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1. Overvigw

’

This paper is one of a pair which, together, try to delineate some

of the psychological and methodological issues related to the use of S

. certain "verbal methods" (clinical interviews and protocol analyses) for
research into human problem solving processes. The two papers share the.
‘same foulldation, the premise that "purely cogqitive" behavior is ext?@ﬁély
rare, and that what is often taken for pure cognition.is actually shaped -- -
if not distorted -- by a variety of factors. The companion paper, "On the
Analysis of Two-Person Problem Solving Protocols," (note 1) discusses the aims.
rationales, and details of a particular protocpl analysis scucie. That
framework was «designed to elucidate the nature of certain strategic (and
for the most part "purely cognitive") decisions made.by college students
in the process of solving difficult mathematics problems. It explores
the role that those strategic Hecisions play in the students' success or
failure, This paper tries to place such methodologies in a much broader -
context?\in an attempt to explicate some of the "driving forces" that ;::7
generate the behaviors that we see. To put it briefly, the idea considered
here is that the cognitive behaviors customarily studied in experimental
fashion take place within, and are shaped by, a broad social-cognitive and
metacognitive matrix. That is,‘the tangible cognitive actions that we

iztpbserve are often the result of consciously or unconscious]y'he1d beliefs
about (a) the task at hand, (b) the social envirggment within which the
task takes place, and (c) the individual problem solver's perception of
self and his or her relation to the task and the environment. It is arqued

that the behaviors we see must be interpreted in that light.

This is an exploratory discussion, an attempt to characterize’ some
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of the dimensions of the matrix within which pure cognitions reside. The
discussion takes place in two narts. In the first part [ shall try to
@outline the three levels of analysi€ I think may be necessary to fully make
sense of verbal data, even when one's intentions are "purely Tognitive."
These levels are described in section 2, and a brief analysis of some

© protocols from that perspective is then given in section 3. In the second
part, I shali try to broadén‘the digéﬁssion‘gkd flesh out some of the
dimensions of the matrix. Mucn of what follows is highly speculative, and
a good deal of the "evidence" anecdotal. Tﬁe idea is to point out some of
the pitfalls in curreﬁt lines of inquiry, and to map out some (one hop&s)

useful directions for future inquiry.

Y

2. Background; a Framework

T wish to suggest here that three separate levels or types of analysis
may be nesﬁssary in order to obtain an accurate interpretation of sfazéntg'
problem s$0lving performance from the analysis of "verbal data" that they
produce while solving pfob]ems.* There are:

A. An analysis of "tactical knowledge, including facts, procedures,
domain-specific know]edgé: and "16Ea1" heuristics;
8. An analysis of "control" knowledge and behavior, including

"strategic" or "executive" behavior and conscious matacognitiye

knowledge; ar

*There are, of course, M.y levels of analysis beyond those discussed here.

At the microscopic level, see Monsell's [1981] review of what he calls the
"nuts and bolts of cognition:" representations, nrocesses, and memory
mechanisms. At the very macroscopic level, there is the broad set cf social
cooperative behaviors within which "real” problem solving actions often

take place. These too are beyond the scope of this study. Here we shall -
focus on analyzing the protocols obtained from stud nts under relatively

jdeal laboratory situations.




\\ . - ~
C. An analysis‘of conscioué]y and uncons¢iously he]d‘belieﬁ)systems,
and the way that they "drive" proble# solving behavior.
Each of these cateaories is described below. As background, however, it

is important to characterize some of the defining properties of the first
w - *

<

two categorﬁes, "tactical" and "strategic" knowledge and decisions. Roughly,
the distinction is as follows. A strategic decision is a g]obéj choice,

one that in‘a substantive way affects the direction of a'problem solution

and the a]ltcéiion of resources (including time) to be used in a solution. "
These "control" decisions include selecting goals and deciding te pursue

or abandon particular (large-scale) courses of action. In short, they are

decisions about what to do in a solution. In contrast, tactical knowledge

and procedureﬁ are used to imblement the strategic decisions. They deal
]

with how to do what has been decided at thezétrategic level. Suppose, for
example, that a student working on a probfem decides to calculate the area
of a particular region, or to "lock at an easier related problem." If N
doing so will occupy, say, five or more of the allotted twenty minutes for
so]vﬁbg the problem, that decision is strategic: it, alone, may "make or
Bfeak“ the solution. On fhe other hand, the decisions regarding how to
implement that choice -- for example, whether to calculate the dimensions
of the region by trigonometry or analytic geometry, or which easier related
problem to explore -- are tactical. Note that in the Tatter case, the
implementation of a problem solving heufistic is considered a tactical
matter. This is non-standard.Some elaboration of the three categories follows.

A. On Tactical Knowledge

Lol
As suggested above, this category is quite broad. It includes a

number of subcategories covering the range of facts and nrocedures that

o




are available to the individual for implementation in a problem soluticn.

A characterization of many of the relevant issues is given by Simon in his
(1979) review article, "Information processing models of cognition."

Simon is primarily concerned with ps}cho]ogica] and Al simulations of expert
problem solving performénce*in Semantically rich domains. Headgscribes I
the key issues as follows. ?The central research questions are two: I
(a) how much knowledge does an expert or professional in the domain have
stored in LTM f]ong term memory], and (b) how is that knowledge organized
and accessed so that it can be brought to bear on specific problems?"

The focus here is somewhat different Since we are interested in analyzing -
students' performance to determine sources of both success and failure.

B;t many of the issues are the same.

-

; To begin with, one needs to know what domain-specific knowledge is
accessible to the problem solver. If a student is so]ving\a straightedge-
and-compass construction problem from plane Qeometry, for example, (see
protocols 1 and 2) does he or she know that the radius of a circle is per-
pendicular to the tangent line at the point of tangency? Whether the
student chooses to use that fact is another matter, to be discussed later.
But (obviously) a sciution that depends on that particular piece of
knowledge may evolve in radically different ways if the student does or
does not have it, and an evaluation of the solutior depends on an adequate
characterization of the knowledge base. Similar comments appnly to procedures
relevant for the solution of a problem. In the example just cited, does
the student know how to construct a perpendicular to a given line through

a given point? [f the student does not recall the construction, does he

or she know that it can be done, so that deriving the construction is a




possibility? Or must that too be discovered? These factors determine the .
potential Evoﬁution, and chﬁracterization{ of a p(oélem solving session.

After the question of the posession of factual and procedural knoﬁledge
comes the question of access to it. The student may know that similar triangles
have certaiq properites, for exampte, but will the student "see" or even
look tor similar triangles in a‘particular circumstance? Much *“expert"
performance in given domains is aktributed to_the posession of certain
problem solving schemata; this 15, indéed, the foundation of much Al research.
Questions of how to represent suZh “"compiled" knowledge‘are ooen. Among
the approaches to representation "particulariy worth describing [are]
therpredicate calculus, productién systems, semantic networks,and frames"
(Walker, 1981). A1l of these approaches. take as given that there are certain
regularit;es in experts' perceptions of problem situations, and of appropriate
behavior in them. This perspective is substantiated in various ways in
the literature, for example with experimental results that experts in
physics‘(th; Feltovich, and Glaser, 198X) and mathematics (Schoenfeld
and Herrmann, in-press) see througﬁ the "surface structure" of problems to‘
bérceive “deep structure" similarities and approach the problems accordingly.
. Moreover, students develop problem schemata that may or may not be consistent
with those of experts (Hinsley, Hayes, and Simon, 1977; Si.ver, 1979), and
these s~hemata change with experience (Schoenfeld and -Herrmann, in press).

For a characterization of the role of schemata in students' mathematical
problem solving performance, see Silver (in press). %

Therecis yet one more level of tactical behavior, that of implementing

certain problem solving heuristics. Examples of these will be seen in

protocols 1 and 2. [p a sense, these are nearly on a par with domain-
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specific schemata. For example, "it is g§efu1 to assume that one has the i

désired object and then to determine the properties it must have" is a <
heuristic typically valuable. in straightedge-and-compass constructions.

Its domain-sﬁecific impiementation {draw the figure and see what properties

it has) is quite similar to the implementation of domain-specific schemata,

such as "look for congruent trigngles when faced with a problem of this

nature." "Thesegheuristics, 1ike the other categories of knowledge described

above, fall into the category of tools. .otentially accessible to the problem

solver. An inventory of these tools provides a characterization of what W
the problem solver gﬂéﬁ;_be able to use in approaching a problem. Which

of these tools are selected or discarded, how such decisions are made, and

what the impact of such decisions on the problem solving process is, is

the next 1;ve1 of analysis. . hd

B. On "Control" Knowledge and Behavior

Two studengg, trying to determine the characteristics of the largest
triangle that can be inscribed in a given circle, guess that the equilateral
is the desired triangle and set out to calculate its area. They.get enmeshed
in calculations and, when the 20-minute videocassgtte reéording their
performance runs out of tape, are still calculating.. Asked what, good the
answer will do them, ®hey cam.ot say. This is an extreme (aTthough not .
atypical) example of what might be called an "executive" or "control"

malfunction: one bad decision, unmonitored and unck-2cked, dooms an entire

solution to failure. What the students actually kr ., and what they might

., have done given the opportunity to employ that knowledge, becomes a moot

question. In contrast an expert working on an unfamiliar problem generates

a dozen potential "wild goose chases,” but rejects all of them after
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brief consideration. ' With some clumsiness, he solves a problem the students

LI
-

ldid not -- although he began working<pn the problem with much less domain-

specific knowledge than the students "objecti;ely" had at their disposal.

It can be argued tpat the expert's success and the students' failure were

due respectivelyzfo the presence and absence of productive "metacognitive"
behaviors (Schoenfeld, in press). \ *

One of the early researchers to stress the importance of metacognition

as a major-facnor in cognitive performance,-Flavell (1976, p. 232) characterized

.t as follows:

I am engaging fn metacognition...if I notice that I am having more

trouble learning A than B; if it strikes me that I should double-

check C before accepting it as a fact...metacognition refers,

among other things, to the activz monitoring and consequent regu-

lation and organization of these processes to the cognitive objects

on which they bear.

For the most part, research in artificial inte]iigence has not dealt
directly with issues of metacognition as they are characterized here. This
is a subtle ppint, since many of the terms used in metacognition overlap
with those used in Al (see Brown's definition, below). But the usages difier.
Consider, for example, skilled problem solving in physics as modeled by
production systems (Larkin, McDermott, Simon, and Simon, 1980). The idea
is to model competent behavior in sufficient detail to be able to select
the"appropriate” behavior, a certainl' enormous task. But issues of the type

that humans encounter when working on such problems -- "“I've been doing

. this for five minutes and it doesn't seem to be getting me anywhere; should

[ perhaps take an entirely different perspective?” -- are not the focus of
such programs. They model behavior wherg?such problematic performance is
not a "problem."

] Likewise, there are difficult issues of strateéy selection in any

i
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reasonably sophisticated program. But the use, Yor example, of "conflict

res@lu®ion strategies" to determine precisely which production will "fire"

when the conditions for more than one production have been met, ﬁti]]

operates at a very different level than the one under consideration here.

Few programs deal with planning and monitoring at that level, although

there are many "planning" programs. One that does; and is worth singling

out for special notice, is the Hayes-Roths’ (1979) “opportunistic" modeﬂ}
Typical planning procedures call for leaving sequences of actions unspecified
until'one is constrained to specify their order, and checking for conflicts

\ ¢
when one does so. ~A standard example is Sacegdoti's (1977) task, "paint
X )

the ladderand the cei]ing:"' If one tries to proceed in that order, painting ,iﬁ,h,

the ladder precludes painting the ceiling. "Planning" means specifying
actions in efficient temporal order. Sacerdoti's "nets of actions hier-
archies" are designed to allow for fleshimg out plans in such a way that
such impasses are avoided. This whole perspective, however, assumes that
one works in domains where plans are there to be "fleshed out" -- certainly
not a universal condition in problem so]Ging. In contrast, the Hayes-Roths’
model is many-leveled and, if it is appropriate, shifts rapidly from con-
siderations at one level (do B before A, instead of the othér way around)

to another (revising the entire pian structure because of an unforseen

major ditficulty). This "opportunistic" model is highly structured, but
also highly data-driven. It is open to the. idea that one piece of new
information may cause one to see everything that came before in a new light,
and call for major revisions; that each piece of information, and the current
state(s) of affairs must be continually evaluated and acted upon. To my

knowledge, few other programs deal directly with this kind of issue.

10




" and much of that work has been developmental. See Brown /3978) for an
0

There are, however, sod! programs that specifically separaie what
have teen called "knowledge" and "tactics" here. For example, Bundy and
Welham (1981) describe a techniquz called meta-level inference, in which
~ “J
..inference is conducted at two levels Simultaneously...The object
level encodes knowledge about the facts of the domain...while the
-meta-level encodes control or strategig knowledge What are the
advantages of this technique?
-The separation of factual and control lnformatlon enhances the clarity
of the program and makes it more modular.
-A11 the power and flexibility of inference is available for contro]llng
search (p. 189).
This perspective is at least sympathetic to the separation of
"“tactics" and "strategies" described above. It is an alternative to the
production model system, where the decision-making resides in the nature
of the productions. "
There has recently been much discussion of metacognitive issues in
the psychological 1iterature."The bulk of such research has focused on
metamemory (one'; awareness of how he or she stores and retrieves information),
overview of the relevant literature. Research suggests that the use of
seif-requlation is a large component of older children's successful memory

performance (Brown and DeLoache, 1978). Speaking in general, Brown (1978)

describes?metaCOgnitive behaviors as "those attaibuted to the e&ecutive in
'

. many theories of human and machine intelligence: predicting, checking,"

monitoring, reality testing, and coordination and control of deliberute
attempts to solve prLb]ems. I believe that these are the basic character-
istics of thinking efficiently in a wide range of learning situations."
One can- hardly disagree. Moreover, the converge must be stressed. Just

as the presence of such behaviors may promote efficient problem solving,

the absence of them may doom probiem solvers to failure. Discussions of

) 11




¢ metacognition in broad praoblem soiving domains are rare. See Schoenfeld
(in press) for one attempt in that direction, and Silver (nete 2) for an
overview of the issue. s

C. On BeJief Systems

Ulric Neisser begins the article "General, Academic, and Artificial
Intelligence" (1976) with the following dialogue. It was taken from Cole,
Gay, Glick, and Sharp's (1971) study of cognition in a Liberian people
called the Kpelle. ‘ -

Experimenter: Flumo ard Yakpalo always dr1nk cane juice (rum) together.
Flumo is drinking cane Ju1ce ‘Is Vakpalo \dmnkmg cane juice?

Subject: Flumo and Yakpalo drink cane juice together but the time
Flumo was drinking the first one Yakpalo was not there on that

da \
Y \

- Experimenter: But I told you that Flumo and. Yakpalo always drink .
' cane juice together. One da’ Flumo was drinking carne Ju1ce
Was Yakpaion drinking cane juice that day?

Subject: The day Flumo was drinking the cane juice Yakpalo was
not there on that day.

Experimenter: What is the reason?

o

Subject: The reason is that Yakpalo went to his farm on that day .
and Flumo remaired n town that day (Cole et. al., 1971, pp 187-188). -

The point Neisser wishes to stress is fﬁgi the subject's answers

are intelligent, although they are not directly responsive. “fhe respondents
do not accept a ground rule that is virtually-automatic with us: ‘'base

your answer on the terms defined by the questioner.' People who go to
'school (in Kpelleland or <lsewhere) learn to work within the fixed limitations
of this gro?nd rule, because of the particular nature of school experience"
(p. 136). fhere are, Neisser argues, many dimensions to "iotelligence"
beyond the types of (academic) intelligence measured by IQ tests, the

(artificial) intélligence modeled in computer programs, and the "purely

ERIC 12
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cognitive" intelligence studied in psychological laboratories. Of course
anthropologists take that as given (see, e.g. Cole, et. al., 1971, or
Lave, 1980) and some cognitive scientists have urged that the range of
cognitive investigations be substantially broadened (e.g. Norman, 1979).
. The dialogue quoted above serves to make‘:nother point as well, one
that bears directly on cu}rent methodological issues. In\the dialogue we
see a clash of belief systems, where the participants seé tﬁg "ground rules"
for their exchange in rather different ways. Were the experimenter to
declare the subject "unintel]iéent" because he did not answer the questions
as.they were posed, we would argue that he missed the point: the responses
must be interpreted infz;;\ébntext of the social environment that generated
them, and not simply evaluuted as "pure cognitions." 'I shall argue here _
that the same point holds in many of our methodologically "clean" laboratory
studies, and that much of what we take to be "pure cognition" is often
shaped By a variety of subtle but poweriul factors. These factors may
inc1d&h the subject's response fﬁ the pressure of being recorded (resulting
in a ;eed to‘prOQuce something for the¢ nricrophone), his or her beliefs about
the nature of th; experimental setting (certaih methods are considered
"legitimate" for solving problems in a formal setting, others not), and the
-subject's beliefs about the nature of the discipline itself (is mathematical
proof usefulz for example, or a waste of time?). This network of beliefs
provides the context within which verbal data are produced, and an under-

standing of that context is essential for the accurate interpretation of

those data.
. [t should be clear that these comments are not meant as a hlanket

a postiori challenge to the accuracy of studies that have relied upon the

interpretation of verbal data.. It may well be that the issue of belief

13
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systems is moot in a number of contexts -- for example, in the analysis
of experts' verbal protocols for purposes of constructing artificial

intelligence programs. Experimenters tend to find their subiects among

their colleagues, who are generally familiar with and sympathetic to the
methodologies being, used for protocol collection. It is unlikely, there-
fore, that an unSus;:Eted difference in belief systems between experimenter
and subject will result in the misinterpretation of the verbal™data. The
situation may be quite different, however, when students are the source of
that data.and the task at hand is to interpret (in the large) what they
have produced. A miscellany of examples that document this point are

of ‘ered in section 4. Some less "impressive" but more typical protocols

‘are discussed, from the perspectives at all three levels, in the next section.

3. A discussion of three problem solving protocols

‘Appendix 1 gives a protocol obtained from two students working on
a straightedge-and-compass construction problem in plane geometry, recorded
the second day of a problem solving course. The students were friends,
and felt comfortable working with each other. They were both college freshmen,
and had both just completed a course in first-semester calculus. They had
taken the "standard* geometry courses in high school. Appendix 2 gives
a protocol recorded by the same pair of sgydents a month 1$ter, after the
intensive problem-solving course. (See Schoénfeld [1982] for a brief
description.) Geometric constructions were one of the topics discussed in

the course. The students had read chapter 1 of Pélya's Mathematical Discovery

(1962), and worked perhaps a dozen construction problems. Appendix 3

gives a protocol obtained from a professional mathematician who had not




“done" any plane geometry for a number of years. The protocols are them-
selves quite eloquent. The discussion is brief, serving to illustrate some
of the points made in section Ei Each of the comments made here needs to
be elaborated in far greater detail.

I would like to begin with a general discussion of students' behavior
on problems like the one giveﬁ'in appendix L. From my perspective, the

3

most telling information regarding their behavior is derived at the level

of belief systems: Students' actions are shaped by their beliefs about the

way that one solves geometric construction problems, and about the role

of "proof" in mathematical problem~solving. In my experience, the following
collection of beliefs is nearly universal amoﬁg the "typical” college
freshmen who have studied geometry in high school and studied at least

one semester of calculus:

a. One gains "insight" into a problem situation in geometry by
having a very accurate pictur: of it, :

tﬂr Verification is purely empirical. Hypotheses about constructions
are tested by performing the indicated constructions. If the
construction appears to work, it is correct.

"Proof" is irrelevant to discovery and verification. If absolutely
necessary (i.e. the teacher asks for it) one can probably prove
that constructions work. But this is simp’y "playing by the

rules of the game," verifying formally what one already knows
(empirically) to be correct.

Candidates for solutions are tested seriatum. Hypothesis 1 is
tested until it is accepted or rejected, then hypothesis 2, and
so on. Simple (intuitively apprehensible) hypotheses are tested
first, i
If one accepts these as the "ground rules" for constructions, one
can predict stereotypical perfqrmance. Consider the problem given in protocol
1: Construct the circle that is tangent to the two lines in the figure below,

and has the point P as its point of tangency to one of them.




Among the features in the problem likely to catch the student's
attention are:

F1: the radius of the desired c1rc1e is perpendicular to the top
line at P.

F2: by some sort of perceived symmetry, the point of tangency on
the bottom line is probably directly opposite P.

- F3: any *reasonable looking" line segment joining the top and bottom
lines, and passing through P, is likely to be the diameter of
the given circle.

F4: the center of thq circle seems to be halfway betﬁeen the two
lines.

Combining F1 and F2 respectively with F3, we obtain the two "intuitively

apprehensible" hypotheses regarding the construction:

H1. The line segment between the two lines, and perpendicular to
the top line at™P, is the diameter of the desired circle. The
center of the circle is the midpoint of that line.

H2. The line segment between P and its "opposite,” P'; is the diameter
of the desired circle.

The two hypotheses that are less intuitiveiy apprehensible (Hut gorrect)
are combinations of F1 and F2, and F1 and F4, respectively.

H3. The center of the circle lies on the intersection of the
perpendiculars to P and its opposite, P'.

H4. The center of the circle liés or. the intersection of the
perpendicular to P and the bisector of the angle made by the
two lines.

This set of hvpotheses, combined with the four beliefs described

above, allows for the following general predictions regarding the evolution
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of students' solutions to this problem. If F1 or F2 is first heeded, that
will give rise to.Hl or H2, which will be "tested" with straightedge and
Dcompass. When that one fails, the other (if che appropriate feature was
noticed) will be tested and rejected in the same way. Only after the
"apprehensible” hypotheses that were perceived have been tried will either
of H3 or H4 be tried, if those are seen as possibilities. If they are
not, the students will report being "stuck." If they are tried, and seem
to work, the students will report having succeeded. Although they may
feel uncomfortable about not being able to explain why it works, they will
not doubt thit it does. Whether they hawe been successful or nof, half
of theirutime will have been spent with straightedge and compass in hand.
No active mathematical derivations (proof) will have.been rndertaken.

At this coarse level of detail, the predictions made above are
remarkably robust. I could offer any number of ﬁrotoco]s in which the
students slavishly adhgre to the outline just described. With.cne or two
pairs of students and the same methodology,* the reader can generate his
or her own. Instead I have chosen examine a more complex protocol,
one that is much richer than most of the stereotypical ones. This protocol
is better than average (!)-in a number of ways. It is relatively free of
the types of pathologies descrited in section 4. The students-work.well

together, and concentrate on the problem for the full twentynminutes allotted
for it. Most importantly, these students demonstrate much better awareness

and control of their own problem solving processes than most (see in contrast

*The protocols were obtained by recording students in pairs. They were asked
to work together as a team, and instructed not to "explain" what they were
doing for the recorder. The underlying rationale for this methodology is
given in note 1.
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protocols 1 and 2 in Schoenfeld, im press). Theig.strategic and metacognitive
behaviors work reasonably well -- but working wilhin the context generated

by the belie€ systems, these behaviors can only work to limited effect.

The following is a brief running cammentary. A

T begins by sketching in the desired circle (Item 1), and there is
a clear attempt to make sure that she and L understand the problem statement.
This deliberateness in guaranteeing that they "understand" is respectab];
"control" beﬁavior, ip contrast to the impulsive actions taken by many
students in similar circumstances.

By item 4, the sketched-in circle is erased: it was "legitimate"
as an aid to understanding, but (according to their belief systems) does
not belong in the figure as a pfbper part of working the problem. In
item 5 feature F3 and the associated conjecture are introduced.

Here the dia]ogug is unusual in two ways. First, the stué;nts do
not attend to F2, and are thus deprived of the opportunity to verify their
conjecture empirically. Second, T actually raises plausible objections
to the conjecture (items £ and 8), and a meta-level dialogue ensues.

This is certainly respectable executive behavior. But then the students
spend 2% minutes with straightedge and compass teving to resolve the ‘
dilemma.

Their construction “looks =ight" (item 11) but they again recognize
that this one example does not guarantee validity in ygeneral. There is
an attempt to exploit a related problem in items 14-24, again indicating
some sophistication. Then five minutes (items 25-41) are spent in empirical
work, resulting (finally) in the rejection of the initial hypothecis.

The rejection, is, however, substantiated theoréfica]ly (the tangents to
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the endpoints of a diameter must be parallel).
In item 43 comes the belated recognition of F1, which again is
combined with F3 to generate Hl. The enthusiastic jump into implementation
(items 45-50) may be in part a result of desperation, as well as the

declaration that using a ruler to draw a right angle is "legal" (items ,

62-63). Yet items 56-57 and 61-63 say a great deal about students' perceptions

of the nature of "being mathematical." Contrast ‘his with protocol 3.
Conjecture H1 is again evaluated empirically, and the control

functions are again relegated to performing post mortems: e.g. items -
80-83, There is again a reference to the related problem (item 89),

ﬁ,and -- as if we need any more evidence -- an indication that their approach
to that problem was also purely empirical.* The solution degenerates
from there. [ wish to stress here that (a) the students did, as determined
later, have an adequate factual knowledge to be able to solve the problem,

-

and (b) their meta-level behaviors, as indicated in ite;;-ln 6-8, 12,
14, 46-41, 80-83 and 89, are ﬁenerally most respectable. The major
"difficulty" is the ve;y approéch they take. .

,- In contrast'let us look briefly at protocol 3, whére a mathema-
tician works on the problem the students alluded to #n item 14. It is,
essentially, the samé problem. A number of factors may contribute to the
mathematician's success: better control behavior, more reliable recall

of relevant facts, and (not to be underestimated) more confidence. But

most importart is the basic approach that the mathematician takes: he

~

*That comment is important in the followina sense. It indicates that their
behavior in this experimental environment is similar to their behavior when

. working- on the problems in their own rooms. In view of some of the examples
in section 4, this is non-trivial.
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derives the infcrmation he neads through the use of preof-like procedures.
Note that he is looking for congruence ("there've gt to be congruent
triangles in here.") long before there is a conjecture to "verify."

Rather than being an afterthought or a method of verification, proof is

a means of discovery for him.* The non-empirical nature of his approach .

is made emphatically clear the last line of the protocols, where performing
the construction fs the operaEion that' is relegated to the status of an
afterthought. He is certain the construction will work. f

In protocol 2 we see an indication ct the "intermediate" status
of the students after a month of problem-solving instruction. The course
focused on heuristic and executive probiem solving strategies. Some of
these are evident in the protocol; some were present before the course.
Proof was often discussed in ;he course, but in the usual way: “Yes it
seems that way, but how d6 you know it will always be true?"

Objectively the students' behavior in this protocol compares favorably
with their behavior in protocol 1, along all three of the dimensions
outlined in section 2. Their recall of relevant facts (e.g. that the radius
of a circle is perpendicular to any tangent at the point of tangency,
item 69) is more assured, and called into play at appropriate times.
Domain-specific procedural knowledge is also more accurate, and they are
confident about their abilities to perform the appropriate constructions.
However, these were not disabling factors in protocol 1 and only tell a

small part of the story.

*[t was Polya, [ believe, who defined geometry as the art of "right rgasonjng
on wrong figures" -- clearly the mathematician's perspective, and antithetical
to the students' belief systems.




19

There is a telling difference in their performance at the heuristic
level. A few years ago that difference'would have tempted me to attribute
their success to the heuristics that they had learned. They draw a picture
of the goal state to determine what properties it has (items 14ff.),
look at extreme cases (items 34-46), consider only obtaining partial

2

fulfillment of the conditions {item 52), and so on. The first of these

heuristics alone might have guaranteed Success in problem 1. However, ‘
there is a good deal “more. ‘

Their strateg1c (meta-level) behavior is quite good, as it was in
protocol 1. They mon1tor and assess both the state of their knowledge
and the state of the solu;jon with some regularity (e.g. item 71), and avoid
the kinds of "wild goose chases" that often guarantee fijlure for less )
sophisticated students. Here, in fact, control behaviors become a positive
force in the evolution of the solution.< At the very beg}nning (item 20),

empiricism is put in its place. Time constraints are taken into account:

N in item 63 the expedient of using the markings on a ruler is acknowledged .
s "illegal" but used anyway -- they could bisect the line if they had
to. They know(that they are supposed to prove that their constructions . ,ﬁ
"work ," and predict early on that they can "do it with similar triangles N .
and thiﬁés" (item 72). In this context proof is still regarded as a means .
of verification, to be used after one is convinced he or she knows the
arswer. The convincing comes by means of good sketches and "qut feeling,"

tswever, not by perfect constructions. "Proof by construction" is clearly

put to rest in item 78. e T —- - -
It is tempting, then, to argue that the control strategies serve

as enabling factors, allowing the ctudents to employ their tactical




knowledge with some success. Certainly the absence of efficient control
behaviors would have sabotaged their atiempts (Schoenfeld, in press). But, the
di'scussion in the last paragraph indicates *that the control behaviors

were 6;erating within the context of new beliefs regarding proof and empiricism.
Had those belief systems not changed, the control strategies could not have

operated the way that they did. One can conjecture that without this change *

in belief systems their behavior would still resemble their behavior in
protocol 1 -- even if, say, they had been given a review of basic facts
and procedures, and taken a course that stressed meta-level prot.lem solving
skills.

This brief discussion serves merely to raise a host of Juestions-
It is not meant to minimize the ‘importance of tactical or st;éfegic knowliedge,
but to indicate that a third éﬁd often hidden level of analysis must

also be taken into account when one analvzas problem solving béhavior.

As indicated in section 2C, there may -'e11 be contexts in which one level

of behavior predominates: the tactical in Al "expert" simulations, the

strategic in "wild goose chase" solutions, and belief systems in protocol
1. Even in this "purely cognitive" kind of investigation, other than pure
cognitions must be tcken into account. But this is only the beginning,

as the next section indicates.

4. The Matrix Within Which Pure Cognition Resides

Whilg the previous section raises some questions ahout the inter-
pretation of verbal data, it does not at all challenge their legitimacy.
That is, the discussion was predicated on the assumptions that (1) protocols

like those in appendices 1 through 3 provide an accurate reflection of

w3
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the cognitions and behaviors of the people who produced them, and (2) in
turn, models of behavior based on such protocols (for example, the model
outlined at the beginning of section 3) thus reflect the subjects' behavior
with some accuracy. -In the case of the particular protocols discussed, [
am reasonably confident that thi, is the case. In general, I am much less
sanguine about the "legitimacy" of verbal data, even of some data obtained
in methadologically "clean" settings.

Of course this issue is not new. Methodological battles were waged,
for example, oyer the legitimacy of introspection as a means of character- -
izing coqnitive processes. "We have also long known, both from experiments
and everyday experience, how subjects' behaviors are affected by expectation,
context, and measurement procedures. The notion that there can be 'neutral’
methods for gathering data has been refuted decisively"” (Ericsson.and Simon,
1981, p. 17). That point granted, the question then becomes one ©of the
intrusiveness bf various experimental methods. For example, it is generally
acknowledged that asking subjects to analyze their problem solving processes
while they work on problems does have measurable effects on performance.
However, the current literature indicates that sufficiently "bland" instruc-
tions may not have a measurable effect on data gathered in the laboratory:
subjects who are instructed simply to "talk out loud" as they solve problems,
and not to interpret or explain, will yield essentially the same performance

that they would have if they were not speaking out loud (Ericcson and Simon,

~1980).

There is, in that last sentenae, a very subtle but powerful disclaimer.

It is revealed by the following.* In 1978 I made a series of recordings

*Other aspects of this issue, and the complete protocol from which the
excerpts below are taken, are given in Note 1. .

v
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of students solving the following problem "out loud."
Estimate, as accurately as you can, how many cells might be in an
average-sized adult human body. What is a reasonable upper estimate?
A reasonable lower estimate? How much faith do you have in your
figures?

Al

. The ~roblem is a particular favorite of mine, an excellent task

to use for examining cognitive strategies and memory searches. It can,

actually, be solved without any special technical information. One wants
good estimates for "average human body volume" and "average cell voTlume,"
under the assumption that there are such things. Since there will be a
huge amount of guesswork on cell volume, body volume can be roughly approx-
. imated: a box with dimensions 6' x 6" x 18" will be close enough (probably
within a factor of two) to the actual average.* With regard to cell size,
.we can see the markings of a ruler down to 1/32" so perhaps 1/50" is a Tower
limit to what we can see clearly without "help." Cells were discovered with
early microscopes, which must have been greater than 10 power (magnifying

g]assés probably give about 5 power) and less than i00 power. So a "canonical

cel1" (say a cube) must be between 1/500" and 1/5000" 6n a side. The rest

js arithmetic.

My first set of subjects weremjunior and senior college mathematics
majors. The students knew me rgasonab]y well and were familiar with my
work. Some had dqpe protocol recording themselves, as parts of senior
projects. I took all of the appropriate precautions to set them at ease
for the recording sessions, and recorded them working on the problenr one

at a time. See appendix 1 of Note 1 for a representative protocol.

*A more accurate figure can be obtained by taking an estimate of average

body weight (say 150 pounds) and converting it to volume. Since the human

body (barely) floats, its density is close to 1. However, the point is that
there is no need to be so precise: this degree of specificity is an indulgence.
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v

compute. After br1ef conSIderatlon they would decide to compute body vo]ume

f1rst, and wou]d then beg1n extraordinarily detailed computations. Genera]]y

of geometric solids\whcse volume was rigorously calculated. For example:
and now a leg\..a cone might be more.appropriate. And the base of
my leg is apphoximately 6 or 7 inches in diameter so you would have
- (3%)2 x = and the he1ght would be...what is my inseam size, about
32 or 34. So Ypu've got to have a 34 and it's a cone so you've got
to multiply it one third.
. .

In sharp contras¥ to their meticulous calculations of body volumes;
the students' estimatesf&( cell-size were (1) crude and (2) not accompanied
by est1mates of how accurdte they m1ght be For example: "All right, I
know I can see 1/16 of an inch on a ruler, $o say a cell is 1/130 of an inch
on a side.” The students spent the great majority of their time making

A Y
estimates of body volume. These results, ghough puzzling, were remarkably
consistent. \

Later in thé year | beg@n making recordings wiéh pairs of ;tudents .
solving prgblems<£ogethér. I chorded perhaps two dozen pairs of students,
who solved the same problem afte receiving near]y jdentical instructions.

Not once d1d a pair of students dEmonstrate the kind of nehav1qy I have just
described. With hindsight, it became apparent that the beh§v1or in the -
single-student protocols was not a reflection of their “typical® cognitions.
Rather, their behavior was patho]og{cal -~ and the pathology was induced

by the expérimental setting itself. This problem upset the students,
becgdse they had no idea of how to approach it. Feeling "on tnial"‘to

produce something for a méthematics professor, they responded to the pressure

by dojng the only mathematics they could think of under the circumstances:
. . -

-

J
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comouting volumes of solids. Tht§4 at least, was demonstrating mathematicai

behavior! (The students in two-person- protocols manage to dissipate the

envikonmentai pressure between themseives, and thus to avoid extreme mani- .

-~

festatﬁons of pathology.)

l have dwelled on this example at length because it 1nd1cates the

o

subtle dvfficuities inherent in protocol anaiysis when R discovered the

sociai causes that I now belieye explain the students behavior, I was on

*

the verge of writing a paper describing (a) their surprising inability to .

F
i make "order of magni tude" ca]cuiations, and (b) their poor allocation of

’ iStrategic resources in prohlem soIVing In hindsigh% this “pureiy cognitive“
explanation of théir verbal data would make no more sense than "obJectiveiy
assigning a iow IQ score to the eriian native quoted in section 2C on
the basis of his responses to the experimenter's questions. We need not

tra;ei to Liberia; clashes in belief systems between exﬂehimenter ard subject

-

occur here in our own iaboratories
e

Since the iength of this paper has aiready grown out of hand, the

rest of the discussion will be very brief. My 1ntention is to sketch out

i A .
some of the dimensions of the matrix within which. "pure cognition" resides. Q\
Afbroad outline of it, given in the form-of a mathematical cross product,

is drven below.

KNOWLEDGE, BELIEF +.
{SETTING} X { AND VALUE (K8V) } % { DEGREE CF AWARENESS}}

SYSTEMS
d Y
\ Iddividuai (Seif) KBV about Self Unawaré

Cognitive Structures: i| KBV about facts Aware but
access to fact : 4 >< -{ KBV about proc:gures non-reflective
to, procedores § ' KBV about strategies ;x< ]

| i ocally aware and
to strategies <5 \KBV about task 17, | reflective (monitor- | |
Tapk KBV about environment in_and assessment)

\ En@ironment ) . ; Reflexive Abstracti®n
Q -

« , B . /
. ‘ . - -=f*jure 1-- 286 o
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The column on the left of the figure represen%s an "objective"
description o f the problem setting, the product of the two columns on
the wight the set of "driving forces" that operate in and on the setting.
We take one column at a time. n

The first column is familiar. In the best of circumstances, this is
all that one need be co&cerned with. "Task variables" can be described,'
objectively, and the environment as well. "Cognitive sfructures" are the
focus of customary laboéatqry investigations: facts, procedures, and
strategies. Under the assumptidn that laboratory investigations provide
an accurate reflection of prob]em‘solving behavior, the.;pvestigator's

focus can be on the overt manifestations of these cognitive structures.

- 0]
in this context the issue is more délicate: one must (somehow) ascertain

the set of facts, procedures, and Strategies that are potentially accessihle

to the problemssolver.

~ ’ :
The second column deals with belief systems. Some idggs about belief

systams have reached the level of folk wisdom: for exampie, the notion
that, through perseve?aﬁce, a person wili)turn the bﬁ]ief in‘his or her

" uitimate sucifss into se]f-fu]fi]]fgg‘prophecy.’ A stgpent's be]ief'in his
or her u}témate failure»wil]\affect the tqual data one obtainsA;;\hell:
? have videotapes of siudents'who never serioué]y engaged themselves with-
a p?qb]em,’iﬁ,n;dgr to later rationalize what they s4w as their inevitable
faildré. (This has been admit*2d to me, long after taping, by more than
one student.) Beliefs about the very nature of facts and procedures will
determine students’ perform%nce. ‘The student who believes that mathematical
knowledge must be remembered will be ;tymied when a particular oﬁjéct.(say

-‘a procedure for éonstructing a line para]le] to a given line) is forgotten,

v

&

a1 |

-
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while another who believes that the procedure can be derived will éct
rather dif%;rently. The effects or strategic and task-related belizfs
(one approaches constructions empirically, etc.) were considered in section 3.
And the effect of beliefs about the environment (one must produce mathematics
when one is solving problems for a mathematics professor!) were the causes
of the pathological eEZmp]es that began this saction. These examples barely
scratch the surface, of course. But the point is that if we wish to describe
behavior as it occurs, we must Worrx about such things. ‘

The third column reflects the degree to which the individua] is
aware of his or her kﬁzwledge and belief systems. This column is important o
“for the fé]TDwing reason: on; can only act upon those beliefs that he
is -aware of. As long as g;e students in protocol 1 believed that discovery

and proof in geometry are purely empirical, they would continue to approach

-problems that way. Once they were made aware Of that bclief (and that other

possibilities exist) they could change their behavior. Similarly, students

—

who are aware that they &an monitor and assess their own cognitive strategies
]

r

can, -then, serve as active. agents in their own growth. Making students
aware of thei} own (and competing) beliefs may be one of the most valuable

N
functions we can perform’as educatggf.

5. ‘Discussion

This paper covered a huge amount of territory, much of it at hreakneck

speed. First, let me highlight some of the methodological issues.

P

A. There are at leaststhree qualitatively different levels at which

one can analyze verbal data. Depending on circumstances, one level or

[

another may provide the "key" to understanding what happens in a given

P




protocol. Examples of primarily "tact%ca]" protocols are thosefgathered

from experts working on routine tasks in familiar domains, e.g.{those in
Larkin, McDermott, Simon, and Simon (1980). Examples of primarily "strategic"
or executive protocols are those where students go off on "wild goose chases,"
e.g. those in Schoenfeld (in press). An example where belief systems provide
the primary level of analysis (protocol 1) was discussed i; gection 3.

A comprehensive discussion of verbal data requires the consideration of

all three levels.*

B. Belief systems can be modeled. Such models exist, for example,
in ‘decisicn theory. Kahneman and Tversky's (1979) prospect theory includes
computational models of decision-making that take into account subjects'
be]iéf systems. The.gain or loss of the same dollar amount (say $1000)
are not viewed in the same subjective terms: generally, loss is more
traumatic. Similarly, winning $2000 may not have twice the emotional value
of winning $1000. Prospect theory assigné to each of the dollar amounts
above its subjective value (say, for example, -1200 for the loss of $1000,
+800 for the gain of $1000, and +14ig for the gain of $2000). Thgse figuréé
are used to make computations of "subjective expected utility," whict'ﬁzvg‘
reasonably good predictive power.

< I believe that rigorous models éharacterizing the effects cf belief
s}stems on problem solving behavior can be made, and that these modeis

will have both ecological validity and pregictive power. The discussion

*This 1s oversimplified, of course. Belief systems may have served to
"expldin" mest of protocol 1, but protocol 2 provided a (perhaps more
typical) example of the dynamic interplay among the different levels.

The "real" question, as I see it, is: what accounts for the differences

in problem solving performance between the two tapes? This question.Jis

of nearly overwhelming complexity. This framework offers, I hope, a first |
step towards unraveling it. T !
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of “typical" student behavior on geometry constructions that began section
3 is, in essence, a prospectus for chat kind of model.

C. Great care must be taken in the interpretétion of verbal data.
Tt may well be true that, with sufficiently bland instructions, students’

performance in the laboratory may not be measurably changed by speaking

"out loud" as they solve problems. But the behavior that they produce

may ‘be completely abnormal -- even if it is consistent eﬁough to model with
great accuracy: Under such circumstances, we may‘simp]y be modeling abnormal ’
pathology in the name of cognition. Again, the issue may be moot where
the belief systems of the people on both sides of the microphone ;o{nc{de
(with experts generating protocols for their colleagues' simulations).

But the more alien the settinq.for the subject; the more likely it is that
the data will ?e "driven" by covert béliefs that skew its meaning (see

Note 1).

The second set of issues deals with apﬁ]ications of cognitive research
to educational research and development. Here the potential for the
misunderstanding and misapp]icatfon of basic cognitive research is enormous.

There are dangef§ in adapting both the methods and results of much current

research to educational settings.

= . D. Researchers in education increasingly rely on “verbal methods”
such as(protocol ana]}sis for their research,‘using for their analyses
the -successful analytical tools and perspectives derived from Al and
information processing research. Yet the goals and the contexts of such
studies can be substantially differéntl In much AI work the goal is to

model idealized, purely cognitive behavior. Both the subjects and the tasks

J are selected to facilitate this kind of modgling, and a "purely cognitive"

RIC f 30
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approach appears to be sufficient. In educational work, characterizing
"jdealized" intellectual behavior is only one component of a much larger
enterprise. If one wishes to affect students' behavior, one must be able

to describe it accurately and to characterize what causes it -- and it

o -

‘would appear that belief systems are a major driving force in stdﬁents'
behavior. Any framework that ignores them -- regardless of how accurate
it is in other contexts -- can result in the severe_distortion and misinter-
pretation of_the data.

E. fhe apblications of cognitive research to schooling must take
into account the context in which cognitions are embedded. The brief
discussion of figure 1 in secfﬁon 4 is an attempt to sketch out tﬂe range
of issues that must be taken into actount if our increasing knowledge
about cognition is to be employed usefully in the schools. There are any

. number of examples regarding that coﬁtext. Jean Lave (Note 3) reports
that people's use of arithmetic in everyday situations does not correlafe
well with their scores on paper-and-pencil tests of it. Dick Lesh (Note
4) repﬁrts that students' problem solving behavior when dealing with "real”
problems bears little or no relation to their "academic" problem solving
behavior. Neisser (%976) argues the point in general. .

v I think that a broad attempt to deal with cognition in its "real
world" context can have a strong positive effect on schooling. The three
dimensions that appear most critical to me are represented.in the three
columns of figure 1. It goes without saying that knowledge of the basic
facts, procedures, and strategies (the first column) is essential. Most
of this paper has argued for the importance'of the second column, and I

will not labor the point further. The third, "awareness," has only

ERIC , 3l
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been alluded to, and is worth discussing a bit. I would assume that the
purpose of schooling is to prepare students for 1ife after school: to

help them develop the mechanisms they will use throughout life to adapt

to new-situations. Yet virtually all of the college fresh@eﬁ in my probJem
solving courses enter the course completé]y unaware of the fact that the;
can observe, evaluate, and change their own cognitive behavior! It is as
if their minds are autonomous, independently functioning entities, Q&th

the  students as passive (oftimes frustrated) spectators. So long as this
remains the case, the §tudents are slaves to their own behavior. Once this
belief, or any other, is made conscious; itocan be acted upon and changed.
Providing students with the potential for this kind of adaptation may be

the greatest service we can render them. )
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Appendlx 1 Protocol 1

Problem worked the first week of 1nstruct10n, by students. L and T (college
freshmen who had completed.one semester of calculus).

You are given two intersecting straight lines, and a point P marked, on
one of them, as in the figure below. Show how to construct, using a straight-
edge and compass, a circle which is tangent to both lines and has the point
P as its point of tangency to on% of the lines.

1. T: . reads the problem. Oh, ok. What you want to do is S
that (sketches in a circle by hand), basically.
Ok, how?
2. L: Now, ok, we have to find the center.
4. L: Of the circle. We are trying to find the circle, cirece)

right? If-we did that then we could...oh, and the
radius of course.

5. T: A1l right, well we know the point of tangency on

. this line is going to be right here (points to P).
What we need to find is where the point of tangency
is going to be on this other lime, I think. So we
can find the diameter in which case we can find
. the center.

6. L: Is that...that's not necessarily true, is it? Is
it true that if you have a circle like that (see
right), and then that (points with finger) would
be the diameter. You know what I mean? Or maybe
you couldn't have it that way...

7. T:  The circle has like...no, you don't have a diameter [
running up through there. No, we have to find the
diameter from the point of tangency on this line
to %he point of tangency on this line, wherever
it lies.

8. L: No, wait: the point of tangency, the point of tangency
here would the line connecting those two points be
the d1ameter7 It seems that you could maybe construct
one where it wouldn't always work.

9. T: Wait, but see, I don' ﬁ know, we're not drawing it - —-
(i.e. sketching 1t) the right way,




Wait, do you want to try drawing it (with the
compass) and see...

(2% minutes elapse in empirical work. 'A’reasonably
accurate drawing results.)

So, maybe it looks like it might be opposite, see?

But would that be true for any triaMgle? Oh, but
see. ..

['m confused. I don't think it would be. Let's say
you had your radius over here and yoy went like that.
I don't think that could be...ok, I think there could
be, there is a possibility.

Remember on the first problem sheet we had.to inscribe
a circle on a triangle? Could you do that? I
couldn't. B

I couldn't either.

We're in pretty sad shape. Bufﬂgust say we draw a
triangle even though we don't know how to do it.
We will draw a triangle anyway.'’

So how's that going to help?

Because we don't have to inscribe it actually. We
just have to have something to help us (visualize
it). goraws an apparently arbitrary third line.)

Al thoush. ..

T

4
Does that do anything?

Not at this point, I don't think. Maybe further along
if we need a-radius we could...but [ don't think it
does anything now.

We've gotta do something. With what we have, you
just can't do it, right? We don't have enough lines
or whatever there.

Ok, we need a center and a radius. So how do we
locate the center? It has to do with, I think it has
something to do with, could we do this?

No, maybe you have an equilateral triangle.
1)

Wait, let me just try this. (Begins to expand compass.)

What are you doing?

Don't you want to see if it'é true? If you have a




29.

¢30.

36.
37.

39.
40.
41.
42.
43.

-

: wBut rieither is it a tangent.

—“ - A4

\

center way out there, because it may not co ect
Don't you see? (sketch at r1ght)

I'm pretty sure it won't. I don't think 1t\ i1,
But if it won't make a circle, then that means this
circle is ours (points back to earlier sketch).

The one we have to deal with. You know what I mean?

[ see what you mean. Like try to draw a circle out

here like going through this point. See, it won't.

It won't work.because in order for it to work... f
(another few minutes with the compass. The dialogue

has to do with‘their attempts to draw a very accurate .
figure, so that they can draw conclusions from jt.) '

Ok so that's what we're doing, right? We don't

‘. need it that big.

Yeah, wait, you‘couldn t because it is going to go
through (the point P) I think it does have to
be, right..

I f we ‘have these two points that's definitely our
diameter going through i%. Now we can draw...

#

That's just what I was going to say. Can we draw _
these two lines so that...see you can't for in order
for this to cut through this, it's too shallow, it's
shallow...

Ok as soon as this...ok, make this a tangent.

In order for this to be..
be tangent to...

~
.do you think it's going tb

No because, because we know this one is not going to...
I want to see if like we make this a tangent. You

see what I mean? But that doesn't look like a

diameter either. Well, I don't think that's it.

Of course it couldn't be because a diameter is going
to be when it's parallel, isn't it?

That's the diameter.

Ok. That's not going to help us (laughs).
You figured that out.

Right.

ban wé construct one parallel to it? (Looks at
original diagram.) But then we still don't know

33




44,

45.
46.
47.

49.
50.
51.

52:
53.

54.
55.
 56.

57..
58.¥
59.
60.
6i.

62.
63.

T:
draw a perpendicular line to thys and just call that’
the diameter it will work from there. And then it
should touch if it's perpendicular. It should be
tangent at one point, shouldn't \f?

L: Right! . \

T: Shouldn't it? . \

L: Yes! ’ \

. \

T: Won't it? \

L: Yes! -

T: Ok, draw a perpendicular, oh good.

L: Does one know how to do that with a compass7 Do
you? \

T: This is a right angle, so...(uses the cdrner of the

‘ruler).’ \
\

L: Ok, that's perpendicular, ok. Doesn't lopk it but

it is. ‘
. . \

T: That's our diameter. * \

L: So if we say this?is the point of tangency.\.

T: So we can bisect this to find the center, pight?
So-call it centerC. Maybe we should have dqne
our steps. \ : ‘

L: That's all -being uqmathematiéal, completely d§§or§anized.

T: Ok, back to the drawing board. ‘

L: I don't know how. 1 ;

T: Me eitheri” ﬁ \

L: Ok, if we just use the ruler with the little numqers

" on it here.

T: Or isn't that legal?

Sure it's legal (does by hand).

' ' 38
the center. \ .

(pause) . . \

Coﬁid we just draw a perpendicular?

Ye , that's what I was just going to say. If we

40
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Now - we have the rad1us, now we just draw it.

Uh, oh, do we knnw we have to see if this is going
to work I know! Ugg.
'

My quess is, I think it's not. , But we'l] try.

I would think, though, it would have-tn, though,
wouldn't it?

No. .
The radius is shorter as...

[ don't know. Well, 14t's see what happens when it
goes through there. . ,

Somehow it doesn't lTook perpendicular, though,
doesn't it?

See this line isn't straight relative to the page
which is why it doesn't look perpendicular.

Oh right, but... ‘
It looks good. Now we can tell something.

Maybe, I chink this tells us the point of tangency
has to be way more (points to right]. I think.

(Three minutes of constructions)

What circle was this one? Yup, that was a right .
angle. Oh, darn it.

Ok so the radius has got to e smaller because it's
going outside of this line. So it's got to be a -
little smaller and the center has got to be up and

" over, like here..

;
But how-du we. ' ‘/

“ut I don't know how to do that, without do1ng it
unt}g it comes out r1ght

Yeah.
(pause and evaluztion of prior failure)

: That was dumb. By Going that we were saying that
.no matter what th's 1line looked like, then it looked

like this, if we dropped a perpend1cu1ar we could

do it and we could get the diameter for that angle

and still expect to do it. You know what I mean?

Yeah, I don't think it will work for an} angle though.
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I know, that's what I mean.
Yeah, well, we goofed agaiﬁ.
(pause) N
84. T: Well the only thing I can think of to do is what we
v did in class the other...well, what we were supposed
to do, you knaw. The triangle thing, trying to
inscribe-it.
85. L: Wait, we know...
’ 86. T: I know, that's the problem. We don't know how to ‘
\ do it.
87. L: I don't know what to dg,//’ -
88. T: Alright, we are going to have to try something else. J
89. L: Alright, what are we, what were those sort of things
. we tried with triangle one? Cause maybe we could...
do the same thing with, on a smaller scale. .

. 90. T: I got absolutely nowhere.
‘ 91. L: Yeah. \
p \ . \ .
92. T: But I was trying to‘do things like, bisect this side.

93. L: Yeah, I did that.

94. T: It didn't work. \ ‘\Six

A\

¢ 95. L: VYeah, let's see what we have here. We want to
inscribe a circle in this right triangle.

96. T: Why do you want to do a right triangle?

97. L: I don't know. It just is one. Oh, I blew it now,
no. The ends don't matter because we're, you see,
we want to inscribe it. We're putting in the extra
conditions, because it doesn't have to touch this
line. It doesn't have to...oh, I don't know.

98. T: I don't think that will get us anywhere.
99. A: 0k, gdys‘,

100. Both: We give up.
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, Appendix 2: Protocol 2
Problem worked after problem solving course.
The comﬁon internal tangent to two circles is the line which

is tangent to both, but has one circle on each "side" of it, as
in the pictqu to the right.

. \ R
You are given three points A, B, and C as below. Using straightedge and
eompass, you wish to construct two circles which have the same radius, with
centers A and B respectively, such that the common internal ‘tangent to both
circles passes through the point C. How do you do it? Justify.

. | R

o

4

.C

e
1. T: Reaas problem.

2. L: Wait, I have to read this. Ummm.

i

3. T: What we want basically is this, circles and a line
something like this that is going to pass through
here (makes sketch). _

4. L: Right. Ummm.

5. T: Like that. /

6. L: Except they have...where is it...have the same radius...

7. T: Uh huh _ B

8. L: ...so it isn't going to look like that. ;
9. T: Right. ‘ )

10. L: But, ok. Wait, ['ve got to think for a second.
(erasing to draw again.)

11. L: Ok, wouldn't it...no, maybe not.

12. T: What?

13. L: No, that was dumb. Let me think. . -

(pause)




16.

17.

18.

19.
20.

21.

22.
23.

24.
25.

26.
27.
- 28.
29.

3.
32.
33,
3.

—

—

—- - -

—

-

.. {rereads problem) Why don't we first justrtry to..

- : ' 42

Umm...shonid we try and draw it maybe, how it would
be to see .hat the relationship of C is to the two "

You know how I am with compasses...go ahead.

circles, since that's not!drawn. i
: Right. N @
- - ) \\
‘ ~i

Nell,'how big am I supposed to draw it?

(/raws with a compass)

%

by )

I've made this too big because they re go1ng,to over]ap//__\\
one another with.that radius. b
Yeah. S ’ : ////93
Just draw (i.e. sketch) it...you don't have to use DN
the compass. dJust draw it...just draw...no, no, no.

¢ ]
Ok, and I'11 make my circles better. (unclear). Ok. C
(unclear) . ( 4
/ : ! . ne- !
What are you going to do? . ? Ckg’fc“)

I just want to see ﬁhat it would look like more
accurately (draws with-compass).

Why?

Just so I could see (unclear) H.i you can think out
loud if you have an idea. Ok. Can you think of
anything? (finishes sketch)

Unm. These two radii are the same, right?

Yep Except it doesn't look the same, does it?

That s the way you put your centers in the center. S

(unclear)
/

(unclear) Ok. These two centers have to like...
do you know what I mean?

No. Wait, what am I looking for now?

If we tan find (unclear) (pencil placed at center poi
A1l right...if you just have the two centers and you \\\\

go over...say the radius..,.the radius will have to be
hal¥ way in between the centers. Alright, and then...

41




Say...wait...Qha-wha-wha-what?

36. T: If we just try to draw the two circles and the tangent i
line without worrying about point C for right now.

Right.

i ~ L ' Q-
: Ok. Since they have to be of equal radius...the -/
radius will be half way between the two centers?* o

It's like the tangent line would be like .this.

I don't get this about the radius being half way ‘
between two centers.

Me neither.

I don't get what jOu mean. How's the radius half :
way...[l don't get what you mean. Kﬁ

If it was like this and the tangent line would
just be (unclear)

Ok, yeah.

0k? These two have to be the same length.
Right.

And the thing that is going to determine.how long
they are is the angle on this line. What I mean
like if they are exactly...half way in between the
two centers then the line is vertical.

Right.

i o \\__/
If we make it somehow shorter right here and here..}\\\\__’////’4

the circles would be like this and the tangent would
E2 on a slant like this.

49. L: Ok. Ummm,

Y

50. T: We have to figure out how they go through point C. So...

51. L: I don't know either.

L3
-

52. T: Can we just start with C and draw a line through it
somewhere and then make the circles tangent to it?

53. L: No.

54, T: Or...

55. L: No we're given the centers.

*She meant to say that the'length of the radius in this extreme case
was half the distance between the centers of the two circles.

~ 45




56.
57.

59.

60.
61.

62.

63.

64.
65.
66.

67.

68

69.

73.
74.

75.

We're also given C.

Uh huh. But just drawing the line can't guarantee 3
you could end it with something like this if you : '
just drew the line here. Ummm. Isn't there another *4
wav we can characterize the line? Find the locus. '

Ummm.

This might not work for all of them, but, look here, A C
doesn't this look like...that's just like the center? ~\

That's just what I was going to measure.

Ummm. Because if we did that, we were given points
A, B, and C.

~ i g
Y& (looks at her sketch) that crosses it too.
That's exactly what we're going to do.

Alright...wait, we're not allowed to use a ruler,
but...yeah, divide it in half.

Yeah, bisect.
R I (ZOwD

Why don't you actually do it... THER FOV ‘j

: cKeToH
Let's try it on here since we're not sure.
(Begins new sketch)

;" Wait, I think it was the other line. (unclear)
Just connect point B. We're going to have to drop
a perpendicular from B to the line.
k4

What are you doing that for?
Because this is perpendicular and that's what the
radius would be, a perpendicular and from A coming
to the line also.
Right. X

Ok. I don't know why this works, I mean, I just
seem to see it, you know.

I think we can do it with similar triangles and things
so let's just make sure it works (uncléar).

We can do it here too...this isn't a very nice compass. ; \\\\
.

We're running out of time (whispering). Draw faster, , B
draw faster. . ' un,f,,'; /:/;;J

! can't...this is hard. .
reres ZLL/T#Z?vi )




© 76.
7.
78.
79.

81.

82.

83.
84.

85.
86.

87.
89.
90.
91.

92.
93.
94.
95.

Y6.

~ 1 - -

—

Both say: ...are congruent.

T:
L:

~ 4 - >

., they...

45

Draw faster anyway.
I didn't construct it right.
Well just draw it...it'11 work.

Oh, wait, maybe I did actually. Ok, that's the
radius then. ’

Right. .

Perpendicular. Then we just have to draw...l think
that's just the right thing.

That'1]l do it, that'll do it...wait, we've got to
draw...ok, we did it. We've got to show why. We
have to show that these...the reason that these gre
half way in between these two points is because..
angle side...we have to show that...what this side. .

Like we have an angle.

But what are we trying to show...we want to show why

this is in between A and B. 7ryé'é;00I:7
ek

Right. e TCHy

So we want to show that this is equal to this...that

.

Ok, we have that. We have...
...an angle and a side. How do we know...

And we need to show that this side is compared to
that side. And...

(to A): Must we prove why something works or just
show you the construction?

If you can justify it I would be happy.
Ok, let's try to justify it. .
Now the angle...

Well, we know, I mean, r is equal to r so it is
Jjust like... —~

We, have these angles, so this angle equals this one.

After a few minutes, and with. some slight confusion, they prove
that their construction has the desired properties.




Appendix 3: Protocol 3
The subject is a professional mathematician.

Using a straightedge and compass, inscribe a circle in the triangle below.*

(reads probleﬁ) A1l right, so the picture's got to look like this
(draws figure) and the problem is obviously to find the center of

the circle... /@

Now what do I know about the center? We need some lines in here.
Well, the radli are perpendicular at the points of tangency, so
the picture's like this (draws figure)...

That doesn't look right, there's something missing...What if [ draw
in the lines from the vertices from the center? (draws figure)

That's better. There've got to be congruent triangles in here...
let's see, all the radii are equal, and these are all right angles...
(marks diagram) and with this, of course, this line is equal to
itself (marks "x" on the figure), so these two triangles (at lower-
left vertex) are congruent. Great. Oops, it's angle-side-side,

oh no, it's a right triangle and I can use Pythaqoras or hypotenuse-
leg or whatever it's called. I'm ok. So the center is on the

N *The inscribed circle is a circle that lies inside the triangle and is
tangent to all three sides of it.
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bisectors. (Turns to investigator) ['ve solved it. Do you want
me to do the construction? '
[
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