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. PREFACE "

. fﬂésc units introduce analytic solutions of ordinary
differential equations. They are intended to amplify

the examples of Paul Calter's Graphical and Bumerical
Solution of Dijferencial Equations, UMAP Units 81-83,

.and to provide, with Calter's units, & general introductioa
~to a number of standard techniques for solving first-order
ordinary differential equations. Examples have been
included from physics, biologY: and chemistry.

-
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by examining\the functions which satisfy these differential

SOLVING. DEFIERENTEALYEQUATIONS ANALYTICALLY

i -
.‘: " B
1. ANALYTIC SOLUT!ONS -
o
Objectwo. To be able to decide whcther a nge{m function solves a , X
RN given differential Oquatlon. E
\\\ : . S

\Tho mathcmatical analysis of physical problems can
lead to\dxffcrcntlal equations, as we saw in Units 8§1-83,
and we oféen wish to gain information about the problems

equations. FS( example, in the optical filter problen
(Unit 81, Chabté‘ 1) we want to know how many filters are
needed to decrcasena light's intensity to ten percent of
its unfiltexred ingzhsity. Letting L(t) represent the
intensity when t filtexs are used,, we would like to find
the smallest t for whici\L(t) is less than ten percent of
the unfiltered intensxty,\L(O) A graphical solution
enabled us to find the rnqurrcd value of t. If we could
find a formula that exprc>sed L(t) in terms of t, we might
then find the same value of t ‘by algebraic techniques
alone. Thus, we are led to ask what functions L(t) satisfy ) ;
the differential equation

$t e kLo,

where k is a positive consiant.

Let us show that L(t) ekt s solution of
(1) gr = -kL.

-

To sce this we differentiate L(t), and_find, indeed, that

3% - _i_r__l = ke Xt o yL(o).
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L Hence, L(t) = c'l\t is,a soluthon of (1). . analytic techmique o usiug a log table which 1s accurate )
7 If we are to %rofit from thhs solution, then we need only to . certain number of digits. ’ ’ .
5 to find k from our data, Wwhen t = 1 filter then the We can sece three amportant points from this eaxample.
i _light intensity 1s erghty-five percent of Leo) = 1. In barst, if we c¢an find a formuia for a solution to a .
; . other words; L(1) = 0.83L{¢) = 0.85. This means that differcential equation we can, many times, solhve OU( .
e ortginal problem without turning to graphical or numerical
\ e_k(]) = 0.85, : techniques.  We men{lon, however, _that some problems can
) ey . be solved ¢ney by using numerical techniques, so these -
;‘ 2 fnte ) = Int0assY, techniques are impevtant and necessary. But, 10 an -
: ’ X = In(0.857, analytic solution can be obtained, 1t 18 usuall,y eacier

* ) to work with. Second, to obtain an analytic solution we . -
) N = -Inf0.85). must ei1ther have enough knowledge to "guess™ an answer, or

we must develop techmiques which will cnable us to derive

4 - H . - i3 £
- Hence k = 0.16. This value of ks different from the a seclution. In the gptical filter, we were able to guess

E value k that was obtained in the graphical solution in " the answer from kpnown analytical and graphical propegties

: Unit 82. The graphical method i< not as accurate as our of the exponential function. Fhird, we csn always deter-
analytic method because it uses an approximate tangent mine whether a guess 1s correct by seceing if it and its *
line. To find t so that the value of L(t) is no more than derivatives satisfy the equation. W¥e give another example

¢ .
ten percent of L(0) = 1, we must find t so that to amplify this last point.

3 o

: P
(3) L{t) = e 0.0t 1, . » lLet us show that y = E%— is a solution for the

: = 10 d:fferential equation

§

- Then, \ ,

. (e 1% < iy (5) = cx. ,

-0.16t -in(10) - Now, if

| A

R I JIn(10) < i
- - 0.16 ‘

then

o CIn10) | gy s N T
t > 16 14.39. g%{_ - :i__;‘_\__ - t‘,.‘}_-’

. This is in close agreement with the estimate of t > 14.4 and
: that was obtained graphically. Both methods entail a 5 23 :
;s . R . . Ty >x” 2¢ ‘
‘ certain ‘amount of inaccuracy; the graphical method in usiifg d = i%{hé—J = =X o ocx,
- . dx~ -

an approximate tangent and in reading the graph, the

Hence, y
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Notigce _that y = ‘z + 1 also sati1sfies Lquation (51,
for -
cx” ‘ T
QE}: = :1_ had * o ~
dx~ ‘o X B
© - .
qu .
. di=z-
= dx = o

Thus, Equataon (5} has at least two solutions. In fact,

it has ar infinite number of solutions. (What are they?)

In general, when we are given a differential equation,
our objective will be to find a class of solutions for it

by using analyticad techniques, 1.c., methods of calculus.

"

-
-

Exercises .

1. Show that y = ekx solves %‘Z- = ky where k is any constant.

3 >3
3 =
2. Showithat both y = /%-x' and y = -/%.xz are solutions for
'y o
dy | x_
dz  y°

3. Show that ‘the functions
p y(x) = sinvk x,

¥
y(x) = cosvk X, 'and

y(x) S)s_im’i x + cosvk X, ‘.
all satisfy the differential equation

d2
i __% = 'k}',

dx

where k > O.

k

4. Show that the function y{t} = (yo-M)e- Y &+ M satisfies the

equz;tion g% = tk(y~M), where Yo = ¥(0),.and k and M are constants.

2. ANTIBERIVATIVES AND DIFFERENTIAL EQUATIONS

Objectives: (1) To use antidenivatives to solve some differential \
equations, and (2) to find the constants of i.tegration \‘:
using boundary cunditions.' o3
Many differential equations which arise naturally in
phys:ical sciences are casy to solve by finding anti-
derivatives. This shuuld not be surprising, for differential -
cquations result {rom combihing derivatives of functions,
Hence, we may hope to recovevr the functions by takiné
appropriate antiderivatives,
Consider a penny falling from the tup of thc Empire
State Buiiding. We measure time, t, in scconds, with
t = 0 at the instant the penny is released, and let s(t)
be the height; of the penny in feet above the ground at B
time t. Suppose the Empire State Building is h feet tall.
Isaac Newton's second law of dynamics states that if we
neglect the effect of the air on the penny chen the )
acceleration of °the penny is a constant, say k.  Now,
its acceleration is also the second derivative, s"({t).
Therefore,
(7 d_z% = k.
. dt
. . . d2< .
To. solve (7) analytically, we noticc that g:? is the .
derivative of %%. So %% i's the antiderivative of the
constant K, in symbols
ds _ [a%s [ '
(8) It °© ——7dr = |kdt.
. dt ] =
But ,
£ kdt = kt + ¢,
-
,1 LS .
A d .
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.« where c is iso\me\const;mt. So we have a new diff‘cl'olslti.ll ' . whore d 1~ another vonstant. Can we also find what d
s 3 N . VD lineoe
‘_f' . cqqat_l:on . \‘ N . . mukt be? :\,HILL i '
T g T s = B |
.o Lo . * : . ! k(ﬂ)‘z - Thine
e Before we solve "(9), let u\ sec 1t we can find a \'dllio for by Lquation t11}), we note that s(0) = —y— * d = d. Thus,
, c. ’l‘he flrst derivative, a—, 1s the veloelsy of the ;,gnnv d is the height of the penny aboie the ground when t = 0.
at txne t. When t = 0, at the start of the drop, the That is, & is equal to the height of the building, h.
veloc1t\' will be o, >ime the peuny 13 .\'tatlox‘mry? Hence, . - We then have
: . when t = 0 we have d— 0. So, from (9), L2
;{ . - ) (12) s(t) = == + K .
e 0 = k(0) *+ ¢, ) ) .
i ' . - o~ . We now have found a function s(ﬂ“ which describes
LT and..thcrcf’orc ¢ = 0. Thus, (9) can be simphified to the height of the penny-for any time t. The only thing )
’ i d;. . . - we have not done is to find the value of k. This must be
¥ (‘m). ac = ko e determined by physical experiment, and physics texts give
oo - - ’ ) : . the value of k = -32.2 feet per®second. ‘lhe negative :
P . Let us reflec? a minutc on what we have donc.;"ﬁ'o ) sign expresses the fact that the perny 1s fallimg down.
i have solved the differential.sequation (7) by first taking Thus, we have . N
- the'‘antiderivative which gave us a class of functions of . ‘ )
:» vthe form kt + c. We then found that by using more ~ s(t) = -32;2t2 + 1280  or :
, information we could show that ¢ = 0, i.e., that only one (13) -
“of these functxon@ ﬁatlsned our added Lond1t1on. This T s(t) = -16.1t% 4 1250, .-
3 added condition, ‘that a—— = () when t = 0, is called a | :
‘“ . boundary condition. 2 for the height of the Empire State Building is about
Py e 1250 feet. :
Exercises & ’ ,
N 5. Show t:hat: g_c = kt + ¢ satisfies HEquation (7) for any value of c. Exer%ises X a
. = . . 6. a. Find how long the penny takes to hit the ground. It will
s Lt .0 hit the ground when s(t) = 0, so we can use Equation (13)
H We now take the ant1der1vat1ve of H" r,o get s(t). Thus, to find the value of t > 0 for which s(t) = 0.
we have . U b. Now find out how fast the perny will be falling when it hits.
- . s(t) = ‘J'%% dt - To do this note that Equation (1C) gives the velocity at any
- . - time t. It will give us the velocity when the penny hits .

i
¢
- J'-ktd'f . the ground, if we use the value of t found in part (a). A
o ) { Express your answer in miles per hour as well as feet per '
i = ktz v d second.
) 2 ’

@
L b
3O
[y}
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e
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Show that s(t) = ~-16.1t™ + 1230 is a so%ution of Equations (10)

and (7).

.

Let's summarize what we have done in the problem
above. - We were given a differential equation of the form

f(t). “In Equation (7) y = %%, f(t) = k and

ds 2
g.%.: a;i- =.d_..,s,.=k_f(‘)_
dt”*

t

R
Equatfon (10), v = s and f(t} = kt, for

=5 = k= (0.

In other words, we had to solve an equation of the form
g% = f(t). To do it we were able to antidifferentiate
to get - .

y = [g-‘t- dt ¢ [f(t)dt.

if we could find Jf(t)dt, the
We then obtained a class of

Thus, we could obtain y
antiderivative of f(t).
sclutions that involved a constant of iﬁtcgration. By
using the boundary conditions we could then find the
constant .and get the one solution which solv?d our
differential equation and satisfied the boundary condition.
This procedure is the basis for most analytic solutions of
differential equations. The difficulty arises in getting
the equation in a form from which we can readily find the

antiderivative. r

“ERIC
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Solve the following differential equations, using the boundary

conditions to find the constants of integration. Show that each

answer satisfies its differential equation.

-

ds _, . ‘Y =
8. Frelialil: s(0) 1.

2 .
Q_% = CXj %§ = 1 when x = 0, and ¥ = 1 when x = O,
dx ¢

Let us look at the sagging beam. problem again, this
time analytically. We know from Unit 83, page 58, that

-

% (8 x 1077)2

- ]
4x1077x% + ¢,

(14)

where y is the vertical beam deflection. The problem'was‘

If we had some conditions on dy/dx we wodld be
Since we only

to find c.
able to find c as in the previous examples.
know conditions on ¥, we must proceed with (14) not

P4

knowing the¢ value of c. We then get the following by,

antiderivatives.

f .
g% dx = .Jl(4-10‘7x2 + ¢)dx
L ] §

. LD
y(x) = 4x1077 X+ cx + d,

»
where d is a constant. Now y(0) = 0 and y(30) = 0 since
the beam is figed at both ends. Fromey (V) = 0 we get
0 = y(0) = d. Hence d = 0. From y(30) = 0 we get

‘ cr3
0= y(303 = ax1077 BN 4 (50,

Solving for ¢, we get




-4 x 10'7(3uli

30c = 3
T 30c = -(4x1077)(9000) )
-(4 % 1077)(9000)
C 30 <
s sy2x107°, ' T
Hence (14) becomes.—- - T
“ //"'
. o )
— T M S PR U

?létting dy/dx = ¢. Thus solyving

= ax 1007x% - 12x107° = 0,
we get ‘
2ol 10 g g2,
) 4 %10
x = £/300 = -:17.3. -

deflection-occurs when x is approximately 17.3 ft. A
quick calculation gives the maximum deflection as
y(17.3) = -138 x10™° using

. -7.3 .
yGey = 218 X0 12 %107,

We knbw‘that the maximum deflection occurs for the value
of x at which y(x) s the least, which can be foupd by

Note thit -17.3 is not possible physically, so the maximum

)
Exercises

Solve cach of the following differential uquaLions: Chech your

-

answers by substitution. % B

dx _ .. - o . R
10, 5E =t x(0) = -1,

a%x dx 3 '
115 =-== =-32; 5= =100 vhen v = 0, x = 0 when t = 0.

2 de
de
- .
’ Quiz #1

¥
Use antiderivatives to find the solution to each of the following

differential equations.. CReck your answe;”by substitution. .

2. T

1. Q_% =t %Z =1and y = 1when t = 1.
t .
de -
R R U :
2. dtz = kl; Fra k2 and y = k3 when t = 0 wh?re kl’ k2, and k3
are constants. )
Kkkkkkhkkkkk
! R 3. SEPARATION OF VARIARLES

.

Objective: To use the method of separarkon of variables to solve more
differential equations.
In Unit 82 (Chapter 9) we cncountered the differential
equation

(16) -5

with the boundary condition of y = 1 when x = 1. If we.
attempt to solve (16) with the technique of the last

chapter we gmmcdiately run into a problem. When we try
to take the antiderivative of the right side of (16) we

- 17,




get an integral which has both y and x in it, namely

-

fa
=

T 7))

2
X_dx.
Iy

-

° “To integrate (17) we neced to know y as a function of x.
& “But 'this is what we are trying to solve the differential
-équation for—to find y as a function of x! What can we

_& --- we' integrate, it may\be a good idea to move it before we

vy
-

try to integrate. Thus, in (16), we must get y from the
. right side. Weé can do this if we.multiply both sides of
P -(16). by .y to obtain

asy  ygE - xh s

-

s

A
-

R

ot 48 ot i 3 P
' e

\'m

LR T b 1 U Sl )

Now we can” integrate both sides of (18) to get
(19} ) 4y%§dx = szdx.

oo\ - .
But the left side of (19) requires more work to integrate.
However, we know that

2
dys, -
o= ey

where < is asconstant. So (19) becomes

-

&

2 3
M B %‘ t e

>

.‘.a ‘- ° 1.
(20) v
where c,.-i5-also a constant. If we let ¢ = cp-c; then c
ig a constant and we can write (20) in the . form

' 12 1 ’
G I T .
“which is similar to the cubic we obta{néd in the’ beam- "
-deflection problem. The difference lies in that (21) does
’ ‘\) not express y as a function of x directly. To get y we

12

.do? well, since y.is "in the way" on the right side when -

VY L N e D

must solve for y in (21). Now,

(22), v =57 e 2,
or
(23) y = t /2x% + 2c. :

e

Thus, we have two pbssible solutions to (16). However,
from the boundary condition y(1) = 1 we gbtain

] = ¢ 1)7 + 2¢ : >
& . 3(
1 =.: /'-.:;-} 2c i
%2 = + ES 2 ‘ ’
aye = [—/3‘ ZC) .
(24)
1= % + Zc'
1 - % = 2¢
-

- ¢ v
With this value of ¢, Equation (23) becomes

To decide which of the two possibilities satisfies the
boundary condition y(1) = 1, we substitute x = 1 in (25)
and find

o

v

1.

(72]]

1—3— -
y: #/_L_—.Z(ld + 1 = -}/'qu
=z 3 2

y I+

This tells us to choose the plus sign, so that

(26) y = 2x” + 1




-

is our answer. To check that this function does 1ndeed

e saiisff Equation (16) we may differentiate it:

~ 3 ) -
o . _ 4 2x> + l’ < .
RYSIFEY
r - -‘ -
_1[2x°+1],=d 2x? 4 1
. B - B A S
: (27) 5
£ = 1. 1 N S S |

|
.
7’
-
3
()
®
+
—
»

Tt BT M

_11 2
.-.2 y X .
- e vy
L
", Exercises 3
12, Show y = - ?x311 satisfies Equation (16) but does not satisfy

the boundary condition y = 1 when x = 1. Whac‘condicion does

it sacisfy when'x = 1?

R S e N P

5

The technique we used to solve %§ %ﬁ is called
separation of varigbles. In summary, if we arec given a
differenti1al equation which has both vyriables appcafinﬁ
oh the right-hand side of the equation, we move the
dependent variable to the left side of the differential ,
equation. We then integrate and solve the resulting

T

equation for y.

Exercisés .
13. Solve the equation %% = ky by separation of variables (k is a
ponscan} not equal to zero). Solve for y after igcegracing

s - .

and then compare your answer to the one obtained in Exercise 1.

Another phenomenon of interest is the way the
temperature of a body changes when it is placed in a
cooling medium. Let y(t) represent the tcmpcrature‘of
the object at any time t. Supposc we place the 05j6€f”7§--
a cooler medium of sufficient quantity so that the
temperature of the medium is not changed by the hotter
object. (For eaample, a meteorite into an ocean.)

Let M represent this constant temperature. Experimental
data suggest that the rate of cooling of the object is
directly proportional to the difference 1n the two
temperatures at any time t. We can express this law of
cooling by the differential equation

(28). §F = ke,

where M is the'tcmpcragure of the medium and k is a -
positive constant.* Note that since the temperature of
the object is falling, y is decreasing and its dcrivativc
is negative. We can solve (28) by separation of varia-
bles to get

(29) y(t) = (ygie ¥F o,
where y, = y(0). .
Exercises

14. Solve ‘Zquation (28) for y(t) by carrying out the following steps:
First, by using sepatation of variables, show that

In(y-M) = -kt + E. Next, using‘the boundary condition y(0) = Yo’
show that C = ln(yO-M), and hence that 1“33%% = -kt. Then find y

using the exponential function. - L

We would expect the temperature of the object to ) .
decrease until it reaches the temperature of the medium,
M. To sec if this happens from (29) we look at y as

t » », But since k > 0, we know ekt L g as t » w.

*Sece Appendix 1 for a biological example which also uses a
differential equation of this form.

3
E2
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%; (Recall the behavior of the &raph of c'kt.) Therefore,.
?n* VRS A (yo-M)(O) + M= Mas,t »w, Not?k:hat y is always
it%; . Ggreater than M, since y,-M > 0 and ¢ > 0. Thus, the
< value of y(t) approaches M.but never recaches M. In

practice, the temperature of the object eventually gets
- so:.close to the'temperature of the medium that we cannot
measure any difference between the two.

* Fxercises

S -

‘A15.~«A“chefﬁ6EOCQr is removed from boiling water. The temperature
decreééeé from 95° C to 80° C in half of a minute. If the
room temperature is 20° C, about how long will it -take the
thermometer to get within one Celsius degree of the room

Find k first.

-

temperature. Hint:

o A

&
. Appendices 2 and 3 give two more differential equa-

tions used in"the sciences which may be solved by. the
technique of separation of variables.

¥

" Exercises: . . .
Solve each of the following differencial equations. Check your

answer by substitution.

16. g% = yz;‘ y(0) = 1.
17. ‘gf =% Yy = 1.

¢

Iz #3

Solve. each of the following differential equations by separation of

;‘ vaffables. Check your answer by substitution.
gyt - * =
; (1) 3x =3 y(0) = 1.
: @ L+s+120; s(0) =o0.
kkkkkkkkkk

"
o
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“lytically. ‘ We bcg;; with the differential cqu%kion :

we could find a function y(t), so that

4. FIRST ORDER LINEAR DIFEFERENTIAL EQUATIONS L0

LI\
1 : N
Objective: To solve first order linear differential equations. %

The Fish Pond Revisited .

4.1

The fish pond. problem was solved in Unit 8% (Chapter

8) using-tangent fields. We now study the problem ana- iy

/ B

[ — B .

(30) 370 T T

%% = 0.

where Q is the number of fish in the pond at time t. We
Tfirst note that nonc of our previous techniques permit us
to solve this equation. We cannot just use/antiderivatives

since the function Q appears in the righfzhand side-of (30).

N R TP I

This suggests, of course, that we try to sfparate the
variables t and Q. But if we divide both sides of (30) i
by Q to move Q, we are still 16ft with Q on the right-hand
side because of the 0.6, for we get \ )

1dQ _ 0.6 . 2 !
(31) I % mweT
!
We have to come up with a new technique if wcéarc to solve T
(30). Our first move is to change (30) to :
d 2 _ . ]
(32) 3% *asmwore - 06 ! :

To make things a little easier to write, let's replace

T?f&iT—T'EY f(t). . Then {32) becomes

(33) Q' + f(t)Q = 0.6.

«

Now it would be nice ifrthe left-hand side. of (33) were
the derivative of something, for we could then use anti-
derivatives. The form of the left side of (33) suggests

the product rule, yQ' + y'Q = (¥Q)'. 1In other words, if

Q' + f(t)Q = yQ' + y'Q,
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then we could use antiderwvatives to solve (33). But to
thave this we would nced to have the product »Q' in (33).
Since we do not have it, we put it thore by multiplying

.both sides of Equation 133) by y. This gives

(54) yQ' + yf(£)Q = v.6y.

Now we need y to satisfy o)

C¥Q' 4 ¥f(1)Q = ¥Q' ¢ ¥eQ,

or

"

vi(t)Q = ¥'Q,
{351 yf(t) y'.

Thus,.a.functioﬁii?which would permit us to use anti-
derivatives must satisfy (3§). But £35) is just a
differential equation! Apd we can solve it! For by

separation of variables,

H 1 _ .

A (36) D= £(1)

twhere < j-

£(8) = Ty

©

from (32). A solution of (36) is

2
y(t) = (4320 + t)~
Exercises
lova 2
18. Solve the equation yy 2320 + € by separation of variables,

.

: When we substitute (4320 » t)Z for y in Equation (34) we

obtain
4 2

2
i (4320 + t)°Q' + Tmﬁ(4szo+t)2Q 0.6(4320+1)%,

0.6(4320+t)%.

O 38104 (4320+2)%Q" + 2{4320+1)Q

[Aruiroe poviisa oy mc - -
T O

ERIC™Z s

Azow we sce that the left side of (38) a1s just the
derivative of (4320+1)7Q.

Exerclses
19. Show that the left side ot Equation (38) is the derivative of
i
(4320 + 0)7Q.

Thus, we can rewrite Equation (38) as

< d { - 2 ) < 2 :
(39) Tl (4320+t7)Q] = 0.0(432040) ",
Now solve (39) for (4520+t)2Q by using antiderivatives to
get +
2 f 2
(4320+1)°Q = J0.0(JSZU*r)“dt,
or " ) ” )
. * - 1 - 2
(10) Q(t) = — 5 0.06(4320+1)"dt.,
(1320+1) :

F
Thus, we can solve (30) by integrating in (40),

Exercises
20. Find J0.6(4320 + :)ch. pon't forget the constant of

integration.

§§
Using the result of kxercisc 20, we have

- 1 - 3
(41) Q(t) = ——————0.2(4320+t) 7+ ].
(4320+1) ’ ’

Now Q{0) = 1864, so we can find ¢ from (41), as follows:

1864 = —ms[0.2(1320) 7s0],

4320y "

Q(0)

¢ = 1804(43200% - 0.2(4320)°

= 18662466000, ey

—~ U}

Thus,

Lt R

.« -
L 1 A e
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N < v . : . \
a = | L - N
3 e
g
- " ~ - ~ * e ] Yy
L. Qt) = ——[0.2(4320+t)° + 18062400000}, e ¥y = [xe7Mdx, , )
(3320+t) ’ .
. 2 : sc¢ that ‘
For the original problem, Q(12960) = 3519, rounded to the
" nearest fish, in-close agreement with the figure of %500 (47 y = T%} xe~¥dx. . . ’ ’
: that may be read from the graph on page 38 of Unit 82. . ) € . ~ )
< * T \.
T ' ”
i- To find'y we must find xe“Ydx. Ne need a function whose
g 4.2 °A Second Example . . . 2x 2x
2, - . derivative is xe™ . Notice that Ixc ~ almost horks,
i * As a second example, we look at- tbe equation because ’ .
§ g% +2y - x=0 Erom‘Unlt 82, Chapter 7., We put it in L o
*  the same form ‘ﬁ N 3&[%xezx] < xelX 4 %eZX_ .
+ d -
42 + 2y = X . ) . 2
( .) 3% o ’ We need to add a term to the trial function %xe'x whose
. . ! X -
derlvatxve will cancel the unwanted term %ezx._ That is,

& 7

to separate y and its derivative from x. To solve (42) &
we search for a function u(x) so that when we multiply ) W? geed to add the antiderivative®of-- 2e~x, which is
. U STt X

both sides of Equation (42) by u, the left side is the . -3e -
derivative of uy. We first get

The function

i

-

o
oy

:

i
4
¥
£a
2
T
I

2 erx I PR -
i 43) uy' + 2yu = Xxu, . z 4
.. _Then, $ince (uy)f = uy' + yu', we must have now has the derivative we want, for .
yu' = 2Zyu, ‘ dfl 2x 1.2x) _  .2x , 1.2x _ 1.2x
i or . i . dx|\2 3 € Z Z
: : .(44) ,out= 2ul ) . : "= xe<X, . .
ii But -we know that /~ ) . Hence, the solution of Equation (47) is
2 S
\ 2x ’ :

. . = 1 [1. 2x 1 2x
%}} u(X) e y = ~7% [er -Ke +'c] , -
{'5 is a solution of (44). With u replaced by ezx, Equation
i . or » *
‘ (43) becomes -
’ o211 - 2x
3 (45) 'ezxy' + 2)’ezx = xezx, (49 A gt cee )

or . A Exercises

> . 2x ~
d, 2x _ 2x \, 21. Show that xe”™ is the derfvative of %
(46) Ixle y) = xe™". . s
. L2x _ 12«

This means that . 2 ¢ . o~ .

« 20 22. Show (48) satisfies (42) for all values of c. IndL

3 ¥ - . .

) Yoy , ) — . 21

. el e, o J
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4.3 The General Procedure )

We now formalize the procedurc of the two previous
examples. I'f we have a differential equation of the
form'

A

(49) . y' o+ £(x)y = glxj,
whére £ and g arc functions of x, then we find u(x) sc

_t,h('lt ’

(50)7 u'(x) = f(xjulx}.

We solve (50) to get u(x) = c!f{x)dx' Then (49) becomes,
by multiplying by u(x),

uy’ + ufy = gu,

or

uy' + u'y ='gu
by (50). Thus, =

% = gu .
and b

uy = [gu dx + ¢
so that -
' -1 u dx + c]

y ol 18 3 }.

where ¢ is a constant.
We summarize: The solution of the first order linear

differential equation

y'{x) + f(x)yi{x) = g(x)

»

y(x) = E%;T lg(x)u(x)dx + cl, ’2

EENeur

Cutmm e NG

u(x) = efr(\)d*.

Exercises .

Use Formuld (51) to solve the following differentfal equations.
23. y' =ky; y(0) =N
Thg solutioﬂ of this cquation describes exponential growth.

2. y'+y+1=0; y(0) =0

Tg ‘check Equation {51) we notice that, for any function

h(x),
Y
diJhEx)dxy _ .-
—(L‘IT(—‘ = h{x).

Then, from

y = ("(X)l-l[fg(x)u(x)dx + c) ’ %
we get g
vt = w0172 G goudx ¢ el
+ tu(x)1 e (oux))
- 017t 8 ool e ux))
= u%%Tf(x)u(x)y + g(x) (using u'(x) = f(x)u(x))
= -f(x)y + g(x). ;
‘ %
So b o L

y' + f(x)y = g(x),
which is our original differential cquation, Equation (49). :
The lincar differential equation is the lasf type of

differential equation we will attempt to handle analytically
23

e oo R L ».“."W 7"‘A“.‘)7{
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in this unit. We note many other types appear 1n practice. 2. The velocity of a body faliing in a resisting medium i
" The.value of the analytic method ix that, if it works, 1t may be modeled by the equation ) o
is more tractable than numerical methods. However, = dv :

Uf*'}\\/-g':O, ‘ -

fﬁixﬁerical methods are sometimes more useful and faster, .
and at txmes thc> providé the only known.way to g,ct to a where v = v(t) 1s. the velocity of the body, and k and

solut10n~ A g are constants. Assume v(0) = 0.

# '
e by ¥

Exercises ‘ ‘ . a, ’Solvc,thc differential equation for v(t). . \
26. If in the linear firsc order dxiferent:lal equatxon ‘(49) e have - b. -5!19‘\ ihat the l)o'dy.'s speed approaches a Timitimg y;
g(x) = 0, show that the equation can be solved by separacmn of speed as t-»«, and find this speed. This spced is

- Variables. Compate your answer with (51). : called the terminal velocity of the fa’l]z.i.ng-vbo’d}f: """" o, 3«

. B - - . .
- - M

.

~dr a4

- e . "6. _ANSWERS TO EXERCISES ‘ ’
‘ QuIZ #3 . x \ ‘ )

: Chapter 1 ) Toe ' T . ;
Solve each of the following differential equations by using Formula 1. y'= kekx = ky. ? ) ; ~€
‘(51)3 Determine the behavior of the solution as t>. ' 22 ' ’ :;:}.

+1aL : 1 -2/2 B 2/ ./l- C- S
t

~N

~

:
28

e \ - /f 3/2 oL .o
A3 ’ ° )
) )

o

AN

y" = vk A (-sin (K x))

= -k s;n (/I: x) = -ky.

.

1. Solve&ach'of the following differential equations by

2 2 4

J2 3% &

hhkkkkhkkk . . 3/2 y N ;

. 9 -5 X 3
. . §

[ - - » . 3

5. MODEL EXAM 3. y' = K cos (vk %) ..

. ;

of the methods of the text; antiderivatives,

separation of variables, or the linear” formula. —kt :
4\ ’ 4oy = (v (ke : i

ca. oyt o+ x 0, y(1) =1 . oo
LN = k[(y e Com) + N

b .yt +2=0; y() =1 , ' . o . L2
- T - ' ’ = ky + KM =_-k(y<M).

c. y'+y=20; y()-=1 / o
d. y' sy =1; y(0) = 0. - . Chapter 2

. . i 5. s'=kc+c.; s" = k. : o

st - oz
S £ 7Y R




-16.1¢2 + 1250

~16.1t2 + 1250

1250 LVt
16.1

= 8.81.

w

b v(8.81) = -32.2(8.81) = -283.73 ft/sec
= 193.45 mi/hr.

8. s(x) =s= jk dx = kx + ¢

\

s(o'i x 1 = k(0) + ¢
1=¢
s{x) = kx + 1.

2
9. iyl = ch dx = % +e,.

2
€ _fy'(o)-lnggg)__q.cl

*. 1-c1
y'(x) = % <2 +1

§(x). = |1S x -3
¥(x)- I[zx +1]dx g X\t xte,

y(0) =1 =c,

- y(x) 3—‘g-x3+x+1.

-

S N t2
10, x(t) = [t de n 5 +e

x(0).=. ~1 = ¢

x(e) = & - 1.

7. &' = -32.2¢; s" = -32.2, where k = ~32.2.

= I—Hdt = =32t + ¢
= 106 s ¢

-32¢ + 100

j(-32t. + 100)dt

—16:2 + 100t + ¢

x(d) 0=c

x(t) _16t% + 100t.

Chapter 3 .
")
12. 3 = - L e ied)
V3

‘ 1,2 )

§ .88 2
oLl Y
=

v3

S Y TS
.
1 .
13. j—y—dy = jk dx

Iny= kx + ¢

kx+c

1 %
j;—_—M dy j-kdt

1n(y=M) = -kt + ¢

y=e

ln(yo—M) c
1n{y-M) = -kt + ln(yo-M) J

TIn(y-1 - Iny,w) = ki ~
1n [-L-.M ]

y O-H

oMo
Yo
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P15y = (yo-}iie'k‘ PN
, . Tk /2 .
g . y(%o = 80° = (95-20)e k/2 20,
7’ 60/75 = e %/2
-k/2 ='in(0.8).= ~0.223 -
) k = 0;446.
S y(e) =756 0480 4 a0 < 2y
QE = A " ‘\\' - d
. 7500-446t <1
; o-0-446t <175
?\\ . =0.446c < 1n(1/75)
P .
: » t > 9.68 min.
16% ld = [dx. . ' ’
; -y E=x 4
g - -]. = ¢
3
E y-1 =1-x
: R
: YR i
Yo7, {ldy- -]-'dx
N y x
;’ fny =lnx +c
§ 0=c
¥y = x.
§ “Chapter 4 LT i T oo
B 1, . 2 ,
18. ];dy —{‘320% dt .
§§ lny = 2 1n (43204t) + ¢, withc =0
? lay = 1n (4330+c)2
2
Q x,?'_(4329fc) . - 28‘33

ST e he g szt P A AT 4

f
¥

"
19.  2(432041)Q + (4320+1)7Q', by the product rule

20.

21.

23.

Io.a(sszo+n)zdc'

= 939(4320+c)3 +c

- 0.2(4320+0)° + c.

By the product rule, the derivative of

u(x)

y(x) =

n
=
®




iW{x) =

Jomx oy . 7. ANSWERS IO QUIZZES AND MODLL EXAM

z- B

Ty(x) = 1 (fl o xdx Fe)
=

X2
'.-?:-"f' c.

g(x) 2 0 gives

-

ési ( =
ax + £ J'c)y 0

v

- j-f (x)dx

B -I-f x)dx + ¢

13
c
where, c = ¢ .,

klt
y=——2——+k2t+c

Ae_jf(x)dx(Jo Cu(x)dw + ¢) L= e
. 3

kt:2

o ~o-JE(x)dx . = 4%
ce . y(t) ‘@* kpt + ky.
Quiz #2

1
1. [=dy= dx
])’y Ix
2

lny=-x?;+c

i
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In (Li&s) = -t + ¢

\.:O-C_ . , sﬁ%& .

B4 - N «

eftz":‘t :3/3 ..

L] =~

3 \ ?
et /3 Utzeth dt + c}

3 3.0 3
ce”t /3-+ T3 le_t /3}

]
«

—~
-

~
L]

3,
. mea®/ 4
y ::/D/as th~ o,
. 1 i
Model Exam ° N I

1. a. By antiderivatives;
ly' = _x
<2
y=-5 +c

l1=¢c

y'-%—+l.

. - Pt

e e el 5 A AR MY ATk AL D g el T et
i e de s B -

By lincar formaia,

o(x) "= Joax

*

vix) = |=-xdx ¥ ¢

)

=~§'~+c

1o

vix) = - N+ 1.

&

b, By antiderivatives,

NEARE NN 02
vEe-linx +¢
1=¢ £

*
v =1 - lax.

By linear formula,

u(x) = eo= 1

v(x) = |- idx_ +ec

= - lnx 4+ 1.

L Oy dcpasalive we
—-y' = -]
\'y
iny = -x+ ¢
0=c

-X
y=e .

By linear ?ormula R

efldx -

u(x) =

y(x) = e"‘Uo - e®dx +‘c) .

-X
ce

c

e,

.

]

g

X
o .

i

{ K

ot «

Do

1

N 3
gt &4

1

vl dLblcs, «F

X
e

R
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5
f . d: By separation of variables,
= ¥ :
- - yc = l"}'
. ;
; L ') . . Biologists
= =1n(l- =x +c . . . e
[ -y in the law of cooling (Chapter 3) to descyibe the diffu-
N . 0=c ~ sion of chemicals through the wall of a ALell. The cell
) 1n(lay) = -x i.s assumed to have a constant volume ¥, and to be immql'scd
- in a liquid. We consider the flow of a particular chemicaly
1-y = A ¥ A
yre . or solute into and out of the cell. Assume that the
y=1-¢r solute ‘concentration in the liquid is constant at a value °£,
- N ) | €o- Let ¢(t) represent the concentration of the solute in
11 f , v . . . . .
P~ By linear formula \ . the cell at time t. The solute will diffuse into and out
ﬁ () = e[ldx & oX - of the cell. We are interested in the net flow of the
i -
£ § . , solute. Now if m(t) represents the mass of the solute in
y(o) = e"x[ll - oMdx + c] ’ the cell, then
(1) m(t) = V-c(t). :
“ » e.x(ex+c) - . . . . . . z
£ The derivative, dm/dt, is the net flow rate. A differential :
o ' =1 +ce X . cquatio;l\ known as Fick'’s law, says that :
1=¢ ’ (2) dm e, -
__7;77 - N FA aT = CO C), .
i y(x) =1 - e . .
oo f,\ where k is a constant called the permeability of the
. ““dh membrane, and A is the fixed arca of the cell's surface.
b p v < .. :
£ 2, a qrtkvzg=0 By differentiating (1) we get
l‘ o By linear formula, %% = Vgit:.
= kdt kt .
- u(t) = el - e which may be substituted in (2) to get
-kt kt N M z
v(c) = e ”ge de + c] (3) dc _ kA(c ) .-
-kt ekt - dt Vito
. = [ﬂ_k_ + c) e . .
2 . -~ . Since kA/V and ¢y are constants we sce {(3) is like the
-kt N
= g/k+ce " . ¥ differential equation "
0=glk+ec - d % :
a7 c-glk=c , = -k(y-M) .
v(t) =:g/k(l - e key. ] that describes the law of cooling in Chapter 3. We can
- solve (3) to get ’
Q . b, As o, e kt-'q so v(t)+g/k. 34 & 38 s -
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e =t
4) c(t) = he T
2 where K is the constant of intewiation. - betore, oot
if . . .approaches Lo a3 tr Phe constant homust be ddetormineld
ii by experiment. -
i . .
%, _ e e — - - - .
o °
e N Exercige
1. Solve Equatton (3) to pot rquitien (4),
; T o
AR R} ] A
Py APt l.\l A
A POPULATTON MoDLY
N The long<run gronth of populations 1~ not cyponential,
: because the cnvironment does net permit nnbimted growth,
i A differenttial ¢quation wiivh leads to acusctul wcdel of
. limited growth 13
: . dy 2
X (1) I T Ay - by,
(i where y(t) is the number of organi~ms 1n the population
£ at time t, and a and b are positive con-tants. fhe term
N 9 o
> -by® causes the growth to be sma.ler than ay, and provides
- O « PP
: a "limiting'" factor. It b = 0, then (1) simplifies to
L the differenti1al equation for exponential growth,
% To solve (1) we first separate variables to got
. 5 1 dv,. _ { ~ .
H (2) ___—T-J‘fdt' 1dt =t + ¢.
jay - by~
t To integrate the left side of (2), we expand the quotient
1
‘ 7
o ay - by
) by the method of partial fractions. In other words, we
N find A and B so that
: ) 36
) [ 00
.ERIC .28 . C
o B ’ . : .
}Z‘&\E‘.\Q":“Eirg:-;ésh\_»i Jule a8 B G, oL S T - \ o - R

s me 4% camn hma oLw 2

TR ERSEE

1 i A
S O

B e T -~

G I~

B ’
b

Some tlgebras ~hou~s that V= J/a and B = b/a willl sork,
Exersists .
=¥, Show thit -
! b
a - i °
+ - K
- R A
\ by N o= G .
Ih
s, 1 b
i dv ja dy a dv ¢
....... - dt = Y 4 | . — e,
l 2 dt v de “ v = by de Ot
(Y = by
s J
2. Show . i
[1 dr
ad i o
¢ 0t dt = Inv4+c¢c., ftorv -0,
- v . l -
" -
3 Show
oy
boa dy -1
BRI S B a = by) 4 (.. f e
‘n Ty de 4t JInda = by) + (0 for v
J
A ~
Using the rtesults of Faercaises and 3, we mav rewrite

Lquation (2)

a~

(3) % In {y)- % In fa-byv}) = t + ¢,

Te find ¢ in this equation, we let t =

Ly - Sinta - by (o)

I we let Yo = Y(0), then

* ] 1 ,
T hl(a-b>”),

and Equation (3) may be rewritten as

. t = ‘

;o] a- Ly
Eln y gjxl(a byY I “'}0 *

.

"1

g 1n (a-byy).

Lt




NN i+ i ie 3 (e e PR =
1T N

P - R o
. ) ' - T T %
w . ‘E
We multiply both <tdes of this cquation by a, to gt ” ‘1_ )
" aft
at = Iny - itnta-bviy vyt tn ta-bv) /v :
f"vqn-h\]l -
= in —— {
EEPYER N -
o .
Then, ) ERRYEES S
. 2z :
ylasbygl o at g :
vy _{a-bv) ’
= o
. ay - 'mO).' = ayy at !vﬂ\c“. ‘
- 0 Time t
: N at NES . -
: _v(a-b}o*b)'oe 1= ayaet T, . ¥
: Figure 1. The graph of y = —~— Ty -
and, finally, for ¥o close to O, byo * (:x-byo)u -
H " cut N
: o . -
y o= . .
S B . a4 - by ¢ by oIt grows almost exponentially. But, a$ v increases, the -
e R\ . . 2. 3 -
limiting term -by” in the firkt derivative has more effect
. or and causes the population growth te taper off.
: ay - - ——
. "0 a
(4) o= it} o= s, %) < g5 Exvrcises
by, ¢ (a-by,le at ’ &, .
; - f Y 4. Experimental data sugjest that the value of a in Equation (1)
- s
B . Sat . ? for the human population of the earth is about a = 0.03. , ’
: Notice that ¢ * -0 as t-x, because a ~ ¥, Iherefore, . . . . :
- -Suppose we have the following data for the earth's population: 5 -
L‘? y - a)'“ = q v
’ b [,).0 Y T 'h'\‘()‘) 0 5 Year 1960 1970 1975
e — —
3 Population
= . . . . a *
z as t-0. The limiting value of the popnlation 1s g. (in billions) 3.0l 3.59 3.92
A routine investigation of y and its first two “". If we let the year 1960 be our starting point then t =0 in
derivatives reveals the graph of y to have a point of > 1960. Then ¥ = ¢(0) = 3.01. Find y(10) from the table. Then
: inflection at y = a/2b. The graph i< concave up for solve Equation (4) for b, using a = 0.03 and t = 10. Now use
. values ef y between 0 and a/2b, and concave down for values Equation (4) with this value of b to find y(15), and compare it
: of v greater than a/2b. The graph approaches the hori- to the table value. What is the limiting value of the carth's
: zontal asymptote y = a/b from below as y gets large. Sce population under this equation? In what year will v = a/lb?
: Figure 1.
. The curve in Figure 1 is called a logigtic curve.
Note that for vy < a/2b, the curve resembles an exponential
i v __ L . <<
3 EM curve. In other words, at the beginning, the population 38 {’0’3
7 - t . 4 hl
5. T | . - \ . L i
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FROM CHLMIES FRY

Whén a chemical € is formed by combining the
molecules of two chemicals “‘“WkB» it is sometimes
reasonable to assume that the more of \ and B present the
faster the reaction could take place. In other ubuﬁs, the
Prate of formation of C is proportional to the amounts of

A and B present at any time.

Ve S
1

W S

To develop a differential equation tﬁﬁ; describes the
formation of C, let y(t) represent The ewi¥pangiicn of C
at time t. We can assume v(0) = 6.’ Let a be the con-
¥ centration of the chemical A and b thte goncentration of
0.
of*C requires one molecute of A and one molecute of B, then
a - y(t) and b - y(t)

“time t.

chemical B when t = Now if the formation of a molecule

< h i,

is the concentration of A and B at
Then the. statement that the rate of formation of
C is proportional to the amounts of A and B piesent
becomes

(1) F =K@ - -y, -

G A © 18 L Ty St pe 3 2%

' ) P 3 e
L,

. .

for some positive constant h. To solve® {1) we consider

%- two cases, (i) a = b and (i) a # b.
I v :
é -~ ' Suppose that a = b. Then by scpardtion of variables
: ‘ (1) becomes
. 1 dy
(2) dt = Jkdt. R
g ek

E *Substitdyting u for a - y we have
; 1 dy 4¢ = _fl du 4,
: - 7 dt
(a-y) Jul TT
: IO T S | ’
1. ( u) T u a -—‘)'-'
& 3
to.
i 49
o] O ‘

WA

-~ e -

e e T e T,

MY

BT T Y B
T ¢ t 3
¥ !

s ™~
Ihens (2) L oo "
wnes (2) )tuomt> -
. 1 )
:-r‘-:—-\" = }\t + ¢ .
~ & *
But v(0) = 0, so
L.,
a .
and .
~ l _ ‘
Ty Mo 3
_oakt + 1 ¢
2 - T ¢
)
So . - N
1 -y o= L
¢ ’ akt + 1
Yy o= e
¢ akt + 1
;. _atht
’ akt +°1° ’
Note that as t:»»
Lt A4
2 2/ . '
. . 2’k a”k_
y(t) = T " 3F % 2
ak + T b P

' -~

Vo
Thus, the concentration of C approaches the common con-
{

-

centration of A and B.

Now suppose that a'¥ b. A different technique is
then required to soive (i). By separation of variables,
(1) becomes

[
. 1 d =
(3) Jma—% dt = ll\dt. \

To integrate Ia-yl( 5y We notice that
' 1 - 1

: 1 _Tahy , Ay 44
(a-y}(b-y) = "b-y. a-y -’ . 41
. s \
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T e o 3 e P Ay T = P s o
e 3‘ S L T Y e S T e S e W x
P e 3 a = el 9 e R N i T

NS . =

LS

. L e o ?‘-—!—B[ln(a-y) - Ingb-v) + In(b) - In(a)] = Kkr,
Exercizes ~
L T . or
1. Show 1 1 3
N L1 . @by | (b ) bla-Y) - yia-b)t
) o) boy + pycad . In aiboy KNa-b)t. .
. ) N

Then,

- Thén ) ’ b(a-y) = a(b-y)eh (3t
oy 1 dy . - - -
IZ‘a.‘yj -y alfd‘ ’ . ab - by + :1)'c}‘(‘l Mt . :mc“‘"‘ byt
% B &
. . ,7_/;’1’7‘:‘7-77:‘*« - s ., k(a-b)t .
= |1 %X(j( PO S O %X dt . yoE dbck(a-b)t &b
a-bib-y dt b-aja-y dt " °° ac - b
. ) ablck(u-b)t -1
Exercises (5) y = k(a-D)t )
- ac - b .
2. Show )
£ 1 - o . k(a-b)t o
; _1. %%dt - ~lafay) + ¢, fory<a. Now if a < b then k(a-b) < @, so e + 0 as
S a-y tso., Then y » -ab/-b = a as°t»=. In other words, the
s and i concentration of C approaches the concentration of A, the
i ;- . lesser of the two copcentrations. This is necessary for
=27 4 42 o1n bey) + ¢, fory <b. there must be enough of each -chemical to tvrm C and C
x b~y dt y) 2 . &
could not form more than the smaller amount.

1 Exercises -
Thcn, combining the results of Exercise 2 twith 3. Show that if b < a, then y(t) » b as t > ., \
Equation (3}, we have . ‘
1 ‘(4) 1 In (b-y) + -1 1n (a-y) = kt +
) -0 ¥ p -7 y c.
) Since y(0) = 0, we get
c=—L_Inb+ ! _1na ‘
T0h F-aiha .
5 Equation (4) becomes
1 . 1 . 1 1
'é_-[;l“ (a-y) - 'a—-EI" (b-y) = kt + mlna - Fﬁlnb'
g‘ We can then get K AN
Q . 2
42 ’ . 43
‘4.‘ vi; .
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- %, - NERUCISTES - - T o - P - - R
i .L\._...‘_\.l_}g_:‘_,..l_(_.‘l .S_'-i_"‘_i-l:‘ . N .1(1.1_-_1)_\-_) + aby i . =
13 N 2
fy . A v(a-bv)
i Appendix 1 . :
. 2 ‘
1 - 1. First,"® . . L by + aby !
3 . . - 2 .
i g« | ‘&l/c o ; a"v{a=bv) .
K- . tdr Vo ,
i ¢ a”
i e | , : Lot
= - —— e = aTw(a=bv) . :
H . c,\~C v ' k )
i I o | :
.o L |
& dc kA v(a=by) A
N ” bl Y dt i . o
; >~ = eemmam
i - ka . - 2°
: lnlc-col =Lt - ay=by
i -kA
i . Tite :
b8 . Ic-co; e ¥ ! 2 -l-‘g‘\“ ° l'{d ‘ \
2l ade . L1dy
? . _ . y ('lJ Yy
& - -kA - J
1 v t . l v
= e - e . = =lnly| +¢
vl
Then, kA . = llny + ¢ (since y > 0).

c . Cl "v"l a 1 a
.- # c-Cc, = e " e .
3 0 -
: ‘1 3 b .
If we now write K for e ~, we have ' : =
; : _a L_]idt - 1} bdy
. KA a-by dt - ala-by
- =t
. v .
Y c-¢, = Ke . { [ 1) bdy
i ¢ . alby-a
i ory ' / .
B =-lln|b—1|+c
by -KA a y=i 2
£ v
L - c = Ke + o 1
- = - ~1In(by-a) + c,. . .
- which is Equation (4). . 1
= Absolute value bars are not necessary, because the given condition
Appendix 2 y < a/b requires the quantiry hy-a to be positive.
3 1. Starting with the sum on the left, we may take the following
* . algebraic steps: 4. The value of y(10) 1s 3.59. To save work we rewrite Equation (4)
£ . L4
: 1 b . as
i i a,_3a . 1 + —b g ’ ay

a-b (a-by) = 0 - s
. y y ay ala-by y(t) = -at -at”
. byo(l—e ) + ae
: .
% O sy 44
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Tgls groups the ter=s thak favolve b. Then, with a = 0.03,
-t = 10, and y(10) = 3.59,!we have

0.0)(3.00
b(3.01) (1-o" (09D 10 4 (g g3y~

3.59 = 0.03y (10)

o009
b(3.01Y(0.26) 4 0.0

T, 009
St - Th(o.78) ¥ 0.02°

2.80b + 0.07 = 0.09
\ b

Appendix 3
1. 1f we multiply both sides of the given equation by (a-y) (b-y),

0.02/2.80 ~ 7.1%107°.

"

and combine terms, we find

1= {ay) gy + O oy

-2y  yb
a-b . a-b
o 2=y + y-b
a=b .
.ab
a-b
=1, "
{_1_.21 o
2 }a- dt de Ja-y y
A
y-a
i

1n}y-a| tooy

(since y-a > 0).

In(y-a) + <

Similatl:,

= lajy-b; + ¢,

e ln(y=b) + ¢, (since y-b » ).

Since b < a, the quantity a-b is positive. The product k(a-b)

is then positive, and

1
ek(n-b)r 0 as t

'l

> x

To see that y + b as t ~ «~, first divide the numerator and

denomimator of the right side of Equation (5) iy ae

result is

1
*’[1 - k(a-b)t]
_ e
ot

[ .b.__ 1 __
a ek(a—b)t :

From this we see that, as t-+0,

?

k(a-b)t' The
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"STUDENT FORM 1

hequest ﬁpf Help

Return qo:'
EDC/UMAP
55 Chapel St,

Newton, MA 02160 °

Description of Difficulty:

(Please be specific)

.

% .
Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.
Your Name Unit No.
Page

O Upper Section Mgdeélﬁxa:

Upp OR OR roblem No._
-OMiddle Paragraph Text
C) Lower Problem No.
%

Instructor: Please indicate your resolution '6f the difficulty in this box.

<::> Corrected errors in materials. List corrections here:

(::) Gave 'student better explanation, example, or procedure than in unit.

Give brief outline of your addition here:

¢

<::) Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

l
f

i
{

t

ey

N

-~
Ingtructor's Signature

*
’

Please use reverse if necessary.




, Return to?
STUDENT FORM 2 EDC/UMAP
55 Chapel St.

Unit Questionnaire Newton, MA 02160

Name Unit No. Date

Institution Course No.

Check the choice for each question that comes closest to your personal opinion.

1. " How usefyl was the amouvnt of detail in the unit?

Not enough detail to understand the unit %
Unit would have been clearer with more detail

Appropriate amount of detail

Unit was occasionally too detailed, but this was not distracting
Too much detail; 1 w=3 often distracted

|

|

|

|

2. How helpful were the problem answers?

Sufficient) information was given to solve the problems

Sample sol tions were too brief; I could not do the intermediate steps
Sample sagttions were too detailed; I didn't need them »

%

3. Except for fulfilling the prerequisites, how much did you use other sources {for
example, instructor, &riends, or other books) in order to understand the unit?

A Lot ' . Somewhat ~ A Little Not at all

4, How long was this unit in coluparison to the amountfof time you generally spend on
a lesson (lecture and homework assignment) in a typical ‘math or science course?

" Much Somewhit About )quewhat . . Much
- Longer Longer the Same Shorter Shorter

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings .

Examples )

Special Assistance Supplement (if present)
Other, please explain

),

|

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
. Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
Other, please explain

|

|

|

|

Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particuldrly helpful. (Please use the back oﬁ
this sheet if you need more space.)

-

in
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