers,
among other things, to the active monitoring and consequent regu-
lation and organization of these processes to the cognitive objects
on which they bear.

For the most part, research in artificial intelligence has not dealt

directly with issues of metacognition as they are characterized here. This

is a subtle point, since many of the terms used in metacognition overlap

with those used in AI (see Brown's definition, below). But the usages differ.

Consider,'for example, skilled problem solving in physics as modeled by

production systems (Larkin, McDermott, Simon, and Simon, 1980). The idea

is to model competent behavior in sufficient detail to be able to select

the"appropriate" behavior, a certainl: enormous task. But issues of the type

that humans encounter when working on such problems -- "I've been doing

this for five minutes and it doesn't seem to be getting me anywhere; should

I perhaps take an entirely different perspective?" -- are not the focus of

such programs. They model behavior where such problematic performance is

not a "problem."

Likewise, there are difficult issues of strategy selection in any

9
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reasonably sophisticated program. But the use, or example, of "conflict

res4lution strategies" to determine precisely which production will "fire"

when die conditions for more thap one produCtion have been met, till

operates at a very 'different level than the one under consideration here.

Few programs deal with planning and monitoring at that level, although

there are many "planning" programs. One that does, and is worth singling

out for special notice, is the Hayes-Roths'(1979) "opportunistic" model.

Typical planning procedures call for leaving sequences of actions unspecified

until'one is constrained to specify their order, and Checking for conflicts

when one does so. A standard example is Sacerdoti's (1977) task, "paint

the laddeand the ceiling" If one tries to proceed in that order, painting

the ladder precludes painting the ceiling. "Planning" means specifying

actions in efficient temporal order. Sacerdoti's "nets of actions hier-

archies" are designed to allow for fleshidg out plans in such a way that

such impasses are avoided. This whole perspective, however, assumes that

one works in domains where .plans are there to be "fleshed out" -- certainly

not a universal condition in problem soliing. In contrast, the Hayes-Roths'

model is many-leveled and, if it is appropriate, shifts rapidly from con-

siderations at one level (do B before A, instead of the other ways around)

to another (revising the entire plan structure because of an unforseen

major difFiculty). This "opportunistic" model is highly structured, but

also highly data-driven. It is open to the idea that one piece of new

information may cause one to see everything that came before in a new light,

and call for major revisions; that each piece of information, ind the current

state(s) of affairs must be continually evaluated and acted upon. To my

knowledge, few other programs deal- directly with this kind of issue.

1U
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There are, however, sor* programs that specifically separate what

have been called "knowledge" and "tactics" here. For example, Bundy arnd

Welham (1981) describe a technique called meta-level inference, in which

.,inference is conducted at two levels iimultaneously...The object
level encodes knowledge about the facts of the domain...while the
meta-level encodes control or strategic knowledge...What are the
advantages of this technique?

-The separation of factual and control information enhances the clarity
of the program and makes it more modular.
-All the power and flexibility of inference is available for controllin
search (p. 189).

This perspective is at least sympathetic to the separation of

'tactics" and "strategies" described above. It is an alternative to the

production model system, where the decision-making resides in the nature

of the productions.

There has recently been much discussions of metacognitive issues in

the psychological literature. The bulk of such research has focused on

metamemory (one's awareness of how he or she stores and retrieves information);

and much of that work has been developmental. See Brown (1978) for an

overview of the relevant literature. Research suggests that the use of

self-regulation is a large component of older children's successful memory

performance (Brown and DeLoache, 1978). Speaking in general, Brown (1978)

describes
i
metacognitive behaviors as "those attributed to the etecutive in

, many theories of human and machine intelligence: predicting, checking,'

monitoring, reality testing, and coordination and control of deliberate

attempts to solve problems. I believe that these are the basic character-

istics of thinking efficiently in a wide range of learning situations."

One can-hardly disagree. MOreover, the converse must be stressed. Just

as the presence of such behaviors may promote efficient problem solving,

the absence of them may doom problem solvers to failure. Discussions of

11
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metacognition in broad problem solving domains are rare. See Schoenfeld

(in press) for one attempt in that direction, and Silver (note 2) for an
,)

overview of the issue. %

C. On Belief Systems

Ulric Neisser begins the article "general, Academic, and Artificial

Intelligence" (1976) with the following dialogue. It was taken from Cole,

Gay, Glick, and.Sharp's (1971) study of cognition in a Liberian people

called the Kpelle.

Experimenter: Flumo and Yakpalo always drir* cane juice (rum) tocether.
Flumo is drinking cane juice.

011

Is Yakpalo\drinking cane juice?
\

Subject: FHA() and Yakpalo drink cane juice together,
\

but the time
Flumo was drinking the first one Yakpilo was not there on that
day. \

Experimenter: But I told you that Flumo and,Yakpalo always drink
cane juice together. One da,' Flumo was drihkirlg cane juice.

Was Yakpalo drinking cane juice that day?

. ,

Subject: The day Flumo was drinking the cane juice Yakpalo was
not there on that day.

Experimenter: .What is the reason?
.,

Subject: The reason is that .Yakpalo went to his farm on that day
and Flumo remained )n town that day (Cole et. al., 1971, pp 187-188).

The point Neisser wishes to stress is that the subject's answers

are intelligent, although they are not directly responsive. "The respondents

do not accept a ground ru1e that is virtually automatic with us: 'base

your answer on the terms defined by the questioner.' People who go to

school (in Kpelleland or elsewhere) learn to work within the fixed limitat)lns

of this ground rule, because of the particular nature of school experience"

(p. 136). There are, Neisser argues, many dimensions to "intelligence"

.beyond the types of (academic) intelligence measured by IQ tests, the

(artificial) intelligence modeled in computer programs, and the "purely

I2



Vot

cognitive" intelligence studied in psychological laboratories. Of course

anthropologists take that as given (see, e.g. Cole, et. al., 1971, or

Lave, 1980) and some cognitive scientists have urged that the range of

cognitive investigations be substantially broadened (e.g. Norman, 1979).

The dialogue quoted above serves to make another point as well, one

that bears directly on current methodological issues. In the dialogue we

see a clash of belief systems, where the participants see the "ground rules"

for their exchange in rather different ways. Were the experimenter to

declare the subject "unintelligent" because he did not answer the questions

as they were posed, we would argue that he missed the point: the responses

must be interpreted irct1TeNntext of the social environment that generated

4,
them, and not simply evaluated as "pure cognitions." I shall argue here

that the same point holds in many of our methodologically "clean" laboratory

studies, and that much of what we take 'to be "pure cognition" is often

shaped by a variety of subtle but powerJ1 factors. These factors may

incluft the subject's retponse thethe pressure of being recorded (resulting

in a need to produce something for the microphone), his or her beliefs about

the nature of the experimental setting (certain methods are considered

"legitimate" for solving problems in a formal setting, others not), and the

-subject's beliefs about the nature of the discipline itself (is mathematical

proof useful, for example, or a waste of time?). This network of beliefs

provides the context within which verbal data are produced, and an under-

standing of that context is essential for the accurate interpretation of

those data.

It , hould be clear that these comments are not meant as a blanket

a postiori challenge to the accuracy of studies that have relied upon the

interpretation of verbal data. It may well be that the issue of belief

13
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systems is moot in a number of contexts -- for example, in the analysis

of experts' verbal protocols for purposes of constructing artificial

intelligence programs. Experimenters tend to find their subjects among

their colleagues, who are generally famili.ar with and sympathetic to the

methodologies beingoised for protocol collection. It is unlikely, there-

fore, that an unsuspted difference in belief systems between experimenter

and subject will result in the misinterpretation of the verbarlata. The

situation may be quite different, however, when students are the source of

that data_aad the task at hand is to interpret (in the large) what they

have produced,. A miscellany of examples that document this point are

of.'ered in section 4. Some less "impressive" but more typical protocols

are discussed, from the perspectives at all three levels, in the next section.

3. A discussion of three problem solving protocols

Appendix 1 gives a protocol obtained from two students working on

a straightedge-and-compass construction problem in plane geometry, recorded

the second day of a problem solving course. The students were friends,

and felt comfortable working with each-other. They were both college freshmen,

and had both just completed a course in first-semester calculus. They had

taken the "standard's geometry courses in high school. Appendix 2 gives

a protocol recorded by the same pair of students a month later, after the

intensive problem-solving course. (See Schoenfeld [1982] for a brief

description.) Geometric constructions were one of the topics discussed in

the course. The students had read chapter 1 of Polya's Mathematical Discovery

(1962), and worked perhaps a dozen construction problems. Appendix 3

gives a protocol obtained from a professional mathematician who had not
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"done" any plane geometry for a number of years. The protocols are them-,

selves quite eloquent. The discussion is brief, serving to illustrate some
4

of the points made in section 2. Each of the comments' made here needs to

be elaborated in far greater detail.

I would like to begin with a general discussion of students' behavior

on problems like the one given in appendix L. From my perspective, the

most telling information regarding their behavior is derived at the level

of belief systems: Students' actions are shaped by their beliefs about the

way that one solves geometric construction problems, and about the role

of "proof" in mathematical problem solving. In my experience, the following

0 collection of beliefs is nearly universal among the "typical" college

freshmen who have studied geometry in high school and studied at least

one semester of calculus:

a. One gains "insight" into a problem situation in geometry by
having a very accurate pictur.:, of it,

bI Verification is purely empirical. Hypotheses about constructions

are tested by performing the indicated constructions. If the

construction appears to work, it is correct.

c. "Proof" is irrelevant to discovery and verification. If absolutely

necessary (i.e. the teacher asks for it) one can probably prove
that constructions work. But this is simp'y "playing by the
rules of the game," verifying formally what one already knows
(empirically) to be correct.

d. Candidates for solutions are tested seriatum. Hypothesis 1 is

tested until it is accepted or rejected, then hypothesis 2, and
so on. Simple (intuitively apprehensible) hypotheses are tested

first,

If one accepts these as the "ground rules" for constructions, one

can predict stereotypical performance. Consider the problem given in protocol

1: Construct the circle that is tangent to the two lines in the figuretelow,

and has the point P as its point of tangency to one of them.

15



Among the features in the problem likely to catch the student's

attention are:

Fl: the radius of the desired circle is perpendicular to the top
line at P.

F2: by some sort of perceived symmetry, the point of tangency on
the bottom line is probably directly opposite P.

...

.:., F3: any 'reasonable looking" line segment joining the top and bottom
lines, and passing through P, is likely to be the diameter of

the given circle.

F4: the center of thq circle seems to be halfway between the two
lines.

Combining Fl and F2 respectively with F30 we obtain the two "intuitively

apprehensible" hypotheses regarding the construction:

Hl. The line segment between the two lines, and perpendicular to
the top line at ?, is the diameter of the desired circle. The

center of the circle is the midpoint of that line.

H2. The line segment between P and its "opposite," P'; is the diameter

of the desired circle.

The two hypotheses that are less intuitive;y apprehensible hut correct)

are combinations of Fl and F2, and Fl and F4, respectively.

H3. The center of the circle lies on the intersection of the
perpendiculars to p and its opposite, P'.

H4. The center of the circle lies on the intersection of the
perpendicular to P and the bisector of the angle made 5y the

two lines.

This set of hypotheses, combined with the four beliefs described

above, allows for the following general predictions regarding the evolution
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of students' solutions to this problem. If Fl or F2 is first heeded, that

will give rise to H1 or HZ, which will be "tested" with straightedge and

compass. When that one fails, the other (if the appropriate feature was

noticed) will be tested and rejected in the same way. Only after the

"apprehensible" hypotheses that were perceived have been tried will either

of H3 or H4 be'tried, if those are seen as possibilities. If they are

not, the students will report being "stuck." If they are tried, and seem

to work; the students will report having succeeded. Although they may

feel uncomfortable about not being able to explain why it works, they will

not doubt tit it does. Whether they ha a been successful or not, half

of their time will have been spent with straightedge and compass in hand.

No active mathematical derivations (proof) will have been undertaken.

At this coarse level of detail, the predictions made above are

remarkably robust. I could offer any number of protocols in which the

students slavishly adhere to the outline just described. With_cne or two

pairs of students and the same methodology,* the reader can generate his

or her own. Instead I have chosen examine a more complex protocol,

one that is much richer than most of the stereotypical ones. This protocol

is better than average (!) in a number of ways. It is relatively free of

the types of pathologies described in section 4. The students.work.well

together, and concentrate on the problem for the full twenty minutes allotted

for it. Most importantly, these students demonstrate much better awareness

and control of their own problem solving processes than most (see in contrast

*The protocols were obtained by recording students in pairs. They were asked

to work together as a team, and instructed not to "explain" what they were

doing for the recorder. The underlying rationale for this methodology is

given in note 1.

17



16

protocols 1 and 2 in Schoenfeld, in' press). Their strategic and metacognttive

behavior work reasonably well -- but working within the context generated

by the belie systems, these behaviors can only work to limited effect.

The following is a brief running commentary.

T begins by sketching in the desired circle (Item 1), and there is

a clear attempt to make sure that she and L understand the problem statement.

This deliberateness in guaranteeing that they "understand" is respectable

"control" behavior, in contrast to the impulsive actions taken by many

students in similar circumstances.

By item 4, the sketched-in circle is erased: it was "legitimate"

as an aid to understanding, but (according to their belief systems) does

not belong in the figure as a proper part of working the problem. In

item 5 feature F3 and the associated conjecture are introduced.

Here the dialogue is unusual in two ways. First, the students do

not attend to F2,-and are thus deprived of the opportunity to verify their

conjecture empirically. Second, T actually raises plausible objections

to the conjecture (items 5 and 8), and a meta-level dialogue ensues.

This is certainly respectable executive behavior. But then the students

spend 21/2 minutes with straightedge and compass tying to resolve the

dilemma.

Their construction 'looks 'ight" (item 11) but they again recognize

that this one example does not guarantee validity in general. There is

an attempt to exploit a related problem in items 14-24, again indicating

some sophistication. Then five minutes (items 25-41) are spent in empirical

work, resulting (finally) in the rejection of the initial hypothesis.

The rejection, is, however, substantiated theoretically (the tangents to

Is



the endpoints of a diameter must be parallel).

In item 43 comes the belated recognition of Fl, which again is

combined with F3 to generate Hl. The enthusiastic jump into implementation

(items 45-50) may be in part a result of desperation, as well as the

declaration that using a ruler to draw a right angle i5 "legal" (items

62-63). Yet items 56 -57 and 61-63 say a great deal about students' perceptions

of the nature of "being mathematical." Contrast 'his with protocol 3

Conjecture H1 is again evaluated empirically, and the control

functions are again relegated to performing post mortems: e.g. items

80-83, There is again a reference to the related problem (item 89),

,,and -- as if we need any more evidence -- an indication that their approach

to that problem was also purely empirical.* The solution degenerates

from there. I wish to stress here that (a) the students did, as determined

later, have an adequate factual knowledge to be able to solve the problem,

and (b) their meta-le.:el behaviors,'as indicated in items-1, 6-8, 12,

14, 40-41, 80-83 and 89, are generally most respectable. The major

"difficulty" is the very approach they take.

In contrast'let us look briefly at protocol 3, where a mathema-

tician works on the problem the students alluded to in item 14. It is,

essentially, the same problem. A number of factors may contribute to the

mathematician's success: better control behavior, more reliable recall

of relevant facts, and (not to be underestimated) more confidence. But

most important is the basic approach that the mathematician takes: he

*That comment is important in the following sense. It indicates that their

behavior in this experimental environment is similar to their behavior when

workingon the problems in their own rooms. In view of some of the examples

in section 4, this is non-trivial.
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derives the information he needs through the use of proof-like procedures.

Note that he is looking for congruence ("there've g)t to be congruent

triangles in here.") long before there is a conjecture to "verify."

Rather than being an afterthought or a method of verification, proof is

a means of discovery for him.* The non-empirical nature of his approach

is made emphatically clear the last line of the protocols, where performing

the construction is the operation thatis relegated to the status of an

afterthought. He is certain the construction will work.

In protocol 2 we see an indication cf the "intermediate" status

of the students after a month of problem-solving instruction. The course

focused on heuristic and executive problem solving strategies. Some of

these are evident in the protocol; some were present before the course.

Proof was often discussed in the course, but in the usual way: "Yes it

seems that way, but how do you know it will always be true?"

Objectively the students' behavior in this protocol compares favorably

with their behavior in protocol 1, along all three of the dimensions

outlined in section 2. Their recall of relevant facts (e.g. that the radius

of a circle is perpendicular to any tangent at the point of tangency,

item 69) is more assured, and called into play at appropriate times.

Domain-specific procedural knowledge is also more accurate, and they are

confident about their abilities to perform the appropriate constructions.

However, these were not disabling factors in protocol 1 and only tell a

small part of the story.

*It was Polya, I believe, who definea-geometry as the art of "right reasoning

on wrong figures" -- clearly the mathematician's perspective, and antithetical

to the students' belief systems.
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There is a telling difference in their performance at the heuristic

level. A few years ago that difference would have tempted me to attribute

their success to the heuristics that they had learned. They draw a picture

of the goal state to determine what properties it has (items 14ff.),

look at extreme cases (items 34-46), consider only obtaining partial

fulfillment of the conditions (item 52), and so on. The first of these

heuristics alone might have guaranteed success in problem 1. However,

there is a good deal =more.

Their strategic (meta-level) behavior is quite good, as it was in

protocol 1. They monitor and assess both the state of their knowledge

and the state of the solution with some regularity (e.g. item 71), and avoid

the kinds of "wild goose chases" that often guarantee failure for less

sophisticated students. Here, in fact, control behaviors become a positive

force in the evolution of the solution. At the very beginning (item 20),

empiricism is put in its place. Time constraints are taken into account:

in item 63 the expedient of using the markings on a ruler is acknowledged

as "illegal" but used anyway -- they could bisect the line if they had

to. They know that they are supposed to prove that their constructions

"work," and predict early on that they can "do it with similar triangles

and things" (item 72). In this context proof is still regarded as a means

of verification, to be used after one is convinced he or she knows the

arswer. The convincing comes by means of good sketchesland "gut feeling,"

rlwever, not by perfect constructions. "Proof by construction" is clearly

put to rest in item 78.

It is tempting, then, to argue that the control strategies serve

as enabling factors, allowing the students to employ their tactical
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knowledge with some success. Certainly the absence of efficient control

behaviors would have sabotaged their attempts (Schoenfeld, in press). But, the

discussion in the last paragraph indicates that the control behaviors

were operating within the context of new beliefs regarding proof and empiricism.

Had those belief systems not changed, the control strategies could not have

operated the way that they did. One can conjecture that without this change

in belief systems their behavior would still resemble their behavior in

prototol 1 -- even if, they had been given a review of basic facts

and procedures, and taken a course that stressed meta-level problem solving

skills.

This brief discussion serves merely to raise a host of questions:

It is not meant to minimize the 'importance of tactical or strategic knowledge,

C.0

but to indicate that a third and often hidden level of analysis must

also be taken into account when one analyzes problem solving behavior.

As indicated in section 2C, there may 11 be contexts in which one level

of behavior predominates: the tactical in AI "expert" simulations, the

strategic in "wild goose chase" solutions, and belief systems in protocol

1. Even in this "purely cognitive" kind of investigation, other than pure

cognitions must be token into account. But this is only the beginning,

as the next section inditates.

4. The Matrix Within Which Pure Cognition Resides

Whil4 the previous section raises some questions about the inter-

pretation of verbal data, it does not at all challenge their legitimacy.

That is, the discussion was predicated on the assumptions that (1) protocols

like those in appendices 1 through 3 provide an accurate reflection of

22
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the cognitions and behaviors of the people who produced them, and (2) in

turn, models of behavior based on such protocols (for example, the model

outlined at the beginning of section 3) thus reflect the subjects' behavior

with some accuracy. In the case of the particular protocols discussed, I

am reasonably confident that this is the case. In general, I am much less

sanguine about the "legitimacy" of verbal data, even of some data obtained

in methodologically "clean" settings.

Of course this issue is not new. Methodological battles were waged,

for example, over the legitimacy of introspection as a means of character-

izing cognitive processes.' "We have also long known, both from experiments

and everyday experience; how subjects' behaviors are affected by expectation,

context, and measurement procedures. The notion that there can be 'neutral'

methods for gathering data has been refuted decisively" (Ericsson and Simon,

1981, p. 17). That point granted, the question then becomes one of the

intrusiveness of various experimental methods. For example, it is generally

acknowledged that asking subjects to analyze 'their problem solving processes

while they work on problems does have measurable effects on performance.

However, the current literature indicates that sufficiently "bland" instruc-

tions may not have a measurable effect on data gathered in the laboratory:

subjects who are instructed simply to "talk out loud" as they solve problems,

and not to interpret or explain, will yield' essentially the same performance

that they would have if they were not speaking out loud (Ericcson and Simon,

1980).

There.is, in that last sentence, a very subtle but powerful disclaimer.

It is revealed by the following.* In 1978 I made a series of recordings

*Other aspects of this issue, and the complete protocol from which the

excerpts below are taken, are' given in Note 1.
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of students .solving the following problem "out loud."

Estimate, as accurately as you can, how many cells might be in an

average-sized adult human body. What is a reasonable upper estimate?

A reasonable lower estimate? How much faith do you have in your

figures?

The -roblem is a particular favorite of mine, an excellent task

to use for examining cognitive' strategies and memory searches. It can,

actually, be solved without any special technical information. One wants

good estimates for "average human body volume" and "average cell votume,"

under the assumption that there are such things. Since there will be a

huge amount of guesswork on cell volume, body volume can be roughly approx-

imated: a box with dimensions 6' x 6" x 18" will be close enough (probably

within a factor of two) to the actual average.* With regard to cell size,

we can see the markings of a ruler down to 1/32" so perhaps 1/50" is a lower

limit to what we can see clearly without "help." Cells were discovered with

early microscopes, which must have been greater than 10 power (magnifying

glasses probably give about 5 power) and less than i00 power. So a "canonical

Cell" (say a cube) must be between 1/500" and 1/5000" On a side. The rest

is arithmetic.

My first set of subjects were junior and senior college mathematics

majors. The students knew me reasonably well and were familiar with my

work. Some had dsne protocol recording themselves, as parts of senior

projects. I took all of the appropriate precautions to set them at ease

for the recording sessions, and recorded them working on the problerone

at a time. See appendix 1 of Note 1 for a representative protocol.

*A more accurate figure can be obtained by taking an estimate of average

body weight (say 150 pounds) and converting it to volume. Since the human

body (barely) floats, its density is close to 1. However, the point is that

there is no need to be so precise: this degree of specificity is an indulgence.
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Typica ly, students would quickly choose volume as the quantity to

compute. After brief consideration they would decide to compute body volume

first, and Would then begin extraordinarily detailed computations. Generally

an "average" body (most often their own; would be approximated by a series

t

of geometric solids whcse volume was rigorously calculated. For example:

and now a leg ..a cone might be more.appropriate. And the base of

my leg is app ximately 6 or 7 inches in diameter so you would hdve

(311)2 x n and he height would be...what is my inseam size, about

32 or 34. So ve got to have a 34'and it's a cone so you've got

to multiply it one third.

In sharp contras# to their meticulous calculations of body volumes;

the students' estimates, f cell size were (1) crude and (2) not accompanied

by estimates of how accur to they might be. For example: "All right, I

know I can see 1/16 of an %nch on a ruler, so say a cell is 1/100 of an inch

on a side." The students spent the great majority of their time making

estimates of body volume. T ese results, though puzzling, were remarkably

consistent.

Later in the year I began making recordings with pairs of students

solving problems together. I corded perhaps two dozen pairs of students,

who solved the same problem after receiving nearly identical instructions.

Not once did a pair of students demonstrate the kind of oehavi7 I have just J

described. With hindsight, it became- apparent that the behavior in the %

single-student protocols was not a reflection of their "typical" cognitions.

Rather, their behavior was pathological -- and the pathology 1,as induced

by the exp4rimental setting itself. This problem upset the students,

because they had no idea of how to approach it. Feeling "on trial" to

produce something for a mathematics professor, they responded to the pressure

by doing the only mathematics they could think of under ttile circumstances:
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computing volumes of solids. Tht24'at least, was demonstrating mathematical

behavior! (The students in two-person-protocols manage to dissipate the

environmental pressure between themselves, and thus to avoid extreme mani-

,,
festaijons of pathology.)

I have dwelled on this example at length because it indicates the

subtle difficulties inherent in protocol analysis. When I discovered the

social causes that I now believe explain the students'- behavior, I was on

the verge of writing a paper describing (a) their surprising inability to

make "order of magnitude" calculations, and (b) their poor allocation of

+Strategic resources in problem solving., In hindsight, this "purely cognitive"

explanation of their verbal data would maken6 more sense than "objectively"

assigning a low IQ score to the Kpellan native quoted im section 2C on

the basis of his responses to the experimenter's questions. We need not

travel to Liberia; clashes in belief systems between experimenter and subject

occur here in our own laboratories.

'

Since the length-of this paper has already grown out of hand, the

rest of the discussion will be very brief. My intention is to sketch out
.4.

some of the dimensions of the matrix within which,"pure cognition" resides.

Aibroad outline ()Pit, given in the form-of a mathematical cross product,

is itven below.

(SETTING )

I4ividual (Self)

Cognitive Structures:
access to factga,
to proceduresrOnd
tot strategies

TL

rEn ironment

.*)

KNOWLEDGE, BELIEF

`° AND VALUE (KBV) ) DEGREE OF AWARENESS
SYSTEMS',

!(BV about Self

KBV about facts
KBV about procedures
KB!! about strategies

l(BV about task

KBV about environment

--f'gure 1-- °6

Unaware

Aware but
non-reflective

locally aware and
reflective (monitor-
in and assessment)

Reflexive Abstractidn
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The column on the left of the figure represents an "objective"

description vf the problem setting, the product of the two columns on

thewright the set of "driving forces" that operate in and on the setting.

We take one column at a time.

The first column is familiar. In the best of circumstances, this is

all that one need be concerned with. "Task variables" can be described,

objectively, and the environment as well. "Cognitive structures" are the

focus of customary laboratory investigations: facts, proCedures, and

strategies. Under the assumptidn that laboratory investigations provide

an accurate reflection of problem solving behavior, theiiovestigator's

focus can'be on the overt manifestations of these cognitive structures.

in this context the issue is more delicate: one must (;omehow) ascertain

the set of facts, procedures, and strategies that are potentially accessible

to the problem'solver.

The second column deals with belief systems. Some ideas about belief

systems have reached the level of folk wisdom: for example, the notion

that, through perseverance, a .person will)turn the belief in his or her

ultimate success into self-fulfilling-prophecy. A student's belief in his
4

or her ultimate failure will affect the "pal data one obtains11.:

I have videotapes of students who never seriously engaged themselves wit

1 problem, ift,gder to later rationXize. what they Siw as their inevitable

failure. (This has been. admitted to me, long after taping, by more than

one student.) Beliefs about the very nature of facts and procedures will

determine students' performance. The student who believes that mathematical
1

knowledge must be remembered will be stymied when a particular object (say

-'a procedure for constructing a line parallel to a given line) is forgotten,
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while another who believes that the p.ocedure can be derived will act

rather differently. The effects or strategic and task-related beliefs

(one approaches constructions empirically, etc.) were considered in section 3.

And the effect of beliefs about the environment (one must produce mathematics

when one is solving problems for a mathematics professor!) were the causes

of the pathological examples that began this section. These examples barely

scratch the surface, of course. But the point is that if we wish to describe

behavior as it occurs, we must worry. about such things.

The third column reflects the degree to which the individual is
A

aware of his or her knowledge and belief systems. This column is important

for the following reason: one can Only act upon thine beliefs that he
0

is .aware of. As long as the students in protocol 1 believed that discovery

and proof in geometry are purely empirical, they would continue to approach

problems that way. Once they were made aware Of that belief (and that other

poSsibilities exist) they could change their behavior. Similarly, students

who are aware that they can mon4tor and assess their own cognitive strategies

can, then, serve as active. agents in their own growth. Making students

aware of their own (and competing) beliefs may be one of the most valuable

functions we can perforth'as educate.

5. Discussion

This paper covered a huge amount of territory, much of it at breakneck

speed. First, let me highlight some of the methodological issues.

A. There are at least three qualitatively different levels at which

-

one can analyze verbal data. Depending on circumstances, one level or

another may provide the "key" to understanding what happens in a given



27

protocol. Examples of primarily "tactical" protocols are those gathered

from experts working on routine tasks in familiar domains, e.g.' those in

Larkin, McDermott, Simon, and Simon (1980). Examples of primarily "strategic"

or executive protocols are those where students go off on "wild goose chases,"

e.g. those in Schoenfeld (in press). An example where belief systems provide

the primary level of analysis (protocol 1) was discussed in section 3.

A comprehensive discussion of verbal data requires the consideration of

all three levels.*

B. Belief systems can be modeled. Such models exist, for example,

in Aecision theory. Kahneman and Tversky's (1979) prospect theory includes

computational models of decision-making that take into account subjects'

belief systems. The,gain or loss of the same dollar amount (say $1000)

are not viewed in the same subjective terms: generally, loss is more

traumatic. Similarly, winning $2000 may not have twice the emotional value

of winning $1000. Prospect theory assigns to each of the dollar amounts

above its subjective value (say, for example, -1200 for the loss of($1000,

+800 for the gain of $1000, and +lig for the gain of $2000). The' figures

are used to make computations of "subjective expected utility," which have

reasonably good predictive power.

I believe that rigorous models characterizing the effects cf belief

systems on problem solving behavior can be made, and that these models

will have both ecological validity and predictive power. The discussion

*This is oversimplified, of course. Belief systems may have served to

"explain" most of protocol 1, but protocol 2 provided a (perhaps more

typical) example of the dynamic interplay among the different levels.

The "real" question, as I see it, is: what accounts for the differences

in problem solving performance between the two tapes? This questionis

of nearly overwhelming complexity. This framework offers, I hope, a first

step towards unraveling it.

29
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of "typical" student behavior on geometry constructions that began section

3 is, in essence, a prospectus for chat kind of model.

C. Great care must be taken in the interpretation of verbal data.

rt may well be true that, with sufficiently Wand instructions, students'

performance in the laboratory may not be measurably changed by speaking

"out loud" as they solve` problems. But the behavior that they produce

maybe completely abnormal -- even if it is consistent enough to model with

great accuracy: Under such circumstances, we may simply be modeling abnormal

pathology in the name of cognition. Again, the issue may be moot where

the belief systems of the people on both sides of the microphone coincide

(with experts generating protocols for their colleagues' simulations).

But the more alien the setting for the subject, the more likely it is that

the data will e "driven" by covert bellefs that skew its meaning (see

Note 1).

The second set of issues deals with applications of cognitive research

to educational research and development. Here the potential for the

misunderstanding and misapplication of basic cognitive research is enOrmol.

There are dangers in adapting both the methods and results of much current

research to educational settings.

D. Researchers in education increasingly rely on "verbal methods"

such as protocol analysis for their research, using for their analyses

the successful analytical tools and perspectives derived froth AI and

information processing research. Yet the goals and the contexts of such

studies can be substantially different. In much AI work the goal is to

model idealized, purely cognitive behavior. Both the subjects and the tasks

are selected to facilitate this kind of modeling, and a "purely cognitive"
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approach appears to be sufficient: In educational, work, characterizing

"idealized" intellectual behavior is only one component of a much larger ,

enterprise. If one wishes to affect students' behavior, one must be able

to describe it accurately and to characterize what causes it -- and it

would appear that belief systems are a major driving force in students'

behavior. Any framework that ignores them -- regardless of how accurate

it is in other contexts -- can result in the severe distortion and misinter-

pretation of the data.

E. The applications of cognitive research to schooling must take

into account the context in which cognitions are embedded. The brief

discussion of figure 1 in section 4 is an attempt to sketch out the range

of issues that must be taken into account if our increasing knowledge

about cognition is to be employed usefully in the schools. There are any

number of examples regarding that context. Jean Lave (Note 3) reports

that people's use of arithmetic in everyday situations does not correlate

well with their scores on paper-and-pencil tests of it. Dick Lesh (Note

4) reports that students' problem solving behavior when dealing with "real"

problems bears little or no relation to their "academic" problem solving

behavior. Nesse' (1976) argues the point in general.

I think that a broad attempt to deal with cognition in its "real

world" context can have a strong positive effect on schooling. The three

dimensions that appear most critical to me are represented in the three

columns of figure 1. It goes without saying that knowledge of the basic

facts, procedures, and strategies (the first column) is essential. Most

of this paper has argued for the impertance'of the second column, and I

will not labor the point further. The third, "awareness,'' has only



30

been allOed to, and is worth discussing a bit. I would assume that the

purpose of schooling is to prepare students for life after school: to

help them,develop the mechanisms they will use throughout life to adapt

to new situations. Yet virtually all of the college freshmen in my problem

solving courses enter the course completely unaware of the fact that they

can observe, evaluate, and change their own cognitive behavior! It is as

if their minds are autonomous, independently functioning entities, with

the:students as passive (oftimes frustrated) spectators. So long as this

remains the case, the students are slaves to their own behavior. Once this

belief, or any other, is made conscious, it can be acted upon and changed.

Providing students with the potential for this kind of adaptation may be

the greatest service we can render them.
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Appendix,): Protocol 1

Problem worked the first week of instruction, by students ,L and T (college
freshmen who had completed_one semester of calculus).

You are given two intersecting straight lines, and a point P marked,on
one of them, as in the figure below. Show how to construct, using a straight-
edge and compass, a circle which is tangent to both lines and has the point
P as its point of tangency to one of the lines.

'P .

4

1. T: reads the problem. Oh, ok. What you want to do is
that (sketches in a circle by hand), basically.
Ok, how?

2. L: Now, ok, we have to find the center.

3. T: Of what?

4. L: Of the circle. We are trying to find the circle,
right? If-we did that then we could...oh, and the
radius of course.

5. T: All right, well we know the point of tangency on
this line is going to be right here (points to P).
What we need to find is where the point of tangency
is going to be on this other lint, I think. So we
can find the diameter in which case we can find
the center.

6. L: Is that...that's not necessarily true, is it? Is

it true that if you have a circle like that (see
right), and then that (points with finger) would
be the diameter. You know what I mean? Or maybe
you couldn't have it that way...

7. T: The circle has like...no, you don't have a diameter
running up through there. No, we have to find the
diameter from the point of tangency on this line
to the point of tangency on this line, wherever
it lies.

(e_; tastes

C( .Q-cc. tO

8. L: No, wait: the point of tangency, the point of tangency
here, would the line connecting those two points be
the diameter? It seems that you could maybe construct
one where it wouldn't always work.

9. T: Wait, but see, I don't know, we're not drawing it
(i.e. sketching it) the right way,

37
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10. L: Wait, do you want to try drawing it (with the
compass) and see...

(21/2 minutes elapse in empirical work. 'A'reasonably
accurate drawing results.)

11. L: So, maybe it looks like it might be opposite, see?

12. T: But would that be true for any triangle? Oh, but

see...

13. L: I'm confused. I don't think it would be. Let's say
you had your radius over here and you went like that.
I don't think that could be...ok, I think there could
be, there is a possibility.

14. T: Remember on the first problem sheet we had,to inscribe
a circle on a triangle? Could you'd° that? 4

couldn't.

15. L: I couldn't either.

16. 'T: We're in pretty sad shape. Buerjust say we draw a
triangle even though we don't know how to do it.
We will draw a triangle anyway.'

17. L: So how's that going to help?

18. 1: Because we don't have to inscribe it actually. We

just have to have something to help us (visualize
it). praws an apparently arbitrary third line.)

19. L: Althouih...

20. T: Does that do anything?

21. L: Not at this point, I don't think. Maybe further along
if we need a-radius we could...but I don't think it
does anything now.

22. T: We've gotta do something. With what we have,,you
just can't do it, right? We don't have enough lines
or whatever there.

23. L: Ok, we need a center and a radius. So how do we
locate the center? It has to do with, I think it has
something to do with, could we do this?

24. T: No, maybe you have an equilateral triangle.

25. L: Wait, let me just try this. (Begins to expand compass.)

26. T: What are you doing?

27. L: Don't you want to see if it's true? If you have a

38



center way out there, because it may not co

Don't you see? (sketch at right)-

28. T: I'm pretty sure it won't. I don't think it

37

29. L: But if it won't make a circle, then that means this
circle is ours (points back to earlier sketch).
The one we have to deal with. You know what I mean?

40. T: I see what you mean. Like try to 4aw a circle out
here like going through this point. See, it won't.
It won't work.because in order for it to work...
(another few minutes with the compass. The dialogue

has to do with'their attempts to draw a very ,accurate
figure, so that they can draw conclusions fromjt.)

31. L: Ok so that's what we're doing, right? We don't
'. need it that big..

2. L: Yeah, wait, you i couldn't because it is going to go
through (the point P). I think it'does have to
be, right...

33. T: 41f we 'have these two points that's definitely our
diameter going through it. Now me can draw...

34. L: %But neither is it a tangent.

35. T: That's just what I was going to say. Can we draw
these two lines so that...see you can't for in order
for this to cut through this, it's too shallow, it's
shallow...

36. T.: Ok as soon as this...ok, make this a tangent.

4
. 37. L: In order for this to be...do you think it's going tb

be tangent to...

38. T: No because, because we know this one is not going to...
I want to see if like we make this a tangent. You

see what I mean? But that doesn't look like a
diameter either. Well, I don't think that's it.
Of course it couldn't be because a diameter is going
to be when it's parallel, isn't it?

39. L: That's the diameter.

40. T: Ok. That's not going to help us (laughs).

41. L: You ligured that out.

42. T: Right.

43. L: Can we construct one parallel to it? (Looks at
original diagram.) But,then we still don't know
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the center.

(pause)

Could we just draw a perpendic lar?

44. T: Yeahi, that's what I was just g ing to
draw a perpendicular line to this and
the diameter it will work from here.

should touch if it's perpendicul r.
tangent at one point, shouldn't 1\7

45. L: Right!

46. T: Shouldn't it?

47. L: Yes!

48. T: Won't it?

49. L: Yes!

50. T: Ok, draw a perpendicular, oh good.

51. L: Does one know how to dci that with a compass? Do

you?

52: : This is a right angle, so...(uses the cOrner of the
ruler):

53. L: Ok, that's perpendicular, ok. Doesn't ldok it but
it is.

54. T: That's our diameter.

say. If we

just call that
And then it

It should be

55. L: So if we say this is the point of tangency.

56. T: So we can bisect his to find the center, right?
So-call it center C. Maybe we should have done
our steps.

57. L: That's all being urimathematiCal, completely di organized.

58., T: Ok, back to the draiving board.

59. L: I don't know how.

60. T: Me either.

61. L: Ok, if we just use the ruler With the little num ers
on it here.

62. T: Or isn't that legal?

63. L: Sure it's legal (does by hand).

40
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Now we have the radius, now we just draw it.

64. T: Uh, oh, do we knew, we have to see if this is going
to work. I..know! Ugg.

65. L: My guess is, I think it's not. But we'll try.

66. T: I would think, though, it would have-to, though,
wouldn't it?

67. L: No.

68. T: The radius is shorter as...

69. L: I don't know. Well, 4t's see what happens when it
goes through there. #

70. T: Somehow it doesn't look perpendicular, though,
doesn't it?

71. L: See this line isn't straight relative to the page
which is why it doesn't look perpendicular.

72. 1: Oh right, but...

Fr

73. L: It looks good. Now we can tell something.

74. T: Maybe, I chink this tells us the point of tangency
has to be way more (points to right;. I think.

(Three minutes of constructions)

75. L: What circle was this one? Yup, that was a right

angle. Oh, darn it.

76. T: Ok so the radius has got to ae smaller because it's
going outside of this line. So it's got to be a
little smaller and the center has got to be up and
over, like here...

77. L: But how.do we...

78. T: Tut I don't know how to do that, without doing it
until it comes out right.

79. L: Yeah.

(pause and evaluation of prior failure)

80. T: That was dumb. By doing that we were saying that
,no matter what th4; line looked like,'thp it looked
like this, if we-dropped a perpendicular:we could
do it and we could get the diameter for that angle
and still expect to do it. You know what I mean?

81. L: Yeah, I don't think it will work for any angle though.

41,
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.

82. T: I know, that's what I mean.

83. L: Yeah, well, we goofed again.

(pause)

84. T: Well the only thing I can think of to do is what we
did in class the other...well, what we were supposed
to do, you know. The triangle thing, trying to
inscribe,it.

85. L: wait, we know...

86. T: I know, that's the problem. We don't know how to

do it.

87. L: I don't know what to do,(//

88. T: Alright, we are going to have to try something else.

89. L: Alright, what are we, what were those sort of things
we tried with triangle one? Cause maybe we could...

do the same thing with, on a smaller scale.

90. T: I got absolutely nowhere.

ql. L: Yeah.

92. T: But I was trying to\do things like, bisect this side.

93. L: Yeah, I did that.

94. T: It didn't work.

95. L: Yeah, let's see what we have here. We want to

inscribe a circle in this right triangle.

96. : Why do you want to do a right triangle?

97. L: I don't know. It just is one. Oh, I blew it now,

no. The ends don't matter because we're, you see,
we want to inscribe it. We'reputting in the extra
conditions, because it doesn't have to touch this
line. It doesn't have to...oh, I don't know.

98. T: I don't think that .will get us anywhere.

99. A: Ok, guys..

100. Both: We give up.
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Appendix 2: Protocol 2

Problem worked after problem solving course.

The common internal tangent to two circles is the line which
is tangent tO both, but has one circle on each "side" of it, as

in the picture to the right.

You are given three points A, B, and C as below. Using straightedge and

compass, you wish.to construct two circles which have the same radius, with

centers A and B respectively, such that the common internartangent to both

circles passes through the point C. HoW do you do itl Justify.

./'
1. T: Reaas problem.

2. L: Wait, I have to read this. Ummm.

3. T: What we want basically is this, circles and a line
something like this that is going to pass through
here (makes sketch).

4. L: Right. Ummm.

5. T: Like that.

6. L: Except they have...where is it...have the same radius...

7. T: Uh huh

8. L: ...so it isn't going to look like that.

9. T: Right.

10. L: But, ok. Wait, I've got to think for a second.

(erasing to draw again.)

11. L: Ok, wouldn't it...no, maybe not.

12. T: What?

13. L: No, that was dumb. Let me think.

(pause)

3
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14. 1: Umm...shood we try and draw it maybe, how it would
be to see .chat the relationship of C is to the two

circles, since that's notldrawn.

15. T: Right.

16. L: You know how I am with comPasses...go ahead.

17. 1: Well, 'how big am I supposed to draw it?

(';raves with a compass)

18. L: I've made this too big because they're goincl.to overlap \.
one another with .that radius.

19. T: Yeah.

20. L: Just draW (i.e. sketch). it...you don't have to use

the, compass. Just draw it...just draw...no, no, no.

21. 1: Ok, and I'll make my cfrcles better: (unclear). Ok.

(unclear)

22. 1: What are you going to do?

23. t: I just want to see What it would look like more
accurately (draws withcompass). .

24. 1: Why?

25. L: Just so I could see (unclear) you can think out

loud if you have an idea: Ok. Can you think of

anything? (finishes sketch)

26. 1: Umm. Thse two radii are the same, right?

27. L: Yep. Except it doesn't look the same, does it?
4

-28. T: That's the way you put your centers in the center.\

29. (unclear)

30. 1.: (unclear) Ok. These two centers have to like...
do you know what I mean?

31. L: No. Wait, what am I looking for now?

32. T: (rereads problem) Why don't we first just try to..

33. L: If we tan find (unclear) (pencil placed at center poi

T: All right...if you just have the two centers and you
go over...say the radius..ethe radius will have to be
hal; way in between the centers. Alright, and then....

(elt.le".14
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35. L: Say...wait...wha-wha-wha-what?

36. T: If we just try to draw the two circles and the tangent
line without worrying about point C for right now.

37. L: Right.

T: Ok. Since they have to be of equal radius...the
radius will be half way between the two centers?*
It's like the tangent line would be like this.

39. L: I don't get this about the radius being half way
between two centers.

40P- T: Me neither.

41. L: I don't get what you mean. How's the radius half
way:..I don't get what you mean.

42. T: If it was like this and the tangent line would
just be ('unclear)

43. L: Ok, yeah.

44. T: Ok? These two have to be the same length.

45. L: Right.

46. T: And the thing that is going to determine how long
they are is the angle on this line. What I mean
like if they are exactly...half way in between the
two centers then the line is vertical.

47. L: Right.

48. T: If we make it somehow shorter right here and here...
the circles would be like this and the tangent would
be on a slant like this.

49. L: Ok. Ummm.

50. T: We have to figure out how they go through point C. So...

51. L: I don't know either.
we%

52. T: Can we just start with C and draw a line through it
somewhere and then make the circles tangent to it?

53. L: No.

54. T: Or...

55. L: No we're given the centers.

*She meant to say that the-length of the radius in this extreme case

was half the distance between the centers of the two circles.
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56. T: ,We're also given'C.

57. L: Uh huh. But just drawing the line can't guarantee
you could end it with -something like this if you

just drew the line here. Ummm. Isn't there another -4

way we can characterize the line? Find the locus.

58. T: Ummm.

59. L: This might not work for all of them, but, look here,
doesn't this look like...that's just like the center?

60., 1.: That's just what I was going to measure.

61. L: Ummm. Because if we did that, we were given points
A, B, and C.

62. T: Yffs llooks at her sketch) that crosses it too.
That's exactly what we're going to do.

63. L: Alright...wait, we're not allowed to use a ruler,
but...yeah, divide it in half.

64. ,T: Yeah, bisect.

65. L: Why don't you actually do it...

66. T: Let's try it on here since we're not sure.

(Begins new sketch)

67. L:- Wait, I think it was the other line. (unclear)

Just connect point B. We're going to ha've to drop
a perpendicular from B to the line.

68 T: What are you doing that for?

69. L: Because this is perpendicular and that's what the
radius would be, a perpendicular and from A coming
to the line also.

70. T: Right.

`71. L: Ok. I don't know why this works, I mean, I just

tl ,-
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seem to see it, you know.

72. T: I think we can do it with similar triangles and things
so let's just make sure it works (unclear).

73. L: We can do it here too:..this isn't a very nice compass.

74. T: We're running out of time (whispering). Draw faster,

draw faster.

75. L: I can't...this is hard.

'13
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16. T: Draw faster anyway.

77. L: I didn't construct it right.

78. T: Well just draw it...it'll work.

79. L: Oh, wait, maybe I did actually. Ok, that's the
radius then.

80. T: Right.

81. L: Perpendicular. Then we just have to draw...I think
that's just the right thing.

82. T: That'll do it, that'll do it...wait, we've got to
draw...ok,- we did it. We've got to show why. We

have to show that these...the reason that these are
half way in between, these two points is because..
angle side...we have to show that...what this side. .

83. L: Like we have an angle.

84. T: But what are we trying to show...we want to show why
this is in between A and B.

85. L: Right.

N- 86. T: So we want to show that this is equal to this...that
, they...

87. Both say: ...are congruent.

88. T: Ok, we have that. We have...

89. L: ...an angle and a side. How do we know...

45

90. T: And we need to show that this side is compared to
that side. And...

91. L: (to A): Must we prove why something works or just
show you the construction?

92. A: If you can justify it I would be happy.

93. L: Ok, let's try to justify it.

94. T: Now the angle...

95. L: Well, we know, I mean, r is equal to r so it is
just like...

96. T: We, have these angles, so this angle equals this one:

After a few minutes, and with. some slight confusion, they prove

that their construction has the desired properties.
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Appendix 3: Protocol 3

The subject is a professional mathematician.

Using a straightedge and compass, inscribe a circle in the triangle below.*

(reads problem) All right, so the picture's got to look like this
(draws figure) and the problem is obviously to find the center of
the circle...

Now what do I know about the center? We need some lines in here.
Well, the radii are perpendicular at the points of tangency, so
the picture's like this (draws figure)...

That doesn't look right, there's something missing...What if I draw
in the lines from the vertices from the center? (draws figure)

That's better. There've got to be congruent triangles in here...
let's see, all the radii are equal, and these are all right angles...
(marks diagram) and with this, of course, this line is equal to
itself (marks "x" on the figure), so these two triangles (at lower-
left vertex) are congruent. Great. Oops, it's angle-side-side,
oh no, it's a right triangle and I can use Pythagoras or hypotenuse-
leg or whatever it's called. I'm ok. So the center is on the

*The inscribed circle is a circle that lies inside the triangle and is
tangent to all three sides of it.
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bisectors. (Turns to investigator) I've solved it. Do you want
me to do the construction?

A9


