
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
Office of Education (DHEW), Washington, D.C.

314p.

MF01/PC13 Plus Postage.

Course Content; Curriculum; *Electric Circuits; *Electricity; Independent Study; Learning Activities; Postsecondary Education; *Programed Instructional Materials; Secondary Education; Technical Education; Vocational Education

This independent self-study course on electricity was developed from military sources for use in vocational education. The course provides a source of study materials on the principles of electricity. The five lessons are divided into two parts, each of which contains criterion objectives and self-tests. The course provides basic coverage of atomic structures and matter; series and parallel circuits; measuring devices; batteries and electromagnetism. The course is presented in a programmed instruction format, in small steps using frames, and is easy to read and understand. Criterion objectives, self-tests, and answers are given. The materials are suitable for supplementing classroom activities, for enrichment materials, and for additional help for slow learners. (KC)
MILITARY CURRICULUM MATERIALS

The military-developed curriculum materials in this course package were selected by the National Center for Research in Vocational Education Military Curriculum Project for dissemination to the six regional Curriculum Coordination Centers and other instructional materials agencies. The purpose of disseminating these courses was to make curriculum materials developed by the military more accessible to vocational educators in the civilian setting.

The course materials were acquired, evaluated by project staff and practitioners in the field, and prepared for dissemination. Materials which were specific to the military were deleted, copyrighted materials were either omitted or approval for their use was obtained. These course packages contain curriculum resource materials which can be adapted to support vocational instruction and curriculum development.
The National Center Mission Statement

The National Center for Research in Vocational Education's mission is to increase the ability of diverse agencies, institutions, and organizations to solve educational problems relating to individual career planning, preparation, and progression. The National Center fulfills its mission by:

- Generating knowledge through research
- Developing educational programs and products
- Evaluating individual program needs and outcomes
- Installing educational programs and products
- Operating information systems and services
- Conducting leadership development and training programs

FOR FURTHER INFORMATION ABOUT Military Curriculum Materials
WRITE OR CALL
Program Information Office
The National Center for Research in Vocational Education
The Ohio State University
1960 Kenny Road, Columbus, Ohio 43210
Telephone: 614/486-3655 or Toll Free 800/848-4815 within the continental U.S. (except Ohio)
Military Curriculum Materials Dissemination Is...

an activity to increase the accessibility of military developed curriculum materials to vocational and technical educators.

This project, funded by the U.S. Office of Education, includes the identification and acquisition of curriculum materials in print form from the Coast Guard, Air Force, Army, Marine Corps and Navy.

Access to military curriculum materials is provided through a "Joint Memorandum of Understanding" between the U.S. Office of Education and the Department of Defense.

The acquired materials are reviewed by staff and subject matter specialists, and courses deemed applicable to vocational and technical education are selected for dissemination.

The National Center for Research in Vocational Education is the U.S. Office of Education's designated representative to acquire the materials and conduct the project activities.

Project Staff:
Wesley E. Budke, Ph.D., Director
National Center Clearinghouse
Shirley A. Chase, Ph.D.
Project Director

What Materials Are Available?

One hundred twenty courses on microfiche (thirteen in paper form) and descriptions of each have been provided to the vocational Curriculum Coordination Centers and other instructional materials agencies for dissemination.

Course materials include programmed instruction, curriculum outlines, instructor guides, student workbooks and technical manuals.

The 120 courses represent the following sixteen vocational subject areas:

<table>
<thead>
<tr>
<th>Agriculture</th>
<th>Food Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation</td>
<td>Health</td>
</tr>
<tr>
<td>Building & Construction</td>
<td>Heating & Air</td>
</tr>
<tr>
<td>Trades</td>
<td>Machine Shop</td>
</tr>
<tr>
<td>Clerical</td>
<td>Management & Supervision</td>
</tr>
<tr>
<td>Occupations</td>
<td>Meteorology & Navigation</td>
</tr>
<tr>
<td>Communications</td>
<td>Photography</td>
</tr>
<tr>
<td>Drafting</td>
<td>Engine Mechanics</td>
</tr>
<tr>
<td>Electronics</td>
<td>Public Service</td>
</tr>
</tbody>
</table>

The number of courses and the subject areas represented will expand as additional materials with application to vocational and technical education are identified and selected, for dissemination.

How Can These Materials Be Obtained?

Contact the Curriculum Coordination Center in your region for information on obtaining materials (e.g., availability and cost). They will respond to your request directly or refer you to an instructional materials agency closer to you.

CURRICULUM COORDINATION CENTERS

EAST CENTRAL
Rebecca S. Douglass, Director
100 North First Street
Springfield, IL 62777
217/782-0759

MIDWEST
Robert Patton, Director
1515 West Sixth Ave.
Stillwater, OK 74704
405/377-2000

NORTHEAST
Joseph F. Kelly, Ph.D., Director
225 West State Street
Trenton, NJ 08625
609/292-6562

NORTHWEST
William Daniels, Director
Building 17
Airdustrial Park
Olympia, WA 98504
206/753-0879

SOUTHEAST
James F. Shill, Ph.D., Director
Mississippi State University
Drawer DX
Mississippi State, MS 39762
601/325-2510

WESTERN
Lawrence F. H. Zane, Ph.D., Director
1776 University Ave.
Honolulu, HI 96822
808/948-7834
FUNDAMENTALS OF ELECTRICITY

Table of Contents

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Page 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter and Atomic Structure - lesson 1</td>
<td>Page 3</td>
</tr>
<tr>
<td>Introduction to Electricity and Electrical Symbols - lesson 2</td>
<td>Page 67</td>
</tr>
<tr>
<td>Series Circuits & Parallel Circuits - lesson 3</td>
<td>Page 126</td>
</tr>
<tr>
<td>Series - Parallel Circuits and Batteries - lesson 4</td>
<td>Page 193</td>
</tr>
<tr>
<td>Magnetism and Electromagnetism and Electromagnetic Induction - lesson 5</td>
<td>Page 240</td>
</tr>
</tbody>
</table>
Course Description

This introductory course provides learners with a source of study materials on the principles of electricity. Each lesson is divided into two parts, each of which contains criterion objectives and self-tests. The course provides basic coverage of atomic structures and matter; series and parallel circuits, measuring devices; batteries and electromagnetism.

Lesson 1 — Matter and Atomic Structure is divided into two parts, the first dealing with matter, covers matter, volume, density, weight, porosity, inertia, and impentrability. The second part focused on atomic structure covers parts of the atom, atomic number and weight, positive, negative, and neutral charges, and electron direction.

Lesson 2 — Introduction to Electricity and Electrical Symbols is also divided into two parts. The first is an introduction to electricity and covers static electricity, charged bodies, current flow, potential difference, Ohm's Law, and resistance. The second part covers electrical symbols and schematic diagrams.

Lesson 3 — Series Circuits and Parallel Circuits also contains two parts. Part A solves series-circuit problems for current, voltage drop across an individual component, resistance of an individual component, total resistance, and total voltage. This section also covers short circuits, open circuits, and the use of the ohmmeter, ammeter, and voltmeter. Part B solves problems in parallel circuits for total resistance, resistance of an individual branch, total current, current flow of an individual branch, and total voltage. It also covers reciprocals.

Lesson 4 — Series-Parallel Circuits and Batteries. Part A covers series-parallel circuits and is concerned with solving for the unknown values of resistance, current, and voltage in series circuits connected in parallel, and in parallel circuits connected in parallel. Part B covers batteries.

The course is presented in a programmed instruction format. The information is presented in small steps by using frames, and is easy to read and understand. These materials could supplement classroom activities, be used as enrichment materials, and be helpful to the slower learner who needs additional help.
FUNDAMENTALS OF ELECTRICITY

Developed by: United States Marine Corps

Development and Review Dates: Unknown

Occupational Area: Building and Construction

Cost: $6.25
Print Pages: 305

Availability: Military Curriculum Project, The Center for Vocational Education, 1960 Kenny Rd., Columbus, OH 43210

Suggested Background: None

Target Audiences: Grades 10-14

Organization of Materials: Programmed instruction, criterion objectives, self-tests, answers

Type of Instruction: Individualized, self-paced

Type of Materials:

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>No. of Pages</th>
<th>Average Completion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matter and Atomic Structure</td>
<td>64</td>
<td>180 minutes</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to Electricity and Electrical Symbols</td>
<td>59</td>
<td>180 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Series Circuits and Parallel Circuits</td>
<td>68</td>
<td>180 minutes</td>
</tr>
<tr>
<td>4</td>
<td>Series-Parallel Circuits and Batteries</td>
<td>47</td>
<td>180 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Magnetism and Electromagnetism and Electromagnetic Induction</td>
<td>67</td>
<td>170 minutes</td>
</tr>
</tbody>
</table>

Supplementary Materials Required: None

Expires July 1, 1978
STUDY ASSIGNMENT: Information for MCI Students.
Course Introduction.
MCI 11.16a, Fundamentals of Electricity, part A and B of lesson 1.

STUDY NOTES: This course is presented in a form known as PROGRAMMED INSTRUCTION, a method by which you learn the material at your own rate of speed. The subject matter is presented in small steps called FRAMES. You should read each frame very carefully and then answer the question(s) asked. Be sure to keep the answer for the frame you are working on covered up with a slip of paper until you have written your answer. Compare your answer with the correct answer(s) found in the frame below it in the column on the left side. Below we have printed sample frames.

<table>
<thead>
<tr>
<th>FRAME</th>
<th>QUESTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. The universe contains nothing but matter. The sun and a particle of dust are parts of the universe; therefore, each is an example of _______.</td>
</tr>
<tr>
<td>MATTER</td>
<td>2. Everything in the universe is composed of matter. Underline the items below that are matter.</td>
</tr>
<tr>
<td></td>
<td>a. Truth</td>
</tr>
<tr>
<td></td>
<td>b. Rock of Gibraltar</td>
</tr>
<tr>
<td></td>
<td>c. Freedom</td>
</tr>
<tr>
<td></td>
<td>d. Air</td>
</tr>
<tr>
<td></td>
<td>e. A tree</td>
</tr>
</tbody>
</table>

The answer to the first frame, question #1, is found in the frame below, in the column to the left of question #2. In other words, MATTER is the correct answer to question #1. Your answer should be the same or very similar to the given answer. IF IT IS NOT, GO BACK AND READ THE FRAME AGAIN. You SHOULD NOT be worried about time. You SHOULD be concerned about understanding the material given. If you find yourself having difficulty, you should return to where your difficulty began and go through it again. If you follow these instructions carefully, you will find yourself gaining a great deal of knowledge. GOOD LUCK!

SELF TESTS: At the end of each programmed booklet is a short self-test based on the objectives for that booklet; answer these to the best of your ability and check your answers on the pages following the self-test. If necessary, review the lesson until you are satisfied that you have accomplished the lesson objectives.

APPROXIMATE READING TIME: 180 minutes for this lesson.
LESSON 1

PART A

MATTER

OBJECTIVES

1. Given a list of definitions pertaining to the words listed below, match each word to its proper definition.
 a. Matter
 b. Mass
 c. Volume
 d. Density
 e. Weight
 f. Porosity
 g. Inertia
 h. Impenetrability.

2. For a given body of matter, state what happens to its mass if its location, volume, or state is changed.

3. Given the volume and weight of a body, determine its density.

4. State what effect the distance an object is from the surface of the earth has on the weight of the object.

5. State the results of matter having the property of porosity.

6. List three examples of the inertia of objects (balls, aircraft, vehicles) being overcome.

7. List the three states of matter.

8. Select from a list of the characteristics of matter those characteristics pertaining to each state of matter.
INTRODUCTION

Electricity cannot be seen. No one can draw a picture of electricity nor can anyone capture a boxful of it. Electricity and the laws associated with it are theory. You will have to accept this theory, as science has done, before you can understand any of the rules or laws of electricity.
1. The universe contains nothing but matter. The sun and a particle of dust are parts of the universe; therefore, each is an example of ________.

<table>
<thead>
<tr>
<th>MATTER</th>
<th>2. Everything in the universe is composed of matter. Underline the items below that are matter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Truth</td>
<td></td>
</tr>
<tr>
<td>b. Rock of Gibraltar</td>
<td></td>
</tr>
<tr>
<td>c. Freedom</td>
<td></td>
</tr>
<tr>
<td>d. Air</td>
<td></td>
</tr>
<tr>
<td>e. A tree</td>
<td></td>
</tr>
</tbody>
</table>

| b. ROCK OF GIBRALTAR | 3. The chair in which you are sitting, the pencil with which you are writing, and the page of the book you are reading are all examples of ________.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d. AIR</td>
<td></td>
</tr>
<tr>
<td>e. A TREE</td>
<td></td>
</tr>
</tbody>
</table>

| MATTER | 4. Since everything in the universe has weight and occupies space, matter can be defined as anything that has ________ and occupies ________.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td></td>
</tr>
<tr>
<td>SPACE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANYTHING THAT HAS WEIGHT AND OCCUPIES SPACE</th>
<th>5. Define matter. __</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANYTHING THAT HAS WEIGHT AND OCCUPIES SPACE</th>
<th>6. All matter has the property of volume. Since matter has volume, it will have three dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANYTHING THAT HAS WEIGHT AND OCCUPIES SPACE</th>
<th>6. All matter has the property of volume. Since matter has volume, it will have three dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The dimensions that give matter the property of volume are __________, __________, and __________.
7. To have the property of volume, matter must have all three dimensions.

 Underline the illustrations that represent a body having volume.

 ![Illustrations](image)

8. Matter is defined as anything that has weight and occupies space. By occupying space, it will have the property of ______________.

9. Matter also has ______________.

10. The mass of a given body does not change although its state (solid, liquid, gas) changes.

 If a given body is changed from a solid to a liquid, what will happen to the mass of the body?
In the illustration above, the mass of the body change.
(did/did not)

The state of the water (liquid) has now been changed to steam (gas). What has happened to its mass?

Mass is the amount of matter a given body contains.

If 1 GALLON OF WATER is frozen into ICE, then melted into STEAM, then heated to form 1 GALLON OF WATER, the matter has been changed to the three different states. In all three states, the body of matter contained the same
<table>
<thead>
<tr>
<th>MASS</th>
<th>14. The amount of matter a given body contains is its</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS</td>
<td>15. Mass is the ____________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AMOUNT OF MATTER A GIVEN BODY CONTAINS</td>
<td>16. A gallon of paint, which has a certain mass, is carried from the basement to the second floor of a building. The location of the paint has been changed. What has happened to its mass?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>REMAINED UNCHANGED. (OR EQUIVALENT)</td>
<td>17. A baseball hit by a batter to an outfielder would have the same mass when caught as when hit. If this baseball could be hit to the moon, its mass would remain ____________________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCHANGED (OR EQUIVALENT)</td>
<td>18. The mass of a body __________________ affected by changing its location. (is/is not)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>IS NOT</td>
<td>19. When the state or location of a given body is changed, the mass will remain __________________</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTANT (OR EQUIVALENT)</td>
<td>20. When the volume of a given body changes, the mass of that body remains the same.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the illustration above, the mass of the sponge remains constant, although the volume has (increased/decreased)
| **21.** |
| **A** MASS | **B** MASS |
| ![Diagram](image) | In item A, the piston is in; in item B, it is out. Going from illustration A to illustration B, the volume has **DECREASED**%, while mass has **REMAINED CONSTANT**%. |
| **22.** Define mass. |
| ![Diagram](image) | **THE AMOUNT OF MATTER A GIVEN BODY CONTAINS** remains constant. |
| **23.** |
| ![Diagram](image) | Volume is the space mass occupies. In the illustrations above, the bucket contains **2 CUBIC FEET OF WATER** and there are **3 CUBIC YARDS OF ICE**. These are measurements of the volume of the two masses. Volume is always measured in units. |
| **24.** |
| ![Diagram](image) | The space mass occupies is its **VOLUME**. |
| **25.** |
| ![Diagram](image) | A tank contains 2 cubic feet of gas; this is a measure of the **VOLUME** of the gas. |
26. Shade the volume of the mass in each of the following:

- A: Water
- B: Board
- C: Champagne
- D: Steel

27. Volume is the space that mass occupies.

28. The density of a body is the weight per cubic unit of its volume. For example, the density of fresh water is 62.5 pounds per cubic foot.

The density of a body is found by dividing its weight by its volume:

\[\text{Density} = \frac{\text{Weight}}{\text{Volume}} \text{ or } D = \frac{W}{V} \]

Use the formula above to solve the following problem.

Two cubic feet of salt water has a weight of 128 pounds. What is the density of salt water?

NOTE: Density must be expressed in weight per cubic unit.
29. Dividing the weight of a body by its volume will give you the \(\frac{W}{V} \) of that body.

\[D = \frac{128}{2} \]

\[D = \text{64 POUNDS PER CUBIC FOOT} \]

Density is the weight of a unit volume of matter. Iron has a greater density than wood. This means that one cubic foot of iron weighs more than one cubic foot of wood. The more matter (mass) there is in a given volume of a substance, the greater the density of the material.

Shown below are some examples of the density of different materials. Circle the item that has the greatest density.

DENSITIES IN POUNDS PER CUBIC FOOT

- Lead: 705
- Iron: 475
- Maple: 45
- Cork: 15

31. A tank with a volume of 32 cubic feet is filled with a fluid weighing 1280 pounds. What is the density of this fluid? **NOTE:** Density must be expressed in weight per cubic unit.
32. When volume and density are known, the total weight of a body can be found by transposing the formula in this manner:

\[
\text{WEIGHT} = \text{DENSITY} \times \text{VOLUME} \\
(W = D \times V)
\]

Solve this problem.

A tank contains 10 cubic feet of salt water. What is the total weight of the salt water?

NOTE: The density of salt water is 40 pounds per cubic foot.

\[
W = D \times V \\
W = 64 \times 10 \\
W = 640 \text{ POUNDS}
\]

33. A tank with a volume of 100 cubic feet is filled with a gas which has a density of 4 pounds per cubic foot. What will be the density of this gas if it is compressed to a volume of 2 cubic feet?

To solve for the new density, follow the steps below and fill in all blanks.

STEP (1) Find the total weight of the gas.

\[
W = D \times V \\
W = 4 \times 100 \\
W = \underline{400} \text{ pounds}
\]

STEP (2) To determine the new density, divide the weight of the gas by its new volume (2 cubic feet).

\[
D = \frac{W}{V} \\
D = \frac{400}{2} \\
D = \underline{200} \text{ pounds per cubic foot}
\]

Circle the number beside the statement that is correct for the problem above.

a. As volume decreased, density decreased.

b. As volume decreased, density increased.

c. As volume decreased, density remained the same.
A gas with a density of 5 pounds per cubic foot has a volume of 20 cubic feet, as in item A above. What is the density of the gas after it has been compressed as in item B?

As the bottle is filled with gas, the mass will increase but the volume will remain the same, while the weight and density will (increase/decrease).
<table>
<thead>
<tr>
<th>INCREASE</th>
<th>36. Two cubic feet of mercury have a weight of 1692 pounds. What is the density of mercury?</th>
</tr>
</thead>
<tbody>
<tr>
<td>846 POUNDS PER CUBIC FOOT</td>
<td>37. Place a check mark by the correct statement.</td>
</tr>
<tr>
<td></td>
<td>a. Density is the amount of mass a given body contains, and the formula for finding density is (D = \frac{W}{V}).</td>
</tr>
<tr>
<td></td>
<td>b. Density is weight per unit volume, and the formula for finding density is (D = \frac{W}{V}).</td>
</tr>
<tr>
<td></td>
<td>c. Density is weight per unit volume, and the formula for finding density is (W = D \times V).</td>
</tr>
<tr>
<td>b.</td>
<td>38. The gravitational pull of the earth is six times greater than the gravitational pull of the moon.</td>
</tr>
</tbody>
</table>

How much will the man on the moon weigh if he is moved from the moon to the earth? ___ pounds
39. An increase in mass will cause an increase in gravitational pull.

In the illustration above, the mass of the man has __________. This has caused a(n) __________ in his weight.
40. Weight is a measure of the effect of gravity on a body.

41. The attractive force of the earth on matter is gravity. This attractive force decreases as the distance from the earth's surface increases; therefore, as a body increases its distance from the earth, its weight will __________.
Compare the weight of the body (car) at sea level with its weight on top of the mountain. At which point does it weigh the more? __________

SEA LEVEL

43. Weight is a measure of __________

THE EFFECT OF GRAVITY ON A BODY

44. Another property of matter is universal attraction. This means that all matter attracts all other matter.

 All matter attracts all other matter. This is the property known as __________
45. Another property of matter is porosity.

Some matter is more porous than others.

In the illustration above, circle the matter that will absorb the smallest amount of water.

In the illustration above, the smoke will travel through the cloth because it has more space between its particles. The smoke will not travel through the wood because it has less ____________
All matter has the property of porosity.
We normally think of steel, or even wood, as being very solid; but water, under high pressure, can be forced through their minute openings because they have the property of __________.

"Mama, get the mop, because these walls have the property of __________."
Porosity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Two substances can be combined and occupy less space than both would occupy separately.</td>
</tr>
</tbody>
</table>

Diagram:

1. Bucket of sand
2. Bucket of gravel
3. 2-bucket container of sand and gravel combined

Question:

What does the illustration above show is possible since matter has the property of porosity?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>II.</td>
<td>Two substances can be combined and occupy less space than both occupied separately.</td>
</tr>
</tbody>
</table>

Diagram:

1. Water
2. Sand
3. Combined

Question:

What makes it possible to pour a bottle of water into a bucket of sand without running it over?

Note:

1.16

Isn 1; p. 19
<table>
<thead>
<tr>
<th>COMBINED POROSITY</th>
<th>51. All matter has space between its particles (molecules). This is what gives matter the property of porosity.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete the statement below concerning the above demonstration.</td>
</tr>
<tr>
<td></td>
<td>Porosity permits two substances to be combined and occupy less than both occupy.</td>
</tr>
<tr>
<td>SPACE SEPARATELY</td>
<td>52. What gives matter the property of porosity?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>THE SPACE BETWEEN THE PARTICLES OF MATTER</td>
<td>53. Porosity permits some matter to be compressed, easier than others. Gas is matter that can be easily compressed. What property of matter permits this?</td>
</tr>
<tr>
<td>POROSITY</td>
<td>54. Circle the matter which is the easiest to compress.</td>
</tr>
</tbody>
</table>

11.16

Isn 1; p. 20
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What property of matter permitted the large volume of air to be taken into the cylinder and be compressed?</td>
<td>Porosity</td>
</tr>
<tr>
<td>The amount of matter a given body contains is its</td>
<td>Mass</td>
</tr>
<tr>
<td>Which item above would require more force to move it (overcome its inertia)?</td>
<td>A: Steel, B: Porous</td>
</tr>
<tr>
<td>Which truck would require more force to overcome its inertia and stop it?</td>
<td>A: Heavy, B: Light</td>
</tr>
<tr>
<td>A</td>
<td>59. The more mass, the more force required to overcome its __________.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>INERTIA</td>
<td>60. The property of matter that requires an outside force to be applied to stop or start that matter is inertia. Inertia is the property of matter that requires an __________ to be applied to stop or start that matter.</td>
</tr>
<tr>
<td>OUTSIDE FORCE</td>
<td>61. A body at rest will remain at rest unless acted upon by an outside force. A body in motion will remain in motion unless acted upon by an outside force.</td>
</tr>
</tbody>
</table>

![Diagram](image)

What is required to stop the above man? __________

What property of matter requires this? __________
What two devices are being used to overcome the inertia of the above aircraft?

a. CATAPULT

b. ARRESTING HOOK

Well, the property of _______ has done it again."
What property of matter did the plane captain overlook?

64. Matter cannot start or _____ itself.

65. All matter possesses the property of _____________.

66. The two vehicles could not occupy the same space at the same time because they possess the property of _____________.

INERTIA

LOOSE TOOLS

STOP
As the nail is driven into the wood, illustration A, the grains of wood will move aside. When the irregular-shaped object is placed in the container of fluid, illustration B, the fluid will rise an amount equal to the volume of the object. This is due to the fact that no two objects can occupy the same space at the same time.

What is the volume of the irregular-shaped object?

CUBIC INCHES

<table>
<thead>
<tr>
<th>SPACE</th>
<th>68. Impenetrability is the property of matter that will allow no two objects to occupy the same space at the same time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 CUBIC INCHES</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCCUPY THE SAME SPACE AT THE SAME TIME</th>
<th>69. The states of matter are SOLID, LIQUID, and GAS. There are (number) states of matter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>THREE</td>
<td>70. Matter may be a LIQUID. WATER</td>
</tr>
</tbody>
</table>
A fluid is matter that flows easily and requires a container in which to store it or keep it confined.

Liquid is a \underline{\textit{volume / shape}} container in which it is placed (see illustration).

Circle the letter under the illustration(s) of a liquid.

<table>
<thead>
<tr>
<th>LIQUID</th>
<th>71.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

| A D |

72. A fluid is matter that flows easily and requires a container in which to store it or keep it confined.

73. Liquid will assume the \underline{\textit{(volume / shape)}} of the container in which it is placed (see illustration).
A liquid, as indicated above, will not assume the shape of a larger container.

Select the illustration(s) above which correctly represent(s) the transfer of a liquid from one container to another.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>76. A liquid will assume the ___ of any container but will not assume the ___</td>
<td></td>
</tr>
<tr>
<td>SHAPE</td>
<td>VOLUME</td>
</tr>
<tr>
<td>77.</td>
<td>![Diagram of liquid and gas]</td>
</tr>
<tr>
<td>As illustrated above, a liquid can be changed from a liquid to a ___</td>
<td></td>
</tr>
<tr>
<td>GAS</td>
<td>SOLID</td>
</tr>
<tr>
<td>78.</td>
<td>![Diagram of boy and frozen water]</td>
</tr>
<tr>
<td>A liquid can be changed from a liquid to a ___</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>Liquids can be changed to a ___ or a ___</td>
</tr>
</tbody>
</table>

11.16
Isn 1; p. 28
80. A liquid, for all practical purposes, cannot be compressed.

When piston A moves 2 inches, piston B will move 2 inches. This is because liquids cannot be

81. Why will the person in Illustration A get better braking action than the one in Illustration B?
82. Select the characteristics of a liquid.

a. Can be compressed.
b. Is a fluid.
c. Can be changed to a gas or a solid.
d. Will assume the volume of any container.
e. Will assume the shape of its container.

83. Matter is anything that has weight and occupies space. Gas has weight and occupies space. Therefore, gas is

84. Matter

Circle the letter under the illustrations representing matter as a gas:

A D

85. A fluid flows easily and requires a container in which to store it; therefore, both liquids and gases are
86. The molecules (particles) of a gas move freely as compared to those of a solid or liquid. All matter has movement of its molecules (particles); but, in comparison, the molecules of a ____ will move more freely than those of a solid or a liquid.

87. What characteristic of a gas allows the molecules (particles) of the perfume to fill the entire room?

88. Gas will assume the shape and volume of any container in which it is placed.

Circle the illustration above that represents the transfer of a gas from one container to another.
What will happen to the shape and volume of the gas when it is released from the bottle into the life raft?

It will assume the shape and volume of the life raft.

Mr. Dilbert may soon be pushing up daisies because a gas will assume the **shape** and **volume** of its container.
The space between the particles (molecules) of matter gives it the property of porosity. Some matter may be compressed because of the property of porosity.

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POROSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLID</th>
<th>LIQUID</th>
<th>GAS</th>
</tr>
</thead>
</table>

If you could see the molecules (particles) in matter, as indicated above, the molecules would be very far apart in the solid phase.

<table>
<thead>
<tr>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

A gas can be compressed.

<table>
<thead>
<tr>
<th>CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The illustrations indicate that a gas can be 10 cubic feet.

11.16

1st p. 33
<table>
<thead>
<tr>
<th>COMPRESSED</th>
<th>95. Select the characteristics of a gas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>May be compressed.</td>
</tr>
<tr>
<td>b.</td>
<td>Will assume the shape of its container.</td>
</tr>
<tr>
<td>c.</td>
<td>Has molecules that are solidly fixed.</td>
</tr>
<tr>
<td>d.</td>
<td>Will assume the volume of any container.</td>
</tr>
<tr>
<td>e.</td>
<td>Does not have weight.</td>
</tr>
<tr>
<td>f.</td>
<td>Is a fluid.</td>
</tr>
</tbody>
</table>

| a., b., d., f: | 96. There are three states of matter. |

- **WATER**
 - Matter may be a **solid**.

- **OXYGEN**
 - Matter may be a **gas**.

- **STEEL**
 - Matter may be a **solid**.
<table>
<thead>
<tr>
<th>LIQUID</th>
<th>GAS</th>
<th>SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circle the illustrations above that represent examples of solids.

Illustration A: When a liquid is moved from one container to another, it will assume the shape of the new container but not its volume.

Illustration B: When a gas is moved from one container to another, it will assume the shape and volume of the new container.

Illustration C: When a solid is moved from one place to another, it will maintain the same...
99. Solids have a definite shape. The shape of a solid is not changed when moved from one place to another. This is because the molecules of solids are close together and are more fixed.

A solid differs from a liquid or a gas in that the molecules are _________ _________ and are close _________.

As illustrated above, a solid moved from SEA LEVEL to the top of a MOUNTAIN and then to the bottom of a LAKE will retain its shape and volume because its molecules are _________ _________.

101. Select the characteristics of a solid.

a. Its shape is not changed when moved from one container to another.

b. It can be compressed.

c. Its particles are more fixed and are very close together.
List the three states of matter in the blanks below. Below the blanks is a list of characteristics that pertain to these states when they are moved from one container to another. Place the number(s) found beside each characteristic under the state of matter to which it pertains.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a.</td>
<td>b.</td>
</tr>
<tr>
<td>a.</td>
<td>SOLID</td>
<td>LIQUID</td>
</tr>
<tr>
<td>b.</td>
<td>(3)</td>
<td>(1)</td>
</tr>
<tr>
<td>c.</td>
<td>GAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Will assume the shape of its container.
(2) Will assume the volume of any container.
(3) Will maintain its shape and volume.

11.16
1sn 1; p. 37
LESSON 1

PART A
MATTER

SELF-TEST

1. Match each word in column A with its correct definition in column B by placing the letter found beside each word in the blank beside the appropriate definition.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Matter</td>
<td>That property of matter requiring an outside force to start or stop it.</td>
</tr>
<tr>
<td>b. Mass</td>
<td>Anything that has weight and occupies space.</td>
</tr>
<tr>
<td>c. Volume</td>
<td>No two bodies can occupy the same space at the same time.</td>
</tr>
<tr>
<td>d. Density</td>
<td>It is the space that mass occupies.</td>
</tr>
<tr>
<td>e. Weight</td>
<td>The amount of matter a given body contains.</td>
</tr>
<tr>
<td>f. Porosity</td>
<td>Weight per unit volume.</td>
</tr>
<tr>
<td>g. Inertia</td>
<td>A property of matter that specifies there is space between the particles of matter.</td>
</tr>
<tr>
<td>h. Impenetrability</td>
<td>A measure of the effect of gravity on a body.</td>
</tr>
</tbody>
</table>

2. Will the mass of a given body change if it is moved from sea level to 35,000 feet?
 a. decrease and its mass will decrease.
 b. increase and its mass will increase.
 c. increase and its mass will remain constant.

3. If one gallon of water is changed to steam, its volume will
 a. decrease and its mass will decrease.
 b. increase and its mass will increase.
 c. increase and its mass will remain constant.

4. Which of the following is a measure of volume?
 a. Square units
 b. Cubic units
 c. Linear units
5. What is the formula for finding the density of a body?

6. A body weighs 2400 pounds and has a volume of 24 cubic feet; what is its density?

7. Ten cubic feet of gas with a density of 5 pounds per cubic foot are compressed to 2 cubic feet; what will the new density be?

8. As an object's distance from the earth's surface is increased, the weight of that object will ____________

9. At which location will a given body weigh the more?
 a. On top of a mountain.
 b. At sea level.
 c. Weight would be the same at both a and b.

10. What property allows some matter to be compressed easier than others?

11. Give an example proving that matter has the property of porosity.

12. Inertia must be overcome in order to stop or start the movement of matter.
 What is required to do this? ________________

13. Give an example proving that matter has the property of impenetrability.
14. List three examples of the inertia of objects (balls, aircraft, vehicles) being overcome.

a.
b.
c.

15. List the three states of matter in the blanks below. To the right is a list of characteristics that pertain to these states. Place the number found beside each characteristic under the state of matter to which it pertains. Some characteristics may pertain to more than one state.

a. b. c.

(1) Is a fluid.
(2) Will assume the shape of its container.
(3) May be compressed.
(4) Will assume the volume of any container.
(5) Shape is not changed when moved from one container to another.
(6) Particles are more fixed and very close together.
LESSON 1, PART A
MATTER - SELF TEST ANSWERS

1. g, a, h, c, b, d, f, e

2. No

3. c

4. b

5. DENSITY = \frac{WEIGHT}{VOLUME}

6. \[D = \frac{W}{V} = \frac{2400 \text{ lbs}}{24 \text{ cu ft}} = 100 \text{ lbs/cu ft} \]

7. STEP 1. \[W = D \times V = 5 \text{ lbs/cu ft} \times 10 \text{ cu ft} = 50 \text{ lbs} \]
 STEP 2. \[D = \frac{W}{V} = \frac{50 \text{ lbs}}{2 \text{ cu ft}} = 25 \text{ lbs/cu ft} \]

8. decrease

9. b

10. porosity

11. combining a bucket of sand and one of rocks into a third pail and occupying less volume than the rocks and the sand did previously or any other situation which shows or proves the existence of space in between particles

12. force

13. a nail pushing aside fibers as it goes into wood,
 a pool ball knocking another ball away so it can occupy its space,
 or any other example which shows that two things cannot occupy the same place

14. a. hitting the ball with a bat
 b. the arresting gear on an aircraft carrier stopping aircraft
 c. a car accelerating from a stop

15. a. solid - (5), (6)
 b. liquid - (1), (2)
 c. gas - (1), (2), (3), (4)

GO RIGHT ON TO LESSON 1, PART B-ATOMIC STRUCTURE

11. 16
 Isn 1; p. 41
FUNDAMENTALS OF ELECTRICITY

LESSON 1

PART B

ATOMIC STRUCTURE

OBJECTIVES

1. Given the terms compound, molecule, atom, mixture, ion, nucleus, and a list of the definitions of these terms, match each term to its definition.

2. Given an illustration of an atom, label its three parts.

3. Given an illustration of an atom, give the atomic number and the atomic weight of that atom.

4. Given some illustrations of atoms, label each as having a positive, negative, or neutral charge.

5. State the name given to electrons that have been removed from their orbit about an atom.

6. Compare a conductor and an insulator in relation to the number of free electrons that each contains.

7. State how electrical energy is transferred through a conductor.

8. State the direction the electrons flow when an atom with a negative charge is contacted by an atom with a positive charge.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Everything in the universe that has weight and occupies space is matter. Matter can be broken down into elements—substances which cannot be altered by chemical means.</td>
</tr>
<tr>
<td></td>
<td>NO RESPONSE REQUIRED</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. There are over 100 known elements. Most are natural; a few are man-made. Some natural elements are oxygen, gold, tin, and carbon. Hydrogen, silver, and lead are also examples of natural elements.</td>
</tr>
<tr>
<td>ELEMENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Matter exists either as a natural element or as a chemical combination of two or more different elements. This combination is called a compound. A compound can be divided into two or more different elements.</td>
</tr>
<tr>
<td>ELEMENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Some familiar examples of compounds are water, a combination of hydrogen and oxygen, and salt, a combination of sodium and chlorine. Because water and salt can be divided into different elements, they are compounds.</td>
</tr>
<tr>
<td>COMPOUNDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. When compounds are chemically changed to form new compounds or when they are broken down into their original elements, the action is called chemical action. When sweet milk is chemically changed to sour milk, the action is called chemical action.</td>
</tr>
<tr>
<td>CHEMICAL ACTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. When sulfuric acid, a compound, reacts with the compound lead peroxide in a battery, lead sulfate is formed. This action between two compounds to form a new compound is called chemical action.</td>
</tr>
<tr>
<td>CHEMICAL ACTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. The elements hydrogen and oxygen are gases. When properly combined chemically, these elements will form the compound water. Water is a liquid/gas.</td>
</tr>
</tbody>
</table>

11.16

isn 1; p. 48
LIQUID	8. A compound will possess properties different from the properties of the elements used to make the compound. When two or more elements are combined chemically, a compound is formed which has different _________ than its elements.
PROPERTIES	9. Sodium, an element, will ignite on contact with water, while the element chlorine is poisonous. A chemical combination of sodium and chlorine forms the compound salt, which neither ignites upon contact with water nor is it poisonous. This is an example showing that a compound has different than the properties of the individual _________ making up that compound.
PROPERTIES	10. The properties of a compound will depend on the chemical combination of its elements. Some examples are as follows:
ELEMENTS	a. Two parts hydrogen and one part oxygen form the compound water (H₂O).
ELEMENTS	b. Two parts hydrogen and two parts oxygen form the compound hydrogen peroxide (H₂O₂).
ELEMENTS	c. One part hydrogen, one part nitrogen, and three parts oxygen form the compound nitric acid (HNO₃). These three compounds have different properties because of the difference in the chemical combination of their _______.
CHEMICAL	11. When two or more different elements are chemically combined, a compound is formed. The properties of the compound will depend on the _______ combination of its elements.
CHEMICAL	12. When the elements hydrogen, sulfur, and oxygen are properly combined chemically, sulfuric acid (H₂SO₄) is formed. A chemical combination of two or more different elements forms a _______.
COMPOUND	13. Select the definition of a compound.
---	---
	a. A combination of elements.
	b. A chemical combination of two or more different elements.
	c. A physical combination of two or more different elements.
b.	14. When compounds or elements are combined and no chemical action takes place, a mixture is formed. The compounds water (H₂O) and sulfuric acid (H₂SO₄), as used in a battery, do not chemically combine. Therefore, they form a __________.
MIXTURE	15. When the elements aluminum, nickel, cobalt, and iron are combined, ALNICO is formed. ALNICO is a mixture; therefore, the elements do not lose their original characteristics. ALNICO is used to make magnets, and is a mixture composed of different __________.
ELEMENTS	16. When the compounds salt and fresh water are mixed, the result is salt water. By distillation, they can easily be separated and once again become salt and fresh water. By this example, we can see that compounds, when mixed, ________ their original characteristics.
	retain/lose
RETAIN	17. ALNICO is a mixture of elements, while salt water is a mixture of compounds. A mixture can be composed of __________ or __________.
ELEMENTS COMPOUNDS	18. A mixture is a combination of elements or compounds in which the elements or compounds do not lose their original characteristics. ALNICO and salt water can be separated and their elements or compounds will not lose their __________.

Isn 1; p. 45
Characteristics

By taking one drop of the compound water and dividing it into smaller and smaller parts, as shown, the smallest part of water we can reduce it to is a **molecule**.

The smallest particle of a compound, which has all the properties of that compound, is a molecule. The smallest particle that the paper on which you are writing could be broken down to and still be paper is a **molecule**.

Molecule

20. The smallest particle of a compound, which has all the properties of that compound, is a molecule. The smallest particle that the paper on which you are writing could be broken down to and still be paper is a **molecule**.

21. The smallest particle of a compound, which has all the properties of that compound, is a molecule.

Illustration A shows a molecule of salt. Illustration B shows the molecule further divided into atoms. Do the substances in illustration B still have the properties of salt?
<table>
<thead>
<tr>
<th>NO</th>
<th>22. Select the definition of a molecule.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. The smallest particle of a compound.</td>
</tr>
<tr>
<td></td>
<td>b. The smallest particle of a compound which has all the properties of that compound.</td>
</tr>
<tr>
<td></td>
<td>c. The smallest particle of any substance.</td>
</tr>
</tbody>
</table>

| 23. | The illustration above shows that a water molecule is made up of an oxygen atom and hydrogen atoms. |
| | The illustration above shows that a water molecule is made up of \(\text{number} \) oxygen atoms and \(\text{number} \) hydrogen atoms. |

| 24. | A molecule is composed of two or more atoms. If a substance is divided down to a molecule, the molecule will be made up of two or more ______. |

| 25. | Atoms are the basic building material of all matter. All matter is made up of ______. |

| 26. | The atom is the smallest particle of an element. When an element is reduced to its smallest particle, that particle is an ______. |
Each of the above represents the smallest particle of an

ELEMENT

28. Match the definitions in column B with their proper terms in column A. Place the number before the definition in the space beside the proper term.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>1. The smallest particle of an element.</td>
</tr>
<tr>
<td>b.</td>
<td>2. A chemical combination of two or more different elements.</td>
</tr>
<tr>
<td>c.</td>
<td>3. The smallest particle of a compound which has all the properties of that compound.</td>
</tr>
<tr>
<td>d.</td>
<td>4. A combination of elements or compounds in which the elements or compounds do not lose their original characteristics.</td>
</tr>
</tbody>
</table>

29. The smallest particle of an element is an atom. The atom cannot be seen by the usual microscopic instruments. Although they cannot be seen, we know there are many kinds of

30. The number of protons, neutrons, and electrons will vary with each kind of atom. The oxygen atom and the helium atom have different numbers of

11.16

Isn 1; p. 48
The illustration above is an example showing that the numbers of protons (+), electrons (−), and neutrons (N) vary with the different kinds of atoms. Compare the number of protons (+), electrons (−), and neutrons (N) of the atoms above. Place the number of each in the space provided.

HELIUM

(+) Protons
(N) Neutrons
(-) Electrons

CARBON

(+) Protons
(N) Neutrons
(-) Electrons

For the remainder of this program, instead of showing each individual neutron and proton in an atom, the total number of each will be shown.

EXAMPLE: (6+) will indicate 6 protons and (6N) will indicate 6 neutrons.

32. Each of the different atoms is identified by an atomic number (1 through 103). The number of protons in an atom determines its atomic number.

A. Helium

B. Carbon

C. Nitrogen

What is the atomic number of each of the above atoms?

A. __________ B. __________ C. __________
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>33. Lead is much heavier than oxygen. A lead atom is heavier than an oxygen atom because it contains more protons (+) and neutrons (N). The atomic weight of an atom is determined by adding the number of protons (+) and neutrons (N) contained in the center (nucleus) of the atom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 7</td>
<td>B. 26</td>
<td>C. 13</td>
</tr>
</tbody>
</table>

A. Oxygen.

B. Lead.

C. Silver.

What is the atomic weight of the above atoms?

A. _______ B. _______ C. _______

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>34. What are the atomic number and atomic weight of each atom illustrated below?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 16</td>
<td>B. 207</td>
<td>C. 107</td>
</tr>
</tbody>
</table>

A. Carbon.

B. Chlorine.

C. Cobalt.

<table>
<thead>
<tr>
<th>Atomic number</th>
<th>Atomic number</th>
<th>Atomic number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6+ 6N</td>
<td>17+ 18N</td>
<td>27+ 31N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic weight</th>
<th>Atomic weight</th>
<th>Atomic weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 6 12</td>
<td>B. 17 .33</td>
<td>C. 27 58</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>How are the atomic number and atomic weight determined?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Atomic number</td>
<td>b. Atomic weight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. THE NUMBER OF PROTONS</th>
<th>b. THE NUMBER OF PROTONS AND NEUTRONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>36. The atom is composed of three particles. What are they?</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of atom with electron, proton, and neutron labeled](image)

37. The center of the atom is the NUCLEUS.

<table>
<thead>
<tr>
<th>NUCLEUS</th>
<th>38. The center of the atom, which contains the protons and neutrons, is the</th>
</tr>
</thead>
</table>

11.18

lsn 1; p. 51
<table>
<thead>
<tr>
<th>NUCLEUS</th>
<th>39.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw an arrow pointing to the nucleus of this atom.

<table>
<thead>
<tr>
<th></th>
<th>40. The protons of an atom have a positive charge and are identified by a plus (+) sign. A proton has a ____________ charge.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41. Protons are identified by a () sign.</td>
</tr>
<tr>
<td></td>
<td>42. The neutrons of an atom have a neutral charge (no charge) and are identified by an (N) sign. A neutron has a ____________ charge.</td>
</tr>
<tr>
<td></td>
<td>43. Neutrons are identified by an () sign.</td>
</tr>
<tr>
<td></td>
<td>44. The electrons of an atom have a negative charge and are identified by a minus (-) sign. An electron has a ____________ charge.</td>
</tr>
<tr>
<td></td>
<td>45. Electrons are identified by a () sign.</td>
</tr>
</tbody>
</table>

11.16
46. Electrons are in orbit about the nucleus of an atom, and they can be in different orbital paths. In the atom below, how many electrons are orbiting about the nucleus?

47. The electrons are in orbit about the _ of an atom.

48. Label the three particles of the atom below.

A:

B:

C:

The center of an atom is the _
49. The nucleus of an atom has an attractive force for its electrons. The strength of this attractive force will vary with each kind of atom. Between the nucleus and the electrons of an atom, there is an _________________.

50. The attractive force between the nucleus of the copper atom, a conductor, and its outer electrons is less than the attractive force between the nucleus of the helium atom, an insulator, and its outer electrons. Which atom, copper or helium, would more readily give up its outer electrons?

51. In the atoms of good electrical conductors, silver, copper, and gold, the outer electrons are readily freed from the attractive force of their _________________.

52. A good conductor has atoms with loosely held _________________. A copper atom has loosely held _________________.

53. Electrons that are loosely bound (held) to an atom can be moved out of orbit easily. Electrons of a gold atom can be moved out of orbit easily because they are _________________.

54. Free Electron

Copper atoms.

When a loosely bound electron is removed from orbit, it is called a _________________.

(see illustration)
<table>
<thead>
<tr>
<th>FREE ELECTRON</th>
<th>55. Electrons removed from their orbit about an atom are called __________.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE ELECTRONS</td>
<td>56. An insulator, such as rubber, has very few free electrons and will not conduct electricity. A good insulator contains a small number of __________.</td>
</tr>
<tr>
<td>FREE ELECTRONS</td>
<td>57. Materials with a small number of free electrons are good __________.</td>
</tr>
<tr>
<td>INSULATORS</td>
<td>58. The controlled movement of free electrons through a conductor is electrical current flow. In comparison to an insulator, a conductor has a large number of __________.</td>
</tr>
<tr>
<td>FREE ELECTRONS</td>
<td>59. Materials having a large number of free electrons are good __________.</td>
</tr>
<tr>
<td>CONDUCTORS</td>
<td>60. Electrons removed from their orbit are free electrons. How does a good conductor compare to a good insulator with respect to the number of free electrons in each?</td>
</tr>
<tr>
<td></td>
<td>a. Conductor __________.</td>
</tr>
<tr>
<td></td>
<td>b. Insulator __________.</td>
</tr>
<tr>
<td>a. HAS A LARGE NUMBER</td>
<td>61. Some materials, carbon, germanium, and silicon, are considered semiconductors. This is because they conduct less current than metal conductors but more than insulators.</td>
</tr>
<tr>
<td>b. HAS A SMALL NUMBER</td>
<td>Materials that conduct less current than metal conductors but more current than insulators are __________.</td>
</tr>
</tbody>
</table>
SEMICONDUCTORS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>62. In a conductor, free electrons are continually moving from one atom to another. By controlling the movement of these free electrons in one general direction, electrical energy is transferred through a conductor. Electrical energy is transferred through a conductor by the movement of free electrons from atom to atom.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FRE ELECTRONS</td>
<td>ATOM</td>
</tr>
<tr>
<td>63. Electrical energy is transferred through a conductor when free electrons are moved from atom to atom.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>ATOM</td>
</tr>
<tr>
<td>64. In the illustration above, the free electrons are moving from atom to atom through the conductor in one general direction. The result of this will be a transfer of electrical energy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL ENERGY</td>
<td></td>
</tr>
<tr>
<td>65. How is electrical energy transferred through a conductor? The result of this will be a transfer of electrical energy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BY THE MOVEMENT OF FREE ELECTRONS FROM ATOM TO ATOM.</td>
<td></td>
</tr>
<tr>
<td>66. The transfer of electrical energy is possible because an atom has a tendency to stay electrically neutral, that is, to have an equal number of protons and electrons. Which atom below is electrically neutral?</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram showing atoms A, B, C with 8+6N and 6+6N configurations]
67. The atoms of a conductor normally stay electrically neutral because of the random movement of free electrons. As an atom gains an electron, it will give off another electron in order to be electrically neutral. How many electrons must this atom give off in order to be electrically neutral?

<table>
<thead>
<tr>
<th>ONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>68. An electrically neutral atom is an atom that has an equal number of _______ and _______.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROTONS ELECTRONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>69. An outside source such as a battery can be used to add additional electrons to a conductor. When these excess electrons are added, a chain reaction of moving electrons through the conductor is set up because the atoms tend to stay electrically _______.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEUTRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>70. If an outside force adds one million electrons to one end of a conductor, then one million electrons must come out the other end of the conductor. The same number of electrons that enter a conductor must leave that conductor. How many electrons must leave the conductor below?</td>
</tr>
</tbody>
</table>

![Diagram of a battery with 100 electrons entering a conductor]
71. Select the electrically neutral atom.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

A

72. An atom that has more electrons than protons has an excess of electrons. An atom with fewer electrons than protons has a deficiency of __________.

73. An atom that has an excess of electrons is an electrically charged atom. An atom that has a deficiency of electrons is also an __________ charged atom.

74. An electrically charged atom is known as an ion. An ion has an __________ or a __________ of electrons.

75. Which of these atoms are ions? __________

A

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

A

EXCESS

DEFICIENCY

11.16

1sm.1; p. 53
<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>76. An ion is an atom having an _________ or a _________ of electrons.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXCESS DEFICIENCY</th>
<th>77. Match the definitions in column B with their terms in column A. Place the number before the definition in the blank beside the proper term.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Mixture</td>
<td>2. A chemical combination of two or more different elements.</td>
</tr>
<tr>
<td>c. Molecule</td>
<td>3. An atom having an excess or a deficiency of electrons.</td>
</tr>
<tr>
<td>d. Atom</td>
<td>4. A combination of elements or compounds in which the elements or compounds do not lose their original characteristics.</td>
</tr>
<tr>
<td>e. Nucleus</td>
<td>5. The center of the atom which contains the protons and neutrons.</td>
</tr>
<tr>
<td>f. Ion</td>
<td>6. The smallest particle of a compound which has all the properties of that compound.</td>
</tr>
</tbody>
</table>

| a. 2 |
| b. 4 |
| c. 6 |
| d. 1 |
| e. 5 |
| f. 3 |

78. Atoms that have more electrons than protons have a negative charge. A negatively charged atom has more _________ than _________.

11.16
Jan 1; p. 59
<table>
<thead>
<tr>
<th>ELECTRONS</th>
<th>PROTONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

79. Which of the atoms below has a negative charge?

80. An atom that has fewer electrons than protons has a positive charge. A positively charged atom has fewer ________ than ________.

<table>
<thead>
<tr>
<th>ELECTRONS</th>
<th>PROTONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

81. Which of the atoms below has a positive charge?

82. Label the atoms below as having a positive, negative, or neutral charge.

11.16

LEN 1; P. 60
A. NEUTRAL	83. When a negatively charged atom is contacted by a positively charged atom, the electrons flow from the negative atom to the positive atom. When two atoms of opposite charges contact each other, the electron flow is from ________ to _________.
B. POSITIVE	
C. NEGATIVE	
NEGATIVE	84. Which direction will the electrons flow between the two atoms below? ________
POSITIVE	a. From atom 1 to atom 2.
	b. From atom 2 to atom 1.
	![Diagram](attachment:image.png)
a.	85. When a negatively charged atom is contacted by a positively charged atom, electrons will flow from the ________ atom to the ________ atom.

11.16

lsn 1; p. 61
PART B
ATOMIC STRUCTURE

SELF-TEST

1. Match the definitions in column B with their terms in column A. Place the number before the definition in the blank space beside the proper term.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Mixture</td>
<td>2. A chemical combination of two or more</td>
</tr>
<tr>
<td></td>
<td>different elements.</td>
</tr>
<tr>
<td>c. Molecule</td>
<td>3. An atom having an excess or a deficiency of</td>
</tr>
<tr>
<td></td>
<td>electrons.</td>
</tr>
<tr>
<td>d. Atom</td>
<td>4. A combination of elements or compounds in</td>
</tr>
<tr>
<td></td>
<td>which the elements or compounds do not lose</td>
</tr>
<tr>
<td></td>
<td>their original characteristics.</td>
</tr>
<tr>
<td>e. Nucleus</td>
<td>5. The center of an atom which contains the</td>
</tr>
<tr>
<td></td>
<td>protons and neutrons.</td>
</tr>
<tr>
<td>f. Ion</td>
<td>6. The smallest particle of a compound which</td>
</tr>
<tr>
<td></td>
<td>has all the properties of that compound.</td>
</tr>
</tbody>
</table>

2. Label the three particles of the atom below.

3. What are the atomic number and the atomic weight of the atom below?
4. Label these atoms as having a positive, negative, or neutral charge.

A
B
C

5. Electrons removed from their orbit about an atom are called ________.

6. How does a good conductor compare to a good insulator with respect to the number of free electrons in each?

Conductor: ________
Insulator: ________

7. How is electrical energy transferred through a conductor?

8. When a negatively charged atom is contacted by a positively charged atom, electrons will flow from the ________ atom to the ________ atom.
LESSON 1, PART B

ATOMIC STRUCTURE-SELF TEST ANSWERS

1. a 2
 b 4
 c 6
 d 1
 e 5
 f 3

2. Electron
 Proton
 Neutron

3. Atomic number 9
 Atomic weight 19

4. (a) Negative
 (b) Neutral
 (c) Positive

5. Free electrons

6. Conductor - more free electrons
 Insulator - fewer free electrons

7. By the movement of free electrons from atom to atom

8. negative, positive

END OF LESSON 1, GO ON TO LESSON 2
This is a programmed lesson. It is designed to teach, not to test. You will need only this booklet, a pencil, and some time to complete this lesson. If there is something in the program you do not understand, ask your instructor or supervisor for assistance.

- REMEMBER -

This lesson has been written so that the amount of reading necessary is minimal and yet most meaningful. Therefore, it is very important that you follow these instructions.

- Read each page carefully.
- Fill in each blank.
- Keep the answer to the frame on which you are working covered with a slip of paper until you have written your answer.
- Correct all errors you make.
- Follow all directions given in the program.

SUGGESTED READING TIME
180 MINUTES
LESSON 2
PART A
INTRODUCTION TO ELECTRICITY

OBJECTIVES

1. State the source of the electrical energy found in all matter.
2. Given illustrations of different bodies, label each as being negatively or positively charged.
3. State the condition of two bodies when the electrons have been physically removed from one and attached to the other.
4. State the primary cause of static electricity.
5. Select from a given list of statements the one correctly describing what occurs when two unequally charged bodies contact each other.
6. State the hazard produced by the electron flow between two separated bodies.
7. List two means used in aviation to prevent the buildup of static electricity.
8. State what must be overcome by the potential difference in order to have current flow.
9. Select from a list of terms two terms that mean the same as potential difference.
10. List the three primary methods of producing electromotive force.
11. Name the correct units of measurement for measuring electromotive force, current, and resistance.
12. Select from a list of instruments the ones used to measure electromotive force, resistance, and current.
13. List two types of current flow.
14. State the term used to identify materials that offer low resistance to current.
15. State the term used to identify materials that offer high resistance to current.
16. State whether the resistance of a conductor or an insulator increases or decreases when its temperature or dimension is varied.
17. State what effect an increase in voltage or resistance will have on current.
18. Using the mathematical formula for Ohm's law, solve three given electrical problems.
19. Given the terms static electricity, charged body, current flow, potential difference, Ohm's law, and resistance, match them with their respective definitions.
1. From studying the program on atomic structure, you know that electrical energy is the movement of free electrons through a conductor. Since these free electrons are part of the atom, you can see that the actual source of electrical energy is the **atom**.

<table>
<thead>
<tr>
<th>ATOM</th>
<th>2. A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Circle the letter above the illustration that represents the source of all electrical energy.

| D | 3. The source of the electrical energy found in all matter is the **atom**. |

| ATOM | 4. Since all matter is made up of atoms, any body of matter is a source of **electrical** energy. |

| ELECTRICAL | 5. A body of matter in a normal or balanced state will have one electron for each proton. Electrons can be removed from one body and attached to another body. When this is done, one body will have more electrons than normal and the other body will have less electrons than normal. Label the bodies as having a balance of electrons and protons, an excess of electrons, or a deficiency of electrons. |
| A. ![Illustration](image5.png) | B. ![Illustration](image6.png) | C. ![Illustration](image7.png) |

A. DEFICIENT
B. BALANCED
C. EXCESS

| 6. When electrons are removed from one body and attached to another body, one body will have an excess of electrons while the other body will have a shortage of electrons. These unequal charges at rest on two bodies are known as static electricity. Select the two bodies that have a static-electrical charge. |
| A | B | C | D |
| ![Illustration](image8.png) | ![Illustration](image9.png) | ![Illustration](image10.png) | ![Illustration](image11.png) |
7. Count the number of electrons (−) and protons (+) on the body below.

![Diagram of electron and proton counts]

a. Number of electrons: __________
b. Number of protons: __________

8. There were eight electrons and four protons. This means that the body had an excess of electrons; therefore, it has a negative charge. These electrical charges at rest on a body are __________ electricity.

9. A charged body is one having more or less than its normal number of electrons (−). Which of these bodies is charged?

![Diagram of charged bodies A and B]

10. If a body has more or less than its normal amount of electrons, it is known as a __________ body.

11. Circle the letter above the charged bodies.

![Diagram of charged bodies A, B, C, D, E]
A body which has had some of its electrons removed will have a positive charge. Select the illustrations below that represent a body with a positive charge.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

13. Circle the letter beside the true statement.

a. A body having fewer protons than electrons is positively charged.

b. A body having fewer electrons than protons is positively charged.

c. A body having an equal number of electrons and protons is positively charged.

14. A body that has more electrons than protons has a **negative** charge.

Select the items that have a negative charge.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

15. Select the true statement.

a. A positively charged body is one having fewer protons than electrons.

b. A negatively charged body is one having more electrons than protons.

c. A negatively charged body is one having more protons than electrons.
16. Label the items below as having a positive or negative charge.

A. POSITIVE
B. NEGATIVE
C. POSITIVE
D. NEGATIVE

17. You have studied the electron and the meaning of positive and negative charges. Now you are ready to find out how these charges are produced. The primary cause of static electricity is friction. If you rub two different materials together, electrons may be removed from their orbit in one material and captured by the atoms in the other material. This is producing static electricity by
18. When a hard rubber rod is rubbed with fur, the fur loses electrons to the rod. The rod becomes negatively charged, and the fur becomes positively charged. Friction is one way of producing static electricity. Refer to the illustrations to complete the statements below.

Figure A

Figure B

- a. In figure A, the two bodies contain an amount of electrons.
 \[\text{(equal/unequal)}\]
- b. After the two bodies in figure B have been rubbed together, their charges will be
 \[\text{(equal/unequal)}\]
- c. The unequal charges that exist on the two bodies in figure B are ________ electricity.
- d. One way of causing electrons to leave one body and be transferred to another body is by ________.
<table>
<thead>
<tr>
<th>a. EQUAL</th>
<th>b. UNEQUAL</th>
<th>c. STATIC</th>
<th>d. FRICITION</th>
</tr>
</thead>
</table>

19. Friction between two bodies will cause both bodies to become charged— one positively and one negatively. Therefore, these two bodies will have an attraction for each other. For example, when you run a comb through your hair several times, the comb and the hair develop unlike charges because of the friction involved. Now, if you hold the comb over your hair, your hair will be attracted to the comb.

From the information above, we are given one of the laws pertaining to charged bodies. This law states that bodies with unlike charges will attract each other.

ATTRACT

20. Select the law that correctly explains why the man’s hair is attracted to the comb.

a. Like charges attract.
b. Unlike charges repel.
c. Like charges repel.
d. Unlike charges attract.

d. 21. If two unlike-charged bodies, one negative and one positive, are brought together, they will attract each other.

Select the two bodies that will attract each other.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>➕</td>
<td>➕</td>
<td>➖</td>
</tr>
</tbody>
</table>

11, 16

Isn 2; p. 8
<table>
<thead>
<tr>
<th></th>
<th>22. The law of charges states that unlike charges will _____ each other.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23. The law of charges states that if two like-charged bodies are brought together, they will repel (move away) from each other. Circle the letter above the bodies that will repel each other.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24. Circle the letter above the bodies that will repel each other.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25. The law of charges states that like charges will _____</td>
</tr>
<tr>
<td>A</td>
<td>26. The law of charges states that _____ charges repel and _____ charges attract.</td>
</tr>
</tbody>
</table>
| | LIKE:
| | UNLIKE:
| | 27. A body that is positively charged has a lack of electrons. This body could then be subject to gaining electrons. It would get these electrons from a body that is negatively charged or has an excess of electrons. Therefore,
| a. | a body that is positively charged is subject to electrons flowing _____ it.
| b. | a body that is negatively charged is subject to electrons flowing _____ it.
| a. | INTO
| b. | FROM
| | 28. If bodies with unequal charges contact each other, the electrons will leave the negative-charged body and flow into the ____-charged body until their charges are equal. |
29. Unequally charged bodies in contact will equalize their charges by a flow of ________ between them.

30. Select the statement that correctly describes what occurs when two unequally charged bodies contact each other.

 a. The electrons flow from positive to negative until the bodies equalize their charges.
 b. The electrons flow from negative to positive until the bodies equalize their charges.
 c. There is no flow of electrons because unlike charges repel each other.
 d. The electrons flow from one body to the other as long as they are in contact.

31. When two opposite charged bodies are brought near each other and the difference in their charges is great enough, there will also be an electron flow between them. Choose the illustration in which the electron flow would most likely occur.

 A
 B

32. The electron flow between two separated bodies will be in the form of a spark. What could be the result of a spark between the two bodies in this illustration?
<table>
<thead>
<tr>
<th>FIRE, EXPLOSION, OR ANY SIMILAR ACTION.</th>
<th>33.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is created by the electron flow between the separated bodies above?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPARK</th>
<th>34.</th>
<th>What is produced that could be hazardous when there is an electron flow between two separated bodies?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARK</td>
<td>35.</td>
<td>Anytime there is friction between bodies of different materials, such as fuel flowing in a hose or an aircraft flying through the air, opposite charges will build up on the bodies. If the charges become great enough, an electron flow will occur in the form of a spark.</td>
</tr>
</tbody>
</table>

| SPARK | 36. | When the difference in charges between two parts on an aircraft is great, there is danger of a spark jumping between the parts. A bonding wire (conductor) is a safety device used to connect these parts on an aircraft. This gives a path for electron flow between the parts. To prevent a spark between various parts on an aircraft, a bonding wire is used. |

| BONDING WIRE | 37. | Various parts of an aircraft are connected by bonding wire to permit a free flow of electrons between them. This flow keeps their charges balanced. To prevent the buildup of static-electrical charges, parts that are insulated or separated from each other are connected by bonding wire. |

| BONDING WIRE | 38. | The engines of this aircraft are mounted on rubber shock mounts. However, it does not have a buildup of static electricity because of several of these parts. The name of this part is a [Diagram](image). |
Bonding Wire

39. To connect parts of an aircraft to prevent the buildup of static-electrical charges, a _____ is used.

40. Another device used to prevent the buildup of static electricity is a ground wire. A ground wire allows a constant dissipation of electrons and prevents a body from becoming charged. The chain hanging from the back of a gasoline truck is an example of a __________ ________.

Ground Wire

41. A ground wire is used to connect aircraft and fuel trucks to the earth during refueling. Label items A and B below.

![Diagram](image)

A. **Ground Wire**
B. **Ground Wire**

42. To maintain a balanced charge between an aircraft and the fueling truck, four grounding connections must be made. Match each letter in the illustration below with the statement which describes that grounding connection.

- Truck to ground
- Fuel nozzle to aircraft
- Truck to aircraft
- Aircraft to ground

![Diagram](image)
43. What are two means used in aviation to prevent the buildup of static electricity?
 a. __________
 b. __________

44. Static electricity has no real use to us; we only want to control it. Now let's study about electricity we can use—dynamic electricity. Select the item that must be moved from one point to another point to produce electricity.
 a. Proton
 b. Electron
 c. Neutron

45. Electrons flow from a point having an excess of electrons to a point having a lack of electrons.

 Draw an arrow between A and B to indicate the direction the electrons will flow.

46. The electrons that are moving are free electrons. These free electrons are in a random movement in a conductor all the time; but when we can get them to drift or move in one direction, we will have current flow.

 Which illustration represents current flow?
CURRENT FLOW

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>47. A drift or movement of electrons in one direction through a conductor is called CURRENT FLOW.</td>
<td></td>
</tr>
<tr>
<td>48. A force is needed to move these electrons in one direction. One term used for this force is potential difference. Potential difference is the difference in the attractive force between unlike charges. Which illustration represents the greater potential difference?</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49. To have current flow, the potential difference must be great enough to overcome resistance. Resistance is an opposition to current flow. In which illustration will current flow occur?</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50. Before current can flow, the potential difference must be great enough to overcome RESISTANCE.</td>
<td></td>
</tr>
<tr>
<td>51. Since potential difference is forcing or causing current flow, then the greater the potential difference, the greater the RESISTANCE.</td>
<td></td>
</tr>
<tr>
<td>CURRENT FLOW</td>
<td>52. The drift or movement of electrons through a conductor is known as __________.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CURRENT FLOW</td>
<td>53. What must potential difference overcome in order to have current flow? ____________</td>
</tr>
<tr>
<td>RESISTANCE</td>
<td>54. The difference in the amount of electrical energy between two bodies is p__________ d__________</td>
</tr>
</tbody>
</table>
| POTENTIAL DIFFERENCE | 55. Potential difference is the force that causes electrons to move from one point to another. Potential difference is also known as electromotive force (EMF).
List two names for the force that causes current flow.
 a. ____________
 b. ____________
 a. POTENTIAL DIFFERENCE
b. ELECTROMOTIVE FORCE (KITHER ORDER) | 56. Another term used for potential difference and electromotive force is voltage.
Mr. Force above is called by three different terms; what are they?
 a. ____________
 b. ____________
 c. ____________
 a. POTENTIAL DIFFERENCE
b. ELECTROMOTIVE FORCE
c. VOLTAGE | 57. What two terms mean the same as potential difference?
 a. ____________
 b. ____________ |
<table>
<thead>
<tr>
<th>ELECTROMOTIVE FORCE</th>
<th>58. The common term used for potential difference and electromotive force is ___________.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTAGE</td>
<td>59. There are several methods of producing electromotive force (EMF). We shall only concern ourselves with three of the methods: thermal, chemical, and mechanical. Thermal, chemical, and mechanical are three ways to produce ___________.</td>
</tr>
<tr>
<td>ELECTROMOTIVE FORCE OR EMF</td>
<td>60. One of the methods of producing electromotive force (EMF) is the thermal (heat) method. When a metal, such as copper, is heated, the electrons tend to move away from the heated end towards the cool end. In other metals, such as iron, the opposite is true. The electrons move from the cool end to the heated end. If these two metals are connected at the heated end, the flowing electrons will cross at the junction point.</td>
</tr>
</tbody>
</table>

The method used to produce EMF in the illustration above is the ___________ method.
| THERMAL (HEAT) | 61. Another method of producing electromotive force (EMF) is the chemical method. When the molecules of a substance are altered, the action is referred to as chemical. For instance, when the molecules of air come in contact with bare iron, they combine and form rust. In some cases, the loss or gaining of electrons in this manner produces EMF.

The method of producing EMF illustrated above is the _______ method.
CHEMICAL

A. _______
B. _______ |

A. CHEMICAL
B. THERMAL | 63. So far you have learned two methods of producing EMF—thermal and chemical. Now, let's learn a little about a third method of producing EMF—the mechanical method. Anytime you move a conductor in a magnetic field, you are producing EMF. Producing EMF in this manner is an example of the _______ method.

11.16.
Isn 2; p. 17
MECHANICAL

64. Generators and magnetos produce EMF by rotating a large number of conductors in a magnetic field. This is an example of producing EMF by the __________ method.

65. List the three primary methods of producing EMF.

a. __________
b. __________
c. __________

66. The EMF produced by each of the methods must be known, or measured, so that it can be used to full advantage. The volt (V) is the unit of measurement for __________.

- **CHEMICAL**
- **THERMAL**
- **MECHANICAL**

67. The EMF produced by some methods is extremely weak; however, in all cases the EMF can be measured. The unit of measurement for EMF is the volt (V). Write the unit of measurement for EMF in the space below.
68. To measure the EMF, an instrument which indicates volts is used. As shown in the illustration, this instrument is called a

![Voltmeter Diagram]

69. The unit of measurement for EMF is the [Blank].

70. The number of electrons the voltage can move past a point in a period of time is a measure of current flow. One volt moving a given number of electrons in one second past a point having one ohm of resistance is one ampere (amp) of [Blank].

71. Measuring the number of electrons one volt can cause to flow through one ohm of resistance in one second is the method used to determine one ampere of [Blank].

72. Because the electron is too small a unit to use in measuring the amperage, a larger unit is used. This larger unit is the coulomb (6,280,000,000,000,000,000 electrons). The coulomb is used as the unit which one volt must cause to flow in one second to obtain a current flow of one [Blank].
<table>
<thead>
<tr>
<th>AMPERE (AMP)</th>
<th>73. By increasing the number of coulombs per second, current flow (amps.) will increase; two coulombs = two amps., three coulombs = three amps. How many amps, are flowing in this illustration?</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIVE</td>
<td>74. What must occur to have one ampere of current flow?</td>
</tr>
<tr>
<td>ONE VOLT MUST MOVE ONE COULOMB THROUGH ONE OHM OF RESISTANCE IN ONE SECOND.</td>
<td>75. Since such a large number of electrons are moved to obtain only one amp, an instrument must be used to measure current flow. An ammeter is the instrument used to measure ________________.</td>
</tr>
<tr>
<td>CURRENT FLOW</td>
<td>76. Current flow in a circuit may be measured by using an ________________.</td>
</tr>
<tr>
<td>AMMETER</td>
<td>77. The unit of measurement for current flow is the ________________. The instrument used to measure current flow is the ________________.</td>
</tr>
<tr>
<td>AMPERE (AMP)</td>
<td>78. There are two types of current flow. One type is current flow produced by a battery. This type flows in only one direction. This type is usually referred to as D.C. or Direct ________________.</td>
</tr>
</tbody>
</table>

11, 16
lsn 2; p. 20
<table>
<thead>
<tr>
<th>CURRENT</th>
<th>79. What type of current flow would the circuit in the illustration have?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECT CURRENT (D.C.)</td>
<td>80. A modified type of direct current, in which the current flow is interrupted periodically, causing it to pulsate, is called P.D.C. or pulsating direct current.</td>
</tr>
<tr>
<td>DIRECT CURRENT</td>
<td>81. The ignition system of cars and some aircraft uses breaker points to interrupt the current flow. This type of ignition system produces a pulsating direct current.</td>
</tr>
<tr>
<td>PULSATİNG DIRECT CURRENT</td>
<td>82. If the switch in the illustration were opened and closed rapidly, the direct current of the circuit would then be pulsating direct current.</td>
</tr>
<tr>
<td>PULSATİNG DIRECT CURRENT (P.D.C.)</td>
<td>83. The second type of current flow is the type which alternates its direction of flow. The type of current which flows first in one direction and then in the opposite direction is A.C. or alternating current.</td>
</tr>
<tr>
<td>ALTERNATING CURRENT (A.C.)</td>
<td>84. D.C. flows in only one direction; A.C. periodically changes its direction of flow.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DIRECTION</td>
<td>85. What are the two types of current flow?</td>
</tr>
<tr>
<td>a. DIRECT CURRENT (D.C.)</td>
<td>a.</td>
</tr>
<tr>
<td>b. ALTERNATING CURRENT (A.C.) (ANY ORDER)</td>
<td>b.</td>
</tr>
<tr>
<td>TEN OHMS</td>
<td>86. Symbols are used extensively in electricity, usually to represent a component in a circuit. However, the symbol (\Omega) (the Greek letter Omega) is used to represent ohms. As an example, 10 (\Omega) is read as 10 ohms.</td>
</tr>
<tr>
<td></td>
<td>87. The ohm is the electrical unit of resistance; it is represented by this symbol: (\Omega).</td>
</tr>
<tr>
<td></td>
<td>88. What is the resistance of the light bulb in the illustration?</td>
</tr>
<tr>
<td></td>
<td>![Resistor Diagram]</td>
</tr>
<tr>
<td></td>
<td>89. If the resistance of a circuit or an electrical device is unknown, it can be measured with an ohmmeter. An instrument that is used to determine the resistance of a circuit is the ohmmeter.</td>
</tr>
<tr>
<td></td>
<td>90. What is the resistance of the circuit below? The instrument used to measure this resistance is called an ohmmeter.</td>
</tr>
</tbody>
</table>

![Resistor Diagram]

![Ohmmeter Diagram]
<table>
<thead>
<tr>
<th>5 QMS</th>
<th>91. To have current flow, voltage must overcome resistance. The resistance of a material indicates its degree (high or low) of opposition to ___________ flow.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMMETER</td>
<td>92. All materials have some resistance to current flow, and they may be divided into two basic classes, depending on whether they have high or low ___________</td>
</tr>
<tr>
<td>CURRENT</td>
<td>93. Conductors are materials that offer little opposition to current flow and are classed as materials having low ___________</td>
</tr>
<tr>
<td>RESISTANCE</td>
<td>94. Some materials that have low resistance to current flow are silver, copper, and aluminum. These materials are all good ___________</td>
</tr>
<tr>
<td>RESISTANCE</td>
<td>95. The resistance of conductors, in general, is affected by three factors: type of material, size of material, and temperature of material. Silver is the best conductor, since it has the least resistance. Copper is next, since it offers slightly more resistance. Conductors made of silver and copper have different resistances because they are made from different ___________.</td>
</tr>
<tr>
<td>CONDUCTORS</td>
<td>96. Silver, because of its cost, has a limited use as a conductor. Copper is readily available, and is the type of material usually used as a ___________</td>
</tr>
<tr>
<td>TYPES OF MATERIAL</td>
<td>97. The type of material is one factor affecting resistance. The size (length and diameter) of the material is another factor. The greater the distance the current must travel, the greater the voltage must be. This indicates that as the length of the conductor increases, its resistance ___________</td>
</tr>
</tbody>
</table>

11.16
1sn 2; p. 23
98. Which conductor below has the greatest resistance?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVER</td>
<td>COPPER</td>
<td>COPPER</td>
</tr>
</tbody>
</table>

20 FEET | 10 FEET | 20 FEET

99. The resistance of a conductor increases as its length increases. However, an increase in its diameter has the opposite effect. As the diameter is increased, the resistance will **decrease**.

100. When the length of a conductor is increased, its resistance **increases**; when its diameter is increased, its resistance **decreases**.

101. Temperature, the third factor, has the same effect as length. An increase in the temperature of a conductor will **increase** its resistance.

102. List the three factors affecting the resistance of conductors.

 a.
 b.
 c.

103. Conductors are materials that have low resistance. Insulators are materials that have **high resistance**.

104. Materials which have high resistance and are often used to shield conductors are **plastics**.
<table>
<thead>
<tr>
<th>Insulators</th>
<th>105. The purpose of an insulator is to oppose current flow. The best type of material for an insulator would be a material having [] resistance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>106. Some materials make better insulators than others. One factor that affects an insulator's resistance is the type of []</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>107. One factor to be considered in selecting an insulator is the []</td>
</tr>
<tr>
<td>Type of Material</td>
<td>108. The size (thickness) of an insulator will affect its resistance. If the insulation on a conductor allows current to flow through it, it indicates the size (thickness) of the insulation should be []</td>
</tr>
<tr>
<td>Increased</td>
<td>109. Increasing the size of an insulator will [] its resistance.</td>
</tr>
<tr>
<td>Increase</td>
<td>110. Temperature will also affect the resistance of an insulator. Glass, an insulator, when heated will conduct electricity. This indicates that an increase in temperature will cause an insulator's resistance to []</td>
</tr>
<tr>
<td>Decrease</td>
<td>111. What would be the effect on the resistance of an insulator if its []</td>
</tr>
<tr>
<td>a. size were increased? []</td>
<td></td>
</tr>
<tr>
<td>b. temperature were increased? []</td>
<td></td>
</tr>
<tr>
<td>a. INCREASE</td>
<td>112. The factors affecting the resistance of a conductor also affect its relationship with current flow. The relationship between resistance, current flow, and electromotive force is explained by Ohm's law. There is a close connection between resistance, current flow, and electromotive force which can be found in [] law.</td>
</tr>
<tr>
<td>b. DECREASE</td>
<td></td>
</tr>
</tbody>
</table>

11. 16
Isn 2; p. 25
Ohm's Law

113. Ohm's law shows the close ties between ___________ and ___________.

<table>
<thead>
<tr>
<th>Electro motive force</th>
<th>Current flow</th>
<th>Resistance (Any order)</th>
</tr>
</thead>
</table>
| **116.** Part of Ohm's law states that current flow is directly proportional to E\text{ff}. As you increase the voltage or E\text{ff}, you will also increase current flow an equal or proportionate amount. Select the statement below that is correct.
| a. If voltage is increased by 1/2, current decreases by 1/2. |
| b. If voltage is increased by 1/2, current increases by 1/2. |
| c. If voltage is increased by 1/2, current remains unchanged. |
| d. None of these is correct. |
| **115.** When E\text{ff} increases, current flow also increases. This fact shows that the current flow is directly proportional to ___________. |
| **116.** If current flow will increase as E\text{ff} is increased, a decrease in E\text{ff} will produce a ___________ in current flow. |

Decrease

117. The first part of Ohm's law shows how current flow and E\text{ff} are related. The second part of it shows how current flow and resistance are related. It says that current flow is inversely proportional to resistance. This means that a change in resistance, either higher or lower, will produce the opposite change in current flow. Select the correct statement below.

| a. As resistance increases, current flow decreases. |
| b. As resistance increases, current flow increases. |
| c. As resistance increases, current flow remains unchanged. |

118. As resistance increases, current flow decreases. This means that current flow is inversely proportional with ___________.

11.16, Icn 2, p. 78

100
<table>
<thead>
<tr>
<th>RESISTANCE</th>
<th>119. Current flow is inversely proportional with resistance. This means that as resistance is decreased, current flow will</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREASE</td>
<td>120. Ohm's law states that current flow is proportional to EMF and _______ proportional to resistance.</td>
</tr>
<tr>
<td>DIRECTLY</td>
<td>121. Complete the statements below.</td>
</tr>
<tr>
<td>INVERSELY</td>
<td>a. When resistance is increased, current flow will __________.</td>
</tr>
<tr>
<td></td>
<td>b. When voltage is increased, current flow will __________.</td>
</tr>
<tr>
<td>a. DECREASE</td>
<td>122. Ohm's law in the mathematical formula looks like this, $\frac{E}{IR}$. The horizontal bar in the circle, $\frac{E}{R}$, means to divide. In order to find I, you $\frac{E}{R}$.</td>
</tr>
<tr>
<td>b. INCREASE</td>
<td>123. The horizontal bar, $\frac{E}{R}$, means to __________.</td>
</tr>
<tr>
<td>DIVIDE</td>
<td>124. The vertical bar in the circle, $\frac{E}{R}$, means to multiply. If you must determine E by the Ohm's law, mathematic formula $\frac{E}{R}$, you __________.</td>
</tr>
<tr>
<td>MULTIPLY</td>
<td>125. The vertical bar in the circle, $\frac{E}{R}$, means to __________.</td>
</tr>
</tbody>
</table>
Solve the problem given below by using the Ohm's law formula.

I = 2 amps.
R = 6 ohms
E = ?

\[E = IR \]

E = 12 VOLTS

127. In order to find \(E \), you must \(\frac{I}{R} \) by \(R \).

Solve for the unknown in the problems below.

A.
\(E = 12 \text{ volts} \)
\(I = 3 \text{ amps} \)
\(R = _ \text{ ohms} \)

B.
\(E = 24 \text{ volts} \)
\(R = 6 \text{ ohms} \)
\(I = _ \text{ amps} \)

129. In order to solve for either \(I \) or \(R \), you must

A. \(R = 4 \text{ OHMS} \)
B. \(I = 4 \text{ AMPS} \)

Draw the mathematical formula for Ohm's law.

130. Draw the mathematical formula for Ohm's law.
In using the mathematical formula for Ohm's law, you probably noticed that letters are used to represent the various values. The letter E represents voltage. The letter R represents resistance, and the letter I represents the intensity or rate of current flow. Match the letter with the item it represents. Place the letter in the proper space beside its true meaning.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>a. Electromotive force</td>
</tr>
<tr>
<td>E</td>
<td>b. Amperage</td>
</tr>
<tr>
<td>I</td>
<td>c. Resistance</td>
</tr>
</tbody>
</table>

132. Solve for the unknown value in figure 2.

- **a. E**
- **b. I**
- **c. R**

\[
\begin{align*}
E &= 12V \\
I &= 2A \quad \text{Figure A} \\
E &= 24V \\
I &= __A \quad \text{Figure B}
\end{align*}
\]

The comparison between figures A and B proves that as voltage increases, current flow increases.

11.16
LESSON 2
PART A
INTRODUCTION TO ELECTRICITY

SELF-TEST

1. What is the source of the electrical energy found in all matter?

2. Label the illustrations below as being positively or negatively charged bodies.

A.
B.
C.
D.

3. If electrons are removed from one body and attached to another body, the two bodies would be in a condition.

4. What is the primary cause of static electricity?

5. Select the statement that correctly describes what occurs when two unequally charged bodies contact each other.

 a. The electrons will flow from positive to negative until the bodies equalize their charges.
 b. The electrons will flow from negative to positive until the bodies equalize their charges.
 c. There will be no flow of electrons because unlike charges repel each other.
 d. The electrons will flow from one body to the other as long as they are in contact.

6. What is produced that could be hazardous when there is an electron flow between two separated bodies?

7. What are two means used in aviation to prevent the buildup of static electricity between two bodies or objects?

 a.
 b.
8. What must potential difference overcome in order to have current flow?

9. Select two terms that mean the same as potential difference.
 a. Resistance
 b. Electromotive force
 c. Current flow
 d. Voltage
 e. Static electricity

10. What are the three primary methods of producing electromotive force?
 a.
 b.
 c.

11. List the correct unit of measurement for:
 ELECTROMOTIVE FORCE (EMF)
 CURRENT FLOW
 RESISTANCE

12. Select the correct instrument used to measure:
 ELECTROMOTIVE FORCE
 CURRENT FLOW
 RESISTANCE
 a. OMMETER
 b. VOLTMETER
 c. AMPETER

13. List two types of current flow.
 a.
 b.

14. What are materials called that offer low resistance to current flow?
15. What are materials called that offer high resistance to current flow?

16. What effect (increase/decrease) does the following have upon the resistance of a conductor?
 - Increase its length, and its resistance ____________
 - Increase its diameter, and its resistance ____________
 - Increase its temperature, and its resistance ____________

17. What effect (increase/decrease) does the following have upon the resistance of an insulator?
 - Increase its thickness, and its resistance ____________
 - Increase the temperature, and its resistance ____________

18. Complete these statements about Ohm's law.
 - When resistance is increased, current flow will ____________
 - When voltage is increased, current flow will ____________

19. Using the mathematical formula for Ohm's law, solve these problems.
20. Match each electrical term below with its correct definition.

<table>
<thead>
<tr>
<th>ELECTRICAL TERMS</th>
<th>DEFINITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Static electricity</td>
<td>2. One having more or less than its normal number of electrons.</td>
</tr>
<tr>
<td>c. Resistance</td>
<td>3. The drift or movement of electrons through a conductor.</td>
</tr>
<tr>
<td>d. A charged body</td>
<td>4. The difference in the amount of electrical energy of two bodies.</td>
</tr>
<tr>
<td>e. Potential difference</td>
<td>5. The opposition to current flow.</td>
</tr>
<tr>
<td>f. Ohm's law</td>
<td>6. Current is directly proportional to the EMF and inversely proportional to the resistance.</td>
</tr>
</tbody>
</table>
LESSON 2, PART A

INTRODUCTION TO ELECTRICITY - SELF TEST ANSWERS

1. The atom

2. (a) Positive, (b) Negative, (c) Positive, (d) Negative

3. Charged

4. Friction

5. b

6. A spark

7. (a) Bonding wire, (b) Ground wire

8. Resistance

9. b, d

10. Chemical, thermal, mechanical

11. Volts
 Amperes
 Ohms

12. b
 c
 a

13. (a) a.c., (b) d.c.

14. Conductors

15. Insulators

16. Increases
 Decreases
 Increases

17. Increases
 Decrease

18. Decrease
 Increase

19. $E = \frac{24\text{v}}{R} = \frac{24\text{v}}{3\Omega} = 8\text{ amps}$

20. b 1
 d 2
 a 3
 e 4
 c 5
 f 6
FUNDAMENTALS OF ELECTRICITY
LESSON 2
PART B
ELECTRICAL SYMBOLS
OBJECTIVES

1. Given a list of electrical symbols and a list of electrical components, match the components to their respective symbols.

2. Given a list of statements pertaining to schematics, select the statement that describes a schematic diagram.
1. Whether you are in OF11 or OF13, a knowledge of electrical diagrams is necessary. The diagram used the most is the schematic diagram. The schematic uses symbols to represent the parts of the circuit, and a single line to represent the connecting wires. This is a typical schematic diagram.

Parts are illustrated in a schematic by.

| SYMBOLS | 2. The arrangement of the parts in a schematic is by electrical priority. This is to say, the parts appear in the order in which they receive electrical power. The schematic diagram is arranged by:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>electrical location of parts.</td>
</tr>
<tr>
<td>b.</td>
<td>physical location of parts.</td>
</tr>
<tr>
<td>c.</td>
<td>neither A nor B.</td>
</tr>
<tr>
<td>d.</td>
<td>both A and B.</td>
</tr>
<tr>
<td>a.</td>
<td>3. In schematic diagrams, the parts are represented by ________, and they are arranged in ________ order.</td>
</tr>
</tbody>
</table>
4. To be able to read a schematic, you must first know what the symbols used in them represent. Below are eight basic shapes. From these shapes, or a combination of them, most electrical symbols are constructed. Study these basic shapes; then proceed to the next frame.

A \[\Rightarrow\] B \[\Rightarrow\] C \[\equiv\] D

These basic shapes may appear at different angles when used in combination with others, and straight-line shapes may appear with a bend in them.

EXAMPLE:

\[\Rightarrow\] \[\Rightarrow\]

5. The symbols below are made up of basic shapes. Break each symbol down into its basic shapes by drawing its basic shapes in the dotted boxes. Do not just recopy the symbol.

EXAMPLE:

\[\Rightarrow\] \[\Rightarrow\]

A

B

C

D

lsn 2; p. 37
6. NOW, DO THE SAME WITH THESE SYMBOLS.

A
\[\frac{1}{x}\]

B
\[\bullet \bullet \bullet \]

C
\[\text{square} \]

D
\[\text{circle} \]

E
\[\text{zigzag} \]

You may be wondering why you should know these basic shapes; they are the starting point for learning the symbols which they make up.
There are two groups of electrical symbols that are shaped somewhat alike.

The two groups are:

RESISTORS AND **COILS (or INDUCTORS)**

Notice that the lines in the resistor form a zigzag.

The lines in both of these types of coil symbols are coiled.

Remember this symbol by thinking, "The zigzag lines in the resistor symbol look like mountains, and mountains resist travel."

Now, label these symbols.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

A. __________ B. __________ C. __________

3. a. Lines in a resistor symbol form a ________
 b. Lines in a coil symbol are usually ________
 c. Coils are made up of ________ wire.
 d. Label the symbols below.

(1) ________ (2) ________
9. A transformer is used either to step up or to step down voltage. Since a transformer is constructed with coils of wire, it seems reasonable that a symbol for a transformer should contain the coil shape.

Below are some symbols for transformers:

a. Which transformer symbol has an arrow running through it?

b. Which transformer symbol has nothing between the coils?

c. Which transformer symbol has heavy lines between the coils?

The heavy lines between the coils represent an iron core. The iron core is simply a piece of iron around which the coils are wrapped. An arrow running through the coils of a transformer or through a resistor means the transformer or resistor is variable.

Label the symbols below.

A. ________ B. ________

C. ________ D. ________

E. ________
10. Label the symbols below as coils, transformers, resistors, variable resistors, or variable transformers.

<table>
<thead>
<tr>
<th>a. VARIABLE</th>
<th>b. AIR-CORE</th>
<th>c. IRON-CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. RESISTOR</td>
<td>B. COIL</td>
<td>C. COIL</td>
</tr>
<tr>
<td>D. AIR-CORE</td>
<td></td>
<td>E. IRON-CORE</td>
</tr>
<tr>
<td>TRANSFORMER</td>
<td>F. TRANSFORMER</td>
<td></td>
</tr>
</tbody>
</table>

11. Draw the symbols for these parts.

| a. Iron-core transformer | b. Variable resistor |
| c. Coil | |
12. Perhaps some explanation of the term variable resistor should be given. The term variable simply means the resistance of a resistor can be varied. The rheostat is a good example of a variable resistor.

Variable resistor or rheostat.

There is another symbol which looks similar to the rheostat—the potentiometer. The main difference between the symbols is the number of terminals (shown as dots) which lead from each one. The rheostat will have two, and the potentiometer will have three dots in the symbol.

Potentiometer symbol.

Draw the symbols for the parts illustrated below.

a. Air-core transformer

b. Iron-core transformer

c. Resistor

d. An arrow through a resistor symbol or a transformer symbol indicates that it is a resistor or transformer.
13. Now, some symbols that use → and ↔ shapes: The simplest is the single cell.

![Single cell symbol]

The battery is merely a combination of cells; so the symbol for a battery is a series of cell symbols put together as shown below.

![Battery symbol]

A rectifier is a device that changes alternating current to direct current. Below are two symbols for the rectifier. Either of these symbols may be used.

![Rectifier symbol 1]

![Rectifier symbol 2]

What do these symbols represent?

A. _______ B. _______ C. _______ D. _______ E. _______

14. Using the shapes → and ↔, draw the symbols for these parts.

a. Cell

b. Battery

c. Rectifier
15. Here are some more symbols using the shapes — —

These three are capacitors.

This symbol with an arrow through it means a variable capacitor.

Variable capacitor.

Label the symbols below.

A. __________ B. __________ C. __________ D. __________

E. __________ F. __________ G. __________
16. Contacts may be illustrated by the symbols below.

When the symbols above are used, you will usually see the symbol for an electromagnet used with them—indicating a relay.

Electromagnet. Relay.

a. Label the symbols below.

(1) (2) (3) (4) (5)

b. Draw the symbol for the following:

(1) Battery (2) Capacitor

(3) Contacts (4) Electromagnet

(5) Relay
17. Now, let's look at some symbols using the shape. These should be no problem to remember. Look for the letter within the circle.

Below are several symbols; they are self-explanatory.

- **A**: Ammeter
- **V**: Voltmeter
- **Ω**: Ohmmeter
- **M**: Motor
- **G**: Generator
- **MA**: Milliammeter
- **MV**: Millivoltmeter

As you can see, the letter is the identifying mark. The symbol for the lamp is the exception.

- **Lamp symbols.**

Motors and generators have some variations.

- **Motor symbols.**
- **Generator symbols.**

Draw the symbol for the following:

- a. Ohmmeter
- b. Ammeter
- c. Voltmeter
- d. Lamp
18. Match each component with its respective symbol.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>B.</td>
<td>C.</td>
<td>D.</td>
</tr>
<tr>
<td>E.</td>
<td>F.</td>
<td>G.</td>
<td>H.</td>
</tr>
<tr>
<td>I.</td>
<td>J.</td>
<td>K.</td>
<td>L.</td>
</tr>
<tr>
<td>M.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Voltmeter
2. Relay
3. Cell
4. Resistor
5. Electromagnet
6. Rectifier
7. Capacitor
8. Battery
9. Contacts
10. Rheostat
11. Iron-core transformer
12. Air-core transformer
13. Ammeter
Let’s study switches next. Since an electrical circuit is a pathway for current to flow through, a break in this pathway would stop current flow. Switches are simply ways to break this pathway or to control the flow of current.

Below are some symbols for switches:

- SINGLE-POLE, SINGLE-THROW SWITCH
- SINGLE-POLE, DOUBLE-THROW SWITCH
- DOUBLE-POLE, SINGLE-THROW SWITCH
- DOUBLE-POLE, DOUBLE-THROW SWITCH

To remember these switches, think of the number of poles as the number of wires coming to either side of the switch. The throws can be thought of as the number of on positions.

Example:

SINGLE-POLE, SINGLE-THROW

OFF

ON

ONE WIRE, ONE ON POSITION

SINGLE-POLE, DOUBLE-THROW

OFF

ON

ON

ONE WIRE, TWO ON POSITIONS

a. The number of wires coming to each side of a double-pole switch is
b. The number of on positions a double-pole, single-throw switch has is
c. The number of on positions a double-pole, double-throw switch has is
20. From the descriptions below, name the switch and draw the symbol for it.

EXAMPLE: Has one wire connected to each side of the switch and has one on position.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-pole, single-throw</td>
<td>![Symbol]</td>
<td>Has one wire connected to each side of the switch and has one on position.</td>
</tr>
</tbody>
</table>

a. Has one wire connected to each side of the switch and has two on positions.

b. Has two wires connected to each side of the switch and has one on position.

c. Has two wires connected to each side of the switch and has two on positions.

21. Two other devices which can control current flow in a circuit are circuit breakers and fuses. Both of these are safety devices. A circuit breaker amounts to nothing more than a fuse that can be reset.

Below are the fuse and circuit breaker and the symbol for each:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Fuse Symbol]</td>
<td>Fuse</td>
</tr>
<tr>
<td>![Circuit Breaker Symbol]</td>
<td>Circuit Breaker</td>
</tr>
</tbody>
</table>

Both of these devices protect the circuit by breaking the pathway for current flow. Label these symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>
The ground symbol is the most often used symbol in electrical diagrams. This is the symbol for ground.

\[\begin{array}{c}
\text{SWITCH} \\
\text{MOTOR} \\
\text{POWER SOURCE} \\
\text{BATTERY} \\
\text{FRAME}
\end{array} \]

In an aircraft, as in your car, some components are grounded to the frame. This type of installation is known as a grounded circuit. This means that the ground (frame) is the return line for current back to the power source. Let's look at a grounded circuit.

In the circuit above, current flows from the battery, through the switch, to the motor, and then to ground. Since both the battery and the motor are grounded to the frame, there is a complete circuit.

Make the circuit below a complete circuit by putting in the ground symbols.

The only thing shown in an electrical diagram is the ground symbol. The ground (frame) is assumed to be there.

23. Place a ground symbol wherever it is needed in the diagram below.
24. Connection symbols represent permanent connections such as soldered connections or connections to terminals (screws and lugs). Below are some connection symbols you may see.

You will notice that each of the illustrations above has dots at the intersection of the lines. The dot is the actual connection of the wires. Shown below are symbols known as "no connection." In other words, these illustrations merely show wires that cross each other but are not connected.

NOTICE NO DOT.

Label the symbols below as "connection" or "no connection."

A. B. C. D. E. F.

![Connection symbols]

25. Draw the symbol for each of these components.

d. Connection e. No connection f. Ground
26. Below are two more symbols for connections. These symbols represent connections which are frequently connected or disconnected. The first is called the **connector** (cannon plug).

Looking at the symbol for the connector, you can easily see its use. The connector is used for multiwire installations. The letters identify the wires.

The next symbol represents the **disconnect**.

Again, the symbol shows how it is used. The disconnect is for single-wire installations. You have probably seen this type on your car.

Label the symbols below.

A.
B.
C.
D.
E.
F.
G.
H.
I.

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>d.</td>
</tr>
<tr>
<td>e.</td>
<td>f.</td>
</tr>
<tr>
<td>A. CONNECTION</td>
<td>B. NO CONNECTION</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>

27. The last two symbols are the spark plug, as used in your car, and the spark igniter, as used in a jet engine. First the spark plug. This symbol is composed of the ground symbol and two arrows facing each other. Below is the spark plug symbol.

![Spark Plug Symbol]

As you can see below, the spark igniter uses the ground symbol also, but it has a circle and cross in place of the two arrows.

![Spark Igniter Symbol]

Label the symbols below.

a.

b.

c.

a. CIRCUIT BREAKER
b. SPARK PLUG
c. SPARK IGNITER

28. You have seen a lot of symbols separately. Now, let's put them in a schematic and see if you can identify them.

Label the numbered symbols in the schematic below.

![Schematic Diagram]
<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Iron-core transformer</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td></td>
</tr>
<tr>
<td>Cell</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td></td>
</tr>
<tr>
<td>Generator</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Resistor</td>
<td></td>
</tr>
<tr>
<td>Disconnect</td>
<td></td>
</tr>
<tr>
<td>Spark plug</td>
<td></td>
</tr>
</tbody>
</table>
30. Label each symbol shown below.

A. ___________

B. ___________

C. ___________

D. ___________

E. ___________

F. ___________

G. ___________

H. ___________

11. 16

Lap 2: P. 55
<table>
<thead>
<tr>
<th>A. RECTIFIER</th>
<th>31. Label each symbol shown below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. IRON-CORE TRANSFORMER</td>
<td></td>
</tr>
<tr>
<td>C. PUSH-PULL CIRCUIT BREAKER</td>
<td></td>
</tr>
<tr>
<td>D. OHMETER</td>
<td></td>
</tr>
<tr>
<td>E. SINGLE-POLE, SINGLE-THROW SWITCH</td>
<td></td>
</tr>
<tr>
<td>F. AMPEREMETER</td>
<td></td>
</tr>
<tr>
<td>G. RELAY</td>
<td></td>
</tr>
<tr>
<td>H. CONNECTION</td>
<td></td>
</tr>
<tr>
<td>I. GROUND</td>
<td></td>
</tr>
<tr>
<td>J. CONNECTION</td>
<td></td>
</tr>
</tbody>
</table>

A. CAPACITOR	11.16
B. RHEOSTAT	Isn' 2; p. 56
C. SPARK IGNITER	
D. CONNECTOR	
E. AIR-CORE TRANSFORMER	
F. SINGLE-POLE, DOUBLE-THROW SWITCH	
G. VOMETER	
H. NO CONNECTION	
1. Match the name of each component with its respective symbol by placing the number before the component in the box beside its respective symbol.

<table>
<thead>
<tr>
<th>A.</th>
<th>B.</th>
<th>C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>E.</td>
<td>F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.</td>
<td>H.</td>
<td>I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.</td>
<td>K.</td>
<td>L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.</td>
<td>N.</td>
<td>O.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.</td>
<td>Q.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.</td>
<td>T.</td>
<td>U.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.</td>
<td>W.</td>
<td>X.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y.</td>
<td>Z.</td>
<td></td>
</tr>
</tbody>
</table>

1. Ground
2. Lamp
3. Connection
4. No connection
5. Cell
6. Battery
7. Fuse
8. Generator
9. Motor
10. Resistor
11. Rheostat
12. Voltmeter
13. Ammeter
14. Ohmmeter
15. Disconnect
16. Single-pole, single-throw switch
17. Single-pole, double-throw switch
18. Push-pull circuit breaker
19. Capacitor
20. Air-core transformer
21. Iron-core transformer
22. Relay
23. Rectifier
24. Spark ignitor
25. Spark plug
26. Connector (cannon plug)
2. Which statement describes a schematic diagram?

a. Parts are illustrated with pictures and are arranged by their physical location.

b. Parts are illustrated with pictures and are arranged in the order in which they receive electrical power.

c. Parts are represented by symbols and are arranged in the order in which they receive electrical power.
LESSON 2, PART B
ELECTRICAL SYMBOLS-SELF TEST ANSWERS

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A</td>
<td>3</td>
<td>J</td>
<td>9</td>
<td>S</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. B</td>
<td>4</td>
<td>K</td>
<td>13</td>
<td>T</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>L</td>
<td>7</td>
<td>U</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>M</td>
<td>8</td>
<td></td>
<td></td>
<td>V</td>
<td>18</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>N</td>
<td>14</td>
<td>W</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>O</td>
<td>11</td>
<td>X</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>17</td>
<td>P</td>
<td>25</td>
<td>Y</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>12</td>
<td>Q</td>
<td>21</td>
<td>Z</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15</td>
<td>R</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF LESSON 2, GO-ON TO LESSON 3
This is a programmed lesson. It is designed to teach, not to test. You will need only this booklet, a pencil, and some time to complete this lesson. If there is something in the program you do not understand, ask your instructor or supervisor for assistance.

- REMEMBER -

This lesson has been written so that the amount of reading necessary is minimal and yet most meaningful. Therefore, it is very important that you follow these instructions.

- Read each page carefully.
- Fill in each blank.
- Keep the answer to the frame on which you are working covered with a slip of paper until you have written your answer.
- Correct all errors you make.
- Follow all directions given in the program.

SUGGESTED READING TIME
180 MINUTES
LESSON 3
PART A
SERIES CIRCUITS

OBJECTIVES

1. From a list of statements pertaining to electrical circuits, select the statement that correctly describes an electrical circuit.

2. From a list of statements pertaining to electrical circuits, select the statements that correctly describe a series circuit.

3. Solve series-circuit problems for the following:
 a. Current
 b. Voltage drop across an individual component
 c. Resistance of an individual component
 d. Total resistance
 e. Total voltage

4. From a list of statements pertaining to source voltage, select the statements that are correct concerning source voltage in a series circuit.

5. Given a list of statements concerning the ohmmeter, ammeter, and voltmeter, match each statement with the meter to which it applies.

6. From a list of statements pertaining to circuits, select the statements that apply to a short circuit.

7. From a list of statements pertaining to circuits, select the statements that apply to an open circuit.
1. There are three configurations (types) of circuits used in electrical work. If you were building a complex electrical device, how many different types of electrical circuits could you possibly use?

<table>
<thead>
<tr>
<th>THREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. One of the three types of circuits is the series circuit. In electrical work, one type of circuit you can use is the ________ circuit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Electric current must have a means of getting from its source to the point where it is to be used and back again. This is accomplished with a circuit. A circuit provides a continuous electrical pathway for _________.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. The illustration below represents a circuit because it has a continuous pathway for current to flow from the source, through the light bulb, and back to the source.</td>
</tr>
</tbody>
</table>

![Circuit Diagram]

If the wire between points A and B is disconnected, will the light continue to burn? ________
1. Circle the letter under the illustration that correctly represents an electrical circuit.

<table>
<thead>
<tr>
<th>NO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A series circuit has only one continuous pathway through which current may flow. Other types of circuits have more than one pathway. A circuit that has only one path for current is known as a circuit.</td>
</tr>
<tr>
<td>B</td>
<td>A series circuit is a circuit having only one pathway for current.</td>
</tr>
</tbody>
</table>

SERIES

A. Circle the letter below the illustration that represents a series circuit.
8. Select the correct answer.

A series circuit has

a. at least two paths for current.

b. any number of continuous electrical pathways for current.

c. only one path for current.

9. In a series circuit, there is only one path for current; therefore, current is the same any place in the circuit. Current at any point in a series circuit will be ________________

10. Current in a series circuit is constant throughout. Current is the movement of electrons.

If it were possible to count the electrons in a series circuit, the same number of electrons would be flowing across any point in the circuit.

How many electrons would leave the positive side of the circuit illustrated above?

a. 10,000.

b. Less than 10,000.

c. More than 10,000.

d. None.
11. The law of current states that the current in any part of a series circuit is equal to the current in any other part of the same circuit ($I_t = I_1 = I_2 = I_3 \ldots$).

NOTE: GO TO PAGE 339 UNFOLD THE FOLDOUT SHEET, READ, AND KEEP OPEN FOR REFERENCE.

What will the current be across R_1 and R_2 in the circuit above?

R_1:

R_2:

11. 16

1sn 3; p. 6
12. Select the correct answer.
An electrical circuit is a
a. continuous electrical pathway for voltage flow.
b. minimum of two pathways for current.
c. continuous electrical pathway for current.

13. Select the two correct answers.
A series circuit has
a. only one pathway for current.
b. more than one pathway for current.
c. current that will vary throughout the circuit.
d. constant current throughout the circuit.

14. In a series circuit, there is only one path for current, and the current is constant. The current will flow from the negative side of the power source, through the circuit, and back to the positive side of the power source. The amount of current is measured with an ammeter. An ammeter indicates amperes.

In the illustration above:

a. Draw arrows in the illustration above to indicate the direction of current.
b. What type of meter is represented by items A and B in the illustration above?
15. Current can be measured by an ammeter, or it can be determined mathematically by using Ohm's law. The formula for Ohm's law is illustrated in the magic circle.

The letters in the magic circle represent specific factors: E = voltage, I = current, and R = resistance. To use the magic circle, simply cover the unknown factor with your finger and you can see what you need to do to find the unknown. Example: To find current, cover the I, and you can see that you divide E by R.

One way of determining current in a series circuit is by using the total values. The total voltage (source voltage) divided by the total resistance will give you current. Complete the steps below and determine the current.

Step 1

Step 2

Step 3

24 + 12 = I

I = _______ amps.
16. Current in a series circuit can be found when total values are not known. When the amount of voltage drop across an individual component is known and the resistance of that component is known, we can divide the voltage drop by the resistance and find the current. Remember, this value will be for the entire circuit, because current is constant.

In the illustration below, you will notice there are no total values given; however, the voltage drop across R_2 and the resistance of R_2 are given. Using these values, we can find current.

Complete the steps below.

Step 1

Step 2

Step 3

12 + 4 = I

I = ____ amps.
17. Find the current in the series circuits below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>![Circuit a with 36V and 4Ω]</td>
</tr>
<tr>
<td></td>
<td>$I = _ _ _ \text{amps}$</td>
</tr>
<tr>
<td>b.</td>
<td>![Circuit b with 36V and 6Ω]</td>
</tr>
<tr>
<td></td>
<td>$I = _ _ _ \text{amps}$</td>
</tr>
<tr>
<td>c.</td>
<td>![Circuit c with 24V and 6Ω]</td>
</tr>
<tr>
<td></td>
<td>$I = _ _ _ \text{amps}$</td>
</tr>
<tr>
<td>d.</td>
<td>![Circuit d with 48V and $R_T=12\Omega$]</td>
</tr>
<tr>
<td></td>
<td>$I = _ _ _ \text{amps}$</td>
</tr>
</tbody>
</table>

18. You previously found current by dividing the voltage drop across a component by the resistance of that component. Now, let's see how this voltage drop is found. To find the voltage drop across an individual component, multiply the resistance of that component by the current through it.

Follow the steps in the illustration below and find E_2 (voltage drop across resistance number two).

Step 1

Step 2

Step 3

$2 \times 3 = E_2$

$E_2 = _ _ _ \text{volts}$

11, 16

Isn 3; p. 10
19. Using the information in the illustration below, complete the steps and find E_1 (the voltage drop across resistance number one),

Step 1

Step 2

Step 3

$E_2 = \frac{\text{volts}}{\Omega} \times \frac{\text{volts}}{\text{volts}}$

20. Solve for voltage drops E_1 and E_2.

Step 2

Step 3

$3 \times 4 = 12$ VOLTS

$E_1 = 12$ VOLTS

$E_1 = \frac{\text{volts}}{\Omega}$\n
$E_2 = \frac{\text{volts}}{\Omega}$
21. Now that you know how to find a voltage drop across a component, let's use this voltage drop to find the resistance of a component. To find this resistance, divide the voltage drop across the component by the current through it.

Follow the steps in the illustration below, and find the resistance of R_1.

<table>
<thead>
<tr>
<th>$E_1 = 12$ VOLTS</th>
<th>$E_2 = 20$ VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 = 3$ OHMS</td>
<td></td>
</tr>
</tbody>
</table>

22. Complete the steps and find the resistance of R_1.

$R_1 = $ ohms
23. Solve for the resistance of R_1.

STEP 2

\[\frac{12}{4} = R_1 \]

$R_1 = 3 \text{ ohms}$

Solve for the resistance of R_2.

\[R_2 = \text{ ohms} \]
24. Solve for the unknown.

\[R_1 = 2 \text{ OHMS} \]
\[R_2 = 4 \text{ OHMS} \]

a.
\[
\begin{align*}
&6V \\
&2\Omega \\
&\boxed{2A} \\
&R_1 \\
&R_2 \\
&3\Omega \\
&4\Omega \\
&R_3 \\
&? \\
\end{align*}
\]
\[I_t = \text{amps} \]

b.
\[
\begin{align*}
&4\Omega \\
&R_1 \\
&R_2 \\
&2\Omega \\
&R_3 \\
&6\Omega \\
&2A \\
\end{align*}
\]
\[E_3 = \text{volts} \]

c.
\[
\begin{align*}
&3A \\
&R_1 \\
&R_2 \\
&6\Omega \\
&R_3 \\
\end{align*}
\]
\[R_2 = \text{ohms} \]
25. After determining the resistance of the individual components, it is a simple task to find the total resistance of a series circuit. The law of resistance states: The total resistance of a series circuit is equal to the sum of the individual resistances of the circuit

\[R_t = R_1 + R_2 + R_3 \ldots \]

Complete the following example.

\[R_1 = 5 \text{ ohms} \]
\[R_2 = 10 \text{ ohms} \]
\[R_3 = 15 \text{ ohms} \]
\[R_t = \ldots \text{ ohms} \]

26. Total resistance \(R_t \) of a series circuit is found by the individual resistances.

Find the total resistance \(R_t \) of the following circuits.

\[3 \text{ ohms} \]
\[7 \text{ ohms} \]

\[R_t = \ldots \text{ ohms} \]

\[2 \text{ ohms} \]

\[R_t = \ldots \text{ ohms} \]

\[3 \text{ ohms} \]

\[4 \text{ ohms} \]
27. Previously, you added individual resistances to find the total resistance of a series circuit; however, this is not the only way it can be found. When total voltage and current are known, we can divide total voltage (E_t) by current to determine total resistance (R_t). Complete the following example.

Step 1

Step 2

Step 3 \[12 \div 4 = R_t\]

$R_t = _\text{ohms}$

28. Complete the steps and find the total resistance (R_t).

Step 1

Step 2

Step 3 \[? + ? = R_t\]

$R_t = _\text{ohms}$
29. Solve for the total resistance (R_t).

\[24 \div 6 = R_t \]
\[R_t = 4 \text{ OHMS} \]

\[R_t = 12 \text{ OHMS} \]

30. Solve for the unknown.

- **a.**
 \[\begin{align*}
 R_1 & + R_2 = 12V \\
 3A & \text{ (current)}
 \end{align*} \]

- **b.**
 \[\begin{align*}
 R_1 & + R_2 + R_3 = 24V \\
 4\Omega & \text{ (resistance)}
 \end{align*} \]

- **c.**
 \[\begin{align*}
 R_1 & + R_2 = 24V \\
 3A & \text{ (current)}
 \end{align*} \]
By now, you should have a good understanding of how to find resistance in a series circuit. A little review of current is in order at this point. Remember, current can be found by dividing total voltage by total resistance.

In the magic circle, it looks like this:

Solve for current in the circuit below.

\[
\text{I} = \frac{E}{R} \text{ amps.}
\]

In order to work with series circuits, you must know how to determine total voltage. You can determine total voltage \(E_t\) by multiplying current by total resistance \(R_t\).

Complete the example below.

Step 1

Step 2

Step 3

\[4 \times 6 = E_t\]

\[E_t = \text{volts}\]
33. Using the information in the illustration below, complete the steps and determine the total voltage (E_t).

Step 1

Step 2

Step 3

$$E_t = 24 \text{ VOLTS}$$

34. Solve for total voltage (E_t).
35. Previously, you found the voltage drop of an individual component by multiplying the resistance of the component by the current through it. The law of voltage states: The total voltage of a series circuit is equal to the sum of the individual voltage drops of the circuit \(E_t = E_1 + E_2 + E_3 \ldots \). This total voltage is equal to the source voltage.

Complete the example below.

\[E_t = 48 \text{ VOLTS} \]

Find each individual voltage drop and the total voltage in the circuit below.

\[E_t = 24 \text{ VOLTS} \]

Find each individual voltage drop and the total voltage in the circuit below.
Exercise 37

In a series circuit, the sum of the individual voltage drops is total voltage \(E_t \). The total voltage \(E_t \) is equal to the source voltage. It should be understood that the source voltage and the total voltage in a series circuit have the same value. Source voltage is the voltage of the battery or other source potential; total voltage is the sum of the voltage drops in the circuit and equals the value of the source.

Complete the example below.

<table>
<thead>
<tr>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 VOLTS</td>
<td>12 VOLTS</td>
<td>6 VOLTS</td>
</tr>
</tbody>
</table>

Diagram:

- **Source Voltage:** \(E_t \) volts
- **Source Voltage:** \(E_t \) volts

Exercise 38

Solve for unknowns in the circuits below.

a.

- **Source Voltage:** 24 VOLTS

b.

- **Source Voltage:** 24 VOLTS

Diagram:

- **Source Voltage:** \(E_t \) volts
- **Source Voltage:** \(E_t \) volts
39. The values of source voltage and total voltage are equal. The value of source voltage will diminish as you progress through a series circuit.

Each component will cause a certain amount of source voltage to be used because there is resistance to current within it. This is voltage drop. Source voltage will be expended by moving the current through the circuit.

In moving current through a series circuit, the source voltage will be completely ________.

40. Source voltage will be totally expended while moving current through a series circuit, but only a portion of the source voltage will be expended moving current through each component, as shown in the illustration below.

a. What is the total amount of voltage expended by moving current through R1 and R2 above? ________ volts

b. What is the source voltage of the circuit above? ________ volts
41. As you now know, there is a certain amount of source voltage expended or used at each component in the circuit. The amount of source voltage expended at each component is known as the voltage drop across that individual component. The voltage expended at a component is known as **voltage drop**.

42. Voltage drop, resistance of a component, and current through a component can all be used in the formula for Ohm's law. You can find the voltage drop of a component by multiplying its resistance by the current through it. Find the voltage drop (E_1) in the circuit below.

![Circuit Diagram](image)

$$E_1 = \text{volts}$$

43. To find the resistance of a component, divide its voltage drop by the current through it. Find the resistance of R_1 in the circuit below.

![Circuit Diagram](image)

$$R_1 = \text{ohms}$$

| a. 24 VOLTS | 41. As you now know, there is a certain amount of source voltage expended or used at each component in the circuit. The amount of source voltage expended at each component is known as the voltage drop across that individual component. The voltage expended at a component is known as **voltage drop**. |
| b. 24 VOLTS | |

VOLTAGE DROP	42. Voltage drop, resistance of a component, and current through a component can all be used in the formula for Ohm's law. You can find the voltage drop of a component by multiplying its resistance by the current through it. Find the voltage drop (E_1) in the circuit below.
	![Circuit Diagram](image)
E$_1$ = 8 VOLTS	43. To find the resistance of a component, divide its voltage drop by the current through it. Find the resistance of R_1 in the circuit below.
	![Circuit Diagram](image)
44. Label the statements below true or false.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. All of the source voltage will be expended by moving current through a circuit.</td>
<td>T</td>
</tr>
<tr>
<td>b. All of the source voltage will be expended across each resistance in a circuit having three resistances.</td>
<td>F</td>
</tr>
<tr>
<td>c. Total voltage is equal to the source voltage.</td>
<td>T</td>
</tr>
<tr>
<td>d. Source voltage and total voltage are not equal.</td>
<td>F</td>
</tr>
<tr>
<td>e. Only a portion of source voltage will be expended by moving current through the circuit.</td>
<td>T</td>
</tr>
<tr>
<td>f. Voltage drop is the amount of voltage expended by moving current through a resistance.</td>
<td>T</td>
</tr>
</tbody>
</table>
45. If you work around electrical circuits, you will be using various meters. You need to know how to connect these meters in a circuit and know what each meter measures after it is connected. A voltmeter is connected parallel with a circuit. A voltmeter is used to measure the potential difference between two points. This potential difference is the voltage drop across a resistance.

![Diagram of a circuit with a voltmeter connected across points A and B]

Using the information and the illustration above, answer these questions.

a. The potential difference (voltage drop) is measured in __________.

b. A voltmeter is connected __________ with a circuit.

c. If 6 volts are available at point A, how many volts would be available at point B? __________.

d. A voltmeter measures the __________ between two points.

46. An ammeter is connected in series in a circuit and measures the current in the circuit. All current in a series circuit must go through the ammeter.

![Diagram of a circuit with an ammeter connected in series with a 3Ω resistor]

a. Current is measured in __________.

b. An ammeter is connected __________ in a circuit.

c. An ammeter measures the __________ in a circuit.

11.16
1sn 3; p. 25
47. An ohmmeter is a meter used to measure the resistance between any two points. The ohmmeter has its own power source and is connected in series with the component to be measured. Since the ohmmeter has its own power source, the circuit power must be off while testing a circuit with an ohmmeter. Failure to turn off circuit power could result in damage to the ohmmeter.

![Diagram of ohmmeter in series with component]

Using the information above, answer these questions.

a. An ohmmeter measures the ________ between two points.
b. An ohmmeter is connected in ________ with the circuit to be measured.
c. An ohmmeter has its own ________ source.
d. What must be off when testing a circuit with an ohmmeter? ________

48. The voltmeter above is indicating the potential difference between what two points?

![Diagram of voltmeter connected to circuit]

a. The voltmeter above is indicating the potential difference between what two points? ________
b. The voltmeter above shows a voltage drop of 1 volt across the number ________ bulb.
c. How is a voltmeter connected with a circuit? ________
49. In the illustration above, current is being measured with an

b. The current in the circuit above is _____ amps.

c. An ammeter is connected in _____ in a circuit.

50. The ohmmeter above is measuring the resistance between what
two points? _____

b. What must be done with circuit power when testing a circuit
with an ohmmeter? _____

c. An ohmmeter has its own _____ source.

d. An ohmmeter is connected in _____ with the circuit to
be measured.

e. What two meters are connected in series? _____
51. Match each meter in column A with the statement(s) in column B. Place the letter beside the meter in the blank beside the appropriate statement. A statement may apply to more than one meter.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Ammeter</td>
</tr>
<tr>
<td>b.</td>
<td>Ohmmeter</td>
</tr>
<tr>
<td>c.</td>
<td>Voltmeter</td>
</tr>
<tr>
<td></td>
<td>1. Measures potential difference between two points.</td>
</tr>
<tr>
<td></td>
<td>2. Connected in parallel.</td>
</tr>
<tr>
<td></td>
<td>3. Connected in series.</td>
</tr>
<tr>
<td></td>
<td>4. Circuit power must be off when using.</td>
</tr>
<tr>
<td></td>
<td>5. Has its own power source.</td>
</tr>
<tr>
<td></td>
<td>6. Measures resistance between two points.</td>
</tr>
<tr>
<td></td>
<td>7. Measures current.</td>
</tr>
</tbody>
</table>
A circuit condition frequently encountered around electrical equipment is a short circuit. A short circuit occurs when current takes a path short of its intended circuit. Illustrated below are two examples of a short circuit.

Improper wiring. Bare wires touching.

Ohm's law states that when resistance decreases, current increases. In a short circuit, the current takes the path of least resistance; therefore, a short circuit will result in greater than normal current. Fuses and circuit breakers are examples of safety devices to protect against short circuits.

Using the previous information, answer the following.

a. Which of the circuits below indicates current taking a path of least resistance because of short circuits?

b. Which of the following circuits illustrates the current taking a path short of its intended circuit?

c. Which of the following circuits will have the greater amount of current?
53. Complete the following.

 a. In a short circuit, the current will take the path of least ________.

 b. In a short circuit, the current will take a path short of its ________ circuit.

 c. In a short circuit, the current will be ________ than normal.

54. Select the statements that apply to a short circuit.

 a. Current will take a path short of its intended circuit.
 b. It is a form of an open circuit.
 c. It results in greater than normal current.
 d. Current will take the path of greatest resistance.

55. A grounded circuit is a circuit that uses something other than a wire as part of the circuit. We can form a grounded circuit by using the fuselage of an aircraft as one part or one path of the circuit. One side of the power source would be connected to the fuselage, while the other side would be connected to the equipment to be operated. The equipment would also be connected to the fuselage. The current path will be from the power source via a wire conductor to the equipment and back to the source via the metal framework (ground). The metal framework acts as a conductor.

In the illustration above, the path formed by ground is from points

 a. A to B.
 b. B to C.
 c. C to A.
56. The last circuit condition is the open circuit. An open circuit is an opening or break in an electrical circuit.

(1) SWITCH OPEN
 . CREATE'S OPEN CIRCUIT

(2) SWITCH CLOSED
 . CIRCUIT COMPLETE

a. Which of the illustrations above shows an open circuit? ______
 The open circuit can be intentional, such as in the case of the light switch above, or it can be unintentional. A broken wire in a circuit is an unintentional open circuit as long as the broken end does not touch another conductor. An open in a series circuit will affect the entire circuit, since there is only one path for current.

b. Which circuit above contains an open circuit? ______

57. Using the previous information, complete the following.

a. An opening or break in an electrical circuit is an example of an ________ circuit.

b. An open circuit created by opening a switch is an example of what type of open circuit? ________

c. An open circuit created by a broken wire is an example of what type of open circuit? ________

d. An open in a series circuit will affect the ________ circuit.

e. What circuit arrangement is involved when an open circuit affects all the branches? ________
58. Which of the following illustrates an open circuit?

A.

B.

C.

D.

59. Select the statements that apply to an open circuit.

a. It will affect the entire series circuit.
 b. It will affect all the branches in a series circuit.
 c. It will not affect the entire series circuit.
 d. Current will take a path short of its intended circuit.
 e. It is a form of short circuit.
45. a. VOLTS
 b. PARALLEL
 c. 4 VOLTS
 d. POTENTIAL DIFFERENCE

46. a. AMPS
 b. SERIES
 c. CURRENT

47. a. RESISTANCE
 b. SERIES
 c. POWER
 d. CIRCUIT POWER

48. a. POINTS B AND C
 b. 2
 c. PARALLEL

49. a. AMMETER
 b. 2
 c. SERIES

50. a. POINTS C AND D.
 b. TURN IT OFF.
 c. POWER
 d. SERIES
 e. AMMETER AND OHMMETER

51. c. 1.
 c. 2.
 a.-b. 3.
 b. 4.
 b. 5.
 b. 6.
 a. 7.

52. a. (2)
 b. (2)
 c. (2)

53. a. RESISTANCE
 b. INTENDED
 c. GREATER

54. a.
 c.

55. c.

56. a. (1)
 b. (1)

57. a. OPEN.
 b. INTENTIONAL
 c. UNINTENTIONAL
 d. ENTIRE
 e. SERIES CIRCUIT

58. B
 C

59. a.
 b.
1. An electrical circuit is a
 a. pathway formed by a conductor between two resistances.
 b. complete electrical pathway for current.
 c. continuous electrical pathway for voltage.

2. A series circuit has (select two)
 a. two or more paths for current.
 b. constant voltage throughout the circuit.
 c. only one pathway for current.
 d. constant current throughout the circuit.
 e. constant resistance throughout the circuit.
 f. current that will vary throughout the circuit.

3. Solve for the unknowns in the problems below.

 a.

 Total resistance = ___ ohms
b. Total resistance = __ ohms

c. Current = __ amps

d. Current = __ amps

e. Voltage drop across R₂ = __ volts
Resistance of R_3 = ____ ohms

Total voltage = ____ volts

Total voltage = ____ volts
4. Which statements below are correct concerning source voltage in a series circuit?

a. All the source voltage will be expended moving current through a circuit.

b. Only a portion of source voltage will be expended moving current through the circuit.

c. Total voltage is equal to the source voltage.

d. Source voltage and total voltage are not equal.

e. All the source voltage will be expended across each resistance in a circuit having three resistances.

5. Match each meter in column A with the statement(s) in column B. Place the letter found beside each meter in the blank beside the appropriate statement. A statement may apply to more than one meter.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Ammeter</td>
<td>1. Measures potential difference between two points.</td>
</tr>
<tr>
<td></td>
<td>4. Circuit power must be off when using.</td>
</tr>
<tr>
<td></td>
<td>5. Has its own power source.</td>
</tr>
<tr>
<td></td>
<td>6. Measures resistance between two points.</td>
</tr>
<tr>
<td></td>
<td>7. Measures current.</td>
</tr>
</tbody>
</table>
6. Which statements apply to a short circuit?
 a. Current will take a path short of its intended circuit.
 b. It is a form of an open circuit.
 c. It will result in greater than normal current.
 d. Current will take the path of greatest resistance.

7. Which statements apply to an open circuit?
 a. It will affect the entire series circuit.
 b. Current will take a path short of its intended circuit.
 c. It is a form of short circuit.
To be able to talk about circuits or solve problems dealing with circuits, we have to be able to identify the various components and their functions in the circuits. This will be done by using capital letters and subscripts. The subscripts will consist of numbers or lower-case letters.

The capital letters will be E (voltage), I (current), and R (resistance).

Any time you see one of the designations, say the full meaning of it to yourself. Example: If you see the designation E_1, say to yourself, voltage drop across resistance number one. This will get you used to the designations, and you will learn them a lot faster. Study the examples below.

$E_t =$ Total voltage of a circuit.
$I_t =$ Total current in a circuit.
$R_t =$ Total resistance in a circuit.

$E_1 =$ Voltage drop across resistance number one.
$E_2 =$ Voltage drop across resistance number two.

$R_1 =$ Resistance of component number one.
$R_2 =$ Resistance of component number two.

$I_1 =$ Current through resistance number one.
$I_2 =$ Current through resistance number two.

If more than two resistances are in a circuit, the subscript numbers or letters will be in numerical or alphabetical order. Examples below.

$E_1, E_2, E_3, E_4, \text{ etc.}$

$R_1, R_2, R_3, R_4, \text{ etc.}$

$E_a, E_b, E_c, E_d, \text{ etc.}$
1. b
2. c, d
3. a. \(R_T = \frac{V}{I} = \frac{12}{4} = 3 \text{ ohms} \)
 b. \(R_T = R_1 + R_2 + R_3 = 10 + 7 + 8 = 25 \text{ ohms} \)
 c. Step 1. \(R_T = R_1 + R_2 + R_3 = 2 + 2 + 2 = 6 \text{ ohms} \)
 Step 2. \(I = \frac{V}{R_T} = \frac{12}{6} = 2 \text{ amps} \)
 d. \(I = \frac{V}{R} = \frac{12}{6} = 2 \text{ amps} \)

Note: Current is the same throughout a series circuit.

e. \(V_2 = IR_2 = (8)(3) = 24 \text{ volts} \)
 f. \(R_3 = \frac{V_3}{I} = \frac{45}{5} = 9 \text{ ohms} \)
 g. \(V_T = V_1 + V_2 + V_3 = 20 + 25 + 15 = 60 \text{ volts} \)
 h. Step 1. \(V_T = V_1 + V_2 + V_3 \)
 Step 2. \(V_1 = IR_1 = (3)(6) = 18 \)
 \(V_2 = IR_2 = (3)(2) = 6 \)
 \(V_3 = IR_3 = (3)(8) = 24 \)
 \(V_T = 18 + 6 + 24 = 48 \text{ volts} \)

4. a, c

11, 16.

1sn 3; p. 41
GO RIGHT ON TO LESSON 3, PART B - PARALLEL CIRCUITS
FUNDAMENTALS OF ELECTRICITY

LESSON 3

PART B

PARALLEL CIRCuits

OBJECTIVES

1. From a list of statements pertaining to circuits, select the statements which apply to parallel circuits.

2. Solve problems in parallel circuits for the following:
 a. Total resistance
 b. Resistance of an individual branch
 c. Total current
 d. Current flow of an individual branch
 e. Total voltage

3. Given a list of numbers, determine the reciprocal of each.
1. Resistances side by side and with their ends connected are parallel-connected, if the resistances in a circuit are so connected, the circuit is known as a parallel circuit.

2. The resistances in a parallel circuit are connected parallel to each other. Each of these resistances will be a branch. If a twelve-volt battery was the source voltage of a parallel circuit, the voltage in each branch of that parallel circuit would also equal twelve volts. The voltage of each branch of a parallel circuit equals the source voltage.

3. The voltage in each branch of a parallel circuit will equal source voltage.

What is the source voltage in the circuit above? ___ volts
24 VOLTS

<table>
<thead>
<tr>
<th>4.</th>
<th>PARALLEL CIRCUIT LAW FOR TOTAL VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$E_t = E_1 = E_2 = E_3 \ldots$</td>
</tr>
</tbody>
</table>

In the illustration above, the source voltage and branch voltages are (equal/unequal).

EQUAŁ

5. Put the \times, $+$, $-$, or $=$ sign in the parentheses to make the statement correct.
Since source voltage (total voltage) and branch voltages are equal, the parallel circuit law for total voltage is $E_t(\) E_1(\) E_2(\) E_3(\)$, etc.

| $E_t = E_1 = E_2 = E_3$ |

6. The voltage is the same across each branch of a parallel circuit, and the voltage of each branch equals source voltage.

![Parallel Circuit Diagram]

What is the voltage in branch A and what is the voltage in branch B above?

A.

B.

11.16

Issue 3; p. 45
<table>
<thead>
<tr>
<th></th>
<th>24 VOLTS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24 VOLTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>24 VOLTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.

- **a. What is the voltage in branch A?**
- **b. What is the source voltage?**

<table>
<thead>
<tr>
<th></th>
<th>6 VOLTS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6 VOLTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>6 VOLTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Now that you know that all the branch voltages and the source voltage are equal in a parallel circuit, you will find that solving for total (source) voltage is relatively easy. You can determine total voltage (source voltage) in a parallel circuit by applying Ohm's law. If you multiply the current of a branch by the resistance of that branch, you will determine the.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE VOLTAGE</td>
<td>OR TOTAL VOLTAGE</td>
<td>OR BRANCH VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(THEY ARE ALL EQUAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Total voltage in a parallel circuit can be determined by multiplying the current of a branch by the resistance of the same branch. Complete the example below.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2 ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$E_T = \text{volts}$$

11, 16

Isn 3; p. 46
10. Using the information in the illustration below, complete the steps and find total voltage (E_t).

STEP 3

$4 \times 6 = E_t$

$E_t = 24$ VOLTS

STEP 1

STEP 2

- $\frac{1}{6} + \frac{1}{4} = \frac{1}{3}$
- $\frac{1}{3} \times 24 = 8$ volts

STEP 3

$\frac{2}{3} \times 6 = E_t$

$E_t = 12$ VOLTS

11. Solve for total voltage in the parallel circuit below.

STEP 2

116

STEP 3

$3 \times 4 = E_t$

$E_t = 12$ VOLTS
120 VOLTS

12. As you probably have noticed in this program, the difference between a parallel circuit and a series circuit is that a parallel circuit has two or more paths for current. Knowing this, you can now understand why an open in a parallel circuit only affects the branch or branches in which the open occurs.

![Figure 1](image1)

![Figure 2](image2)

a. Which of the illustrations above shows a parallel circuit?

b. A parallel circuit has ___ or ___ paths for current.

c. Which branch of the parallel circuit above contains an open?

<table>
<thead>
<tr>
<th>a. FIGURE 1</th>
<th>b. TWO OR MORE</th>
<th>c. BRANCH B</th>
</tr>
</thead>
</table>

13. What effect will the open in branch B have on the light bulb in branch A?

![Light bulb diagram](image3)

a. The bulb will burn brighter.

b. The bulb will get dimmer.

c. No effect.
c. The reason the open has no effect on the bulb in branch A is that an open in a parallel circuit affects only the _______ or _______ in which the open occurs.

<table>
<thead>
<tr>
<th>BRANCH OR BRANCHES</th>
<th>15. Draw arrows to indicate the path of current flow in the parallel circuits below.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Parallel Circuits Diagram]</td>
</tr>
</tbody>
</table>

14. Since a parallel circuit has two or more paths for current flow, the amount of current in each branch may be different. To find the total current (I_t) in a parallel circuit, add the current of each branch.

PARALLEL CIRCUIT LAW FOR TOTAL CURRENT:

$$I_t = I_1 + I_2 + I_3 \ldots$$

a. To find total current (I_t) in a parallel circuit, the current of all the branches should be _______.

b. Find the total current (I_t) in the circuit above. $I_t =$ _______ amps.
17. If current in each individual branch is known, total current (I_t) in a parallel circuit can be determined by **adding** the current of the individual branches.

18. What is the total current for the parallel circuit below? $I_t =$ ________ amps.

19. Find the total current in the circuits below.

 a. $I_t =$ ________ amps

 b. $I_t =$ ________ amps

 c. $I_t =$ ________ amps.
<table>
<thead>
<tr>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $I_e = 14$ AMPS.</td>
</tr>
<tr>
<td>b. $I_e = 16$ AMPS.</td>
</tr>
<tr>
<td>c. $I_e = 25$ AMPS.</td>
</tr>
</tbody>
</table>

20. There may be times when branch current is unknown in a parallel circuit. Determining branch current is a simple application of Ohm's law. If you divide the applied voltage by the resistance of a branch, you will determine the branch current.

21. In order to find the current of a branch, divide the applied voltage by the resistance of that branch. Complete the steps below and determine the current for branch 3 (I_3).

Step 1

Step 2

Step 3

\[I_3 = \frac{12}{3 + 2} \text{ amps.} \]

11.18
lsn 3; p. 51
22. Using the information in the illustration below, determine the current for branch 2 (I_2).

Step 1
- \[12 + 2 = I_3 \]
- \[I_3 = 6 \text{ AMPS.} \]

Step 2
- \[24V \]
- \[R_1 = 12 \Omega \]
- \[R_2 = 8 \Omega \]
- \[R_3 = 6 \Omega \]
- \[I_2 = \text{amps.} \]

Step 3
- \[24 + 2 = I_2 \]
- \[I_2 = 3 \text{ AMPS.} \]

23. Find I_2 in the circuit below.

- \[110V \]
- \[2A \]
- \[? \]
- \[5A \]

- \[I_2 = \text{amps.} \]
24. You have been solving for current in the preceding frames by dividing the applied voltage by the resistance. Look at the illustration below and study the relationship between current and resistance in each branch.

![Electric Circuit Diagram]

You can readily see that as resistance becomes larger, current becomes smaller. As resistance decreases, current ______.

INCREASES

| 25. Current in each branch of a parallel circuit depends on the ______ in that branch. |

RESISTANCE

| 26. Finding the resistance of a branch in a parallel circuit is similar to finding current. When you divide the applied voltage by the current of a branch, you determine the ______ of that branch. |

RESISTANCE

| 27. In order to determine the resistance of a branch in a parallel circuit, divide the applied voltage by the current in that branch. Complete the steps in the example below, and determine the resistance of branch R_3. |

![Resistances Diagram]

Step 1 ---

Step 2 ---

Step 3 --- $\frac{E}{I_3}$ + $$ = R_3$$

$R_3 = ____$ ohms.
28. From the information given below, complete the steps and find R_2.

Step 1 ---

Step 2 ---

Step 3 --- $+ = R_2$

$R_2 = \ldots$ ohms

29. Using the current, voltage, and resistance laws you have learned thus far, determine the values for the circuit below.

$R_1 = \ldots$ ohms \hspace{1cm} $I_4 = \ldots$ amps.

$R_3 = \ldots$ ohms \hspace{1cm} $E_4 = \ldots$ volts

$I_2 = \ldots$ amps \hspace{1cm} $I_t = \ldots$ amps.
Before we start finding the total resistance of a parallel circuit, here is something to remember. The total resistance of a parallel circuit will always be less than the smallest branch resistance of the circuit.

The total resistance of the circuit above will be

a. 6 ohms.
b. 12 ohms.
c. less than 6 ohms.
d. more than 6 ohms.

Resistances in parallel are like water pipes in parallel. In each case, when the total size is increased, then the total resistance to current flow is decreased. Two water pipes of equal size placed side by side carry twice as much water as a single pipe of the same size; and equal resistances connected side by side pass twice as much current as a single resistance. This greater current flow in a parallel circuit indicates that total resistance is ________ than that of a single resistance.

When you figure the resistance values in a parallel circuit, you will find that total resistance is always smaller than the resistance of the smallest branch.

In the illustration above, the total resistance is ________ than the smallest branch resistance.

Lesson 3; p. 55
33. Since you now know that total resistance in a parallel circuit is less than the resistance of the smallest branch, it is easy to see that you cannot add individual resistances to find total resistance. Finding total resistance is another application of Ohm's law. If you were to divide total voltage (E_t) by the total amperage (I_t), you would determine ________________.

34. One way of finding the total resistance (R_t) of a parallel circuit is to divide the total voltage (E_t) by the total current (I_t). Complete the steps below to determine total resistance (R_t).

<table>
<thead>
<tr>
<th>Step 1 ---</th>
<th>E_t</th>
<th>I_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3 --- __________ + __________ = R_t

R_t = __________ ohms
35. Using the information in the illustration below, find the total resistance (R_t) of the circuit.

Step 1 ---

Step 2 ---

Step 3 --- $\ldots + \ldots = R_t$

$R_t = \ldots$ ohms

36. Find the total resistance (R_t) of the circuit below.

$R_t = \ldots$ ohms

STEP 2

STEP 3
37. Select the statements that are true if branch C of the circuit below develops an open.

\[R_c = 3 \text{ OHMS} \]

\[
\begin{array}{c}
\text{A} \\
24V \\
\text{B} \\
\text{C} \\
\end{array}
\]

\[
\begin{array}{c}
2A \\
4A \\
3A \\
\end{array}
\]

a. Total resistance will increase.
b. Total resistance will decrease.
c. Total current will increase.
d. Total current will decrease.

38. Let's review some things we have learned about parallel circuits. Select the statements below that are correct concerning parallel circuits.

a. Voltage is the same across each branch of a parallel circuit.
b. Source voltage and branch voltage are never equal in a parallel circuit.
c. A parallel circuit has two or more paths for current.
d. The total resistance of a parallel circuit is the sum of all the branch resistances.
e. Total resistance of a parallel circuit is always less than the resistance of any branch.

39. When the only values known in a parallel circuit are the branches' resistances, total resistance can be determined by the reciprocal method.

What method can be used to determine \(R_c \) in the circuit above?
In order to find total resistance in a parallel circuit by the reciprocal method, you must first understand what is meant by reciprocal. The reciprocal of a number is that number divided into one.

Example: Find the reciprocal of 2.

Step 1 --- Set up the problem to divide the number into 1.

Step 2 --- Invert the divisor and change division sign to a multiplication sign.

Step 3 --- Multiply.

\[
\frac{1}{2} \times \frac{1}{2} = \frac{1}{2}
\]

\[\frac{1}{2} \text{ = the reciprocal of 2}\]

Find the reciprocal of 4 by dividing it into 1.

\[
\frac{1}{4} \text{ = the reciprocal of 4}
\]

The easiest way to find the reciprocal of a whole number is to make it a fraction by giving it a numerator of one. When you do this, you have the reciprocal without performing a division process.

Example: Find the reciprocal of 4.

Give the whole number a numerator of 1, and a denominator of 1.

\[
\frac{1}{4} \text{ = the reciprocal of 4}
\]

Find the reciprocal for the following numbers:

a. 6
b. 8
c. 10
42. Giving a whole number a numerator of one gives the ______ for that whole number.

43. Find the reciprocal of these whole numbers.

<table>
<thead>
<tr>
<th>Whole Number</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 7</td>
<td>e. 88</td>
</tr>
<tr>
<td>b. 9</td>
<td>f. 12</td>
</tr>
<tr>
<td>c. 15</td>
<td>g. 3</td>
</tr>
<tr>
<td>d. 40</td>
<td>h. 5</td>
</tr>
<tr>
<td>i. 6</td>
<td></td>
</tr>
</tbody>
</table>

44. To find the reciprocal of a fraction, simply invert the fraction and reduce to its lowest term.

Example: \(\frac{1}{2} \) inverted becomes \(\frac{2}{1} \). Reduced to its lowest term it becomes 2. Then, 2 is the reciprocal of \(\frac{1}{2} \).

Example: \(\frac{2}{3} \) inverted becomes \(\frac{3}{2} \). Reduced to its lowest term it becomes \(1 \frac{1}{2} \). Then, \(1 \frac{1}{2} \) is the reciprocal of \(\frac{2}{3} \).

Find the reciprocal of the following fractions.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\frac{3}{5})</td>
<td>b. (\frac{2}{10})</td>
</tr>
</tbody>
</table>
45. The reciprocal of a fraction will be a ______
number or a mixed number.
The reciprocal of a whole number will be a ______

<table>
<thead>
<tr>
<th>Whole Fraction</th>
<th>b. $\frac{5}{7}$</th>
<th>c. $\frac{12}{11}$</th>
</tr>
</thead>
</table>

46. Find the reciprocal of these fractions.

<table>
<thead>
<tr>
<th>a. $\frac{1}{3}$</th>
<th>d. $\frac{1}{6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. $\frac{2}{7}$</td>
<td>e. $\frac{1}{9}$</td>
</tr>
<tr>
<td>c. $\frac{3}{8}$</td>
<td>f. $\frac{4}{9}$</td>
</tr>
</tbody>
</table>

47. To find the total resistance (R_c) of a parallel circuit when the only known values are the resistances of the branches, use the ______ method.

<table>
<thead>
<tr>
<th>a. 3</th>
<th>b. $3\frac{1}{2}$</th>
<th>c. $2\frac{2}{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. 6</td>
<td>e. 9</td>
<td></td>
</tr>
<tr>
<td>f. $2\frac{1}{4}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.16
lsn 3; p. 61
48. Now, let's use the reciprocal method to find the total resistance (R_t) of a parallel circuit by following the steps below.

Parallel circuit law for total resistance:

\[
\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\]

Step 1 --- Find the lowest common denominator and add.

\[
\frac{1}{R_t} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4}
\]

\[
\frac{1}{R_t} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12}
\]

\[
\frac{1}{R_t} = \frac{13}{12}
\]

Step 2 --- The sum of the resistances is the reciprocal of R_t and it must be inverted.

\[
\frac{1}{R_t} = \frac{13}{12}
\]

\[
R_t = \frac{12}{13}
\] ohms
Find the total resistance \(R_t \) of the parallel circuit below by completing the steps.

Step 1 --- Find the lowest common denominator and add.

\[
\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
\]

Step 2 --- The sum of the reciprocals of \(R_1 \) is the sum of the reciprocals of \(R_2 \).

Step 3 --- Find the lowest common denominator and add.

\[
R_t = \frac{R_1 R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}
\]

\(R_t = \frac{12}{13} \text{ ohms} \)

195
Find the total resistance of the parallel circuit below by completing the steps.

STEP 1
\[
R_t = \frac{1}{\frac{1}{3} + \frac{1}{3} + \frac{1}{15}}
\]

STEP 2
\[
R_t = \frac{1}{\frac{3}{15} + \frac{5}{15} + \frac{1}{15}}
\]

STEP 3
\[
R_t = 1 \frac{2}{3} \text{ OHMS}
\]

- Step 1: \(\frac{1}{R_t}\)
- Step 2: \(\frac{1}{R_t}\)
- Step 3: \(R_t\) = \(\frac{2}{3}\) ohms

Find the total resistance of the parallel circuit below.

STEP 1
\[
R_t = \frac{1}{\frac{1}{6} + \frac{1}{3} + \frac{1}{2}}
\]

STEP 2
\[
R_t = \frac{1}{\frac{1}{6} + \frac{2}{6} + \frac{3}{6}}
\]

STEP 3
\[
R_t = 1 \text{ OHM}
\]

- Step 1: \(\frac{1}{R_t}\)
- Step 2: \(\frac{1}{R_t}\)
- \(R_t\) = \(1\) ohms

\(R_t = 1 \frac{10}{11} \text{ OHMS}\)
1. A parallel circuit has (select three)
 a. only one path for current.
 b. voltage that is the same across each branch.
 c. voltage that varies between the branches.
 d. two or more paths for current.
 e. a total resistance smaller than the resistance of any branch.
 f. current that is constant throughout.

2. Solve for the unknown in each of these problems.

 a.
 ![Diagram of a parallel circuit with a 120V voltage, 30A current, and电阻R1, R2, R3.]
 Resistance of branch 2 = ____ ohms

 b.
 ![Diagram of a parallel circuit with a 120V voltage, 40A current, and no explicit resistance values.]
 Total resistance = ____ ohms
c. Total resistance = ___ ohms

d. Current through R_1 = ___ amps.
Current through R_2 = ___ amps.

Total current = ___ amps.
3. Determine the reciprocal of each of these numbers.

<table>
<thead>
<tr>
<th>Number</th>
<th>Reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>
LESSON 3, PART B
PARALLEL CIRCUITS-SELF TEST ANSWERS

1. b, d, e

2. (a) Step 1. Recall voltage is equal to the source voltage across each branch.

\[
V_T = \frac{120}{30} = 4 \text{ ohms}
\]

Step 2. \[R_2 = \frac{V_T}{I_2} = \frac{120}{30} = 4 \text{ ohms}\]

(b) \[R_T = \frac{V_T}{I} = \frac{120}{40} = 3 \text{ ohms}\]

(c) \[\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{3} + \frac{1}{6} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} + \frac{1}{6} = \frac{6}{6} = 1\]

\[R_T = 1 \text{ ohm}\]

(d) \[I_1 = \frac{V_T}{R_1} = \frac{24}{6} = 4 \text{ amps}\]
\[I_2 = \frac{V_T}{R_2} = \frac{24}{8} = 3 \text{ amps}\]

(e) \[I_T = I_1 + I_2 + I_3 = 4 + 3 + 2 = 9 \text{ amps}\]

(f) \[V_T = I_1 R_1 = I_2 R_2 = I_3 R_3\]
\[= (2)(6) = (3)(4) = (4)(3) = 12 \text{ volts}\]

(g) Step 1. \[\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{15} + \frac{1}{15} + \frac{1}{15}\]
\[\frac{1}{R_T} = \frac{3}{15} = \frac{1}{5} \quad R_T = 5\]

Step 2. \[V_T = I_T R_T = (15)(5) = 75\]

3. 5 1/5

10 1/10

8 1/8

1/2 2

25 1/25

1/4 4

END OF LESSON 3, GO ON TO LESSON 4

11.16

1sn 3; p. 68
This is a programmed lesson. It is designed to teach, not to test. You will need only this booklet, a pencil, and some time to complete this lesson. If there is something in the program you do not understand, ask your instructor or supervisor for assistance.

- REMEMBER -

This lesson has been written so that the amount of reading necessary is minimal and yet most meaningful. Therefore, it is very important that you follow these instructions.

- Read each page carefully.
- Fill in each blank.
- Keep the answer to the frame on which you are working covered with a slip of paper until you have written your answer.
- Correct all errors you make.
- Follow all directions given in the program.

SUGGESTED READING TIME
180 MINUTES
LESSON 4

PART A

SERIES-PARALLEL CIRCUITS

OBJECTIVES

1. From a list of statements pertaining to electrical circuits, select those pertaining to series-parallel circuits.

2. Given a battery and four resistances, draw in connecting lines to form two series circuits connected in parallel.

3. Given problems with series circuits connected in parallel, solve for the unknown values of resistance, current, and voltage.

4. Given a battery and four resistances, draw in connecting lines to form two parallel circuits connected in series.

5. Given problems with parallel circuits connected in series, solve for the unknown values of resistance, current, and voltage.
1. A series-parallel circuit may consist of series circuits connected in parallel or it may consist of parallel circuits connected in series. You have had the necessary laws and formulas needed to solve series-parallel circuit problems. The important thing to remember is that when working with resistances connected in series, use series-circuit laws; and when working with resistances connected in parallel, use parallel-circuit laws.

The following formulas are based on the laws of series circuits.

Total resistance equals the sum of the individual resistances.

\[R_t = R_1 + R_2 + R_3 \ldots \]

Current flow is the same across each resistance.

\[I_t = I_1 = I_2 = I_3 \ldots \]

Total voltage equals the sum of the voltage drops across each resistance.

\[E_t = E_1 + E_2 + E_3 \ldots \]

The following formulas are based on the laws of parallel circuits.

Total resistance is determined by the reciprocal method.

\[\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \ldots \]

Total current is equal to the sum of the current of each branch.

\[I_t = I_1 + I_2 + I_3 \ldots \]

Total voltage is equal to the voltage of each branch.

\[E_t = E_1 = E_2 = E_3 \ldots \]

a. A series-parallel circuit is a combination of ________ and ________ circuits.

b. A series-parallel circuit may consist of ________ circuits connected in parallel.

c. A series-parallel circuit may consist of ________ circuits connected in series.

d. When working with the portion of series-parallel circuits having resistances connected in series, use ________ circuit laws.

e. When working with the portion of series-parallel circuits having resistances connected in parallel, use ________ circuit laws.
2. The circuit in figure A consists of two series circuits connected in parallel across a battery.

Figure A

Figure B shows resistances R_1 and R_2 connected in series with each other to form one path for current from the battery.

Figure B

Figure C shows resistances R_3 and R_4 connected in series to form a second path for current from the battery.

Figure C

Refer to figure D.

a. How many series circuits are in this circuit?
b. How many paths are there for current?
c. How are these series circuits connected?
3. Draw connecting lines between the following components to form two series circuits connected in parallel.

4. No new formulas are needed to find the values of series-parallel circuits. Instead, a simplified circuit is made of the original series-parallel circuit, and the necessary circuit laws are used for the simplified circuit. The circuit in figure A below is electrically the same as the circuit in figure B.

Figure A

![Original Circuit](image)

Figure B

![Simplified Circuit](image)

In figure A, the circuit has two paths for current; each path (branch) has a total of 10 ohms resistance. \(R_1 + R_2 \) gives the total resistance of the first branch. \(R_3 + R_4 \) gives the total resistance of the second branch.

Figure B is the simplified circuit of the circuit in figure A. To solve for \(R_c \) in figure B, use circuit laws.

\[
R_c = \text{ohms}
\]
Simplified circuits are very useful when solving series-parallel circuit problems.

Draw and use simplified circuits when solving the problems in this program.

Figure B is the simplified drawing of the circuit in figure A. To solve for the total resistance of the circuit below, first, solve for the combined resistance of the series network R_1, R_2, and R_3. This combined value is represented in the simplified circuit as R_a. Second, solve for the combined value of R_4 and R_5. This combined value is represented in the simplified circuit as R_b.

Figure A consists of series circuits connected in parallel.

- R_a in figure B represents which resistances in figure A?
- R_b in figure B represents which resistances in figure A?
- What is the value of R_a?
- What is the value of R_b?
- $R_t = \ldots$ ohms.
6. The total current (I_t) in series circuits connected in parallel is equal to total voltage (E_t) divided by total resistance (R_t).

Total current is also equal to the sum of the branch currents.

Using the illustrations above, solve for:

- $R_a = \quad$ ohms
- $R_b = \quad$ ohms
- $R_t = \quad$ ohms
- $I_t = \quad$ amps.

** Original Circuit **

```
36V
<table>
<thead>
<tr>
<th>22Ω</th>
<th>24Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>R3</td>
</tr>
</tbody>
</table>
```

```
14Ω | 12Ω
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>R4</td>
</tr>
</tbody>
</table>
```

```
1A
| 1A |
|-----|-----|
```

** Simplified Circuit **

```
1A
| 1A |
```

a. TWO
b. R_1, R_2, R_3
c. R_4, R_5
d. 100 OHMS
e. 100 OHMS
f. 50 OHMS
7. a. Complete the simplified circuit.

R_a = 36 OHMS
R_b = 36 OHMS
R_c = 18 OHMS
I_t = 2 AMPS.

b. Label the two branches in the simplified circuit as R_a and R_b.

c. Use the completed simplified circuit to solve for I_t.

Remember, the current through each branch of a parallel network is equal to the voltage across the branch divided by the total resistance of the branch.

\[I_a = \frac{E_a}{R_a} \]

\[I_b = \frac{E_b}{R_b} \]

\[I_t = I_a + I_b \]

\[I_t = \frac{24V}{9} \] amps.

Original Circuit

Simplified Circuit

\[I_t = \text{amps.} \]
8. Draw connecting lines between the following components to form two series circuits connected in parallel.

9. The total voltage (E_t) applied to series circuits connected in parallel is equal to I_t times R_t. E_t is also equal to the voltage across either of the parallel branches.

The simplified circuit shows two resistances in parallel; the voltage across either parallel branch is equal to the applied voltage (parallel voltage law).

\[E_t = E_a \]
\[E_a = I_a \times R_a \]

$I_a = \underline{\hspace{2cm}}$ amps.

$R_a = \underline{\hspace{2cm}}$ ohms

$E_a = \underline{\hspace{2cm}}$ volts

$E_t = \underline{\hspace{2cm}}$ volts
10. The ammeter in the circuit below indicates the total current in the circuit. Complete the simplified circuit and solve for the values listed below.

ORIGINAL CIRCUIT

SIMPLIFIED CIRCUIT

Ohm's law: \(E_t = I_t \times R_t \)

- \(R_a = \) ohms
- \(R_b = \) ohms
- \(R_t = \) ohms
- \(I_t = \) amps.
- \(E_t = \) volts.
11. Draw a simplified circuit of this circuit, and solve for \(R_t \).

ORIGINAL CIRCUIT

\[
\begin{align*}
R_a &= 30 \text{ OHMS} \\
R_b &= 60 \text{ OHMS} \\
R_t &= 20 \text{ OHMS} \\
I_t &= 2, \text{ AMPS.} \\
E_t &= 40 \text{ VOLTS}
\end{align*}
\]

SIMPLIFIED CIRCUIT

\[
\begin{align*}
R_a &= 30 \text{ OHMS} \\
R_b &= 60 \text{ OHMS} \\
R_t &= 20 \text{ OHMS} \\
I_t &= 2, \text{ AMPS.} \\
E_t &= 40 \text{ VOLTS}
\end{align*}
\]

12. Solve for the value of \(I_t \).
13. Solve for the value of E_t.

\[E_t = \boxed{\text{volts}} \]

\[\begin{array}{c}
 - & R_1 & 23\Omega & R_3 & 14\Omega & R_5 & 5\Omega \\
 + & 2A & R_2 & 17\Omega & R_4 & 26\Omega & R_7 & 10\Omega \\
\end{array} \]

14. Solve for the value of I_t.

\[I_t = \boxed{\text{amps}} \]

\[\begin{array}{c}
 - & R_1 & 5\Omega & R_4 & 8\Omega & R_6 & 10\Omega \\
 + & 60V & R_2 & 5\Omega & R_5 & 7\Omega & R_8 & 10\Omega \\
\end{array} \]

15. a. A series-parallel circuit is a combination of \underline{____} and \underline{____} circuits.

b. A series-parallel circuit may consist of \underline{____} circuits connected in parallel.

c. A series-parallel circuit may consist of \underline{____} circuits connected in series.

d. When working with the portion of a series-parallel circuit having resistances connected in series, use \underline{____} -circuit laws.

e. When working with the portion of a series-parallel circuit having resistances connected in parallel, use \underline{____} -circuit laws.

\[\begin{array}{c}
 - & R_1 & 5\Omega & R_4 & 8\Omega & R_6 & 10\Omega \\
 + & 60V & R_2 & 5\Omega & R_5 & 7\Omega & R_8 & 10\Omega \\
\end{array} \]

You have completed the section on series circuits connected in parallel. Next we will cover parallel circuits connected in series.
16. The circuit below consists of **two parallel circuits** connected in series.

- Resistances R_1 and R_2 form one parallel network.
- Resistances R_3 and R_4 form one parallel network.

The parallel network R_1 and R_2 and the parallel network R_3 and R_4 are connected in **series**.

17. Draw connecting lines between the following components to form two parallel circuits connected in series.
18. There are many combinations of parallel circuits connected in series.

Which of the circuits above are combinations of parallel circuits connected in series?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

19. Draw connecting lines between the following components to form two parallel circuits connected in series.
20. Solving problems with parallel circuits connected in series is made easier by drawing simplified circuits.

Remember, when working with resistances connected in parallel, use parallel-circuit laws; and when working with resistances connected in series, use series-circuit laws.

ORIGINAL CIRCUIT

Simplified Circuit

![Circuit Diagram]

Figure A

Figure B

NOTE: The simplified circuit is a series circuit; therefore, \(R_t \) is found by adding the values of \(R_a \) and \(R_b \) (series-circuit law for total resistance).

a. The circuit in Figure A consists of parallel circuits connected in series.

b. \(R_a \) (Figure B) represents the combined value of the parallel network of which resistances?

c. \(R_b \) (Figure B) represents the combined value of the parallel network of which resistances?

d. What is the value of \(R_a \)?

e. What is the value of \(R_b \)?

f. \(R_t = \) ohms
21. Find the total resistance of the original circuit below by:

a. Finding the total resistance of the parallel network of R_1 and R_2. Represent this in the simplified circuit as R_a.

b. Finding total resistance of the parallel network of R_3 and R_4. Represent this in the simplified circuit as R_b.

c. Totaling the values of R_a and R_b to get R_t.

\[
\begin{align*}
R_a &= \text{ohms} \\
R_b &= \text{ohms} \\
R_t &= \text{ohms}
\end{align*}
\]
22. This illustration shows current flow through a parallel circuit connected in series.

At what points can total current be measured in the circuit above?

a. Points A and B only.
b. Points A and C only.
c. Points C and B only.
d. Points A, B, and C.
23. Total current is equal to the total voltage divided by the total resistance. To solve for I_T in the circuit below:

a. Solve for the value of R_a and R_b.

b. Solve for R_T.

c. Divide E_T by R_T to get I_T.

E_T is the source voltage.

Original Circuit

Simplified Circuit

\[R_T = \text{ohms} \]

\[I_T = \text{amps} \]
24. Solve for the values of R_t and I_t.

Given:
- $R_t = 6 \text{ OHMS}$
- $I_t = 4 \text{ AMPS}$.

\[R_t = \text{ ohms} \]
\[I_t = \text{ amps} \]

25. Draw connecting lines between the following components to form two parallel circuits connected in series.
26. The total voltage in a circuit is equal to total current multiplied by total resistance \((E_t = I_t \times R_t)\).

In the circuit below, \(I_t\) equals 6 amps. Find total resistance \((R_t)\) and source voltage \((E_t)\).

\[R_t = \text{ohms} \]
\[E_t = \text{volts} \]

\(R_t = 8\ \text{OHMS}\)
\(E_t = 48\ \text{VOLTS}\)

27. Solve for the value of \(E_t\) in the circuit below.

\[E_t = \text{volts} \]
28. In a series-parallel circuit with the parallel circuits connected in series, total voltage \(E_T \) is equal to the sum of the voltage drops across each parallel network.

\[E_T = 75 \text{ VOLTS} \]

The total voltage \(E_T \) of the circuit above is _______ volts.

29. The voltage across each branch of a parallel network is the same.

In the illustration above,

a. voltage across branch A is _____ volts.

b. voltage across branch D is _____ volts.

c. total voltage is _____ volts.
30. Determine the total voltage of the circuit below.

\[E_t = \text{volts} \]

\[E_t = 36 \text{ VOLTS} \]
1. Circle the letter beside the statements that pertain to series-parallel circuits.

 a. When working with the portion of the circuit having the resistances connected in parallel, use parallel-circuit laws.

 b. The total values can be determined by multiplying the sum of the series portion by the sum of the parallel portion.

 c. When working with the portion of the circuit having the resistances connected in series, use series-circuit laws.

 d. A series-parallel circuit is a combination of series and parallel circuits.

 e. The total values can be determined by dividing the sum of the series portion of the circuit by the sum of the parallel portion of the circuit.

 f. You may use either series-circuit laws or parallel-circuit laws, regardless of how the resistances are connected.

2. Draw connecting lines between the following components to form two series circuits connected in parallel.
3. Solve for the unknown in each of these problems.

a. \[\begin{array}{c}
2\Omega \\
 \hline
4\Omega \\
 \hline
1\Omega
\end{array} \]

Total resistance = ___ ohms

b. \[\begin{array}{c}
4A \\
 \hline
6A
\end{array} \]

Total current = ___ amps.

c. \[\begin{array}{c}
10V \\
 \hline
6V \\
 \hline
4V \\
 \hline
8V
\end{array} \]

Total voltage = ___ volts
4. Draw connecting lines between the following components to form two parallel circuits connected in series.

5. Solve for the unknown in the following problems.
 a.

 Total resistance = ___ ohms

 b.

 Total current = ___ amps.
Total voltage = ____ volts
LESSON 4, PART A
SERIES-PARALLEL CIRCUITS-SELF TEST ANSWERS

1. a, c, d

2.

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]

3. (a) \[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{2} + \frac{1}{4} + \frac{1}{2} = \frac{1}{2} + 1
\]

\[
\frac{1}{R_T} = \frac{1}{6} + \frac{1}{3} = \frac{3}{6}
\]

\[
R_T = \frac{1}{\frac{1}{2}} = 2
\]

(b) \[I_T = I_1 + I_2 = 4 + 6 = 10 \text{ amps}\]

(c) Remember: 1. Add voltages together when they are in series
2. Voltage is the same over parallel branches

\[
V_T = V_1 = V_2 = V_3 + V_4 = 10 + 4 + 6 + 8 = 14 \text{ volts}
\]

4.

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]

11.16
Isn 4; p. 27
5. (a) \(R_T = R_{1,2} + R_{3,4} \)

\[
\frac{1}{R_{1,2}} + \frac{1}{R_{3,4}} = \frac{1}{10} + \frac{1}{20} = \frac{2}{20} = \frac{1}{10}
\]

\(R_{1,2} = 10 \)

\(R_{3,4} = 10 \)

\(R_T = R_{1,2} + R_{3,4} \)

\(10 + 10 = 20 \text{ ohms} \)

(b) Step 1. \(I_T = \frac{V}{R_T} \)

Step 2. \(R_T = R_{1,2} + R_{3,4} \)

\[
\frac{1}{R_{1,2}} = \frac{1}{20} + \frac{1}{20} = \frac{2}{20} = \frac{1}{10}
\]

\(R_{1,2} = 10 \)

\[
\frac{1}{R_{3,4}} = \frac{1}{30} + \frac{1}{30} = \frac{2}{30} = \frac{1}{15}
\]

\(R_{3,4} = 15 \)

\(R_T = 10 + 15 = 25 \)

\(I_T = \frac{V}{R_T} = \frac{30}{25} = 2 \text{ amps} \)

(c) Remember: (1) That voltage is the same over branches of a circuit. (2) That voltage over a series circuit is the sum of all voltages around it.

\(V_T = V_1 + V_2 = 60 + 30 = 90 \text{ volts} \)

GO RIGHT ON TO LESSON 4, PART B - BATTERIES

11.16
1sn 4; p. 28
LESSON 4
PART B
BATTERIES
OBJECTIVES:

1. Define a cell.
2. Given a diagram of a cell, label its two basic parts.
3. State the difference between a primary cell and a secondary cell.
4. State what determines the amount of current a cell will produce.
5. State how a cell is charged.
6. Name the instrument used to determine the condition of a cell’s electrolyte.
7. State the reason a discharged lead-acid cell will freeze if exposed to subfreezing temperatures.
8. Define a battery.
9. State how cells are connected to produce maximum voltage.
10. State how cells are connected to produce maximum current.
11. State the damage that will result from spilling battery acid on aircraft metals.
12. State how battery terminals and cable clamps can be protected from corrosion.
13. State the measures to be taken when battery acid comes in contact with the skin, eyes, and clothing.
14. State two safety precautions to observe when working with or near batteries.
1. If a piece of metal is suspended in acid, a chemical action will take place. The acid will attack the metal. A piece of zinc dropped in a certain acid will cause a ______ action.

2. Chemical energy is released when an acid attacks metal. By utilizing this energy, an electric current can be generated. Chemical energy can be changed into ______ energy.

3. Any device which changes chemical energy into electrical energy is called a cell. A flashlight cell changes ______ energy into ______ energy.

4. A piece of zinc and a strip of copper immersed in a solution of sulfuric acid will cause a chemical action to take place. The acid will start eating the zinc and an electric current will be produced. This device which is changing chemical energy into electrical energy is called a ______

![Diagram of zinc, copper, and sulfuric acid](image)

5. A device which changes ______ energy into ______ energy is called a ______

6. Define a cell. ______

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>ELECTRICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CELL</th>
<th>CHEMICAL</th>
<th>ELECTRICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.16</td>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td>5.</td>
<td>6.</td>
</tr>
</tbody>
</table>

lsn 4, p. 30
A DEVICE WHICH CHANGES CHEMICAL ENERGY INTO ELECTRICAL ENERGY.

7. Here is a diagram of a simple cell. Two metal plates are suspended in a solution of water and acid. The metal plates are called electrodes. The solution is called electrolyte.

```
Electrodes

Electrolyte
```

The metal plates A are called [_________]
The acid solution B is called [_________].

<table>
<thead>
<tr>
<th>ELECTRODES</th>
<th>ELECTROLYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>/8. An electrolyte is a chemical compound, such as an acid solution, which will conduct an electric current. A mixture of sulfuric acid and water is commonly used as an electrolyte.</td>
<td></td>
</tr>
</tbody>
</table>
| ELECTROLYTE | 9. When mixing a fresh electrolytic solution of sulfuric acid and distilled water, do not pour the water into the acid, since this may cause excessive heating and splashing of the mixture. To mix properly an electrolytic solution, pour the _________ into the _________.

 (HINT: A before W.) |
| ACID | WATER |
| 10. To produce an electric current, a cell must have two or more electrodes suspended in the electrolyte. An electrode is one of the plates or poles of the cell. Lead plates are commonly used as _________.
| ELECTRODES | 11. The chemical energy created by the electrolyte attacking the electrodes is changed into _________ energy.
| ELECTRICAL | 12. If either the electrodes or the electrolyte becomes exhausted (used up), the cell will no longer produce a current. The two basic parts of a cell are the _________ and the _________.
<table>
<thead>
<tr>
<th>Part</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrodes</td>
<td>a. From this diagram, identify the two basic parts of a cell:</td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>b.</td>
<td></td>
</tr>
<tr>
<td>Electrode A</td>
<td>a. ELECTRODES</td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>b. ELECTROLYTE</td>
<td></td>
</tr>
<tr>
<td>Electrode B</td>
<td>14. A common flashlight cell, rated at 1.5 volts, is known as a primary cell.</td>
<td></td>
</tr>
<tr>
<td>Electrode C</td>
<td>Primary (dry) cells are normally not rechargeable, but sometimes heating will increase their output for a short period of time. Therefore, common flashlight cells, rated at ____ volts, for all practicable purposes, cannot be _____.</td>
<td></td>
</tr>
<tr>
<td>Electrode D</td>
<td>15. This is a cutaway drawing of a cell. The negative electrode is made of</td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>The positive electrode is made of</td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>16. The chemical action that takes place between the electrodes and the electrolyte continues to produce a current until the zinc electrode is exhausted, or until the electrolyte becomes dry. After the zinc case has been eaten away, the cell is not capable of producing any more current and cannot normally be recharged. Primary cells cannot be _____.</td>
<td></td>
</tr>
<tr>
<td>Electrolyte</td>
<td>17. Secondary cells (wet cells), the type used in automobile batteries, are constructed with materials that make recharging possible: Secondary cells can be recharged, while _____ cells cannot normally be recharged.</td>
<td></td>
</tr>
<tr>
<td>PRIMARY</td>
<td>18. The common lead-acid cell, the type found in automobile batteries, consists of an electrolyte composed of sulfuric acid diluted with water and electrodes made of lead. The common lead-acid type of cell can be recharged. It is, therefore, a __________ cell.</td>
<td></td>
</tr>
<tr>
<td>SECONDARY</td>
<td>19. The main difference in primary and secondary cells is that one type cannot normally be recharged while the other type can be recharged. The type of cell that can be recharged is the __________ cell.</td>
<td></td>
</tr>
<tr>
<td>SECONDARY</td>
<td>20. What is the major difference between a secondary cell and a primary cell? __________________________</td>
<td></td>
</tr>
<tr>
<td>SECONDARY</td>
<td>21. The amount of current (amperes) a cell will produce and the length of time it will produce that current are expressed in ampere-hours. A flow of one ampere for one hour is one ampere-hour. Two amperes of current flowing for one hour would be __________ ampere-hours.</td>
<td></td>
</tr>
<tr>
<td>SECONDARY</td>
<td>22. The amount of current (ampere-hours) a cell delivers depends on its size. The larger the cell, the more current it will produce. The total amount of current a cell will deliver depends on its __________.</td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>23. The size of a cell has no effect on the voltage but does have an effect on the amount of __________ it will deliver.</td>
<td></td>
</tr>
<tr>
<td>CURRENT</td>
<td>24. The voltage of a cell depends on the composition of the electrodes and electrolyte. The amount of current a cell will produce is determined by its __________.</td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>25. What determines the total amount of current a cell will produce? __________________________</td>
<td></td>
</tr>
</tbody>
</table>

11.16
Isn't it 33.
<p>| THE AMOUNT OF CURRENT A CELL WILL PRODUCE IS DETERMINED BY ITS SIZE. |
| 26. To recharge a secondary cell, a current is forced through the cell in a reverse direction. Forcing current through a cell in a reverse direction reverses the chemical action. |
| CHARGES (RECHARGES) |
| 27. Charging a cell reverses the chemical action. Forcing a current through in a reverse direction restores the chemicals to their original form. Forcing a current through a cell in a reverse direction reverses the chemical action. |
| CHEMICAL ACTION |
| 28. The recharging process changes the water back to acid and changes the composition of the lead plates to their original condition. Recharging a cell changes the electrolyte from to. |
| WATER TO ACID |
| 29. How is a cell recharged? |
| BY FORCING CURRENT THROUGH THE BATTERY IN A REVERSE DIRECTION |
| 30. If the electrolyte in a cell is strong with acid, it indicates the cell is charged. If the electrolyte through chemical action is reduced to water, the cell is considered discharged. The condition of a cell can be determined by the condition of the electrolyte. |
| ELECTROLYTE |
| 31. The most convenient method for determining the charge of a cell is by using a hydrometer. The specific gravity of a cell's electrolyte is determined with a hydrometer. |
| HYDROMETER |
| 32. The specific gravity of a liquid is an indication of its density. A water-acid solution is denser than water. A fully charged battery contains approximately 27 percent sulfuric acid and 73 percent water. A fully discharged battery is practically all water. Therefore, the bulb of a hydrometer will sink in the solution from a discharged battery, but in the solution from a fully charged battery, it will higher. |</p>
<table>
<thead>
<tr>
<th>FLOAT</th>
<th>33. The strength of the acid solution of the electrolyte in a cell determines its specific gravity. The specific gravity can be determined by using a HYDROMETER.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROMETER</td>
<td>34. The hydrometer reading of a fully charged cell is about 1.300. The electrolyte in a discharged cell will read about 1.100. If the hydrometer reading of a cell is 1.100 or less, it indicates the cell is DISCHARGED (DEAD).</td>
</tr>
<tr>
<td>DISCHARGED (DEAD)</td>
<td>35. The operation of a cell depends on the chemical action the electrolyte produces within the cell. The chemical action of the cell depends on the acid content, or strength, of the ELECTROLYTE.</td>
</tr>
<tr>
<td>ELECTROLYTE</td>
<td>36. Since the acid content of the electrolyte determines the amount of chemical action within the cells, the condition of a cell's electrolyte is best determined by using a HYDROMETER.</td>
</tr>
<tr>
<td>HYDROMETER</td>
<td>37. 1.100</td>
</tr>
</tbody>
</table>

A Which hydrometer shows a charged cell? B Which hydrometer shows a discharged cell?
<table>
<thead>
<tr>
<th>CHARGED B</th>
<th>38. What instrument is used to determine the condition of a cell's electrolyte?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCHARGED A</td>
<td></td>
</tr>
<tr>
<td>HYDROMETER</td>
<td>39. The chemical action, which accounts for the current in a lead-acid cell, causes an exhaustion of both the lead plates and the acid. A chemically inactive cell is not capable of producing an electric</td>
</tr>
<tr>
<td>CURRENT</td>
<td>40. As a lead-acid cell discharges, the acid gradually changes to water. The electrolyte in a discharged cell is practically all</td>
</tr>
<tr>
<td>WATER</td>
<td>41. A discharged cell will freeze if subjected to low temperatures because the electrolyte has changed from to</td>
</tr>
<tr>
<td>ACID</td>
<td>42. A discharged lead-acid cell will freeze if exposed to subfreezing temperatures because</td>
</tr>
<tr>
<td>WATER</td>
<td></td>
</tr>
<tr>
<td>THE ELECTROLYTE HAS TURNED TO WATER</td>
<td>43. A battery consists of two or more cells connected together.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The illustration above shows a battery with (number) cells.</td>
</tr>
<tr>
<td>BATTERY FOURS</td>
<td>44. The difference between a cell and a battery is that a battery consists of or more</td>
</tr>
<tr>
<td>TWO CELLS</td>
<td>45. Two or more cells connected together make up a battery.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>BATTERY</td>
<td>46. Define a battery.</td>
</tr>
<tr>
<td>A GROUP OF TWO OR MORE CELLS CONNECTED TOGETHER</td>
<td>47. This diagram represents an automobile battery consisting of three cells connected in series.</td>
</tr>
<tr>
<td>NEGATIVE (-)</td>
<td>48. The cells in an automobile battery are connected in series to get maximum voltage output. To get the most voltage from a group of cells, they should be connected in series.</td>
</tr>
<tr>
<td>SERIES</td>
<td>49. A secondary cell is rated at two volts. An automobile battery with three secondary cells connected in series would be rated at volts.</td>
</tr>
<tr>
<td>SERIES</td>
<td>50. A 12-volt automobile battery has how many cells?</td>
</tr>
</tbody>
</table>

If the cells are connected so that the positive (+) terminal of one is connected to the terminal of the next, etc., the cells are connected in series.
51. The cells in illustration A are connected in parallel. The cells in illustration B are connected in

Which set of cells has the greater voltage output, A or B? (Underline one.)

52. Connecting a group of cells in series will give a maximum output of amperage, voltage, resistance. (Circle the correct answer.)

53. How can a group of cells be connected to get maximum voltage?
<table>
<thead>
<tr>
<th>PARALLEL</th>
<th>54. The cells in the diagram below are connected in parallel.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Diagram of cells connected in series]</td>
</tr>
<tr>
<td></td>
<td>By connecting positive terminals together and by connecting negative terminals together, a maximum output of current will be supplied. To get maximum current output from two or more cells, they must be connected in _________________.</td>
</tr>
<tr>
<td>PARALLEL</td>
<td>55. These cells are connected in ________________ for maximum ________________ output.</td>
</tr>
<tr>
<td>CURRENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>![Diagram of cells connected in parallel]</td>
</tr>
<tr>
<td></td>
<td>![Diagram of cells connected in series]</td>
</tr>
<tr>
<td>SERIES VOLTAGE</td>
<td>56. These cells are connected in ________________ for maximum ________________ output.</td>
</tr>
<tr>
<td></td>
<td>![Diagram of cells connected in series]</td>
</tr>
<tr>
<td></td>
<td>57. To get maximum current from a battery, the cells should be connected in _________________.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PARALLEL</td>
<td>58. How should a group of cells be connected for maximum current output?</td>
</tr>
<tr>
<td>IN PARALLEL</td>
<td>59. Sulfuric acid spillage from aircraft batteries is highly corrosive to metals and should be removed as soon as possible. Flushing the affected area with a solution of sodium bicarbonate and fresh water will prevent action from taking place.</td>
</tr>
<tr>
<td>CORROSIVE</td>
<td>60. Acid spilled from a battery onto metal surfaces will cause corrosion. Therefore, spilled acid should be removed as soon as possible by flushing with a mixture of and</td>
</tr>
<tr>
<td>SODIUM BICARBONATE FRESH WATER</td>
<td>61. Frequent cleaning of battery acid spillage areas will prevent excessive</td>
</tr>
<tr>
<td>CORROSION</td>
<td>62. Spilling battery acid on aircraft metal surfaces will cause</td>
</tr>
<tr>
<td>CORROSION</td>
<td>63. Battery terminals and cable clamps will corrode unless some method is used to prevent it. Periodic maintenance is therefore necessary to prevent</td>
</tr>
<tr>
<td>CORROSION</td>
<td>64. Corrosion of terminals and cable clamps can be prevented by first cleaning and then coating them with petroleum jelly. Coating terminals and cable clamps with petroleum jelly will help prevent</td>
</tr>
<tr>
<td>CORROSION</td>
<td>65. How can battery terminals and cable clamps be protected from corrosion?</td>
</tr>
<tr>
<td>CLEANSING AND COATING WITH PETROLEUM JELLY</td>
<td>66. Periodic maintenance of aircraft batteries also includes checking the level of the electrolyte in each cell. When the level of the electrolyte is below the top of the plates (electrodes), distilled water should be added. When necessary, the electrolyte level can be brought to normal (approximately 3/8" above the plates) with the addition of ______.</td>
</tr>
<tr>
<td>DISTILLED WATER</td>
<td>67. When handling electrolyte (battery acid), wear protective clothing, such as face shields, gloves, footwear, and aprons. To avoid splashing or spilling electrolyte on the skin, personnel shall wear ______.</td>
</tr>
<tr>
<td>PROTECTIVE CLOTHING</td>
<td>68. This man used the correct rubber bucket to carry the electrolyte, but he forgot to wear any protective clothing. He could have saved those fingers if he had remembered to wear his chemically-resistant ______.</td>
</tr>
<tr>
<td>GLOVES</td>
<td>69. In case of personal contact with battery acid, there are certain basic first-aid measures that must be followed to prevent permanent injury. If acid comes in contact with the skin, flush the affected area with plenty of fresh water, apply vaseline, boric acid, or zinc ointment, and report to sick bay. If acid comes in contact with the eyes, flush immediately with plenty of fresh water and report directly to sick bay. Occasions may arise when acid will be spilled on clothing. It may be neutralized (counteracted) by flushing with a solution of baking soda and water. This will prevent deterioration of the cloth. In order to counteract any possible acid injury, certain measures must be taken.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FIRST-AID</td>
<td>70. The first-aid procedures to follow when acid comes in contact with the skin is to flush with plenty of fresh , apply , and report to .</td>
</tr>
<tr>
<td>WATER</td>
<td>VASELINE, BORIC ACID, OR ZINC OINTMENT</td>
</tr>
<tr>
<td>SICK BAY</td>
<td>SICK BAY</td>
</tr>
</tbody>
</table>
73. Match the measures to be taken, column B, to the conditions listed in column A.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>a. Acid on clothing</td>
<td>(1) Flush with fresh water and report to sick bay.</td>
</tr>
<tr>
<td>b. Acid on the skin</td>
<td>(2) Flush with fresh water, apply a medication, and report to sick bay.</td>
</tr>
<tr>
<td>c. Acid in the eyes</td>
<td>(3) Flush with baking soda and report to sick bay.</td>
</tr>
<tr>
<td></td>
<td>(4) Flush with baking soda and water.</td>
</tr>
</tbody>
</table>

74. What measures are to be taken when battery acid comes in contact with the following?

| a. The eyes: |
| b. The skin: |
| c. Clothing: |

75. Extreme care must be taken to avoid creating sparks in the vicinity of aircraft batteries; naturally, smoking is not permitted around them. Even with good ventilation, the hydrogen and oxygen gases produced by the acid will concentrate above the cells in explosive amounts. When working with or near aircraft batteries, the safety precautions that must be observed are: do not create any rule, and observe the NO _ _ _ _ _ _ _ _ rule.
76. "Avoiding the creation of sparks" and "NO SMOKING" are the two major safety precautions that must be observed when working with or near aircraft batteries. Failure to observe these safety precautions could result in an explosion of the hydrogen gases present.

77. What are the two safety precautions that must be observed when working with or near aircraft batteries?

a. AVOID THE CREATION OF SPARKS.

b. NO SMOKING.

(ANY ORDER)
LESSON 4

PART B
BATTERIES
SELF-TEST

1. What is the definition of a cell?

2. Label the two essential parts of the cell.
 A.
 B.

3. What is the difference between a primary cell and a secondary cell?

4. What determines the amount of current a cell will produce?

5. How is a battery charged?

6. What is the name of the instrument used to determine the condition of a cell's electrolyte?

7. Why will a discharged lead-acid cell freeze if exposed to subfreezing temperatures?

8. What is the definition of a battery?
9. How are cells connected to get maximum voltage output?

10. How are cells connected to get maximum current output?

11. What damage may result from spilling battery acid on aircraft metals?

12. How can battery terminals and cable clamps be protected from corrosion?

13. What are the measures to be taken when battery acid comes in contact with the following?
 a. The eyes:
 b. The skin:
 c. Clothing:

14. List two safety precautions that must be observed when working with or near aircraft batteries.
 a.
 b.

Jan 4; p. 46
LESSON 4, PART B

BATTERIES-SELF TEST ANSWERS

1. **Cell** - A device which changes chemical energy into electrical energy.

2. (a) **Electrodes**
 (b) **Electrolyte**

3. Primary cells cannot normally be recharged. Secondary cells can be recharged.

4. Its size

5. A battery is charged by forcing current through a cell in a reverse direction.

6. **Hydrometer**

7. The electrolyte has turned to water.

8. **Battery** - A group of 2 or more cells connected together.

9. **Series**

10. **Parallel**

11. **Corrosion**

12. Cleaning and coating with petroleum jelly.

13. (a) The eyes: flush with fresh water and report to sick bay
 (b) The skin: flush with fresh water, apply a medication and report to sick bay
 (c) Clothing: flush with a solution of baking soda and water

14. (a) Avoid the creation of sparks
 (b) No smoking

END OF LESSON 4, GO ON TO LESSON 5
"FUNDAMENTALS OF ELECTRICITY"

LESSON 5

MAGNETISM AND
ELECTROMAGNETISM AND ELECTROMAGNETIC INDUCTION

INSTRUCTIONS

This is a programmed lesson. It is designed to teach, not to test. You will need only this booklet, a pencil, and some time to complete this lesson. If there is something in the program you do not understand, ask your instructor or supervisor for assistance.

- REMEMBER -

This lesson has been written so that the amount of reading necessary is minimal and yet most meaningful. Therefore, it is very important that you follow these instructions.

- Read each page carefully.
- Fill in each blank.
- Keep the answer to the frame on which you are working covered with a slip of paper until you have written your answer.
- Correct all errors you make.
- Follow all directions given in the program.

SUGGESTED READING TIME
170 MINUTES
LESSON 5
PART A
MAGNETISM
OBJECTIVES

1. Given a list of statements pertaining to magnets, state whether each statement applies to a natural magnet or an artificial magnet.

2. Given a list of materials, classify each as being either magnetic or nonmagnetic.

3. Given a list of true and false statements about magnetic lines of flux, select the true statements.

4. Given an illustration of a magnet, with the direction of the flux lines shown, label the poles of the magnet.

5. Given illustrations of magnets, select the one that shows where the greatest concentration of flux lines occurs.

7. Given illustrations showing different molecular arrangements in a magnetic material, label each as being unmagnetized, partially magnetized, or saturated.

8. Given the terms residual magnetism, magnetism, retentivity, permeability, transparency, saturated, induced magnetism, and a list of their definitions, match each term with its definition.

9. List three ways of magnetizing an iron bar.

10. State whether the permeability is high or low and whether the retentivity is high or low for metals used to make permanent magnets.

11. State whether the permeability is high or low and whether the retentivity is high or low for metals used to make temporary magnets.

12. Given a list of metals, select the one(s) used to make permanent magnets and the one(s) used to make temporary magnets.
1. When a metal attracts a magnetic material, that metal is said to have magnetism. Magnetism can be defined as having the ability to _______ magnetic materials.

<table>
<thead>
<tr>
<th>ATTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2. Because the magnet in the illustration attracts the nails, it is said to have _________

<table>
<thead>
<tr>
<th>MAGNETISM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

3. Magnetism is defined as having the ability to _________

<table>
<thead>
<tr>
<th>ATTRACTION MAGNETIC MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

4. Everyday magnetism affects us in some way. The large generators which provide electricity for lighting our cities and homes and the small motors of some model cars use a magnet. These very practical magnets are artificial magnets. Motors, generators, and magnetos use _______ magnets.

<table>
<thead>
<tr>
<th>ARTIFICIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

5. Artificial magnets have many practical uses and they are man-made. The magnets used in electrical motors and magnetos are artificial; they are produced by _______.

<table>
<thead>
<tr>
<th>MAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

6. Since these magnets are used in various applications, they must be made in different shapes and sizes; and because these practical magnets are produced by man, they are called _______.

| |
| |

11. 18
1sn 5; p. 3
ARTIFICIAL MAGNETS

7. There are two kinds of magnets:
 a. An artificial magnet which is produced by man.
 b. A magnet found in a natural magnetic condition. This magnet is called a ______ magnet.

NATURAL

8. What are the two kinds of magnets?
 a. __________
 b. __________

9. Magnetite is a material found in a magnetic condition. Since magnetite is found in a magnetic condition, it is a ______ magnet.

NATURAL

10. Although magnetite is found in a magnetic condition, it has no practical use. Would magnetite be used as the magnet in a motor or generator? ______

NO

11. Because of the difficulty in obtaining desired sizes and shapes from magnetite, it has no practical use as a ______

MAGNET

12. Magnetite is the only type of iron ore found in a magnetic condition. It has no practical use in motors or generators, but it was used in ancient times as a crude compass.

Select the correct statement. ______
 a. Magnetite is a type of iron ore.
 b. Magnetite was used as a crude compass.
 c. Neither A nor B is true.
 d. Both A and B are true.

13. Because magnetite was used as a compass, it is called lodestone. Lodestone means leading stone. From its early use as a compass, magnetite is often referred to as ______
14. Select the names which apply to the type of iron ore that is a natural magnet.
 a. Magnesium
 b. Lodestone
 c. Manganese
d. Magnetite
e. Magneto

15. What is the only type of iron ore found in a magnetic condition?

16. There are many materials which can be made into artificial magnets. There is only one that is a natural magnet; it is called

17. Circle the letter beside each statement that pertains to an artificial magnet.
 a. It is called lodestone.
 b. It is a magnet produced by man.
 c. It has the greater application.
d. It is the magnet with the least practical use.
e. It is the most practical magnet.

18. All magnets, whether they are artificial or natural, have a ________ and ________ pole.
<table>
<thead>
<tr>
<th>NORTH</th>
<th>SOUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. All magnets have two poles— a ________ and a ________ pole.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORTH</th>
<th>SOUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Some materials are not affected by magnetism. These materials are classified as nonmagnetic. Brass, aluminum, copper, and magnesium are some of these materials, and they would be classified as ________</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>'NONMAGNETIC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Any material that cannot be magnetized is classified as nonmagnetic. Brass and copper cannot be used as magnets and are classified as ________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>'NONMAGNETIC'</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Aircraft parts made of aluminum or magnesium are not affected by a magnet, and classified as nonmagnetic. (are/are not)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>23. Materials are classified as being either magnetic or nonmagnetic. Those materials affected by a magnet are classified as ________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAGNETIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Magnets have an attraction for magnetic materials. Alnico and iron are attracted by a magnet and are classified as ________ materials.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAGNETIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Cobalt and permalloy are magnetic materials. What is the effect on these materials by a magnet? THEY ARE ATTRACTED.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THEY ARE ATTRACTED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Circle the letter beside the materials that are classified as nonmagnetic.</td>
</tr>
<tr>
<td>a. Aluminum</td>
</tr>
<tr>
<td>b. Permalloy</td>
</tr>
<tr>
<td>c. Iron</td>
</tr>
<tr>
<td>d. Brass</td>
</tr>
</tbody>
</table>
27. Circle the letter beside the materials that are classified as magnetic.

<table>
<thead>
<tr>
<th>a. Copper</th>
<th>e. Permalloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Cobalt</td>
<td>f. Brass</td>
</tr>
<tr>
<td>c. Magnesium</td>
<td>g. Aluminum</td>
</tr>
<tr>
<td>d. Iron</td>
<td>h. Alnico</td>
</tr>
</tbody>
</table>

28. Magnetic materials; when attracted to or even near a magnet, will become magnetized. This indicates that materials affected by magnetism are easily

29. In the illustration above, the objects attracted by the magnet become magnetized.

30. Magnetism produced in a material by the presence of a magnet is induced magnetism. If you were wearing a watch near a strong magnet and it became magnetized, the magnetism in the watch would be
<table>
<thead>
<tr>
<th>INDUCED MAGNETISM</th>
<th>31.</th>
<th>SOFT IRON BAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MAGNETIC FIELD</td>
</tr>
<tr>
<td></td>
<td>Magnetism induced in the iron bar by the magnetic field is</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDUCED MAGNETISM</th>
<th>32.</th>
<th>Magnetism induced in a material by the presence of the magnetic field of a magnet is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDUCED MAGNETISM</th>
<th>33.</th>
<th>Lines of Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In the illustration, the magnetic field, which produces induced magnetism, is made up of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINES OF FLUX</th>
<th>34.</th>
<th>All magnets have a magnetic field; therefore, all magnets have</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.16
lsn 5; p. 8
255
35. The magnetic field cannot be seen; however, a visual representation of this magnetic field around a magnet can be obtained by placing a sheet of glass over a magnet and sprinkling iron filings on the glass, as illustrated below.

What do the iron filings in the illustration represent?

36. The lines of flux, which make up the magnetic field, were not affected by the sheet of glass because it is a nonmagnetic material. A nonmagnetic material is said to have the property of transparency because it does not affect the

37. Just as glass is transparent to light and allows light rays to pass through it, a nonmagnetic material is transparent to lines of flux and allows the flux lines to pass through it. A material that has no effect on the lines of flux has the property of

38. Transparency is a property of all nonmagnetic materials.

39. Because the flux lines are not affected by nonmagnetic materials, they cannot be insulated. Lines of flux readily pass through all nonmagnetic materials; for this reason, flux lines cannot be
<table>
<thead>
<tr>
<th>INSULATED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLASS</td>
<td>COPPER</td>
</tr>
<tr>
<td>WOOD</td>
<td>ALUMINUM</td>
</tr>
</tbody>
</table>

Will any of the materials above insulate lines of flux?

<table>
<thead>
<tr>
<th>NO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

Why will the watch in the illustration become magnetized by the lines of flux?

<table>
<thead>
<tr>
<th>LINES OF FLUX CANNOT BE INSULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>42. Which of the following statements are true?</td>
</tr>
<tr>
<td>a. Lines of flux cannot be insulated.</td>
</tr>
<tr>
<td>b. Lines of flux are not affected by nonmagnetic materials.</td>
</tr>
<tr>
<td>c. Neither A nor B is true.</td>
</tr>
<tr>
<td>d. Both A and B are true.</td>
</tr>
</tbody>
</table>
43. Although the lines of flux cannot be insulated, equipment can be shielded by using a magnetic material to direct the lines of flux.

In the illustration above, the soft iron acts as an

44. Lines of flux traveling outside the magnet will seek the path of least resistance. If two paths exist, one air and one magnetic material, the flux lines will travel through the magnetic material, even though it may be the longer route. This shows that magnetic material offers the path of

45. Why do the lower flux lines travel the path shown?

11.16
Isn 5, p. 11
Which illustration shows the path the lines of flux will travel through magnetic and nonmagnetic materials?

Why is the watch not affected by the lines of flux?
48. Select the statement that states how to protect an instrument from lines of flux.

- Insulate the instrument with a nonmagnetic material.
- The instrument cannot be protected from lines of flux.
- Use a shield of magnetic material.
- Protection is obtained by the use of a glass face.

49. The lines of flux travel outside the magnet from the north pole to the south pole and never cross each other.

Which illustration correctly shows how the flux lines travel outside the magnet?

50. Complete the illustration below by drawing the lines of flux. Use arrows to indicate the direction of travel; remember, lines of flux never cross.

The watch is shielded by the soft-iron material. Lines of flux take the path of least resistance.
51. Although the magnetic field surrounds the magnet, the greatest concentration of flux lines is at the poles. Circle the area(s) where the greatest concentration of flux lines occurs.

52. Because the poles have the greatest concentration of flux lines, the greatest strength of the magnet is at the ________

53. The illustration which correctly shows where the greatest concentration of flux lines occurs is

A. ________
B. ________
C. ________
D. ________
54. The greater the concentration or intensity of flux lines in a given area, the greater the strength of the magnetic field. Which area has the stronger magnetic field, A or B?

55. We know that both natural and artificial magnets have a north and south pole. There are two laws of polarity concerning these poles.

a. Like poles repel (north repels north and south repels south).

b. Unlike poles attract (north attracts south and south attracts north).

Place the letter representing the law (a or b) under the illustration to which it applies.
This illustration demonstrates one of the laws of polarity. This law states that ___ poles ___.

When the unlike poles of two magnets are brought near each other, flux lines join and cause an attraction between them.

The illustration above shows the other law of polarity. This law states that ___.

In illustration A, the south pole will ___ the south pole. In illustration B, the north pole will ___ the south pole.
59. State the laws of polarity.

a. ____________

b. ____________

60. (Any order)

a. LIKE POLES REPEL.

b. UNLIKE POLES ATTRACT.

The darkened end of the molecules represents the north pole.

The molecular theory of magnetism is based on the theory that each molecule of a magnetic material is a magnet. In the illustration, each molecule is a ____________

61. When the molecules are not aligned, the material is said to be unmagnetized.

Which illustration shows a material that is not magnetized?

The reason is (circle the letter beside the correct statement)

a. the molecules are aligned

b. the molecules are not aligned
There are three ways of aligning the molecules of a material and making it a magnet.

These are:

- Stroking the material with a magnet.
- Placing the material in a direct-current coil.
- Placing the material in a magnetic field.

Which method is being used to align the molecules in the soft iron bar?

A material can be magnetized by a magnetic field. This causes the molecules to be aligned with their north poles in one direction and their south poles in the opposite direction. Magnetism is induced in a material when the molecules are caused to be aligned by a magnet.

By placing a material in a magnetic field, we induce magnetism. This will align the molecules of the material.

Draw the arrangement of the molecules in the soft iron bar.
ALWAYS STROKE IN ONE DIRECTION ONLY

The method of aligning molecules by stroking is shown in the illustration. What does the illustration show that must be remembered when using this method?

ALWAYS STROKE IN ONE DIRECTION ONLY

A. UNMAGNETIZED

B. PARTIALLY MAGNETIZED

C. FULLY MAGNETIZED (SATURATED)

Stroking a material in one direction with a magnet will align the molecules as in illustration C. During the stroking procedure, prior to reaching a saturated (fully magnetized) condition, the material will be in a ________ condition.
67. The best method of obtaining a saturated condition in a material is by placing the material in a coil carrying a direct current.

Which illustration shows the best method of fully magnetizing a material?

A.

B.

C.

68. Label each illustration as to the method being used to magnetize the material.

A. STROKING WITH A MAGNET

B. PLACING IN A MAGNETIC FIELD

C. PLACING IN A COIL WITH DIRECT CURRENT

69. When a material is saturated, which means it has been fully magnetized by one of the three methods, all its molecules are aligned. A material, when fully magnetized, with all its molecules aligned is said to be
70. A material when saturated is fully magnetized, and the strength of the magnet cannot be increased.

<table>
<thead>
<tr>
<th>SATURATED</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write the word saturated by the material that is fully magnetized.

71. A material that is unmagnetized has its molecules disarranged. As the material becomes partially magnetized, the molecules align themselves near the ends of the material, causing the magnetic poles to develop.

<table>
<thead>
<tr>
<th>SATURATED</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The material in illustration A is

(saturated/unmagnetized/partially magnetized)

The material in illustration B is

(partially magnetized/unmagnetized/saturated)

The material in illustration C is

(unmagnetized/saturated/partially magnetized)
72. Label the magnetic condition of the materials as being unmagnetized, partially magnetized, or saturated.

<table>
<thead>
<tr>
<th>Choice</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SATURATED</td>
</tr>
<tr>
<td>B</td>
<td>PARTIALLY MAGNETIZED</td>
</tr>
<tr>
<td>C</td>
<td>UNMAGNETIZED</td>
</tr>
</tbody>
</table>

73. What are three ways of producing a magnet?

- **a.**
- **b.**
- **c.**

74. There are also three ways a magnet can be demagnetized. Since aligning the molecules of a material causes it to become magnetized, disarranging the alignment of the molecules would cause the material to become **DEMAGNETIZED**.

- a. By dropping or jarring.
- b. By heating.
- c. By using a coil carrying alternating current.

75. Three ways a magnet can become demagnetized are:

- a. By dropping or jarring.
- b. By heating.
- c. By using a coil carrying alternating current.

Which one of the three ways of demagnetization could result from careless handling? **c.**
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>76. Instruments such as an ohmmeter or a voltmeter depend on a small magnet for their accurate operation. By dropping or jarring these instruments, their accuracy could be affected by the magnet becoming DEMAGNETIZED.</td>
</tr>
<tr>
<td>DEMAGNETIZED</td>
<td>77. When a magnet is exposed to extreme heat, such as a welding torch flame, the magnet will become DEMAGNETIZED.</td>
</tr>
<tr>
<td>DEMAGNETIZED</td>
<td>78. Heating will demagnetize a material but may destroy the desired properties of that material. The best way to demagnetize material intentionally is to use a coil carrying alternating current. To demagnetize purposely a material, the best way would be to USE A COIL CARRYING ALTERNATING CURRENT.</td>
</tr>
<tr>
<td>USE A COIL CARRYING ALTERNATING CURRENT</td>
<td>79. Three ways a material may be demagnetized are: a. Dropping or jarring. b. Heating. c. Using a coil carrying alternating current. Which of these is the most desirable? RESIDUAL</td>
</tr>
<tr>
<td>c.</td>
<td>80. Residual magnetism is the magnetism that remains after the magnetizing force is removed. A soft iron bar, when removed from a magnet, will attract iron fillings for a short period of time because it contains RESIDUAL MAGNETISM.</td>
</tr>
<tr>
<td>RESIDUAL</td>
<td>81. The magnetism remaining in a material after the magnetizing force is removed is called RESIDUAL MAGNETISM.</td>
</tr>
<tr>
<td>RESIDUAL MAGNETISM</td>
<td>82. Some materials retain their magnetism longer than others. Retentivity is the ability of a material to retain its RESIDUAL MAGNETISM.</td>
</tr>
</tbody>
</table>

11.16
Ian 5; p. 23
| MAGNETISM | 83. A mixture of ALumimum, NICKel, and COBalt, known as ALNICO, has a high retentivity. The reason is (circle the letter of the correct response)
| | a. it remains magnetized for long periods of time.
| | b. it loses its magnetism easily.
| | c. it does not demagnetize with heat.
| | d. it is not affected by a magnet.
| | 84. The ability of a material to retain its magnetism is
| RETENTIVITY | 85. A material that remains magnetized for a long period of time has high retentivity; however, a material that remains magnetized for a short period of time has low retentivity.
| HIGH | 86. Another property of a material is permeability—the ability of a material to permit or oppose the passage of lines of flux. A material with low retentivity has high permeability. ALNICO, NICKEL, and hardened steel have high retentivity; therefore, they would have low permeability.
| LOW | 87. A material that allows the easy passage of lines of flux has high permeability; however, the material would have low retentivity.
| LOW | 88. A magnetic material that does not allow the easy passage of the lines of flux has low permeability, but when magnetized, will retain its magnetism for a period of time.
| 11.16 |
| ISN 5; P. 24 |
89. If we wanted to produce a permanent magnet, we would select a magnetic material with a **permeability** and a **retentivity**.

90. Alnico, nipper mag, and hardened steel have high retentivity and low permeability. These materials are used to make magnets.

91. Which of these metals would be used to make permanent magnets? Place the letter P in the blank beside the metals which would be used to make permanent magnets.

- a. Permalloy
- b. Alnico
- c. Soft iron
- d. Mumetal
- e. Hardened steel
- f. Nipper mag

92. Where magnetism is required constantly, as in a magneto, a permanent magnet is used. When magnetism is to be used temporarily or turned on and off, like the magnet used in loading scrap iron into railroad cars, the magnet used is a magnet.

93. Materials used to make temporary magnets must lose their magnetism quickly. Soft iron and Mumetal make good temporary magnets because of their **retentivity**.

94. In the illustration above, the core becomes a temporary magnet when current is flowing through the coil. When the current stops, because the core has low retentivity, it loses its...
95. Metals such as permalloy, soft iron, and Mumetal are known for their properties of high permeability and low retentivity. Because of these properties, they are used as magnets.

96. The desired properties of metals used to make good temporary magnets are high permeability and low retentivity. (high/low)

97. Place the letter P by the metals that are used to make permanent magnets.

Place the letter T by the metals that are used to make temporary magnets.

<table>
<thead>
<tr>
<th></th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
<th>e.</th>
<th>f.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permalloy</td>
<td>Alnico</td>
<td>Soft iron</td>
<td>Mumetal</td>
<td>Hardened steel</td>
<td>Nipper mag</td>
</tr>
</tbody>
</table>

a.	T
b.	P
c.	T
d.	T
e.	P
f.	P
LESSON 5

PART A

MAGNETISM,

SELF-TEST

1. Below is a list of statements about magnets. In the blank beside each statement, place the letter N if the statement pertains to a natural magnet or place the letter A if the statement pertains to an artificial magnet.

 a. A magnet produced by man

 b. It is also called magnetite.

 c. The most practical magnet

 d. It is sometimes called lodestone.

 e. The magnet with least practical use

 f. Has the greater application.

2. Label these materials as being either magnetic or nonmagnetic.

 a. Brass

 b. Iron

 c. Aluminum

 d. Alnico

 e. Magnesium

 f. Permalloy

 g. Copper

 h. Cobalt
3. Below are some true and false statements about magnetic lines of flux. Circle the letter beside the true statements.

a. Lines of flux cannot be shielded.

b. Lines of flux never cross each other.

c. Lines of flux create a magnetic field.

d. Lines of flux can be insulated.

e. Lines of flux travel outside the magnet from north to south.

f. Lines of flux are affected by nonmagnetic materials.

4. Label the poles of this magnet.
5. Which illustration correctly shows the concentration of flux lines?

A.

B.

C.

D.

 a.
 b.

7. Label the materials below as being unmagnetized, partially magnetized, or saturated.
8. Match the terms in column A with their correct definition in column B. Place the letter beside the term in the space provided beside its definition.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Residual magnetism</td>
<td>(1) The property of nonmagnetic materials to have no effect on lines of flux.</td>
</tr>
<tr>
<td>b. Retentivity</td>
<td>(2) Magnetism that remains after the magnetizing force has been removed.</td>
</tr>
<tr>
<td>c. Permeability</td>
<td>(3) The ability of a material to permit or oppose the passage of lines of flux.</td>
</tr>
<tr>
<td>d. Transparency</td>
<td>(4) The ability of a material to remain magnetized.</td>
</tr>
<tr>
<td>e. Saturated</td>
<td>(5) Magnetism produced in a material by a magnetic field.</td>
</tr>
<tr>
<td>f. Induced magnetism</td>
<td>(6) The condition of material that is fully magnetized.</td>
</tr>
<tr>
<td>g. Magnetism</td>
<td>(7) Has the ability to attract magnetic materials.</td>
</tr>
</tbody>
</table>

9. What are three ways of magnetizing an iron bar?
 a.
 b.
 c.

10. The required properties of metals used to make good permanent magnets are _____ permeability and _____ retentivity.

11. The required properties of metals used to make good temporary magnets are _____ permeability and _____ retentivity.
12. State whether the metals below are used to make temporary magnets or permanent magnets. Write temporary or permanent in the space provided.

a. Permalloy
b. Alnico

c. Soft iron
d. Mumetal

e. Hardened steel
f. Nipper mag
LESSON 5, PART A
MAGNETISM-SELF TEST ANSWERS

1. (a) A
 (b) N
 (c) A
 (d) N
 (e) N
 (f) A

2. (a) N
 (b) M
 (c) N
 (d) M
 (e) N
 (f) M
 (g) N
 (h) M

3. b, c, e.

4. GO RIGHT ON TO: LESSON 5, PART B - ELECTROMAGNETISM AND ELECTROMAGNETIC INDUCTION

9. (a) Stroking with a magnet
 (b) Placing in a magnetic field
 (c) Placing in a coil carrying a direct current

10. low
 high

11. high
 low

12. (a) T
 (b) P
 (c) T
 (d) T
 (e) P
 (f) P

5. A

6. (a) Like poles repel
 (b) Unlike poles attract

7. Unmagnetized
 Partially magnetized
 Saturated

8. d (1)
 a (2)
 c (3)
 b (4)
 f (5)
 e (6)
 g (7)

11. high
 low

16'

lsn 5; p. 32
OBJECTIVES

1. Given three illustrations of straight conductors carrying current and three statements describing the illustrations, match the true statement with the correct illustration.

2. Given the terms core, solenoid, relay switch, and electromagnet, and a list of their definitions, match each term to its definition.

3. Given an illustration of a solenoid and an electromagnet, label each illustration as being either a solenoid or an electromagnet.

4. List the three factors that affect the strength of an electromagnet.

5. Given illustrations of two types of relay switches, label them as being either the solenoid and plunger type or the armature type.

7. Given illustrations and statements pertaining to induced EMF, match each statement to its correct illustration.

8. List the three requirements for induced EMF.

9. Select, from a list of statements pertaining to lines of flux, the factor(s) that determine(s) the number of flux lines cut per second.

10. Given three illustrations of electrical circuits, select the one having the requirements needed for induced current.

11. Given an illustration of an induction coil, label the components of the coil as being the primary coil, the secondary coil, the interrupter, or the core.

12. Given a list of statements about induction coils, select the true statements.

13. Given an illustration of an induction coil and its circuitry, state in your own words how the low input voltage is changed to a high output voltage.

14. Given a list of statements about transformers and induction coils, state whether each statement pertains to transformers, induction coils, or both.
1. A compass, when near a magnet, is affected by the magnet’s magnetic field. A compass is also affected when it is near a straight conductor carrying current. This indicates that a conductor carrying current has a **magnetic field**.

The fact that a conductor carrying current is surrounded by a magnetic field may be proved by using a compass. Move the compass around the wire. At any place along the conductor, the needle will be deflected.

![Diagram of a compass showing deflection due to magnetic field](image)

As long as current is flowing, the needle of the compass will be deflected at any point along the conductor because of the presence of the magnetic field.

2. **Magnetic Field**

3. As shown in the previous frame, the magnetic field (runs parallel/circles) the straight conductor when **is** flowing.
4. The magnetic field around the conductor may be illustrated like this.

![Diagram of magnetic field around a conductor](image)

The magnetic field about the conductor is in the shape of a **circle**.

5. Although a magnetic field surrounds a current-carrying conductor and will affect a compass, it does not have polarity.

 This means:

 a. it does not have a north and south pole.
 b. it does have a north and south pole.
 c. it has a north pole only.
 d. it has a south pole only.

6. Which illustration correctly shows the magnetic field about a straight conductor?

 ![Illustrations of magnetic fields](image)

 - A
 - B
 - C

11.16

lsn 5; p. 35
The illustration shows that when a loop is formed in a straight conductor, the lines of flux enter at one side of the loop and exit at the other side. This results in a ____ and ____ pole.

<table>
<thead>
<tr>
<th>NORTH</th>
<th>SOUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ANY ORDER)</td>
<td>(ANY ORDER)</td>
</tr>
</tbody>
</table>

8. Although the loop does have polarity, it has little magnetic strength. If several loops were made in the conductor and a coil were formed, the lines of flux for each loop would join, and the coil would have a greater ____

9.

Look at the illustration above. When current flows, the lines of flux join, travel through the center of the coil (core), and form a weak ____
MAGNET	10. Although the coil has greater magnetic strength than the single loop, it's still a weak magnet because its center area or core is composed of air.
CORE	11. A current-carrying coil with an air core is a
SOLENOID	12. Which of the illustrations shows a solenoid?

Solenoid
(current-carrying coil with air core).

The center area of the solenoid is known as the
13. The lines of flux traveling through the air core of the solenoid are opposed by the air. A core of magnetic material placed in the air space will concentrate and offer an easier path for the **lines of flux**.

14. Air, with a low permeability, is an inefficient core. Soft iron is a more efficient core because it has **high** permeability.

15. The most efficient core is one of **high** permeability.

16. A core material of high permeability becomes a temporary magnet when current is flowing.

Which illustration represents the strongest temporary magnet?

<table>
<thead>
<tr>
<th>A</th>
<th>13. The lines of flux traveling through the air core of the solenoid are opposed by the air. A core of magnetic material placed in the air space will concentrate and offer an easier path for the lines of flux.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINES OF FLUX</td>
<td>14. Air, with a low permeability, is an inefficient core. Soft iron is a more efficient core because it has high permeability.</td>
</tr>
<tr>
<td>HIGH</td>
<td>15. The most efficient core is one of high permeability.</td>
</tr>
<tr>
<td>HIGH PERMEABILITY</td>
<td>16. A core material of high permeability becomes a temporary magnet when current is flowing.</td>
</tr>
<tr>
<td></td>
<td>Which illustration represents the strongest temporary magnet?</td>
</tr>
<tr>
<td>B</td>
<td>17. When the coil has a core of a magnetic material, it is known as an electromagnet. The difference between a solenoid and an electromagnet is in the substance used for the core.</td>
</tr>
<tr>
<td>CORE</td>
<td>18. The magnetism produced in the soft iron core by the electric current is called electromagnetism. The temporary magnet, a coil with a magnetic core, is called an electromagnet.</td>
</tr>
</tbody>
</table>
19. A coil with an air core is a ___________.
An electromagnet has a core of ___________.

ELECTROMAGNET	SOLENOID
	SOFT IRON
	(MAGNETIC MATERIAL)

20. Label the illustrations as representing either a solenoid or an electromagnet.

A. ___________ B. ___________

21. Electromagnets have many uses. They can be very small, such as the ones used by doctors to remove metal splinters from a patient's eyes; or they can be very large and capable of lifting tons of metal. Because of these varied uses, it is necessary to have some means of changing the strength of an electromagnetic.

22. The strength of an electromagnet is determined by three factors. One of these factors is the type of material used in the core. An electromagnet with a core of low permeability would not be as strong as an electromagnet with a core of ___________.

23. Permalloy has a higher permeability than soft iron. Which electromagnet is stronger? ___________

11.16
lsn 5; p. 39
24. Another factor that determines the strength of an electromagnet is the number of turns or loops in the conductor— the more loops or turns, the greater its strength.

![Diagram of electromagnets with metal cores](image)

Which electromagnet is the weakest? ____
Which electromagnet is the strongest? ____

A WEAKEST
B STRONGEST

25. Two of the factors that determine the strength of an electromagnet are:

a. ____________

b. ____________

26. The third factor that will affect the strength of the electromagnet is the amount of current. The greater the current, the ____________ the electromagnet's strength.

27. The three factors that affect the strength of an electromagnet are the type of core material, the number of loops or turns of the coil, and the ____________
<table>
<thead>
<tr>
<th>AMOUNT OF CURRENT</th>
<th>SOFT IRON CORE</th>
<th>PERMALLOY CORE</th>
<th>PERMALLOY CORE</th>
<th>PERMALLOY CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>12V 2A</td>
<td>6V 1A</td>
<td>12V 2A</td>
<td>6V 1A</td>
</tr>
</tbody>
</table>

a. Which electromagnet is stronger, A or C? __________
 Why? __

b. Which electromagnet is stronger, B or D? __________
 Why? __

c. Which electromagnet is weaker, D or C? __________
 Why? __

29. The three factors that affect the strength of an electromagnet are:

 a. ____________________________
 b. ____________________________
 c. ____________________________

30. This is an illustration of a simple relay switch. The illustration shows a common use for an

<table>
<thead>
<tr>
<th>ELECTROMAGNET</th>
<th>31. One of the main uses of electromagnets is in relay switches. The magnetism used to actuate a relay switch is obtained by using an __________.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTROMAGNET</td>
<td>32. A relay switch is a device used to control remotely an electrical circuit. By using a relay switch, a small amount of current can be used to control a circuit with a large amount of current.</td>
</tr>
</tbody>
</table>

In the illustration above, high amperage is needed for the starter operation. Device C allows circuit B to control circuit A. Device C is a __________.

<table>
<thead>
<tr>
<th>RELAY SWITCH</th>
<th>33. A remote-control device used to control electrical circuits is a __________ __________.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELAY SWITCH</td>
<td>34. There are two basic types of relay switches. The method by which electromagnetism is used to actuate the contact points will identify each type of __________ __________.</td>
</tr>
</tbody>
</table>
RELAY SWITCH

35. One type of relay switch is the solenoid and plunger. It has a solenoid with a movable plunger held partially out of the coil. When current flows, the plunger is drawn into the solenoid by the attraction of the magnetism.

![Diagram of relay switch](image)

Look at the illustration above. When switch A is closed, in which direction will the plunger, B, move?

DOWN

36. The type of relay switch in which the plunger is free to move is the ________ and ________ type.

SOLENOID AND PLUNGER

37. The second type of relay switch is the armature. The coil of insulated wire is wrapped around the core. The core is not movable; and when current flows, the core becomes magnetized and attracts the armature.

![Diagram of solenoid and armature](image)

Refer to the illustration above. When the switch is closed, current flows to the coil. The armature moves ________ and the points will ________ (up/down) (close/open)

11.16

lsn, 5; p. 43
<table>
<thead>
<tr>
<th>DOWN</th>
<th>38. The relay switch with a fixed core is the __________ type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARMATURE</th>
<th>39. The two types of relay switches are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. ___________________________________</td>
</tr>
<tr>
<td></td>
<td>b. ___________________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. SOLENOID AND PLUNGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. ARMATURE (ANY ORDER)</td>
</tr>
</tbody>
</table>

Illustration A shows an __________ type of relay switch.

Illustration B shows a __________ and __________ type of relay switch.
We have seen how electricity can be used to produce magnetism. This is called electromagnetism. We can do the opposite and use magnetism to produce electricity. To do this, the flux lines must be cut by a conductor through relative motion. This is called electromagnetic induction.

When conductor A is moved rapidly up and down across the magnetic field, meter B will show that electricity is being produced. This action is known as

ELECTROMAGNETIC INDUCTION

Electromagnetic induction is the action involved in producing electricity by the use of a _______ field, a _______ , and relative _______ between them.

Producing electricity by using a magnetic field, a conductor, and relative motion is called

MAGNETIC, CONDUCTOR, MOTION

Electromagnetic induction is producing electricity by using a _______ , a _______ , and _______ between them.
Electromagnetic Induction

45. What is electromagnetic induction?

Electromagnetic induction is producing electricity by the use of a magnetic field, a conductor, and relative motion between them.

46. An EMF (electromotive force) is induced in the conductor when the relative motion between the conductor and the lines of flux causes the flux lines to be cut. With the conductor moving parallel to the lines of flux, no flux lines are cut and an induced EMF will not occur.

47. In which illustration will induced EMF not be produced in the conductor?

- **A**
- **B**

48. An EMF is not produced when the flux lines are not cut by the conductor. For induced EMF, the conductor must move so the flux lines are cut.

49. To obtain induced EMF in the conductor, the best method to follow is to cut the flux lines at right angles (perpendicular).

Which illustration shows the most efficient method of producing an induced EMF in the conductor?

A

B

C
50. Relative motion is the motion of the conductor or the magnetic field; that is, the conductor can be moved to cut the flux lines of the magnetic field, or the magnetic field can be moved so that flux lines are cut by the conductor.

CONDUCTOR

51. What will result from the action shown in the illustration?

INDUCED EMF IS PRODUCED WHEN A MAGNETIC FIELD MOVES ACROSS THE CONDUCTOR.

52. To have induced EMF, there are three requirements: a magnetic field, a conductor, and relative motion between them.

When flux lines are cut by the relative motion between a magnetic field and a conductor, there will be an induced EMF in the conductor.

INDUCED

53. Which illustrations indicate that EMF will be induced in the conductor?

![Diagram of magnetic field and conductor]

11 16
lbn 5: p. 47
54. What are the three requirements for induced EMF?
 a. __________________________
 b. __________________________
 c. __________________________

55. The strength of induced EMF is dependent on the number of flux lines cut per second. When the number of flux lines cut per second is increased, the strength of induced EMF will ________
 a. CONDUCTOR
 b. MAGNETIC FIELD
 c. RELATIVE MOTION

INCREASE

56. There are three factors that will affect the number of flux lines cut per second. One of the three factors is the flux density (number of flux lines per unit area).
 Which illustration shows the stronger induced EMF?
 Why?

57. When the magnet used in a magneto loses part of its strength, the EMF it produces will decrease.
 Why does this happen?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THERE IS A DECREASE IN FLUX DENSITY (NUMBER OF FLUX LINES).</td>
<td>58. The second factor which will affect the number of flux lines cut per second is the number of turns or loops of the conductor. The device in illustration A is capable of producing twice the amount of induced EMF as the device in illustration B. Why?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>THE COIL (CONDUCTOR) IN ILLUSTRATION A HAS TWICE THE AMOUNT OF LOOPS OR TURNS AS THE COIL IN ILLUSTRATION B.</td>
<td>59. Two factors which affect the number of flux lines cut per second are the flux density and the number of loops or _______ of the _______.</td>
</tr>
<tr>
<td>TURNS CONDUCTOR (COIL)</td>
<td></td>
</tr>
<tr>
<td>60. How can induced EMF be increased without increasing flux density?</td>
<td></td>
</tr>
</tbody>
</table>

The second factor which will affect the number of flux lines cut per second is the number of turns or loops of the conductor. The device in illustration A is capable of producing twice the amount of induced EMF as the device in illustration B. Why?
INCREASE THE	**61.** Induced EMF is dependent on the number of flux lines cut per second. If one hundred million flux lines are cut in one second, an induced EMF of one volt is produced; but if two hundred million flux lines are cut in one second, an induced EMF of two volts is produced. Other than flux density and number of turns of the conductor, what is the third factor that affects the number of flux lines cut per second?	
NUMBER OF:		
TURNS OF THE		
CONDUCTOR:		
(COIL).		
RATE OF SPEED	**62.** The strength of induced EMF is dependent on three factors. They are:	
OF CUTTING THE	a.	
FLUX LINES.	b.	
FLUX DENSITY	c.	
NUMBER OF TURNS	**63.** When a conductor is moved through a magnetic field, an EMF is induced; however, there is no induced current (electron flow) unless there is a closed path or circuit. To have induced current, there must be a closed	
OF THE		
CONDUCTOR		
(COIL)		
RATE OF SPEED		
(ANY ORDER)		
CIRCUIT	**64.** Up to this point, we have only discussed how an EMF is induced. Using this induced EMF, we can get an induced current. You must realize there is a difference between induced EMF and induced current. An induced EMF is potential energy. When the circuit is closed, this potential energy causes electron flow in the circuit, and this electron flow is known as	
INDUCED CURRENT	**65.** To have an induced current, two conditions must be met. There must be an and	
When a conductor is moved, cutting the flux lines, an induced EMF is set up in the conductor; and as long as the circuit is closed, an induced current flows, as indicated by the meter.

a. Illustration A will have
 (1) induced EMF.
 (2) induced current.
 (3) both.
 (4) neither.

b. Illustration B will have
 (1) induced EMF.
 (2) induced current.
 (3) both.
 (4) neither.

c. Illustration C will have
 (1) induced EMF.
 (2) induced current.
 (3) both.
 (4) neither.
<table>
<thead>
<tr>
<th>a. (3)</th>
<th>b. (1)</th>
<th>c. (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUCED CURRENT</td>
<td>67. According to Ohm's law, when the voltage (EMF) of a circuit changes (increases or decreases), the current changes in the same direction (increases or decreases). Therefore, the three factors which affect induced EMF will also affect __________.</td>
<td></td>
</tr>
<tr>
<td>68. A generator in which all three factors are incorporated will produce any desired voltage. However, weight, space, or a system which requires different voltages will limit the design. The electrical system of a car is an example. The lights require only a low voltage; whereas, for the ignition system, the EMF must be greatly increased. This increase in EMF is accomplished by using an induction coil which will greatly __________ EMF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69. When it is necessary to increase a low source voltage (EMF) to a higher output voltage, the device used to cause the increase is an __________ coil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCREASE</td>
<td>70. The higher induced EMF of the induction coil is caused by a moving magnetic field which is being cut by conductors. The relative motion between the conductors and the magnetic field of an induction coil is obtained by using a moving __________.</td>
<td></td>
</tr>
<tr>
<td>INDUCTION</td>
<td>71. The moving magnetic field of the induction coil is obtained by using a coiled conductor with a pulsating direct current (P.D.C.). This pulsating direct current is produced by using an interrupter switch. Because the type of direct current used in the induction coil is periodically interrupted, it is called a __________.</td>
<td></td>
</tr>
<tr>
<td>MAGNETIC FIELD</td>
<td>72. A pulsating direct current flowing through a coiled conductor produces a __________ magnetic __________.</td>
<td></td>
</tr>
<tr>
<td>PULSATING DIRECT CURRENT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.16

l4n 5; p: 52
MAGNETIC FIELD

73. If the switch (interrupter) at point A were opened and closed rapidly, the magnetic field would build up and collapse. This produces a moving

MAGNETIC FIELD

74. An induction coil is made up of a primary coil and a secondary coil.

The primary coil receives the low input P.D.C.

The other coil, which is the output coil, produces the high induced EMF and is called the

SECONDARY COIL

75. In the basic design of an induction coil, two coils are used; these coils are the_________ coil and the_________ coil.

PRIMARY SECONDARY

76. Although the primary coil and the secondary coil are separate coils, the illustration above shows they are both wound on a common

11.16
lsn 5; p. 53

300
77. Insulation is used to prevent an electrical connection between the two conductors. An induction coil does not have an electrical connection between the primary coil and the secondary coil, since the primary coil is ____________ from the secondary coil.

78. Each turn or loop of the coil is insulated to prevent an electrical connection between turns. To prevent an electrical connection between the coils, the primary coil and secondary coil are ____________ from each other.

79. In a basic induction coil, the primary coil and the secondary coil are both wound on the same core. To protect the primary coil and secondary coil from having an electrical connection, they must be ____________ from each other.

80. In an induction coil, the primary coil and the secondary coil are both wound on the same core. The primary coil always has fewer turns than the secondary coil.

In the illustration, A is the ____________ (primary/secondary) coil and has ____________ (more/less) turns than B.
<table>
<thead>
<tr>
<th>PRIMARY</th>
<th>81. In an induction coil, the coil that always has the greater number of turns is the _____ coil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECONDARY</td>
<td>82. Label the primary coil, the secondary coil, and the core.</td>
</tr>
<tr>
<td>A. SECONDARY</td>
<td></td>
</tr>
<tr>
<td>B. CORE</td>
<td></td>
</tr>
<tr>
<td>C. PRIMARY</td>
<td></td>
</tr>
<tr>
<td>PRIMARY</td>
<td>84. In an induction coil, the low input voltage is always received by the _____ coil.</td>
</tr>
</tbody>
</table>

In the illustration, which coil is receiving the low input voltage? (primary/secondary)
85. The source voltage for an induction coil is direct current which is changed to pulsating direct current by an interrupter switch.

Label the interrupter switch, primary coil, secondary coil, and core.

86. The P.D.C. in the primary coil causes a moving magnetic field.

This moving magnetic field will be cut by the larger number of turns of the \(\text{________________} \) coil.

87. The purpose of an induction coil is to \(\text{(decrease/increase)} \) EMF.

The increased EMF is induced in the coil that has the greatest number of turns. This is the \(\text{________________} \) coil.

88. The secondary coil cuts the moving magnetic field and induces EMF. This induced electromotive force in the secondary coil is increased because the secondary coil has a \(\text{(greater/lesser)} \) number of turns than the primary coil.
<table>
<thead>
<tr>
<th>GREATER</th>
<th>89. Relative motion between the moving magnetic field and the turns of the conductor of the secondary coil will cause an increased EMF to be induced in the _____ coil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECONDARY</td>
<td>90. [Diagram of electrical circuit] In the illustration above, direct current comes from point A. This low input direct current is changed to P.D.C. at B by the _____ This causes a moving magnetic field around C which is the _____ The relative motion between the increased number of turns of the _____ coil and the moving magnetic field will cause an _____ EMF at D.</td>
</tr>
<tr>
<td>INTERRUPTER PRIMARY COIL SECONDARY INCREASED</td>
<td>91. For the operation of the basic induction coil, a P.D.C. was required to produce a moving magnetic field. Alternating current (A.C.), which changes direction constantly, will also cause a moving _____</td>
</tr>
<tr>
<td>MAGNETIC FIELD</td>
<td>92. The type of current that can be used to produce a moving magnetic field and does not need to be interrupted is _____ current.</td>
</tr>
<tr>
<td>ALTERNATING</td>
<td>93. A device that uses alternating current to produce a moving magnetic field is the transformer. Since the transformer operates on alternating current (A.C.), there is no need for an _____</td>
</tr>
</tbody>
</table>
The voltage transformer is similar to the induction coil, except the interrupter switch is not required because of the type of current used. As shown in the illustration, the transformer has a primary coil and a secondary coil.

Transformers

95. Transformers may be used to step up (increase) voltage. Transformers used for this purpose will have more turns (loops) on the secondary coil than on the primary coil.

NOTE: The primary coil of a transformer, like the primary coil of an induction coil, will always receive the input voltage.

Which transformer is used to step up voltage? _____
96. Transformers may be used to step up (increase) voltage, or they may be used to step down (decrease) voltage; however, when they are used to step down voltage, the primary coil will have more turns than the secondary coil.

![Diagram of step-up transformer](image1)

![Diagram of step-down transformer](image2)

Label the illustrations as being either a step-up or a step-down type of transformer.

<table>
<thead>
<tr>
<th>A</th>
<th>STEP-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>STEP-DOWN</td>
</tr>
</tbody>
</table>

97. The secondary coil of a transformer used to increase (step up) voltage has more turns than the primary coil.

A transformer used to decrease (step down) voltage has more turns on the ________ coil than the ________ coil.

98. The basic transformer does not have an electrical connection between coils since the ________ (circle letter beside correct answer)

a. primary coil is insulated from the secondary coil.

b. primary coil is not insulated from the secondary coil.

99. In a transformer, either step-up or step-down, the EMF is always induced in the secondary coil. Therefore, it is the output voltage coil. The input voltage coil of any transformer is always the ________.
In a transformer, the input voltage coil is the *primary coil* and the EMF (output) voltage is always induced in the *secondary coil*.

Below are some true and false statements about transformers.

Circle the letter beside the true statements.

- a. Transformers use A.C.
- b. Transformers may be used to increase or decrease voltage.
- c. Transformers will have induced EMF in the primary coil.
- d. Transformers will only be used to step up voltage.
- e. Transformers always have more loops on the primary coil.
- f. The secondary coil is always the output coil.

<table>
<thead>
<tr>
<th>PRIMARY COIL</th>
<th>100. In a transformer, the input voltage coil is the primary coil, and the EMF (output) voltage is always induced in the secondary coil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY COIL</td>
<td>101. Below are some true and false statements about transformers. Circle the letter beside the true statements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIMARY COIL</th>
<th>SECONDARY COIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Transformers use A.C.</td>
<td></td>
</tr>
<tr>
<td>b. Transformers may be used to increase or decrease voltage.</td>
<td></td>
</tr>
<tr>
<td>c. Transformers will have induced EMF in the primary coil.</td>
<td></td>
</tr>
<tr>
<td>d. Transformers will only be used to step up voltage.</td>
<td></td>
</tr>
<tr>
<td>e. Transformers always have more loops on the primary coil.</td>
<td></td>
</tr>
<tr>
<td>f. The secondary coil is always the output coil.</td>
<td></td>
</tr>
</tbody>
</table>
1. Which statement correctly describes the magnetic field about a straight conductor carrying current? Place the number of the correct statement under the illustration that correctly shows this magnetic field.

 a. A magnetic field encircles a current-carrying conductor.
 b. A magnetic field runs parallel to a current-carrying conductor.
 c. A magnetic field surrounding a current-carrying conductor has a definite fixed polarity.

 ![Magnetic Field Illustration]

2. Match the terms in column A with their definitions in column B. Place the letter from column A in the space provided in column B.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Core</td>
<td>(1) A device used to control electrical circuits remotely.</td>
</tr>
<tr>
<td>b. Solenoid</td>
<td>(2) A coil carrying a current.</td>
</tr>
<tr>
<td>c. Relay switch</td>
<td>(3) The center area of a coil.</td>
</tr>
<tr>
<td>d. Electromagnet</td>
<td>(4) Coils of wire wound on a soft iron core.</td>
</tr>
</tbody>
</table>

11.16
lsn 5; p. 61
3. Label the illustrations as being either a solenoid or an electromagnet.

A. ____________________ B. ____________________

4. List three factors that affect the strength of an electromagnet.
 a. ____________________
 b. ____________________
 c. ____________________

5. Label each illustration as either the solenoid and plunger type of relay switch or the armature type of relay switch.

A. ____________________ B. ____________________
6. Electromagnetic induction is

7. Match each statement to the illustration to which it applies.

- A
- B
- C

a. No induced EMF is produced when the conductor is moving parallel to the lines of flux.
b. No induced EMF is produced when there is no motion of the conductor or the magnetic field.
c. Maximum induced EMF is produced when the conductor is moving perpendicular through the lines of flux.

8. The three requirements for induced EMF are a ___________ ___________ ___________. and there must be relative ___________ _______ between them.
9. Circle the letter beside the factors which have an effect on the number of flux lines cut per second.

 a. Moving the conductor parallel to the lines of flux
 b. Changing the rate of speed between the magnetic field and the conductor
 c. Making a closed circuit
 d. Increasing or decreasing the number of turns of the coil (conductor)
 e. Changing the flux density

10. What would be the effect on induced EMF if the number of flux lines cut per second were increased?

11. Circle the letter under the illustration that shows the requirements for induced current.

12. Label the primary coil, the secondary coil, the core, and the interrupter.
13. Circle the letter(s) beside the true statement(s) pertaining to induction coils.

a. An induction coil will not increase EMF.
b. A moving magnetic field is used in an induction coil.
c. An induction coil uses a pulsating direct current.
d. An induction coil has a primary and secondary coil.
e. An induction coil uses A.C. only.
f. Input voltage always goes to the primary coil.
g. The secondary coil receives the P.D.C.

14. State in your own words how the low voltage at point A is boosted to a high voltage at point D.

15. These statements pertain to transformers and/or induction coils. Place the letter T beside those statements which apply to transformers, the letter I beside those that apply to induction coils, and the letters TI beside those statements which apply to both.

- a. Has a primary and a secondary coil.
- b. May be used to increase voltage.
- c. May be used to decrease voltage.
- d. May have more turns (loops) on the primary coil than the secondary.
- e. EMF is always induced in the secondary coil.
- f. The secondary coil is insulated from the primary coil.
- g. Uses A.C. only.
LESSON 5, PART B
ELECTROMAGNETISM AND ELECTROMAGNETIC
INDUCTION—SELF-TEST ANSWERS

1. Aa

2. c (1)
 b (2)
 a (3)
 d (4)

3. (a) Electromagnet
 (b) Solenoid

4. (a) Type of core material
 (b) Number of turns or loops of the coil
 (c) Amount of current

5. (a) Armature type
 (b) Solenoid and plunger

6. Electromagnetic induction is producing electricity by the use of a magnetic field, a conductor, and relative motion between them.

7. (a) c
 (b) b
 (c) a

8. Conductor
 Magnetic field
 Relative motion

9. b, c (instantaneously only, motion is necessary for a continuous effect), d, e

10. It would increase

11. a

12. (a) Core
 (b) Secondary coil
 (c) Interrupter switch
 (d) Primary coil

13. b, c, d, f

11.16
lsn 5; p. 66
14. Direct current comes from point A. This is changed to P.D.C. at B by the interrupter. This causes a moving magnetic field around C which is the primary coil. The relative motion between the increased number of turns of the secondary coil and the moving magnetic field will cause an increased EMF at D.

15. TI a.
 TI b.
 T c.
 T d.
 TI e.
 TI f.
 T g.

END OF LESSON 5. Mail Form Enclosed For Final Exam.