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Mathematics Education Reports

Mathematics Education Reports are developed to
disseminate information concerning mathematics education.
These reports fall into three broad categories. Research
reviews summarize and analyze recent research in specific
areas of mathematics education. Resource guides identify and
analyze materials and references for use by mathematics
teachers at all levels. Compilations of references announce
the availability of documents and review the literature in
selected areas of mathematics education. Reports in each of
these categories may be targeted for specific subpopulations
of the mathematics education community. Priorities for the
development of future Mathematics Education Reperts are
established by the Advisory Board of the Clearinghouse, which
includes representatives of the National Council of Teachers
of Mathematics, the Special Interest Group for Research in
Mathematics Education, supervisors, ana teachers. Individual
comments on past Reports and suggestions f r future Reports
are always welcomed.

We are pleased to make this collection of papers on
eling available.
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Constructing Models: A Prefatory Note

The papers contained in this volUme were originally
presented at the May 1978 conference on Modeling Mathematical
Cognitive Development sponsored by the Models of Learning
Mathematics Working Group of the Georgia Center for the Study
of Learning and Teaching Mathematics. Most of the papers have
been revised to reflect comments and suggestions made at the
meeting.

The Models Group has been in existence since 1975, and
this latest confegence, held at the University of Georgia,
represented an attempt to bring talent and resources from
outside the group to bear on the problem of formulating models
of mathematics learning. Membership in the group has varied,
but the core of the group has remained fairly constant and is
composed primarily of mathematics educators. The Models Group
works as a "whole" only through meetings such as this one.
Sub3ets of group members have collaborated closely in some
areas, as evidenced by our two previous monographs (Fuson &
Geeslin, 1979; Osborne, 1976). Consequently, our work has not
been in a single direction, but has usually represented the
thinking of mathematics educators as opposed to other relevant
disciplines. The meeting reported here attempted to display a
broader view of models by including colleagues from
psychology, educational psychology, science, and philosophy.
It was hoped that these people would broaden our focus, call

.

attention to relevant work we had overlooked, correct any
blatant misconceptions on our part, and rekindle our
enthusiasm for pursuing models.

Before proceeding with the papers, it is important that
the reader understand how our group operates. We do not focus
on specific results of single studies. We are in the
formulation stage. Models are not monolithic and, in our
view, almost anyone can work on models. We do not feel we can
afford to wait for an "Einstein" to propose a grand model.
Model building is a slow, painstaking process. As we learn
from our research, the models develop. The probability of
obtaining a useful model from a one-shot study is essentially
zero.

Models are intended to assist us in predicting behavior,
simulating behavior, locating causal factors of specific
behaviors, and perhaps even in observing behavior
systematically. "The cogent assumption is that model
construction and validation will lead to better understanding
of children's mathematical learning which, in turn, could lead
to more effective classroom instruction" (Geeslin, 1979, p.1).
It is assumed that a rational explanation of classroom behav-
ior can be constructed, at least in a probabilistic sense.

v
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As Edgerton notes, we cannot merely copy methods from the
physical sciences. However, we are attempting to adopt the
"scientific method" for use in our research. Richards (1979!
states:

Two characteristics are common to all models:

(1) There is a similarity in structure between the model
and what is being modeled...and

(2) There is a clear and obvious difference between the
model and [what is be-Eq-iii5aeled]. (p.5)

Currently we do not insist on having "models" in the strict
sense outlined by Richards. The papers in this volume,
however, are intended to guide us in that direction.

Some evidence of success in modeling exists. Beginnings
of developmental models can be found in the work of Steffe,
Richards, and von Glasersfeld (1979), Fuson (1979), Carpenter,
Hiebert, and Moser (Note 1), and Mierkiewicz (1979).
Likewise, a foundation for information processing models can
be found in the work of Geeslin and Shar (1979), Geeslin and
Sliaveison (1975a, 1975b), Shave son (1973), Greeno (1979), and
Branca (1980). A lot of this work is on "less complex" mental
behavior, but it represents a beginning. It also serves as a
reminder that "less complex" behavior, such as mathematical
computation and spatial perception, are neither simple nor
well understood.

To date there do not appear to be many unifying threads
to modeling. Two distinct methodologies, i.e., clinical and
empirical, exist. Also there are the strict statistical
analysis of a single data set and meta-analysis of
combinations of studies. These are not opposing philosophies,
but all necessary parts of the same process. All tnese
methods are "research" in the sense that they are not
development, not focused on method, and clearly not mere
"armchair theorizing." In each case, data on students and
classrooms ate obtained and these data are used to mold
theory. Empirical work is characterized by experimental
control, probabilistic reprooacibility, and generalizability.
These characteristics are necessary for propel classroom
application of the findings (or models). Research on models
is a form of systematic testing of hypotheses. These
hypotheses may arise from "gut reaction" (Geeslin & Shar,
1979), mathematics (Mierkiewicz, 1979), clinical observation
(Steffe, Richards, & von Glasersfeld, 1979; Mick & Brazier,
1979), empirical trial and error (Carpenter, Hiebert, &

Moser, Note 1), or a combination of the preceding. In each
case a cycle of observation, proposing a model, and
intervention exists. As this cycle is repeated, the model
should become more generalizable and more applicable to the
classroom.
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Obviously, many difficulties lie ahead. Modeling is
long-term work with the usual problems of maintaining
interest, financial resources, cooperative efforts, etc.
Insight is needed for qualitative advances in theory.
Unfortunately, insight neither occurs at regular intervals nor
is necessarily available as needed. Cooperative research
efforts are essential for educationally significant advances.
Nonetheless, systematic theory development is the way to
achieve continuous progress in improvement of instruction.
Theory development, in turn, requires models. The efforts of
our colleagues outside mathematics education represented by
the papers in this monograph are of great assistance in moving
toward better models.

William E. Geeslin
Models Working Group Leader

Reference Note

1. Carpenter, T. P., Hiebert, J., & Moser, J. M. The effect
ol_problem structure on first graders' initial solution
processes for simple addition and subtraction problems.
Paper presented at the Annual Meeting of the American
Educational Research Association, Boston, 1979.
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WHAT IS A MODEL?
MODELING AND THE PROFESSIONS

Stephenie G. Edgerton
Department of Cultural Foundations

New York University

The term model is a very prestigious label. It is
derived mainly from descriptions offered of some scientific
activities. Those who pursue these activities claim for their
investigations the authority of science, that is, the author-
ity of reason and experience. Those who borrow the term and
attach it to their studies would like to imply, or perhaps
even claim, similar authority for their intellectual endea-
vors. Since the prestige of science is currently very high,
the frequency of borrowing its vocabulary is high also. As a
result it is possible to find almost everything and anything
termed a model. For example, it is not unusual to encounter
such disparate things as conceptual networks, operational
definitions, flow charts, and diagrams all labeled as models.

But where does this phenomenon come from? And how may
models function in intellectual activity?

What Is a Model?

As early as the 19th century, but primar'Ly in the 20th
century, a group of philosophers and some scientists with a
philosophical bent decided that the achievements .3f the
physical sciences had been sc extraordinary that it would be
helpful to identify the structural components of known
theoretical systems. Being intellectual reformers, they
thought if they could analyze science that was already
developed and establish criteria for its assessment, they
would thereby assist what they saw as underdeveloped areas of
science, especially the social sciences, in their quest for

The viewpoint expressed in this paper is indebted to the
studies of Sir Karl R. Popper in the philosophy of science.
Professor Henry J. Perkinson served as a helpful critic.
Interpretations of the professions and the conclusions reached
are my own.
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prediction and control. They raised the question, "What are
the logical and empirical components of science?" They
answered with a flurry of articles and books delineating the
structure of science. To name just a few of the participants
and the structures they identified in this intellectual
pursuit, Duhem (1962) wrote on the "crucial experiment,"
Bridgman (1961) on the "operational definition," Campbell
(1952) on "What is science?", Hempel (1952, 1966) and Hempel
and Oppenheim (1953) on "explanations" and "concept
formation," and Hesse (1966) on "models and analogies."

The structure of interest here is, of course, model. The
debate over this particular structure took place between the
followers of Duhem and the followers of Campbell. Hesse has
codified the issue, interpreting the original argument and
extending it.

Her answer to the question, "What is a model?", may be
put grossly but simply as follows: Models are ways of
theorizing which follow the pattern of analogies. In making
analogies, people go from familial: intellectual objects to
those that are unfamiliar. This activity has three
dimensions. The first is the negative analogy, which
describes properties of the familiar object that do not seem
to belong to the unfamiliar object of interest. The second
dimension is the positive analogy, which ascribes properties
to the unfamiliar object that it shares with the familiar one.
Finally, there are neutral properties which cannot be
identified as positive or negative. It is claimed that these
neutral properties offer avenues of discovery about the
phenomenon of in.:erest. Modeling, according to this view, is
conceptualizing through the vehicle of a familiar object or
situation. Some philosophers have labeled these familiar
objects or situations models.

What is important is not so much the answers to the
question of structural components these 20th century, "logical
positivist" scholars evolved, but rather their suggestion that
the identification of the structures of science would assist
researchers in creating accurate theoretical systems with high
predictability. Going even further, their intellectual
activity has implied and sometimes persuaded those in the
social sciences and the professions that all science should
look like the science they envisaged and thought they found,
largely in the physics extant by the mid-20th century (cf.
Brodbeck, 1963).

Often the questions people raise and the answers they
dictate lead to intellectual orientations which are not only
faulty but often not helpful. "What is a model?" is, I think,
such a question. This question asks for a definition of the
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"nature" of an activity, as if having that definition would
reveal something special, something about past and possibly
future scientific practice (cf. Popper, 1962, 1974).

I am not saying that terms should not be defined or that
viable forms of discovery should not be considered in the
quest for knowledge. Scholars should be encouraged to develop
as many ways of interpreting entities, states of affairs, and
events as are within their creative powers. They should at
the same time define their terms as a means to clearer
communication and increased understanding. It is wise,
however, to realize that delineating traits, characteristics,
or properties of an idea or thing will not uncover its hidden
function. Thinking which contributes to the notion that
revealing the "essence" or "form" of a phenomenon--disclosing
its proper nature and its attributes--results in discovering
its assumed powers is, I believe, misleading and ineffectual.

To put the matter another way, some people believe that a
true analysis of model would assist them in finding this
intellectual entity which could then offer them some basic and
mystical insight into their scholarly investigations. Quite
frankly, as I have explained, I fear this orientation is
unfruitful.

But, then, how else may models be viewed? What questions
should be asked? The question I suggest is: "How can we use
abstract conceptualizations to help us interpret phenomena we
are studying?"

Bacon and the context of discovery. To understand an
interesting but, under some circumstances, misleading notion
of model, it is first necessary to understand the thought of
Francis Bacon concerning scientific investigations. Bacon
(1605/1944) raised the question, "What is the scientific
method?", and answered it with a formula for scientific
activity. True scientific laws were said to emerge
inductively from pure observation. Bacon believed that the
process by which one discovers theoretical statements
established, guaranteed, and justified its product. Hence,
the steps of the truly scientific rain dance assured a heavy
scientific downpour. It is this viewpoint of scientific
discovery which led eventually to the development of sundry
methodologies. Modeling can be seen, I think, as such a
methodology.

In this context, models are intellectual structures that
help in interpreting various situations of interest. They are
attempts to offer a guide to the discovery of new ideas.
Modeling, then, is much akin to the utilization of conceptual
sets that may help in gaining insight into a situation that is
not as yet fully understood. Such an activity seeks to
interpret the unfamiliar with the somewhat familiar or at
least with a known dimension taken from an understood context.

3 11



It is clear then that, seen as a legacy (f Baconian
thought, modeling becomes an attempt to discover some new
information by superimposing a framework on a not-as-yet-
understood state of affairs. This manner of viewing models is
close to the notion that modeling is a stralegy for the
discovery of knowledge. It may be compared to the drawing of
analogises. The important and helpful element of this view is
the idea of borrowing conceptualizations in order to discover
new interpretations. Its drawback is to go beyond-these
expectations and see the "correct" form of borrowing as a
criterion for evaluating newly gained insights.

Models as theory construction. -There is a quite
different notion of modeling which, I think, is closer to
invention (Edgerton, 1973). This orientation suggests
that a theory is conjectured about the not-as-yet-understood
situation. What happens, then, is that a conceptual structure
is offered by which someone may try to explain an interesting
situation. This approach is, to put it simply, an attempt at
theory construction. Models in this context are seen as weak
theories. The assumptions of these theories or the set of
deductive statements which follow from them are not known.
The "theory" is basically only a few concepts linked together
to provide a viewpoint for looking at a situation from a newly
acquired perspective. As though seen through a new pair of
glasses, thing are perceived differently than they were.;
previously.

But of what worth is a discussion of the activity of
modeling to the professions? In particular, of what.worth is
it to educators? Answers to these questions can be better
understood by considering the relationship between the
professions and science.

Science and the Professions

Professions have always argued that they should be given
the power to determine policy in their designated domains.
They have protected their social territories by claiming
the authority of expertise gained in Schooling. In the
science-based professions it has been argued that this
expertise comes from the possession of science. Predict-
ability and, therefore, control in professional settings
have been an assumed outcome of their scientific acumen.

The fact that these professions have not had this
intellectual power has seldom stopped them from making
their claims to a specified professional turf, but the
absence of this power has caused continual discomfort and
has allowed various invaders to shift their chosen realms of
responsibility. Social workers, for example, have not
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successfully defended their territory. Nurses, therapists,
former addicts and alcoholics, and many others have eroded the
social workers' claims to expertise in the handling of the
socially deprived and needy.

Just as claims for legitimacy in the professions have
been made and defended largely by reference to the possession
of scientific knowledge, claims to the knowledge of causal
regularities in social matters have created an orientation in
the professions towards scientific research. This orientation
has manifested itself in the incteased push toward the
attainment of higher degrees with research as a primary
requirement. As curricula for advarced degrees have evolved,
"theory con3truction" has become a major target in research.
The need to uncover the social regularities thought necessary
to predict and control social settings, and thereby increase
the possibility of successful practice, has become a higher
priority as public and professional criticism has prompted the
demand for accountability. At the same time, these degree
requirements have been used to bolster the claim of social
authority for the profession and its members. Model building
in this context has been recognized basically as a means to
more, and more powerful, theory. Importantly, model building
has also been used to convey the impression--often a false
one--of having mature scientific eromplishment.

This pattern of the development of arguments for
professional authority has been as true in the education
profession as it has been in nursing, engineering, and
medicine. Educators wank scientific theory to answer their
professional questions of administration, curriculum, and
instruction as well as bolster their claims for legitimacy.
They have attempted to attain these aims by developing and
utilizing theoretical foundations in several forms.

Modeling in the Education Profession

Professionals in education have been interested primarily
in answering two questions: "How do students learn?" and "How
should we teach them?" These questions have been answered in
recent years by attempts to devise techniques for learning
which have been labeled models of instruction. These models
have had a number of dimensions. They have been rules for
instruction which consider not only the logic of teaching and
subject matter but also the psychological and sor ologict-1
foundations of learning. These efforts suggest Lnat the_ .! is
a "science of education"; that is, theoretical regularities
exist that educators can discover or borrow which, when
applied to an identified social situation, will generate
prediction and control. These regularities have been sought
by investigating the social settirg itself or by borrowing
theory, thought to be true, from the disciplines. Sometimes,
of course, both directions have been taken.

5 13



This movement has been a major development in education
during the middle and last decades of this century- It is
attested to not only by research activity but also by the
development of curricula for advanced degrees which emphasize
psychological, sociological, historical, and philosophical
foundations. It should be pointed out too that, in general,
other professions, like nursing and medicine, have followed
the same lines of intellectual development.

In view of these pursuits, the question of whether
there is a science of education becomes an important point
of focus for educators and, in a way, for other aspiring
professions.1 And, if there is such a science, it then
becomes important to learn how to find, or discern, it and
how to utilize it.

I can comment definitely on two approaches educators
should not take:

(1) They should not look for logical c.nd empirical
structures, which may not exist, and which may
not characterize past and present scientific
achievement in the physical or natural
sciences,2 and

1A number of professions have grown increasingly
interested in their philosophies of education but have not
resolved the problems surrounding the "training" or
"educating" of practitioners. Because professionals practice
in a social setting, it is necessary to understand not only
the constraints under which they operate but also how
competence and responsibility are garnered in their education.
The medical profession, for instance, is becoming increasingly
interested in educating young physicians in ethics.

2Feyerabend (1968) and Kuhn ;1962) have discussed
scientific practice and its contribution to answering the
ques*ion, "How does our knowledge grow?" Arguing from
historical examples, each of them has interpreted past
scientific activity in ways that the actual contributors have
seldom claimed. Although these studies analyze descriptions
of scientific practice, the fundamental issue is, "How ought
scientists practice?" Kuhn seems to argue that, since science
has been so enormously successful, how they have succeeded is
important as a prescription for future activity. Feyerabend
contends that some practices of some sc4entists have been
quite different from those that they or the logical
positivists have described. He thinks certain practices
should be encouraged and otters should not. In particular, he
attacks rigid deduction and meaning invariance and suggests
that th thilosophers who argue for these principles are
encouraging a dogmatic metaphysics in science.

14



(2) They should not, in a Baconian manner, think
there are methodologies to be discovered which,
if found, would, like formulas, deliver true
scientific laws.

The first approach emphasizes the discovery of "meta"
objects that go beyond linguistic expressions and suggests
that scientific activities in the professions are the same as
in the pure sciences. The second approach confuses the
question, "How may we discover theory?", with the question,
"How do we evaluate theory?" It suggests that the manner in
which discoveries are made is the criterion for evaluating
what is discovered.

But, then, what may educators do that will help them in
their quest?

Alternatives for the Education Profession

The first, and least promising, alternative is to seek a
conceptual framework for a science of education. Such a
framework would consist of a most basic and abstract
conceptual network together with the accompanying assumptions.
This framework would attempt to describe theoretically the
richest conceptualizations of solutions to the major questions
of educators. Much ingenuity would be required for such an
intellectual endeavor by educational theorists. The resulting
framework might center, for instance, around the key notions
of ationality, health, and learning. One philosopher of
education (McMurray, 1955) began such an attempt by calling
for "an autonomous discipline of education." It should be
noted that the development of a conceptual framework is an
orientation currently being fostered in the nursing profession
(Rogers, 1970; Smith, 1979).

Another, and a more promising, alternative would be to
see more problems of education in an applied science setting;
that is, educators would view themselves a little more as
engineers do, at least some of the time. This orientation
would mean taking a problem-solving approach in practitioner
settings. Practitioners would be educated L., see themselves
as theorists in problem-solving settings in which they would
be called upon to conceptualize their problems, consider
social constraints, and devise solutions. But let me explain
in some detail what I mean.

A striking feature oc professional literature is the
crude way in which probl solving in the applied science
setting has been cast. Tne impression that the problem solver
just grabs some pure theory, usually developed elsewhere, and
applies it is, of course, a very naive view of rationality at
the applied science level (cf. Smith, 1951).



Problem solvin5 in a practitioner setting consists of a
complex :'cries of judgments about a considerable number of
factors. Some of these factors are public, professional, and
private values. What has been called "applied science" in
actuality is an activity which at least involves aims,
theoretical information, theoretical interpretations, and
values. Conceptualizing applied science in this way raises
the question, "How should scientific inquiry be carried on in
the professions?" An adequate response, I think, can be
given.

In the first place the problem solver works within a
framework of aims. These aims usually involve the elements.of
risk and safety. The problem solver is asked to find a
solution that minimizes social and private risk and maximizes
safety. The problem exists in a setting about which
theoretical interpretations must be made, and the problem must
be conceptualized and resolved within a context of technical
and value parameters. Therefore, the problem solver must
identify theoretical information to be used, rec,st it, and
even generate more theory, as well as identify ano resolve the
value issues involved.

A helpful example to illustrate this process is that of
an engineer building a bridge. One aim of the engineer is to
build a bridge that is safe. The bridge must be constructed
in such a way as to handle both Volkswagons and tractor-
trailers. Therefore, the engineer must have technical
information that guarantees neither overbuilding nor
underbuilding the bridge. Financial, political, and even
aesthetic factors must also be considered: how much money may
be spent, where the bridge will be constructed, and whether or
not it will be pleasing to the eye. To accomplish all of
these aims, the engineer must be a theorizer, not just an
applier, of knowledge.

Professionals need to help practitioners resolve problems
seen in this way and with these kinds of parameters. It is,
therefore, essential that practitioner settings be
investigated and explored. Learning how to theorize in real
situations is another primary task. Doing this, I think, means
learning how to evolve theoretical information in a social
context instead of in some pure science form which is seen as
applicable in every practitioner setting.

These intellectual activities are a matter of developing
a theory of practitioner rationality. Interestingly, such a
project involves a philosophy of applied science. Guidelines
for minimizing risk and maximizing safety must be developed as
well as appropriate epistemologies.

Educators, of course, must delineate their aims and
develop a philosophy of applied science that will suit their
needs. Then, they must examine practitioner settings and
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create theory within them. The resolution of value choices
and value conflicts must be a major study.

If this kind of perspective is adopted by the education
profession, the consequences of inheriting faulty perspectives
which surround our desci.iptions of the activities of pure
science may be avoided. In my opinion, the sooner educators
see that they are involved in a different kind of activity,
the sooner they will resolve their professional problems.

If the philosophy of knowledge and the professions"
outlined in this paper were to be called a model, I would
laugh but I would not object.
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WHAT IS A MODEL?
MODELING AND THE PROFESSIONS

John Richards
Division for Study and Research in Education

Massachusetts Institute of Technology

Research in mathematics education would be more
productive, Professor Edgerton argues, if it were patterned
after applied, as opposed to pure, science. Specifically,
educators require methods for theorizing in practitioner
settings; that is, methods for evolving "theoretical infor-
mation in a social context instead of in some pure science
form which is seen as applicable in every practitioner
setting."

Professor Edgerton then poses two alternatives for
educational research:

(a) to seek a conceptual framework for a "science
of education," and

(b) to see more of the problems of educators in an
applied science setting.

The former, she argues, is "the least promising" but has
gained wide acceptance, primarily because science is
cowddered a normative term. Consequently7ESEF has been a
rush to adopt many of the appurtenances of science_in order to
provide the appearance of respectability. Modeling, which is
Part of what science does, is thus, prima facie, respectable
behavior. We are warned, however, that even if modeling is
appropriate for the hard sciences, and that is not at all
clear, it is not necessarily appropriate for the softer
sciencesthose dealing with people and messy data.

While I sympathize with the thrust of this argument,
following the line of thought a bit farther provides a context
for appreciating the value, role, and function of modeling.

This material was prepared with the support of National
Science Foundation Grant No. SED78-17365. Any opinions,
findings, conclusions, or recommendations expressed are those
of the author and do not necessarily reflect the views of the
Naticnal Science Foundation.



It is useful, and perhaps important, to stress the "applied
science" quality of research in mathematics education, but it
is a mistake to consider the two paths suggested above as
real, clearly distinguishable, alternative directions for this
research.

Science, Pure and Applied

There is no clear dichotomy between conceptual frameworks
and applied science. Rather, applied science must be grounded
ina conceptual framework, which, in turn, is at least
partially motivated by the requirements of the practical
setting. The conceptual framework pr-wides a common context
for the variety of applied problems and a common ground, or
conceptual link, between the various theories or disciplines
which are being applied.

The establishment of thi3 common'ground is particularly
appropriate ,to issues in mathematics education, which is
intrinsically irterdisciplinary in nature. It is essential to
glean the pertinent ideas from relevant research in any field,
but there are real problems with adopting simultaneously, say,
A behavioral theory of learning, a developmental theory of
education, a cognitive theory of language, and a dualistic
philosophy of mind. Instead, a conceptual framework provides
a unified basis for research where the psychology, mathema-
tics, education, and philosophy can complement each other. The
conceptual framework and the resulting operative theory
determine the problems to be addressed, the methods to apply,
and the nature and scope of the data. Applied science,
especially, must develop within the context of, in Imre
Lakatos' (1970) terms, a methodological research programme.

When applied science is conducted outside such a
framework, the product has the appearance of a patchwork
quilt. Solve this problem this way--that problem that
way--use this teaching method here--try the following analogy
there. This is the direct result of adopting Professor
Edgerton's "problem-solving approach in practitioner
settings," without also seeking a conceptual framework which
can bind the solutions into a viable program. Unfortunately,
too much of mathematics education research is already
conducted in the absence of such a framework, and reading
through the literature is very much like scanning a patchwork
quilt. While the character of applied science has remained
largely uninvestigated, it is certainly more than a patchwork
itiilt. It is a complex endeavor which, as Professor Edgerton
explains, "involves, at least, aims, theoretical information,
theoretical interpretations, and values."

I do not mean to suggest that we need to develop a
"science of education" as in the first alternative suggested



above. It is not even clear what a science of education would
be. Rather, it is necessary to develop a coherent methodo-
logy; that is, it is necessary to develop ways to study the
educational process which provide a basis for conducting
research profitably. It is through the development of
conceptual frameworks, and the development of appropriate
methodologies for these frameworks, that the patchwork quilt
gains meaning, coherence, and value.

Models and Data

The applied science image Professor Edgerton suggests has
much to offer. In particular, I wish to focus on the applied
science notion of a functional model. These models are
constructed when the researcher does not have access to what
is being modeled. For example, in designing a bridge, the
engineer uses models to evaluate the design before the bridge
itself is constructed.

This functional aspect of a model depends on a partial
similarity between the model and what is being modeled (the
prototype). The model bridge has a similarity of structure
and design with the intended bridge. The model serves the
engineer's purpose of examining stress or, perhaps, planning
the construction. The model simplifies the situation and
provides an image with which to work.

Adopting the applied science notion of functional models
is probably best motivated by the nature of the datain
mathematics education and the social sciences. The implication
throughout Professor Edgerton's paper is that the richness of
the data overwhelms the researcher. That is, the contextual
setting of the problems is so rich that it prevents
generalization--of methods, results, or theory.

On the contrary, in a very important sense it is not the
richness, but the paucity, of our data which overwhelms us.
We are overwhelmed because the central focus of our study, say
the child's construction of whole number concepts, is beyond
our grasp. We cannot observe this construction, or any other
mental process, directly. Moreover, we must observe the
dynamic character of the learning process from a perspective
which is distant from this process. To account for this
dynamic process and to study the cognitive constructions of a
child, we build models. These models postulate connections
which might account for the appearance of new behaviors and
alterations of old behaviors.

It Is important to rote that this use of models is much
closer to applied science and the black box model of
cybernetics than to the model/theory relationship of pure
science, at least as this relationship is portrayed in the
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reconstruction of theories in physics or the philosophy of
science. From this applied perspective a model is
functional--it serves a purpose and has a particular role'to
play in research. As educational researchers we do not, and
cannot, have access to anything corresponding to cognitive
structures and mechanisms. More importantly, cognitive
structures and mechanisms are theoretical entities which we
postulate, and we construct models which describe the
operation of these cognitive mechanisms and account for
changes in cognitive structures. These models then foster
discussion of underlying operations and processes which, from
the perspective of our theory, make aspects of their
mathematical experiences meaningful for children. The
problem, then, is to build models which make behavior and
transformations in behavior interpretable. This enterprise
requires a coherent cognitive framework.

If we are building models to create an idealized science
of education to be a reprint of some picture which we have of
"hard" science, then of course Professor Edgerton is correct,
and our program is bankrupt. But, there are other reascrs for
seeking a conceptual framework or constructing models, a I
have set forth in these brief remarks. Moreover, while I have
sympathy with Professor Edgerton's proposal for adopting a
problem-solving approach in practitioner settings, it seems
clear to me, first, that a coherent conceptual framework is
essential for this effort to be productive and, 'second, that
using models is an effective method for working in situations
with so many variables and even more unknowns.
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THE CONCEPTION AND PERCEPTION OF NUMBER

Ernst von Glasersfeld
Department of Psychology
University of Georgia

Thus much is true, that of natural
forms, such as we understand them, quan-
tity is the most abstracted and
separable from matter.

Francis Bacon (1623/1891)

For some 50 years Piaget has been saying that the
proces of perception does not seem feasible unless we assume
that the perceiver has some prior structure which can
assimilate sensory experience. Though there are empirical
findings that corroborate that hypothesis, its strength
springs from the epistemological foundation on which Piaget
has built his entire theory of cognition.

Unlike scientists a hundred years ago, some of us today
nave come to believe that what we call "data" invariably and
necessarily presupposes some theoretical structure to direct
and inform our observation. Hanson (1958) said it very
simply: "Observation of x is shaped by prior knowledge of x"
(p. 19; also cf. Bridgman, 1961; Feyerabend, 1975; Kuhn,
1970). Psychological research seems to be among the last of
the investigative activities to be affected by this shift in
attitude toward the philosophy and practice of science.
Somehow psychology still perpetuates doctrines inspired by the
intellectual climate cf the 19th century, in that they view
organisms as essentially passive objects whose changes of
state and activities can be explained as effects of causes in
an objective environment. Consider, for example, the opening

The many discussions with other members of the team--Les
Steffe, John Richards, Izzy Weinzweig, and Pat Thompson--hava
helped me a great deal to sharpen the still developing ideas
I have expressed in this paper. I am grateful also for the
critical comments Roger Thomas and Michael Tomasello made on
an early draft. Finally, I want to stress that the pioneering
work on the role of attention in the construction of concepts
was done 30 years ago by Silvio Ceccato. The present research
was supported by the National Science Foundation (SED
78-17365) and the generous allotment of research time in my
Department.



sentence in a recent article by Skinner (1977): "The variables
of which human behavior is a function lie in the environment"
(p. 1). To a lesser extent, and with some exceptions, this
behavioristic orientation prevails even in cognitive
psychology. There is still a widespread explicit, or
implicit, belief that the result of cognitive processes,
knowledge, is in some sense a picture or replica of the
cognizing organism's environment and that this picture
contains "information" which the organism has obtained
through its senses. I have shown elsewhere that this
scenario of cognition, by assuming the transfer of informa-
tion from a ready-made environment into an organism,
inevitably leads to a self-contradictory model of cognition
and epistemology. I have argued that a radically
constructivist view of knowledge provides a more promising
approach (Richards & von Glasersfeld, 1979; von Glasersfeld,
1974, 1976, 1979a, 1979b, in press).

In this paper I shall apply the constructivist approach
to the analysis of the concept of number and outline a
hypothetical model that attempts to explicate the structure of
numerical concepts in terms of activities carried out by the
cognizing subject. In this view, things like unity,
plurality, number, and set are not independent entities thatplurality,

ready-made in an objective "reality" but, instead, are
conceptual constructs, the results of a subject's specific
ways of operating. This perspective does not imply that the
construction of numerical concepts may not involve perceptual
processes, but it does imply that such perceptual processes
must be considered constructive, rather than a passive
reception of "facts' that are numerical in themselves and, as
such, belong tc an ontological reality.

Hence, two main efforts will be made in this paper: One,
to analyze what we may have in mind when we say "number"; the
other, to consider the extent to which numbers can be
perceived. Though these two problems are related in many
ways, I shall concentrate on the conceptual problem in the
next four sections of the paper and devote the remainder to
the perceptual problem.

Concerning Hypothetical Models

There are three points that have to be cleared up at the
outset. First, as constructivists, we must remain constantly
aware of our basic assumption that concepts and conceptual
structures are necessarily hypothetical items and are doubly
hypothetical whenever they are attributed to other people. At
best, we can know of them only to the extent that the owner or
user tells us about them or, alternatively, acts in a way that



leads us to infer them. Both o these ways of access,
however, are subject to a gene al restriction which, although
it is traditionally disregarded by realists of every denomina-__
tion, must be taken very seriously by constructivists. In its
simplest form, the restriction amounts to this: Whenever we
interpret what someone says or does, we interpret what we hear
or see in terms of elements that are part of our own
experience. I deliberately speak of "elements of our own
experience" because I do not wish to imply that we are limit'd
to imputing to others the same, and only the same, operational
procedures that we impute to ourselves. That way of viewing
others would be an extreme form of what Piaget calls ,
"egocentrism." Rather, I mean that whatever procedures we
hypothetically impute to other people will be composed of
experiential elements that are conceivable to us on the basis
of our own experience. To use a drastic example, a
congenitally blind person's interpretation of sighted friends
will necessarily be composed of elements within the blind
person's experience. It may contain correlations,
regularities, and probabilities that are radically different
from those the blind person normally uses, but it cannot
possibly contain elements derived from visual experience.
This limitation is important to remember when interpreting
observations about children, because children may construe
perceptual and conceptual items in ways to which the adult, in
spite of all efforts to decentrate, can no longer return.

Se&snd, there is the problem of "models." If we are not
satisfied with mere descriptions of observable behavior but
want to formulate theories as to how the observed beh7viors
come about, the obvious procedure would be to open up the
behaving organism so we could observe what goes on inside.
Living organisms, however, have the awkward peculiarity that
their more interesting functions either cease when we cut them
open or are still so mysterious that the investigator has no
idea what to look for (e.g., the function of memory). From a
cyberneticist's point of view, therefore, living organisms
(and children in particular) are "black boxes" whose internal
functions are simply not accessible to observation. But both
cyberneticists and cognitivists still want to go farther:
They want to see if they can set up hypothetical operations
and ways of combining them into larger operational structures
that yield the same resylts as the behavior manifested by the
organism. Such "modele are, and remain, hypothetical and
should never be said to depict or replicate what actually goes
on inside the organism. But, as long as the organism's actual
functioning remains inaccessible to observation, it is
extremely useful to know at least one way in which what it
does could be done. This way of proceeding, it should be
noted7iiessehtially the same as tha;: of the modern physicist
who postulates hypothetical entities with hypothetical
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properties, such as spin, charm, color, etc.--all of which are
outside the range of direct observation but nevertheless
enable the physicist to construct theories and make
predictions about observable events. For example, Lieberman
(1979) discusses the distinction between real and hypothetical
objects and comes to the conclusion that "the dividing line
between real and hypothetical, then is partly a matter of
convention, for scientists to draw wherever they find it most
convenient" (p. 329).

Third, when some phenomenon pertaining to another
organism is to be explained developmentally, differences must
be found between what the organism is doing now and what was
observed before or what will be observed later. Moreover,
development is always studied with some idea of what is being
developed. That is to say, there is some idea olg-resulting
end-state or product--otherwise it would simply be a study of
change. Therefore, when we speak of development in children,
we need to specify a plausible succession of changes that may
characterize in a generalizable fashion children's progression
from an original, primitive way of acting in, or responding
tor certain experiential situations to the accepted adult way
of acting or responding.

In order to formulate hypotheses as to how or why a
child's action or response is different from an adult's, we
must have some sort of model of what goes on in the adult.
Thus, in order to investigate children's development of
numerical concepts, it will be indispensable to have an
explicit model of the adult concepts of number and the related
constructs.

I have made these three points as explicit as I could,
partly as an admonition to myself, partly as an attempt to
forestall any "realist" interpretation of what I intend to
present in the main body of the^paper. I shall develop a
hypothetical model that does not purport to be the description
of any reality. At best, it may turn out to be compatible
with such observations as have been, or will be, made. If
that should be the case, the model may be used to make pre-
dictions and guide the development of didactic methods.

What Is a Number?

Whenever a question of the type, "What is an x?", is
formulated, there is more than one path towards an answer. In
the case of "What is a number?", one answer might be: "Well,
...one, two, fifteen, and thirty-eight are numbers." That
response would be equivalent to answering "Pippins, Winesap,
and Golden Delicious" to the question, "What is an apple?" It
would not be much help to a child who has never experienced an
apple. Instead of the verbal reply, one could go to a
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well-stocked pantry, come back with specimens of Pippin,
Winesap, and Golden Delicious apples, and say, "All of these
are apples!" Those examples would contribute to an
extensional definition. If the child then asked "Why?", one
could point out that all of these objects are relatively round
and smooth; are of certain size and weight; have skin,
flesh, and core; and have a smell and a taste that one can
learn to recognize. In other words, giving part of an
intensional definition would, by and large, be successful in
specifying some of the characteristics that, once abstracted,
make up the concept apple.

When the question concerns number, there arr immediate
difficulties. If the child asks, "Why are 'one,' two,' and.
'fifteen,' numbers?", we may at first put one glass, two
spo'ns, and fifteen toothpicks on the table. At some point we
will realize that this procedure is unlikely to work. We may
then have an inspiration: We push everything aside and
arrange toothpicks (or whatever) in lots of one, two, and
fifteen. Now, we feel, it should be obvious. Fortunately,
children rarely pursue the question further. If they did, we
certainly could not tell them what characteristics they have
to abstract in order to form the concept number.

Peano (1893a), at the beginning of his brief essay on the
principles of mathematical logic, observes that names such as
1, 2, 3/4, and /7 are proper nouns, whereas words like number,
polygon, and equilateral refer to classes and are, therTfor
common nouns. That statement is illuminating because it
clearly brings out the difficulty: Individuals have to be
characterized by individual characteristics, classes_ by common
ones. What are these characteristics in the case of one, two,
and three, and what are they in the case of number? Peano was
well aware of that problem:

I numeri che si pzesentano, e con cui
si flrmano tutti gli altri, sono gli interi
e positivi. E la prima questione si e:
possicmo not definire l'unita, it numero, la
somma di due numeri? La definizione commune
di numero, che e 1'Euclidea, "numero e
l'aggregato di piu units," pus servire come
schiarimento, ma non 6 e-Nddisfacente come
definizione. Invero un bambino, a pochi anni
usa le parole uno, due, tre, ecc.; in seguito
adopera la parola numero; solo molto piu tardi
nel suo dizionario com)arisce la parolaa
aggrep.up....Quindi, dal lato pratico la
questione parmi risoluta; ossia, non conviene
in un insegnamento dare alcuna definizione del
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numero, essendo questa idea chiarissima agli
allievi, e ogni definizione non avendo the
l'effetto di confonderla.1 (Peano, 1891b,
pp. 90-91)

He then discusses the theoretical aspect and concludes, "Il
numero non si pub definire" (p. 91); that is, number cannot be
defined.

Peano and those who, after him, joined the effort to
formalize a logical foundation of the number system and
mathematics, were intent upon defining properties and
relationships within the formal system rather than upon an
analysis of how we come to have concepts of unity, plUrality,
and number, whose experiential generation they simply--and,
given their interest, justifiedly--took for granted.
Psychologists and-investigators of the development of
numerical thinking have, as a rule, allowed themselves to be
trapped in these formalistic definitions rather than under-
taking a conceptual analysis. A recent representative example
is Saxe (1979): "As used here, number is a category of
knowledge that is defined by relations of one-to-one
correspondence and order" (p. 74). That statement is much
like saying, "A telegraph pole is a kind of object that is
defined by wire connections to no less than two other things."
Statements like these may be interesting for all sorts of
purposes but can hardly be considered definitions of the
objects in question,

What, then, is a number? Maybe Euclid's "clarification"
is helpful, after all. It became clear, for instance, in the
example of the toothpicks that is is not any characteristic of
the objects that matters, but their arrangement in lots, their
aggregation. But against that, it could be said that, if four
toothpicks are placed one in every corner of the room, they
could still be considered as four. Where, then, is the
aggregation? The answer to that question is both old and

1My translation: The first numbers that present
themselves, and with which all others are formed, are integers
and positive. The first question is: Can we define unity,
number, the sum of two numbers? The usual definition of
number, which is Euclid's "number is the aggregate of several
unities," may serve as clarification but is not satisfactory
as definition. In fact, a child of few years uses the words
one, two, three, etc.; later it uses the word number; only
much later the word aggregate appears in its vocabulary....
Hence, from a practical point of view, the question seems to
me resolved; that is, in the course of instruction it would
not be advisable to give any definition of number, since that
idea is perfectly clear to the students, and any definition
would only have the effect of confusing the idea.
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frequently disregarded. The oldest statement of it that I
have found is also the most elegant and the most convincing.
It comes from Caramuel (1670/1977), Bishop of Vigevano, who
has recently been credited with the first formulation, in the
Western world, of the binary number system:

Un tizio parlava nel sonno, e quando l'orologio
suono le quattro disse: "Uno, uno, uno, uno.
Questiorologin e matto: ha suonatc quattro
ate Puna.'` II tizio, dunque, aveva contato
quattro volte urn colpo, e non quattro colpi.
Ovvero aveva in mente non it quattro, ma l'uno
per quattro volte. Cio dimostra che contare e
considerare piu cose contemporaneamente sono
attivita diverse. Se io infatti avessi nella
mia bibliotheca quattro pendole, e se tutte
suonassero contemporaneamente l'una, no diro
che hanno suonato le quattro, ma che hanno
suonato quattrc volte l'una. Cy.:esta differenza
non e insita nelle cose, non e indipendente
dalle operazioni della mente: dipende anzi
dalla mente di colui che conta. L'intelletto
dunque "fa" i numeri non li "trova"; considera
diverse cose come distinte ciascuna in se L e
come intenzionalmente unite dal pensiero.2
(pp. 43-44)

Berkeley (1706/1708-1930), some 30 years later, made a
note to himself: "Number not without the mind in anything,
because 'tis the mind by considering things as one that makes
complex ideas of them" (p. 24); and Dewey, before the

. beginning of this century, concluded: "Number is a rational
process, not a sense fact" (McLellan & Dewey, 1895/1908,

2My translation: There was a man who talked in his
sleep. When the clock struck the fourth hour, he said: "One,
one, one, o, . That clock must be mad--it has struck one four
times." The man clearly had counted four times one stroke,
not tour strokes. He had in mind, not a four, but a one taken
four times which goes to show that to count and consider
several things contemporaneously are different activities. If
I had four clocks in my library, and all four were to strike
one at the same time, I should not say that they struck four,
but that they struck one four times. This difference is not
inherent in the things, independent of the operations of the
mind. On the contrary, it depends on the mind of him who
counts. The intellect, therefore, does not find numbers but
makes them; it considers different things, each distinct in
i elf, and intentionally unites them in thought.
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p. 23). Thus, there is an active mind that takes distinct
things and unites them by an operation, But that still leaves
the question where the "things" come from or, rather, how the
mind distinguishes things in such a way that it can unite
them. Dewey has every intention of going farther and
specifying operations:

In the simple recognition, for example, of three
things as three the following intellectual
operations are involved: The recognition of
the three objects as formias_one connected whole
or groupthat is, there must be a recognition
of the three things as individuals, and of the
one, thiiiaty, the whole, made up of the three
things. (p. 24)

That is the closest he gets. By using the word "recognition,"
he unwittingly blocks any further operational analysis. To
speak of recognizing the threeness or oneness of things
inevitably implies that threeness and oneness belong to the
things as some kind of perceivable property. That is
unfortunate, because at a later point Dewey again says that
number arises "from certain rational processes in construing,
in defining and relating the material of sense perception"
(p. 35). It is these operations of defining and relating that
need to be specified if there is to be a model of the number
concept.

We have nevertheless come a long way. It seems clear:nJw
that separating and uniting are the crucial activities. There
must be an operation that creates unitary icems that can be
seen as discrete unities, and there must be an operation that
takes several such unities and unites them so that th(y can be
seen as another unity. Hence, the question now is: How do we
come to have a unity or unitary item? The physicist Bridgman
(1961) formulated the same question when he asked: What is
the thing that we count? His answer was that of a
constructivist:

It is obviously not like the objects of common
sense experience--the thing that we count was
not there before we counted it, but we create it
as we go along. It is the acts of creation that
we count. (p. 103)

From a constructivist point of view, then, unity is the
result of an act of creation, an operation carried out by the
subject, not a perceptual property of an object. That may
sound absurd, because it would seem that the subject
establishes the unity of an item on the basis of a particular
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sensory characteristic that makes the item distinguishable
from the experiential background. In fact, it is very likely
that infants first come to attribute "thinghood"3 to items
that are visually easy to discriminate from the field. But,
although sensory signals may well be helpful in the
development of the concept of unitary item or thing, the
operation that actually constitutes such a unity cannot be\
dependent on sensory signals. Even in purely visual
experience, there are examples that illustrate this
distinction. For instance, in looking at the wave line shown
in Figure 1, the subject can alternatively see it a6 one
continuous curve, as-three crests, as two troughs, or as a
multitude of dots. The sensory signals remain the same
throughout, yet they can be organized into different unities.

.....
....

......
. .

. .

Figure 1

0.
0 144,.-..

The wave line, one might object, nevertheless provides some
sensory basis for each of the organizations and, indeed,
determines what organizations are possible. But that, again,
is an illusion. The straight line shown in Figure 2 can be
seen as one piece; but in spite of its perfect sensory
homogeneity, it can also be seen as two halves, three thirds,
or four quarters. And if we work a little harder, we can also
see that there are roughly five inches in it or, with more
practice in the metric system, about 13 centimeters.
Excepting the segment of line, none of these units are
determined by sensory signals, and that fact leads to the
inevitable conclusion that they are the result of some quite
independent operation.

Figure 2

3The expression "thinghood" is intended to designate
merely the unitary separation of an item from the experiential
field, much as in the realms of vision and art a "figure" is
separated from the "ground." This idea must not be confused
with the concept of object permanence, a far more complex
structure that involves both externalization and
representation, neither of which is required in "thinghood."
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The Attentional Component

A unit is that by virtue of which each
ofai things that exist is called one.
(Euclid, Book VII)

If we assume that the operation that creates unitary
itemsis, indeed, independent of sensory signals, it is
tempting to suppose that it involves motion in some way.
Piaget has long maintained that the perception of patterns is
the result of active composition of sensory data by means of
motion. Dividing a line into unitary sections might plausibly
be achieved by movement alternating with pauses, and the same
could be said in the case of the visual perceptkon-of items
such as toothpicks lying on a table. By means of more or less
special additional hypotheses, that idea can even be extended
to situations in which there is no direct perceptual scanning.
There is, however, a considerable body of evidence showing
that figural composition can take place 4ithout any actual eye
or body movement. Kohler (cited in McCulloch, 1951), Lashley
(1951), Pritchard, Heron and Hebb (1960), and Zinchenko and
Vergiles (1972) have independently noted that scanning of the
visual field can take place by the movement of attention when
the field is stabilized on the retina, that is,ierre is
no eye movement. From the theoretical point of view, these
findings are revolutionary. They indicate that a perceiver's
attention can focus on specific parts of the visual field and
shift focus from one part to another, without any correspond-
ing change in the position of the sensory organ or of the
signals in the visual field. Accepting this mobility of the
focus of attention provides, on the one hand, an alternative
to physical motion in the composition or integration of
perceived patterns and, on the other hand, an active agent in
the experiencer's organization of his or her experience.

Instead of tying the generation of unitary items to
movements and pauses in the actual perceptual process, we can
now attempt to account for it by shifting and alternating the
focus of attention. This approach has the immediate advantage
of enabling us to posit one and the same operational procedure
regardless of the item being unitized. In other words, we
know experientially that we can conceptually divide into
several unities, or consider as a single unity, not only any
array of perceptual signals, but also, for instance, last
night's sleep or the rest of our lives. And the same is true
of irnumerable other items that, by their nature, cannot
cont in perceptual signals to guide the unitizing cperation.

The idea that the structure of certain abstract concepts
could be interpreted as patterns of attention was first
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proposed by Ceccato (1962, 1964-1966, 1974). In the pages
that follow, I shall outline a possible application of that
idea to numerical concepts.4

Attention, in this model, is conceived as a pulse-like
activity that picks out, fox further processing, some of the
signals from the more or less continuous multitude of signals
which the organism's nervous system supplies. That is to say,
a single pulse or moment of attention can be, but need not be,
focused on a particular signal. When it is unfocused, it does
not pick out particular signals, but that does not mean that
there are no signals that could have been picked out. On the
other hand, attention can focus on items that are not present
as active sensory-motor signals, but as records of such
signals (or composites of them) that have been "picked out" on
some prior occasion.

It should be clear that I am using the word attention in
a way that is somewhat different from ordinary usage. Ordi-*
nary expressions like "focusing attention on a diagram" or "on
the sunset" are used in situations in which the speaker has
posited such things as a diagram or sunset and an organism
that interacts perceptually with those items. Similarly,
saying that "an organism focuses attention on signals in its
nervous system" has meaning only if it is assumed that
organisms can operate on several levels. There will be a
level of sensation that comprises the generation and
transmission, within the neural network, of sensory-motor
signals. Then there will be the level of attentional activity
where focused pulses pick out particular sensory-motor
signals, while unfocused pulses create discontinuities or
intervals. Finally, there will be a level of records where
the results of the attentional activity can bernairItained in
such a way that they, in turn, can belome the object of
attentional activity.5 In short, attention in my model

4Ceccato's idea of the constitutive role of attention
in the construction of concepts has also recently been
elaborated by Vaccarino (1977), another member of Ceccato's
early study group.

5Such a system of three levels is obviously far too
crude and simple to account for most of the results which a
human organism can produce. There seems to be evidence, for
example, that there must be a level on which sensory-motor
signals are recorded regardless of whether they have, or have
not, been attended to; and the recent work of Hilgard (1974)
indicates that there are several relatively independent levels
of attentional activity.



refers to a selective activity just as it does in ordinary
usage. But in ordinary usage the items which attention
focuses on and selects are things that exist in a reality
outside the attending organism; in my model they are items or
events within the organism.

Given this model that operates on several levels, one can
attempt to map--as a very crude approximation, to be sure--how
a person could come to have something like the "concept" of,
say, an apple. The partial definition of apple I proposed
earlier was composed of a number of characteristics. Some of
them, like taste and smell, would be represented by sensory
signals; shape, size, and texture would be combinations of
visual, tactual, and proprioceptive (motor) signals; weight
would be tactual and proprioceptive; and the characteristic
arrangement of skin, flesh, and core would probably involve
color and other visual, tactual, and proprioceptive signals.
If the subject were to discover in its experiential records
that an aggregate of moments of attention focused on these
specified sensory-motor signals was a recurrent event, the
process of concept formation could be implemented through the
simple extraction of those signals that arc common to all, or
at least most, of the occurrences. In some cases there might
be an obligatory order for some of the signals; in others it
could be just a list. In all cases, however, there would be
one further- condition: Whatever the pattern of sensory-motor
signals involved, it must be such that it constitutes a
consecutive sequence of focused moments of attention; for if
it were not consecutive, if it contained an interval of
unfocused moments, it could never be categorized as a "thing,"
a "whole," or a "unitary item." It is the two moments of
unfocused attention at the beginning and the end that provide
the closure and the cohesion of a unitary item.

Crudely and provisionally, I shall map the conceptual
structure of a perceptual item, like an apple, by the
sequence:

(I I I I ... I) 00
(a b c d ... n)

where "0" designates unfocused moments of attention, "I"
focused moments, and "a, b, c, ... n" different sensory-motor
signals individually picked out by consecutive focused moments
of attention. This map is obviously a crude approximation
because, as mentioned above, even a relatively simple concept
like apple involves substructures in which sensory and motor
elements are combined in specific, characteristic ways. These
substructures could be represented by parentheses or some
other notational device. However, because the main concern
here is the construction of number concepts, I shall disregard
the intricacies of the sensory-motor discrimination of
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different kinds of objects and concentrate, instead, on the
experiential features they must all have in common if they are
to be individuated as unitary items.

What makes the conceptual mapping of a perceptual item
like apple into a unitary item is the attentional pattern that
consists of an unfocused moment, an unspecified sequence of
focused moments, and a terminal unfocused moment. In my
notation, that pattern can be represented as:

0 I I ... I 0

or, minimally, when a single sensory-motor signal
distinguishes an item from other perceptual items:

0 I 0

Though this role of attention is, at present, no more
than an ad hoc assumption, I shall provide arguments in the
next section to show why this assumption seems reasonable end
even plausible.

Abstraction of Numerical Concepts

A number is a multitude composed of
uniti7(Euclid, Book VII)

It is generally assumed that concepts like redness,
softness, sweetness, etc. are derived by abstraction
exper ential situations in which particular sensory signals
recur that eee associated with the respective words. This
process of abstraction is essentially the same as thc one I
have postulated for the generation of concepts like apple. In
all cases the process consists of extracting common elements
from a collection of experiences. Concepts of perceptual
things will be combinations of specific sensory-motor signals
that are recurrently experienced conjunctively and are, in
some sense, detachable from the rest of the experiential
field. Concepts of perceptual 'Nroperties will be derived from
single or multiple sensory-motor signals that are recurrently
experienced as components of perceptual things. The model I
am proposing makes it-possible to construct the concept of
unitary item using the same process of abstraction, but
applied to elements that are not of - sensory -motor origin. I
am suggesting that this concept of unitary item derived by
abstracting the characteristic attentional pattrJrn that is
recurrently experienced as an ecsential "things."

In the case of the four clocks in Caramuel's library, for
instance, each clock could strike a different note--so there
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would be four different sensory signals--but they would still
be considered four single, equivalent unities, because each
one would be experienced with the same attentional pattern,
namely 0 I O. The whole experience could be mapped as

0 I 0 0 I 0 0 I 0 0 I 0
a b c d

where ''a, b, c, d" are the different sensory signals picked
out by focused moments of attention. When only the
attentional pattern is considered and the sensory signals are
disregarded, then each of the strokes is experienced as an
instantiation of one; a succession of "ones" constitutes a
plurality. If there is no initial unfocused moment and no
terminal one that can serve as boundaries and provide closure,
the unit patterns remain individuals connected by nothing but
their contiguity in experience.

This approach at once provides the key to an ambiguity of
which we are always more or less dimly aware: One seems to
refer to two concepts. Their difference becomes apparent when
one is opposed to many and then to two, three, etc. The first
opposition is the same as that between siTar and plural or
between unity and plurality. The second is not an opposition
at all, but merely the difference between one number and other
numbers. Caramuel's insight that "to count and to consider
several things oontemporaneously are different activities" is
uncannily correct. The mere repetition of the attentional
pattern that creates unitary items is not counting but just
establishing a plurality. In order to count, Caramuel says,
"the intellect...considers different things, each distinct in
itself, and intentionally unites them in thought." A
plurality is, indeed, made up of different items, each a
discrete unity separated from the others by two moments of
unfocused attention--one, the terminal moment of the first
item; the other, the initial moment of the next. In order to
unite such discrete items, one has to carry out another
operation that I shall call attentional iteration.

If the concept of unity, in the model, is constituted by
the attentional pattern 0 I 0, the operation of unitizing a
plurality must produce something that corresponds to that
pattern. In other words, it must be analogous to the
operation that encloses a sequence of sens -y-motor signals to
form a unitary perceptual thing. In that oeeration, as
suggested above, a string of different signals, each the focus
of a moment of attention, is bounded by two unfocused moments.
Consider now the following situation: You are in the pantry
facing a shelf on which apples, are stored. Your companion has
asked you to get half a dozen apples but added, "Only red
ones!" This common use of the word one is highly significant.
Having established that you are, inYict, facing a plurality
of complex perceptual unit items that conform to your concept
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of apple, you are now reducing the string of sensory-motor
characteristics that enabled you to identify those unit items
as apples, and you are reconstituting unit items of the
minimal type, that is, items with only one moment of attention
focused on the signal associated with the word red. You are
actually constructing red ones within a plurality of
individual items that you have already categorized as apples.
This reduction can be mapped like this:

0 (I I I ... I) 0
(a b c ... n) / (= apple)

--...

0 (O
I

0) 0 (= one red one)r

where "a, b, c, n" are the sensory-motor signals that
constitute appleness, whereas "r" is the signal that
constitutes redness. (Note that the signal focused on to form
the minimal unit items need not be a criterial signal for the
classification of the perceptual objects.)

In my model, the operation that transforms a plurality
_nto the kind of composite unity that can be considered a
number is once more an analogy of an operation carried out
WiTE-T34rceptual material. Now, however, the reduction
concerns the attentional pattern rather than sensory-motor
signals, but it again requires a reconsideration of what has
already been constructed: The unities that composed the
plurality are reprocessed, not as individual unities, but
simply as an iteration of focused and unfocused' moments of
attention, bounded by unfocuseu moments that provide closure
and produce a composite unity. For example, the transforma-
tion of four ones into a unity of four can be mapped as
follows:

010 010 010 010 (= plurality of four ones)

0 (0101----05T) 0 (= unity of four)

I believe this process of reconsideration is analogous to
the conceptual operations which PiagetTiESEut individually
specifying them, subsumes under the term reflective
abstraction (e.g., Piaget & Inhelder, 1969). Moreover, this
transition from a conceptually unbounded plurality to a unity
composed of unities is precisely what McLellan and Dewey
described by saying: "The child's own activity is conceiving a
whole of parts and relating parts in a definite whole"
(pp. 30-31).

This activity of "relating" has two aspects. First, it
creates a composite, a "whole of parts," by instituting a



relation of similarity, or even equivalence, between separate
items. The items are taken to have something in common.
Though the common element may ultimately be any characteristic
whatever, it is in the child's development initially limited
to the perceptual sphere. It may be the redness of apples,
the figural aspect of toothpicks, or an acoustic feature like
the striking clock. Later, on a higher level of abstraction,
the common element does not have to be perceptual or
sensory-motor but can be supplied by the attentional pattern
that,.within a given context, has made the items into discrete
units, as when we say there are n things on the table. This
aspect of qualitative commonality in the components that are
being related to form a composite whole is, of course, the
link that ties the concept of number to the concept of class.

Second, the activity of "relating" creates a composite
unity by reprocessing separate unitary items, not as separate
items, but only as pulses of focused and unfocused attention
in a simple, alternating iteration that provides a homogeneous
continuity between an initial and a terminal unfocused pulse.
Both this continuity and the qualitative commonality of
components are indicated in my notation by parentheses.

Once such a compound unity has been constructed, it has a
definite numerosity because it is bounded. The fact that
conceptually it has numerosity, however, does not mean that
the specific numerosity has been established or that it has
been counted--but now it can be. And because this possibility
is an inherent feature, ffis this conceptual structure of the
compound unity that is the proper referent of the set, whereas
an unbounded plurality is not. Moreover, the specification of
its numerosity constitutes it as the concept of an individual
cardinal number. We can now map how the attentional patterns
that constitute the individual numbers are derived from
pluralities by attentional iteration and bounding:

O I 0

O I 0 0 I 0

> 0 (0 I 0) 0 named one

> 0 (0 I 0 I 0) 0 named two

O I 0 0 I 0 0 I 0 -> 0 (0 I 0 I 0 I 0) 0 named three

etc.

The analysis I have presented concerns the structure of
the concepts, not the way in which an individual may come to
have them (cf. von Glasersfeld, 1981). Thus, for instance,
awareness of the mutual interconnection of the number concepts
(e.g., that one is "contained" in two, two in three, and so
on), though clearly manifest in the notation, is not a
necessary requirement for possession of the concepts ore, two,
three, etc. Similarly, the semantic. connection between, say,
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the conceptual structure 0(01010)0 and the word two or the
numeral 2 is not a prerequisite for possessing that conceptual
structure; and, conversely, the mere fact that a child can
recite "one, two, three" or even use these words appropriately
in response to certain particular perceptual situations is no
guarantee that the child possesses the numerical concepts that
are necessarily associated with those words in the adult.

The developmental aspects and the theoretical linkage
between this view of number concepts and the various types of
counting that Steffe, Rthhards and v n Glasersfeld (1979;
Note 2) have isolated in children's )ehavior are the subject
of ongoing investigations. In the laining sections of this
paper I shall discuss what has '-. , called the perception of
number, the connections between xamber words and sensory-motor
material.

The Question "How Many?"

The numbers from 1 through 6 are per-
ceptibles; others, only countables.
(McCulloch, 1965)

Any attempt to find out, in a given situation, how many
of something there are implies certain presuppositions:

(a) "How many?" makes sense only when dealing with
unitary items;

(b) The subject must have the belief that, in the
given situation, the unitary items have
numerosity; that is to say, they must be
conceived as a bounded plurality;

(c) The subject must have a conceptual system of
numbers;

(d) The subject must also have a conventional system
of number words to record or communicate the
results arrived at;

(e) Even taking for granted that the conventions
under (d) guarantee a fixed semantic linkage
between individual number words and individual
number concepts, the additional belief is
needed that there is a,reliable method for
establishing univocal links between the number
concepts and the specific numerosities of
perceptual thilgs that are being experienced.
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The first three points have been discussed at some length
in the preceding sections. The fourth was barely suggested in
the table of the numerical progression on page 63 .
Conventional systems of number words and numerals are,
however, the least controversial and best known part of
arithmetic and mathematics, and they have been explicated
innumerable times.

In the context of this paper, I want to stress only two
features of our conventional system of number words. One is
that a more or less extended sequence of number words can be
memorized in exactly the same way as a poem or any other
sequence of words. The other feature sets the sequence of
number words apart from most other conventional word
sequences. It resides in the fact that the number word
sequence can be indefinitely extended, once one has grasped
the system according to which number words are constructed.

The important point here is that neither the rote
memorizing of number words nor knowledge of the system by
means of which they can be constructed is in any way dependent
on the construction of number concepts. That is to say, the
observation that a child produces number words, either singly
or in the conventional order, is no indication whatsoever that
the child has acquired numerical concepts. This point is one
to which I shall return.

The fifth presupposition listed above involves the
problem of establishing links between number words and
experiential things. That problem is far more complex than it
might appear at first sight. Much has been said and written
about the need to create one-to-one correspondences in every
act of counting, and there is little doubt that some such
correspondence is always involved. But it has become equally
clear that the term counting has, until recently, been used
indiscriminately for the processing of item sequences of very
disparate kinds. There are sequences of unitary objects on a
table; sequences of extended or flexed fingers; sequences of
tips, pointing motions, or nods of the head; sequences of
spoken or written numerals; and, last but not least, there are
sequences of imaginary elements that are part of a conceptual
number representation, regardless of whether that
representation is thought to consist of attentional pulses or
of something else. A one-to-one correspondence can be set up
between any two of these sequences, and though the term
counting has traditionally been used for all of them, it is
obvious that they are very different activities and must,
therefore, be distinguished as different types of counting
(Steffe et al., 1979; Note 2).

Establishing one-to-one correspondences, though it may
involve perceptual processes, is not a direct perception of
number, but an activity aimed at the determination of a



specific numerosity. Hence, I shall leave aside the various
activities or operations that can be considered counting and,
instead, turn to those circumstances in which numbers or
numerosities appear to be perceptibles.

There are two particular ways of perceiving numerosity:
First, the perceptual assessment of uncounted but physically
circumscribed pluralities (called gross quantity by Piaget &
Szemins 1941/1967); second, the perceptual recognition of
visual pa erns that are thought to embody a specific small
numerosity alled subitizing bl Kaufman et al., 1949).

Intuition of Quantity

Throughout their classic work on the genesis of number in
the child, Piaget and Szeminska (1941/1967) discriminate two
different ways of arriving at, or construing, quantitative
judgments and, therefore, two different concepts of quantity.
On the one hand, there is the concept of intensive quantity,
comprising all judgments of gross quantity ( quantit brute)
that are derived directly from the intuitive evaluation of
some sensory-motor activity. On the other hand, there is the
concept of extensive quantity, comprising all judgments based
on a compositional activity in wkici the resulting quantity
conceived as a summation of more or less constant parts. Vie
Genevans hypothesized these two processes and conjectured
their developmental raction because it enabled them to
construct a coherent .1 for the interpretation of their
observations. It was years later that research in perception
hit upon the idea that in the vertebrate visual system there
are, indeed, two physiologically different and functionally
relatively independent processes of perception. They were
then described in these terms:

On 1.he one hand, we all acknowledged
important capacity to recognize and to distin-
guish among objects on the basis of their
shapes and motions. But, on the other hand,
vie each had our own reasons for believing
that the ability to orient to these objects,
or otherwise relate movement of the body to
their loci in space, was an %independent
capacity. (Held et al., 1967, p. 42)

Trevarthen (1967) calls the two functions focal and
ambient and says of the first that it consists 7OTresolving
detail of f rm subtending fractions of a minute of arc and is
sensitive to the very slightest difference in position,
orientation, luminance or hue" (p. 328). This mode of
functioning clearly fits the perceptual component in the
phenomenon of subitizing. Of the other function, Trevarthen
says that it continuously maps the behavioral space around the
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body, is 'driven by locomotion or turning the head," and that
angular Velocities ranging'from about 10 per second to about

100 times this are maasured and compared in this process'
(p. 328). Thus, ambient vision apprehends distance, size, and
relative proportions of objects and derives quantitative
judgments about them from the movements the organism carries
out in the process of pere34-.ing, not by unitizing the
perceived object. This mode of visual functioning admirably
fits Piaget's conception of gross quantity, and since it
involves proprioceptive rather than perceptual signals, it is
not surprising that i.s results have often been called
intuitive.6

One further step has to be taken. There are occasions
when one makes a judgment about gross quantity that does not
seem derivable from motor signals. Let us say you walk down a
long corridor, look out throuch a window at the beginning, and
see some trees kplurality). Then, way down the corridor
through another window, you again see trees. You have not
counted the trees either time nor in any way estimated their
numerosity. Yet, you would be willing and able to judge,
within certain limits of accuracy, whether you saw more,
fewer, or roughly the same number of trees through one window
as through the other. The actual signals (from locomotion and
scanning) are exactly the same both times. Ycur judgment must
therefore be based on something else. I propo3e that it is
based on awareness of the appropriate frequency of attentional
unit-patterns executed in the visual context of each window.
The comparison that has to be made to decide the question of
more or fewer trees does not'concern numbers but rather the
intuitive assessment of the two frequencies. The awareness of
the frequencies of unitary items constructed is analogous to
an awareness of muscular effort in perceptual activity, except
that it is now attentional effort.

This addition provides the possibility of conceptually
distinguishing 'gross numerosity from gross continuous
quantity, since the first can now be derived from the
attentional construction of plurality; the second, from the
motor activity involved in a perceptual process. Hence, the
notion of gross numerosity should be interpreted as a
supplement to, not a contradiction of, Piaget's gross
quantity.?

6Particularly convincing confirmation of the assump-
tion of different visual processes comes from the work on
visual adaptation by Mikaelian and Held (1964) and Malatesta
and Mikaelian (Note 1).

?The concept of gross numerosity is also useful in the
interpretation of certain intermediary phenomena in the
child's transition from judgments of gross quantity to the
conservation of number in linear.arrays of varied extension.
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Perception of Small Lots

In the paper in which Kaufman et al. (1949) coined the
term subitizing for the spontaneous attribution of number
words to arrangements of up to six stimulus dots, they
contrasted the new term with estimating, which they reserve
for the quantitative assessment, but not counting, of more
numerous arrangements. They introduced the distinction
because results of their own experiments, as well, as of
earlier ones, showed a sharp deterioration of subjects' speed,
accuracy, and confidence of response when faced with more than
six items. This phenomenon led the authors to postulate two
different mechanisms fk.r the visual discrimination of
numerousness. They stress that this postulate was based
exclusively on their functional findings and they add,
somewhat regretfully, that while

the duplexity theory of vision presents an
example of a neat relation between functional
and anatomical findings, there is no such
relation in numerousness; we do not know of
separate organs or pathways for subitizing
on the one hand and estimating on the other.
(p. 523)

The reason that subitizing and estimating were not
associated with different visual processes by these
authors--or by others who later investigated the same
phenomena--is, I would argue, that number was always
considered a property of the stimulus and its perception an
event in which the perceiver played a passive/receptive rather
than an active/constructive role.

If, instead, one assumes a constructivist point of view,
two different visual processes can immediately be linked to
the two different kinds of numerical response. I have
elaborated the connection between ambient vision and the
intuitive estimation of gross numerosity in the last section.
It remains to be shown that there is also a connection between
focal vision and subitizing. In order to do that, we shall
have to examine more closely what actually goes on in the
situations in which subitizing has been observed.

Beckwith and Restle (1966) surveyed the older literature
on what they call "the immediate apprehension of number"
(p. 438). The studies they reviewed range from 1897 to 1961.
Nearly all used arrangements of dots as stimuli and found that
subjects' responses reliably indicated that arrangements of
more than five or six dots were processed differently than
smaller numbers of dots. Subsequent to that review,
Schaeffer, Eggleston and Scott (1974) speak of "pattern
recognition of small numbers" (p. 358); and Gelman and
Gallistel (1978), wto agree that "young children accurately
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abstract the numerosity of small sets but rapidly lose
accuracy as set size becomes greater than four or five"

67), believe that there is "evidence that number
representations are first obtained by counting rather than ...)y
subitizing" (p. 69). Yet, two pages later, these last authors
concede that "perhaps at some stage children do subitize
numerosity without being able to count" (pp. 71-72).

There are, then, a good many investigators who have
observed something that seems to fit their various definitions
of subitizing. All of these definitions can, in fact, be
reduced to the one given at the beginning of this section,
that is, the spontaneous attribution of a number word to,a
small lot of perceptual items. This formulation has the
advantage that it involves neither the concept of number nor
that of numerosity. It refers only to the association of
number words and specific perceptual items, and that, I
'elieve, is all that could actually be inferred from the
...periments in question. I am, of course, not suggesting that
the adult subjects of Kaufman et al. or Beckwith and Restle
did not have concepts of numbers and numerosity; but I am
suggesting that these concepts were not required by the tasks
set in the experiments and could, therefore, not be inferred
from the subjects' performance. Where adults are concerned,
however, that may be considered irrelevant. They admittedly
possess numerical concepts, and the question of whether or not
they use them in subitizing is at best of minor theoretical
interest. But since subitizing has been ascribed to young
children and is persistently linked with numerical concepts
and not merely with number words, a further analysis may,
indeed, prove wortwhile.

. Number words, like other words, can be learned qua vocal
products long before the concepts have been formed that will
later be associated with them as their meaning. Brownell
(1928), for instance, referring to children of preschool age,
placea knowledge of some numerals at "the earliest beginnings
of number knowledge" (p. 1), and Piaget and Szeminska
(1941/1967) stress that "the verbal numeration which the
social milieu at times imposes on the child at the earliest
stage (i.e., any time before the age of 4-5 years) remains
entirely verbal and without operational significance" (p. 48).

observation has been corroborated by many more recent
studies (e.g., Ginsburg, 1977; Pollio & Whitacre, 1970; and
Potter & Levy, 1968).

By the time children learn to say the first few number
words, they have long since acquired relatively fixed habits
concerning the segmentation of their perceptual fields. There
is massive evidence from many different investigations that
children learn to discriminate and retain certain viLual
shapes early during their first year (e.g., Bower, 1966;
Fantz, 1961/1972; Piaget, 1937; Yendovitskaya, Zinchenko &
Ruzskaya, 1974). Children can construct and retain unitary



items; they recognize recurrent visual patterns and have at
least summary representations of the figural composites, as
well as of a great many "permanent objects" (Piaget, 1937);
and they can complete or reconstruct whole figures from
partial perceptual material. They are also rapidly expanding
their linguistic ability and are constantly forming new
semantic associations between thing-representations and
word-representations.

A three-year-old whose parents have provided a set of
wooden or plastic block capitals and numerals and have
ocnasionally used the names of these objects--e.g., "Give me
the A," "There is the three," "That's the five, not the
S"--will have formed quite stable semantic links between some
of the number words and the figural representations of the
corresponding numerals. These figural representations of the
numerals will thus be linked to the acoustic representations
of the words one, two, three, etc., in exactly the same way as
figural representatians-6Tthe words spoon, ball, and
pineapple. That is to say, there is as yet no abstract number
concept nor anything properly numerical associated with the
number words.

Similarly, a child who has been given dominoes or dice to
play with soon come to associate particular figural dot
patterns with the words three, four, five, etc., without any
conception of number or numerosT One could say that in
these cases the numeral is "apprehended," "recognized," and
"perceived" as a sensory-motor object and not at all as a
symbol that means a numerical concept. That point can be
substantiated by the fact that the recognition of numeral
patterns as objects rather than as symbols is by no means
restricted to children. Bridge and poker players immediately
recognize playing cards as twos, threes, sevens, etc. (see
Figure 3); but in spite of the number words associated with
them, the patterns on the cards do not represent numerosities
in the context of bridge or poker. They function as ordinals,
and therefore a two and a three cannot be added to form a
five, nor would it make sense to say that a seven is more than
two threes.

This recognition of playing cards is also a strong
argument against the assumption that subitizing means "to
abstract the numerosity of small sets" (Gelman & Gallistel,
1978, p. 67) or involves an "operator used to quantify small
collections" (Klahr & Wallace, 1973, p. 304). Klaht and
Wallace (1976) have presented a revised version of their
"information processing" analysis of subitizing, but their
basic position does not seem changed: Unities, pluralities,
and numerosities are still considered "information" that comes
ready-made from the stimulus into the perceiving organism,
whose "processing" consists of coding and recoding it.
Numerosities or quantification have nothing to do with the



Figure 3'

An experienced card player immediately recognizes the
partially exposed cards and can say their names, which, of
course, are number words. The card player sees parts of five
diamond designs and says, "seven"; sees two club desighs and
says, "three"; and for the partially visible five spade
designs says, "ten." The player certainly does not perceive
the numerosities associated with the number words uttered.
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association of a specific number word with a specific figural
pattern, and, what is more, as Figure 3 demonstrates, the
perceptual stimulus does not even need to be an instantiation
of the numerosity associated with the number word attributed
to it. In other words, we can recognize a visual pattern as a
"ten" in spite of the fact that, if we count what we see, we
cannot get ten as the result. Thus Schaeffer, Eggleston and
Scott (1974) come much closer to the mark when they suggest
that children between 2 and 3-1/2 years .

can probably learn to recognize by sight the
patterns formed by the small numbers. An
array of one is a dot, an array of two forms
a straight line, an array of three usually
forms a triangle, and an array of four
usually forms a quadrilateral. (p. 371)

Even children who do not play with cards, dice, or
dominoes have ample opportunity to associate the first few
number words with perceptual patterns and hence with figural
representations. Some of these associations will turn out to
be more useful than others and will, therefore, be
strengthened and become relatively permanent as the basis of
adult subitizing. To my knowledge, Brownell (1928) did the
only study that was extensive enough to throw some light on
the question of which patterns are most frequently associated
with a particular number word. But Brownell believed that
numerosity is inherent in stimulus patterns and he merely
wanted to find out whether or not the "apprehension of visual
concrete number" (p. 3) becomes more difficult as the
numerosity increases. Hence he deliberately mixed patterns
and even criticized Howell (1914) for having used only one
type of "number picture." Both Howell and Brownell, however,
provide some confirmation that the patterns mentioned in the
passage quoted above from Schaeffer et al. are used more often
than, others.

An investigation to establish which patterns are most
frequently associated with a particular number word would,
however, have only an indirect connection with the study of
numerical concepts and their development. This indirect
connection arises in that a subject wUo already possesses a
concept of the numerosity designated by four can, and does,
attribute that numerosity to any figural pattern that becomes
associated with the number word four. But, to reiterate, such
attribution of numerosity takes place after the visual signals
have been unitized to form the pattern associated with the
number word, and it is not the perceptual process that
constitutes the numerosity.
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The observations and experiments reported in the
literature on subitizing do not justify the assumption implied
in the stated definitions of the phenomenon. Subitizinci is
most appropriately defined as the attribution a numerals to
small lots, becEJse the phenomenon neither requires nor
provides a conception of numerosity in the subitizer. The
subitizer may, of course, interpret the subitized result
numerically on the strength of specific numerosities otherwise
associated with the number words, but that interpretation is
not part of the subitizing activity. This view is
substantiated by the fact that behavioral phenomena very
similar to subitizing have been observed in nonhuman primates
and can be explained on the basis of perceptual and asso-
ciational mechanisms (e.g., Ferster, 1964; Rohles & Devine,
1966, 1967).

How concepts of numerosity are acquired by the child is a
question beyond the scope of this paper. The various activi-
ties that go under the name of counting, the differences among
them, and the elements they have in common will undoubtedly be
among the main building blocks in a theory of that develop-
ment. There is, however, one other area that could yield
valuable insights, though developmentally it precedes the
formation of numerical concepts by as much as several years,
namely, the sensory-motor coordinations that the infant
constructs during the first efforts to organize spontaneous
motor acts. An infant playing with blocks, for instance, may
come to discriminate a one-block percept from a two-block
percept by the sensory-motor difference that the one requires
one hand, the other both hands, whenever the goal is to
displace the blocks or to pick them up. Analogous differences
in the required motor activity would crop up and could be
registered in the case of three-block and four-block percepts,
once repetition of movements, especially rhythmical movements,
have become part of the motoric repertoire. One hand, one
block; two hands, two blocks; two hands twice, four blocks;
and so on, constitutes a sensory-motor precedent of one-to-one
coordination that could well serve as a starting point for the
development, via pointing and head nodding, of the fully
abstracted coordinations necessary for later numerical
operations (cf. von Glasersfeld, 1981).

Summary

After a cursory justification of the constructivist
approach, three points concerning the epistemological status
of theoretical models of cognitive development were outlined.
First, while conceptual structures are always hypothetical, a
double hypothesis is involved whenever an observer attributes
conceptual structures to others; for whatever others do or say
is inevitably interpreted in terms of constructs derived from,
and applied to, the observer's own experience. Second,
explanatory models concerning the unobservable internal
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functioning of living organisms should never be understood as
descriptions of what "really" goes on in the organisms, but
merely as hypothetical mechanisms that would yield similar
results under similar circumstances. As such, the
cognitivist's models have the same theoretical status as the
conceptual models of physics. Third, when constructing models
of cognitive development, it must be remembered that the child
may do all sorts of things in his or her mind that are no
longer conceivable to the adult. This, of course, will not,
and should not, stop anyone from modeling the child's
conceptual activities--but before embarking on that task, we
must at least have some fairly well-defined model of our own
concepts.

An examination of the concepts of number, unity, and
numerosity shows that these concepts cannot be satisfactorily
derived from perceptual material. Instead, I propose that
they are the result of an active attentional pulse analogous
to, but not identical with, the well-established theory that
the perception of shapes and patterns is the result of the
perceiver's actions in the perceptual process rather than of
properties of the sensory signals.

With regard to the perception of number, the fact is
emphasized that number words and their systematic production
can be learned without any involvement of numerical concepts.
Two phenomena are then discussed that have frequently obscured
the relative independence of number words, numerals, numerical
concepts, and perception. One is the intuitive apprehension
of quantity, the other the activity called suoitizing.

I argue that, while intuitive judgments of quantity of
the continuous type are based on ar evaluation of perceptual
work, as Piaget has maintained, intuitive judgments of gross
numerosity'(i.e., a quantity consisting of unities) are based
on an evaluation of the attentional effort.

Subitizing is more appropriately characterized as an
associative attribution of number words to figural patterns
than as an activity that involves numerical concepts. The
child who responds "three" to a stimulus of dots, apples, or
cookies provides evidence of an association between that
number word and a figural pattern, but not a concept of
numerosity. In an older subject, the numerosity is associated
with the number word or numeral and is attributed to a
percept, once that percept has been recognized as one of the
patterns associated with the word three.

In conclusion, I would add that in this paper I have
persistently (and, I hope, consistently) argued for what I
believe to be a fundamental paradigm in this branch of
research: Any assumption that unitary items or numbers
"exist" prior to, or independent of, the experiencer's
activity is simply a way of burying the question of how the
experiencer might come to have such concepts.
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Reaction

to

THE CONCEPTION AND PERCEPTION OF NUMBER

Sigrid Wagner
Department of Mathematics Education

University of Georgia

Professor von Glasersfeld's application of Ceccato's
attentional model to numerical concepts surely (.1ualifies as a
landmark development in furthering our understanding of
children's acquisition of early number concepts, His
contribution will not be diminished in the least by noting
certain points that need to be clarified and certain aspects
that are not addressed by his model.

Because the radical constructivist philosophy is so
fundamental to Professor von Glasersfeld's perspective on
learning and, consequently, intrinsic to his model, it is only
fair that I try to identify my own epist .1ological philosophy
in order to put my remarks into their p.: :.per context.
"Radical eclectic" is about as close as I can get. That is,
in the contrast between constructivm and realism, I am torn
by two competing phenomena: On the kae hand, the difficulty
that human beings have in communica,:'1g on any but the most
superficial level provides clear ev, .ance that rdividuals do
indeed construct their own cor-epts their own subjective
reality; on the other hand, it has to be more than coincidence
that almost everybody behaves much of the time as though they
were operating with remarkably similar concepts and princi-
ples, ideas that seem to reflect some objective reality.

This re&list-constructiviSt k1nd of binocular perspective
can induce parallax when viewing things at close range. m
comments that follow should be interpreted with that caveac in
mind.

The Conception of Number

children construct a concept of (cardinal) number in
several distinct steps, as Professor von Clasersfeld points
out. First, they seem to notice the distinction between one
and more than one,. probably before they have the linguist1C-
capacity to label either case. Next, they begin to associate
number names with small sets, just as they associate color
names with objects. This ability to subitize numbers is
initially limited-to numbers less than six and seems to appear
in the order two, one, three, four, fiv'?. As a third step in
constructing number, children learn to count and thereby
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acquire a procedure for determining a number name to associate
with a set whose cardinality is beyond the subitizing range.
Finally, they develop the notion of gross quantity, an
estimation that may be based on a variety of factors, such
as density, area, time, or loudness. In this paper Professor
von Glasersfeld applies the attentional model to only the
first two of these steps in detail. He discusses the
construction of the general concepts of unity and plurality,
and he considers the construction of the specific number
concepts one, two, three, ....

He begins by comparing the concept of number to the
concept of apple in order to highlight the difficulty (i.e.,
impossibility) of illustrating concepts that are properties of
sets of objects (number) in the way that concepts of objects
themselves (apple) can be illustrated. His examp'.e of apple
'is helpful later in describing the concepts of unity and
plurality as seen from the perspective of the attentional
model. However, stretching the analogy tO the point of
equivalence classes is not particularly nelpful, because
children develop a concept of number by first understanding
equivalence classes (one, two, three, ...), whereas they
refine their concept of apple by later identifying equivalence
classes (Pippins, Winesap, Golden Delicious, ...).

It might have been instructive to consider the concept of
color at some point. As a property of objects, color is
somewhere intermediate between apple and number. Moreover,
children begin to develop the concepts of color and number at
about the same time and via the same equivalence class route
(red, blue, green, ...; one; twc, three, ...). That is, they
develop a concept of color by learTETto associate_ specific
color names with appropriate objects; they develop a concept
of number, at least in part, by learning to associate specific
number names with appropriate (small) collections of objects,
apparently long before they learn to count.

The Attentional Model

The c ample of Caramuel's striking clocks is absolutely
enchantingwhat a perfect illustration of the quintessence of
number! How, indeed, do children learn to identify separate
unitary items and then reunite them into sets according to the
conventions of their culture? How is it that everyone who
reads the Caramuel story sees the same anomaly? Admittedly,
these questions reflect a realist's view of the world, as do
my questions about the attentional model.

Separating. Professor von Glasersfeld identifies
separating and uniting as the crucial activities in creating
countable sets of items. He partially motivates his
attentional model by claiming that the operation of
separating, which creates unitary items, is completely



independent of sensory or proprioceptive signals. He supports
his contention by ,siting the example of a homogeneous line
segment which, he claims, can be regarded as two halves, three
thirds, four quarters, etc. I would say, yes, a person with
very sophisticated notions of,number can "see" the line
segment as two halves, in the sense that one whole is
equivalent to two halves, but, in this regard, the line
segment is incidental to the abstract number property 1 = 2/2.
That is, a person who already knows this number property can
think of anything--any whole--as two halves in this same
sense.

Furthermore, the act of separating a whole into two
countable halves is not an example of the kind of separating
into unit items that is pertinent to an early concept of
number. Mentally dividing a whole into an arbitrary number of
pieces and then reuniting them into a countable plurality
reduces the whole to a "set" with which any cardinal number at
all could be associated. The important question is how
children construct a concept of number that enables them to
associate the same (unique) cardinal number with a given set,
as :4veryone else does.

Since early number concepts are developed in situations
that involve sensory signals, proprioceptive signals, passage
of time, and the like, it is extremely difficult to argue that
the act of separating into unit items is independent of these
influences. Mor'eover, it does not seem particularly impor-
tant, except perhaps to the constructivist perspective, to try
to make this argument. On the contrary, the possibility of
dialectical interaction between the child's mental constructs
and the sensory signals derived from a "real world" may help
explain the two remaining points I would like to raise
relative to the model.

First, what is a "moment of attention"? Professor von
Glasersfeld leaves the word moment undefined. This omission
would not be so disquieting were not for the fact that the
term moment carries a connotation of elapsed time. This
connoT interferes with the model in two respects: (a) in
the case of subitizing, it is not clear that there are
unfocused "moments" of attention to separate the items; (b) in
most other circumstances, the element of time is critical and
must be considered explicitly. Using the word moment to
categorize intervals of time that vary widely across, and
within, situations is either too simplistic or else so
distracting its connotation that It subverts the intent of
the model. De eting the word moment and referring simply to
focus of atten ion might permit essentially the same
description without confounding the time factor.

Uniting. Except for the usage of the word moment, I

think the attentional model describes rather nicely the
operation of separating sensory unit items. However, the



operation of uniting may actually be the more critical
activity in developing the concept of number. Certainly in
the case of the clock "striking one" four times, it was the
uniting operation that went awry. How do children learn to
put boundaries on sets in conventional ways?

If the .eration of uniting is a process of attentional
iteration, as Professor von Glasersfeld suggests, then uniting
unitary items into a set is essentially the process of
separating sets, and it follows that there is, in a sense,
only one operation, not two.

Regardless of whether uniting is considered to be uniting
objects or separating sets, the model seems less adequate for
describing this process than it does for describing the
separation of sensory unit items. Its weakness in describing
uniting stems largely from its failure to account for two
critical factors: time and the novelty of situations.
Ignoring the time factor in separating objects can be excused
on the basis that the passage of time contributes tc the
separating _process; ignoring the time factor in uniting
objects cannot be readily excused because the passage of time
interferes with the uniting process, as the example of the
clock so "strikingly" illustrates. Accounting for the novelty
of situations is also important: Children's ability to
identify conventionally defined sets that are continually
novel is as remarkable as their ability to produce grammatical
sentences that are continually novel.

The Perception of Number

One aspect of Professor von Glasersfeld's paper that
needs to be clarified is the discussion of subitizing. For
example, does subitizing depend upon familiar figural
patterns? The examples of plying cards, dice, and dominoes
seem to suggest that it does, but observations of very young
chldren's ability to associate number names with arbitrary
small sets of objects, apparently without counting, seem to
suggest that subitizing does nr,c .:1,3oend on familiar patterns.
Also, is the identification of a familic1,- pattern, upon seeing
only a portion of it, the sam! process as su:hitizing? Again,
the playing card example suggests that it is, whereas an
analysis of the factors involved suggests that pattern
identification is not the same process as subitizing.
Finally, is it subitizing that provides the basis for the
beginning abstraction of numerical concepts? The description
of number concepts in terms of the attentional model seems to
refer to subitizing, as suggested by the logical development
from unity (apple) to plurality (red ones) to cardinal number
(four). In the end, however, the relatioaship between the
conception of number, as described by the model, and the
perception of number, in the case of subitizing, is left for
the reader to infer.
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Now, I realize that many of my comments and questions
relate to "how" ch_'dren develop the concept of number, and
Professor von Gla8(rsfeld disclaims any intention of
addressing that issue. Nevertheless, it is the "how"
questions that are ultimately of most interest to mathe-
matics educators. Perhaps the new perspective provided by the
attentional model will eventually facilitate the formulation
of answers to these questions.



COGNITIVE MICROANALYSIS: AN APPROACH TO ANALYZING
INTUITIVE MATHEMATICAL REASONING PROCESSES

John Clement
Department of Physics and Astronomy

University of Massachusetts, Amherst

This paper is divided into five main sections: an
introduction to the methodology of cognitive microanalysis,
observations from the protocol of a third-grader's word
problem solution, a *detailed model of the subject's cognitive
processes, a revised model, and conclusions and implications.
A point of departure for the study is Piaget's theory of
cognitive functioning based on action-oriented schemes,
assimilation, accommodation, disequilibrium, and symbolization
processes. Because of the magnitude of the task of
constructing a general theory of intellectual development,
Piaget tended to focus his attention on long-term
developmental processes rather than on,the details of mental
functioning during problem solving in everyday contexts. The
present paper represents an attempt to narrow this gap by
illustrating an approach to the study of cognition which I
will call cognitive microanalysis. A major purpose of the
Paper is to assemble an adequate set of concepts as well as a
diagramming system for describing certain intuitive reasoning,
processes. To do this it will be necessary to refine the
meaning of the Piagetian concepts mentioned above and to draw
on other theoretical concepts as -well, such as hill-climbing,
recursion, ana internalized actions on images. The analysis
will be restricted to a single protocol in order to give as
detailed an example as possible. Additional protocol data
which are analyzed using the same. theoretical approach are
described in Clement (1977).

The protocol analyzed here is that of an eight-year-old
student working on a division word problem about sharing some
objects. The analysis models the child's reasoning in terms
of action-oriented cognitive structures that remain active in
parallel. over a period of time. Reasoning processes in this
model do not take the form of manipulation of internal

I am grateful to Jack Easley and Howard Peelle for their
advice and to Elliot Soloway, Eric Hamilton, Jack Lochhead,
and Pat Thompson for their comments on an earlier draft of
this manuscript.
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statements according to the rules of a formal logic.
Reasoning takes place when schemes coordinate to form action
sequences that were not specified by a predetermined
procedure. A method of diagramming is used that allows the
tracking of such processes as they occur over time. The
analysis is therefore an extension of Piaget's attempt to
provide a theory of thinking based primarily on the
coordination of actions and only secondarily on the
manipulation of verbal symbols. However, the concepts used
here are related to concepts found in both Piagetian and
information processing theories of cognition. Thus the paper
also suggests a framework within which these theories might
fruitfully interact.

Still another purpose 'f this paper is to develop models
of intuitive reasoning processes that are grounded in clinical
observations of behavior, rather than in a prior analysis of
the subject area'. It is assumed here that the logical
exposition of a certain area of mathematics is not necessarily
identical in form to the knowledge structures children can
develop most easily. If the teacher'.; role is to faciMtate a
process of knowledge construction that takes into account the
ideas children bring to school, then it becomes important for
educators to know something about the intuitive conceptions
children construct. Children's-intuitive understanding may be
concrete, practical, or inconsistent, where the discipline is
abstract, logical, and consistent. Constructivists assume
that certain ideas children construct may never have been
identified before. This assumption stems from a recognition
of each individual child's creative potential and from the
Piagetian position that children construct ideas partially on
their own. The exploratory clinical interview is then a
search for the authentic ideas of the child, whether or not
those ideas fit into the mold of standard mathematics. The
present analysis will identify practical, action-oriented
Conceptions used by the subject and will raise the question of
whether such intuitive conceptions might be tapped as starting
points for building mathematical ideas in the classi-oom.

Methodology of Cognitive Microanalysis

Methodology and diagramming techniques related to
cognitive microanalysis have been discussed by Clement (1977,
1979), Driver (1973), Easley (1974), Knifong (1971), and Witz
and Easley (1978). A related, but somewhat different,
approach to protocol analysis is described by Newell and Simon
(1972).

Characteristics of cognitive microanalysis. Cognitive
microanalysis iF; marked by several characteristics:

(a) The basic experimental tool is the taped clinical
interview in which subjects are encouraged to think
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aloud while solving a problem, giving an explana-
tion, or playing spontaneously;

(b) The investigator avoids specifying predefined
response categories and avoids experimental
situations which greatly restrict the range of
possible responses; the subject is encouraged to
give creative and natural responses in relatively
unstructured problem-solving interviews; observa-
tions of unorthodox responses are valued as clues
to the structure of intuitive conceptions;

(c) The investigator avoids making prior assumptions
about the form or functioning of a child's cognitive
structures; instead, the investigator attempts to
construct a model of structures during intensive
observation of the child's spontaneous behavior;

(d) The investigator strives in this way to map out
conceptions as they exist in the child rather than
to test the degree to which the child's conceptions
conform to those of an adult.

Many scientific thecries attain a significant part of
their explanatory power from the use of visualizable models
such as molecules, waves, fluids in circuits, etc. (Hesse,
1966). In cognitive microanalysis, diagrams are an important
tool for representing visualizable models of cognitive
processes. Diagrams will be used in this paper to:

(a) Model the cognitive structures used by the child;

(b) Model the child's reasoning by mapping the inter-
action of cognitive structures during the interview;

(c) Exhibit explicit ties between theorized cognitive
structures and the protocol observations they
account for.

The protocol analysis comprising the main body of this
paper is divided into two sections: a section describing
observations derived from the protocol and a section
describing a model of cognitive processes which can account
for these observations. These two separate sections reflect
another important characteristic of the method, the attempt to
separate observations from theory as clearly as possible,
i.e., the attempt to separate descriptions of external
behavior from models of internal cognitive events.

Observations from a Problem-Solving Protocol

This protocol is from an eight-year-old student (referred
to here as David) who solved a word problem about sharing
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some objects. At the time of the interview David was in the
third month of third grade and lived in a working class
district of a middle-sized town in midwestern United States.
His teacher characterized his general level of mathematical
performance as well above average. He had not yet studied
multiplication or division in school.

Figure 1. David's completed drawing.
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David's Protocol. The subject's completed drawing is
shown in Figure 1. Arrows indicate points in the transcript
corresponding to stages in the drawing.

Section A

1. David: (Reads the problem) "Jim and his 4 friends found
a green paper bag about 2 feet from a rabbit hole.,

2. Inside they found 15 green stones.

3. They want to share them equally.

4. How many green stones should each one get?"

5. Oh no --

6. Investigator: Tough?

7. D: Uh-huh

8. I: How can we start on it?

9. D: 15 green stones--(draws 15 circles in rows of 3, and
a 16th, recounts them and crosses out the 16th).

10. OK, now we want to divide it by 4.

11. I: What does that mean?

12. D: Here's one sack--little
can (draws a square),
another, another, another
(draws 3 more squares).

13. OK, one for each--1,2,3,4,
(draws small circle in each
square).

14. OK, 4 are gone (crosses off
4 circles in center group).

15. Now--we divide 4 more--1,
oops, 2,3,4 (draws small
circle in each square).

16. (Crosses off 4 more circles
in center).

17. Now we divide this by 4 more
(adds circle to each square).

18. Everybody's got 3.

19. (Crosses off 4 circles in center).
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Section B

20. D: And there's 3 more!
[concerned tone]

21: I: What's wrong?

22. D: Cut one in half, put it in here
and here (draws a circle in 2 of
the 4 squares).

23. I: And this is another half?

24. D: Cut this in half [referring to second circle in
fifth row of central group] and here, and here
(draws a circle in each of the remaining 2 squares).

25. I: Now, what are those you just put here [the last
piece of stone put in each box], are these whole
stones?

26. D: Half--half stones. \

27. I: Let's blacken those in so we know they're-halves.

28. Are there any more?

29. D: (Blackens half circles in the 4 squares).

30. (Draws vertical lines through 2 of the 3 circus
remaining uncrossed in center).

31.. There's just one more.

32. So we'll put little chunks of,,
that one in each box (puts a
dot in each square, puts two
crossed lines on last circle
in center).

Section C

33. I: OK, how big are the little
chunks?

34. D: Little--like chunk, chunk,
chunk.

35. I: Could you draw that last stone
down at the bottom--make a big
--great big thing for the last
stone--show me how you--
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36. D: 1,--2,3,--1,2,3,--4 chunks- -
divided (draws a large circle,
divides it into 4 parts with
vertical lines, puts a dot in
each part).

37. I: What can we call those chunks?

38. D: I don't know.

39. I: A half of a stone?

40. D: Uh-huh--half of half of half of a stone.

41. I: A half of a half of 0 stone? What does that mean?

42. D: I don't know. Half of a half of a half of a stone.

43. I: fall of a half of a half of a stone--is that what
they get?

44. D: I don't know.

45. I: Is there any way to write what you did with numbers?

46. D: I don't know.

47. I: That was a rough one, huh?

48. D: Yeah, I think I needed bigger cans.

David's solution was precocious in the sense that he
solved a story problem ordinarily thought of as a division
problem even though he had not had multiplication or division
in school. David's intuitive solution illustrates an
important finding: In solving story problems, students do not
always formulate an arithmetic problem to be solved. David,
for example, seemed to "act out" the solution instead.

The problem David was given contains some extra
information, stating that the stones to be shared were found
"about 2 feet away from a rabbit hole." David successfully
ignored this information, but, a* might be expected, he
interpreted the text as desjgnating a total of 4 people
sharing the stones instead of the 5 people described in the
problem. It is not clear why he used 4 people, but one
explanation could be that David may have been in the habit of
always using the printed numerals as they appear in story
problems in school. This demonstrates that a story problem
cannot be assumed to be a neutral, standard stimulus for all
subjects. The subject's perception of the problem will depend
on the form of the structures in the subject that assimilate
the problem. Analysis can proceed, however, on the assumption
that David was solving a problem involving four people.
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Overview of the protocol. In Section A of the
transcript,.David read the problem and immediately drew a
group of 15 circles, then saw his error and crossed out the
last one. This group of circles will be referred to as the
source group. He then drew 4 squares which he called "sacks"
or "cans" and transferred (by drawing) 12 of the circles from
the source group to the squares. He did this in lots of 4
circles, drawing one in each square and then crossing off 4
circles in the source group before distributing the next 4
circles.

In Section B David distributed the 3 circles that
remained. He cut 2 of the circles in half and distributed a
half stone to each square. For the single remaining stone he
said, "We'll put little chunks of that one in each box." Some
children would have been content to leave 3 objects as an
unused portion or let one person go short by one, but David
found a more interesting solution. Thus he shifted
spontaneously to a rem method when the initial method of
repeatedly giving ore stone to each became inapplicable.

In Section C the interviewer probed for a more detailed
description of the "little chunks" from the last stone. David
was uncertain about their size but said they could be called a
"half of a half of a half of a stone."

The protocol raises a number of interesting theoretical
questions, such as: If David was net using an arithmetic
operation, what method was he using? How should his concept
of sharing be modeled? His concept of cutting in half? His
concept of cutting in chunks? What kind of mental reasoning
process tied these concepts together? Did he use heuristics?
It does not occur to many children to cut the stones; what
triggered this idea in David? How can his reasoning, "half of
a half of a half of a stone," be modeled? The analysis which
deals with these questions begins with some general protocol
observations.

Observation 1. David acted out the problem situation
relatively explicitly. Had he made a more realistic drawing,
or found some real stones to use, we would say that he was
even more explicit. Conversely, if he had mentioned only
numbers and number operations we would say that he had not
explicitly acted out the situation.

Observation 2. He did not refer to any arithmetic
problems. A possiole exception appears in line 10, "OK, now
we want to divide it by 4." However, it appears from the
transcript that the antecedent of "it" was not a number but
the group of stones. Thus, that statement probably was not an
expression of an arithmetic problem. David may have been
trying to make tiis comments "sound mathematical" by using the
word divide but there is no evidence that he was thinking
about-TM:ding one number by another number.
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Observation 3. David constructed a drawing as part of
his solutior. In this case, it was a "skeleton" drawing, with
only selected aspects of the story represented.

Observation 4. David changed the drawing as he solved
the_problem. He verbally related aspects of the story to
different parts of his drawing and to changes he made in the
drawing.

Observation 5. Several sections of transcript can be
identified which show that David repeatedly referred to or
acted on several distinct groups of objects in his drawing.
These include Groups 1-6 shown in Figure 2. Groups 1,2,3,4
and 5 are drawn with their members spatially contiguous.
Group l's members are drawn sequentially in rows. Groups
2,3,4, and 5 were referred to when David said, "Everybody's
got 3." GroupS 1 and 6 were also referred to verbally. (This
observation provides evidence that David attended mentally to
various specific groups of objects at specific times.)

Observation 6. David referred to the squares differently
at different times during the interview, calling themsacks,
cans, and boxes and apparently associating them with people in
the statement, "Everybody's got 3." ThiS behavior indicates
that the abstract figures in his drawing,are flexible to a
certain extent as symbols for imaginal variations on the
story.

Observation 7. In several places, David described
actions he was about to perform before he manipulated (made a
change in) the drawing. These include, for example, line 13,
"OK, one for each (draws small circle in each square)"; line
32, "So we'll put little chunks of that one in each box (puts
a dot in each square)"; as well as lines 10, 15, 17, 22 and
24. (This phenbmenon will be interpreted as anticipations
which occurred internally before he represented them on the
drawing.)

Observation 8. David exhibited several repeated behavior
patterns. (a) In Section A, David drew a circle in each of
the 4 boxes and then crossed off 4 circles in the center
group. This behavior pattern was repeated 3 times. (b) When
3 circles were left in the central group, David referred to
cutting one in half, and put a circle in 2 squares. This
pattern was repeated once more and'each time he crossed off
only 2 circles in the central group. (c) There was a more
general behavior pattern of repeatedly transferring identical
objects ,o each of the 4 squares. The 4 squares were each
assigned one circle, then 2, then 3, then 3-1/2, and finally
3-1/2 and a "little chunk." These actions together form
another behavior pattern that was executed 5 times--each time
David drew an identical object in each of the 4 squares and
then crossed off one or more circles in the central group.
This last behavior pattern is shown more explicitly in Table I
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It should be noted that these behavior categories were not
defined before the interview. They were formulated from the
child's behavior by ti.a analyst as he viewed the tape.

i

,i

3

0

0.
14

0

Figure 2. Groups David refers to.
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TABLE I

Behavior Pattern Chart

General
Behavior
Patterna Line

X 13

Y 14

15 .

X 15

Y 16

17

X 17

18

Y 19

22

22

X 24

24

Y 30

32

X 32

Y 32

, Excerpt from Protocol

Draws small circle in each square.

Crosses off 4 circles in center
group.

"Now we divide 4 more."

Draws small circle in each square.

Crosses off 4 more circles in
center.

"Now we divide this by 4 more."

Adds circle to each squ..L.e.

"Everybody's got 3."

Crosses off 4 circles in center.

"Cut one in half."

Draws a circle in 2 of the 4
squares.

"Cut this in half."

Draws a circle in each of the
remaining 2 squares.

Draws vertical lines through 2
circles in center.

"We'll put little chunks of that
one in each box."

Puts a dot in each square.

Puts 2 crossed lines on last
circle in center.

, aKey: X - put an indentical object in each square.
Y - crossed off circles in center group.
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Cognitive Process Model

In this section the above observations will be
interpreted by -;onstructing a model of the cognitive processes
going on in David during the interview. Observations 1-4
concern acting out the problem without arithmetic operations
and suggest that the model should involve knowledge structures
for basic practical actions such as sharing and cutting in
half, rather than knowledge structureseiarithmetic
operations. The observed behavior pattern of distributing
fc.cx objects to the squares five times can be used to describe
David's basic solution method as solving the problem in parts
by distributing manageable portions of the source group to the
four squares. This method contrasts with a single-step
solution of dividing the number 4 into 15 to obtain 3-3/4.

4,1

However, as anIxample of solving a problem in parts,
David's approach was of a particular kind. He did not give
evidence of going through a preliminary process of defining
all of the subproblems before beginning to solve each part.
Rather, he seemed to "slice off" a Lew piece of the problem as
he disposed of the previous piece. An additional
characteristic of his approach was that each act of sharing
small groups of objects contributed to the overall goal of
using up the source group of stones. A name used for this
type of approach is hill-climbing. This metaphor refers to
the simplest strategy for finding one's way through a forest
to the top of a mountain by simply taking each step in a
direction that goes uphill, each step being thought of as a
piece of the solution. Hill-climbing is a well-known
problem-solving heuristic (Wickelgren, 1974). It can be
described more precisely as a cycle with the following form:

(a) The current situation is viewed and an action-
oriented structure is activated that contributes
directly toward the goal;

(b) The action is performed within the story
situation constraints;

(c) Steps (a) anl (b) are repeated until the solution
is completed.

Davie's spontaneous solution had this cyclic characteris-
tic even though he was probably not ccnscious of it as a
general strategy; his solution process thus included an
intuitive heuristic. The cycle coincides with behavior
pattern X-Y in Table I. Each time he distributed a single
object to each person, he moved directly toward the goal of
using up the source group. In the model to be developed it
will not be assumed that this cycle was produced directly by a
general cognitive structure for hill-climbing. Rather, the
cycle will be described as a property of David's processing
that emerged from the recurring assimilatory activity of an
action - oriented structurc, for sharing objects.



Enabling actions. David cut two objects in half in order
to enable him to share them. This cutting action did not
contribute directly toward the goal of depleting the source
group. Instead, the cutting-in-half structure acted "in the
service of" the sharing structure to generate the four objects
of equal size that enabled the sharing structure to act again.
For this reason, cutting in half will be called an enabling
action. Cutting in chunks was also an enabling action in this
same sense. These enabling actions allowed David to fill in a
missing precondition for the operation of the sharing
structures used in the main hill-climbing sequence of actions.
This type of enabling action appears to be a fundamental
reasoning process. Hill-climbing actions and enabling
actions, then, were tne two basic components of David's
solution process.1

David's structure for sharing. Having identified these
important components of David's solution process, the second
step in the modeling task is to specify a cognitive mechanism
that can account for the basic hill-climbing cycle. The
lbserved pattern of behavior in which David repeatedly
transferred identical objects to each of the four squares
suggests that the initial reading of the problem activated a
cognitive structure in David that embodied the idea of sharing
some things fairly by giving each person an identical piece.

Following Witz and Easley (1978), a cognitive structure
will be defined as a unit of knowledge which can assimilate
certain aspects of the environment and provide e .

interpretation or a response to them. Structures which are
activated can play a role in the current thinking process and
remain activated on their own for a short period of time. A
structure constitutes a stable unit of knowing that can be
remembered; it is presumably realized as a neural pattern of
activity which, if activated, can be repeated even after
months of disuse. In this model, learning, then, would
involve permanent changes in cognitive structures.

Th ;re are, however, a variety of ways to think about
sharing (cutting, dealing, transferring, etc.) and the
particular way in which David thought about it should be
specified. The data here indicate that the basic concept
David used is extremely simple, namely, the idea that equal."'
portions should be transferred to each person from a source.
David performed tnis basic act repeatedly during his solution
as he gave one object to each person five times.

1These processes are related to the theory of means-
ends analysis proposed by Newell, Shaw, and Simon (1959), but
they are developed here as emergent properties of groups of
autonomous, action-oriented schemes.
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There is a competing hypothesis that passing out the
first 12 stones in groups of 4 was governed by an established
procedure for "dealing" which assimilated the entire source
group. Such a procedure would contain some automatic looping
mechanism that caused it to repeat the action of distributing
the stones. Although this procedural model does offer an
alternative interpretation, a model involving a less
sophisticated structure which simply gives one portion to each
person is preferable for several reasons. It is important
here to rely on the protocol for direction rather than on
intuition about how a general method for sharing might be
defined. David's behavior contrasts to that of children who
deal out 12 or more of the stones in a circle continuously
without a break. He passed out groups of 4 stones at a time
in action episodes that were clearly separated by crossing off
4 stones each time. He also began each of these episodes with
a punctuating expression such as, "Now, we're going to divide
4 more," apparently indicating the start of a new task. His
later acts of passing out pieces of stones also involved 4
objects (one-half or one-quarter to each). Thus, the action
of passing out one object to each person appears to be a
coherent and independent unit of action in the protocol. This
observation will be modeled by showing a simple give-one-
portion-to-each-person sharing structure acting five separate
times in the diagrammed model.

Initial diagram model.' Figure 3 shows a simplified model
of David's cognitive structure activity during the interview.
In this diagram time runs from left to right. Roughly, what
is going on inside the subject's head appears above the wavy
line and what is going on externally appears below the wavy
line. The diagram as a whole reads somewhat like a musical
score, with different instruments (cognitive structures)
coming in at different points and playing roles for varying
amounts of time.

More precisely, the investigator's observations of events
during the interview are shown below the wavy line. These
observations include statements by the interviewer and by the
subject, actions performed by the subject (written in
parentheses), and aspects of the environment (shown in
encioced regions). The investigator's model of the subject's
mental activity is shown above the wavy line. The structures
shown as being active Rt various points in this diagram would
correspond roughly to structures currently in short-term
memory in an information-processing model.

The activity of the sharing structure can account for the
repeated actions of pssing out stones. Figure 3 shows the
structure operating five times. Each time the action-oriented
substructure labeled give one portion to each person
assimilated a source group of 4 stones and distributed them to
4 people.
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Figure 3. Initial diagram David's solution process
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When the sharing structure could not assimilate the last
3 stones, the structure labeled cutting in half became active
in parallel with the sharing structure as two of the circles
were cut in half and four half-circles were passed out, two at
a time. (How the cutting-in-half structure was activated will
be the focus of a later discussion.) Another structure
labeled cutting in chunks accounts for the way David handled
the last remaining stone as he said, "So we'll put little
chunks of that one in each box." The cutting - -in- chunks
structure was related to, but less differentiated than, the
cutting-in-half structure, and it anticipated the size of each
of the resulting chunks with less precision. When asked about
the size of the "chunks," David's cutting-in-half structure
appeared to operate recursively, causing him to describe the
chunks as a "half of a half of a half of a stone." Lower
level perceptual and motor output structures can be assumed to
have been operating as well but are not shown explicitly in
the diagram. Only the higher level "mediating process" is
represented.

The sharing structure is representee by a closed region
above the wavy line, labeled sharing. The horizontal activity
trace line extending to the right from this structure
Tdiates its extended, continuous activity, stretching almost

to the end of the protocol. Vertical lines connect this
structure to the aspects of observed behavior that it accounts
for below the wavy line. Thus, beginning from the left side
of FiguL2 3, the sharing structure was activated as David read
the problem, and it played a part in producing his behavior
throughout most of the solution process. The model of
action-oriented structures used here implies that if David
were to pass out 4 real objects to 4 real people one gould see
the behavioral output of this same structure. It can be
assumed that, when he put a circle in each square in the
drawing, this structure was operating in the same`way, except
that instead of feeding low level motor commands for moving
objects the structure fed perceptual motor routines for
producing drawings.

The sharing structure can be viewed as a scheme in
Piagetian terms. (I use the Piagetian spelling for action-
oriented structures here, although others may use schema.)
The sharing structure is ccnsidered a scheme when thought of
as a unit of knowledge, a unit that controlled David's sharing
behavior and monitored the status of several groups--a group
of people, the source group, and the groups of material each
person received. The sharing structure is treated as a
process when it remains active over a period of time and
controls behavior or participates in reasoning activity.

The diagram indicates an important link between the
give-one-portion-to-each-person substructure of the sharing
structure and the other two substructures which create the
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expectations that each person should have an equal amount and
that the source group should be used up. The action-expecta-
tion form of this model for scheme structures is indicated by
the notation a E (B), meaning: Do a, then expect B.
Structures of thisorm have been shown by Knifong (1971) and
Witz (1976) to account for the spontaneous behavior of 3- to
5-year-olds manipulating simple pieces of apparatus such as a
hook balance. The term expectation is used here to mean that
certain perceptual substructures are activated ("warmed up"),
ready-to assimilate an external event. There is a kind of
tension condition set up within the B substructure, and this
tension condition is relaxed after the act, if the expectation
is fulfilled, that is, if the expected event is assimilated to
the waiting substructure.

It has not been assumed that any kind of external or
internal verbal activity was necessary on David's part in
order for a structure to be active or in order for David to
act or think about acting. A special effort has been made to
avoid thinking of the sharing structure or any other structure
as a piece of static information or some kind of verbal
statement. Instead, a structure should be thought of as a
stable, action-oriented unit of functioning in the child. As
a unit of knowledge, it is closer to "knowing how" than to
"knowing that."

Detailed diagram model. Figure 4 includes a number of
features missing from the model in Figure 3. Two separate
levels of cognitive activity are included: action-oriented
structures and perceptual structures. Also, ties between
cognitive structures and behavior are shown in greater detail
by vertical lines; these multiple ties provide empirical
support for the model constructed above the wavy line. Arrows
pointing downward indicate those places where David's
observable actions or statements are initiated and controlled
by one or more cognitive structures.

Arrows pointing upward indicate external assimilation;
they show aspects of the environment below the wavy line that
are assimilated by cognitive structures above the wavy line.
In assimilating an external object or event, a structure
orients to the object and provides an interpretation for it.
The assimilation of a group of four stones, for example, is
then a temporary relationship wherein the structure
interprets, attends to, and keeps track of the group over a
period of time (in this case about ten seconds). It is
assumed in this model that a similar relationship can also
occur between internal structures, such as the sharing
structure and a perceptual structure, and the symbol
indicates a, internal assimilation. It should be noted that
assimilation is nct a process whereby there is a one-way
causal link from an object to an internal structure. The form
of the assimilating structure will determine which objec's are
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assimilated and how they are interpreted. Thus, external
assimilation, for example, :s indicated by a unidirectional,
upward-pointing arrow only for reasons of notational
simplification.

To account for the way in which David began the basic
hill-climbing approach, the detailed diagram in Figure 4 first
shows the 15-stones structure being assimilated to the
give-one-portion-to-each-person substructure. But, there was
no evidence of any action being taken on the source group as a
whole. Instead, as the diagram shows, the give-one-portion-
to-each-person substructure assimilated a group of 4 stones,
signifying that David st ped attending to the 15 stones and
focused on only the first 4 stokes as a source group of
manageable size.

The give- one - port- ton -to- each- person substructure
reassimilated new groups of 4 stones and distributed them
until only 3 were left, at which point it could no longer -

assimilate a group compatible with the 4- fiends structure.
This kind of situation, in which a structure attempts to make
an assimilation but cannot do so, creates a type of disequili-
brium condition that I will ca1,1 vertical disequilibrium, as
distinct from horizontal disequilibrium, in which two higher-
order structures compete for the assimilation of a lower-order
structure. The vertical disequilibrium condition shown at the
left of Figure 4b presumably encouraged another structure to
become active and resolve the difficulty, namely, the
cutting-in-half structure became active and resolved the
disequilibrium condition providing enough half stones for
the sharing structure to d ;tribute. How the cutting-in-half
structure was activated is still to be discussed.

Action-expectation activity over time. Figure 5 is an
elaboration of a portion of Figure 4b and shows a method of
diagramming the activiy of cutting in half, a typical action-
expectation structure, over a time per'od of 20 seconds or so.
The substructure labeled object embodies the knowledge of a
precondition, that one must first focus on an object (perhaps
with specific properties) to be cut. (Such preconditions were
omitted from Figures 3 and 4 to conserve space.) Two equal,
smallez rieces embodies the knowledge of what one expects to
see after the cutting takes place. The tension condition that
exists until this expectation is fulfilled is indicated by the
oscillating horizontal line emanating from the structure. In
Figure 5 the structure is shown performing a real action.
However, it is hypotnesized that the same internal processes
could take place in solving a word problem when no real
action:- take place, as will be discussed further. It is not
assumed here that preconditions are best modeled as precise
sets of discrete features. Some preconditions may bt morn
Gestalt-13%e can i flexible. In the case of physical actions
some precorii.tions are embedded 'ri the proprioceptive
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orienting activities that constitute the first stages of the
action itself and are not easily modeled as discrete features
symbolized internally in some static form.

Anticipation and internalized action. The fact that
David could actually anticipate what would happen when an
object was cut in half (leading to his use of the idea) can be
explained by assuming that David went through the internalized
action of cutting the stone in half. In Figure 4 the
diagramming technique developed so far is powerful enough to
show some aspects of this internalized action in detail. It
is assumed that, in thinking about small numbers of objects or
groups (approximately 1-5), David was capable of holding
active a separate perceptual structure for each object or
group. For example, the structures represented by two semi-
circles inside a box in Figure 4b wrre responsible for the
perceptual expectation of having two smaller pieces as a
result of cutting one stone in half. The same perceptual
structure that would have been active if David had actually
been viewing a £mall stone is assumed to have been active
here,.even though there were no real stones present. That is,
David imagined the presence of a stone. Similarly, he
imagined cutting the stone in half when the cutting-in-half
structure was active without actually producing cutting
movements in output mode. It is assumed that these internally
activated perceptual structures were what enabled aim to make
a drawing (in conjunction with appropriate hand movement
structures not modeled here). More importantly, they helped
him anticipate the beneficial results of -utting in half as an
enabling action that would allow the sharing structure to
continue operating.

The interpretation represented in the diagram is that the
ability to perform a mental action on an image is basically a
nonverbal, perceptual-motor anticipation. David knew how to
cut something in half, and his cutting-in-half scheme
activated his perceptual structures in a top-down manner to
assimilate two new, smaller objects of equal size even before
the actual cutting occurred. That is, he was already
imagining the two halVes when he drew them. This
interpretation contrasts with the idea that David might have
been using a memorized arithmetic fact in a verbal form like
"1 divided by 1/2 is 2." I am instead inferring that David's
mental activity in this case was very aim lar to what it would
have been had he actually been sharinr: and cutting real
objects.

This model is consistent with the Piagetian view that
there is a basic "logic of actions" level of reascaing that is
more fruitfully mode2cd, not as m=..nipulations of verbal
symbols or abstract propositions, ;-Alt rather as the
coordination of internalized actions. While aspects of

88

77



David's behavior might be accounted for by a model which uses
only verbal representations of abstract features, a reason for
taking the internalized-actions point of view here is the
smoothness and ease with which David constructed aad
interacted with his visual drawing. The fact that David
focused on his drawing during the entire interview and worked
so closely with it is consistent with the hypothesis that the
drawing, as a spontaneous mode of symbolization, was tied very
closely to the internal imagery processes he was using and
was, for him, a fairly direct symbolization of those
processes. Of course, it is clear that there were eventually
more items represented in the drawing than he could hold in
mind at once, and that is why the drawing was useful.

On the other hand, it might be argued that the drawing
itself was the representation David was acting on and that
there is no need for positing internal image structures.
However, anticipations via internalized actions on images are
included in the model in order to account for David's insight
that :utting -wo objects in half 'zas the right thing to do and
to account for his description of the last distribution
involving "half of a half of a half of a stone." Although
confirmation of this interpretation will require much more
research on the theory of knowledge representations, it
appears to be the most plausible interpretation in the ease of
the present protocol.

An important task for future research is to determine the
limitations of this internalized-actions-cn-images system.
The conjecture that the system cp.a only operate effectively on
less than six objects, or group.,,, of objects, at a time is
consistent with research on children's subitizing ability--the
a'Ljlity to enumerate groups of less than six objects very
quickly without counting (Klahr, 1973). For example, David
could not have been expected to keep track of changes in the
source group of 15 stones without using a drawing, but he
might have been expected to handle 6 stones mentally by
focusing first on 4 stones and then on 2. It is further
ccnjectured that objects are not imagined in detail--that only
gross characteristics are imagined. These conjectures point
to some important questions for future research.

Goals. The model developed here to explain how goals are
set up and maintained is a vertical disequilibrium, or
tension, mode'.. In Figure 4 the oscillating portions of the
horizontal line to the right of the source-gone structure
indicate a state of tension. The activation of the sharing
structure by the task creates the expectation that the source
group must be used up in order to arrive at a solution to the
problem. In gene:al, we assume that a perceptual structure
S1 can act as a goal when it is "held active" by some basic
(possibly chemical: drive or by some other continually



activated structure S2 for which there is an expectation
that the satisfaction of Sl will lead to the satisfaction of
S2. Since the source-gone substructure cannot assimilate an
empty source group at the beginning of the solution, the
structure is initially in tension. The tension caused by this
"assimilation gap" is reduced each time an action brings the
number in the source group closer to zero.

A tension condition is hypothesized to have two effects:
It makes the structure a strong competitor for attention in
the organism; and it motivates the subject to act so as to
satisfy the structure by trying out various possible actions
mentally. When he can imagine .ine of th_se actions
contributing to the goal, this action becomes the dominant
focus of attention. Thus, the model explains goal-oriented
behavior in terms of high activations maintained in specific
knowledge structures, rather than as the transfer of a static
symbol to a "place" labeled "the current goal." A consequence
of this model is that it is natural to imagine the possibility
of several competing goals, at different tension levels, with
the strongest tension dominating at any moment.

Recursion. As described earlier, the last single "stone"
remaining in David's source group is assumed to have been
assimilated by a cutting-in-chunks structure. The phrase half
of a half of a half of a stone, used by David in response to a
question about the size of the resulting "little chunks," has
several possible interpretations. It appears that David was
applying the cutting-in-half structure recursively. Roughly,
this means that the structure was applied to its own output.
More precisely, recursion refers to the activity of a
structure S assimilating a perceptual situation Pl and
activating the expectation of another perceptual situation
P2 (see Figure 6). When S is reapplied by assimilating P2
to its odn action componeit, then S is said to be applied
recursively.

David's situation was slightly more complicated than that
shown in Figure 6 because the first expected effect of cutting
in half Ole single stone was to produce two objects. Each of
these could have been assimilated by the same cutting-in-half
structure to yield four equal pieces of smaller size.
However, it is not clear that David was able to imagine this
with precision. He indicated his uncertainty (line 42) by
saying, "I don't know," before saying, 'half of a half of a
half of a stone." Yet, there is a certain definiteness to his
response, countering as it noes the interviewer's probing
(line 41), "a half of a half of a stone? What does that
mean?" (indicating only two "halvings"). Two possible
interpretations of David's statement are as follows:

(a) He had an appreciation for the possibility of
generating four equal pieces from one stone by
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applying the cutting-in-half structure recursively,
but the exact sequence and number of halvings
required were unclear to him;

(b) He comprehended the chain of actions required, but
described them linguistically in a nonstandard
format; there were three acts of halving required
to generate the four pieces he drew, so he said
"half of" three times.

It is the latter interpretation that is represented in Figure
4c. This interpretation is consistent with an assumed
tendency on David's part to focus on the act of cutting a
piece in half as opposed to focusing on the resulting
half-pieces. In either case, the fact tnat David appreciated
the possibility of recursively applying the cutting-in-half
structure to produce four identical pieces is an impressive
example of intuitive reasoning.

Improving the Model

An important characteristic of structure-interaction
diagrams is that they are criticizable as theories. Figure 4,
for example, is 'Ile end result of many cycles of constructing
a model, checking it against the exact sequence of events in
the tape, and modifying it. However, the present map can
still be criticized for leaving certain protocol data
unexplained. Several improvements can be made to produce a
slightly more complex model that would describe David's mental
activity in the following sequence (asterisks indicate new
steps):

*(a) A general, frame-like structure activated the goal
of sharing 15 objects among 4 people;

(b) David realized that he did not know how to do this
in a single step;

(c) A specific sharing structure repeatedly oriented
to sharing 4 objects among 4 people to account for
the basic hill-climbing cycle;

(d) The first 12 stones were distributed;

*(e) The general frame-like sharing structure also
weakly activated the cutting-in-half and cutting-
in-chunks structures as actions which are related
to a sharing context,

*(f) David planned the action of cutting 2 objects in
half in order to produce 4 objects to satisfy a
precondition for the sharing structure that required
4 objects for distribution;

11111=MM
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(g) He executed this plan in two steps, giving a piece
to each person after cutting each stone in half;

(h) Cutting in chunks operated on the last stone in
order to produce 4 more pieces for distribution by
the sharing structure;

(i) Cutting in half operated recursively on the last
stone to provide a more precise solution.

These changes in the model involve three issues: first,
accounting for the goals in the hill-climbing cycle via two
separate sharing structures at different levels of generality;
second, the extent to which planning occurs via internalized
actions; and third, choosing between an autonomous-schemes
model and a more structured, frame-oriented model to account
for the initial activation of structures. These issues will
be discussed in turn below.

Levels of structure. In addition to leaving certain data
unexplained, the model shown in Figure 4 does not account for
the goal that motivated the hill-climbing cycle which David
followed in repeatedly distributing a single object to each of
four people. One might theorize that this goal was embodied
in the continuing tension in the source-gone expectation in
the sharing structure, but, as David's focus switched from the
original source group to the first subgroup of four objects,
the source-gone expectation would have been fulfilled after
distributing four objects; there wou'3 have been no source of
tension to drive further distributiolis. This difficulty can
be resolved by theorizing that there were two levels of
sharing structures (see Figure 7). The first structure to be
activated, shown in the upper left corner of the diagram, was
a generalized conception of the gross qualitative features of
a shariri episode, where fairness is desired, while the second
structure embodied a specific method for sharing, where
fairness is guaranteed. (The latter is equivalent to the
sharing structure modeled in Figure 4.) Related models of
action-oriented structures at differing levels of generality
have been discussed by Newell, Shaw, and Simon (1959) and by
Witz (1973;.

The hill-climbing cycle that David followed can be
explained by positing that the general sharing structure
assimilated the entire source group of 15 stones. A tension
oz goal-seeking condition persisted in the source-gone
expectation of this structure during the entire problem
solution. Any, action which transferred stones from the source
group to the people reduced this tem:ion. Such an action was
provided by the second, more specific sharing structure shown
in Figure 7. This structure repeatedly assimilated or': four
stones at a time and gave one to each person.
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An interesting feature of this tension-reduction model is
that it eliminates the need for an "executive procedure" which
organizes the problem-solving process in a centrally con-
trolled way. Such a procedure might have been used to model a
general hill-climbing or difference-reduction strategy
explicitly and sequentially carried out by the problem solver.
In the present model the tension-reduction mechanisms are
thought of as being built into the "hardware" of the system in
a more distributed way, that is, built into the "drive-to-
assimilate" property of the relatively autonomous cognitive
structures themselves. The hill-climbing cycle then emerges
as a systemic property of a distributed system rather than
being determined locally by an established procedure with
controlled looping.

Chaining of structures. The use of cutting in half as an
enabling action can also be thought of as "working backwards"
or chaining backwards from a subgoal. If finding four objects
was the goal when David had three stones left, then cutting
the stones in half constituted working backwards from the goal
of sharing four objects to the idea of finding four objects to
the idea of cutting in half. Internalized actions offer a
mechanism for explaining how such chains of action could be
planned mentally ahead of time bythe subject. If a goal
tension condition exists in a perceptual structure P, an
action-expectation structure A with an expectation
substructure identical or similar to P will tend to be
activated and tried out internally. If the precondition
substructure in A is uninstantiated, it will in turn become a
new primary goal and this explains how chaining can occur
spontaneously. An intriguing question to ask at each point in
the protocol is: How much did David plan ahead of time--how
far ahead could he look?

It is not possible to answer this question definitively
in the absence of announced predictions or plans on tte part
of the subject. The position represented in the diagram in
Figure 4 is that most results of action chains were not
anticipated beyond the current drawing cycle, a drawing cycle
being a relatively well-defined burst of drawing activity in
the protocol, separated by pauses and spontaneous
verbalization on the part of the subject.

One probable exception to this limitation was the
sequence in which David cut two stones in half to distribute
to four people. It has already been inferred that he
anticipated tha'. cutting one stone in half would provide equal
pieces for two people. How much more did he anticipate
here--that cutting two stones in half would give Just enough
for the four people? The diagram as drawn in Figure 4b does
not reflect this anticipation, but it could easily be changed
to model it by compressing and shifting to the left the
cognitive activity associated with each cutting action,
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thereby implying more internalized actions on images before
the drawing of "half stones."

The major Piagetian theme is that, given an appropriate
object, active schemes will operate autonomously on the object
to produce an expected result, even when there is .o special
reason to do so. This tendency of structures to apply
themselves autonomously is most apparent in the relatively
goal-free play behavior of children, who are always "trying
out" things with (applying action schemes to) different
objects. The present model assumes that when a scheme like
cutting in half was activated, it automatically tried itself
out internally on the images of the circles already drawn.
Thus the beneficial results (four equal objects to share) were
anticipated. This sequence outlines a mechanism by which
planning can occur in a spontaneous manner, as the result of
active assimilations on the part of autonomous structures.

Activation of structures. There remains the question of
how the cutting-in-half and cutting-in-chunks structures were
activated--the memory access, or scheme activation, problem.
Successful problem solving involves at least two considera-
tions, namely, determining what actions are relevant to the
problem and determining what sequence of these actions will
work. The discussion so far has focused largely on the latter
consideration, but the question of determining actions
relevant to a problem should not be ignored, as it too often
is in psychological.research. Several possible answers to
this question will be described below.

At one extreme, it might be that structures call other
structures directly, as is done in many everyday computer
programs. An established, higher-order procedure would
determine the c:der in which these structures come into play
using direct subroutine calls. A weakness in such a highly
structured format is the difficulty of obtaining robust
procedures that adapt flexibly, as David seemed to do, to new
problem-solving situations.

At the opposite extreme, there might be many autonomous
structures (variously called schemes, demons, or productions)
each of which determines its own relevance to the current
situation and competes for attention if Lite relevance is high.
The search for a match between structure and situation would /
presumably have to occur in parallel, given the vast number of
structures in the organism. Models along these lines have N.

been proposed by Newell (1973), Selfridge (1959), and Witz and
Easley (1978).

Between these extremes is a scenario in which structures
related to the same context are activated togeth r, but their
sequence of deployment is not determined ahead of time.
Models of this last type have been proposed by Witz (1973),
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who models "framework" structures in young children from a
Piagetian perspective, and Minsky (1975), who Lrgues for the
use of "frame" structures in an artificial intelligence
system.

Action-oriented structures might be activated ih any of
these ways. Their effects, or short chains of several actions
and effects, could be anticipated internally and evaluated on
the basis of current goals. In David's case the initial
sharing structure was probably activated directly via the
linguistic process involved in reading the problem text. It
is unlikely that the cutting-in-half and cutting-in-chunks
structures were called at a certain point by an established
procedure for solving sharing problems, because of the
flexibility with which David coordinated sharing and cutting
in half in parallel and the novelty of his solution. If this
had been h4 approach, then in one sense he could not have
been considered to be engaged in problem solving, since he
would have already had an established procedure for doing the
task. The model favored here is the framework model in which
the cutting-in-half and cutting-in-chunks structures were
initially activated by a general sharing structure which
included associations to relevant enabling actions. However,
the short length of the protocol precludes a definitive
judgment on this issue. Interviewing strategies that will
make such judgments possible need to be developed. One
strategy might be to examine a series of solutions to related
problems by the same subject.

Conclusions and Summary

The proposed model of David's reasoning posits relatively
little high-level structuring, that is, no general
macro-procedure which would specify how sharing objects,
cutting in half, and cutting in chunks are to be sequenced in
a given situation. This lack of structuring is made up for by
a mechanism of spontaneous reasoning interactions. Reasoning
takes place when schemes coordinate to form action sequences
that are not specified by an establishe3, predetermined
procedure. A combination of limited knowledge structures and
spontaneous reasoning potential might be a more powerful
(adaptive, flexible, general) configuration for problem
solving than a set of highly structured procedures oriented to
specific tasks.

David's behavior was accounted for via three practical,
action-expectation structures: sharing, cutting in half, and
cutting in chunks. Each of these structures has basically the
same form, consisting of an action substructure connected to a
perceptual substructure comprising an expected effect.
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Internalized actions involve the activity of these structures
in the absence of external output. David's overall approach
was described in terms of a hill-climbing cycle, each cycle
corresponding to an act whereby the sharing structure
reassimilated a new group of identical objects and distributed
them. It was hypothesized that internalized actions can be
chained to provide for planning and that a structure can
function recursively by reassimilating its own effects.

This model of David's thought processes is not based on
stored arithmetic facts or other passive structures but on
action-oriented cognitive structures that remain active in
parallel for varying lengths of tine during a problem-solving
episode. Reasoning processes in this model do not take the
form of manipulation of internal statements according to the
rules of a formal logic but, rather, consist of cooperation
between structures during internal assimilation and conflict
between structures during disequilibrium. The modeling of
both knowledge structures and their interactions as dynamic
processes preserves and reflects one of Piaget' most
important insights into cognition. Many concept, discussed in
this paper are related to concepts found in both Piagetian and
information-processing theories of cognition and provide
poii t which these theories might fruitfully interact.

_ntensively -.nalyzing a single short protocol, some
aspe of a model of the child's cognitive processes can be
supp:orced, while other aspects remain conjectural. The most
firmly supported cognitive processes in tha present model, for
example, are those that have been tied to several different
obslrvacions from the transcript, as shown explicitly in
Figure 4 by the vertical lines connecting structures to
observable behavior. The primary objective here, however, has
been to raise key questions and to illustrate a variety of
techniques and concepts that might be applied to a richer data
base.2 One promising direction for future research is co
take a single subject and analyze several related problem
solutions. Such case studies should provide more data for
deciding between alternative models.

Educational implications. The existence of action-
oriented approaches like the one observed here provides
evidence for the assertion that children have intuitive
conceptions about mathematical situations that are more basic
than the four arithmetic operations. It is suggested here
that, if traditional arithmetic operations are to have meaning
for children, it must be in terms of ;imi.7ar types of

2Additional data which motivated the development of the
concepts used in this paper are provided in Clement (1977).
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underlying intuitive conceptions. It is also suggested that
these intuitions are the natural source of the semantic
interpretations for number operations needed to accompany the
syntactic rules for symbol manipulation that are so heavily
emphasized in school.

More exploratory clinical interviews are needed to map
intuitive mathematical structures and to study the relation-
ship between formal and intuitive mathematics in the class-
room. For example, the author has found that many third
graders are able to solve practical story problems involving
multiplication and division with small numbers before studying
these operations in school (Clement, 1977). These students
use a variety of methods such as skip counting, drawings,
concrete maetrials, etc. Because some children have more
difficulty than others in using intuitive methods, it would
seem to make sense to have children strengthen their intuitive
conceptions with problems like the one discussed here before
they learn the operations as facts and algorithms. This
intuitive approach could be a step toward making arithmetic
more meaningful for children and a step toward remedying the
difficulties many students have in applying their knowledge of
arithmetic to practical problems.
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COGNITIVE MICROANALYSIS: AN APPROACH TO ANALYZING
INTUITIVE MATHEMATICAL REASONING PROCESSES

E. Glenadine Gibb
Professor of Mathematics Education
The University of Texas at Austin

John is to be commended for his efforts in using
cognitive microanalysis as an approach for analyzing
children's intuitive mathematical reasoning procedures in
problem-solving situations. Furthermore, the method of
diagramming that he used to describe David's cognitive
processes seems to be a viable means of representing cognitive
Interactions as they occur. I also commend John for
identifying David's intuitive reasoning processes and then
relating these processes to concepts in the appropriate
Piagetian and information-processing models of cognition.

Difficult as it may have been, ,eeping observed events
and theoret.lcal constructs separate enables one to focus on a
realistic set of concepts for explaining children's cognitive
processes without the interference of restrictions in expected
behavior based on the theoretical models. Indeed, the method
of cognitive microanalysis provides, in my judgment, a useful
approach for research. This procedure encourages children to
think aloud while solving prcblems, avoids predefined
categories and predetermined interpretations of children's
natural responses, and does not make prior assumptions about
the form or functioning of children's cognitive structures. If
we are to continue building our knowledge base of children's
intuitive cognitive processes, then we must pursue the mapping
of conceptions as they exist in children rather than testing
the degree to which their conceptions conform to those of an
adult or some other model derived from theoretical analysis.

Let us now consider David's protocol specifically,
models of cognitive processes gem:ally, and the support of
this kind of research for developing mathematical concepts in
the classroom.

David's Protocol

I was most interested in David's behavior in the
situation that he experienced, not only as described in the
paper but also as viewed from the videotape. For the most
part, his behavior was that which one would expect of an
eight-year-old child. The experience of sharing should be a
stable and familiar experience in an eight-year-old's world of
reality. To represent the problem by making a picture of 15
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circles for the 15 stones and 4 squares (which he referred to
as sacks, cans, or people) for the 4 friends also seems a
natural response. Eight-year-olds and even seven-year-olds
can be expected to feel more comfortable with pencil and paper
drawings than with the use of manipulative objects, such as
the blocks that were available in this case (viewed in the
tape).

The fact that David overlooked Jim as a member of the
group and saw the problem as one of sharing 15 stones among 4,
rather than 5, people was unexpected. Did David identify with
Jim and thus exclude himself as a member of the group--a
behavior observed on the part of younger children? I am
inclined to agree with John's conjecture that "school
experience conditioning" probably prompted David to focus on
the numbers in the problem. Nevertheless, his failure to see
5 people provided an interesting and informative opportunity
for analyzing his cognitive processes in this problem
situation, particularly as he continued the hill-climbing
cycle to share those last three stones. Furthermore, it
provided insight into David's lack of stable fraction
concepts. Although he used two stones to give a half stone to
each of the four friends, his "half of a half of a half of a
stone" seemed to be associated with the three cuts made on the
last stone to get the four "chunks." These ideas seemed to be
unstable, as confirmed in David's last statements in the
interview. One would exnect him to have had more stable
concepts of both halves and fourths, based on school
experience, if not the world of reality.

Models of Cognitive Processes

Whether or not the sharing structure was activated as
David read the problem seems questionable. Rather, it seemed
to be activated during lines 5, 6, and 7 of the protocol and
probably between his response of "Oh no" and the interviewer's
asking "How can we start on it?" In retrospect, it may have
been unfortunate to have asked that question at that
particular time. Part of the thinking may have been lost with
the suggestion that action should be getting underway.

Clearly, David's internal cognitive processes included
the structure of sharing a given collection among four people
so that each person gets an equal amount and the collection is
exhausted. His output seemed to exhibit sharing throughout
the problem solution, including the cutting of the stones.
However, I feel somewhat uncomfortable with the introduction
of the structure labeled cutting in chunks. Without further
information, cutting in chunks seems to be an enabling action
in order to continue with the sharing structure. For model
development and refinement, more analyses of David's processes
in similar and different problem-solving situations, as well

92
103



as analyses of other children's protocols in these same
situations, are needed especially if these models are to have
educational implications.

John has indicated that additional research is also
needed to determine the limitations of the system of
internalized actions on images. It is not completely clear
how this system is related to the subitizing process; in
particular, it is not clear why it should operate effectively
with only 6 or fewer objects. Personally, I am not convinced
that David's protocol offers much support for the
internalized-actions interpretation. The information
available seems to suggest that the goal of tension-reduction
in the source-gone expectation may be an adequate explanation
of the motivation for David's behavior.

Developing procedures whereby children really think aloud
as they engage in problem-solving activities is not easy.
Even when we think that children are telling us what they are
thinking, we can be quite "taken-aback," as I was in one
interview with a child. After this child had made what seemed
like "thinking-aloud" comments reflecting his internal
cognitive processes while engaged in a proble-solving
situation, he later commented to me, "That was what I could
tell you. It really wasn't what I was thinking." That, from
a seven-year-old! We might do well to keep our models more
general.

Educational Implications

John has made the assumption that a constructivist model
of learning is more valid than a "blank slate" model of the
learning process. I, too, support that assumption. On the
other hand, he seems to regard the arithmetic operations as
symbolic records written on paper rather than internalized
generalizations of abstract ideas which children learn to
communicate orally and in written symbols. Examining the
pages of a school mathematics textbook may lead one to believe
that children's intuitive ideas are overlooked in developing
concepts and that ideas the children have already attained are
ignored when the same concepts are later refined or expanded.
Realistically, it cannot be expected that intuitive concepts
will be found in children's textbooks, unless research over a
broad population supports the inclusion of those concepts.
Moreover, it cannot be denied that there do exist classrooms
in which the mathematics instruction is, essentially, the
textbook. However, in general, there are classroom activities
that help prepare children for working in their textbooks.

Most teachers, drawing upon their professional expertise
and suggestions in the teacher's guide, can, and do, use
children's intuitive thinking as a basis for concept
development. These teachers provide experiences for children
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that are exploratory in nature--what some may regard as
"messing around"--to help children arrive at generalizations
based on experience. They show children how to express oral
ideas in written mathematical language before turning to the
textbook. In their textbooks, children see the language in
print and compare the textbook developmental lessons to their
exploratory experiences before engaging in individual work to
develop further insight and skill in using ideas.

These professional teachers are very much aware of
children's intuitive concepts about mathematical situations.
To say that these concepts are more basic than the four
arithmetic operations reflects a poor communication between
the realities of a large share of classrooms and the research
community. These intuitive ideas are the beginnings upon
which the mathematical operations are made meaningful to
children before developing techniques and skill in using facts
and algorithms. Building on the foundation that children have
to assimilate new knowledge and to modify and alter previous
knowledge not only could be, but is, an approach used in
children's mathematics classes. Perhaps the difficulty that
children have in applying their intuition to practical
problems is a consequence of the fact that attention to
problem solving is not always appropriately balanced with
understandings and skills in school mathematics programs.

Although we have already seen the influence of knowledge
about children's intuitive cognitive processes on school
mathematics curricula, certainly more work is needed. I would
expect further knowledge, or refinement of previous knowledge,
to continue to influence mathematics programs as T_11 as
facilitate the building of general models of these processes.
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AN INFORMATION PROCESSING APPROACH TO RESEARCH
ON MATHEMATICS LEARNING AND PROBLEM SOLVING

Richard J. Shavelson
and

Vicki M. Porton
Graduate School of Education

University of California, Los Angeles

This paper is a report to mathematics educators
concerning the methods used by psychologists to study learning
and problem solving in mathematics and the progress made to
date. We find the need for such a paper somewhat embarrassing
and quite telling. One explanation for this need is that most
educational psychologists have sought (and many still seek) to
find general laws of behavior that pertain to schooling, so
they have used particular subject matters in theirs research
largely for convenience rather than as fields worthy of study
in themselves. Unfortunately, general laws of behavior have
been hard to formulate because behavior seems to depend upon
so many things--the particular task at hand, the nature of the
people involved, etc. (cf. Cronbach, 1975).

As a consequence of the complexity of human behavior and
the success of research on human problem solving in specific
tasks (e.g., Newell & Simon, 1972), some educational
psychologists are now focusing their attention on particular
subject matters such as 05thematics. They are attempting to
describe what students.learn as a consequence of mathematics
instruction, how they learn.it, and how they use what they
have learned to solve mathematical problems. Regardless of
whether their approach to the study of mathematics is
experimental (Mayer & Greeno, 1972), ethnographic (Lave,
1977)`, or descriptive, using mathematical models (Groen &
Resnick, 1977) or computer simulations (Greeno, 1976), some
educational psychologists now recognize the necessity of
working closely with mathematicians and have begun to do so
(e.g., Geeslin & Shavelson, 1975a, 1975b; Lave, 1977;
Shavelson & Geeslin, 1975). However, this trend is only in
its infancy and a communication gap still exists. In
providing mathematics educators with a sketch of how some
educational psychologists study learning and problem solving
in mathematics, our goal is to provide a foundation for
communication. Perhaps then, together, we can get on with the
important task of improving curriculum and instruction.

The approach described here has its roots in cognitive
psychology and artificial intelligence (computer simulation of
human intelligence). Briefly stated, this approach attempts
to describe the structure of a mathematical task presented to
a student (e.g., adding single-digit numbers without
carrying), the way in which the student mentally represents
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the structure of the task, and the processes the student
brings to bear on transforming the initial representation
(e.g., "the sum of two and three") in order to reach some goal
(in this case the sum, five). Since this approach draws
heavily on a psychological model of how students process
information in instruction or in solving a problem, the next
section of this paper provides a brief sketch of one such
model. Of necessity, this model is a compromise between
several possible models but, hopefully, does justice to each.
The second section presents some methods for representing a
mathematical task, since the representation of the external
task is just as important in this psychological model as the
student's internal representation of it (cf. Newell & Simon.
1972; Shavelson, 1972, 1974a, 1974b). The third section
applies the information processing model to students' learning
and problem solving in mathematics and reviews illustrative
studies. Ard the final section briefly summarizes the major
points of the paper.

Information Processing View of Humans'

Recently, psychologists have characterized humans as
processors of information. Norman (1976) summarizes this view
well:

In particular, we are concerned primarily with
verbal, meaningful information in acoustical and
visual form. The aim is to follow what happens
,-.4a information as it enters the human and is
processed by the nervous system. The sense
organs provide us with a picture of the physical
world. Our problem is to interpret the sensory
information and extract its psychological content.
To do this we need to process the incoming
signal- and interpret them on the basis of our
past experiences. Memory plays an active role
in this process. It provides the information
about the past necessary for proper under-
standing of the present. There must be
temporary storage facilities to maintain the
incoming information while it is being
interpreted and it must be possible'to add
information about presently occurring events
into permanent memory. We then make decisions
and take actions on the information we have
received. (p. 3)

'For a readable introduction to information processing
psychology, see Mayer (1977) or Norman (1976). See also
Neisser (1976).
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One possible, simplified model of human information
pi:cxessing is presented in Figure 1. (For an alternative
model, see Craik & Lockhart, 1972; but also see Baddeley,
1978). The information processing model can be divided into
two general components: perception and meiry. "By
perception, we include those processes in ehe initial
transduction of the physical signal into some sensory image,
the extraction of relevant features frOm the sensory image,
and the identification of that list of features with a
previous learned structure" (Norman & Rummelhart, 1970,
p. 21). In Figure 1, perception is represented by an arrow
to indicate its presence but secondary importance for the
purposes of this paper.

tr)umps P IL IICRPT 10 ill
IIIIVI Short -T.n

Mowry

Figure 1. Simplified model of human information
processing. (From Shavelson, 1974a, p. 233

The second component of the model is memory. By memory
we mean those processes which serve to retain information from
the perceptual component. Memory can be characterized by four
subcomponents: short-term memory (STM), working memory (WM),
long-term memory (LTM), and a retrieval and decision process.
(Actually, many models of memory combine the last three
processes and label them LTM.) In general, STM is a small
capacity memory which serves as a buffer between perception
and both WM--a fairly large capacity, malleable component--and
LTM--an unlimited capacity, highly organized, permanent
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information store. The retrieval and decision processes
search for and retrieve information appropriate in a given
context.

Short-Term Memory

In most cases, perceptual information is initially stored
in short-term memory. STM is limited in its capacity to hold
information; that is, it can store about five to seven words
from a long string of unrelated words (cf. Miller, 1956). The
amount of time any word or symbol remains in STM without
further processing is on the order of seconds. Therefore, a
symbol in STM must be transferred to WM or LTM, rehearsed, or
lost. Rehearsal takes one of two forms: It may be rote
repetition of a string of symbols (e.g., repetition of a
telephone number) or an elaborative (cf. Norman, 1976)
combining of symbols in some meaningful way (Craik & Lockhart,
1972; Craik & Tulving, 1975; Craik & Watkins, 1973). In the
latter case, STM and LTM are linked in order to form
meaningful cluters or "chunks" of symbols. The repetitive
form of rehearsal maximizes the amount of information held in
STM, while the elaborative form maximizes the retention of
information over time. Finally, the ci,-'ce of the form of
rehearse, can be controlled by the indlyidual (cf. Bjork,
1972, 1975). STM, then, can be characterized as a communica-
tio- channel between the perceptual apparatus and the central
memory processes whose function is to provide time for further
processing to take place. "The net result of such an
Immediate memory mechanism...is that the total processing
system has a very narrow 'focus of attention,' that is, the
central processes can attend only to a minuscule portion of
the external stimulus environment at any time" (Feigenbaum,
1970, p. 455).

Working Memory

In contrast to short-term memory, working memory is
capable of storing moderate amounts of information for hours,
days, or perhaps weeks. It holds an internal representation
of the stimuli being learned (Feigenbaum, 1970), as well as
information from LTM copied intact (cf. Erickson & Jones,
1978). The information in WM is thought to be represented in
tree structures with the nodes of the tree repl:esenti g

concepts, ideas, r,r images, and the lines representing
(hierarchical) relationships between them. These representa-
tions are pragmatic in the sense that the structure of WM
corresponds closely to the sequence of the task. No attempt
is made to restructure WM for efficiency or logical order.
(This conceptualization of WM may be cJnsistent with students'
verbal reports that they learned the material for the
examination and then, immediately afterward, "dumped" it!)
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Long-Term Memory

In contrast to short-term and working memory, long-term
memory permanent, well-organized, and unlimited in storage
capacity. For convenience in describing LTM, a semantic and
an algorithmic component can be distinguished.

Semantic component. The semantic component of LTM
contains facts about various things, events, and states of the
world. While the exact nature of the representation of these
facts is currently being debated (e.g., Anderson, 1978), .1.ere
seems to be agreement that, in using the contents of semantic
memory, the facts may be represented either as verbal
propositions or as images, analogical mirrors of the world
(cf. Baddeley, Grant, Wright, & Thompson, 1975; Brooks, 1968;
Kosslyn, 1973; Moyer, 1973; Norman, 1976).

The semantic component is often expressed as a complex
directed graph or network (e.g., Anderson, 1976; Anderson &
Bower, 1973; Feigenbaum, 1970; Frijda, 1972; Greeno, 1978;
Kintsch & Van Dijk, 1978; Norman, Rummelhart, and the LNR
Research Group, 1975; Schank, 1975; Shavelson, 1972, 1974a).
One pcssible example of such a network is shown in Figure 2.
The nodes in the network represent ideas or concepts or
images. The lines represent various relationships between the
nodes. In general, three important characteristics of the
networe. are: (a) a relational structure linking nodes by

has a part
smell symbol of

given for seen in
grown in

Figure 2. Fragment of information network.
(From Frijda, 1972, p. 4.)
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specific types of relations (cf. Norman, 1976), (b) a
hierarchical feature in which one node may represent a set of
nodes (cf. Wickelgren, 1974), and (c) a structure of
implicit information. "The organization that does exist is
implicit in the pattern of linkages between nodes, which may
be direct or indirect over other nodes, and which may give
rise to impor- tant local differences in network density"
(Frijda, 1972, pp. 5-6).

Gagne (1978) provides a clear example of how one model of
semantic memory (Anderson, 1976) would represent a statement
like "Bach wrote baroque music":

Ideas expressed by the sentence...can be
represented as the set of nodes and links shown
in [our Figure 3]. In this structure, the
ideas "Bach," "wrote," "baroque" and "music"
(Nodes 4-7) constitute nodes that are associated
through links. In addition, a complex node
(Node 1) represents the idea formed by the
entire proposition, another complex node
(Node 2) represents the idea of "wrote baroque
music" and a final complex node (Node 3) represents
the idea of "baroque music." (pp. 631-632)

Each baroque suite

Figure 3. Proposition network for "Bach wrote
baroque music." (From Gagne, 1978, p. 632.)
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Algorithmic component. The algorithmic component of LTM
contains procedural knowledge, i.e., step-by-step procedures
nreded to reach some goal. Greeno (1978) formalized
e.gorithms as production systems in which "an intellectual
sUll is repregented-as a set of productions" and "each
component of tne skill is a production rule consisting of a
conchtion end an action" (p. 268) Newell and Simon (1972)
described a person walking down a street and crossing the
street as a simple production system:

Condition Action

Red light > stop;

Green light > move;

Move (left foot > step with right foot;
on pavement)

Move (right foot > step with left foot.
on pavement) (pp. 32-33)

Relationship between components. The distinction between
the semantic and algorithmic components of memory is one of
convenience. They systematically interact. At any point in
time, a finite part of the semantic component is assumed to be
working. Some of the nodes in the active part of semantic
memory are linked to conditions of algorithms. If a condition
of an algorithm is activated, the corresponding action is
taken until the algorithm has been executed. "The result of
the interaction of the [semantic] network and the production
system [algorithm] depends upon the part of the propositional
network that is active and upon the particular actions
generated by the productions whose conditions are met in this
active network" (Gagne, 1978, p. 633). Together, these two
systems account for what is commonly called cognition.

Abstract similarity structure. When curriculum theorists
speak of learning a structure, they mean more than just an
algorithm or some aspect of semantic structure. They are
interested in the abstract relationships among important facts
(etc.) in a subject matter. Put another way, they are
interested in the student's view of the forest in contrast
to the trees. We believe curriculum theorists are interested
in similarity structures in students' memories--almost an
analog representation of the structure of a subject matter
(cf. Shepard, 1978; Shepard & Chipman, 1970). For example,
Shavelson (1972) examined students' "views" of the structure
of concepts in Newtonian mechanics and represented the
similarity structure geometrically as shown in Figure 4.
From the curricular point of view, the abstract similarity
structure is probably an important component of long-term
memory even if it can be derived from more primitive
components.
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Figure 4. Multidimensional scaling of data repre-
senting students' abstract similarity
structure in Newtonian mechanics.

Abbreviations: A = acceleration MOM = momentum
D = distance P = power
E = energy SP = speed
F = force T = time

IM = impulse V = velocity
IN = inertia W = work
M = mass WT = weight

(From Shavelson, 1970, p. 80.)

Retrieval of Information

With LTM conceived as an unlimitc, permanent s;:ore of
information, "forgetting" occurs because information cannot
be retrieved. While there is agreement that limited STM,
retrieval problems, and other limitations in human memory
lead to errors in problem solving and decision making (e.g.,
Landa, 1976; Slovic, Fischoff, & Lichtenstein, 1977), there
is by no means agreement on how information is retrieved
(e.g., Anderson, 1976; Brown & McNeill, 1966; Frijda, 1972;
Kintsch, 1970; Mandler, 1967, 1972; Neisser, 1976; Ratcliff,
1978; Tversky & Kahneman, 1974; Wickelgren, 1976). A brief
synthesis of several views, especially that of Collins and
Quillan (1972), is given below, as well as an indication of
the direction in which work in this area is going.
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In recall, information must first be retrieved from LTM.
Then a decision must be made as to whether the retrieved
information is what was required. Suppose a student is asked,
"In Newtonian mechanics, force is like what other concepts?"
To retrieve information to answer this question, the node
representing the concept of force is accessed in LTM. From
this node, a search radiates along the lines relating the
force node to other nodes. Although the search proceeds along
all of the lines leading from the force node, the ease with
which the links are traversed is influenced by the context
provided by the question. In this example the first concepts
retrieved will be "like" force and constrained,by the context
of Newtonian mechanics.

As each concept is retrieved, it is checked against some
subjective criterion the student has as to the type of
response required by the question. Thus, the student decides
to respond "push" or "mass times acceleration" and not
"teacher" or "police." In this manner, the student continues
until: (a) all concepts meeting the response criterion have
been exhausted, (b) the task is completed, or (c) a time limit
for responding is reached.

There are several critical features of the retrieval and
decision process. One feature is the importance of the
context established by the task and the instructips to the
subject. They influence the student's search of ti M and
establish a criterion against which alternative responses can
be tested. "It should be clear that the appropriate search
and decision strategy (or decision rule) varies in different
cases, depending on syntax and task instructions, and even the
range of stimuli used" (Collins & Quillan, 1972, p. 329). A
second feature is that the order of concepts retrieved and the
clusters of retrieved concepts are influenced by the structure
of LTM. And a third feature is that, in retrieving
information from memory, people use strategies or heuristics
to simplify the task. For example, in classifying a person or
object, an individual will judge the similarity of the
person's features to the features of a category held in
memory. While this heuristic may work in many circumstances,
it can also lead to errors. Thus, in judging the occupation of
an individual described as "very shy and withdrawn, invariably
helpful, but with little interest in people or in the world of
reality" (Tversky & Kahneman, 1974, p. 1124), people will
search memory for features similar to those described and
conclude, for example, that the individual is a librarian,
even though this occupation is held by relatively few people
in the labor force.

Representations of Subject-Matter Structure

In describing what students learn as a consequence of
mathematics instruction and how they use what they learn to
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solve mathematical problems, the first step is to describe, as
thoroughly as possible, the nature of the subject matter to be
learned. For purposes of comparing the nature of the subject
matter with students' views of it and how they use it, the
subject matter can be represented by the same structure as
long-term memory. Hence, a subject-matter structure can be
analyzed into a semantic component, an algorithmic component,
and an abstract similarity component.

At first blush, forcing a subject matter into these
components would seem to distort it, but does not, for at
least two reasons: one, logical relationships between the
concepts and procedures of a subject matter are retained; two,
a subject matter is ultimately psychological in nature since
it was, and is, cunceived by the human mind. Thus, a
subject-matter structure may be thought of as a representation
of the agreed-upon structure of the knowledge of the experts
in the field at some particular point in time (cf. Shavelson &
Stanton, 1975). Over time, this structure is expected to
change as new knowledge is gained. And so, the representation
of the subject matter structure should also change.

Abstract Similarity Structure

One possible view of the structure of a sLbjeLt matter is
what Shavelson (1974a) termed content structure: "the web of
facts (words, concepts) and their interrelations in a body of
instructional material" (p. 231; see also Shavelson, 1972,
1974b). This representation is obtained by identifying key
terms (representing concepts) in the instructional material,
syntactically parsing the instructional material to obtain
relationships between the key terms, and mapping these
relationships onto a directed graph, or digraph (Harary,
Nor -'an, & Cartwright, 1965) via a set of rules (Shavelson &
Geeslin, 1975). When the digraph is represented as a key-term
by key-term distance matrix, the underlying similarity
relationships between key terms may be examined with
nonmetric scaling procedures or clustering algorithms to
produce a spatial representation of the content structure.

This procedure for examining content structure has been
successfully applied to subject matter in physics ! Shavelson,
1972; Shavelson & Geeslin, 1975), probability (Geeslin &
Shavelson, 1975a, 1975b), and operational systems (Branca,
1980; Shavelson, 1974b; Shavelson & Stanton, 1975). For
example, an operational system (OS) is defined as "a set
together with a binary operation on the set. An OS
(e.g., whole numbers under addition) may possess any
or none of the following properties: associativity,
commutativity, identity element, and roundness (inverses)"
(Shavelson, 1974a, p. 244).
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From OS curriculum materials, key terms were identified and
the digraph analysis performed with the resulting structural
representation shown in Figure 5. Construct validation studies
(Shavelson & Stanton, 1975) suggest that the interpretation of
Figure 5 as a representation of content structure is
warranted.
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Figure 5. Digraph analysis of content structure.
(From Shavelson, 1974a, p. 246.)

Algorithmic Structure

The term algorithmic structure denotes a stepbystep
procedure used to solve a problem in mathematics. In school,
algorithms often are not taught in their entirety to students,
although bits and pieces of them are embedded in the
mathematics curriculum. It is often assumed that students
will somehow acquire algorithms for computing solutions to
problems and that they will select the appilpriate onesfor a
particular problem on a given occasion and execute them
accurately and efficiently.
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An example of an algorithmic structural analysis for the
multiplication of mixed nurAbers is shown in Figure 6.1 The
top Fart of the algorithm transforms all quantities into the
desired a/b form, where a is the numerator and b is the
denominator of the fraction. For example, the mixed number
1-1/2 would be rewritten as 3/2. (This portion of the
algorithm is never presented explicitly in any single chapter
of Peters et al., 1974, It is one of those procedures that is
assumed to be acquired by the students.) The next step is to
perform the multiplication:

al a2 al x a2
---x
122 b2 bi x b2

For example, 2x1 is rewritten as 3x2
. and then computed.2x9 1x9

The algorithm assumes that the prerequisite skill of
multiplication of whole numbers has already been mastered, so

6
that 3x2 will yieldu. The final task in the multiplica-

tion is reducing the answer to lowest terms. Figure 6a
indicates one procedure for doing so by recognizing that 6 is

6the highest common factor of 6 and 18 so that
IT3

reduces to 1
3

Given two or more nonnegative rational numbers to be.
multiplied, the algorithm presented will always provide the
correct answer.

1Note that the algorithm incorporates what is presented
in several chapters of a textbook. It is not necessarily an
"ideal" algorithm in its comprehensiveness or efficiency;
however, it does represent the algorithm the students are
expected to learn.
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Wayne, 1974).
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Figure 6a. Subroutine for reducing the fraction A/B
to its simplest terms.
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It may appear as though multiplication of nonnegative
rational numbers should be divided into subdomains. The
students must learn-how to multiply proper fractions (less
than 1), improper fractions (greater than 1), mixed numbers,
and combinations of fractions (including whole numbers). Many
texts, including Peters et al. (1974), treat some of these
cases separately. However, a nonnegative rational number is
defined as a number which can be written as the quotient of
two whole numbers, excluding division by zero. Since proper
fractions, improper fractions, mixed numbers, and whole
numbers can all be written in the form a/b, where a and b are
whole. numbers (b. 0), one general algoihm can be applied to
all possible cases, as shown in Figure 6. (However, note that
we are speaking of a' subject-matter structure. In an analysis
of a student's algorithmic. memory structure, separation into
different categories might be quite prevalent.)

The bottom section of Figure 6 indicates that the student
has the option of immediately multiplying the given quantities
once they are written in the correct form or factoring and
simplifying-before multiplying, thereby obtaining a solution
in lowest terms. Furthermore, the student need not choose one
of the algorithmic procedures presented in the text. The
learner may devise other strategies or heuristics to simplify
the problem-solving process. These options will be considered
more fully later in tnis' paper.

Semantic Structure

Understanding mathematical concepts is basically
understanding language. Semantic structure is the
representation of the meaning of text material and word
problems. According to Greeno (1978), understanding a text
requires the construction of a representation in memory of the
information in it. Although his work focuses on cognitive
structure, it can be interpreted in terms ofsubject-matter
structure. For example, Figure 7 presents Gr6eno's
propositional structure for the "idea that division is the
inverse operation of multiplication.... [In this figure]
multiplication and division are represented as actions that
cause Changes in the value of a quantity. I suggest that if a
goal of instruction is to have students understand this idea,
then one achievement that is desired is that students have a
schema like [the one shown in Figure 7] in their cognitive
[memory] structures" (p. 266).
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Figure 7. Propositional structure for the idea that
division is the inverse of multiplication.
(From Greeno, 1978, p. 266.)
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Semantic structures in mathematics texts also include
spatial representations of arithmetic concepts. So an analysis
of semantic structure should be able to provide an analogical
representation as well as a propositional structure. For
example, textbooks convey the meaning of rational numbers and
operations on them in a variety of ways.

Most books rely heavily on imagilal representations.
Children may first be taught to translate 1/3 x 1/2 into "1/3
of 1/2.' This proposition presumably gets stored in memory
,along with the multiplication algorithm and countless other
propositions in mathematics. The meaning of multiplying two
rational numbers in fractional form may then be taught by
dividing boxes. For example, start with one box and divide it
into halves:

Divide one of these halves into thirds:

1/2

1/2

1/2

1/3 of 1/2 1/3 of 1/2 1/3 of 1/2

These two operations give the same result as divid ..ng the
entire box into six equal parts:

1

unit 1/6,

1/6

1/6

Therefore, 1/3 of 1/2 must be the same as 1/6. Thus, words
are used in conjunction with pictures tO represent the meaning
of 1/3 x 1/2. TL is representation is intended to give meaning
to the multiplication of rational numbers and to provide the
foundation for learning the algorithm fot multiplying
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fractions. Once the topic has been developed conceptually, a

new algoritilm is presented: a/b x c/d = c
. It is

evident that the algori hmic structure is embedded in the
semantic structure of a subject matter.

Other textbooks represent fractions in other ways. For
example, the fraction 1/4 can be interpreted as a region:

part of a collection: ; a segment: 141 I I I

a point, on a number line: ( k 4 # y ) ; an ordered
-1 0 1/4 1

pair: (1,4); or a quotient: "I divided by 4." A particular-
ly interesting representation is the fraction as an operator
(Kieren, in press) in which quantities are inputs and outputs
of a machine which performs the operation of "fractioning" on
them:

0000 -0
1/4 1

operation( 0'
Syntactic Structure

Syntactic structure can be defined as the representation
of a sequence of mathematica' symbols. Syntactic knowledge is
required for understanding the relationship among quantities
in an arithmetic expression. Although the students may
already possess the semantic knowledge necessary for
understanding fractional relationships, they need to learn an
abstract notational system for describing these relationships.

They must be able to recognize the equivalence of 1/2,1 , and

possibly (1,2). They need to distinguish between 1/2 x 3/4 = ?
and 1/2 x ? = 3/4.

Syntactic and semantic str cture are strongly
interrelated. In fact, it is difficult to say where syntax
ends and semantics begins. For example, recognition that the
particul2.: product 1/4 x 1/6 is the same as 1/6 x 1/4 follows
a syntactic rule, but knowledge that a/b x c/d = c/d x a/b for
all whole numbers a, b, c, d, (b, dr,* 0) implies understanding
of the commutative property.
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Representation of Students' Knowledge of Mathematics

In this section studies of mathematics learning and
problem solving are reviewed. They are related to one another
in that they are motivated by information processing models.
Since the model outlined earlier has implications in many
areas of mathematics but has not yet been applied
systematically to any one domain, we will draw examples from
several different domains. However, the topic of rational
numbers will serve as our primary example wherever possible.
Thus, we will begin to develop a cognitive theory of rational
numbers by modeling the underlying psychological processes.
Studies from other areas of mathematics will be drawn upon as
supplementary examples of the application of the information-
processing model.

We begin by assuming that the student is an information-
processing system, confronted by a well-structured mathematics
problem that is difficult but not unsolvable. Methods for
solving the problem are accessed, relatively slowly, from
long-term memory (LTM). The structural components of LTM,
built upon prior knowledge and skills acquired during
learning, enter into the problem-solving process. We posit
three structural components (cf. Greeno, 1978)--an algorithmic
structure, a semantic structure, and a syntactic structure--
and tie them together with an overarching, abstract similarity
structure (cf. Shavelson, 1972, 1974a, 1974b). These
components guide our analysis of the cognitive structure of
individual students.

We use the term cognitive stru-,ture to refer broadly to
the memory structures and processes involved in learning and
solving problems. Cognitive structure, broadly defined, is "a
hypothetical construct referring to the organization
(relationships) og concepts in memory" (Shavelson, 1974a,
O. 232). It is built in the process of learning a subject
matter and influences problem solving (e.g., Mayer & Greeno,
19.72; Shavelson, 1972).

We speak of more than one structural component of
cognitive structure because the pal-ticular component will
depend on the task at hand. For example, if the task is to
teach a student to find the answer to the problem, 1/2 x 1/3,
it is possible to teach a relatively simple algorithm which
involves multiplyirg the numerators and denominators to obtain
1/6. If the complexity of the task is increased somewhat, say
1/2 x 2/3, the algorithm will serve our purposes with the
inclusion of a component for reducing 2/6 to 1/3 or a
component for simplifying, making use of the commutative and

identity properties (e.g., I xi 1x2 = 2x1 a 2x1 ix 1 .1
2 3 2x3 2x3 2 3 3 3
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However, the algorithmic representation of the problem does
not capture all that is involved in, say, a word problem such
as: "If Johnny receives one-third of half of a pie, how much
of the pie did he receive?" In this case, the task is to
decode the sentence for its meaning so that an appropriate
computational algorithm can be identified. Thus, another
representation of the structure, a semantic representation, is
needed. And, as Kieren (in press) suggests, that semantic
structure may be repre.Jented by at least five different models
of rational numbers. A student may or may hot decode the word
problem correctly depending on the model learned and the model
underlying the word problem. Finally, when mathematicians
speak of the structure of mathematics, they mean more than
just an algorithm or some aspect of semantic structure (cf.
Begle, 1971; Geeslin & Shavelson, 1975a, 1975b; Shavelson,
1974a). They are interested in, for example, the relations
between operations. For instance, addition and multiplication
of whole numbers and rational numbers are logically the same.
However, psychologically, multiplication of whole numbers can
be conceived of as successive additions, while multiplication
of rational numbers cannot. With rational numbers, addition
and subtraction are similar in the need to find the (least)
common denominator, and multiplication and division are
similar in that once the fraction is inverted in a civision
problem, multiplication is used to find the answer. Moreover,
mathematicians consider knowledge of the fundamental
properties of operational systems (e.g., associativity,
commutativity) essential in working with fractions, These
Properties play an important role in justifying a method for,
say, multiplying fractions or factoring terms.

Different but interrelated aspects of cognitive structure
can be identified. They correspond to the distinctions made
with respect to subject-matter structure: (1) abstract
similarity structure, (2) algorithmic structure, (3) semantic
structure, and (4) syntactic structure. Each is discussed
below.

Abstract Similarity Structure

The organization of key concepts in memory, according to
their similarity, is one aspect of a student's cognitive
structure. With respect to fractions, abstract similarity
structure refers to the student's view of the key concepts
(addition of fractions, least common denominator,
associativity, etc.) as a whole.

There are a number of methods available for examining a
student's similarity structure: (a) word association,
(b) similarity judgments, (c) card sorting, and (d) graph
building (cf. Fillenbaum & Rapoport, 1971; Shavelson, 1974a;
Shaveluon & Stanton, 1975). These measurement techniques have
been successfully applied to diverse areas such as phylics
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(Cox, Johnson, & Curran, 1970; Johnson, 1964, 1965, 1967,
1969; Preece, 1976; Shavelson, 1972), educational psychology
(Konold & Bates, Note 2), statistics and psychometrics (Traub
& Hambleton, 1974), botany (Rudnitsky, 1976), and color
perception (Fillenbaum & Rapoport, 1971). Figures 8 and 9
depict results of a hierarchical cluster analysis of data
obtained from the word association and graph construction
measures of cognitive structure, respectively, using the
subject area of operational systems. (See Figure 5 for a
representation of the similarity structure of this subject
matter. For information on validating construct
interpretations of these measures, see Shavelson and Stanton,
197.)

With respect to problem solving, some previous research
suggests a low, positive correlation between "goodness of
similarity structure" (i.e., goodness of the fit between
representations of content and cognitive structure) and
achievement test scores (e.g., Geeslin & Shavelson, 1975a,
1975b; Shavelson, 1972). Other studies have shown a stronger
relationship (e.g., Konold & Bates, Note 2). Figure 10
provides data on the correspondence between content and
cognitive structure for students learning probability' and a
control group learning an unrelated mathematical topic. These
data indicate that, after instruction, experimental subjects'
cognitive structures corresponded much more closely to' the
content structure than they had prior to instruction, and that
this correspondence,was closer than that of the control-coup.
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(From Geeslin & Shavelson, 1975b,
p. 35.)

Algorithmic Structure

Another method of representing the knowledge acquired by
children learning fractions is the analysis of their
algorithmic procedures. As discussed earlier, the term
algorithm denotes a step-by-step procedure used to solve a
problem in mathematics. Prior research (Brown, Burton, &
Hausman, 1977; Ginsburg, 1977; Groen & Resnick, 1977;
Lankford, Note 3) has shown that algorithms children use in
their computations are often unlike those they were taught.
Resnick (198C) and Groen and Resnick (1977) provide evidence
of invention on the part of young children learning simple
addition where exposure to instruction was controlled. They
were taught to add two numbers, m + n, by setting a "counter"
in the head to zero, incrementing it m time:, then, without
resetting, incrementing it n more times. However, some of the
children apparently set the counter it9 whichever of the two
numbers was greater and then incremkpped the counter by the
other (smaller) addend. The invented' procedure (heuristic) is
more complex bu:. much more efficient than the one they had
been taught.

Woods, Resnick, and Groen (1976) postulated five possible
algorithms used to solve single-digit subtraction problems of
the form m - n, where m > n. They are:

1. The counter is set to 0, incremented m times,
then decremented n times. The solution is the
final value in the counter.
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2. The counter is set to m and then decremented n
times. The solution is the final value in the
counter.

3. The counter is set to n and then incremented
(m - n) times, until m-is reached. The solution
is the number of times the counter has been
incremented.

4. The counter is set to 0, incremented n times and
then incremented until m is reached. The
solution is the number of times the counter has
been incremented after n is reached.

5. Either procedure 2 or 3 is used, depending on
which requires fewer operations.- (p. 18)

They found that most children used the heuristic procedure
( #5), but that some of the younger children used the taught
algorithm (#2). This finding suggests a developmental trend
in which children progress from using fixed algorithms to
solve subtraction problems to using more efficient heuristics
involving judgment and estimation.

Sometimes the algorithms invented by children are fraught
with errors or "bugs" (Brown, Burton, & Hausman, 1977). These
bugs may initially appear to be random errors but are actually
systematic and predictable errors of procedure. Davis (Note
1) cites examples in which the procedures themselves have
flaws (e.g., c[x2 + x.2] = cx2 + 12), as well as
instances of activating the wrong procedure for a specific
problem even though it is performed correctly (e.g., 4n .3 +
.4 .07, counting decimal places and adding them). These
mistaken strategies can arise from misunderstandings of the
syntactic, semantic, and/or algorithmic structure of the
instructional material.

A process-tracing approach3 can be used to characterize
algorithms employed by children in solving problems involving
rational numbers. In the process-tracing method (Shulman &
Elstein, 1975), children are asked to "think aloud" as they
work through a problem. Protocols are written from their oral
descriptions which are then translated into step-by-step
procedures.

The algorithm for multiplying mixed numbers, shown in
Figure 11, was produced when the process-tracing method was
used with one of the authors of this paper. In this

3This technique has been criticized (e.g., Erickson &
Jones, 1978) for imposing a serialization of processing which
may not necessarily exist.
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algorithm, all cancellations which are obvious are performed
before the multiplication is carried out. These include
cancelling equal numerators and denominators' and using the
greatest common factor to simplify the expression. If the
greatest common factor is not readily available, a search for
factors is conducted until no additional factors are found or
the nauseousness quota (NQ), determined by the individual, is
reached. When the search is completed, the multiplication is
carried out using the general algorithm:

al x a2 x . . . x an

bl x b2 x . . . x bn

The result is then reduced to its lowest terms if necessary.

The analysis of "bugs" in students' algorithms provides
data upon which instructional treatments can be developed to
test our model of this aspect of cognitive structure. These
treatments would address common errors in algorithms as well
as attempt to provide "inventions" (cf. Resnick, 1980) as
heuristics for solving problems. Of particular concern is the
link of this aspect of structure with the other representa-
tions.

Semantic Structure

A third method of representing a student's cognitive
structure is semantic structure. This component of memory
contains information about the "meaning" of, say, a fraction
such as 1/2 or of fractions such as 1/2 of 1/4. It also
provides the means for decoding prose material and word
problems. And, finally, it points to algorithms and
similarity structures involved in solving problems with
fractions.

---
Empirical research is needed to test the flexibility of

semantic representation of fractions in students' memories.
Is it the case that students will differ in their answers to
the following question based on how fractions were originally
presented to them?

Whicn pie correctly represents the solution to
1/3 x 1/2? You may circle more than one answer.

(a) (b) (c) (d)
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Circling (a ) alone would indicate rigidity in the
interpretation of expressions involving fractions.

Thus, the semantic structure or schema corresponding to a
student's understanding of simple expressions with fractions
may differ depending on the method used to teach the
representation of these expressions. This idiosyncratic
interpretation can also be used as the basis for understanding
a word problem such as "John has six marbles. One-half of
them are red. How many marbles are red?" One student-may need
to draw a picture to epresent the situation and count the red
marbles, whereas another student may be able to translate the
sentences into symbols directly and multiply.

In order for a student to understand multiplication of
rational numbers, Greeno's (1978) criterion of connectedness
must be satisfied. Connectedness refers to relating new
information to prior knowledge including familiar
experiences, specific mathematical procedures, and general
mathematical concepts. Thus, learning of fractions should be
facilitated by the student relating them to personal
expr -fence with such things as pies, boxes, and money.
Furt Amore, the student should realize that multiplication is
an operation on a pair of numbers, as are addition and
subtraction, and that any two numbers can be multiplied
whether they are whole numbers, mixed numbers, or fractions.
The general algorithm for multiplication then, will not be
understood unless the student integrates it with procedures
already learned, such as multiplication of whole numbers.
However, it is also possible that the student who learns that
rational numbers are operators themselves may relate them in
an abstract similarity structure to other operators like "+"
or "-."

Comparisons between subject-matter structure and
students' semantic structures can be made in order to
ascertain the range of knowledge the students have and their
ability to decode a word problem and select an appropriate
algorithm for solving it. This comparison will form the basis
for developing instructional treatments and connecting verbal
statements to algorithms and so provide a test of the validity
of this representation of structure.

Syntactic Structure

Syntactic structure in students' memories was previously
defined as the cognitive representation of the order of
mathematical symbols. Errors in students' computational
strategies may be revealed in their acquired syntactic
structures. The student who responds "2" to 1/2 x ? = 4 may
have executed the wrong algorithm because of a failure to
understand the significance of symbol position. However, the
error might arise from a misunderstanding of the concept of
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inverse operation or from not knowing that division is the
inverse operation of multiplication. Or, the error might
result from a bug in the division algorithm. Uncovering the
source of error is not an easy task. If the child rewrites
4-1/2 as 4 x 1/2, is this an error in syntax or semantics?
Syntactical errors are related to bugs in algorithmic
structure, semantic structure, or both. Instructional
treatments for correcting not just the syntactical bugs but
also the algorithmic and semantic ones need to be developed.

Summary

This paper sketched some of the methods used by
educational psychologists to study mathematical learning and
problem solving from an information-processing perspective.
The student was characterized as an information-processing
system that (a) received initial information, such as a
mathematical problem to be solved, through perceptual
processes, (b) represented the concept or problem internally
in memory structures, (c) transformed the internal
representation as learning and problem solving progressed, and
(d) responded (e.g., gave a problem solution) overtly on the
basis of this internal representation.

A general model of memory processes was then set forth,
emphasizing long-term memory (LTM; a permanent, unlimited,
highly organized information store) and two major structural
Components of LTM: semantic structure (knowledge of things,
events, and states of the world) and algorithmic structure
(knowledge of step-by-step procedures needed to reach some
goal). This model was used to map the structure of the task
confronted by the student (e.g., the problem to be solved) and
the way in which the student represented the task internally
and transformed it in order to reach some goal (e.g., finding
a solution to the probl,m). Finally, representative research
both in the structural/inalysis of the task and in the
structural analysis of memory processes was described.

The emphasis of the information-processing approach on
the analysis of the structure of the task as well as on the
analysis of the student's internal representation of the task
makes the collaboration between mathematics educators and
psychologists essential.. Mathematics educators are best able
to identify the many possible ways to conceive of a
mathematical concept or problem, while psychologists are best
able to model the processes the student uses in order to learn
mathematics and solve mathematical problems. If this paper
fosters such collaborative research in some small way, it will
have fulfilled its purpose.
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Reaction

to

AN INFORMATION PROCESSING APPROACH TO RESEARCH
ON MATHEMATICS LEARNING AND PROBLEM SOLVING

William E. Geeslin
Department of Mathematics

University of New Hampshire

The reader should note that Geeslin and Shavelson have
worked together on occasion and that Geeslin is in general
agreement with many tenets of information processing theory.
Thus, the reactions presented here do not question the
validity of information processing models as plausible
descriptors of cognitive behaviors or processes. Rather, this
paper will focus on problems of communication between
mathematics educators and psychologists or educational
psychologists and the incompleteness of the model(s) outlined
by Shavelson and Porton.

The Shavelson and Porton paper apparently fulfills quite
well its stated purpose of being "a report to mathematics
educators concerning the methods used by some educational
psychologists to study learning and problem solving in
mathematics." A reader who is totally unfamiliar with the
methods and research discussed in the paper might still have
questions after reading the paper, but the extensive list of
references should provide the answers to most questions. The
language and examples used in the paper are such that most
readers should not only understand the "spirit" of the type of
research being presented but also comprehend the theory and
current results. Information processing appears to be a
promising methodology for furthering our understanding of
human behavior, particulavly when this behavior involves
mathematics. Of course, many unanswered questions about
learning remain, but Shavelson and Porton outline promising
avenues by which some of these questions may be answered. I
believe this is the most one can ask of any emerging
scientific theory.

Even though this reactor greatly appreciates the
synthesis of research achieved by Shavelson and Porton, this
reaction will be useful only if it focuses on questions raised
by the paper and on aspects of the theory not clearly
explained or known. To this end, I will consider three issues
raised in reading the paper: (a) a problem of language
and/or terminology, (b) the failure to account for higher
level processing, and (c) the lack of information concerning
retrieval from long-term memory.
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Terminology

Shavelson and Porton discuss the fact that many
educational psychologists use mathematical content in their
research without having inherent interest in mathematics
per se. I think one reason mathematics is often used as a
vehicle in research is that many people view it as a highly
structured content area compared to other common school
subject-matter areas; they believe that unique, correct
solutions exist to mathematical problems or tasks. However,
this view is at least partially incorrect. Even though
current school mathematics programs may often emphasize the
"right answer" and the "correct algorithm," mathematics can be
operated upon (or constructed) at a higher cognitive level in
any school ycade. Searching for patterns, developing new
algorithms, proving conjectures, and revising assumptions are
all examples of "mathematical" activity. At least score
desired mathematical processing implies less, rather than
more, structured mental operations as the result of such
processing. The psychologist, who.is familiar primarily with
common school mathematics, may well have a different view
(concept) of addition than the Mathematician. As a
consequence, the psychological model may not do well at
predicting mathematical problem-solving behavior even if it
does simulate cognitive processing related to computation.
Thus, the mathematics educator may complain about the
inappropriateness of the model for classroom application, or
worse yet, ignore the model because mathematical terms clearly
are misused (the example of Piaget's work comes to mind). The
crucial question ts: What meaning do the psychologists attach
to various mathematical terms? We should' not be overly
concerned with whether these meanings are "correct"; we should
be more concerned with whether the ideas are helpful. In
turn, mathematics educators may believe they understand this
presentation of information processing, yet have distorted
concepts of the psychological terms used. In fact, we will
not know if Shavelson and Porton succeeded in explaining
information processing until mathematics educators begin to
use and refine the psychological theory in their own research.
It appears that joint research ventures are a necessity for
overcoding the "communications gap" alluded to by Shavelson
and Porton.

Higher Level Processing

One question concerning the Shavelson and Porton paper
arises from the mathematically simple examples that are
discussed. Is the restriction to simple examples merely a
convenience in elucidating the psychological theory, or does
it imply that the information processing model is applicable
only to lower level cognitive processes such as computation
and simple school text applications? The most troublesome
aspect of much information processing research is the often

r
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low correlation between cognitive structure variables and
achievement (particularly problem solving) variables. The
research demonstrates rather clearly that we can change
students' cognitive structures in terms of relationships
between concepts; however, the connection between cognitive
structure measures and noncomputational performance measures
seems tenuous at best. The failure of the information
processing model to deal satisfactorily with higher level
processing is not in itself a fatal flaw, but it does suggest
that a significant amount of study is needed to perfect the
model. Many mathematics educators are more concerned about
problem solving and applications of mathematics than they are
about computation.

Information Retrieval

The weakest aspect of information processing theory
appears to lie in the area of information retrieval. The
various clustering and graph notions provide rather clear and
useful models of concept formation and/or concept organization
We believe we can observe indirectly changes in cognitive
organization, and we have some theory to explain these changes
and the procedures which cause these changes to take place.
Yet, this reader does not understand what happens when
students are presented with a mathematical problem and begin
to use their cognitive structures, i.e., their current
organization of concepts (information). Some students are
consistently more successful than others in efficiently
recalling appropriate information and using this information
to formulate solutions to a problem. Admittedly it is
extremely difficult to form hypotheses concerning behavior
that is largely unobservable. However, it is precisely this
area of processing that is of most concern to mathematics
educators. It is also this area in which mathematics
educators might make the most contributions to psychological
theory, since their mathematical understanding should -make
them aware of the variety of processes possible and thus lead
to. ways of eliminating certain hypotheses. Models are needed
to show the process of change in cognitive structures and the
process of using cognitive structures.

In summary, the Shavelson and Porton paper-provides a
framework for considerable research. The concise and
illuminating presentation of information processing theory is
a welcome one. We seem to have made some progress toward
understanding children's thinking. qie are still short of
being able to use this theory (model) for classroom
applications. That is, little evidence has been presented
which implies that classroom use of the model leads to a high
probability of successful student learning. Nonetheless,
Shavelson and Porton have pointed us in a potentially useful
direction. Mathematics educators should not ignore this
theory simply because we are in a theory development stage
rather than a classroom application stage.

133/1341 143



REFLECTIONS ON INTERDISCIPLINARY RESEARCH TEAMS

John Richards
Division for Study and Research in Education

Massachusetts Institute of Technology

Leslie P. Steffe
Department of Mathematics Education

University of Georgia

Ernst von Glasersfeld
Department of Psychology

University of Georgia

,...we believed that the divisions between the
sciences were convenient administrative lines
for the apportionmeht of money and effort,
which each working scientist should be willing
to cross whenever his studies should appear to
demand it. Science, we both felt, should be a
collaborative effort.

(Norbert Wiener concerning his working
relationship with Arturo Rosenblueth, the
Mexican neurologist as described in I Am
a Mathematician.)

After several years of intensive and remarkably rewarding
collaboration, each of us feels deeply committed to inter-
disciplinary research. At the same time we have become aware
of some of the problems inherent in any interdisciplinary
effort, problems that cannot be solved by enthusiasm alone.
The conditions under which an interdisciplinary research team
may become productive, let alone flourish, are in an important
way different from those that foster other research, and they
are not at all obvious.

,

In principle, there is much to be gained by initiating
and maintaining a dialogue between disciplines, but such a
dialogue is not as easy to establish as it might seem. We
contend that only when the disciplinary boundaries are
breached in each member of the research team will inter-
disciplinary research produce a measure of success. Each
discipline has its own problems, its own methods, its own
picture of the world, and its own language. It is difficult .

to identify all tne hazards involved in crossing the uncharted
waters between disciplines. Like Columbus setting out for
China, one may land in. America. The approach to any new
shore, be it the expected or an unforeseen one, is marked by a
shift in climate. Even if one lands unscathed from the
journey, the terrain is unfamiliar, the culture alien, and the



language far less translatable than it might seem at first.
These obstacles hinder mutual understanding--but even if
understanding is achieved, it is not sufficient as a basis for
joint research. The individuals involved must not only become
bi- or multilingual, they must also be resilient, forgiving,
and willing to relinquish--at least for the time being--a good
many of their habitual patterns of thought. The work of an
interdisciplinary research team, as opposed to other research
teams, begins with a search for mutually acceptable patterns
of thought, and the first task in this search is to establish
a language in common. It is not surprising that there are few
interdisciplinary research teams. In contrast, there are many
individuals who operate quite successfully in more than one
discipline and who, as individuals, have made the transition
from a single discipline to productive interdisciplinary work.
Clashes within one person are, as a rule, less bloody than
clashes between two or more people.

We know of no efforts in the past to document the
successes and failures of the interdisciplinary aspect of
research. We have found no analyses in the literature of
either the problems or their solutions. Our recent experience
of continuing intensive interaction has forcibly clarified
several points for us, and the ideas t:lat have sprung from the
process may be of interest to others.

What is.Interdisciplinary Research?

Interdisciplinary research is research conducted
among two or more disciplines. It requires a shared research
program--that is, a shared language, methodology, problem
priorities, and epistemology (LakatoS, 1970). Inter-
disciplinary research is to be distinguished from cross-
disciplinary research, which is simultaneous or parallel
research conducted within each of several disciplines
separately. Cross-disciplinary research occurs when there is a
temporary set of shared problems and a pooling of results, but
a lack of interaction. For example, as Harry Beilin (1976)
points out, there are logical, mathematical, and linguistic
models which all attempt to account for the development of
concepts in the child, and all serve separately as bases for
alternative programs for teaching and learning mathematics.
These parallel models have been developed in different
di=ciplines, each halting its own problems and using its own
methods. There is understandably only a slight chance that
one model will ever modify another, let alone that all of them
may be synthesized into a single program. Interdisciplinary
research is also to be distinguished from undisciplined
research which occurs in that no-man's-land between the
disciplines and thus creates an entirely new field of study.
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Interdisciplinary research is unique in its manner of
relating the disciplines involved. They are not viewed as
competing, and they are not taken as alternatives. No parent,
or sponsoring, discipline can have a greater investment than
the others. Rather, each discipline must be equally committed
to the importance of the joint research. If the research
problems are peripheral to any of the disciplines, then that
discipline will necessarily assume a secondary, supporting
role. Its team member will have less stake in the results and
will be more reluctant to relinquish the assumptions customary
in his or her discipline.

Much of the current clamor for interdisciplinary research
is bolstered by drawing an analogy with consultation, that is,
the borrowing of specific results and methods from a separate
discipline. Obvious benefits may be gained when an
investigator in one discipline seeks advice on a specific
topic from an authority in another discipline. For example, a
psychologist may consult with a statistician on the design df
an experiment; in this situation the statistician is used as a
resource, much like a volume in a library. The analogy
between interdisciplinary research and consultation breaks
down, however, because their structures are different. In
consultation the information flows essentially one way, in
that the discipline consulted provides information to the
researcher. In interdisciplinary research the information
flows both ways, so that each discipline.affects the other.

Preconditions for Interdisciplinary Research

Researchers turn to interdisciplinary research out of
dissatisfaction and frustration not only with their own
research a:id lack of progress but, perhaps mainly, with the
state of research in their disciplines as a whole. They turn
to other disciplines for methods that might be more promising
than their own. Thus, interdisciplinary research arises from
a rejection of currently accepted lines of research and
methods of inquiry. As with any significantly new turn, it
may, if successful, produce a revolution (cf. Kuhn, 1970).
However, because there is a distinctly self-conscious
awareness that revolution is a highly probable result,
interdisciplinary research is perhaps best characterized as a
planned revolution.

Although any revolution ends, by definition, in a
nonstandard program, interdisciplinary research begins that
way. The difficulty of planning such a program is sufficient
to account for the failure of many interdisciplinary research
projects. The initial program has two essential aspects, one
negative and one positive. A planned revolution must take into
account both of these aspects if it is to have any chance of
success.
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Negative program. There must be an adequate critique of
existing programs of research. This critique must extend to
the protected dogmatic core of the accepted programs. Becsuse
it is an attack on this core, the critique might best be
gauged by the vigor with which it is rejected and by the
animosity generated in the established research community.
The better the critique, the more it will be perceived as an
attack on the research program itself and not merely as a
competing theory that might become part of the existing
program.

Positive program. There must be an adequate basis for
establishing new methods, new theories, new metaphysics--in
short, a new methodological research program. This basis
takes the form of a radically different perspective that
provides new kinds of data and creates new distinctions.

While these two preconditions exist in almost any period
of ferment within a discipline, there are several additional
characteristics which mark the turning from a tradition and
which are needed for interdisciplinary research to develop.
These conditions for success are more clearly fortuitous than
the two preconditions, yet they provide the basis for the
interdisciplinary resolution, as opposed to the development of
a new program within a single discipline.

Conditions for Successful Interdisciplinary Research

Simultaneity. For interdisciplinary research to
develop, the preconditions described above must be met by
research in several disciplines at the same time. Frustrations
must arise simultaneously if the revolution is not to be a
takeover of one discipline by another. It is precisely this
shared feeling of inadequacy which ings researchers whose
previous work has been unrelated together in search of a
common ground.

In contrast, the takeover of one discipline by another is
often manifested in a "bandwagon" effect, when an established
research program is adopted hook, line, and sinker by
researchers in another discipline. A takeover must not occur
if a synthesis is to be achieved. Schwab (Note 1) argues that
in contexts where several disciplines are involved it is
essential to avoid the "arrogances of specialism." These
arrc inces are a necessary and important part of the conduct
of science. They are a result of the confidence created by the
security of the research program. This confidence is
essential if an investigator is to spend a lifetime on the
program's problems. The program would break down under
constant questioning and prolonged challenging of the
presuppositions. Challenges undermine the foundations and
destroy the security needed for lifelong commitments. Schwab
argues:

138 147



Collegiality will arise only to the extent that
a minimal capacity for shame and a degree of
humility characterize each member of the group.
(p. 29)

But it is precisely these qualities, humility and shame, which
are suppressed by an established methodological research
program.

The takeover of one discipline by another either
literally, through some form of reductionism, or figuratively,
by a wholesale adoption of methods, problems, and techniques,
precludes the establishment of interdisciplinary research in
the proximity of a firmly established and flourishing
discipline. The tradition of the successful discipline, by
the very force of its success, prevents the genuine
consideration of alternatives. An established program has set
answers to attacks on its protected core, and it has an
established hierarchy of problems that are not easily ignored
or superseded.

Relatedness. The positive programs (see above) of the
disaffected researchers must share a common perspective on
philosophy and method. Although interdisciplinary team
members need not have identical philosophies or subscribe to a
common method entirely, they must have a shared perspective.
They must see similar things and must approach issues from the
same angle. The shared perspective does not and cannot
prevent the formulation of competing, perhaps incompatible,
subtheories, but it does provide a context for resolving
conflicts. It is only through the existence of a shared core
of,beliefs that domains can be restricted, because the belief
system provides the categories that determine domains for
research. Once this common ground is established, conflicts
are no longer likely to threaten the cohesion of the group.

Equality. Each team member must perceive the others'
research problems as significant and must perceive that each
discipline has potential for contributing to the research
enterprise. This requirement is perhaps the most important
and the one most dependent on the idiosyncratic development of
the investigators. In interdisciplinary research, as in
society generally, "separate but equal" cannot work. This
doctrine fails in research for the same reasons as in society.
If disciplines are maintained separately, there is little
basis for familiarity and less for cooperation or compromise.
Inevitably some become more equal than others, and the
collegiality so desperately needed is destroyed.

Equality in this sense can only be achieved when the
boundaries of the disciplines are breached in (each) of the
participating individuals. Thus, every team member must



develop competence in each of the separate disciplines. A
precondition for our own project was that each of us
deliberately operate outside our original field of competence.
Another place in which research has successfully transcended
disciplinary boundaries is the Genevan school. In a survey of
interdisciplinary research Piaget (1973) observes:

Geneva has always encouraged psychologists to
collaborate with logicians, mathematicians,
cyberneticians, physicists and so on....the
link between a 'higher' (in the sense of more
complex) and a 'lower' field results neither
in a reduction of the first to the second nor
in greater heterogeneity of the first, but in
mutual assimilation such that the second
explains the first, bUt does so by enriching
itself with properties not previously per-
ceived, which afford the necessary link. (p. 67)

Specificity. Interdisciplinary research must be
directed at specific problems that are seen as significant
from the perspective of each of the separate disciplines.
Moreover, each discipline must view the problems in terms of
specifiC issues which require the participation of other
disciplines. However, there need not be a common solution,
nor agreement on method, nor agreement on exactly which
aspects of the problems are to be attacked. Each investigator
approaches the issues with the training and tools of his or
her respective discipline. Strange configurations of issues
may be produced initially, but it is the interdisciplinary
history of each team member which provides the basis for an
eventual integration of ideas.

Whether the two preconditions and four conditions
really coexist at any time for any particular project is
difficult to establish and is, in fact, beside the point.
What is essential is that the researchers themselves believe
that the conditions are right. Often, the first years of a
project arelbest directed towards achieving the conditions.

Our Own Project

The groundwiork for our project was laid during five years
of interaction and-collaboration on several joint efforts. In
retrospect,' it is clear that we were becoming acquainted with
and carefully evaluating each other's disciplines but had not
yet formed a research team. The formulation of our proposal,
for an interdisciplinary study of an ekperimental model of
learning and teaching whole numbers (Steffe, Richards & von
Glasersfeld, 1979; Note 2) marks the point at which our ideas
first came together to form a "methodological research .

programme" (cf. Lakatos, 1970). Our mutual acceptance of a
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constructivist epistemology provided a shared perspective,
even though constructivism meant different things to each of
us. Most important of all, we had developed complementary
positive and negative programs.

For our project we identified a common problem--the
construction of whole number concepts in children--which
interested each of us for vastly different reasons. Other
topics might have provided the content for our investigation,
but attacking this issue in mathematics education was
attractive for several reasons. To begin with, mathematics
education is just the sort of pragmatic area that invites the
contributions of other disciplines. Moreover, it is beset
right now by various crises both in curriculum and practice,
at the sane time that it suffers a complete absence of
agreement on research methods or philosophy. Thus there
seemed to be an open area which not only fit our respective
backgrounds but also was susceptible to planned revolution.

Although our project has produced a great deal in a short
time, and we all feel tremendous excitement at what we have
accomplished so far, there is a negative undercurrent
resulting from the extended nature of the project. The
development of new methods, new language, and a new research
program takes a good deal of time. In two years we have begun
to begin; the major work is still to be done. There is a
strong temptation to "take the money and run." That is, there
is a strong temptation to treat our work as crossdisciplinary
to take what we have individually learned Lnd return to our
separate disciplines. While we each might contribute much to
our separate disciplines, such a move would abort the planned
revolution. On the other hand, there is a good deal of
societal pressure to stop. Whether our project continues
depends on several factors, most of which are only
peripherally related to the intellectual endeavor.

Can an Interdisciplinary Research Program Succeed?

Planned revolutions rarely succeed. Revolutions largely
depend on the confluence of events that appear to be out of
anyone's control. Revolutions are mostly fortuitous
happenings.

Work in any research progtam requires a deep commitment.
Successful programs in accepted disciplines have available
support systems, both material and emotional, that allow
research to continue in the absence of positive results. New,
nonstandard research programs within a single discipline face
overwhelming odds, but there are structures that support
nonstandard programs--tenured positions, research monies, some
amenable journals, and so on. There is no comparable support
system oLce individuals leave the confines of a discipline.
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Piblications, research monies, hiring and promotional
decisions all require evaluations, and these evaluations are
made &J. members of the affected disciplines. It is not
difficult to anticipate the results. Irterestingly enough,
when members of a discipline do acknowledge the benefits of
the new research, they attempt to separate the benefits from
the interdisciplinary program. The contributions of the other
disciplines are minimized and regarded as being of secondary
importance or as having a parasitic existence, making little,
or no, real contribution.

The current trehd in universities and researc.. centers is
to cut back services and programs in response to reduced
budgets. Financial exigencies exert pressure on nonstandard
research programs. Moreover, the political division of
universities into departments isolates the interdisciplinary
investigator. Even when ]ecisions are male above the
department level, it is with the aid of departmental
representatives. An interdisciplinary project rarely has a
"protector" and becomes part of the. fat which can be trimmed.
Funding agencies, too, are departmentalized into disciplines,
in spite of recent attempts at broadening t. it scope. When
control resides with those who perceive th.2'.r role as
protectors of their discipline,-it goes without saying that
they see little value in interdiscipliary work.

Is it possible to produce short -L. --,-. gains sufficient to
buy time? Attacking specific problems rovides sc-,e hope for
success but is not a guarantee. 71ubli ring nonstandard
articles is difficult for two reasons. First, a new paradigm
must not only be conceived buL also communicated, often using
a language that is still far from adequate. Second, the
written product, to be accepted for publication, must survive
the scrutiny of readers who frequently see little need for
revolution in t-:eir discipline,

The most essential factor in the long-term survival of c.

project is attracting other researchers to the project. A
research program takes time to succeed (cf. Feyerabend, 19,75)
or even to fail. If the work produced provokes others, then
interest and support will develop within the several affected
disciplinary cOmmunities. To remain interdisciplinary a
project must not be limited in its attraction to a single
community. The absence of wide-ranging support will reduce
the project to just another movement in a particular
discipline. The broader project--that of a planned
revolution--will be forced underground.

Reference Notes

1. Schwab, J. J. The practical 3: Translation into
curriculum. Paper presented at the Melton Center,
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