Written by computer specialists, teachers, parents, and students, the 23 articles emphasize the role computers play in the development of thinking, problem solving, and creativity in gifted and talented students. Articles have the following titles and authors: "Computers and Computer Cultures" (S. Papert); "Classroom Computers—Beyond the 3 R's" (F. Bell); "Reflections of a Computer Language Nut" (S. Bloch); "It Started with Games" (C. Karnes); "Two Programs from a Young Eighth Grader" (S. Bahcall, H. Nelson); "Teaching Parents About Using Microcomputers" (T. Dwyer, M. Critchfield); "Children and Home Computers—Some Observations on the First Generation" (B. Banet); "An Apple a Day Keeps a Kid Occupied" (P. Buszta); "Microcomputers for Gifted Microtots" (A. Doorly); "Kids and Computers—The Future Is Today" (S. Larsen); "Micros 'GOTO' School" (D. Piele); "The Hampton City Schools Computer Program" (N. Harkavy); "The Paducah Tilghman High School for Gifted Students" (S. Davis, P. Frothingham); "Computers...Are All Dinosaurs Dead?" (D. Glover); "The Talcott Mountain Science Center" (S. Barstow); "Computerorics—A Course in Computer Literacy" (P. Bird); "Fringing Microcomputers into Schools" (G. Ropes, H. Gaylord); "Statewide Educational Computer Systems—The Many Considerations" (K. Hausmann); "Van Helps Schools Select the Right Computer" (B. Staples); "Some Thoughts on Computers and Greatness in Teaching" (T. Dwyer); "The Hacker Papers:" and "Educational Software" (D. Lubar). Lists of printed materials, vendors and manufacturers, and resources on using microcomputers in schools and classrooms conclude the document.

(SB)
COMPUTER CONNECTIONS

for Gifted Children and Youth

JEAN N. NAZZARO, Editor

The Council for Exceptional Children

A product of the
ERIC Clearinghouse
on Handicapped and Gifted Children
Contents

Foreword iv

1 Why Computer Experiences Are Needed Now
 Computers and Computer Cultures Seymour Papert 3
 Classroom Computers Beyond the 3 R's Fred Bell 9

2 Perspectives of Gifted Children and Youth
 Reflections of a Computer Language Nut Stephen Bloch 15
 It Started with Games Christopher Karnes 18
 Two Programs from a Young Eighth Grader Safi Bahcall and Harold Nelson 19

3 Computers at Home
 Teaching Parents About Using Microcomputers Thomas A. Dwyer and Margot Critchfield 25
 Children and Home Computers Some Observations on the First Generation Bernard Banet 27
 An Apple a Day Keeps a Kid Occupied Ron Buszta 28

4 Programs in Action
 Microcomputers for Gifted Microtots Ann Dooley 31
 Kids and Computers The Future is Today Sally Greenwood Larsen 34
 Micros "GOTO" School Donald T. Piele 37
 The Hampton City Schools Computer Program Neva Harkavy 40
 The Paducah Tighman High School "Chomics" Program Steve Johnston 41
 Computing at a New Public High School for Gifted Students Steve Davis and Phyllis S. Frothingham 43
 Computers Are All Dinosaurs Dead Douglas Glover 46
 The Talcott Mountain Science Center Daniel Barstow 49
 Computeronics A Course in Computer Literacy Pi-mien Bird 53

5 Getting Started
 Bringing Microcomputers into Schools George Rope and Henry Gaylord 57
 Statewide Educational Computer Systems The Many Considerations Kevin Hausmann 60
 Vens Help Schools Select the Right Computer Detsy Staples 63

6 The Human Perspective
 Some Thoughts on Computers and Greatness in Teaching Thomas A. Dwyer 71
 The Hacker Papers 73

7 Resources
 Educational Software David Lubar 83
 Printed Materials 87
 Vendors and Manufacturers 88
 R & D Mini-List of Resources 90
Foreword

The launch of Sputnik in 1957 served to focus attention on our nation's need to provide special education for gifted and talented students. The event was like an electrical shock in that it served to jolt the education community into action with a resulting surge of programs, especially in science and mathematics. At that time, computers were very expensive, very large, and very limited in accessibility. The thought of being able to provide computer experiences to youngsters in regular classrooms was unthinkable.

Nearly 25 years has elapsed since Sputnik's flight and advancements in computer technology have turned what was once unthinkable into something that is becoming commonplace.

Although more computers are showing up in classrooms every year, there is still a long way to go before they will be universally available.

Competition among world powers is as keen today as it was 25 years ago. Although we haven't been jolted recently as we were with Sputnik there is no room for complacency. Most people agree that computer literacy will be essential for survival in the 21st century. Therefore, there is no time to waste. It is urgent that our schools provide computer experiences for today's students, especially those who are gifted.

The articles in this book clearly reveal that experiences with computers provide students with insight into the thinking process.

It is hoped that, after reading this book, educators and other individuals in decision-making positions will be motivated to do something about providing computer experiences for all students.

Articles written by computer specialists, teachers, parents, and students all emphasize the important role computers play in the development of thinking, problem solving, and creativity. Model program strategies for getting started and information on the most current resources have been included to help administrators who are ready to make the computer connection for their students.

My sincere thanks to Russell E. Adams who provided me with numerous articles for consideration from his personal collection of computer magazines. His advice and corroboration of my selections for this volume was greatly appreciated.

Jean N. Nazzai
October 1981
1 Why Computer Experiences Are Needed Now

Computers and Computer Cultures by Seymour Papert and _Classroom Computers Beyond the 3 R’s_ by Fred Bell were chosen as the first sections in this book because they so clearly articulate the value of computers beyond computer-assisted instruction. These articles emphasize that real learning comes about when students have the chance to experiment and program computers themselves.

Papert comments... "in teaching the computer how to think, children embark on an exploration about how they themselves think. Thinking about thinking turns the child into an epistemologist, an experience not even shared by most adults." If this happens with normal children, the insights gained by gifted youngsters may be even more profound.

Papert, a mathematician and a student of Piaget, believes that computer experiences for young children will have a profound effect on the age at which they are able to shift from concrete to formal thinking. Computer models provide concrete form to areas of knowledge that ordinarily are intangible and abstract. Furthermore, when children learn to program, the process of learning becomes active and self-directed. The knowledge is acquired for a recognizable personal purpose. Computers give students some real control over what they learn and how they learn it and this is very motivating.

Bell believes that computers can revolutionize learning in schools by teaching children how to function at higher cognitive levels. When a student writes computer programs, the six steps of problem solving (posing the problem, precisely defining the problem, gathering information, developing a solution strategy, finding the solution, and checking the solution) must be carried out. Children with these skills are capable of learning independently and of conducting the research and explorations that go into creating knowledge.

It seems quite evident that children who have been involved in the kind of experiences Papert and Bell describe will have distinct advantages over those who have not, not only because they will be computer literate in an age where computers have become indispensable tools, but because they will understand and be able to control their own thinking and problem-solving behavior.
In most contemporary educational situations where children come into contact with computers the computer is used to put children through their paces, to provide exercises of an appropriate level of difficulty, to provide feedback, and to dispense information. The computer programming the child. In the LOGO environment the relationship is reversed: The child is in control: The child programs the computer. And in teaching the computer how to think, children embark on an exploration about how they themselves think. Thinking about thinking turns the child into an epistemologist, an experience not even shared by most adults.

After five years of study with Jean Piaget in Geneva, I came away impressed by his way of looking at children as the active builders of their own intellectual structures. To say that intellectual structures are built by the learner rather than taught by a teacher does not mean that they are built from nothing. Like other builders, children appropriate to their own use materials they find about them, most saliently the models and metaphors suggested by the surrounding culture. Piaget writes about the order in which many children are held back in their learning because they have a model of learning in which you have either "got it" or "got it wrong." But when you learn to program a computer you almost never get it right the first time.

This material is a condensation of Chapter 1 of Mindstorms by Seymour Papert. published in 1980 by Basic Books, Inc. of New York City at $12.95 Those who find themselves stimulated by this presentation will find it profitable to read the entire work.

Copyright PAO, Basic Books, Inc. Used by Permission.

Many children are held back in their learning because they have a model of learning in which you have either "got it" or "got it wrong." But when you learn to program a computer you almost never get it right the first time.

the child develops different intellectual abilities. I give more weight than he does to the influence of the materials a certain culture provides in determining that order. For example, our culture is very rich in materials useful for the child's construction of certain components of numerical and logical thinking. Children learn to count; they learn that the result of counting is independent of order and special arrangement; they extend this "conservation" to thinking about the properties of liquids as they are poured and of solids which change their shape. Children develop these components of thinking preconsciously and "spontaneously," that is to say without deliberate teaching. Other components of knowledge, such as the skills involved in doing permutations and combinations, develop more slowly, or do not develop at all without formal schooling.

The computer presence might have more fundamental effects than did other new technologies, including television and even printing. The metaphor of computer as a mathematics speaking entity puts the learner in a qualitatively new kind of relationship to an important domain of knowledge. Even the best of educational television is limited to offering quantitative improvements in the kinds of learning that existed without it. Sesame Street might offer better and more engaging explanations than a child can get from some parents or nursery school teachers, but the child is still in the business of listening to explanations. By contrast, when a child learns to program, the process of learning is transformed. It becomes more active and self-directed. The knowledge is acquired for
a recognizable personal purpose. The child does something with it. The new knowledge is a source of power and is experienced as such from the moment it begins to form in the child's mind.

I have spoken of mathematics being learned in a new way. But much more is affected than mathematics. Piaget distinguishes between "concrete" thinking and "formal" thinking. Concrete thinking is already well on its way by the time the child enters first grade at age 6 and is consolidated in the following several years. Formal thinking does not develop until the child is almost 12, give or take a year or two, and some researchers have even suggested that many people never achieve fully formal thinking. I do not fully accept Piaget's distinction, but I am sure that it is close enough to reality to help us make sense of the idea that the consequences for intellectual development of one innovation could be qualitatively greater than the cumulative quantitative effects of a thousand others. My conjecture is that the computer can concretize (and personalize) the formal. Seen in this light, it is not just another powerful educational tool. It is unique in providing us with the means for addressing what Piaget and many others see as the obstacle which is overcome in the passage from child to adult thinking. I believe that it can allow us to shift the boundary separating concrete and formal. Knowledge that was accessible only through formal processes can now be approached concretely. And the real magic comes from the fact that this knowledge includes those elements one needs to become a formal thinker.

This description of the role of the computer is rather abstract. I shall concretize it by looking at the effect of working with computers on two kinds of thinking Piaget associates with the formal stage of intellectual development: combinatorial thinking, where one has to reason in terms of the set of all possible states of a system, and self referential thinking about thinking itself.

In a typical experiment in combinatorial thinking, children are asked to form all the possible combinations (or "families") of beads of assorted colors. It really is quite remarkable that most children are unable to do this systematically and accurately until they are in the fifth or sixth grades. Why should this be? Why does the task seem to be so much more difficult than the intellectual feats accomplished by seven and eight year old children? Is its logical structure essentially more complex? Can it possibly require a neurological mechanism that does not mature until the approach of puberty? I think that a more likely explanation is provided by looking at the nature of the culture. The task of making families of beads can be looked at as constructing and executing a program, a very common sort of program, in which two loops are nested: Fix a first color and run through all possible second colors, then repeat until all possible first colors have been run through. For someone who is thoroughly used to computers and programming there is nothing "formal" or abstract about this task. For a child in a computer culture it would be as concrete as matching up knives and forks at the dinner table. Even the common "bug" of including some families twice (for example, red-blue and blue-red) would be well known. Our culture is rich in pairs, couples, and one to one correspondences of all sorts, and it is rich in language for talking about such things. This richness provides both the incentive and a supply of models and tools for children to build ways to think about such issues as whether three large pieces of candy are more or less than four smaller pieces. For such problems our children acquire an excellent intuitive sense of quantity. But our culture is relatively poor in models of systematic procedures. Until recently there was not even a name in popular language for programming, let alone for the ideas needed to do so successfully. There is no word for "nested loops" and no word for the double counting bug. Indeed, there are no words for the powerful ideas computerists refer to as "bug" and "debugging."

Without the incentive or the materials to build powerful, concrete ways to think about problems involving systematicity, children are forced to approach such problems in a groping, abstract fashion. Thus cultural factors can explain the differences in age at which children build their intuitive knowledge of quantity and of systematicity.

While still working in Geneva I had become sensitive to the way in which materials from the then very young computer cultures were allowing psychologists to develop new ways to think about thinking. In fact, my entry into the world of computers was motivated largely by the idea that children could also benefit, perhaps even more than the psychologist, from the way in which computer models seemed to be able to give concrete form to areas of knowledge that had previously appeared so intangible and abstract. I began to see how children who had been taught to program computers could use very concrete computer models to think about thinking and to learn about learning and in doing so, enhance their powers as psychologists and as epistemologists. For example, many children are held back in their learning because they have a model of learning in which you have either "got it" or "got it wrong." But when you learn to program a computer you almost never get it right the first time. Learning to be a master programmer is learning to become highly skilled at isolating and correcting "bugs," the parts that keep the program from working. The question to ask about the program is not whether it is right or wrong, but if it is fixable. If this way of looking at intellectual products were generalized to how the larger culture thinks about knowledge and its acquisition, we might all be less intimidated by our fears of "being wrong." This potential influence of the computer on changing our notion of a black and white version of our successes and failures is an example of using the computer as an object to think with. It is obviously not necessary to work with computers in order to acquire good strategies for learning. Surely "debugging" strategies were developed by successful learners long before computers existed. But thinking about learning by analogy

Our culture is relatively poor in models of systematic procedures.
with developing a program is a powerful and accessible way to get started on becoming more articulate about one's debugging strategies and more deliberate about improving them.

My discussion of a computer culture and its impact on thinking presupposes a massive penetration of powerful computers into people's lives. That this will happen there can be no doubt. The calculator, the electronic game, and the digital watch were brought to us by a technical revolution that rapidly lowered prices for electronics in a period when all others were rising with inflation. That same technological revolution, brought about by the integrated circuit, is now bringing us the personal computer.

There really is no disagreement among experts that the cost of computers will fall to a level where they will enter everyday life in vast numbers. Some will be there as computers proper, that is to say, programmable machines. Others might appear as games of ever increasing complexity and in automated supermarkets where the shelves, maybe even the cans, will talk. There is no doubt that the material surface of life will become very different for everyone, perhaps mostly for all for children. But there has been a significant difference of opinion about the effects this computer presence will produce. I would distinguish my thinking from two trends of thinking which I refer to here as the "skeptical" and the "critical".

Skeptics do not expect the computer presence to make much difference in how people learn and think. I have formulated a number of possible explanations for why they think as they do. In some cases I think the skeptics might conceive of education and the effect of computers much Piagetian learning takes place as a child grows up. If a person conceives of children's intellectual development as, for that matter, moral or social development as deriving chiefly from deliberate teaching, then such a person would be likely to underestimate the potential effect that a massive presence of computers and other interactive objects might have on children.

The critics, on the other hand, do think that the computer presence will make a difference and are apprehensive. For example, they fear that more communication via computers might lead to less human association and result in social fragmentation. As knowing how to use a computer becomes increasingly necessary to effective social and economic participation, the position of the underprivileged could worsen, and the computer could exacerbate existing class distinctions. As to the political effect computers will have, the critics' concerns resonate with Orwellian images of a 1984 where home computers will form part of a complex system of surveillance and thought control. Critics also draw attention to potential mental health hazards of computer penetration. Some of these hazards are magnified forms of problems already worrying many observers of contemporary life, others are problems of an essentially new kind. A typical example of the former kind is that our grave ignorance of the psychological impact of television becomes even more serious when we contemplate an epoch of super TV. The holding power and psychological impact of the television show could be increased by varying the content to suit the tastes of each individual viewer, and by the show becoming interactive, drawing the viewer into the action. Critics already cite cases of students spending sleepless nights riveted to the computer terminal, coming to neglect both studies and social contact.

In the category of new problems, critics have pointed to the influence of the allegedly mec-anized thought processes on how people think. Marshall MacLuhan's doctrine that "the medium is the message" might apply here. If the medium is an interactive system that takes in words and speaks back like a person, it is easy to get the message that machines are like people and that people are like machines. What this might do to the development of values and self image in growing children is hard to assess. But it is not hard to see reasons for worry.

Despite these concerns, I am essentially optimistic—some might say utopian—about the effects of computers on society. I do not dismiss the arguments of the critics. On the contrary, I too see the computer presence as a potent influence on the human mind. I am very much aware of the holding power of an interactive computer and of how taking the computer as a model can influence the way we think about ourselves. In fact the work on LOGO to which I have devoted much of the past ten years consists precisely of developing such forces in positive directions. For example, the critic is horrified at the thought of a child hypnotically held by a futuristic, computerized supertwiddle machine. In the LOGO work we have invented versions of such machines in which powerful ideas from physics or mathematics or linguistics are imbedded in such a way that permits the player to learn them in a natural fashion, analogous to how a child learns to speak. The computer's "holding power," so feared by critics, becomes a useful educational tool. Or take another, more profound example. The critic is afraid that children will adopt the computer as model and eventually come to "think mechanically" themselves. Following the opposite tack, I have invented ways to take educational advantage of the opportunities to master the art of deliberately thinking like a computer, according, for example, to the stereotype of a computer program that proceeds in a step-by-step, literal, mechanical fashion. There are situations where this style of thinking is appropriate and useful. Some children's difficulties in learning formal subjects such as grammar or mathematics derive from their inability to see the point of such a style.

A second educational advantage is indirect but ultimately more important. By deliberately learning to imitate mechanical thinking, the learner becomes able to articulate what mechanical thinking is and what it is not. The exercise can lead to greater confidence about the ability to choose a cognitive style that suits the problem. Analysis of "mechanical thinking" and how it is different from other kinds and practice with problem analysis can result in a new degree of intellectual sophistication. By providing a very concrete, down to earth model of a particular style of thinking work with the computer can make it easier to understand that there is such a thing as a "Style of thinking." And giving children the opportunity to choose one style or another provides an opportunity to develop the skill necessary to choose between styles. Thus instead of inducing mechanical thinking, contact with computers could turn out to be the best conceivable antidote to it. And for me what is most important in this is that through these experiences these children would be serving their apprenticeship as epistemologists, that is to say learning to think articulately about thinking.

The intellectual environments offered to children by today's cultures are poor in opportunities to bring their thinking about thinking into the open, to learn to...
In teaching the computer how to think, children embark on an exploration about how they themselves think.

The critic is horrified at the thought of a child hypnotically held by a futuristic, computerized super pinball machine.

As with writing to teach music making, games of skill, complex graphics, whatever. The computer is not a culture unto itself but it can serve to advance very different cultural and philosophical outlooks. For example, one might think of the Turtle as a device to teach elements of the traditional curriculum, such as notions of angle, shape, and coordinate systems. And in fact most teachers who consult me about its use are trying to use it in this way. Of course the Turtle can help in the teaching of traditional curriculum, but I have thought of it as a vehicle for Piagetian learning, which is a learning without curriculum.

There are those who think about creating a "Piagetian curriculum" or "Piagetian teaching methods." But to my mind these phrases and the activities they represent are contradictions in terms. I see Piaget as the theorist of learning without curriculum and the theorist of the kind of learning that happens without deliberate teaching. To turn him into the theorist of a new curriculum is to stand

It is not a matter of a small and technical choice between two teaching strategies. It reflects a fundamental difference in educational philosophies. More to the point, it reflects a difference in view on the nature of childhood. I believe that the computer as writing instrument offers children an opportunity to become more like adults, indeed like advanced professionals, in their relationship to their intellectual products and to themselves. In doing so, it comes into head-on collision with the many aspects of school whose effect, if not whose intention, is to "infantilize" the child.

Word processors can make a child's experience of writing more like that of a real writer. But this can be undermined if the adults surrounding the child fail to appreciate what it is like to be a writer. For example it is only too easy to imagine adults, including teachers, expressing the view that editing and re-editing a text is a waste of time. "Why don't you get on to something new?" or "You aren't making it any better, why don't you fix your spelling?"

In short while the critic and I share the belief that working with computers and children the use of the computer as a writing instrument is a very real form of writing, the critics view the computer as a wrong instrument. The critics have observed in these classrooms and in the computer environment engaged in self-referential discussions about their own thinking. This could happen because the LOGO language and the Turtle were designed by people who enjoy such discussion and worked hard to design a medium that would encourage it. Other designers of computer systems have different axes and different ideas about what kinds of activities are suitable for children. Which design will prevail, and in what subclass will not be decided by a simple bureaucratic decision made for example in a governmental Department of Education or by a committee of experts. Trends in computer style will emerge from a complex web of decisions by foundations, with resources to support one or another design. By corporations who may see a market by schools by individuals who decide to make their career in the new field of activity, and by children who will have their own say in what they pick up and what they make of it. People often ask whether in the future children will program computers or become absorbed in pre-programmed activities. The answer must be that some children will do the one, some the other, some both, and some neither. But which children, and most importantly, which social classes of children, will fall into each category, will be influenced by the kind of computer activities and the kind of environment created around them.

As an example, we consider an activity which may not occur to most people when they think of computers and children the use of the computer as a writing instrument. For me writing means making a rough draft and refining it over a considerable period of time. My image of myself as a writer includes the expectation of an "unacceptable" first draft that will develop with successive editing into presentable form. But I would not be able to afford this image if I were a third grader. The physical act of writing would be slow and laborious and I would have no secretary. For most children rewriting a text is so laborious that the first draft is the final copy, and the skill of rewriting with a critical eye is never developed. This changes dramatically when children have access to computers capable of manipulating text. The first draft is composed at the keyboard. Corrections are made easily. The current copy is always neat and tidy. I have seen children move from total rejection of writing to an intense involvement in rapid improvement of quality within a few weeks of beginning to write with a computer. Even more dramatically, changes are seen when the child has physical handicaps that make writing by hand more than usually difficult or even impossible.

This use of computers is rapidly being adopted wherever adults write for a living. Most newspapers now provide their staff with "word processing" computer systems. Many writers who work at home are acquiring their own computers and the computer terminal is steadily displacing the typewriter as the secretary's basic tool. The image of children using the computer as a writing instrument is a particularly good example of my thesis that what is good for professionals is good for children. But this image of how the computer might contribute to children's mastery of language is dramatically opposed to the one that is taking root in most elementary schools. The computer is seen as a teaching instrument. It gives children practice in distinguishing between verbs and nouns, in spelling, and in answering multiple choice questions about the meaning of pieces of text. As I see it, this difference is not a matter of a small and technical choice between two teaching strategies.
him on his head.

But "teaching without curriculum" does not mean spontaneous, free form classrooms or simply "leaving the child alone." It means supporting children as they build their own intellectual structures with materials drawn from the surrounding culture. In this model, educational intervention means changing the culture, planting new constructive elements in it and eliminating noxious ones. This is a more ambitious undertaking than introducing a curriculum change, but one which is feasible under conditions now emerging.

Suppose that thirty years ago an educator had decided that the way to solve the problem of mathematics education was to arrange for a significant fraction of the population to become fluent in (and enthusiastic about) a new mathematical language. The idea might have been good in principle, but in practice it would have been absurd. No one had the power to implement it. Now things are different. Many millions of people are learning programming languages for reasons that have nothing to do with the education of children. Therefore, it becomes a practical proposition to influence the form of the languages they learn and the likelihood that their children will pick up these languages.

Throughout the course of this chapter, I have been talking about the ways in which choices made by educators, foundations, governments, and private individuals affect the potentially revolutionary changes in how children learn. But making good choices is not always easy, in part because past choices can be hard to change. For me, this symbolizes the idea that we can learn from the experience of the computer domain.

Another example occurs even when attempts are made to allow students to learn to program the computer. Learning to program a computer involves learning a "programming language." There are many such languages—for example, Fortran, Pascal, Basic, Smalltalk, and Lisp. The easier known language LOGO, which our group has used in most of our experiments with computers and children, is a powerful example of a "programming" phenomenon. It is to be expected when we choose the language in which children are to learn to program computers I shall argue in detail that the issue is consequential. A programming language is like a natural human language in that it favors certain metaphors, images, and ways of thinking. It would seem to follow that educators interested in using computers and sensitive to cultural influences would pay particular attention to the choice of language. But nothing of the sort has happened. On the contrary, educators, too timid in technological matters or too ignorant to attempt to influence the languages offered by computer manufacturers, have accepted certain programming languages in much the same way as they accepted the QWERTY keyboard. An illustrative example is the way in which the programming language Basic has established itself as the obvious language to use in teaching American children how to program computers. The relevant technical information is this: A very small computer can be made to understand Basic while other languages demand more from the computer. Thus, in the early days when computer power was extremely expensive, there was no genuine technical reason for the use of Basic in schools—where budgets were always tight. Today, in fact, for several years now, the cost of computer memory has fallen to the point where any remaining economic advantages of using Basic are insignificant. Yet in most high schools, the language remains almost synonymous with programming, despite the existence of other computing languages that are demonstrably easier to learn and are richer in the intellectual benefits that can come from learning them. The situation is paradoxical. The computer revolution has scarcely begun, but it is already breeding its own conservatism. Looking more closely at Basic provides a window on how a conservative social system appraises and tries to neutralize a potentially revolutionary instrument.

Basic is to computation what QWERTY is to typing. Many teachers have "learned" Basic; many books have been written about it, many computer manufacturers have accepted Basic because it was originally included because the computer manufacturers demanded it or because alternatives were not well enough known at the time. The language was designed.

An example of Basic ideology is the argument that Basic is easy to learn because it is a very small vocabulary. Its small vocabulary can be learned quickly enough. But using it is a different matter. Programs in Basic acquire such a structure that the most motivated and brilliant of mathematician's children do not learn to use it for more than trivial ends.

One might ask why the teachers do not notice the difficulty children have in learning Basic. The answer is simple. Most teachers do not expect high performance from most students, especially in a domain of work that appears to be as mathematical and "formal" as programming. Thus the culture's general perception of mathematics as inaccessi-
Computer Cultures, continued...

ble: bolsters the maintenance of Basic, which in turn confirms these perceptions. Moreover, the teachers are not the only people whose assumptions and prejudices feed into the circuit that perpetuates Basic. There are also the computerists, the people in the computer world who make decisions about which languages their computers will speak. These people, generally engineers, find Basic quite easy to learn, partly because they are accustomed to learning such very technical systems and partly because Basic's sort of simplicity appeals to their system of values. Thus, a particular subculture, one dominated by computer engineers, is influencing the world of education to favor those school students who are most like that subculture. The process is tacit, unintentional. It has never been publically articulated, let alone evaluated. In all of these ways, the social embedding of Basic has far more serious consequences than the "digging in" of QWERTY.

There are many other ways in which the attributes of the subcultures involved with computers are being projected onto the world of education. For example, the idea of the computer as an instrument for drill and practice that appeals to teachers because it resembles traditional teaching methods also appeals to the engineers who design computer systems. Drill and practice applications are predictable, simple to describe, efficient in use of the machine's resources. So the best engineering talent goes into the development of computer systems that are biased toward favor this kind of application. The bias operates subtly. The machine designers do not actually decide what will be done in the classrooms. That is done by teachers and occasionally even by carefully controlled research experiments. But there is an irony in these controlled experiments. They are very good at telling whether the small effects seen in best scores are real or due to chance. But they have no way to measure the undoubtedly real and probably more massive biases built into the machines.

We have already noted that the conservative bias being built into the use of computers in education has also been built into other new technologies. The first use of the new technology is quite naturally to do in a slightly different way what had been done before without it. It took years before designers of automobiles accepted the idea that they were cars, not "horseless carriages," and the precursors of modern motion pictures were played as a theater plus photography. Most of what has been done up to now in the name of "educational technology" or "computers in education" is still at the stage of the linear mix of old instructional methods with new technologies.

We are at a point in the history of education when radical change is possible, and the possibility for that change is directly tied to the impact of the computer. Today what is offered in the educational "market" is largely determined by what is acceptable to a sluggish and conservative system. But this is where the computer presence is in the process of creating an environment for change. Consider the conditions under which a new educational idea can be put into practice today and in the near future. Let us suppose that today I have an idea about how children could learn mathematics more effectively and more humanely. And let us suppose that I have been able to persuade a million people that the idea is a good one. For many products such a potential market would guarantee success. Yet in the world of

Basic is to computation what QWERTY is to typing.

education today this would have little clout. A million people across the nation would still mean a minority in every town's school system, so there might be no effective channel for the million voices to be expressed. Thus, not only do good educational ideas sit on the shelves, but the process of invention is itself stifled. This inhibition of invention in turn influences the selection of people who get involved in education. Very few with the imagination, creativity, and drive to make great new inventions enter the field. Most of those who do are soon driven out in frustration. Conservatism in the world of education has become a self-perpetuating social phenomenon.

Fortunately, there is a weak link in the vicious circle. Increasingly, the computers of the near future will be the private property of individuals, and this will gradually return to the individual the power to determine patterns of education. Education will become more of a private act, and people with good ideas, different ideas, exciting ideas will no longer be faced with a dilemma where they either have to "sell" their ideas to a conservative bureaucracy or shelf them. They will be able to offer them in an open marketplace directly to consumers. There will be new opportunities for imagination and originality. There might be a renaissance of thinking about education.
Classroom Computers: Beyond the 3 R's

Fred Bell

The classroom computer should, and can, go far beyond rote computer-aided instruction by teaching the student to analyze, evaluate and develop complex skills. Perhaps, as a result, the long-awaited "revolution in education" will be here sooner than predicted.

Since 1965, computer buffs, myself included, have been promising a revolution in education because computers are going to school. But where is this revolution? Certainly there has been at least a modest learning revolution; this is apparent from the many people who are learning about computers and using them to learn other things. In spite of the fact that some worthwhile applications are being done with computers in a few exemplary schools, this learning revolution has yet to take place in most schools. There has been an evolution in school learning (at least in many schools) that can be attributed, in part, to computer technology, but no real revolution.

Before considering the potential revolutionary effects of personal computers upon education, it is helpful to differentiate between school learning and out-of-school learning. The two are not always the same. We tend to learn things away from school when we want or need to learn them and we do so in our own way and at our own speed. This kind of learning has advantages and disadvantages. One advantage comes from higher motivation which encourages more inspired and efficient learning. On the other hand, the tendency to avoid difficult or uninteresting tasks may result in not learning some very useful and important things. Consequently schools are useful in coercing students, hopefully in a friendly and interesting way, into learning some things that are good for them which may not be learned otherwise. Out-of-school learning can be both good and bad, but so can in-school learning, which gets us to personal-computers and the education revolution.

Personal Computers and Dollars

One of the big reasons why personal computers may catalyze a revolution in our schools is that they are relatively cheap and should get even cheaper. Any family that can afford two color TV sets can now afford one color TV and a personal computer. Of course, any high school that could scrape up $10,000 per year for each of 10 years from a $1,000,000 per year budget could have had nearly all of its students using a minicomputer since 1969. (See James Sanderson, Mathematics Teacher, May, 1978, pp. 443-447.) Fortunately, a family's decision-making processes in buying a personal computer are less cumbersome than a school's. Unfortunately for school students, as David Lichtman found (Creative Computing, January, 1979, page 48), educators are less enthusiastic about the computer's role in society and its potential for improving education than the general public.

Personal Computers and Motivation

One of the most serious problems in schools is that of motivating stu-
Most people (including teachers and students) are impressed by good interactive computer games, simulations and tutorials, which provide recognition and influence for their creators. Finally, messing around, in a meaningful way of course, with a personal computer can be relaxing and enjoyable, in spite of many minor, temporary frustrations and aggravations.

Therefore, we find that personal computers in the hands of students in school can remove some of the artificial constraints of typical classroom environments and replace them with some of the personal freedoms inherent in many non-school learning situations.

Personal Computers and Learning

What is learned in school? English, reading, writing, arithmetic, French, history, etc.? Yes, these are some of the subjects that are taught but students should learn many other things that subsume all subjects. That is, students need to study each subject in a manner that permits them to function at all of the following cognitive levels:

- knowledge
- understanding
- application
- analysis
- synthesis
- evaluation
- problem solving
- knowing how to learn
- creating knowledge

Schools are fairly good at imparting knowledge (i.e., "George Washington was the first U.S. president") and understanding (i.e., "2 + 3 = 5 because 2 marbles together with 3 marbles is 5 marbles"). However, schools are only moderately successful at teaching applications (out-of-school uses for each subject), analysis (breaking a skill or conceptual structure into its parts), synthesis (building complex skills or conceptual structures from simpler things), and evaluation (comparing skills and structures and making judgments about them). Schools and teachers have even less success at teaching students the skills and heuristic procedures of problem solving, how to learn independently of teachers and courses, and ways of conducting the research and explorations that go into creating knowledge.

During the past 15 years we have demonstrated, through many dramatic examples, that computers can be used in schools to help teach knowledge, understanding, and applications of various subjects—things that were being done fairly well without computers. This is the evolutionary aspect of computers in education. But what about the higher-level cognitive activities, those things that we haven't been able to teach very successfully in school? Herein lies the true power of computers (especially personal computers) to really revolutionize learning and teaching in schools.

Writing a computer program requires analysis and synthesis of the subject under consideration as well as the program itself. A student cannot write a program to tutor others, play a game, simulate a situation, or solve an exercise without analyzing the topic being studied and synthesizing it into a coherent teaching/learning program. The synthesis required in writing the program properly and the analysis in debugging it provides additional practice at synthesizing and analyzing. Since many non-tutorial computer programs are higher-level applications of topics, the student programmer must evaluate the appropriateness of alternative approaches to the topic and the program. When a student writes computer programs to extend and clarify topics in school, the six steps in problem-solving (posing the problem, precisely defining the problem, gathering information, developing a solution strategy, finding the solution and checking the solution) must be carried out. On the other hand, most so-called "problems" in textbooks are really exercises for practicing skills, which require only one of the six steps in problem solving, namely, finding the answer. After several years of working with people in Project Solo at the University of Pittsburgh, we found that many students and teachers could carry out independent research of their own choosing in computer-enhanced learning environments. That is, these people were creating knowledge and learning how to learn independent of people who were labeled as the teachers and rooms that were called classrooms.

Now personal computers can bring the Solo concept of high-level, self-motivated learning out of the research-and-development laboratory...
and put it in the hands of large numbers of students and teachers in school classrooms.

Carrying Out the Revolution

Even before the advent of personal computers (as early as 1972), the computer technology and courseware existed for a revolution in teaching and learning in schools. Now personal computers with their low costs, easy accessibility, total dedication to the user, and person-on-the-street popularity may provide the long-awaited catalyst that is needed to make some dramatic changes in how computers are used in schools. In a few years large numbers of students entering high school will be as familiar with a computer as they are now with a TV set, probably more so since they will have actively programmed a computer, in comparison to watching television passively.

As a consequence of the popularity of television, Americans are accused of having become spectators rather than participants in life. Personal computing certainly requires active intellectual participation on the part of the user. I have yet to hear of anyone dozing off while sitting in front of a personal computer.

For several years mathematics teachers worried about whether kids should be allowed to use hand-held calculators in school. The popularity of calculators outside school quickly settled that issue. Nearly every family had a calculator. Pre-school children played with them and students brought them to school. Teachers could not ignore calculators because it was impossible to keep them out of school; so now they are trying to determine how best to incorporate calculators and calculator-related skills into the school mathematics curriculum. Even if people try to keep personal computers out of schools, they are going to fail. In a few years, when they are more efficiently packaged and even less expensive, personal computers can fill the “lunchbox-technology” void created by school-lunch programs. Instead of a lunchbox, students will be carrying a PET or TRS-80 computer on a handle to school. When this time comes, an Apple for the teacher will really help a kid get a better grade in school.

References

"Mr. Axilbroad will see you now, sir. Keep your seat."

Creative Computing
2 Perspectives of Gifted Children and Youth

Two of the three articles in this section were written especially for this book. The two high school students who were invited to contribute were selected because their experiences with computers were known to have had a significant impact on their lives. Although their experiences differ in some respects—one has his own personal computer at home, while the other has access to large main frame computers—both know that their future lies in the field of computer technology.

One of the authors, Stephen Bloch, a high school senior, recognizes the same qualities in computer experiences as do Papert and Bell. Bloch comments.

Teaching the skills, habits, and disciplines of computer programming improves a child’s (or an adult’s) ability to think, and these skills should be taught for the same reasons the so-called Great Books should.

In computer programming, nothing can be glossed over, nothing can be left to cure itself, and everything must be accounted for.

The invention of computers has caused irrevocable changes in human society, and within 40 years will bring about changes we cannot conceive of today. Even if it were desirable to eliminate them from our lives, we cannot reject them now without crippling civilization for decades. Obviously, therefore, we must adapt to them: learn why they work, learn how to use them, and take advantage of their growth by learning from them. Computers are not “newfangled” things that will go out of style in 10 years. If we do not teach our kids to adapt to the rapid changes the next 40 years will bring, we are making them maladjusted to their world from the start.

For Christopher Karnes, an 11th grade student, his computer has been like a magic carpet. As a result of his interest, he has participated in activities he probably never would have engaged in otherwise. For example, Chris experienced the challenge of taking college courses and the pleasure of successful completion while still a high school sophomore. He designed a research study using his computer which earned him a first place trophy in the State Science Fair. Chris believes computer experiences can be used successfully by all children and youth because computer programming is a fascinating, creative, and intellectual challenge.

The final article in this section describes the computer experiences of Safi Bahcall, an 11-year-old eighth grade student. The article also presents two programs Safi has developed. His introduction to the world of computers is similar to that of Karnes in that they both have TRS-80 personal computers. Safi’s programs were included to illustrate what level of accomplishment is possible when children are turned loose with a computer.
Reflections of A Computer Language Nut

STEPHEN BLOCH

My introduction to computers came in December 1979. There was a computer room in my high school, and through its windows I had seen some friends of mine typing away feverishly at what I recognized after some thought as computer terminals. It took me about a week to find enough nerve to knock at the door. Interestingly enough, it was not the computer itself that I was afraid of; I had read enough about how computers were a man-made invention completely controlled by humans to be interested, not frightened, by the prospect of controlling them myself. I was afraid of the rites of passage into the "computer clique," which I envisioned as some sort of Pythagorean mystical society. Fingers crossed behind my back, sweat dripping from my brow, I raised a fist to knock at the door and was greeted with the anticlimactic news that I would have to talk to a math teacher down the hall to obtain an ID enabling me to use the computer. Oh Brave New World!

The computer I was first introduced to was a "mini" called the Hewlett-Packard 2000. It could communicate with up to 32 users at a time, most of whom were connected by telephone cable from all over the county. This particular computer "understood" only one of the many artificial languages on the market today, an educational language developed in 1964 called BASIC. BASIC is more readable and hence easier for a beginner to understand than FORTRAN, Lisp, or machine language. However, its unstructured style is responsible for most of the sloppy programming in the world today, because so many programmers like myself first learned BASIC. Its greatest selling point is that it is by far the most widely known language for personal and small business computers in the world. Regardless of the language, however, the multi-user system was appropriate for a beginner because there were always plenty of experienced people to talk to via a message-sending program built into the system. The ability to call on more experienced people for help is important in learning to program and use a computer, and every multi-user system I have worked on has had an easily accessible program to perform this message-sending function.

Exploring Computer Languages

During the first year of my computer use, I was restricted to BASIC, though I did use two of the dozens of different versions of it. In 11th grade I took the Computer Science II course and was introduced to FORTRAN, one of the oldest computer languages, dating to the late 1950's. I didn't like it, partially because the nearest computer that ran it was a different model that had more complicated commands and no documentation to explain how to use them. Because of this association, and the fact that it contained few features, my version of BASIC lacked, I still dislike FORTRAN. However, the idea of the existence of languages other than BASIC, to which I had grown so accustomed that I had almost forgotten it was an invented language to begin with, intrigued me.

I started trying to write my own language, modestly called BLOCH (Branch-Loop Oriented Computer Handler). I found that I could not write it efficiently without a language specifically designed for writing computer languages. Therefore, I started learning SPL, Systems Programming Language. I had little success writing in it, but its modular structure was quite different and far more logical than the linear structure of BASIC and FORTRAN. Then I tried PASCAL, a similar modular instruction language my father told me about. I visited my cousin at MIT and found that his computer science course used one of the oldest structured languages, Lisp (List Processing language). I started trying to learn that, which was difficult because I had no Lisp instruction manual, and of the two in existence, one was obsolete and the other incomplete.

I joined an Explorer post in my area which met every week at the Honeywell building for 2 hours to learn about computers, and found to my delight that their computer ran Lisp. A friend in my Computer Science class mentioned a language called FORTH, in which programs consisted entirely of words defined in terms of each other, and this interested me. All of these languages, collectively referred to as "high-level languages," were based upon and defined in a machine language, which is fast, compact, and utterly unreadable. Then I started to wonder what such a low-level language was really like. In short, I went language crazy, and I still am to some extent.

When introduced to computers, most people find some area of special interest in which they, too, "go crazy," though not many are language nuts as I am. For example, one of my friends does only what programming is required for class and spends most of his time improving and testing a homemade microcomputer, which he has now built up to the level of a relatively cheap hand-held programmable calculator, but which has far more capacity for expansion. My Explorer post is divided into three groups, roughly equivalent to patrols in Boy or Girl Scouts, which concern themselves respectively with software, hardware, and simulations (programming a computer to act like a different type of computer or to understand a different language) and although every Explorer does some programming, we work mostly within our groups.

One effect seen in people, especially teenagers, who spend a lot of time with computers is somewhat frightening. In some cases they forget how to communicate with everyday, illogical humans. The closest approach to this I have seen myself is a tendency to semiconsciously speak in jargonese and buzzwords ("troubleshoot the FOPEN intrinsic in an SPL sysdump program that breaks security by FCOPYing the low-memory end of the working-directory RAM") with people who know little or nothing about comput-
ers. This effect can be avoided if the person concerned works on computers less than about four hours a day, but its existence gives one pause.

The Attraction of Computers

We have seen that young people are often naturally attracted to computers for a variety of very basic reasons ("Ooh, look at the pretty colors!" "I take the center square!" "We'll show those Klingons!" "Ahead Warp Factor Four!"") If I bless to King's knight five, he'll probably "Where in the user-input routine do I want the error-trap subroutine to return to?") Computers are virtually impossible to destroy or even mildly confuse without a long-term, conscious effort, and even with one—I've tried! The most important requirement to learning about or even with computers is freeing oneself from hangups about robot revolutions and looking foolish, so that one can concentrate on learning from and teaching these idiot-savant machines. Now that you know more or less how to learn about computers, it might be nice to know why as well.

The Need for Computer Literacy

Over the past few years numerous reasons to glorify computers have been found, so I'll skip briefly through the more obvious ones to one I feel is both more valid and more important for gifted children than all the rest combined. The use of the computer as a teacher's aide depends on optical-scanner forms, from general ones a teacher can use for multiple-choice tests to nationally standardized tests like the SRA/TED, the PSAT, NMSQT, and the SAT. Without black No. 2 pencils to fill in the entire circle but not lap outside it (see example on your test booklet, back page), our colleges and high schools would come to a screeching halt within a month or two.

Many high schools and most colleges have kept grading, scheduling, and attendance information on computer files for years. But a system in which teachers use computers regularly and students not at all will clearly give young people the impression that computers are "grown-up things" which they are not allowed to use. Admittedly, the feeling of forbiddenness often adds a thrill of danger, but in this case it also prevents students from asking their teachers for help.

One commonly cited reason for teaching kids about computers is the immense practical value such skills will have in a computer-oriented world, both in job-finding and in everyday life. However, a major goal of today's programmers is to make computer programs more and more "friendly" so computer training beyond the point of losing the fear of computers will have little practical everyday use.

A more significant development, however, is the series of programs written in the last 5 years, as program generators. A person with little or no skill at programming can specify in everyday English what he or she wants a program to do, and a program generator such as The Last One will write it quickly. The Last One works best for applications programs, those which serve a specific purpose such as playing a game or predicting the position of a spaceship, but YACC (Yet Another Compiler Constructor) or something similar will quickly write an interpreting program for almost any language you can specify. What all this means, according to many computer authorities, is that in 20 to 30 years there will be little need for human programmers at all.

The purpose of bringing up children with computers may not, therefore, be to prepare them for the abundant jobs of a computer-oriented world, such a world would indeed have plentiful jobs in computer operation and programming. A technological advance cannot be considered as having been truly accepted until it becomes ludicrous to even talk about being "oriented" toward it. One might call our society "television oriented" or even "automobile oriented," but only the most precise anthropologists would call it "wheel oriented." Granted, wheels have been around for thousands of years, but in view of the incredibly accelerating pace of technology in this century, I doubt that computers will take over 50 years to reach the same level of acceptance and ignorability.

As far as I can see, the greatest boon of computer literacy is a fairly intangible one. Teaching the skills, habits, and disciplines of computer programming improves a child's (or an adult's) ability to think, and these skills should be taught for the same reasons the so-called Great Books should. For example, Euclid's *Elements* contains little factual knowledge that has not been rehashed and then taught in an easier fashion, not to mention its relative inapplicability to everyday life, dealing as it does with a system that does not represent reality, as Euclid knew quite well. The benefit of the *Elements* is simply that it teaches the habits of clear, rigorous thought in the same way computer programming does.

In computer programming, nothing can be glossed over, nothing can be left to cure itself, and everything must be accounted for. If seemingly insignificant problems are ignored, they often manifest themselves in grandiose ways, commonly known as bugs or zarkas. (A simple example might be a chess program that, whenever you legally take one of its pieces, eliminates instead your corresponding piece.) As a result, programmers, even if they communicate only with "friendly" computers in spoken English gradually learn to think more clearly and with greater comprehension of the abstract effects of their actions.

Children and Computers

If computer use and familiarity are indeed to be taught widely, as I have suggested, I believe they must be started early in life, preferably in the lower elementary grades. Children have several advantages over adults in the process of learning. As I have already mentioned, they do not have a fear of looking foolish. A child, at least before adolescence, trying to learn a complex skill like computer programming often couldn't care less about his or her reputation and simply wants to learn more about these fascinating machines. An adult not already experienced at computer work might spend hours searching in his own mind for an answer while a bright 10-year-old working on the same problem will ponder for only a minute or two before asking someone more knowledgeable for help.

The danger of kids losing their social skills by immersion in computerese may be averted, not aggravated, by an early introduction. This phenomenon is most common in teenagers who are new to computers and still excited about them as an end in themselves. Children who grow up with computers as a fact of life are less likely to jump into them with the same all-consuming fervor I have occasionally witnessed and fallen victim to, but will be more likely to simply accept computers for what they are.

It is a well-known fact that children are particularly adept at learning languages, and I suspect that this ability applies equally to logical thought patterns of the sort one develops after a few hours of playing chess, twisting a Rubik's cube, or programming a computer. In any case, such computer languages as BASIC, PASCAL, and LISP certainly qualify as languages in the way they are learned, though they may have smaller vocabularies and more logical (and hence more
easily learnable) grammars than do human languages. Therefore, children should have less trouble learning both the techniques and the disciplines of computer use and programming than adults would. In addition, they can more fully internalize the logical thought patterns necessary for good programming, so they benefit more from the training.

Conclusion
The invention of computers has caused irrevocable changes in human society, and within 40 years will bring about changes we cannot conceive of today. Even if it were desirable to eliminate them from our lives, we cannot reject them now without crippling civilization for decades. Obviously, therefore, we must adapt to them learn why they work, learn how to use them, and take advantage of their growth by learning from them. Computers are not "newfangled" things that will go out of style in 10 years. If we do not teach our kids to adapt to the rapid changes the next 40 years will bring, we are making them maladjusted to their world from the start.
It Started with Games

CHRISTOPHER KARNES

My interest in computers began about 4 years ago. After meeting a graduate student who was working on his dissertation, I had acquired the use of a computer terminal and invited me over to play some computer games. I was fascinated by what the computer could do. After that, my interest in computers was sustained by an occasional book or magazine from the university library. In addition, my interest in electronics was fostered by working with several Radio Shack kits.

Then, suddenly, from out of thin air, my parents gave me a model 1 TRS-80 microcomputer with level 1 BASIC and 4K memory, as a Christmas gift. This was about 2 years ago and came as quite a surprise to me.

For the next week, I practically locked myself in my room and worked through the entire level 1 BASIC manual. I had some experience with TRS-80's so the first few chapters were relatively easy. For the next couple of months, my time was spent writing BASIC game programs, and reading more about BASIC and computers in general.

The computer even helped me in my school work. I could write programs to quiz myself on spelling words and science and history terms. I even integrated the computer into an independent study project that was required in my school's gifted program. The topic of the project was focused on teaching elementary school children TRS-80 level 1 BASIC. The project was completed with much success.

That summer I began to realize the limitations of the computer's hardware I possessed and how the hardware was limiting my software production. So, toward the end of the summer, I upgraded my computer system's memory to 16K and language capacity to level 2 BASIC. This brought my computer system closer to the standards I desired.

During the same summer, I attended a computer camp on the University of Southern Mississippi campus. This was quite an experience both educationally and socially for it introduced me to some friends throughout the state that I still call on when in need of programming ideas.

The next year, when I entered the tenth grade, I already knew what my first independent study project was going to be. I wanted to do something with a language other than BASIC. I chose FORTRAN, a language that I had been introduced to at the summer computer camp. But just learning FORTRAN wasn't enough. I had to have something to show for 9 weeks of work. So I decided to write a game in FORTRAN. The game was to be a fantasy role-playing game Dungeons and Dragons.

Then the question arose as to what type of resources should be used. The university library had several books on FORTRAN, but that wasn't enough for me. The best resource I could think of was a university course. I could learn about FORTRAN and get college credit at the same time. I decided to do it, and it wasn't difficult at all. Some of the concepts I used in my game program would later be taught in the FORTRAN course and some of the concepts taught in the FORTRAN course I would later use in my program.

At the end of the 9 weeks, I had a fantastic 1000 line game program to submit as well as numerous programs completed in my FORTRAN course. I still had half of the fall semester to complete my FORTRAN course, which I did successfully. It was one of the most challenging experiences in my life. In addition, it helped me in many ways besides just learning FORTRAN. My grades in school rose to new heights. I developed better study habits, and my interest in computers was strengthened.

I enjoyed my first college class so much that I enrolled in an advanced FORTRAN course during the spring semester. With the new course came two new independent study projects. The first was a study on whether the season of birth affects the level of a person's intelligence. For this project, I used a statistics package available on the University computer system. The data were collected from several school districts on children currently enrolled in gifted programs. This project not only gave me a strong knowledge of statistics and research techniques, but gave me a first place trophy in the State Science Fair in the category of Behavioral and Social Sciences.

I wanted my final independent study project to be spectacular and challenging so I decided to develop my own application language to be implemented on the TRS-80. The language was to be used to utilize the TRS-80's limited graphics capabilities and was to use many of the best features of BASIC, PASCAL, FORTRAN, and COBOL. The language was to be called GRAPHIX and was to be divided into relocatable modules that could be called upon whenever needed.

The project ran into some problems during the middle of the 9 weeks mainly due to a major hardware malfunction and is currently in the process of completion. I am hoping to use this project as my 1982 Science Fair entry.

Currently, as of the summer of 1981, I am assisting with a 2 week summer program for the gifted at Mississippi State University in which 1 week is devoted to working with computers. I am also trying to get FANTASY along with several other games written for the TRS-80 published as well as completing GRAPHIX. I am currently enrolled in two new courses at the University, one on COBOL and the other on BASIC. My primary interest now is computer graphics and I am saving money to purchase a high quality computer graphics board to interface my TRS-80 which I recently upgraded by adding a variety of peripherals.

I've kept up an extensive computer library which I have supplemented with subscriptions to Creative Computing and 80-microcomputer, as well as many books and textbooks. I also make extensive use of the university library which carries many journals and magazines as well as a large assortment of books.

For undergraduate school, I plan to attend the University of Southern Mississippi or another university depending on scholarship availability. For graduate study, the Harvard Institute of Computer Graphics is a possibility.

I look positively at a career in computer graphics which combines my interests in computers with my interests in the arts.

Computers can be used with great success by all of today's youth because computer programming can be fascinating as well as a great creative and intellectual challenge.
Two Programs from a Young Eighth-Grader

SAFI BAHCALL

Introduction by Harold Nelson

What would happen if young children were given free access to a personal computer to use at their pleasure—not just to play games and run prepared programs, but to use when and where they wanted for whatever purpose they saw fit?

The accompanying programs are one example of what can happen and their author represents the kind of young self-taught computer scientist that can result.

Eleven-year-old Safi (a nickname for Assaf) Bahcall is in the eighth grade, having skipped fifth grade, at his local middle school in Princeton, New Jersey. He is now completing tenth-grade geometry, already having completed Algebra I. He says, "I do well in math, even though science is my favorite subject." He likes physics, though all areas of science interest him.

I like computers and have spent a lot of time with them," he admits—a lot of time in the past two years, that is. He began working on computers by simply going into his local Radio Shack store every afternoon and just messing around with the TRS-80 there. This went on for some time while he taught himself BASIC from several TRS-80 books.

Safi's father (who is employed at the Institute for Advanced Study at Princeton) then got a Radio Shack TRS-80 Level I computer with 4 K bytes of memory. Safi, with advice from a friend of his father's, added an expansion interface which increased the memory to 16 K bytes and added Level II BASIC.

He also added an RS-232C serial interface and modem (modulator demodulator) which allowed him to use the telephone to tie into the Princeton University computer.

When he hooked up to the Princeton computer, he discovered that their terminal program allowed him to input data but not to display it on his video terminal. So, with a friend, he simply edited their terminal program. Now he can see what he is typing in. Whenever he does tie into the Princeton system, he usually has something specific to do. For example, he prepared the following programs and descriptions using the text-editing capabilities of the Princeton computer.

There are two Apple computers at Safi's school, but he says they are mainly used for games. He has, however, helped some teachers with programs for algebra and science. He has also written a program for the TRS-80 called Dog Race that helps his younger brother practice addition. The program "asks you your name and how many people you want to play. You can play against the computer, and you can play against whatever level of difficulty you want the computer to be. Then what happens is, on the screen, you see two dogs that begin at the left edge and are labeled "Brian" (or whatever your name happens to be) and "Computer," or "Brian" and "Joe" if two people are playing. Then the computer asks the first person a problem and, if he gets it right, his dog starts moving so many spaces toward the right edge of the screen. Next, the second person is asked a different question and if he gets it right, his dog moves over. Or if it's the computer, depending on the level of difficulty, there is a certain chance that it will make or miss the problem."

Safi has written another program to help his nine-year-old brother with his weekly spelling words. But his biggest job to date has been working for a person in the Astronomy section of the Institute for Advanced Study. He wrote a fairly long program that used the Monte Carlo method (a statistical technique) to test the virial theorem (a theory from the branch of physics known as statistical mechanics). The person Safi was working with gave him the equations, but Safi devised the way to program them. "I did it for him," he says proudly, "and I got $120 from the Institute for doing that one job. I am currently working on another version of the program."

Safi is saving his money to get a printer. At present, he still has to go to the Radio Shack store with tapes of his programs to get listings.

If you are wondering why a store would let a child come in and start using computer equipment, the reason might be that he helps sell computers. For example, when he went to get a listing of his Dog Race program, some people came over and their children started trying out the game. As a result of this, the parents were interested in getting a personal computer of their own.

When asked about his plans for the future, Safi says, "I've been thinking about something with computers. I've already made $250." (He has now published two more programs.)
Any Old Base

Here is a once-in-a-lifetime opportunity to acquire a simple program that converts numbers from one mathematical base to another mathematical base. My program converts a number expressed in any number base from two thru ten to a decimal number (base ten). The first version of my program in listing 1 converts an eight-character binary (base two) number into decimal form.

Before going any further, it is necessary to understand how to calculate decimal numbers from numbers in different bases and how to construct bases (not the military kind, but the kind you use in math). If you are talking to someone and you say, "I bought 120 eggs," you're referring to 120, base ten. Each digit in the 120 (1,2,0) stands for a certain amount of a certain amount. This means that this number stands for 3 ones (0 x 10^0), 2 tens (2 x 10^1), and 1 hundred (1 x 10^2). In base ten, you read the number from right to left, starting with the amounts of 10^0(0), 10^1(2), 10^2(1), etc. It's the same in other number bases, except that instead of the ten you use the other base number. In the same way, you have in base five some number of 5^0, 5^1, 5^2, etc. Let's say you have a 131 in base five. That means 1 one (1 x 5^0), 3 fives (3 x 5^1), and 1 twenty-five (1 x 5^2). Using your pocket calculator, you find that this is 41 in decimal form.

This is the explanation of the program in listing 1. There is just one in-

Listing 1

```
10 CLS
20 REM
30 REM BINARY TO DECIMAL, BY SAFI BAHCALL
40 REM CONVERTS AN 8 CHARACTER BINARY TO
50 REM DECIMAL.
60 REM
100 INPUT "BINARY NUMBER "; A$
110 IF LEN (A$) < > 8 THEN 100
120 FOR I = 8 TO 1 STEP -1 : T = T + 1
130 A(T) = VAL (MIDS (A$, I, 1))
140 IF A(T) < 0 OR A(T) > 1 THEN 100
150 NEXT I
160 REM ** CALCULATE DECIMAL **
170 FOR I = 0 TO 8
180 DEC = DEC + (A(I) * (2^I))
190 NEXT I
200 ** DECIMAL = ""; DEC
210 ?:?:INPUT "ANOTHER CONVERSION "; WS : IF LEFT
(WS, 1) = "N" THEN END
220 END
```

Run of Listing 1

```
BINARY NUMBER ?1111001
DECIMAL = 249

ANOTHER CONVERSION ?Y

BINARY NUMBER ?101011000
DECIMAL = 88

ANOTHER CONVERSION ?N
READY
```
put to the program and that is an eight-character binary numeral (base two). The eight-character binary numeral is a string called A$. The program stores each character of the A$ string in an array called A. Lines 110 thru 150 check to see that the number is in binary form and store the character in array A. Lines 170 thru 190 calculate the decimal value. The way the program does this is by multiplying the first character on the right by 2^0, the second by 2^1, etc, then adding the results. The characters in the array are stored from right to left. Line 200 prints out the decimal value. Line 210 asks you another binary number.

There are many things you can vary. You can change the length of the binary numeral (which I made eight in listing 1) by deleting line 110 and changing the eight in line 170 to the length you desire. If you wanted a number ten characters or more, you would have to DIMension array A to your number.

All these changes plus another are included in listing 2. In listing 2, the input is the base and the number. The program now checks whether or not the number is within limits of the base. The restrictions are that the number be less than 100 characters long and the base be two thru ten. These are the main differences between listing 1 and listing 2. V is assigned the length of your number and B the base, all the other variables are the same as in listing 1. The calculational technique remains the same, but the 2 in line 180 of listing 1 is replaced by the base (B).

To sum it up, if you are a base fanatic or want to impress your friends, use these programs.

Listing 2

```plaintext
10 REM ..............................................................
20 REM PROGRAM BY SAFI BAHCALL TO TRANSFORM ANY
30 REM NUMBER IN BASES 2-10 TO DECIMAL.
40 REM ..............................................................
50 DIM A(100)
60 CLS
70 INPUT "BASE "; B
80 IF B<2 OR B>10 THEN 70
100 INPUT "NUMBER "; A$
110 V = LEN(A$)
120 FOR I = V TO 1 STEP -1: T = T + 1
130 A(T) = VAL(MID$(A$, I, 1))
140 IF A(T)<0 OR A(T)>B THEN 100
150 NEXT I
160 REM ** CALCULATIONS **
170 FOR I = 0 TO V
180 DEC = DEC + ( A(I) * (B^I) )
190 NEXT I
200 ?; "DECIMAL EQUIVALENT = "; DEC
210 ?: ?: INPUT "ANOTHER SIMULATION "; W$: IF LEFT$(W$, 1) = "N" THEN END
220 END
```

Run of Listing 2

```
BASE 7 3
NUMBER 7 22
DECIMAL EQUIVALENT = 8

ANOTHER SIMULATION 7 N
READY >
```
How Much Have You Lost or Gained?

Gold is going up, silver is going down, and all the commodities are jumping around. If you have something invested in commodities, this program will interest you. It works on a TRS-80 Level II computer, and after you input how much money you have invested, how many ounces (or whatever standard unit) you bought, and the going rate per unit for your commodity, it will tell you the net amount you have gained or lost. In the net I include, for example, a three percent investment fee and a one percent selling fee, so if you bought the commodity at the same rate at which you sold it, you lost four percent.

The variables are A for amount of money invested, 0 for the amount of standard unit, and RATE for the current rate.

Lines 4 thru 100 are for decorative purposes only and are not necessary.

If you cannot remember how much you spent on the commodity, only the going rate at that time and how many units you bought, change line 110 to read:

```
110 INPUT "RATE (PER STANDARD UNIT) AT WHICH YOU BOUGHT THE COMMODITIES", V
```

Also, add line 135 to read

```
135 A = V * O
```

A, if this is completed, the computer will ask you the rate at which you bought the commodity. It will derive how much money you spent by multiplying that rate times the number of standard units you obtained.

Line 140 adds the three percent investment fee to the total amount you have spent. Line 150 calculates how much your commodities are worth, and deducts the one percent selling fee (To change the percentages, change the numbers in these two lines.) Line 160 assigns the difference between the current value of your commodities and the purchase price of your commodities to D1 Line 170 branches off to another part of the program, depending on whether or not you have gained or lost money. Line 300 tells you how much money you have gained, line 180 tells you how much money you have lost.

You are limited to a gain or loss of $99,999.99. In case you do not own a Level II TRS-80, the question marks in the listing are shorthand for "PRINT" statements.

If you are a person who just gives your money to a company that can invest it in any way the company decides, or if you are just curious about how the money you have invested in commodities is doing, you can find out using this program.

Listing of Gains/Losses

```
4 : ****************************
5 : PROGRAM BY SAFI BAHCALL TO
6 : CALCULATE GAINS/LOSSES IN
7 : COMMODITIES
8 :
10 CLEAR 500 E$="##### #/#"
20 ? STRING$(63,131) ? TAB(17)"COMMODITY CALCULATOR"
30 ? STRING$(63,131)
100 :
110 INPUT "AMOUNT OF COMMODITY INVESTED (IN DOLLARS) ", A
120 INPUT "AMOUNT (IN STANDARD UNIT) OF COMMODITY BOUGHT ", 0
130 INPUT "CURRENT RATE OF COMMODITY (PER STANDARD UNIT) ", RATE
140 LET A = A * 0.03 "ADD 3% INVESTMENT FEE"
150 LET G = (RATE*0) - 99 "CALCULATE VALUE + 1% SELLING FEE"
160 LET DI = G - A "CALCULATE DIFFERENCE"
170 IF DI = 0 THEN 300
180 ? "YOU LOST", USING$E$, DI, " DOLLARS "
190 " TAKING INTO ACCOUNT THE 3% INVESTMENT FEE, ",
195 " AND THE 1% SELLING FEE"
200 IF INPUT "ANOTHER SIMULATION ", WS(1LEFTWS$, 1)="N" THEN END
300 ? "YOU GAINED ", USING$E$, DI, " DOLLARS " GOTO 190
999 END
```

Run of Gains/Losses

```
COMMODITY CALCULATOR

AMOUNT OF COMMODITIES INVESTED (IN DOLLARS) 412000
AMOUNT (IN STANDARD UNIT) OF COMMODITY BOUGHT 740
CURRENT RATE OF COMMODITY (PER STANDARD UNIT) 2520

YOU GAINED 411200 DOLLARS
TAKING INTO ACCOUNT THE 3% INVESTMENT FEE,
AND THE 1% SELLING FEE

ANOTHER SIMULATION?
```
This brief section highlights the value of providing computer experiences at home. In the first article, *Teaching Parents About Using Microcomputers*, Dwyer and Critchfield maintain that the fundamental prerequisite for involving children in creative programming is to have parents explore and be creative themselves. The article outlines sample topics for informal workshops in the art of personal computing. The authors believe that schools should consider offering computer workshops for parents so that they, in turn, can help strengthen the computer experiences of their children.

In his article, *Children and Home Computers: Some Observations on the First Generation*, Bernard Banet, developmental psychologist, curriculum developer, and father of an 8-year-old, reflects on the present and future of home computers and their use with young children. This article was included as food for thought for parents who are making decisions on how to involve their children in activities using home computers.

The final article, *An Apple a Day Keeps a Kid Occupied* by Ron Buszta is a very short piece written by the father of a 4½-year-old. It was included in this collection to show that even very young children find computers stimulating, educational, and fun!
Teaching Parents About Using Microcomputers

THOMAS A. DWYER
MARGOT CRITCHFIELD
University of Pittsburgh

Introduction

Most educators will readily admit the importance of home learning experiences for a child's intellectual development. While schools can do a great deal, the youngster whose parents use language and mathematics with zest in their daily lives has opportunities for incidental learning that nourish the intellect. Just how this mental diet is absorbed is a mystery, and trying to solve this mystery is bound to give learning researchers a job for some years to come. Meanwhile, much can be done.

Most parents try to feed their children the seven basic food groups and fend off junk food. There is also some wisdom accumulating regarding informal learning which can help them do something similar for their children's minds (besides just turning off the TV set).

Buying an encyclopedia or a set of The World's Great Literature for Young People is a good start. But more is needed. Involving the young person in doing something creative—something that requires the use of the abstract symbols of language and mathematics—is vitally important. But it is not always easy to do this.

Enter, the Computer

The significance of the home microcomputer for informal learning is that it provides a whole new range of interesting things for young people to create with the help of their parents—computer programs. Making the computer do something can be a fascinating intellectual activity, not just for the adult hobbyist who "pushes bits around," but for the young child who creates a simple picture on the computer. And the skills of reading, typing, arithmetic, logic, algebra, vocabulary, etc., which are brought into play during this activity provide a kind of practice quite different from the workbook or drill lesson.

The question is, can parents, without a technical background, learn enough about programming (and about what the computer is and can do) to make this new intellectual tool effective for their children? To say this another way, how do you master a machine that can be used so many ways? Some are simple to deal with (for example, learning to play a preprogrammed game on a microcomputer is no problem). But getting this same machine to do things that go beyond the applications shown in books takes both creativity and know-how.

Short Courses for Adults

To explore the possibility that the "average" adult could meet this kind of challenge and become an inventive computer user, we've recently been developing and teaching a number of informal workshops in personal computing. These have revealed a range of talent and flexibility that is heartening. The syllabus we have developed as a result of working with these adult beginners is quite broad, but we believe that it is particularly relevant to the parent who wishes to act as an informal teacher using a home computer. The fundamental prerequisite for involving your child in creative programming is to do some exploring yourself—to be creative. This means knowing a lot more than how to run a packaged CAI program.

Our workshops have, therefore, been designed as an introduction to personal computing for persons without previous experience in the field who nevertheless want to attack it creatively. To put it another way, the workshops are for anyone who wants to get started on the fun and satisfaction of "solo computing."

Learning to go solo with a computer means learning to be in charge—to know not only what the computer can do, but how to make it happen. It's the difference between admiring the wonders of jet flight from a passenger's seat, and moving up front to do a few lazy eights around the sky yourself.

Fully mastering personal computing at that level takes a while, of course, and a five or six week workshop should only be labeled as a start. But it's an important start, and taking a solo approach—even at the beginning—is less difficult than might be suspected.

Course Content

Three core questions seem to be uppermost in the minds of adult students: (a) What are microcomputers? (b) How do I choose one wisely? and (c) How do I go about using it for the applications I have in mind—including learning in the home?

We've translated these questions into three main goals for the workshop. The first is to help students develop some technical familiarity with the microcomputer field, especially as it applies to personal and business computing. The second is to share what we and others have learned about evaluating and buying a personal computer system. The third is to explain (through concrete examples) how to use a microcomputer to its full potential.

There are many specific topics suggested by these general goals, and a few new ones seem to surface each time we teach the course. We've tentatively grouped the topics of interest under seven headings. The headings and some of the topics they include are as follows:

Group 1 The New Look in Computers

What is a computer?
Using a personal microcomputer inside microcomputers, the LSI breakthrough
But is personal computing a good idea?
What to do until the computer arrives?
using time sharing
Group 2 The What and How of Microcomputer Systems

- Microcomputer system terminology, sample systems
- Communicating with a microcomputer, peripherals and I/O
- Computer central the CPU and memory, more on I/O jargon
- Mass memory the world of megabytes
- The mix and match problem, customized versus packaged systems, examples

Group 3 Mind Over Machine Computer Software

- Kinds of software system versus application programs
- An introduction to BASIC
- Extended BASIC
- Structured programming designing and writing a longer program

Group 4 Selecting and Buying a Microcomputer

- Developing a checklist of your needs, examples
- Applying the checklist, examples
- Shopping for a computer, what's available
- Dealing with change, upward expansion of your system

Group 5 Using Personal Computers

- Some short programs to try
- Learning with the computer
- Computer graphics and games
- Data bases in computing, the computer dating example
- Home finance programs

Group 6 Microcomputer Business Systems

- Can a computer really help a small business? The pros and cons, examples of business programs

The hardware requirements of business systems

- Software requirements, computer files, disk extended BASIC
- Using off-the-shelf application software
- The argument for customized software, hiring a programmer, documentation and maintenance
- Guaranteeing success, the virtues of patience, redundancy, and pessimism

Group 7 Planning for the Future

- What changes are possible? Probable? Hardware updates, when to start over
- The future of software, phasing in change
- Keeping informed, sources and strategies

These topics have been grouped in a "logical" order which is not necessarily the best one for teaching a class. For example, most students prefer learning how to program in BASIC right away and finding out how computer hardware actually works later on. There has also been a growing interest in learning to use all the features of extended BASIC. Most people (including some computer professionals) have no idea of how powerful the next extended BASIC interpreters are. They are particularly flabbergasted at the many elegant things possible with the extended BASIC on the classroom demonstration computer we use (a TRS-80 with Microsoft Level II BASIC). Students have been unanimous in agreement that this extended BASIC is not only more powerful in its features, but far easier to "manipulate" than the BASIC on a large time-shared computer they also use. The lesson about the importance of good software gleaned from this experience is no-

- The application interests of students have also been sampled at the beginning of each workshop in order to guide our curriculum development. These interests vary, of course, but two areas that seem to top the list are structured games with graphics and structured business applications. To respond to these interests, we're developing some new materials in both areas. One (the BABYQ structured "quest" game) is turning out to be an excellent way to transition from elementary to advanced programming in a very short time. It's fun, but it also includes experience with such mathematical ideas as probability, coordinate geometry, Euclidean distance, and the use of data structures.

Other interesting structured programs (and the areas they promote learning in) which we've used are SALESLIP (business math), AIRPLANE (use of matrix transformations to rotate or translate pictures on the screen), GAUSS (solving big linear systems just like the pros), ARROW (trajectory motion based on Newton's Laws), MATHPLOT (painting pretty pictures on the screen that are derived from classical math functions), and a variety of smaller word, puzzle, and "story" games to exercise the use of vocabulary.

There's little doubt in our minds that putting a computer to work in the home as a "solo learning" tool is one of the most exciting educational ideas to come along in years. Helping parents learn how to exploit this idea is something every educational institution ought to consider.
Children and Home Computers: Some Observations on the First Generation

BERNARD BANET
Director of Planning and Development
High/Scope Educational Research Foundation
Ypsilanti, Michigan

As a developmental psychologist, father of an 8-year-old, and curriculum developer, I would like to offer the following thoughts on the present and future of interactive electronic learning systems in the home for preschoolers and children in the elementary grades. In the past two years I have had the opportunity to participate in the development or informal evaluation of a variety of home educational applications of devices ranging from calculator-like game/drill units to personal microcomputer and educationally oriented time sharing systems. In outline form, here are some conclusions I tentatively propose:

1. The capacity of interactive electronic systems to be useful in home learning for young children is currently best seen in instructional games and simulations.

2. Drill-and-practice applications, stripped of gamelike elements, do not survive for long in the home environment without parental insistence. It doesn’t take more than a bit of ingenuity, however, to add gamelike elements to even the dullest drill.

3. The widely advertised potential of microprocessors to stimulate interest in computer literacy, programming, and hence in the wider world of math, science, and technology is also real, even for young children, however, it is even more dependent on human support (from parents, siblings, friends, teachers) than the games and practice applications.

4. Creative activities in art and music on home computers are still aesthetically crude but suggest exciting new modes of personal expression.

5. Computer-based activities, whether games or programming, can be an occasion for very positive parent-child and child-child interaction. Computer activities are not unique in this respect, of course, but can be seen as parallel to reading together, playing board games, going on family outings, working on home maintenance, cooking, gardening cooperatively, etc.

6. For young children, computer-based activities of the first generation may be as important as a source of motivation to learn new concepts and skills as they are as direct sources of learning.

7. The recreational potential of microprocessor-based devices can compete with, as well as support, use of these devices for learning and problem-solving. A situation parallel to the “personal” use of books and television exists in this respect.

8. The usefulness of computer-based home learning systems will increase if and when the following occur:
 a. Effective applications software is developed and distributed:
 - Software is sold in retail stores so that the consumer can sample on the spot and buy off the shelf.
 - Learning software (or “courseware”) is designed in interconnected sets as well as in discrete games and activities.
 - Programs are designed to adapt (under user control and/or program logic) to the user’s degree of maturity and familiarity with a particular program.
 b. Hardware/Software configurations are friendlier to the user as:
 - Cassettes are replaced by mass storage media that permit rapid random access to a program library or data base and permit file-updating and record keeping in a reasonable manner.
 - Software becomes more compatible or transportable across systems.
 c. Software is documented, catalogued, and critically reviewed.

9. There is obviously yet much to be done to make personal computing into the powerful educational tool it can be for learners of all ages.
An Apple a Day Keeps a Kid Occupied

The sines of the father are visited on the sun.

Ron Buszta
Oakwood Dr
New Fairfield CT 06810

Never did I think, when I bought my Apple II, that I would have to fight with my 4½ year-old son for its use. But that's exactly what has happened. My son, Jeffrey, who is still in nursery school, has been inseparable from that machine since I bought it last summer.

He doesn't read yet, but he does recognize some words, such as Jeff, Mom and Dad. I wrote his name on a diskette containing some graphics games so he could identify it when he wanted to play some of those Apple programs. After the first couple of times he played Dragon Maze and Breakout, he wanted to push the diskette into the drive by himself.

He next wanted to start up the Apple from scratch without any assistance from me or from my wife (he's a rather independent youngster!). I explained that it wasn't an easy procedure— you had to turn on the monitor, press the CTRL key down and at the same time press the letter B, repeat the pressing of CTRL and B until the prompt (>) character appeared and, finally, type PR#7 to tell the operating system that the disk was in slot number 7.

I was thoroughly convinced that I had confused the inner workings of his little brain and that he would lose interest and go back to watching Woody Woodpecker cartoons. As I sat down to have myself a good game of Breakout, I heard him say, "Could you show me that again, Daddy?"

He thought he could remember that whole sequence of events and turn on the Apple himself! Realizing he is a very determined little boy, I didn't argue, but I proceeded to tell him again how to communicate with the Apple. After two or three more explanations, Jeffrey had it all but mastered—turn on the Apple, turn on the monitor, press CTRL-B twice and type PR#7. A broad smile crossed his face when he heard the pleasing whirr of the disk drive.

"Now what, Daddy?" he asked. I told him that he couldn't do much more since he couldn't read, but that I would load and run whatever programs he wanted to play. Well, after I did that for a while, naturally he wanted to run the programs "R-U-N" I would say to him to get a program to run. It didn't take long until he remembered how to spell RUN or that CTRL-C would stop a program and that the backward arrow would erase a letter that was pressed by mistake.

After a couple of weeks, Jeffrey was typing CATALOG for a list of all the programs on disk (more for the joy of hearing the disk drive run and seeing the pretty red light flash than for the info going to the screen) and LIST so he could make all those letters go up the screen. He learned that while playing Dragon Maze, typing R, L, U and D would move the little squiggly character to the right, to the left, up or down in an effort to elude the dragon and gain access to the doorway he guarded. Just remembering what those letters represented, I think, was a great accomplishment and well worth the price of the Apple.

But the learning process for Jeffrey and me didn't stop there. While I was learning BASIC from listing programs and from reading the Apple documentation, Jeffrey was learning to recognize RIGHT, LEFT, DOWN, LIST, RUN and CATALOG.

Jeffrey has just turned five years old, and I expect any time now that he'll be teaching me about the SIN and COSINE functions or how to write a program to produce the Fibonacci sequence.
4 Programs in Action

Material for this section was chosen to reflect the variety of programs operating in schools today. Children and youth of all ages are making computer connections in programs that range from total computer availability in the regular classroom to Saturday enrichment programs. Each of the programs described is different and each can serve as a model. There are possibilities here for every level of commitment from districtwide, to single classroom, and from mainstream settings to specialized programs.

In *Microcomputers for Gifted Microtots*, Ann Doorly describes a mathematics enrichment program for gifted children in grades one through four. Because only one computer is available, it is set up as part of an “interest center.” Children learn how to key in programs in BASIC and how to solve programming problems. According to Doorly, “these learners not only possess the ability to apply the necessary logical thinking and mathematical skills to operate the computer but also understand the mechanics of what is taking place.”

Sally Greenwood Larsen works with gifted and talented third and fourth grade students. She teaches BASIC programming as part of their mathematics class. *Kids and Computers: The Future Is Today* describes the step-by-step procedures Larsen uses to introduce the computer to her students. Larsen, like Doorly, has only one computer in her classroom. She finds that by scheduling children in pairs, everyone can have at least one practice period a week.

Micros “GOTO” School by Donald T. Piele is a report of a pilot project in which an Apple II microcomputer was placed in a sixth grade classroom for 8 weeks for the purpose of developing logical thinking skills. The article includes sample practice exercises in drawing color graphic designs.

The Hampton City Schools Computer Program, under the direction of Nedra Harkavy, has been providing computer experiences to its children at a district-wide level for several years. Among the many uses, computers help students create poetry and solve simulated real-life problems.

The Paducah Tilghman High School “Chemists” Program by Steve Johnston provides a candid discussion of how a high school restructured its courses in chemistry, physics, and computer science to provide a comprehensive program for its advanced students. This article provides some practical insights into how a school can combine several courses to provide more challenging programs for gifted students.

Computing at a New Public High School for Gifted Students by Steve Davis and Phyllis S. Frothingham provides a detailed description of how computers are being used at the North Carolina School of Science and Mathematics, a special public high school for 11th and 12th grade gifted and talented students. The school provides experiences with a variety of computers which are integrated into the total school program.

If it is not possible to develop computer capabilities at the public school level, there are other alternatives. The next two articles describe Saturday enrichment programs. *Computers... Are All Dinosaurs Dead?* by Douglas Glover describes a program for youngsters from 8 to 18 years old at the University of South Alabama. He describes the program and then gives some advice about getting computer programs started.

Another Saturday program for gifted and talented children is operated at the Talcott Mountain Science Center in Avon, Connecticut. The article by Daniel Barstow describes how students work on independent projects including satellite tracking, meteorology, geology, and chronology. Students often begin by using existing software and then advance to writing their own programs. At the Talcott Mountain Science Center computers have been an integral part of the program for ten years, they are an essential tool for exploration.

The final article in this section, *Computeronics: A Course in Computer Literacy* by Pristen Bird.
describes a program developed by the Gifted Child Project in Tallahassee, Florida. This program has been selected as an exemplary program by the Joint Dissemination Review Panel of the National Diffusion Network Division, U.S. Department of Education and is listed in the 1981–1982 National Diffusion Network catalog. Computeronics is a 35 to 40 hour course in computer programming, problem solving, and literacy. The course is divided into two modules: Problem Solving with Computers and Computers in Society. The project also provides inservice training.
Microcomputers
For Gifted Microtots

by Ann Doorly

COMPUTER USAGE PROVIDES excellent horizontal enrichment for primary children who are gifted in mathematics. It presents them with the opportunity to apply the higher level cognitive skills which they are able to grasp so readily. As computers continue to dominate our society, computer literacy is becoming the fourth "R" in education. If today's students are to be tomorrow's creative producers, it is our responsibility as educators to provide them with the necessary time, space, and resources to assist them in the development of their individual talents and abilities.

Issues which should be addressed in computer science programs for gifted students are: Why is it a differentiated enrichment experience for primary gifted students? Which children qualify for participation in such programs? What types of programs can be developed to teach computer programming to gifted students in grades one through four?
Why should gifted primary children be involved in computer programming? These children have the ability to think abstractly and to utilize the mental processes associated with higher levels of learning. The computer is a blank slate which requires very specific logical instructions organized into a program in order to function. Gifted children are able to see this process as a mirroring of the human mind and to employ the necessary logical sequencing, critical thinking, and mathematical concepts to design the solutions to real problems.

A tremendous amount of task commitment is necessary to persevere and overcome the tedious task of learning to program. Many average students are interested at this point. The elementary math curriculum becomes more meaningful as students apply the concepts to a challenging task. The versatility of the computer allows each individual student to use the tool to pursue his or her individual interests.

Specific programs challenge the child by allowing him or her to experience the decision-making process and the corresponding consequences in a no-threat situation. The mechanics of the computer provide the students with immediate and the ultimate diagnostic feedback.

Some games are used as one-on-one tutorial programs to engage the individual student. Other cooperative activities for the gifted students involve computer programs as a means of extending the classroom activities. Students participate from grade one, twenty-two from grade two, twenty-four from grade three, and twenty-seven from grade four.

For a total district population of five hundred and seventy-six children, eight computer programming units have participated from grade one to twenty-two. The programs are grouped according to the student's need. Many supplemental and self-directed programs are in use which provide immediate feedback to both the programmer as well as the individual student.

I plan to conduct intensive workshops for the staff to teach the class introductory lessons and to encourage the children who have learned programming to help other children who need additional assistance. Computer programs for the computer lab have been written by the students, and these programs are now being taught during those recesses and between classes. This time has been made available for programming computer programs, and grades have been assigned.

The students have written programs which vary from student to student: from one to twenty-four. These programs include the graphing calculator which is used to plot the computer for the student. The computer programs are subject to computer programs, but the student is responsible for the computer programming which are possible techniques. Most important is the child's ability to use a program in a meaningful manner.

Students involved in the computer unit are first through fourth graders who have been recommended by a classroom teacher or parent on the basis of high mathematical aptitude and computational skills on the Stanford Achievement Test. Students do not have the necessary ability and task commitment if they lose interest and ask to "drop out." Students are grouped according to grade level and the pull-out enrollment groups allow the children to interact with peers in other classes with similar strengths and interests. Since there is only one computer terminal and up to eight children working at a time, much cooperative team work is required on the part of the children. To allow more time for independent programming beyond class time, the children work in pairs. This makes it a social activity and provides practice in working with others. They are also able to diverge at their own level from the group and apply their programming skills to their own personal interests.

The unit is introduced by utilizing "Computers from Pebbles to Programs" (New York, N.Y., National Association 1976) which outlines the computer development types, parts, and uses of computers. We then review the keyboard and the alphabet of symbols and numbers. We teach a second program which provides immediate feedback to the student as well as the individual student. Students are also able to diverge at their own level from the group and apply their programming skills.

One specific school-wide goal should be to prevent "computer phobia," from which too many adults now suffer. It is possible to teach our students to feel comfortable with the computer in the same way that we taught them to feel comfortable with the typewriter.

The computer is a new tool which can make learning easier and more enjoyable. Students need the introduction to the computer in the first grade, to become familiar with the computer language. A computer program is an instruction to the computer on what to do. It is a series of instructions organized into a program in order to function. Gifted children are able to see this process as a mirroring of the human mind and to employ the necessary logical sequencing, critical thinking, and mathematical concepts to design the solutions to real problems.

Students involved in the computer unit are first through fourth graders who have been recommended by a classroom teacher or parent on the basis of high mathematical aptitude and computational skills on the Stanford Achievement Test. Students do not have the necessary ability and task commitment if they lose interest and ask to "drop out." Students are grouped according to grade level and the pull-out enrollment groups allow the children to interact with peers in other classes with similar strengths and interests. Since there is only one computer terminal and up to eight children working at a time, much cooperative team work is required on the part of the children. To allow more time for independent programming beyond class time, the children work in pairs. This makes it a social activity and provides practice in working with others. They are also able to diverge at their own level from the group and apply their programming skills to their own personal interests.

The unit is introduced by utilizing "Computers from Pebbles to Programs" (New York, N.Y., National Association 1976) which outlines the computer development types, parts, and uses of computers. We then review the keyboard and the alphabet of symbols and numbers. We teach a second program which provides immediate feedback to the student as well as the individual student. Students are also able to diverge at their own level from the group and apply their programming skills.
exec tii, what we program it to do. We begin with simple arithmetic problems to demonstrate how algebraic equations (good old new math number sentences) and variables are used to represent numbers. We develop a flow chart for each program to organize the commands into a logical sequence. Each step in the flow chart corresponds to a statement in the BASIC language. The statements are assigned numerical addresses and keyed into the computer. The children, taking turns typing in the statements. At this point excitement is at its peak, but a more task commitment is required to debug the program. The BASIC trouble shooting techniques what and how, from the computer, are errors to correct them. Each the program is run, and each of the children is given the opportunity to run independently. This time they try to see different alternative possibilities and begin to modify the program by changing statements. The teacher can be asked to determine the number of mistakes the children used to make and fix the program.

During the course of the unit, the children can work on projects where the computer makes decisions based on the comparisons using the "if" and "then" segment data input. The use of random numbers and graphs (as a means to list the input the computer is to use) can be based on a graph or on a chart. The children can get the computer to organize the data and to make a chart after the data has been collected.

Pretests given at the beginning of fourth grade to students who had completed the unit as third graders showed that retention is poor except in cases where children had continuous access to a computer on which to use their programming skills. Since a comprehensive review is necessary, we apply the arithmetic operations to various math and science problems. For example a basic multiplication program can be modified to a "rate times time equals distance" problem and thus to determine the speed at which a given point at a given latitude on the earth is rotating. This provides the review and the application to real problems maintains a high interest level.

Those children who have the willingness to continue now become involved in independent investigations based on their particular interests. A teacher will go in as many different directions as there are turned on children. One child may wish to design and build a computer, while another may elect to write a program for a new game. At this point the teacher assumes the role of manager The child will need assistance in focusing his or her interest into a solvable problem of specific project. The teacher can be an expert in all areas so must seek other resources: mathematicians and methodological technics to assist the child in pursuing his or her interest through independent investigations or projects.

The community: students, parents, teaching staffs, university personnel, and local clubs and organizations are excellent sources of willingness human resources. Usually, when a person has expertise in a given area, he is enthusiastically willing to share it! Local state, and college libraries, corporations, government agencies, and universities can provide an abundance of additional materials and information. Finally, upon completion, the child's product should be shared with an appreciative audience.

In conclusion, I wish to again stress the appropriateness of computer science for these young mathematicians and scientists. These learners not only possess the ability to apply the necessary logical thinking and mathematical skills to operate the computer but also understand the mechanics of what is taking place. The applications of the once isolated K-4 math concepts to a relevant endeavor add new challenge and excitement to their elementary school experience. They also gain a head start in preparing for their careers, many of which are sure to involve computers.

Ms. Doork recently completed work toward her Master's degree in the teaching the Talented Program at the University of Connecticut. She coordinates and teaches in the SAGE (Shared Ap. mch to Gifted Educators) Program in Mansfield, CT. This article is her first for C-7.

34
Kids and Computers: The Future Is Today

Sally Greenwood Larsen

Computer dealers in Racine, Wisconsin aren't surprised any more when an eight year old in overalls, a striped T-shirt, and bumper tennis shoes strolls into the store, sits down at the keyboard of a TRS-80, and writes a computer program for the drive-up window of a McDonald's restaurant. Or a program to print out all the even numbers from 1 to 100, in four columns, with a half second delay in between. Or a graphics program for a birthday cake, complete with blinking candles.

These third and fourth graders are students at the Jefferson Lighthouse School, a program for gifted and talented children, where I teach BASIC programming as part of their mathematics classes. With an average of 45 minutes a week of group instruction over the past year, students in these classes have mastered the concepts covered in introductory college courses in programming, and have become adept in the use of the school's microcomputer. In an area where a strong math background has been a customary prerequisite, it is amazing to realize that most of these children are just learning to multiply and divide!

Our microcomputer is in use from the minute school opens in the morning until the last child leaves in the afternoon, and the only games they play on the machine are those they have written themselves. It's exciting to watch, and even more fun to teach. For a society which will be computerized beyond our imagination by the time these children are adults, it is sad to see the majority of elementary schools using their affordable, portable microcomputers only for computer-assisted drillwork, or playing guessing games. Children can easily learn to write their own programs. However, the elementary teacher who wants to teach programming to kids faces the problem of finding materials which take into account their conceptual development and reading levels. Finding relevant examples is also not an easy task. Physics problems and checkbook balancing simply will not do.

I dealt with this problem by writing my own materials, building the lessons on the following framework:

1. What is a computer?
 A perspective on why computers came to be, what they are used for, and what kinds of jobs they are and are not capable of doing.
2. How does a computer carry out your instructions to get a job done?
 An explanation of simple linear logic, using flowcharts.
3. How do you communicate your instructions to the computer?
 The BASIC language.
4. How do you put together a program which is both efficient and creative?
5. What uses do we make of computers? What new uses can we invent or forecast?

Children have funny notions about machines in general, and especially computers. They need a mental picture of what goes on inside a computer, and its purpose.

What is a Computer?

When a caveman had work to do, he had no tools or machines to help him. He had to do it all by himself.

Man has since invented many tools to help him with his work.

Instead of pounding with his hands, he now uses a hammer. The hammer lets him pound harder and longer than he could with his hands alone.

Man invented the telescope so that he could see farther into space. He can now see stars he did not know existed before he had the telescope to help his eyes.

Using his brain, man can remember information and solve problems.

Man wanted to invent a tool so that he could extend the use of his brain, so he invented the COMPUTER.

Just as a hammer can't do work without a person to hold it, a computer cannot do work without a person to run it, and tell it what to do. This person is called a PROGRAMMER.

Even the best hammer cannot do all the different things our hands can do.

And even the best computer cannot do everything our brains can.

The author does teaching, curriculum development, and consulting in the field of Gifted Education. Her specialties are math, science, and computer science.

Sally Greenwood Larsen. 1843 LaSalle St., Racine, WI 53404. Photos by Jon Bolton and David Ahl.

From Creative Computing, Volume 5, Number 9, pages 58-60. Copyright © 1979 by Creative Computing. All rights reserved. Reprinted with permission.
Kids, con't...

A computer cannot feel emotion. It cannot feel happy or sad, as we can. A computer can't combine ideas like our brain can. It can't put two ideas together and take the best parts of each one to make a brand new idea.

But...a computer can do some of the simpler jobs our brains can do. And it can do some of them even faster than our brains can!

A computer can remember many more things than most of us can with just our brain, especially things like long lists of names or numbers. Information stored in a computer is called DATA.

A computer can compare data, to see if one thing is bigger than another, or smaller, or the same. It can also put things in order.

A computer can sort lots of pieces of information and put together the things that are alike.

And a computer can recall the information a computer programmer wants, and print it out for him on a video screen or a sheet of paper.

Once the children have an overview of the function of a computer, they need to see graphically how a computer program breaks down a task into small steps, and progresses in linear fashion from one step to another. Simple flowcharts, showing an activity with which the children are familiar, produce an easy to digest and sometimes hilarious picture:

It is essential to schedule all the children on the computer at least once a week, so they practice what is learned in group instruction. Pairs of children seem to work best, for one child alone gets "stuck" too often, and three or more argue over who will type on the console.

Allowing the children, especially the youngest groups, to use prepared game programs at this point is a serious mistake. It kills their desire to put in the effort required to learn BASIC since canned programs are so much less work. It is interesting to note that when game tapes are made available to children who are already fluent programmers, they will typically play them once, LIST them and see if they can pick up any programming tricks and then abandon them.

Worksheets to check the children's progress and provide practice are helpful, especially when machine time per child is limited.

COMPUTER PRACTICE

30 OCT. 78

NAME

Simulate these computer runs. Show your "printout" on the screen.

| 10 CLS | 20 PRINT "BIG" |
| 30 PRINT | 40 PRINT "YELLOW"
| 50 PRINT "30-2" | 60 PRINT "THE END"

Here is a program and "printout." Find and fix the mistakes in the programs so a run will produce what is shown on the screen.

10 CLS	20 PRINT 20 + 6
30 PRINT 30 + 4	35 PRINT
40 PRINT "60-3"	50 PRINT 10-10
60 PRINT "HELLO"	70 END

| 26 |
| 34 |
| 57 |
| **HELLO** |

Now the children are ready to see that the way in which we communicate with a computer must be standardized, and we need a particular language for this purpose, and a set of rules for typing in statements on the machine. After group instruction in operating the keyboard, and statements dealing with the execution of the program, such as CLS, BREAK, NEW, LIST, RUN and END, the children can do a surprising amount of experimentation with the simple PRINT statement and its variations.

PRINT "My name is Jerry DeMaio. I love computers." PRINT "RIGHT" PRINT "LEFT" PRINT "8-4" PRINT "8-4" PRINT "**?!@#%"

Worksheets to check the children's progress and provide practice are helpful, especially when machine time per child is limited.
numbers as specified, works beautifully.

If the "mailboxes" are drawn on the chalkboard, a simulation of a program can be traced carefully, and most children will have no trouble understanding how a memory works. In this case, they have an advantage over the algebra student, in that eight year olds see nothing peculiar about the statement

\[X = X + 1 \]

With the addition of INPUT and RND functions, the student now can produce quite a wide range of programs. To complete a beginner's course in text programs, the more difficult IF-THEN and FOR-NEXT are taught in a very concrete way.

The children picture themselves as "traveling" through their own program, doing each of the statements in turn, and imagining they see this sight when they reach IF-THEN:

Mr. IF will only let them pass to THEN if they meet his test. Otherwise they must proceed down the open branch of the path. When deciding on the test to go on to THEN, they must figure out who Mr. IF wants to go down his path, or who he wishes to exclude.

FOR-NEXT statements are best saved until last, and shown as a shortcut method for accomplishing a more complex list of simpler statements.

```
5 X = 1
10 PRINT X
15 IF X = 4
   THEN GOTO 30
   20 END
20 X = X + 1
25 GOTO 10
30 END
```

with much practice on naming coordinates of a point, contribute to the success of these programs. On a system with color graphics, such as the Apple, beginning with graphics programs, rather than starting with PRINT statements, is a natural. But either approach works well.

Once the children are able to write a program without consulting their notes for statement meanings, and are able to conceptualize a program from beginning to end without the use of written flowcharts, they are ready to evaluate their work under the headings of efficiency and creativity. The teacher must stress that there are many ways to write the same program, just as there are many ways to express the same idea in English, but

some of the ways are awkward, or have extraneous steps, or could be approached better from a different view of the problem. As can be imagined, it takes a great deal of work before an elementary school programmer reaches this point, and some never will until they become older.

The last portion of the teaching framework, looking at new uses for computers, can vary from collecting information on existing systems and research, to inventing new systems of their own. This is a natural place to discuss hardware and software, and form opinions on whether computers can "think."

Soon after the children are able to write their own programs, prepare yourself for the following events:

1. If you want to use your school's computer, you'll need to make a reservation a week in advance.
2. Parents will call you and want to know why their child is suddenly speaking a foreign language, with words like "do-loop" and "glitch."
3. Santa Claus will be having a few choice words with you.

I have found computer programming to be an exciting way of teaching thinking skills, mathematics, and problem solving. It is highly motivating for children whose abilities range from average to very bright, who have enough reading and number skills to operate the keyboard. It gives young children a view into their future, while at the same time seeing the present in a new light.

I am anxiously awaiting the day when these kids are college freshmen, and they walk into their computer science course with ten years of programming already under their belts at age eighteen. The implications for their futures and ours stagger the imagination.

"from "The Apple Corps: An Introduction to the Apple II for Children," by Sally Greenwood and Dr. Donald Piele, 1978
Microcomputers can be used in the classroom for: instructional activities that we associate with CAI (Computer Assisted Instruction) or CMI (Computer Managed Instruction); enrichment activities that we associate with simulations and games; making numerical calculations for the purpose of solving mathematical problems; teaching students how to program—primarily in the BASIC language; and individual exploration of original problem-solving.

Each lesson consists of a simple program with a short explanation of the new statements, a sample run, and a series of simple program changes for the student to do.

This article is focused on the latter activity. It is a report of a pilot project in which a microcomputer was placed in a sixth grade classroom for 8 weeks for the purpose of developing logical thinking skills. The students were given instruction on how to program the APPLE II microcomputer to draw color graphics designs. They were then given similar problems to solve using the commands they had learned.

An Apple For The Teacher

In the Spring of 1978, I contacted Gordon Kunasch, a sixth grade teacher at Bose Elementary School in Kenosha, Wisconsin. He was receptive to the idea of giving up two hours a week of class time for eight weeks to let me teach his sixth graders how to program a microcomputer. If nothing else, it would be a lesson in computer literacy. Gordie had never programmed a computer before, but he was willing to learn along with the kids if I was willing to provide a computer and the necessary instruction.

The Center For The Application of Computers at UW-Parkside supported the idea and supplied an APPLE II microcomputer for the project. This was a fortunate choice for us since the APPLE II system is easy to use: it is portable; it has a good keyboard; and most important of all, it has a very simple and natural set of graphics commands that allow the programmer to create pictures on a TV screen using 16 different colors. The ideas I wanted to emphasize about computer programming would be considerably enhanced by a graphics display. The basic programming construct of a loop, for example, could be visualized, and every problem to be solved by the students could be represented by a single picture.

Getting Started

My objective for bringing a microcomputer into a sixth grade classroom was to create an environment for active problem-solving. The BASIC programming language statements, enhanced by the graphics of the APPLE II microcomputer, form the logical building blocks. Each lesson consists of a simple program with a short explanation of the new statements, a sample run, and a series of simple program changes for the student to do. These activities allow the student to discover how the statements in the program effect its outcome. Also, problems are posed that require the student to combine statements in sequential order to solve a problem. As a result of working on these questions, the student gets a working understanding of practical problem-solving skills such as:

1. Understand the problem, its givens and goals
2. Make conjectures and probe the problem by trial and error
3. Decide on a set of possible methods of attack
4. Evaluate each possible approach for its correctness
5. Reflect on successful solutions and generalize

Each of the following exercises was designed to provide practice for these skills. They are samples taken from a larger collection and are not contiguous lessons.

Lesson #1

Key Words: GR, COLOR, PLOT

LIST

10 GR
20 COLOR = 9
30 PLOT 5,7
40 COLOR = 3
50 PLOT 5,5
60 PLOT ?,?

EXPLANATION

The computer is put in GRaphics mode.

The COLOR is set to orange. There are 16 different colors to choose from.

The position 10 over, 15 down from the upper left hand corner is plotted.

100 END

RUN

Programming the microcomputer was considered by the sixth graders to be highly motivating. They would rather spend their recess on it than go outdoors.

Your Turn (RUN the program after each change)

1. Change line 20 to 20 COLOR = 3
2. Change line 30 to 30 PLOT 5,7
3. Add line 50 50 PLOT 5,5
4. Add line 40 40 COLOR = 6
5. Delete line 40 40
6. Add a point that connects 5,7 with 5,5 60 PLOT ?,?

Donald T. Piele, University of Wisconsin-Parkside, Kenosha, WI 53141
Your Turn (RUN the program after each change)

1. Change line 40 to 40 IF X + Y > 40 THEN COLOR = 3
2. Change line 70 to 70 GOTO 10
3. Change line 70 to 70 GOTO 20
4. Change line 70 to 70 GOTO 30
5. Add line 55 to 55 IF Y > 20 THEN COLOR = 13
6. Delete line 55
7. Change line 50 to 50 IF X + Y > 40 THEN COLOR = 3
8. Adjust the program to plot 4 different colors in the four different corners of the screen

Tell & Run

In addition to the lessons, the students were given short problems to solve. They were asked to predict the output of a given program before they observed it run on the TV screen. This gave the students a chance to test their ability to reason sequentially through the statements of a program. A few examples are given below:

```
#1
10 GR
20 FOR I = 0 TO 10
30 COLOR = 9
40 PLOT 2,1
50 NEXT I
60 END
70 GOTO 10
```

```
#2
10 GR
20 FOR I = 0 TO 10
30 COLOR = 1
40 PLOT 2,1
50 NEXT I
60 END
```

The original purpose for doubling up was to provide more computer time for the class each week. But it turned out to be valuable for a completely different reason - cooperation.

Other activities reversed the process and presented a picture and asked the student to write a program that would produce the same result. Here are a few examples:

```
Computer As A Creative Tool

The APPLE II microcomputer was left in the classroom during the week to give the class time to experiment. Students signed up in pairs to work on the exercises together. The original purpose for doubling up was to provide more computer time for the class each week. But it turned out to be valuable for a completely different reason - cooperation. The students helped each other figure out the effect of each new command. The programming exercises facilitated discussions about the behavior of each new statement. New discoveries were shared with pride and enthusiasm.

The computer was the focus and facilitator for cooperative problem-solving.

Student Reactions

After eight weeks, the students were asked to respond to the following questionnaire, using a scale of 1 to 5 (1-strongly disagree, 5-strongly agree), with responses from the 6th grade class of 14 boys and 10 girls.

Reflections

Only a small sample of the exercises done by the students are presented in this article. An entire collection of problems was prepared for the 6th grade class to be used on the APPLE II. At the present time, good materials are not readily available. This presents a formidable obstacle to the inexperienced teacher who wants to use computers in the classroom. As more classrooms begin using microcomputers and sharing their work with others, this problem will diminish.

Students in this sixth grade class were very enthusiastic about working with a microcomputer. In contrast, students at a nearby high school who had not been exposed to computers before were generally uninterested in learning how to use them. Perhaps by this time, the older students have other activities that are more relevant. Also, in the sixth grade the survey shows that boys and girls are equally confident and interested in programming the computer. However, in entries from 10th graders in an annual computer problem-solving contest held at UW-Parkside, the boys outnumbered the girls 9 to 1. A recent survey in Creative Computing Magazine had a response with a distribution of 95.4% male and 4.2% female.

Programming the microcomputer was considered by the sixth graders to be highly motivating. They would rather spend their recess on it than go outdoors. Students came early to school and would hang around as long as they could after school. A sign-up sheet became a necessity. With practice, some of the students became resident experts able and thrilled to help others - including the teacher. Some of the sixth graders entered our annual computer programming contest.
Research Questions

This pilot project suggests a number of possible topics for further investigation and research:

1. If students learn how to program a computer early, will they maintain their enthusiasm in later years?
2. If students learn how to program a computer early, will the interest and confidence level of girls, in later years, continue to match that of boys?
4. What is the relationship between logical thinking skills and creative programming skill?

Conclusion

Computers have been used in education primarily as a delivery system for subject matter. This role will continue to be developed even further with microcomputers. However, a new application is emerging which is fundamentally different. Instead of the computer programming the student, the student learns how to program the computer. Arthur Luehmann describes it as follows:

"Computing constitutes a new and fundamental intellectual resource. To use that resource as a mere delivery system for instruction, but not to give a student instruction in how he/she might use the resource, has been the chief failure of the CAI effort. What a loss of opportunity if the skill of computing were to be harnessed for the purpose of turning out masses of students who are unable to use computing."

The computer as an instrument for learning logical thinking and problem-solving skills is only beginning to be understood. However, with the rapid development of low cost microcomputers in the next few years, computers - and hence computer problem-solving techniques - will become a fundamental intellectual resource.
Philosophers have long maintained that diversity is essential in a well-rounded, productive life, and in no area of life is the need more urgent than in education. A mind, given the proper amount of freedom and discipline, will expand to accept new ideas. This truth, so well known yet so often overlooked, is revolutionizing contemporary concepts of education.

Foremost among educational tools is the computer. Around 1971, Hampton City Schools decided that learning to use computers would be a valuable skill for gifted students. The district tied into a computer at the College of William and Mary, but the 35-mile distance meant expensive long-distance calls, and the district could not set its own priorities for the rented time. With a 3-year Title IV-C grant of $350,000, the district rented a large computer for administrative purposes and for the gifted program. Although the grant money has long since run out, the district owns the computer as of 1980 and defray costs by renting time to other systems.

Gifted children are often called "ivory-tower kids." They like to work alone and love to work with a computer. The younger they start, the easier it is to learn—almost like learning another language. Students have been trained in the operation of computer terminals and use this knowledge to aid them in such varied subjects as reading, mathematics, and the sciences. Computer-aided instruction has proved very successful as well as enjoyable to the students, who spend hours on the computer absorbed in what it has to offer. The district is beginning to use the computer for remedial work. It's a fantastic tool for both ends of the spectrum, as it gives the child immediate reinforcement.

By providing diversity, the computer gives the students the opportunities and the motivation for self-expression. For a creative writing program on haiku, the computer presents the learner with nouns and adjectives with which to create a poem. A science course programmed with local data enables students to determine effects of pollution on the James River. A program on the stock market, which simulates financial operations, encourages the student to use deductive reasoning to solve problems. The programs are updated yearly, some monthly. Computer instruction is less expensive per child than textbooks. Gifted children are not happy learning from obsolete texts. An additional turn-on is that it's so current.

Gifted high school students learn programming and then design programs for elementary pupils. By second or third grade, the children have learned computer literacy. By fifth or sixth grade they are doing their own programming on a simple level. Students type into the computer, which can respond by printout or video tube. It speaks their language. It tells them "Right on!" "Groovul! "You've done it!" When the kids use four-letter words, it tells them "No, no." It "talks" directly to the child by name. The computer also helps gifted students explore careers by responding to their interests with descriptions of vocations, kinds of work involved, and training necessary to enter the field. Jobs available locally are listed on the computer.

The Hampton City Schools computer program provides an ongoing opportunity for students to supplement and complement their regular educational curriculum. Knowledge about computers has been the entrance to jobs for many students, including summer work during college. With everything so computerized now, it has helped them in their studies of law, medicine, and business. They have never been sorry they learned it. This is the age of technology. The future is here.

The computer is a "must" tool, especially for the gifted and talented.

For more information on the Hampton City Schools program contact Nedra 1. Harkavy, Director, Program for the Gifted, Hampton City Schools, 1306 Thomas Street, Hampton, Virginia 23669.
The Paducah Tilghman High School “Chemics” Program

STEVE JOHNSTON

The “Chemics” program at Paducah Tilghman High School was started in 1977 to satisfy the need in our curriculum for a course to challenge and stimulate gifted talented math and science students. Our school system had previously initiated a combined studies course, American Studies, for gifted talented high school juniors. This course consisted of a 2-hour block of English and U.S. History. We also had a math-science-English enrichment program in the elementary schools. The need for more challenging courses at the high school level was recognized and investigated. After much study, we found that what we wanted was a combined studies course for seniors with an emphasis on math and science.

The Chemics Curriculum

The results of our efforts was a restructuring of three courses that were already in the curriculum: second year Chemistry, first year Physics, and first year Computer Science. The students soon coined the name “Chemics” for the course. We used a 2-hour block of time, however, instead of team teaching, the class of 30 students is divided into two groups. We use flexible scheduling with each group, with three 2-hour labs and four 1-hour lectures per week, and at least one lecture with both groups together. We found we could get 3 to 4 hours of work done in the 2-hour labs because of the time saved putting up and taking down experiments. Schedules normally run on a 2-week sequence, but can be altered to conform to individual course needs or school disruptions and holidays.

Criteria for student participation is based primarily on teacher recommendation. Since the course includes second year Chemistry, we rely heavily on the recommendations of the first-year Chemistry teachers. The course has been very popular and we have had no problem filling the class with qualified students. One reason is that the type of students we want are very academically oriented and usually have full schedules. Being able to offer them 3 credits in 2 class hours (1 1/2 for Computer Science), has been a real advantage. One problem with the 2-hour format is that great care must be taken in placement of the 2-hour block in the master schedule. Since the classes that these students take, such as Calculus, are not usually offered more than 1 hour a day, care must be taken to avoid conflicts.

Although we do not team teach, we do try to see that course content is coordinated to integrate all three subjects. We have been particularly successful with computer-generated dry lab simulations in the Chemistry and Physics courses.

Choosing a Microcomputer

After the first year, we found that the opportunity for lab simulation with a computer necessitated changing the method used to teach Computer Science. For the previous 6 years, we had two key punch machines in the classroom and batch-processed our computer programs at Murray State University. This arrangement had some advantages and disadvantages. We were able to teach FORTRAN, had hard copy for output, and the students were exposed to programming under a punched card environment. The drawback was a turnaround time of 2 to 3 days.

After researching timesharing, microcomputers and microprocessors, we decided that the best solution for our situation was one of the microprocessor-based computers. After looking at all of the available brands, we decided to purchase the Apple II. Even though it was more expensive, the color graphics and the expandability seemed to best suit our needs. The purpose of this article is not to sell a particular brand of computer, but if you are in the process of buying one, try not to let cost be the primary factor—this is one educational area in which you really do get what you pay for. We had to spread our purchase of equipment over several years and were not able to get the computer, disc drive, and printer at the same time. It is extremely difficult to teach Computer Science with programs stored on cassette tape and without access to hard copy. So if at all possible, get the disc drive and printer with the computer.

We are extremely pleased with our Apple and have continued to add to our equipment each year. Next year we will have a total of five Apples with two disc drives each, two printers, a graphics table, and the ability to teach four programming languages: BASIC, FORTRAN, PILOT, and PASCAL.

The Lack of Educational Software

The one discouraging area in the conversion to the microcomputer has been the lack of educational software and course material. The manufacturers have done a superb job in developing the machines, but the development of usable educational applications is far behind. This situation is apparently improving, you do see more and more advertisements for educational software, which is great except for the fact that the number of disreputable companies will also increase. Almost all of the programs being sold are really quite good, but we have bought a few that were worthless if at all possible, know what you are buying and who you are buying it from. Also, do not be afraid to write your own software. You will be surprised at what you and your students can turn out. After the students acquire the tools necessary for programming, they can find challenge in the area of application software. Applying computer programming to what they are learning in Physics and Chemistry has been an important factor in motivating the students in all three areas.

Information Resources

If you are just starting to implement a program involving a computer, or think you might be interested in this area, there are several things you can do to broaden your background in this area. First of all, read. There are many good monthly magazines available that specialize in the microcomputer. The problem is that most of these are not available in newsstands. The best source for these publications is...
the computer store. If you are fortunate enough to have one in your area, don't be afraid to talk to the salespersons about your particular application. I have found most of these people knowledgeable and interested in all aspects of computer applications. While you are there, ask to try out one of the machines. Most of the manufacturers market a computer-assisted instruction program to acquaint the user with the machine and the programming language.

Another resource is the local business community. Ask your students if any of their parents work in a business that has a microcomputer. You will be surprised at the number of small businesses that are using computers, and most of these people love to show off their hardware and share their ideas about computer literacy.

Computers are not a cure-all for the ills of education, but they are a valuable tool that can and should be used, not only to teach about computers themselves, but also to enrich instruction and challenge students in other subject areas.

For more information about the Chemics program contact Steve Johnston, Paducah Tighman High School, Paducah, Kentucky 42001.
Computing at a New Public High School for Gifted Students
We believe the responsibility of challenging talented students and preparing them for tomorrow's world requires commitment and flexibility. Computing will be a part of that future world and plays a large role in the education of the 150 North Carolina School of Science and Mathematics (NCSSM) students during their first year, a role which will increase as the school grows. The successful integration of computers and education will require a commitment of funds, support by the faculty, and a well-defined philosophy toward the uses of the computer.

We have made our first steps in each of these areas. It is difficult to adequately express the excitement of teaching talented students at a time when microcomputers are within the reach of most schools, in a location providing access to an outstanding educational computing network, and where the support of private industry will enable the school to purchase a minicomputer with a 32-bit central processing unit (CPU). This article is a description of our enthusiastic steps to implement this program.

We use the computer, a particularly effective tool in educating gifted students, in three important ways in the education of our high school juniors. Our most important use is in the classroom. We plan to involve the computer in the classroom instruction of subjects such as American Studies, foreign languages, and music, as well as the traditional uses in mathematics and science. This use is more characteristic of the university than the high school.

The second principal use is in the area of independent study. Since motivation is essential for successful independent study, the natural interest computers arouse in students is an immediate asset. Independent study was once viewed as useful only for the exceptional student however, with the aid of the computer, many projects can be formulated and successfully completed by students from a broad ability range. We intend to provide a high proportion of our student body with the satisfaction coming from independent study.

Our third major use is as a topic of study in its own right. Such subjects as programming languages, algorithms, business and scientific applications, and the impact of computers on society are offered. While these topics are treated in other classes and in independent projects, each student has an opportunity to take a course which addresses these broad areas in a formal manner.

Integrating the computer into the total school program is a priority at NCSSM. Each graduate of the two-year program will have used the computer as a tool, will have an appreciation for the uses and limitations of computers, and will have written several programs. Implementing this philosophy requires the cooperation of the entire faculty and the availability of excellent computing facilities. Our first faculty is establishing a tradition of a broad view toward teaching and education. This approach—team teaching, cooperation between teachers of different disciplines, and the feeling of a team working toward the same goal—creates an atmosphere where teachers encourage students to make use of technological advances and which encourages the testing of new approaches or the inclusion of new topics.

The computer facilities consist of microcomputers and terminals accessing a minicomputer or large mainframe. We have five Apple IIs, one TRS-80, and four terminals connected to the Triangle Universities Computer Center (HP-2000, Amdahl V-8, IBM 370) through North Carolina Educational Computing Service (NCECS). Next year we will add two more Apples and purchase a Digital Equipment Corporation VAX-11/750. These facilities, together with our membership in NCECS, will give us a combination providing students with access to a wide range of computing power and virtually an unlimited number of potential projects.

The planned acquisition of the new VAX is made possible by a gift from a private corporation. This is one of several gifts from private corporations which represents a remarkable partnership between the public and private sectors. The VAX provides an excellent base for the future growth of the school. In our opinion, it offers effective interactive power. We believe there is no substitute for an interactive environment when working with young students. The bulk of our computing on the VAX will be in Pascal and C.

The microcomputer is the centerpiece of this year's program and will be the major part of our program for the next several years. Microcomputers such as the Apple II and TRS-80 are an excellent source of graphics and BASIC. The graphics capability of the Apple provides opportunities which we will pursue in the living/learning atmosphere at NCSSM. The residential aspect of our program enables us to make efficient use of our facilities—the computer room is open from 8 AM to 10 PM. Teachers can give an assignment involving the use of a microcomputer to augment classroom instruction, knowing the necessary facilities are available to the student.

We believe microcomputers can be used effectively to augment course work, especially in mathematics and science. Students are willing to spend more time "probing" into a subject when it is taught in conjunction with an outside-of-class interest. The graphics capability of a microcomputer interests most students and can bring life to a textbook topic.

The Apple Education Foundation has given NCSSM the equipment to develop software for implementing our ideas. Initially, we will focus our efforts on the coor-
ordinated use of the Apple in mathematics, biology, chemistry, and physics. The mathematics teachers will discuss the numerical approximation of experimental data, run simulations, and allow students to explore the topic interactively (making extensive use of graphics). The science teachers will then build on this experience. The Apple will be used to process data from an experiment performed by the students, an exciting use of the microcomputer.

The research laboratories of today use machines both to acquire and to process experimental data. Dedicated equipment is too expensive for consideration by a high school, but the flexibility and cost-effective use of microcomputers can help extend the laboratory experience of high school students to the methods used in the actual research labs of today. Essentially, the microcomputer can be used to demonstrate the spirit of the automatic acquisition and processing of experimental data.

The computer is also useful as a bridge between subject areas. It is important for schools to take a broad view toward the education of eleventh and twelfth graders. This is especially true for a school of science and mathematics. Specialization is important and a reality, but it is also important that students receive solid exposure to a variety of disciplines and that their relationships of the discipline be emphasized. The computer with its applications can provide not only examples of real cooperation across disciplines but also opportunities to further knowledge in one area by applying knowledge from another area.

NCSSM expects to serve several constituencies. Three of these constituencies are the students at NCSSM, the students at other schools, and the teachers through use in many schools across the state. The partnership of government and private industry is enabling us to meet these important goals.

North Carolina School of Science and Mathematics

The North Carolina School of Science and Mathematics was created in 1978 by the North Carolina General Assembly at the suggestion of Governor James B. Hunt Jr. It is a statewide residential educational public high school developed specifically to provide a challenging education for eleventh and twelfth graders who are gifted in science and mathematics. The school is an important step toward reversing devastating national trends, the neglect of education for high caliber students the decline in the quality of science and mathematics education, and reduced economic productivity.

The school opened with its first class of 150 eleventh graders in September of 1980. Enrollment is planned to increase by 25 each year to a maximum of 900 eleventh and twelfth graders. Eventually, up to 10% of the student body will come from out of the state. The school is located on the former Watts Hospital and School of Nursing complex in Durham, a gift of 27 acres and fifteen buildings from Durham County. The student population is 50% male, 50% female. 21% are from minority groups. The students come from both rural and urban areas and represent 63 of North Carolina's 100 counties.

The school has attracted strong support from foundations and corporations. The vitality of the school's growth and future success will be a direct result of an extraordinary partnership of the public and private sectors.
Are all dinosaurs dead? — Probably not, and the six to eight year olds studying this subject in the University of South Alabama's Saturday Program for Gifted children are using the Program's TRS-80 microcomputers to gain background knowledge in the subject. Not only are the youngsters learning more about one of their favorite topics through the use of an instructional game but also, as a byproduct, they are learning to operate the computer, an item of equipment that is being increasingly used in programs for G/C/T youth.

Numerous articles have been written to describe ongoing computer-oriented programs and their successes, yet none has provided the "How To" information for an interested educator to initiate and manage such programs in his own environment. In keeping with G/C/T's intent to provide usable information to those involved with the G/C/T child, this article will be directed toward informing the reader how microcomputers can be reasonably introduced into an existing program for G/C/T children.

One might easily relate the traditional large scale computer in the pre college educational environment to the dinosaur—its dominance in the educational realm is on the wane. The reason for this situation is the development of the microprocessor—a computer on a single integrated circuit. This device, as the heart of a microcomputer, offers computing power equivalent to computers costing in the five to six digit range only a few years ago.

Even those schools which are using microcomputers or the larger minicomputers seldom seem to exercise these equipments effectively. In many programs one finds the computer used for a relatively few students to learn programming techniques or computer design. The computer may be infrequently used by an additional segment of the student population for simulations or games that are related to political science, history of business. In other schools one finds the computer used exclusively as a "teaching machine", most frequently for teaching younger children reading, math or perhaps a foreign language. The computer is a flexible, dynamic teaching aid which should be utilized across the entire spectrum of its capability. It is time to pause and take an arm's length look at the computer and its role in the school environment.

The University of South Alabama Saturday Program for Gifted Children (SGP) began offering computer programming for its students in the spring of 1977 using the University's IBM Model 370. This was at least a step in the right direction. However, the complexity of dealing with such a large system and its uncompromising protocol made it less than optimal, particularly for the younger children (8-9 year olds) in the class. Even this first foray into computing verified the high level of interest among the SGP students. Approximately seventy percent of those who had participated in the Spring programming course and later enrolled for a second year of the Saturday Program, also chose a second course in computer programming as one of their Fall Quarter courses. Still, the complexity of working with the IBM system caused some consternation.

In the Fall of 1977, The Tandy Corporation's Radio Shack Division announced the availability of its TRS 80 microcomputer. This self-contained, completely assembled microcomputer appeared to be the exact answer to our needs. Using the state-of-the-art Z 80 microprocessor, this system is composed of a computer/keyboard, video monitor and cassette recorder, at a total cost of $599.00. The Saturday Program had been looking for a microcomputer to use but several problems had precluded the acquisition of systems.
prior to the entry of the TRS-80
First, most reasonably priced (under $1800) microcomputer systems, that were available in the Fall of 1977, were sold in kit form. This required the buyer to assemble and test the system prior to putting it into service. Due to the electronics background and sophisticated test equipment required to accomplish this task, it was an insurmountable obstacle for most schools. Second, repair and maintenance service for the existing systems was either unavailable or prohibitively expensive. With Radio Shack's nationwide system of repair facilities, these roadblocks were overcome. Tandy has established a separate division, Tandy Computers, which will sell in kit form. This required the buyer to assemble and test the system. Due to the usual time constraints, the teacher will be maximized. An example of such a program accompanies this article. This program, "Dinosaurs," is written in Radio Shack Level I BASIC and was developed for use with a course for six to eight year olds entitled, "Are All Dinosaurs Dead?." This type of program is easily developed and can be expanded or reduced depending upon the capabilities of the microcomputer available. The example program requires the TRS-80 with 16K of user memory. With very little effort, the program could be reduced to fit the smaller TRS-80 with 4K of user memory. The reader should not be frightened off by a little technical jargon such as 4K or 16K of user memory. Within an hour, she/he will find the terms coming quite naturally.

In November, The Saturday Program ordered four TRS-80s. They were no more difficult to set up and operate than a simple component stereo-system. Plugging in three A/C line plugs and three interconnecting cables is all that is required to make the system operational. All connections are clearly marked. The manual provided with the microcomputer assumes that the user has no prior association with computers and thus takes the reader from initial equipment setup through all the programming techniques available in the computer's resident BASIC Language. The manual is written in a step by step, programmed instruction approach which will permit its use either as a resource book for the teacher or as a student text.

The primary use of the SGP microcomputers is to teach computer programming to students in the age range of 8 to 18 who elect this subject. During their first quarter of programming, the students are taught the computer language BASIC. The objective is to familiarize the student with the computer and how it can be made to work for him/her. Some simulations and computer games are used as motivators during the quarter. It became apparent that many of the kids would not take this course repeatedly for the simulations/games alone, without ever mastering BASIC. To use their concentration on the task of learning to program, a post test has been introduced on which a score of 90% must be achieved in order for the student to select a subsequent programming course. If a program intends to offer computer time to students beyond an introductory level, the participants must be guided and challenged just as with any other course for G/C/T youth. The SGP present modus operandi is to have the advanced programming students identify one or more objectives which they will work toward during the quarter. These objectives might concentrate on improving their skills in graphics techniques or in the development of programs for home use. The students work independently on their projects, using their instructor as a resource person for advice or assistance as required.

Beyond the student-directed independent study, these advanced programmers could be encouraged to do specific developmental tasks related to the administration, planning or curriculum of the program itself. There are an almost unlimited number of software items that could be developed by these programmers which might make a significant contribution to the direction in which the program grows.

The student programmers' growth and development are simply functions of the teacher's own creativity in keeping them challenged. If the teacher follows the guidelines described above, she/he can keep these more capable students deeply involved in their own research and development activities while the majority of classroom time could be devoted to beginning programmers or those who are having difficulty mastering programming concepts.

Now what about students who are not in programming courses? Teachers should consider using the microcomputer to add spice and motivation in their courses in much the same way as other audio-visual equipment can be used. Beyond the rudimentary machine functions which any other computer user must learn (it takes approximately five minutes to teach anyone), the computer does the rest of the work. Programs should be written in a fully interactive mode (i.e., self prompting and error correcting) so that the time wasted by instructions from the teacher will be minimized. An example of such a program accompanies this article. This program, "Dinosaurs," is written in Radio Shack Level I BASIC and was developed for use with a course for six to eight year olds entitled, "Are All Dinosaurs Dead?". This type of program is easily developed and can be expanded or reduced depending upon the capabilities of the microcomputer available. The example program requires the TRS-80 with 16K of user memory. With very little effort, the program could be reduced in scope to fit the smaller TRS-80 with 4K of user memory. The reader should not be frightened off by a little technical jargon such as 4K or 16K of user memory. Within an hour, she/he will find the terms coming quite naturally.

What are the hard facts an interested G/C/T teacher must have to sell his/her administration on such a project? How should the program be implemented and how much will it cost? Many G/C/T programs which offer courses in computer programming might more appropriately call these courses "Introduction to Computers" because the kids get little or no opportunity to have hands-on experience with the computer. G/C/T kids have little interest in watching others operate equipment. They must be actively involved. The Saturday Program has found that the most desirable ratio of students to computer input/output (I/O) device is two to one for classes on programming. The I/O device might be a printer or video terminal in a large computer time sharing system, while the microcomputer such as the TRS 80 has its keyboard and video display integral to the microcomputer system. The rationale for the two to one ratio has evolved over several quarters of operation. Due to the usual time constraint of one hour per class, three
or more students per I/O device will not allow each student to have sufficient hands-on opportunity to work with the programming techniques being taught. Hands-on activity is the key to continued interest and achievement in this subject area. The SGP violated its own rule in this regard one quarter with disastrous results. Because of the large number of applicants for programming, the classes were set up with a three to one ratio with the result that students who participated in these larger classes did not have sufficient applications time to learn the programming techniques. Many of them became disenchanted with the whole idea because of their competition to get a share of computer time. Those who were more persevering made the best of the unfortunate situation and they signed up for a second opportunity to learn the material during the following quarter. Needless to say the ratio of students to I/O device is back to the proven two to one.

One might logically ask, "if two to one is good, why wouldn't one to one be even better?" Ironically enough, even if there is an I/O device for each student in the Beginner's Programming Classes, during the initial learning investigative stage, the students will gravitate toward working in pairs to solve programming tasks. Learning a computer language is much like learning a foreign language. The combination of learning the language and applying the language to problem solving situations often causes even the most dedicated "lone wolf" to seek association with his peers to accomplish a task. One might view this interactive environment as one of the major advantages to teaching computer programming in this manner.

The number of systems a GCT program is to acquire will be a function of the educator's creativity in locating funds and or his/her persuasiveness with the local school administration. If there is absolutely no computer equipment on site, an initial investment in one or two systems could get things started. An individual adept at proposal writing certainly should seek outside resources and try for a larger number of systems.

An interesting cost comparison can be shown between the relative merits of adding printers or video terminals to existing large computers available to a school system or beginning from "scratch" by purchasing an independent microcomputer. Consider the cost of two of the more common I/O terminal equipments:

- Lear Sigler, ADM 3A video terminal
  - $895.00
- DEC Writer printer terminal
  - $1395.00

Digital Equipment Corp

The terminal cost only includes the equipment (hardware) and does not include such items as installation and line lease fees for the terminals. The microcomputer has no additional costs. From a cost effectiveness standpoint, the TRS 80 wins hands down. A program can purchase three complete microcomputer systems for the cost of two Lear Sigler, ADM 3A video terminals, or five microcomputer systems for the approximate cost of only two DEC Writer IIs.

The arguments are strongly in favor of the microcomputer from virtually all points of view. The microcomputer is:
- More cost effective
- Dedicated to exclusive student use
- A more effective system to teach programming because of its simplicity of operation
- More easily repaired and maintained
- A system which can be utilized and taught to children by personnel who are not computer professionals.

The computer has proven itself to be a powerful education device. With the advent of the TRS 80 microcomputer, it is well within the reach of every program for GCT children.
The Talcott Mountain Science Center

DANIEL BARSTOW

Every Saturday children from a number of towns throughout Connecticut travel by bus to the top of Talcott Mountain. They have been selected by their elementary and secondary schools as students with special interests or abilities in science. They are participating in a unique and exciting program at the Talcott Mountain Science Center.

Situated at the top of Talcott Mountain ridge in Avon, CT, the Talcott Mountain Science Center is a regional center for science education. It has a cluster of science laboratories and classrooms, a staff of specialists, and a wealth of materials for science exploration. Students go to the Science Center to learn by doing—to become involved in real scientific investigation.

In the Saturday program for gifted and talented children, most of the students are working on independent projects. Some students are building electronic gadgets in the radio-electronics lab, or tracking the OSCAR satellite for amateur radio communication from the ham shack. In the evening, astronomy students are using the Science Center’s telescopes and developing astrophotographs in the darkroom. For meteorological research the center has a complete weather station, receives weather data by Teletype, and affords a 360° panoramic view of weather conditions throughout central Connecticut. The woods and ponds around the center provide several different ecosystems to explore. In the alternative energy lab, students experiment with solar cells, or build windmills to generate electricity. Of special interest to readers of onComputing, students interested in computers use the Science Center’s PDP-11 minicomputer and Apple II microcomputer.

The PDP-11/10 (Digital Equipment Corporation) is a minicomputer capable of serving six independent users at the same time. Users can select from over 100 programs available in the program library or can write and store their own programs. Though the mainframe of the PDP-11 is located in a corner of the Computer Sciences room, terminals can be connected from several other rooms at the center simply by plugging the terminals into special outlets. Terminals can also be connected to the PDP-11 by telephone (several schools rent computer time from the center). The Apple II is a single-user microcomputer. It is small and portable enough to be carried from room to room, or even to schools served by the Science Center. The Apple II has a cassette tape recorder and a floppy disk drive (5-inch diskette) for auxiliary memory. The sound and color graphics capabilities are special features of the Apple. The center also has a Heathkit H11 microcomputer, and two digital logic labs. With these facilities, a wide variety of computer-related activities can take place.

Games and Simulations

Many students begin their use of the computers by exploring the various games and simulations available on the computers. With a brief introduction to the procedures for running programs, students are soon independently and enthusiastically playing games and simulations such as ASTRO (a simulated lunar landing), POLLUTE (a water pollution experiment), and ANIMAL (in which the computer uses logical thought to guess which animal the user is thinking of). These programs have been selected or developed at the center specifically for their value in science education and the students clearly enjoy their use.

Many of these programs are used in the context of other Science Center activities. Bill Danielson is Assistant Director of the center, and is in charge of the gifted and talented program. He is also the staff member with primary responsibility for the computer resources. Though his background is in astronomy and meteorology, he has been involved with the center’s use of various computers since 1969. Danielson describes the use of the lunar landing program: “Before they play ASTRO, many of the students have seen our videotapes of the Apollo flights, they’ve observed the moon through our telescopes, they’ve done a “lost on the moon” activity, and they’ve created models of lunar craters in the classroom. Then they finish with their own lunar landing. It’s a very exciting thing, they really are piloting the lunar module at that point. The visual images are important to help the computer’s printout come alive.”

Another instructional program is WEATHERWISE. It was written by Danielson to help students learn how to interpret weather data. Several individuals or teams may play. Each team must pilot a ship across the Atlantic Ocean from New York to Iceland. As they trace their programs on maps, students tell the computer in which direction they would like to travel for the next four hours. The computer calculates the new locations, and also reports the local weather conditions. The students must use this information and apply their knowledge of weather maps to avoid the storms over the Atlantic. More than one ship and crew has been lost at sea over the years.

For more advanced meteorology students, there is a program to simulate cloud seeding. Students input control factors such as rain droplet diameter and concentration, and cloud thickness. The computer calculates the amount of rain produced over a given period of time. The students must try to determine the optimum conditions for cloud seeding. John Porter, a staff meteorologist, is revising the program to include the effects of updrafts and downdrafts. He also would like to use Apple high-resolution graphics to show the formation of the clouds and the falling rain.

Computer games and simulations enable students to “experiment” with scientific processes that otherwise might be impossible to experience in real life. Geology students use a program that simulates radioactive decay rates for selected materials (certainly safer than experimentation), and run a program that compresses geological time into one year. Ecology students learn about biological mutation rates with a program that simulates fruit fly (Drosophila) reproduction. This is often done along with experiments.
with living fruit flies. The computer simulation can compress the months needed for several generations into the brief period of time needed to run the program.

The staff of the Talcott Mountain Science Center has also had to learn how to use these programs. The center employs about fifteen full-time science teachers. Only a few of them had any experience with computers before starting at the center. They are specialists in other fields of science, and have learned about computers on the job. Experience has shown that it is easy for teachers to learn how to use both the PDP-11 and the Apple II computers. It has also been found that the individual staff members acquire different levels of computer literacy, according to their own needs and interests. By now, all staff members at least know how to run programs appropriate to their particular fields of science. Some of the staff also know how to write programs in BASIC, and have worked on programs to serve particular instructional needs. The three staff members who do most of the teaching about computers have had more extensive experience with computers (mostly at the Science Center). In any case, there is a sharing of expertise among the staff members, and the computers are used to some extent in all areas.

Data Analysis

Several of the Science Center's instructional activities take advantage of the computers' abilities to analyze data. In one such activity, students launch helium-filled balloons to determine wind speed and direction. They use a theodolite and stopwatch to accurately measure the changes in balloon positions over time. The students run a special program on the PDP-11 to analyze this data and calculate the observed wind conditions. One group of students used balloon launch data from several locations to study pollution dangers associated with a proposed interstate highway. The study became one of the factors used in a decision to relocate the highway away from a group of water reservoirs.

The center's solar prominence and sunspot telescopes, as well as a solar spectrometer. Various programs are used to analyze sunspot activity and calculate solar temperatures. Programs like these help students interpret and understand research data.

Chronobiology is the study of biological processes as they rhythmically change with time. For example, temperature in human bodies varies according to regular patterns throughout the day, plants bloom in annual rhythms, the human menstrual cycle is approximately twenty-eight days (Chronobiology should not be confused with the pseudoscience of "biorythms"). Science Center students use a range of equipment to study rhythms in plants, animals, and humans. The computer is an essential tool for this study.

Dr Donald P. LaSalle, Director of the Talcott Mountain Science Center, has been a pioneer in educating children to use biological measurements to learn about their own circadian (daily) rhythms. LaSalle comments, "The computer is to chronobiology as the telescope was to astronomy. Galileo's telescope enabled him to see detail precise enough to recognize the true nature of the solar system. The computer enables us to study large enough amounts of biological data to recognize subtle changes. Before computers, sophisticated chronobiological research was virtually impossible. With computers, even elementary school children can take their own biological measurements and run the data analysis programs." This information can help students recognize their own daily rhythms and understand how these rhythms affect their daily lives.

Student Programs

After a few sessions working with the computers, most students are eager to learn how to write their own programs. In the Saturday program, students may choose to participate in a six to twelve week session on computer programming. The emphasis is on applying the computers to the students' work at the center. BASIC is the programming language used for both the PDP-11 and the Apple II (some of the more advanced students opt to learn machine language as well). Though BASIC has some limitations, students find it easy to learn and apply.

The staff has found it helpful to use a "read-modify-write" sequence to teach particular commands. In the case of FOR-NEXT loops, students first read a simple program which contains a FOR-NEXT loop, while the teacher demonstrates its use. Next, they observe the effects of modifications in the program, such as moving the NEXT statement. Finally, the students write their own programs using FOR-NEXT loops. This sequence can be applied to any command, and helps students progress from the concrete to the abstract.

Some early programs include mathematical calculations such as area and average, graphic manipulations, word quizzes, a coin toss simulation, and conversions such as Fahrenheit to Celsius. It takes just a few weeks of practice for students to feel comfortable with writing programs in BASIC.

As students begin to work on longer programs, the staff has found it important to teach structured programming techniques (Structured programming refers to a particular approach, and techniques, for writing programs that are logically organized and clear to understand—human readability is as important as computer readability). Students are shown how to use a "top-down design," which involves breaking the overall program design into smaller, more manageable sections. These sections can serve as the basis for "block-structured" programs. REMARKs are used to indicate the flow of control in the programs, and explain the operations of sections that might be confusing or unclear.

A heading is required on all student programs to indicate the name of the program, the author, and a "save until" date (student programs are periodically purged). Preferably the heading also includes a list of variables and a brief description of what the program does. There are some limitations on the use of "true" structured programming techniques, because BASIC lacks certain control structures such as WHILE and UNTIL loops. Nevertheless, the staff has found it essential to specifically teach a logical approach to program design. Otherwise student programming projects become confusing and unmanageable.

Many of the students' programs are related to other areas of interest. A student who has had some experience flying airplanes is presently writing a game program which involves a simulation of the airplane's controls. Various different scenarios can take place, and a successful flight requires careful calculation of flight direction, wind speed, fuel consumption, and altitude.

An ecology student, who had been studying the predator-prey relationship of rabbits and foxes, recently made a computerized model of a forest. The program calculated the total populations of rabbits and foxes, based on such factors as initial populations, food available in the forest, rainfall, and natural disasters. Defining these interrelationships in mathematical terms became the focal point for a careful ecological analysis.

Lisa Barnhart, a high school student, used the computer to study the correlation between crime and weather. She based her study on crime statistics from...
year period Quoting from her summary: "The temperature had the greatest influence on crime. It had its largest effect on larceny, then in descending order, on aggravated assault, burglary, and robbery. Precipitation, strangely enough, had a great effect on two crimes: robbery and burglary. I had anticipated a lower crime rate when there was more precipitation."

Michael Dowling, another Science Center student, is working on a program which will calculate the orbits of planets, comets, asteroids, and other orbiting objects, using the Laplacian method. The calculations are based on position data from three precise observations through the center's 32-centimeter reflector telescope.

A geology student wrote a program to identify rocks based on descriptive data. By asking questions about rock characteristics, the program is able to identify several types of rocks. The classification scheme underwent several revisions as the student learned more about rock classification systems.

The color graphics of the Apple II offer powerful capabilities that the students enjoy exploring. In some cases the students experiment with kinetic art, manipulating the graphic images under program control. One group of students used the Apple to display a graphic image of the sun and indicate the placement of sunspots according to daily observations. Their program attempted to duplicate the correct motion of the sunspots.

A project not yet completed is the storage of star position data in the Apple II. Users will be able to specify particular areas of the sky, and the Apple II will use high-resolution graphics to plot the appropriate stars in their correct positions.

When it is completed, the Apple II can be easily carried to the center's observatory to facilitate stargazing.

Though some of these programs may seem fairly sophisticated, few of the students had any experience with computers before going to the Talcott Mountain Science Center. Once students are familiar with a programming language such as BASIC, writing programs is not a difficult process. The focus of their work usually is on designing the algorithms, or procedures, which form the basis for the program. Thus the emphasis is primarily on scientific understanding of the problem. Actually writing the program (and implementing, testing, and debugging) involves time and work, but is rarely too difficult for the student to handle.

The major problem with computer use at the Science Center is providing sufficient computer access time to the students. In spite of the availability of six PDP-11 terminals, the Apple II, and a few other computer resources, demand for computer time is higher than the supply. There are several aspects to the solution, none of which completely alleviate the problem. The computer programming class has a lower student capacity than some of the other classes—twenty students (with two teachers) is a maximum. With the Apple, and four or five terminals to the PDP-11 (some terminals are usually used by other classes), this provides a student/computer ratio of about four to one. Sometimes students work in groups, and there is a sign-up procedure to take turns. The center also uses student tutors to help answer questions, both between turns and at the terminals.

It's clearly easier for students to write their own programs than to design hardware construction projects. However, a number of our students have gotten involved with hardware design and use our electronics lab to build computing machines.

The Science Center has a few commercial digital logic labs, which help introduce students to the theory and practice of digital design. The center's first microcomputer was a Heathkit H11, a kit built by a group of students. Other students have built computer kits for personal use. The help of Bob Judd and Al Vitello, the center's electronics specialists, some students have designed and built their own computers.

Tom Birdsall is a high school student from Andover, CT. He describes his experiences with "homebrew" computers: "Two and a half years ago I felt that I wanted to learn how computers worked by building a microcomputer—not from a kit, but from scratch. My computer is based on a 8080 microprocessor and has 1 kilobyte of programmable memory. The first version was built on a proto-board. My second version features a case and a switch register for input/output. Though it is currently limited to mathematical manipulations, in the future I hope to use my computer to synthesize music, control remote equipment, and, above all, as a general-purpose home computer."

The Saturday program is certainly the most intensive experience students have with computers at the Science Center. Yet it should not be thought that only the "gifted and talented" can learn how to use computers. Throughout the week the center offers numerous other computer-related services to educational institutions at all levels. (It is important to keep in mind that the computer is just one of many instructional and investigative tools used at the Science Center.)

Computer Literacy

Some schools contract the center to teach basic computer literacy, either in the schools or at the center. The purpose is to expose students to the capabilities of computers, and to provide some experience in their use. The minimum is a three session sequence, which includes an introduction to computers, a chance to play some computer games and simulations, and some introductory experiences with BASIC. Several schools rent computer time from the center, with the benefit of access to its wealth of science-related programs. The Board of Education in Southington, CT recently purchased an Apple computer, and has contracted the services of the Science Center to help them learn how to use it in their schools. Staff member John Porter travels twice a week to Southington to teach students and teachers how to use the Apple and how to program in BASIC. He also offers suggestions on how to apply the computer, especially in science education. Porter enjoys using the computers, and his enthusiasm is an important factor in turning kids on to computers.

Research

For several years the center has been involved with research on solar energy. Two of the buildings at the center have solar panels providing some of their energy needs. The new "Solar-heated Chronobiology and Appropriate Technology Laboratory" has several banks of active solar collectors on its roof. They provide all of the hot water and 50% of the space heating energy resources. In addition to collecting information about the efficiency of these panels, the center also operates solar instruments that measure direct and diffuse sunlight throughout each day. The data from these measurements is being collected and analyzed by computer to help determine the potential for solar energy in this area.
Other agencies have contracted the use of the Science Center's computer for analysis of research data. The American Radio Relay League conducted a study of its members (amateur radio operators) to determine their interests, activities, and purchases related to ham radio. Over 3000 responses to the questionnaire were received and analyzed at the center by the PDP-11. The PDP-11 is used for most of the research because of the large capacity of its two hard disk drives (24 megabytes of information per disk).

Administrative Applications

There are also administrative uses for the computers. The mailing list for the center's news bulletins has been computerized. This certainly speeds up preparation of address labels. It also enables selected notices to be sent to specific people, such as elementary school principals or science department chairpersons. The computer is also being used to keep track of the center's inventory of materials. Danielson is working on a staff scheduling module, which should alleviate some of the problems involved in the complicated process of matching school needs, staff abilities, and Science Center resources. These administrative applications are run for the most part at times when students are not using the computers.

The Future

What about the future? The Talcott Mountain Science Center is always exploring new areas of science education. Because personal computers are becoming more popular, the center is likely to offer evening classes on the use of microcomputers and how to program in BASIC. There may also be classes in digital logic for those interested in hardware experimentation.

Since many public schools are also buying microcomputers, the center will be providing special training courses for teachers to learn how to use computers. This will include demonstrations of the computer's applications in science education. Most of the science-related programs developed at the center can be used in other schools, even if they do not have the extensive resources available at the center.

Some hardware acquisitions are likely. A light pen, bit pad, or other graphic input device would facilitate the use of Apple graphics. The Apple's existing 16-kilobyte capacity of programmable memory is inadequate for some applications, so another memory card will probably be purchased to expand capacity to 32 kilobytes. Since a number of the center's instruments are analog devices, analog-to-digital (A/D) converters are needed to interface these instruments with either the PDP-11 or the Apple II. (Analog refers to continuous change, such as a moving second hand on a clock. Digital refers to counting by specific numerical increments, such as the changing time in digital watch displays. Most computers can process data only in digital form.) The center may also explore the use of speech generation and speech recognition devices.

The most important aspect of improving the educational uses of the computers is new software. Some programs will be purchased, especially since the boom in microcomputer use is motivating software companies to make available more programs. However, it has been the Science Center's experience that programs applicable to its needs are best developed by the staff.

Bob Judd, head of the ham radio station, is writing a program to use the Apple II's speaker for a Morse code drill. Another staff member is writing a program to display various electronic circuits and a chart of calculated values at different points in the circuits. This is in response to some student confusion related to voltage and current in circuits. Staff members are also working on a program to plot data from weather stations on a computer-generated map of the United States (based on map generation programs in BYTE magazine, May and June 1979). The computer has even been programmed to perform magic, as part of an evening course on "Science and Magic" (See "Magic for Your Micro" in the Fall 1979 on Computing ed!)

The computer is definitely having an impact on science education. At the Talcott Mountain Science Center, computers have been used for ten years, and have become an integral part of the way science is taught. The computer is a powerful, multipurpose tool that expands the intellectual reach... both students and teachers. To quote Dr. LaSalle, "The basic philosophy of the Science Center is to involve students in scientific exploration. We have found the computer to be an essential tool in this exploration..."

Dan Barstow was a teacher at the Talcott Mountain Science Center. A fluent speaker of Spanish, he currently is Project Director for a bilingual gifted and talented program in Hartford. He also masquerades as Merlyn the magician, performing feats of prestidigitation.
Gifted and talented students in the United States. In addition, the increasing availability of computers—particularly of microcomputers—in homes and schools is encouraging educators to find ways of maximizing their use in the classroom.

In 1974, the Gifted Child Project in Tallahassee, Florida, was federally funded by an ESEA Title IV-C grant to create innovative instruction. Between mid-1974 and 1981, the Gifted Child Project developed two courses for gifted and high achieving sixth and seventh grade students—Thinkology and Computeronics. This article will focus on the Computeronics program.

Computeronics was developed to provide students with a perspective about computers—to learn a simple programming language, how to write programs, and how to use the computer as a problem solving tool. BASIC was chosen as the language because it is easy to learn and is also widely used. Therefore, the course is easily adaptable to many different computer systems.

Students use the computer to apply their programming skills in solving word problems. They spend as much as 80% of their time reading, completing activities, and writing computer programs at their desks or at typewriters. The remaining time is spent in hands-on activities at the computer.

Sidetrips, a book of over 40 brain teasers and problems, provides additional activities for students who finish early. The activities require that students apply their programming skills to problem situations. Students determine if a computer is needed to solve the problem, then they go on to devise solutions. A given program may need debugging or require skills in graphics which students have not yet learned. Or, students may be asked to study and decode a program to determine its purpose.

Computers in Society

The goals of this module focus on information rather than on skills. Students learn about the history of computers, their present and future uses, and computer-related careers. Computer View, the student text, employs a magazine format that includes articles, photographs, advertisements, puzzles, a glossary, and a feature section on computer history. This module consists of approximately 15 hours of class time.

Computeronics was developed by teachers, instructional designers, computer experts, and students. From the beginning, students pilot tested the materials. They practiced skills, took mastery tests, and checked their work, and, if successful, continued If not, they tried a second version of the mastery test. The mastery approach remains an essential part of the course.

Teacher Roles and Training

The management system built into student lesson books, activities, and mastery answer book allows students to move at their own pace. Teachers can be directive, facilitative, or both. One teacher commented, “My summer school class contains fifth through twelfth graders. They’re all working at different levels, but they can move through the course Some need almost no help; others require a lot of my support.”

To adopt the course, teachers need the teacher materials and two days of in-service training. They are trained to use the course as teachers and as students. They work through the lessons and activities, experiencing the joys and frustrations of a successful RUN or a nagging “Syntax Error.” After completing the in-service, one teacher remarked, “I figured if my sixth graders can learn this, I can too. I was exhausted afterwards, but I walked about three inches off the ground.”

Conclusion

As of mid-1981, Computeronics is the only computer project that is officially approved by the US Office of Education to join the National Diffusion Network. The purpose of the Network is to support the distribution of projects that have proven their effectiveness. Computeronics will continue to provide three important services: (a) in-service training for teachers, (b) cost-effective materials, and (c) assistance to schools to meet local needs and state/federal mandates.
5 Getting Started

A school, a district, or a state may be convinced that computers are needed in the system but no one is really sure how to select appropriate equipment, determine an adequate budget, or evaluate the needs of the children and teaching staff. The articles in this section describe some possible approaches.

In Bringing Microcomputers Into Schools, George Ropes and Henry Gaylord discuss how to get funding, where to look for software, what equipment to buy, and how to start a microcomputer curriculum.

Statewide Educational Computer Systems: The Many Considerations by Kevin Headlan describes the Minnesota Educational Computing Consortium's plan for statewide support and acquisition for educational microcomputers. A list of microcomputer systems and minimum specifications used to evaluate them is included.

There are many questions a school system must ask when it first begins to consider the purchase of a small computer. In Van Helps Schools Select the Right Computer, Betsy Stahl provides a systematic approach to evaluating needs. The Pennsylvania Department of Education has equipped a van with an array of audiovisual paraphernalia and a media specialist. The van travels around the state helping districts evaluate their needs. A sample checklist and a series of 17 questions to ask about a computer are included.
Bringing Microcomputers Into Schools

How to get funding and where to look for software, what equipment to buy, how to start a microcomputer curriculum? These are some of the questions addressed in this article.

George Ropes
Henry Gaylord
Box 533
Goldens Bridge NY 10526

Schools are on the threshold of the microcomputer age. Not only high schools, but also junior highs and elementary schools can share in the many benefits microcomputers bring to education. Educators are asking what they can do, what they should do, to make microcomputing capacity available to their students. This article provides the information and procedures educators need to leave "ground zero" and join the ranks of those who have already found how much a few microcomputers, or even a single micro can mean to a school.

Objectives

Those who have worked with microcomputers are strongly of the opinion that no other single piece of equipment can do as much for education. The nearly unanimous conclusion is that micros motivate students to a remarkable extent. They are unexcelled at teaching logical thinking. They provide frequent opportunities for students to demonstrate their creativity. They are valuable in all curricular areas, not just in mathematics. They provide effective, individualized review and practice, with immediate feedback on performance. Learning about microcomputers and how to use them may be the most valuable part of a student's schooling.

A school contemplating a microcomputer program should set its sights on accomplishing at least one of the following goals: Increasing students' computer literacy, Teaching students to write programs, Providing opportunities for learning through simulations and games, Teaching subject matter, such as mathematics, science, social studies, Building skills in vocabulary, spelling, computation, shape recognition, Drill and practice on basics.

The broader the scope and objectives you have in mind, the more thorough the preparations and training should be. Once you have an idea of the direction to take, two considerations have priority: sources of funds and choice of microcomputer.

Obtaining Funding

Schools have found a number of different answers to the problem of funding. Some boards of education have put money for microcomputers into their budgets. Some school districts have applied for and obtained federal grants under Title IV-C sections authorizing funds for career training. Others have convinced the local Parent-Teacher association to appropriate money for one or more microcomputers. When the cost-effectiveness of a microcomputer is compared to that of a color television, videotape equipment or even to a district's service vehicles, funding problems are seen in better perspective.

Choice of Equipment

Deciding on which microcomputer or microcomputers to purchase is important, but not necessarily critical. There are differences between micros as there are between automobiles, but with each of the popular makes you can expect years of dependable service.

You shouldn't put off purchasing a micro in the hope that a sharp price decrease is just around the corner. Few people believe that microcomputer prices will come down the way calculator prices fell over the last few years. You can expect the next round of microcomputer models to have greater capabilities at or near current prices. If you want your students to start getting to know and use micros, the time to begin is now.

For most schools, we feel that decisions on equipment should favor the solution that accommodates the largest number of students. The experience of sitting down at the keyboard and operating the microcomputer is crucial to learning.

We recommend that you have at least 8K (approximately 8000 characters) of addressable memory. You will do well to have a relatively full version of BASIC, the language used by virtually every microcomputer. Your micro should be able to handle decimal numbers, not just integers. Choose color capability if programs involving designs and patterns are important to you.

Current (April 1980) prices for the three best selling models are approximately as follows:

- $850—Radio Shack TRS-80 Level II, 16K (The TRS-80 Level I 4K costs $499. If this is the only one you can afford, plan to spend $250 to $350 to upgrade it to Level II.)
- $530—Commodore PET 8K (Based on cur-
rent 3 for 2 offer to schools * no tape recorder included
$1195 - Apple II with Integer BASIC or Applesoft BASIC 16k, no tape recorder or monitor included

Check out the micros available at nearby outlets Check on the experience of other schools in your vicinity A knowledgeable and interested person at a local store can be a valuable aid to your microcomputing program

Learning the Language

After considering funding and the microcomputer model you should examine how to use the microcomputer in your school At least one person should be familiar with the BASIC language which consists of about 30 words, a dozen symbols, two dozen functions, punctuation marks and a few rules for writing statements.

Mastery of BASIC takes lots of time and practice. However, the ability to write a simple program in BASIC or to understand uncomplicated programs written by others can be acquired relatively quickly. Knowledge of BASIC is valuable for introducing the language to students and making minor modifications in commercially available programs. It is often useful to change a program so it is easier or more difficult or more appropriate for a given student or group of students.

If someone in your school already knows BASIC, you're well on your way to microcomputer capability. However, there are minor differences between BASIC as implemented on time sharing terminals and the BASIC of microcomputers, as well as between the versions of BASIC on various microcomputers. Start-up and editing procedures differ slightly also. Some functions are called by different names, the ENTER key on one machine might be RETURN on another. Generically, a little practice and a few references to the manual are all it takes to smooth the transition.

To learn BASIC from scratch is not a mountainous undertaking. First, you must obtain a good manual. The best manual on the market is BASIC Computer Language by David A. Lieber. It is published by Radio Shack and applications specifically to the version of BASIC used on the TRS 80 Level I. This version of BASIC does not include some of the commands and statements found in the Level II version of BASIC. However in a separate volume Learning Level II (Comma), the author provides all the changes-line by line and page by page-to convert the earlier manual into one that teaches you Level II BASIC on the TRS 80.

If you are using a PET microcomputer get Hands on BASIC with a PET by Herbert D Peckham Dickson Hill For those using BASIC on an Apple II computer, the manufacturer's Apple BASIC Programming Manual is the answer.

But whatever microcomputer you have and whatever manual you use, the results come from setting down at the computer and working through the material page by page. Just as in most other learning experiences, you learn fastest and best by doing. This is not to denigrate courses that teach computer programming.

We have taught hundreds of students of all ages and have found that the greatest amount of learning takes place when a student practices what he learns on the computer in the days between class meetings. Fortunately, for teachers, microcomputers are portable. They can be easily transported from classroom to classroom or taken home.

Does every teacher at a school need to know BASIC? Certainly not. The more who do learn BASIC, the better but microcomputer use can be extensive in classrooms. It is often useful to change a program or provide modifications. Programs on cassette tapes are referred to as "software." The amount of software available for use in schools is growing, new tapes are coming on the market every month. Unfortunately, program quality varies; some tapes contain programs that are excellent, some are fair, some poor. It is not easy to get responsible opinions about software in advance of purchase.

Among the types of educational programs available are:

- Demonstrations of math processes
- IQ building with synonyms, antonyms
- Work with foreign languages
- Spelling, vocabulary
- Games requiring logical thinking
- Simulations
- Recognition of shapes, letters
- Arithmetic drill and practice
- Graphic designs

Table 1. Sources of cassette tapes in the educational field

<table>
<thead>
<tr>
<th>Source</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Computing, Box 7884 M, Morristown NJ 07960</td>
<td></td>
</tr>
<tr>
<td>Hayden Book Co., 59 Essex St, Rochelle Park NJ 07662</td>
<td></td>
</tr>
<tr>
<td>Instant Software, Inc., Peterborough NH 03458</td>
<td></td>
</tr>
<tr>
<td>Micro Learning/Aske, Box 212, Mankato MN 56001</td>
<td></td>
</tr>
<tr>
<td>Minnesota Educational Computing Consortium, 2920 Broadway Dr, Lauderdale MN 55131</td>
<td></td>
</tr>
<tr>
<td>National Coordinating Center for Curriculum Development, State University at Stony Brook, Stony Brook NY 11794</td>
<td></td>
</tr>
<tr>
<td>Program Design, Inc., 11 10th Court, Greenwich CT 06830</td>
<td></td>
</tr>
<tr>
<td>Programma International, Inc., 3400 Witches Hill, Los Angeles CA 90010</td>
<td></td>
</tr>
<tr>
<td>The Program Store, 4300 Wisconsin Ave, NW, Washington DC 20016</td>
<td></td>
</tr>
<tr>
<td>Que, 8 Chapel Hill Dr, Fairfield CT 06822</td>
<td></td>
</tr>
<tr>
<td>Radio Shack (contact nearest store)</td>
<td></td>
</tr>
<tr>
<td>Software Exchange, 6 South Street, Milford CT 06460</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 lists companies and organizations that distribute educational software. The listing is representative only. It does not purport to include every company that offers programs you might use.

Sure any programs you order are for your particular microcomputer. Programs are not interchangeable between makes of computers. A TRS 80 Level I program can not be used on Level II. Similarly, programs for Apple II with Integer BASIC don't work on Apple II with Applesoft BASIC.

The demand for educationally based microcomputer programs is such that new programs originated at your school may be useful to many other school systems. Someone on your staff-or among your students-may develop better programs than...
some of those that exist today.

Utilization

Given a school with one or more microcomputers, given one or more teachers who know BASIC and given a set of good programs, what is the best way to deploy these resources? How is capability transferred into day-to-day operation? There are several possible procedures.

Microcomputers may be placed in a given location where classes can be scheduled for specific computer programming lessons. Individuals can come to that location for specified periods of time, usually on a sign-up-in-advance basis.

Must someone be present at all times to supervise students? Some schools have made arrangements for such supervision but many have found it unnecessary. Microcomputers are relatively foolproof. Provided no more than two students are assigned to one micro at one time, experience has shown that they work well by themselves.

Another common procedure is to use an audiovisual cart to move a microcomputer from room to room on a scheduled basis. This allows the teacher to use the computer to demonstrate a given lesson or to assign students 10 or 15 minutes each on the computer. Different students can work with different programs. Students, even as young as second-graders, quickly learn how to insert and run tapes.

A network controller for the TRS-80 directs the loading of programs into as many as 16 microcomputers in a single classroom. Such a setup permits working with a class as a unit and also lets each class member interact individually.

Junior high and elementary schools have found it advantageous to have a knowledgeable high school student work with their students. The high school student can teach BASIC or act as a resource person for a computer club. Parents with some background in computing can be of assistance at all levels. Information on special programs or counsel on long-range objectives may often be obtained from a consultant in the field.

The Future

Each school needs to work out the procedure or combination of procedures for microcomputer implementation that best suits its particular needs. Whatever the needs are today, it is safe to predict that they will be different and greater tomorrow. The numbers of students who are turned on by microcomputing will convince you to get more micros and expand your program until the majority of students acquire the computer capability that will virtually be a sine qua non for life in the 21st century.
Statewide Educational Computer Systems
The Many Considerations

Kevin Hausmann

This article describes the Minnesota Educational Computing Consortium's (MECC) plan for statewide support and acquisition for educational microcomputers and focuses on the need, development and implementation of a plan.

Although the utilization of microcomputers in education is relatively new, within the next few years we can expect an exponential increase in the number of microcomputers sold to educational institutions. The growth is being spawned by a number of factors including the decreasing cost of microcomputers coupled with their increasing capabilities and the rapid growth of their use in a variety of fields throughout the country. Another important factor is the microcomputers' independence from a mainframe system which increases its portability and eliminates many communications-related problems, as well as the elimination of the "limiting rules" needed on central systems.

The potential of microcomputer applications has attracted the attention of hundreds of vendors ranging from garage hobbyists to major mainframe companies as evidenced by the attendee's at personal computing fairs and National Computing Conferences. The resulting number of different systems makes it very difficult to stay abreast of current developments. Microcomputers will also follow the paths of other new technologies, meaning, many of the current microcomputer manufacturers may go out of business within a year or so.

Microcomputers will also follow the paths of other new technologies, meaning, many of the current microcomputer manufacturers may go out of business within a year or so.

Many educators view the microcomputer as a panacea for a variety of educational ills resulting in expectations which are greater than system capabilities. In many cases, the use of systems will be impeded by a lack of hardware or software features. In addition, applications software development and instructional support will not keep pace with the initial movement to microcomputer usage.

In order to meet the needs and address the problems defined above, MECC set up a special task force to accomplish the following:

1. To conduct a survey for assessing the current and future microcomputer uses and needs of MECC users.
2. To determine the strengths and weaknesses of microcomputer utilization in various instructional computing modes and environments.
3. To provide demonstrations of microcomputer use for instructional purposes.
4. To coordinate and disseminate information regarding pilot programs using microcomputers.
5. To prepare recommendations regarding the potential for large scale acquisition and
utilization of microcomputers and the appropriate roles and responsibilities for MECC

To begin addressing these objectives, the task force divided the tasks into three components: hardware, systems software, and applications software. Several Minnesota vendors were contacted and asked to supply systems for examination, evaluation and experimentation. Fourteen systems were evaluated by the task force.

**Microcomputer Systems Evaluated**

<table>
<thead>
<tr>
<th>System Name</th>
<th>Model/Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTAIR ATTACHE</td>
<td>ALTAIR 88-1301</td>
</tr>
<tr>
<td>ALTAIR MULTI-USER</td>
<td>ASTRAL 2000</td>
</tr>
<tr>
<td>IMSAI VDF</td>
<td>IMSAI VDF-80/1000</td>
</tr>
<tr>
<td>NCR 7200</td>
<td>PET 2001</td>
</tr>
<tr>
<td>OLIVETTI P6060</td>
<td>POLYOMORPAICS BB13</td>
</tr>
<tr>
<td>PROCESSOR-TFCH SOL</td>
<td>RADIO SHACK TRS-80</td>
</tr>
<tr>
<td>APPLE II (Integer BASIC)</td>
<td>APPLE II (Integer BASIC)</td>
</tr>
<tr>
<td>TEXTRONIX 4051</td>
<td>NCR 7200</td>
</tr>
<tr>
<td>TERA T-11</td>
<td>TERA T-11</td>
</tr>
</tbody>
</table>

As a starting point, the task force defined a "minimal educational system." The minimal educational system must have:

- A microprocessor
- I/O devices (The system must include an ASCII keyboard and printer and/or monitor)
- A permanent file storage device (This can be of the form floppy disk, hard disk etc)
- A vendor supplied operating system
- The BASIC programming language must be supported
- At least 12K of user memory must be available. This excludes memory space required for the operating system and the language processor(s)
- All components, software and hardware must be documented. This must include instructions on the operating system, a language manual, and setup and maintenance instructions of the system

Only those systems which met these specifications were considered. This definition also helped vendors identify which features were required in a system for educational purposes.

In looking at software features, the task force considered both whether or not a system had a particular feature as well as how important that feature was to users. Over fifty software features were identified and classified as to importance for two types of usage: Computer Science/programming and applications/programming.

The computer science/programming classification was defined as the use of a microcomputer system to meet the needs of secondary and post-secondary computer science instruction involving such topics as advanced programming, operating systems, compilers and assembly languages. This is a system used primarily by those who are interested in studying the computer system itself, therefore software flexibility is important.

The applications/programming classification includes using the microcomputer for running application programs as well as writing and running simple BASIC programs for problem solving in elementary and secondary schools.

The applications/programming classification includes using the microcomputer for running application programs as well as writing and running simple BASIC programs for problem solving in elementary and secondary schools. This mode requires the capability to run programs which generally range from 8 to 32K in core requirements. Since this system would also be used to run programs similar to the library programs on the existing timeshare system, downloading capability is highly desirable, if not essential.

In trying to evaluate microcomputers against these classifications of use, each feature was given a rating of essential, desirable, or not necessary for the two classifications as defined above. Each microcomputer was given a yes or no score on each software feature. By combining the importance scores with the yes-no scores, it was possible to give each microcomputer a software feature score for both classifications of use.

Since BASIC is the most often used language, the task force also attempted to evaluate the microcomputer's BASIC language features and capabilities which they deemed important. Test scripts were prepared and run on each of the fourteen systems.

Ten scripts were prepared. The scripts were divided into two categories, those that tested BASIC language features, and those which tested performance. BASIC features tested included sequential file handling, random access file handling, chaining, time function, string functions, matrix operations, and formatted output. The BASIC performance scripts included time required to complete computation (calculate number of primes from 1 to 2000), number of mathematical functions available; and time required to generate and sort 100 numbers.

In looking at hardware, some 40 features were defined and each system was rated against these. Some of the typical features included were: K-bytes of RAM, ROM, or PROM; available user memory; chip type; add time; availability of RS-232 interface and a real-time clock.

In addition to working with vendors, the task force evaluation of systems included a user survey which was developed and administered to teachers in the state who were using microcomputers in their classes. Questions dealt with types of usage, features of the microcomputers which were particularly desirable, and problems which were encountered with their systems. The major weaknesses of microcomputer systems currently in use seems to be the availability of CAI languages, ability to perform repetitive calculations, and the storage and movement of large data files. However, the majority of instructional computing can be accomplished quite well using microcomputers.

The major weaknesses of microcomputer systems currently in use seems to be the availability of CAI languages, ability to perform repetitive calculations, and the storage and movement of large data files.

Once done with defining needs, collecting data on microcomputer systems, and surveying current microcomputer users the task force made the following recommendations regarding microcomputers:

1. **State Contract**
   One specific microcomputer system should be available to all Minnesota educationally-related agencies through a state contract.

2. **Support Instructional Service Support**
Statewide, con't...

for selected microcomputers

should be defined and increased to the same level as is currently available for large timeshare systems

#3 Microcomputer Technology

MECC should continue to analyze and evaluate microcomputer hardware and software technology, and disseminate information to the Minnesota educational community

On October 15, 1978, MECC and APPLE Computer, Inc signed a contract for APPLE's 32K, disc-based Applesoft microcomputer system

Educational computing service agencies must develop plans early if they are to cope with the fast-growing microcomputer industry.

MECC anticipates about 400-500 units to be sold by APPLE through MECC to educational users in Minnesota during the current year.

Educational computing service agencies must develop plans early if they are to cope with the fast-growing microcomputer industry. There is absolutely no indication of this growth trend slowing down. The fear that service agencies will no longer be needed is totally unfounded. Users will still need the software support that they have in the past. However, service agencies will have to redefine what they call "service" or "support.

There are four major areas of microcomputer support that must be considered:

1. Purchase, installation, maintenance, and documentation of the system.
2. Training in system operations, use of application packages.
3. Acquisition, conversion, development, maintenance, documentation and dissemination of applications packages.
4. Response to questions, problems, and requests regarding microcomputers.

It is hoped that the comments related here will be of help to agencies faced with the problem of servicing microcomputers.

Note: A task force report was printed by MECC, and contains the Task Force research, evaluation, recommendation, and the invitation for bid for microcomputer systems. A second revision of this report will be available soon. Contact MECC, 2520 Broadway Drive, Lauderdale, Minnesota 55113 for more information.

MECC offers a variety of services to consortium members. A technical staff operates the largest of Minnesota's computers dedicated to instructional computing. A Control Data CYBER 73 timesharing system. The MECC Timesharing System is currently configured for 375 user ports and serves about 1,000 interactive terminals located in schools and colleges across the state. A large multiplexing communications network provides the route by which MECC users access the Timesharing System whether they are a few miles from the Minneapolis - St. Paul computer center or hundreds of miles near the Canadian border.

The MECC User Services staff of instructional specialists helps users learn to make better use of the computer by visiting schools and colleges, conducting workshops, printing over-the-phone computing services, publishing newsletters and producing written documentation for programs in the MECC Timesharing System.

MECC

The Minnesota Educational Computing Consortium (MECC) was created in 1972 out of a concern by the governor and legislature that educational computing needed a central source of coordination for planning and a mechanism to ensure that all educational institutions in the state would have equal opportunity of access to computing services for both instructional and administrative programs. The Consortium's membership includes the University of Minnesota, 16 campuses; the Minnesota State University System, 33 campuses; the Minnesota Community and Technical colleges, 16 campuses; the Minnesota Department of Education; the state's 438 independent schools, and the Minnesota Department of Administration. The state of Minnesota is the only state in the country having a central organization for coordinating educational computing activities.
Van Helps Schools Select The Right Computer

Betsy Staples

Which is the best computer? Which software should we buy? What can we actually do with a computer? How can we teach people to use it? Who will fix it when it breaks?

These are only a few of the questions that confront a school system when it first begins to consider the purchase of a small computer or computer for classroom use. Sometimes the questions are never answered adequately. Sometimes teachers and students are unhappy with computer hardware and software chosen in a haphazard fashion.

What seems to be needed is a systematic approach to the selection of hardware and software for classroom use. The Pennsylvania Department of Education offers just such an approach to almost 500 schools in the Commonwealth in the form of the Multi-Media Training Van, a vehicle which provides information and training in everything from writing to photography to computers. The van, staffed by Media Specialist Shirley Douglas, travels around the state visiting various school districts which have requested its services. The project is a joint effort of the Pennsylvania Department of Education and a Title IV-E project at the Colonial Northampton Intermediate Unit Nazareth, PA. The program is coordinated through the state's Intermediate Unit Instructional Materials Service department.

In addition to the normal array of audio-visual paraphernalia, the training van carries a Bell and Howell Apple II-994 and a TRS-80. When a school system decides to investigate the merits of computers in the classroom, teachers and administrators may request copies of "A Guide to Microcomputers" and "A Guide to Instructional Microcomputer Software" both compiled by Ms. Douglas and Gary Neigh. Coordinator of the Instructional Materials Service Programs in the state. These booklets provide information on computer literacy and guidance in developing purchase criteria.

The district may also request one of the "In-Service Programs" offered by Shirley in the van. Her introductory half-day course is entitled "Microcomputers: Prospective Purchasers are Urged to Identify the Specific Uses to Which the New Computer Will Be Put. A List of "Projected Uses" (Figure 1) serves as a guide during this initial phase of the selection process.

Once the uses have been defined, the people who will use the machine are asked to consider such criteria as cost, flexibility, mainframe interface keyboard layout, execution and loading speed, memory capabilities, system expansion and many others. A tally sheet lists 17 of these criteria, the prospective user assigns a number between one and ten to indicate how important he or she considers each feature. If the school plans to use the computer in more than one area, or for

### PROJECTED USES

<table>
<thead>
<tr>
<th>Subject Areas</th>
<th>Other Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Library science</td>
</tr>
<tr>
<td>Science</td>
<td>Media</td>
</tr>
<tr>
<td>Social Studies</td>
<td>Management</td>
</tr>
<tr>
<td>Health</td>
<td>Computer literacy</td>
</tr>
<tr>
<td>Industrial Arts</td>
<td>Other</td>
</tr>
<tr>
<td>Home Economics</td>
<td>Other</td>
</tr>
<tr>
<td>Reading</td>
<td>Other</td>
</tr>
<tr>
<td>Language Arts</td>
<td>Other</td>
</tr>
<tr>
<td>Foreign Language</td>
<td>Other</td>
</tr>
<tr>
<td>Business Education</td>
<td>Other</td>
</tr>
<tr>
<td>Physical Education</td>
<td>Other</td>
</tr>
</tbody>
</table>

If the microcomputer is to be used as an instructional tool (for math, art, music, etc.) the next step is to determine the microcomputer's utilization by the classroom teacher and the student.

<table>
<thead>
<tr>
<th>Classroom Teacher Application</th>
<th>Student Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curriculum (subject area teaching)</td>
<td>Discovery learning</td>
</tr>
<tr>
<td>Computer operation and programming</td>
<td>Problem resolution</td>
</tr>
<tr>
<td>Computer literacy instruction</td>
<td>Graphic development</td>
</tr>
<tr>
<td>Testing</td>
<td>Musical exploration</td>
</tr>
<tr>
<td>Class management (teacher's record keeping)</td>
<td>Computer programming</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

---

Creative Computing, Volume 7, Number 3, pages 106-108, 110, 112 Copyright 1981 by Creative Computing All rights reserved. Reproduced with permission.
If the microcomputer is to be used beyond that of an instructional tool, the following applications should be considered:

- Media
  - program development
  - inventory
  - utilization and maintenance records
  - budget
  - video
  - circulation control
  - graphics generation
  - other

- Library
  - instruction
  - book location
  - card file
  - inventory
  - budget
  - circulation control
  - other

- Management
  - attendance
  - letter file
  - class registration
  - student scheduling
  - bus routing
  - time and budget control
  - inventory control
  - other

- Student Services
  - student tracking
  - application selection
  - college selection
  - educational student files
  - other

- Support Services
  - word processing
  - teacher assignment
  - student assignment
  - other

- Buildings and Grounds
  - security
  - maintenance schedule
  - inventory

- Other

If more than one application may be used, more than one microcomputer system may be necessary. The applications of these systems will be determined. The potential locations of these systems will be evaluated. Based on this evaluation, additional systems may be considered and thus determine the quantities of hardware and software necessary to meet the potential needs.

When importance factors have been assigned, individual computers can be considered. Based on promotional literature, information provided by sales people, or experience with one of the machines in the van, a "Comment Sheet" can be completed. Figure 2 shows a comment sheet for the mythical Spacetron 007.

On the final tallies sheet, users are asked to consider again the 17 criteria and assigned a value between one and five for the computer in question: "If the cost is high, give it a 1. If it is easily movable and compact then flexibility may be a 5." These "single rankings" are then summed on the tallies sheet and multiplied by the importance factors to produce a rating for each criterion (See Figure 3). When the ratings are totalled, each system has a number, which can be compared to the totals for other machines or for the same machine in other departments. While obviously not infallible, this technique provides a method of quantifying what might otherwise be left to someone's gut feeling. The instructions conclude by cautioning "Color of the case, unnecessary extras, or the salesperson's personality should not affect the choice."

Software Selection

Once the computer system has been selected, the problem of which software to purchase may be overwhelming. Very few manufacturers are willing to send sample programs and it may be difficult to find educational software in the local computer store. Here comes the van again.

Shirley purchases single copies of educational programs from many different vendors and makes them available in the van to educators who want to consider them for adoption. If the teacher decides to adopt a given program or package, it must be purchased through his or her school district. Software included in the van may not be copied.

The software evaluation form (Figure 4) found in "A Guide to Instructional Microcomputer Software," is designed to assist in the selection of software. First, an instructional objective must be stated. Then the objective is compared to the features of the program with regard to grade level validation, correlation with text instructional strategies and instructional design features. It also includes room for a description of the program and an overall evaluation.

After hardware and software are chosen, teachers may ask themselves of a second In-service program which deals with "Microcomputer Classroom Applications." During the full-day course, participants learn to operate the computer, run programs, and even write a short program in Basic.
Questions to Ask
About a Computer System

1. Cost: This is a factor to be considered. Micros generally range from $500 to $3,000 to establish a system. This cost is to be with all peripherals needed to operate.

2. Flexibility: (Size, portability, cords and modules, environment) Depending upon needs can the unit be readily moved? Is it necessary for the unit to be moved? Is it sturdy and reliable to survive moving around? Has it been tested for durability? How much does it weigh? Is it necessary to be near an outlet or telephone lines? Do the learners have to be brought to the micro or does the unit have to be taken to the learners? Can the unit be accessed other than being right at the microcomputer itself? How many cords necessary to operate the micro? Is there a need for special environmental controls, i.e., temperature, humidity, dust? Protection from exterior electrical interference, i.e., other computers, static charges, another electromagnetic field?

3. Mainframe Interface: Does the unit have the ability to interface with available mainframe computers to function as a smart terminal?

4. Keyboard Layout: Most micros come with a standard typewriter layout. If the unit does not, will it fit your needs? Does it have a calculator layout on it? Is a calculator layout necessary or can the standard typewriter numbers fulfill the calculation needs?

5. Additional Ports: Can other peripheral devices be connected to the unit, i.e., printers, plotters, phone lines, disks, etc.? Are there sufficient ports to substantiate your operational needs? Do these ports use memory (RAM) that would otherwise be available?

6. Execution time and loading speed: How long does it take the microcomputer to execute an operation? How fast can information be loaded into the unit? Is the execution time, problem, operation or loading of a program too long for student attention spans?

7. Memory capability: How much ROM memory is the unit capable of? How much RAM memory can be tapped? RAM is found in varying forms. If strictly for running of prepackaged materials then usually 16K will suffice but generally self-generated programs will take more bytes of memory (RAM).

8. System Expansion: Can the system be expanded easily? What are the limits of the expansion? What peripherals are available? Are peripherals needed? With the current state of advances new items for purchase are always being developed, such as light pens, graphics, tablets, voice synthesizers, etc. Maybe even keys for the blind or other new advances are in the making. This pamphlet goes to publication.

9. Editing: Can editing take place immediately as mistakes occur? Is editing simple? After the program is completed can editing be done? Can changes in the program to suit needs be done? Will the unit identify specific program errors?

10. Input and Output Devices: As specified for purchase what input and output devices are included in the package, i.e., cassette, disk, TV monitor, printer, plotter, graphics tablet, light pen, voice synthesizer?

11. Software: Are there sufficient manuals, reference and program material available to support the microcomputer? Are there programs suited to the user’s needs? Have outside companies (other than the original designer) make additional software programs? Is there enough software available to suit all needs? Can programs be made to fulfill the user’s needs? Have the programs been validated (field tested with students)? Cost of prepared programs? Ease of self-generated programs?

12. Graphics/Characters: Is the unit capable of low or high resolution graphics? How many characters per line are available on the micro? How many lines on the CRT are visible? What is the screen size? Graphics tablet? Light pen?

13. Color: Is color necessary for your operations? Is color necessary, does the CRT monitor have to be a special monitor?

14. Voice command and voice generation: Does the unit have voice synthesizers, to generate voice does it have or can it be adapted to accept voice commands?

15. Music Generation: Is there music capability? Does it have an internal speaker or separate speaker system for sound?

16. Servicing: What are the warranties available? Can the unit be serviced at its home base? Is on-site servicing necessary? Can local technicians make necessary repairs? For additional cost will the unit be updated for the next year as new developments are made? Length of time for service including transportation to and from service facility? Service cost including transportation?

17. User Training: Will vendors provide on-site user training? At what cost? How many hours? For how many people?
When evaluating a microcomputer, use the comment sheet. Write notes about that particular model and brand. To better evaluate the computer, use the criteria questions 1-16 on pages 10 and 11. The notes on the comment sheet will be translated into numbers on the tally sheet.

### Comment Sheet

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>BRAND 1</th>
<th>BRAND 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST TOTAL</td>
<td>Model 10</td>
<td>Model 15</td>
</tr>
<tr>
<td>FLEXIBILITY</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>MAINTENANCE INTERFACE</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>KEYBOARD LAYOUT</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>ADDITIONAL PORTS</td>
<td>10 ports</td>
<td>8 ports</td>
</tr>
<tr>
<td>EXECUTION TIME &amp; LOADING SPEED</td>
<td>1.5 sec.</td>
<td>1 sec.</td>
</tr>
<tr>
<td>MEMORY CAPABILITY</td>
<td>4GB</td>
<td>2GB</td>
</tr>
<tr>
<td>SYSTEM EXPANSION</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>GRAPHICS/CHARACTERS</td>
<td>Full</td>
<td>Basic</td>
</tr>
<tr>
<td>COLOR</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>VOICE COMMAND AND VOICE GENERATION</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MUSIC GENERATION</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SERVICING</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>USER TRAINING</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TOTALS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

On the tally sheet using a scale ranking (1-5) assign a rank value for each category from the comment sheet. If the cost is high give it a 1. If it is easily movable and compact than flexibility may be a 5. If no service available category (16) is assigned a 0. Each category has been assigned a scale ranking. Multiply them by the importance factor you originally assigned. The end results are added together. The highest total (18) will indicate the microcomputer best suited for your uses and needs. Be as sincere as possible to get an unbiased evaluation. Color of the case, unnecessary extras or the sales-person's personality should not affect the choice.

### Tally Sheet

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>IMPORTANCE FACTORS</th>
<th>SCALE RANKING</th>
<th>BRAND 1 TOTAL</th>
<th>BRAND 2 TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COST TOTAL</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2. FLEXIBILITY</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3. MAINTENANCE INTERFACE</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. KEYBOARD LAYOUT</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>5. ADDITIONAL PORTS</td>
<td>10</td>
<td>4</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>6. EXECUTION TIME &amp; LOADING SPEED</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7. MEMORY CAPABILITY</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>8. SYSTEM EXPANSION</td>
<td>8</td>
<td>5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>9. EDITING</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. INPUT AND OUTPUT DEVICES</td>
<td>9</td>
<td>3</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>11. SOFTWARE</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12. GRAPHICS/CHARACTERS</td>
<td>8</td>
<td>5</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>13. COLOR</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>14. VOICE COMMAND AND VOICE GENERATION</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15. MUSIC GENERATION</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16. SERVICING</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17. USER TRAINING</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18. TOTALS</td>
<td></td>
<td></td>
<td>2.97</td>
<td>2.97</td>
</tr>
</tbody>
</table>
### Instructional Objective Desired

<table>
<thead>
<tr>
<th>Desired Instructional Needs</th>
<th>Program Title</th>
<th>Producer</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Objective Met: Yes/No</td>
<td>Cont.</td>
<td>Good</td>
<td>Fail</td>
</tr>
<tr>
<td>B Grade Level</td>
<td>C Number of Times Tested</td>
<td>D Number of Times Retested</td>
<td>E Number of Times Tested</td>
</tr>
</tbody>
</table>

**E. Instructional Design Features:*
1. Student Inquiries
   - Audio
   - Written
2. Instructional Objectives
   - Related
   - Related
3. Student Progress
   - Daily
   - Cumulative
4. Printed Summaries Assigned
   - Yes
   - No

**Description of the Program**

Recommended for

(Include grade level, course and student utility level)

Overall Evaluation

Excellent | Good | Fair | Poor | Unsatisfactory

---

**Other Services**

The van staff has taken special care to reach administrators, since they are most frequently in decision-making positions. The Microcomputer Administrators Days Workshops, in which administrators get an overview of small computers in education as well as specific information on hardware specifications and evaluation and software evaluation, have reached over 50% of the school district administrators in the state.

Perhaps the most innovative program in this innovative program was the repair seminar conducted in March 1980, in which Bell and Howell Apple personnel trained approximately 20 of the state's Instructional Materials Service Technicians to repair their computers. Negotiations are underway with several other computer manufacturers to provide similar sessions.

Shirley points out the participants in these and other courses and services provided by the van are expected to be "multipliers." Key personnel are trained to train others in the school or district. The van enables one person and a few pieces of audio-visual and computer equipment to serve many people and many school districts all over the state.
The Human Perspective

In the event that the reader has become convinced that computer technology should be embraced at any cost even at the expense of substituting machines for human resources, the following two articles have been included. Both serve to remind us of the value of human relationships.

In *Some Thoughts on Computers and Greatness in Teaching*, Thomas A. Dwyer comments, "...we would be suspicious of an overoptimistic prognosis for the future of computing in education if it didn't also address the importance of developing greatness in teachers." Because of computer technology, the teacher is freed to become a codiscoverer of truth with the student. Dwyer views computing as a backup system that can induce greatness in teaching but requires a new approach to teacher education. The author calls for a return to greatness in teaching.

The *Hacker Papers* are a collection of communications among college students and other computer specialists. As their electronic mail unfolds, the reader gains insight into some of the problems associated with being a Hacker or a computer specialist whose interests are limited to interactions with computers and other computer specialists.

This article should be required reading especially for parents who are considering purchasing a personal computer. Forewarned is forearmed. There is little question that home computers should probably be made available whenever possible but parents and students themselves should be aware of the potential consuming attraction inherent in computer experiences. There is a need to make a conscious effort to encourage or engage in activities that will insure a well-rounded individual.
Some Thoughts on Computers and Greatness in Teaching

THOMAS A. DWYER
Project Solo
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

In a paper entitled "The Computer and the Fourth Revolution," Moinar (1973) gave a panoramic view of recent efforts to harness the potential of the computer for education. He concluded that "computing is so compelling a tool that it cannot be stopped. Our own experiences, both at Project Solo and through numerous contacts with others, confirm this conclusion, and in fact suggest an even stronger one. We have found that computing, placed in the hands of well-supported teachers and students, can be an agent for catalyzing educational excitement and growth of a kind that is without precedent. We believe that there has simply been no other tool like it in the history of education.

Great Teaching In the Mass Education System

Our enthusiasm is tempered by a growing respect for the importance of human relationships in education. In particular, we would be suspicious of an over-optimistic prognosis for the future of computing in education if it didn't also address the importance of developing greatness in teachers.

Developers of computer-related instructional systems seldom make explicitly negative statements about the role of teachers. However, there have been unfortunate implications that computers are important because they can make education "teacher-proof." This is not only an incorrect attitude, it cuts off the real power of the computing tool, namely the potential to multiply the effectiveness of the users of that tool. The most important users are not research and development people, but "teacher-student people." Put simply, I believe that computers in education are revolutionary because they make possible great teaching in a system "indicated to mass education. They make this possible by supporting the awesome mystery of person-to-person educational influence, not by replacing it.

To see the consequences of this last statement for teacher education in the computer age, let's back up a bit. It is a truism that there have been, and always will be, inspirational teachers. The knowledge with which they have practiced their art has remained pretty much of an untapped resource, however. The classical "pipeline" model of educational R&D (educational product shipped to end users after development) makes no attempt to tap his resource. How, it would be argued, could as ill-defined a concept as 'great teaching' ever be encapsulated and shared in a mass education system? More to the point, how could a word like "greatness" ever characterize the efforts of the majority of teachers who are (by definition) "average" educators?

It has been tempting to respond to these questions by proposing that the art of the great educator be captured and disseminated through the medium of "computer assisted instruction." One early worker in CAI went so far as to predict that "millions of school children will have access to what Philip of Macedon's son, Alexander, enjoyed as a royal prerogative the personal services of a tutor well informed and responsive as Aristotle" (Suppes, 1966). CAI is also based on a pipeline model. The years have verified that what comes out of the pipe, even when a computer is at the other end, bears little resemblance to the charisma of an Aristotle. CAI has its virtues, but reproducing the mystery of person-to-person teaching is not one of them.

Solo-Mode Computing

There is another use of computer-related technology, however, that is triggering originality and depth in student work, as well as such personal qualities as enthusiasm and zest, particularly in the area of mathematics. It is doing this, not so much by reproducing pedagogical greatness, but rather by inducing such greatness. It is a use of technology that works its magic by freeing teacher/student groups from the restricted format of drill in facts and formulas. Teacher and student become, instead, codiscoverers of truths. The methods they learn to use, and the results they obtain, display a freshness that suggests that they have personally discovered a secret that transcends the art of any one great teacher. Their secret, put simply, is to use computer technology to build an environment in which learning mathematics is both natural and exciting. Because their work is predicated on the belief that the student alone must (ultimately) control what is done with the technology, such use has been called "solo-mode" computing (1974). Because the technology provides a world of experiences to be lived in by both teacher and student, the resulting environment has been affectionately dubbed "mathland" (Papert, 1972).

On the negative side, it should be clear that environmental solo learning, devoid of guidance and support, can lead to harm as well as good. A person who lives in the wrong part of France can learn bad French. South American babies who learn to swim by falling off the family houseboat don't always survive. Like most good ideas, environmental solo learning needs to be coupled with other factors before it reaches its full potential.

I believe that the strength of teacher and student-controlled computing is that it automatically provides many of these factors, because the students are responsible for what the computer does. There is a kind of self-validation in student-controlled computing. Of course such computing is an exceptionally rich source of solo-mode environmental learning.

We have recently been experimenting* with all kinds of other rich environments.

---

*In a subtle way clever technology can also reproduce some of the talent of the inventor (e.g. Papert's Turtle), and in this way transmit certain aspects of great teaching.

*These experiments are part of a project called SoloWorks which is concerned with developing computer-based math lab environments. This work is supported in part by NSF grant EC-38063. A project newsletter is available from the author.
and it is becoming increasingly clear to us that the general-purpose computer belongs at the heart of such environments sometimes just conceptually. Solo-mode computing properly supported is undoubtedly the component par excellence for an experiential educational milieu.

The thing that pleases us most about this discovery is that it supports a nontraditional view of education that is also eminently practical. In fact it is downright pernicious in its relation to reality. This is because it makes contact with the enduring reality of education today (and for a long time to come) with the fundamental people unit of a large educational system namely the teacher/student group.

Computers as Backup Systems

A realistic view of education admits that human teaching can be uneven and sometimes very sloppy, but it also understands that the relationships involved between students and the teacher far transcend the logic of even the fanciest instructional flowchart. A realistic view sees students and teachers as deserving of all the help and encouragement they can get as they wrestle with some very tough problems. They are people working with an outdated set of tools in a system whose priorities do not recognize the importance of educationally oriented support systems. There is an innate genius to teacher student groups but the flourishing of this genius is next to impossible without sophisticated backup. Bruner tied the need emphatically.

Thus, supporting backup is the essence of reality, when it is backup that also induces unique greatness in teacher student work (as does locally controlled computing), then it deserves being called a compelling educational phenomenon.

Teacher Education—Preparation for "Greatness"

A consequence of viewing computing as a backup system that can induce greatness in teaching is that one of a new view of teacher education understands, for example, that it is very important to prepare teachers to use such supportive backup systems creatively, and to help them think about the importance of getting their students to do the same. I use the word creatively to suggest that teachers should be educated with the view that they are life-long researchers, not technicians who implement other people's ideas. Another difference would be to immerse teachers in very rich technological environments as part of their education, again with the objective of making them fluent at extending (rather than just imitating) ways of using similar supporting systems.

The overall goal of teacher education should be to give teachers status based on expertise—to help them master the art of molding themselves and their students into very strong personal units within the large impersonal systems that arise in mass education. Of course such strength will not come easily. It will have to be earned. One of the real contributions of a locally controlled computer system is to facilitate the kind of accomplishment that will earn respect and status for both teacher, and students. Such a system can also have a protective function, insulating teacher student groups from the erosive forces of noneducational concerns found in a big school system. Any teacher who worked in a school with good departmental physical facilities will understand the significance of this remark.

Conclusion

A good way to summarize these remarks is to say that I believe computer technology has brought us the capability of making a very fundamental change in education. The change is a return to greatness in teaching. It is a change that eschews the use of technology to automate pedagogy. On the contrary, it is a view that starts out by recognizing the extraordinary power of human relationships. It believes that teachers are important because they are the proper focus of such relationships in education. It sees technology as a compensatory force in education because it has the power to melt away the real-world constraints that manacle even the best of teachers. In a very real sense, it is a view that says we are now able to back off from the frightening dead-end of school systems without belief in their own power to teach, and to support the methods that we knew to be right all along.

References


They were among the brightest computer-science students at Stanford. They spent their days and nights in the concrete-and-glass computer center playing harmless games and mock-vicious "wheel wars" on the terminals. Then, one night, a hacker (computer addict) whose code name was Gandalf sat down and tapped out a cri de coeur: in their single-mindedness, he and his fellow hackers were losing touch with the human race. Quickly the issue was joined. The complete printout follows. (For a glossary of hacker terminology, turn to page 79.)
STANFORD UNIVERSITY
LOW OVERHEAD TIME-SHARING SYSTEM (LOTS)
FROM: G GANDALF
TO: BULLETIN BOARD
SUBJECT: ESSAY ON HACKING

Dear all my friends at LOTS who will live their lives in an alien culture surrounded by humanity, and to Ernest, who was too human for it.

As much as an essay, this is a story. It is a true story of people paying $9,000 a year to lose elements of their humanity. It is a story of both seen and unseen games. It is a story of the breaking of wills and of people. It is a story of addictions, and of misplaced values. In a large part, it is my story.

There is no one field in particular in academia that has a monopoly on production of single-interest people, and this practice can exist almost anywhere. There is the political power seeker: all-consuming by climbing up the bureaucratic rungs. There is the stereotyped premed, ignoring all but his MCAT scores. There is the compulsive artist or writer, forever lost in his work. Narrowness is widespread. But there is one field that seems to be more consistent in this practice. This essay, rooted in personal and painful experience, is about the people in computer science.

In the middle of Stanford University there is a large concrete-and-glass building filled with computer terminals. When one enters this building through the glass doors, one steps into a different culture. Fifty people stare at terminal screens. Fifty faces connected to 50 bodies, connected to 50 sets of fingers that pound on 50 keyboards ultimately linked to a computer. If you go farther inside, you can discover the true addicts: the members of the Establishment. These are the people who spend their lives with computers and fellow "hackers." These are the members of a subculture so foreign to most outsiders that it not only walls itself off but is walled off, in turn, by those who cannot understand it. The wall is built from both sides at once.

These people deserve a description. In very few ways do they seem average. First, they are all bright, so bright, in fact, that they experienced social problems even before they became interested in computers. Second, they are self-contained. Their entire social existence usually centers around one another. Very, very few remain close to their families. Very, very few associate much with anyone who is not at least partially a member of the hacking group. While they do sometimes enjoy entertainment unrelated to their field, it is almost always with fellow hackers. Third, all aspects of their existence reinforce one another. They go to school in order to learn about computers, they work at jobs in programming and computer maintenance, and they lead their social lives with hackers. Academically, socially, and in the world of cash, computers are the focus of their existence.

The hacker will probably not strongly disagree with what has been said so far. But he will ask the question, "So what?" The answer is in creating a subculture and isolating it, we are destroying the chance that computers might be used wisely as an integral part of our society. We are precluding the human values so necessary for the wise application of this technological achievement. The most brilliant young minds at our top universities are learning how to play with multimillion-dollar toys first, and how to utilize them constructively second.

Even if we ignore the costs to society as a whole, we have to look at the costs to the people involved. The computer is a modifier of personalities. It is highly addictive. People who gain this addiction for a period of several months tend never to give it up. And the symptoms are very sad.

The first thing to go is other academic interests. Basically what occurs is that the hackers' motivation to challenge themselves in any field not directly linked to computers gradually disintegrates. On the level of grades, straight-A students tacitly accept C's in noncomputer courses. On the level of actual learning, the same students shut off outside subjects even more completely than their grades would indicate. This is common in many
areas of specialization, but nothing compares with the incredible consumption of computer-science students for computer-science courses, and their nonchalant attitude toward every other class.

The second thing to go is a normal living pattern. Eating and sleeping are completely rearranged to fit the addiction. The typical hacker thinks nothing of eating one meal a day and subsisting on junk food, or of sleeping from 4 a.m. to noon almost every day of the week. Families are soon disregarded, to an extent uncommon even when one considers the separation that generally occurs in college. It is simply that the parents of hackers are ignorant of the subculture and cannot relate.

The third thing to go is a balanced social life. The hackers' narrowness and strange schedule simply compound the social problems they experienced before hackerdom. Soon, no one except a hacker has the capability to understand other hackers. No one except a hacker will go out with other hackers. No one except a hacker can talk to another hacker.

The fourth and final thing that happens is also the saddest. The personality of the hacker shifts, in order to permanently adjust to the new social conditions. Emotions always have hurt before, so they are effectively isolated. Relations with nonhackers become strained, so why force the effort? It is so much easier just to accept social rejection and isolation, and to do it with a spirit of camaraderie that's shared by the rest of the subculture.

An essay should make an attempt to resolve the problem it points out. In this case, the pointing may be enough, or at least enough to...whatever can be done. I know from personal experience what a trauma it can be. I was one of the top 10 among several thousand LOTS users last spring for the amount of time I spent here. I have watched people close to me undergone the transformation. I narrowly escaped it.

The tragedy is that I am so involved in piecing my personality and social life back together that I think I have learned very little about how to prevent this from happening in the first place. I am lucky. I will go on to some sort of a balanced life (although my hacker friends will laugh at me, since to them, my involvement was never serious enough to make me one of them). Weak-willed people, people with unstable social lives, people in formative stages of their lives, should not become involved in computer science. It should be left until they are truly able to make decisions and be aware of all the consequences. Computers are most often used by people who start when they are immature. This is what causes the single-minded addiction. This is what takes some of the brightest and most capable minds in college today and turns them to narrowness.

FROM: E ERNEST
TO: G GANDALF
SUBJECT: REPLY TO "ESSAY ON HACKING"

As the human to whom Gandalf's essay was in part dedicated, I feel I have a responsibility to reply. Obviously, his essay is going to provoke a certain amount of defensiveness from the hackers, on the other hand, he has made a number of points which are indeed very valid.

I became rather disillusioned with LOTS last spring because I found that the attitudes of the people whom I had made my friends were becoming more and more machine-oriented and less and less human-oriented. I began to spend less time here, and see the people less often. It was partly the so-called narrowness to which Gandalf referred, but it was also a simple lack of genuine human caring on the part of these people that I left.

I'm not concerned about their social lives, physics majors, premeds, law students, the regulars at Aunt Mary's church social—all behave in roughly the same way. Nor am I concerned about their grades, for the same reason that I'm not concerned about anybody's grades, including my own, if they choose to get hassled over grades, they'll do so, and they'll make them if they want them. I AM concerned about the narrow-mindedness that comes from losing interest in such outside things as the draft or the social sciences, or all the various and sundry things that Stanford has to offer. This place should be a broadening experience, to fail to take advantage of that is a waste of $9,000. Furthermore, narrow-mindedness and xenophobia have started more wars than any other cause.
More than anything else, I'm concerned about the hacker's shortage of respect for others and a lack of sympathy for their problems, because he considers the problem of whether or not he wants a HRROI or a STI in a certain place to be more fun than people are. (If I get a lot of mail telling me that that's a ridiculous example and no one could possibly mistake a HRROI for a STI, it will only prove my point.) By and large, the hackers are consultants, and as consultants they owe it to the users to be patient, pleasant, and, above all, sympathetic. A large number of people in introductory computer-science courses are not cut out for computer work: the thought processes it requires have long ago been squashed by indoctrination and training. They are confused, frustrated, and upset. We do the best we can for them by teaching them PA3CAL and giving them an interactive system with a forgiving exec which holds their hands at every turn. But there is nothing like human comfort to make people feel better about it.

Gandolf's problem was in attributing these faults to the computer. The machine itself is not responsible for it; the attitudes of the others toward the machine are to blame. After having spent a summer doing data processing, I know that not all computers have this fascination. Look at JO, Vic, Sean, or Karl. They don't demonstrate these attitudes. They know that, fascinating as it may be, the computer is a tool and not a toy. The fault lies in the attitude of the individual.

What is to be done? Nothing is to be done. The hackers know who they are, running around and having 'wheel wars' late at night, yakking and yakking while someone stands and waits for them in front of the consultant's terminal. We may only hope that they grow out of it. Gandalf is wrong. It isn't a permanent alteration in their character—it is, hopefully, a short-lived immaturity of people on their way to becoming programmers and computer scientists.

---

FROM: K KANEF
TO: E ERNEST
SUBJECT: IN REPLY TO REPLY TXT

In your opinion, the two problems that LOTS hackers have developed are a loss of touch with their humanity and an immature attitude about the purpose of the computer. Until recently, I would have disagreed with the first assertion. I'm no longer so sure that it's not true.

I have even stronger feelings about the other claim that you make about hackers: that they have an immature view of the purpose of the computer. You assume that childishness is a thing to be avoided. You encourage people to throw away the things that are so hard to retain in growing up—the sense of wonder in new wonderful things, the ability to play. When I compare my attitude to that of Vic and the others you mention as having a more mature view of the computing world, I find that I like mine better. I don't want to be like them. I see the computer as a tool as well as a toy. And as I pointed out to Gandalf last week, this attitude is not limited to hackers. There were many people in my dorm last year who rose only knowledge of computers was how to play games and send mail, and they enjoyed using the computer as much as I did. I was one of the few people in that group who was interested enough in the field of computer programming to also take an intro course in PASCAL.

I hope that I will always be as fascinated by my work as I am now. Unfortunately, I know that this is not likely to happen. All too often people become bored with their professions. You're right in saying that the childishness of LOTS hackers is short-lived—and isn't it a shame?

---

FROM: E ERNEST
TO: K KANEF
SUBJECT: THE COMPUTER AS TOY

I am impressed by your skeptical intelligence, and I appreciate your reply. I am sorry that you became aware of the diminution of simple humanitarian caring on the part of hackers the hard way, but pleased that you know of its existence.

As regards play, you present a very convincing argument, but I would like to add a qualifier.
THE HACKER PAPERS

To me, as one matures, the highest forms of play cease to be consumptive and begin to be productive. Sure, we all need to play, and there is nothing wrong with consumptive play in an appropriate setting and appropriate circumstances. Middle-aged adults enjoy Great America, and this to me seems to be a perfectly healthy and appropriate form of consumptive play. Nonetheless, I don't believe it is the highest form of play that they should be capable of.

Computer games are tolerable and serve their purpose, even they help to acquaint new users with the computer and to show that it is not a thing to be frightened of or confused by.

But programs that type "You lose" when you type "sigh" to the exec don't serve any productive purpose at all, they are vaguely amusing and they take up disk space, and an entire page for six lines of code, at that. Likewise, the wheel war is neither educational nor productive, it is nothing more than consumptive play, and it can be annoying.

FROM: M MRC
TO: G GANDALF, E ERNEST
SUBJECT: NONE GIVEN

Most of the behavior you described is more or less typical of an undergraduate-aged person and less typical of hackers as they get older. Rather than demeaning it, we should simply recognize it as normal for somebody that age. In a high school kid, it is actually a sign of maturity to be at that stage so quickly. In a graduate student, it's regressive.

Don't be misled by those who postulate the "compulsive" (and hence parasitic) programmer versus the "professional" programmer—I know of no programmer who does not consider the computer as a toy first. You really do have to enjoy this work to be good at it. I know of no hacker who does not consider the computer as a toy first. What changes are the ways that s/he plays with the toy? There isn't all that much difference, in terms of the pleasure derived, between writing a new display hack or a clever access-control program, except that the former is something derided as being "hacking" and the latter is "responsible programming."

I guess my point is that it's all a part of the irresponsibility that college undergraduates normally have, and it shouldn't be begrudged them, it's the last chance they are ever going to have in their lives to be that free.

FROM: A ANONYMOUS
TO: E ERNEST, K KANEF
CC: G GANDALF
SUBJECT: THE HACKER CHRONICLES

We are dealing with an infinitely malleable tool. People who choose to develop and use that tool, whether for work, play, or both, have that choice and cannot be denied it. A person who chooses to be a musician must devote hours and hours to gain adequate expertise. But would you consider the computer hacker any less creative than such a person? I certainly wouldn't. The computer serves not only as a workhorse, but also as an easel for exercising one's creative abilities. Therefore, in my opinion, the hacker has not limited himself at all. Rather, he has expanded his intellectual horizon because now he has the infinite tool.

As for the charge that it disrupts one's social life, I would tend to agree with this to a point. But it depends on how controlled the individual is. At any time, he can withdraw to a more normal schedule. Why doesn't he? The reason is obvious. The infinite tool that knows few boundaries is accessible to a much higher degree, and thus he can devote more time to it. Why is this wrong? I think it is definitely a bonus, since the usual restraints of 9-to-5 are eliminated and the person is allowed to expand beyond boundaries to do what he wants.

Now we come to the human versus the machine factor. Gandalf stresses the necessity of human interaction and the inherent evil of the machine. Would you stress the evil of the instruments in an orchestra, or the instruments in a laboratory, or the typewriter of an author? All of these occupations demand extraordinary amounts of time for excellence. But I
see no greater human interaction in these fields than in computers. I feel that people who disparage computers for a seemingly decreased human interaction are not at all familiar with the true import of the computer. Not only is it the infinite tool, it is also an extremely fluid medium of communication.

FROM: K KUDOOLES
TO: G GANDALF
SUBJECT: HACKING AND THE REAL WORLD

I don't want to turn this into a personal defense or anything like that, but as I've said before, people have always found me strange. I have always worn my hair long because I felt it was comfortable for me. I prefer clothes that are comfortable and perhaps a bit scroungy. For this, and being human, and getting excited, I have gotten pretty bashed. As a matter of personal history it was nice for me to get away from a smog-hole of a city, where the mayor said aloud on TV once that the "black problem" existed because the "blacks weren't disciplined properly." I spent time in an ad agency where people were not only truncated and anesthetized, but positively deformed in personality. They viewed people as real, honest-to-goodness objects of $$ and/or pieces of meat. They'd promise you anything, but split with your portfolio.

Working with computers has been the only thing tolerable I have done in quite a while. It does have its drawbacks, and you can get into just doing that and not trying anything else. Part of it derives, I think, from a strange version of the American work ethic. The thing I find sad is when hacking comes before people, and it does sometimes for me, usually where $$$ and all this financial-survival crap is concerned. But it is saddest when someone will not take time out from hacking to be with people at all. I mean when people get angry because someone sends them a message asking them what they are up to, and the other person gets all freaked-out and sends nasty notes back.

The problem is that the social structure of LOTS rewards people who hack well but don't interface well with people. If you look at who gets most rewarded at LOTS and for what, you find it is the people who do programs and little maintenance tasks. Very seldom do people who get along with others and relate well to them get highly rewarded.

FROM: G GANDALF
TO: A ANONYMOUS
SUBJECT: A REPLY

You base much of your argument on comparisons (e.g., with musicians). I agree with you in that I specifically pointed out that many people besides computer-science majors are very narrow. This is no justification, however. As the son of an artist, I think I can say that such creative outlets are essential, but they do not and should not make up the totality of one's existence.

Secondly, you accuse me of stressing the evils of the machine world. This is an interpretation of my essay that is purely yours. I attempted to make clear that I thought computers could be highly useful tools, but that much of their valuable potential was being lost due to the narrow approach to them. It is a HUMAN failure and not a mechanical one.

FROM: E ERNEST
TO: G GROG, W WOODY, H HIMA, B BERLIN, D 07, K KDA, Y YOOL, S SQUASH, J Q. JOHNSON
SUBJECT: THE HACKER PAPERS

Dear Sir or Madam,

You have contributed NOTHING, repeat NOTHING, to the Hacker Papers. As a hacker, it
is your responsibility to defend yourself against this vicious attack on your way of life. Do you intend to stand idly by while mealy-mouthed, bleeding-heart, fuzzy-studies majors shred you? Surely not! Voice your opinion! Stand up for your right to enjoy not enough sleep, not enough terminals, and not enough core! What people do with consenting computers in private is their business.

FROM: J Q JOHNSON
TO: E ERNEST
SUBJECT: THE HACKER PAPERS

What, pray tell, are the "Hacker Papers"? A work by Margaret Hacker? A lurid tale of ax murder? A discussion of the psychology of computer nonprogramming? If the last, I have nothing to add, and am not sure I appreciate being addressed as a hacker. I'll have you know that I AM a "mealy-mouthed, bleeding-heart, fuzzy-studies major" since my degree is in political science, which (next to An) is the fuzziest of studies.

My feelings are aptly summarized in Joseph Weizenbaum's Computer Power and Human Reason, where he talks about hackers who become so obsessed in tinkering with their grandiose programs that they lose sight of the problem to be solved. Though I disagree with his ultimate conclusion that the computer cannot be taught to reason like human beings, I tend to agree with his diagnosis of the effect they have on people's ability to reason. I most heartily recommend the book for your consideration.

HACKER GLOSSARY

Hacker: A person who makes constant small and unimportant modifications to a computer program for enjoyment rather than to improve the program.

Hacker display/Display hack: An alteration in a computer program, done sloppily, and, often, for fun. The kind of program involved is for display of information on a terminal screen.

PASCAL: A relatively new computer language (like BASIC or FORTRAN).

Wheel Wars: Wheels are computer users who obtain special privileges. Their wars are games played on computers in which they do curious things to one another, like blocking other wheels' access to the terminals or trying to confuse and frustrate them. (The wars occur only during late night hours or in summer, when they won't interfere with the work of other programmers.)

AI: Artificial Intelligence, the study of how computers can be programmed to simulate various intellectual processes of human beings, such as language use.

Joseph Weizenbaum: A well-known AI researcher at MIT who condemned hackers in his book, Computer Power and Human Reason. Compulsive programming, Weizenbaum wrote, "represents a psychopathology that is far less ambiguous than, say, the milder forms of schizophrenia or paranoia."

HRROI, STI: Esoteric machine instructions used mainly by wheels and computer repair people.

Exec: The executive command processor, the program that carries out the user's orders.

Core: The work space available in the computer, its internal memory capability.

Most of the contributors to "The Hacker Papers" are either still Stanford undergraduates or are working as computer specialists. In order of their messages, they include Kenneth Peter (GANDALF), Ernest Adams (E ERNEST), Robert Kanefsky (K KANEF), Mark Crispin (M MRC), Steve Kudlac (K KUDDLES), and John Q Johnson (J Q JOHNSON). A ANONYMOUS stands for a hacker who did not wish to be identified. Credit for discovering the papers goes to psychologist Philip Zimbardo, whose commentary follows.
7 Resources

In this final section an attempt has been made to provide information about various types of resources that may be useful in getting programs started and keeping up to date on new developments.

Popular magazines and newsletters have been listed as well as a selected list of books. Names and addresses of software vendors and microcomputer manufacturers are included.

An article on educational software by David Lubar reviews programs from seven software vendors. The information presented is useful in selecting software appropriate for gifted and talented programs.

Finally, a list of organizations that help educators use microcomputers in teaching and learning is provided. This document was prepared by The Resource and Referral Service, National Center for Research in Vocational Education. In all, 10 organizations are described. Included are their address, telephone number, and the name of the person to contact.
Almost any use of the computer can be educational, even when instruction is not the main intent of the program. This tends to turn a review of educational software into a complex task of selection (in itself, an educational experience). To narrow the field, the following types of programs will be considered:

1. Those labeled “Educational” by their manufacturers. These, while not labeled “Educational,” do provide the user with new concepts, new information, or new approaches to problem solving. With these criteria established, but not inflexibly fixed, we'll look at a variety of educational software for home computers.

### Edu-Ware

Edu-Pak I from Edu-Ware ($39.95) is a disk for the 48K Apple II and Apple II plus, requiring Applesoft in ROM. The disk contains five programs: “Compu-Read,” “Perception” (three programs) and “Statistics.” Each program allows for several options and variations, thus creating a large software library on a single disk.

“Compu-Read,” designed to improve a reader's speed and retention, begins with a choice of six different programs. “Compu-Read I” places three random letters on the screen for a brief moment. The user must type these letters after they have vanished. If he succeeds, the next set of letters remains on the screen for a shorter period of time. If he is wrong, the time of display increases. At the end, the time of display is shown, as well as the number of letters per second for both the start and end of the segment. This information helps the user gauge his progress.

“Compu-Read II” uses words instead of random letters. At this stage, the skills developed in the first program are called into service. Skills related to recognition are also emphasized and strengthened in this exercise. “Compu-Read III” displays a word on the left and four words on the right. One of the four is either a synonym or antonym for the word on the left. Once again, the words do not remain on the screen for long. The user must type the correct synonym or antonym for the word on the left. If the user is wrong, the words do not remain on the screen for long. The user must type the correct synonym or antonym for the word on the left. If the user is wrong, the words do not remain on the screen for long. The user must type the correct synonym or antonym for the word on the left. If he succeeds, the next set of letters is shown; if he is wrong, the time of display increases.

“Compu-Read IV” presents a sentence, then asks the reader a question concerning the sentence. The question is always about either the subject or object, thus training the user to scan quickly for information. This technique can greatly increase reading speed. The next two programs are file builders which allow the creation of new word lists for the second and third programs. The series is well developed and seems designed to build up reading skill in discrete segments. There are options to specify the number of trials and the length of time for display. Complete statistics are given after a round, breaking the performance into several factors such as percent correct, display time of first word, display time of last word, and rate of letters per second.

Next on the disk is the “Perception” series. These three programs seek visual perception and the ability to judge spatial relations. “Perception I” concerns lengths of lines and gives a choice of five tests. In each, a line must be matched to a specific, illustrated length. The line is controlled with the paddles. The options include two vertical lines on the floor of a room and two horizontal and vertical lines on the rear wall of a room. Anyone familiar with optical illusions will realize that finding a match is not always easy.

The program responds to the user's guess with the percentage of error in the estimate. “Perception II” deals with shapes. Again, there are a large variety of options. Basically, a shape with from three to eight vertices (user selects this number) is shown in sections as a window scrolls past it. The player must pick a matching shape. In “Perception III” the match must be made on the basis of size. The player selects from a choice of seeing the shape on a blank screen or against a scale which allows comparison. He also chooses from three ways of seeing the master and test shapes. The number of vertices in the shape and the time it is displayed are also controlled by the user.

These programs develop not only spatial perceptions but the concentration. And they're fun. With all the options and variations, anyone could use the “Perception” series for a long time without tiring of it.

The last selection on the disk is “Statistics.” This contains six programs, including “Chi Square Distribution.”

### Anyone familiar with optical illusions will realize that finding a match is not always easy.

Both beginners and old pros will be fascinated by the internal view of a computer in action.

Another cassette, "10-4" (same price and configuration as 10-3), contains "Computa-Doodle" and "Simulated Computer." "Computa-Doodle," as the title suggests, is a graphics utility. The left, right, up and down arrows control a cursor which draws lines. An arrow followed by a number will give a longer line. Left arrow followed by "9," for example, will move the line nine spaces to the left, plus one for the initial position of the arrow. The "A," "W," "S," and "D" keys allow diagonal moves, with numbers following to give the degree of slope. Once a diagonal has been started, the slope can be changed just by pressing a different number. This allows smooth curves to be drawn. There is also a command which displays the numbers that represent the graphics in memory, and a command which moves the entire drawing on the screen. "Computa-Doodle" is well designed and easy to use.

"Simulated Computer" is an excellent program. It turns the IRS-80 into a microprocessor. Twenty memories (little boxes) are displayed on the screen along with boxes for input, output, accumulator, program, counter, and instruction register. A group of three digit commands for "add," "subtract," "multiply," and "divide" is used to program this simulation of a computer. Once a program is entered, the operation of this "central processing unit" is graphically displayed as the user sees memory contents change, and as input and output appear in the boxes. There are also modes for slowing the program and running in single steps. The program is a good introduction to the concept of a microprocessor. Both beginners and old pros will be fascinated by this internal view of a computer in action. "Simulated Computer" is a good first step on the way to understanding a Z-80 or a 6502 microprocessor.

Steketee programs come with good documentation, including complete instructions and suggestions for using the programs. The programs are well designed to suit the educational application, and the "central processing unit" is capable of accepting programs from any source. However, the documentation could be improved to enhance the educational utility of the programs.

Steketee Educational Software

Cassette 10-3 for the IRS-80 ($29.95 + $1.00 for handling from Steketee's ILE-500 series contains two programs which can be used both in the classroom and at home. It is "Plot," and "Guess the Rule." "Plot" allows the grasping of single- or simultaneous equations. Anything within the mathematical capabilities of the IRS-80 from a simple Y = X to a complex Y = SIN(X) * COS(Y) can be used. An equation is entered by being placed in memory as line 400. Then, an equation can be inserted as line 500 if a graph of simultaneous equations is desired. Since these equations become part of the program, IRS-80 conventions for math symbols must be followed. Once an equation is entered, the user has a choice of either Cartesian or trig coordinates, as well as a choice of any desired endpoints. If the selected endpoints are too small, the line won't appear on the screen. If this happens, larger boundaries are needed. After the function is graphed, it can be replotted with different endpoints saved. It can be combined with the equation in a second memory. Plot which uses only two-dimensional representations of many geometric shapes. A ISBN 0165129015 could be a good addition to the teaching aid group.

In "Guess the Rule," the computer selects an equation ranging from 2 to 8 digits in length. The program consists of the form Y = AX**N. It starts with a value of A = 2, a value of N = 1, and an equation of Y = 2X. The user is then given the information to determine the function, either by observing the output or by examining the output graph, which can be reversed for the right order of Y and X. The user can then make corrections, and the computer displays the equation.

"Mean Value and Standard Deviation" and "T Test" on IRS-80 ($29.95) contains thirty programs. Six of these programs are "Simulated Computer," which range from games and simulators to utilities and educational aids. The games are not though some are reminiscent of previously published ones. Several of the games could be considered educational. "South Pole" allows one or two players to try to reach the pole and return. The players decide how many men and dogs to bring, and how much food and fuel to take along. Daily reports are given as the players pick their routes toward the pole. Aside from a rather long wait while data is being displayed, the game is fun. More varied and complex is "Atlanesc." Here, the player must decide on a course of action to save this mythical island from impending doom. He can try to build a dome for protection against the volcano, work toward evacuation, or try one of several other approaches. Many decisions are involved, with many possible outcomes. This is a nice simulation.

There are then the educational programs. "Country Guess" has the player choose a country. The IRS-80 asks questions until it is able to name the country. This requires the player to know (or learn) a fair amount of Geography, otherwise he won't be able to answer correctly. "Math Lable Drill" allows the user to select the number he wishes to study, the computer presents problems in basic arithmetic which involve the number. This could be a good way to practice multiplication tables. "Spelling Drill" flashes a word on the screen, then waits for the user to spell the word. Any mistake will immediately end the attempt, but another chance will be given. "Spelling Review" allows the user to enter his own list of words for review. There are three levels each presenting the word for a different period of time.

"MicroLoan" also contains data base type programs such as "Flowing Houseplants," "Calories-extruder," and "Calories-Ingredients," as well as programs for balancing checkbooks and checking memories. At this price it is a worthwhile purchase. Included with the cassette is a 24-page booklet which gives detailed rules for the games and background on the educational aspects. The tape and booklet are attractively packaged in a sturdy plastic binder.

Eduational Activities, Inc.

This company markets several programs for the TI I and IRS-80. Apple II plus versions are also on the works. "Missing Links" ($29.95) can be used by a student with no help from a teacher, the instructions are clear and simple. As in "Math Lable Drill" (see above) problems are presented with one missing factor (x = 9) and the user has to supply the missing number. After a correct answer, the whole problem is displayed again. When the guess is incorrect, three chances are given before the computer provides the answer.

"Flash Spelling" ($14.95) presents words one letter at a time in large script. The whole word remains on the screen for an instant, then vanishes. At this point, the user must correctly spell the word. While there might seem to be no challenge in spelling a word that has just been on the
"South Pole" allows one or two players to try to reach the pole and return.

Scrambled Letters ($14.95) is for two players, who take turns trying to solve jumbled words. If a player is correct, his opponent gets a shot at the same word. If both miss twice, the program shows them the word. Extra points are given for speed in this context. There is only one small problem. Some words, such as "boil," have anagrams. A player who responded to "aceno" with the answer "canoe" would be told he was wrong. Aside from this, the program is well designed.

Introduction to Mathematics on the Computer ($29.95) is a marvelous, wide-ranging program. It presents the student with n-number problems at a specific selected level of difficulty. If the student does well, the level increases. The value of the program becomes apparent when the student makes a mistake. After several tries, if the answer hasn't been found, the student is asked to select a word problem instead of using "+ 3 = 4," for example. It says, "Maybe this was the way to do it for you. I had 3 pennies and you gave me 4 more. How many pennies would I have?"
The program is also extremely patient when trying to get answers to yes/no questions during the initial setup. This is a nice touch and shows the care that went into the package.

Most of the FA programs make extensive use of large-size letters. The documentation consists of only an insert in the cassettes, but it provides information on changing the data bases for the spelling games and advice on what to do when problems are encountered. Besides, the programs contain everything the user would need to know. These tapes could be of value in the classroom, and could also be used by students who want to learn on their own or who need extra help with a subject. This is definitely a quality product line.

Image Computer Products

Now that the Atari home computer has been on the market for a while, other companies are beginning to produce software for it. Image has brought out a nice cassette, Skill Builder 1 ($19.95) containing two educational programs for younger persons. Running on either the 800 or 400, "Number Hunt" has the player move from the center to the edges of a three-by-three grid, trying to find the number that matches the answer to a problem shown at the bottom of the screen. At first, the problems are very simple. If the player does well, the problems become more difficult. A single player can use the program, or two players can compete, trying to be the first to find the number. In the two-player version, each player has his own grid. The control is through joysticks.

The same cassette also contains "Bingo Duel." In this game, numbers must be found on a five-by-five grid. Two players can compete, each getting a different level of problems but using the same grid, or the game can be used by a single player. Both games are well explained in the booklet accompanying the cassettes. These programs could be used by children who are learning elementary addition and subtraction. Older children might also enjoy the competitive aspects of the games.

Atari

The Talk and Teach programs from Atari represent a good concept which has produced fair to excellent applications. Using the Educational System Master Cartridge, the machine comes on with simple instructions for loading the cassette. After the program is in memory, the computer controls the tape, which gives audio output through the television to supplement the information on the screen. For some applications this is a nice idea. The Sociology set, with sixteen programs on four tapes, is well done. The first program introduces the topic, explains what will be covered, and begins to give a background of basic concepts. As text is displayed on the screen, a narrator repeats the material. Since speech can be faster than reading, the voice is able to give extra information.

Throughout the program, the tape stops and a question appears on the screen, along with two or three possible answers. If the wrong answer is selected, there is a buzz. When the right one is found, the tape continues, often making a comment about the answer.

In the same series is a set of History tapes. These begin with the Greeks and move chronologically forward. The history lessons stress a cause-and-effect approach. Obviously, the tapes took the efforts of three professionals, a programmer, an educator and a trained speaker. The lessons are put together with great care for detail, accuracy and interest. The use of text and graphics is well done, and learning from these tapes is a painless endeavor.

At Atari

The Talk and Teach programs from Atari represent a good concept which has produced fair to excellent applications. Using the Educational System Master Cartridge, the machine comes on with simple instructions for loading the cassette. After the program is in memory, the computer controls the tape, which gives audio output through the television to supplement the information on the screen. For some applications this is a nice idea. The Sociology set, with sixteen programs on four tapes, is well done. The first program introduces the topic, explains what will be covered, and begins to give a background of basic concepts. As text is displayed on the screen, a narrator repeats the material. Since speech can be faster than reading, the voice is able to give extra information.

Throughout the program, the tape stops and a question appears on the screen, along with two or three possible answers. If the wrong answer is selected, there is a buzz. When the right one is found, the tape continues, often making a comment about the answer.

In the same series is a set of History tapes. These begin with the Greeks and move chronologically forward. The history lessons stress a cause-and-effect approach. Obviously, the tapes took the efforts of three professionals, a programmer, an educator and a trained speaker. The lessons are put together with great care for detail, accuracy and interest. The use of text and graphics is well done, and learning from these tapes is a painless endeavor.

The value of literature comes not from the plots, which are often ancient and borrowed, but from the way words are put together.
When using the system for composition, each note is played as it is entered. Notes are coded using a simple method: A below middle C is entered as C. To go an octave higher, the composer would use D. There are a range of C below middle C to C three octaves above middle C. Along with the program, there is a data tape containing a Bach composition. The program encourages students to learn musical notation so they can transpose their favorite scores from sheet music into computer data. This package offers a wide variety of programs, and would be worth the price for the music routines alone.

Moving away from educational software, we get to those programs that are intended as aids for teachers. Generally, such programs are concerned with organizing data, and with saving time. First, two cassettes from Educational Associates, one very good, one fairly disappointing. The good cassette, Readability Index ($9.95), can be useful not just to teachers but also to those who work in children's literature, especially literature for the high-interest low-readability field. Readability gives a guideline for determining what material can be comprehended by what grade level. In the EA program, the user enters three paragraphs, the first, one from the middle, and the last 1. program then gives word count, sentence count, the number of letters, the average length of a word, the percentage of the words that are on the Dale readability index, and the readability level. The Dale long list contains words that are in the vocabulary of readers at certain ages. The percentage given is an estimate of an actual check against the list would take too much time. Along with the printout is a chart for finding the grade level that is appropriate to the readability. This program is useful and well set up for ease of operation.

Considering the overall quality of EA software, their Grade Averager ($9.95) is a disappointment. The program allows entry of grades, either letter or numeric, for each student in a class. When all the grades have been entered for a student, an average score and letter equivalent are given. At the end of the program, a summary of all names and averages is furnished. So far, no problem. But the program does have flaws.

A player can learn what a week of milkshakes would do to him, or a week of sprouts and other vegetables.

First, once a grade is entered, it is there for good. There is no way to edit mistakes. Any change would entail redoing the whole file for that student. Also, a wrong entry that is a letter other than A, B, C, D, or F is taken as a signal that the entries for that student are finished. It seems that this cassette could make more work than it saves.

The Apple II Gradebook ($24.95) from Creative Computing is a disk-based utility that allows teachers to set up files containing the names of students and their scores. The user first establishes a roster by entering the names of the students. More than one class can be held on a disk. Once a roster is on file, it can be accessed without new scores, change scores, change existing information, or add information.

A lot of thought seems to have been devoted to making this program easy for the user. After a name has been entered, the computer shows the name on the screen and asks if it is correct. Getting a "yes," the name is put on file. If the name isn't correct, the computer asks for another entry. This method should virtually eliminate user errors.

With names and scores on file, it is possible to get various statistics from the system, such as scores and averages for each student, as well as his deviation from the mean. Another nice touch is the names can be entered in any order. When they are sent to disk, they will be stored alphabetically. This system is very easy to use.

Anyone who can type can have the luxury of a computer grade book. The documentation covers use of the system and recovery from any problems that might be encountered (such as accidentally hitting reset).

As should be obvious by now, there is a lot of educational software out there, and the quality seems to be getting better every month. With careful shopping, any school or individual should be able to fill all software needs for a reasonable price.
Printed Materials

Magazines/Newsletters

Apple Education News, P O Box 20485, San Jose CA 95160
Byte, 701 Main Street, Peterborough NH 03458
Computer-Using Educators, Mountain View High School, Mountain View CA 94041
The Computing Teacher, c/o Computer Center, Eastern Oregon State College, La Grande OR 97850
Creative Computing, P O Box 789-M, Morristown NJ 07960
EDU, Educational Products Group, Digital Equipment Corp., Milton MA 02154
The Computing Teacher, c/o Computer Center, Eastern Oregon State College, La Grande OR 97850
Creative Computing, P O Box 789-M, Morristown NJ 07960
EDU, Educational Products Group, Digital Equipment Corp., Milton MA 02154

Books

Ahl, David H (Ed) 102 Basic Games, 1978 Creative Computing Press, Morristown NJ 07960
Ahl, David H More Basic Computer Games, 1980 Creative Computing Press, Morristown NJ 07960
Billings, Karen, and Morsund, David. Are You a Computer Literate, 1979 Dili- thium Press, P O Box 92, Dept CT, Forest Grove OR 97116
Computer-Based Education: The Best of ERIC, June 1976—August 1980, Keith A Hall, Syracuse University Printing, 125 College Place, Syracuse NY 13210
Dwyer, Thomas, and Critchfield, Margot. Basic and the Personal Computer, 1978 Addison-Wesley, Reading MA 01867
Frederick, Franz J. Guide to Microcomputers, 1980 Association for Educational Communications and Technology, 1126 16th Street, NW, Washington DC 20036
Harris, Diana. (Ed) Proceedings of the National Educational Computing Conference, 1979 WEED Computing Center, University of Iowa, Iowa City IA 52240
Illinois Series on Educational Applications of Computers: Computing-Teacher Education Papers, 1979 Department of Secondary Education, 396 Education Building, University of Illinois, Urbana 61800
Porot, James L. Computers and Education. Sterling Swift Publishing Company, P O Box 188, Manchaca TX 78652.
Ricketts, Dick (Project Director). Course Goals in Computer Education K-12, 1979 Commercial Educational Distributing Services, P O Box 8723 Portland OR 97201
Thomas, James L. Microcomputers in the Schools, 1981 The Oryx Press, Suite 106, 2214 North Central at Encanto, Phoenix AZ 85004

82 87
Vendors and Manufacturers

Software Vendors

Accen Software Products Inc
64 North Carolina Ave SE
Washington DC

Apple Computer Inc
5206 Bandley Drive
Cupertino CA 95014

Applicatons
21656 West Eleven Mile Rd Ste 103
Southfield MI 48075

Aquarius Inc
101 West McGraw
Reading PA 19604

Barbara's Inc
2377 20th Ave
Wandone MI 48192

BBB Books Rd
64 University Avenue
Madison WI 53706

The Bottom Shelf
4 Most Indutry NY
Center CA 90033

1st Systems Inc
1 Training Street
Santa Fe CA 87505

American Software
384 Monroe St
Cape Haus MI 45110

Anders MI 49124

Apple
Programs

Curser Magazine
Box 550
Goleta CA 93017

Edu-Ware Services Inc
22035 Burbank Boulevard #223
Woodland Hills CA 91367

Educational Activities Inc
1937 Grand Avenue
Balwin NY 11510

Educational Software Prof Ltd
38347 Grand River
Framington MI 48018

Educational Programs
P.O. Box 2345
West Lafayette IN 47960

George Earl
1302 South Gen McMullen
San Antonio TX 78237

Harley Software
3268 Coach Lane #A
Kentwood MI 49508

Hayden Book Company
50 Essex Street
Rochelle Park NJ 07662

Ideatech Company
P.O. Box 62451, Department 7220
Sunnyvale CA 94086

Instant Software
80 Pine Street
Peterborough NH 03458

Interactive Education
2306 Winters Drive Dept 16D
Kalamazoo MI 49002

J & S Software
140 Reid Avenue
Port Washington NY 11050

Kael Software
210 Mill Brook Drive
Strong Brook NY 11790

Kyde Tyme Project
Ted Perry
2331 St Marks Way
Sacramento CA 95825

Level IV Products Inc
22238 Schoolcraft Suite F4
Livonia MI 48154

Life Software Ltd
946 Van Home Avenue
Willowdale Ontario Canada M2J 2T

Malibu Microcomputing
23910A De Ville Way
Malibu CA 90265

Mar
256 North Washington Street
Fall Church VA 22046

Med Systems Software
P.O. Box 2674
Chapel Hill NC 27514

Micro Gnome
5843 Montgomery Road
Elkridge MD 21227

Micro Learning Ware
Box 2134
North Mankato MN 56001

Micro Power and Light Co
1108 Keystone
13773 North Central Expressway
Dallas TX 75243

Microcomputer Workshops
10 Elizabeth Place
Armonk NY 10504

Microphys Programs
2048 Ford Street
Brooklyn NY 11229

Minnesota Educational Computing Consortium
2520 Broadway Drive
Lauderdale MN 55113

Monument Computer Service
Village Data Center Box 603
Joshua Tree CA 92284

Muse Software
330 North Charles Street
Baltimore MD 21201

Oregon Software
2340 SW Canyon Road
Portland OR 97210

Personal Software Inc
592 Weddell Drive
Sunnyvale CA 94086

The Pet Program Exchange
Box 516
Montgomeryville PA 18936

Program Design Inc
11 Iadar Court
Greenwich CT 06830

Programmer International Inc
3410 Wilshire Boulevard
Los Angeles CA 90090

Programs for Learning Inc
P.O. Box 954
New Milford CT 06776

Programmer Software Exchange
2110 North Second Street, POB 199
Cabo AR 72023
Radio Shack Department
Cma-81010161
1300 One Tandy Center
Fort Worth TX 76102

Sawyer Enterprises
P O Box 7266
Hampton VA 23666

Steven Educational Software
4639 Spruce Street
Philadelphia PA 19139

String Swift Publishing Co
P O Box 188
Manchaca TX 78652

Thesis
P O Box 14
Garden City MI 48135

TI Source (Texas Instruments)
P O Box 191
Rye NY 10580

TYC Software
40 Stuyvesant Manor
Geneseo NY 14454

Microcomputer Manufacturers

APF Electronics Inc
Imagination Machine
444 Madison Avenue
New York NY 10022

Apple Computer Inc
10260 Bandley Drive
Cupertino CA 95014

Atari
800 or 400
1265 Borregas Avenue
Department C
Sunnyvale CA 94086

Commodore Pet
950 Rittenhouse Road
Norristown PA 19401

Compucolor
Compucolor II Renaissance Machine
P O Box 569
Norcross GA 30091

Cromemco Inc
280 Bernardo Avenue
Mountain View CA 94043

Exidy Sorcerer
969 Maude Avenue
Sunnyvale CA 94086

Health Company
Healthkit
Benton Harbor MI 49022

Hewlett-Packard Company
HP-85 Inquiries Manager
1507 Page Mill Road
Palo Alto CA 94304

Intelligent Systems Corporation
(See Compucolor)
Intecolor Drive
225 Technology Park
Atlanta-Norcross GA 30092

Mattel
Intellivision
5150 Rosecrans Avenue
Hawthorne CA 90250

Motorola
5005 Cast McDowell
Phoenix AZ 85008

North Star
Horizon II
1440-4th Street
Berkeley CA 94710

Ohio Scientific
Challenger Series
1333 South Chillicothe
Aurora OH 44202

Radio Shack
TRS-80
1300 One Tandy Center
Fort Worth TX 76192

Sinclair Research Corporation
Sinclair Microcomputer
50 Staniford Street
Suite 800
Boston MA 02114

Smoke Signal Broadcasting
31336 Via Colinas
Westlake Village CA 91362

Southwest Technical Products
SWT PC 3800
219 West Rhapsody
San Antonio TX 78216

Synertek
3001 Slender Way
Santa Clara CA 95051

Texas Instruments
TI 994
12501 North Central Expressway
Dallas TX 75222
ORGANIZATIONS HELP EDUCATORS USE MICROCOMPUTERS IN TEACHING AND LEARNING

Each issue of Educational R&D Report features a "mini-list" of resources from the Resource and Referral Service at the National Center for Research in Vocational Education, Ohio State University. This issue focuses on resources for using microcomputers in schools and classrooms.

Additional information on this topic can be obtained from the regional educational laboratory in your area or from the Resource and Referral Service at the address below.

Association for Computing Machinery (ACM)
1133 Avenue of the Americas
New York, NY 10036
Contact: Membership Services
212-675-6300

ACM is an association for computer scientists, business system specialists, analysts, and social scientists interested in computing and data processing. The purpose of the organization is to advance the science and art of information processing, including computing techniques and appropriate language for general information and processing storage, retrieval, transmission, communication, and simulation of data.

ACM has produced a publication on the use of computers by schools titled "Computer Education for Elementary and Secondary Schools" (Order No. 812870 1971, 92 pp. $7 for members, $10 for nonmembers). It can be purchased from the ACM Orders Department, PO Box 64145, Baltimore, MD 21264. All orders must be prepaid.

Association for Development of Computer-based Instructional Systems (ADCIS)
ADCIS Headquarters
Computer Center
Western Washington University
Bellingham, WA 98225
Contact: Gordon Hayes, executive secretary
206-675-2860

ADCIS is an international, nonprofit organization representing elementary and secondary school systems, colleges, universities, business, industry, and military and government agencies. The purposes of ADCIS include advancing the investigation and utilization of computer-based instruction and management, promoting and facilitating the interchange of information, programs and materials, reducing redundant effort among developers, and specifying requirements and priorities of hardware and software development.

The ADCIS News is a bimonthly newsletter mailed to all members. A scholarly publication, The Journal of Computer-Based Instruction, is published four times a year (free to ADCIS members, $12 to nonmembers). ADCIS operates several special interest groups, including ones for Plato users, mini-microcomputer users, elementary and junior college personnel, and individuals involved in the Interactive Instructional System Presentation and Authority. Membership in ADCIS is $30 a year for individuals who are affiliated with an institutional or associate member and $40 for those who are not.

Association for Educational Data Systems (AEDS)
1201 16th ST NW
Washington, DC 20036
Contact: Shirley Easterwood
executive director
202-833-4100

AEDS is a professional organization for those interested in the use of computers in education. AEDS produces three quarterly publications, the AEDS Bulletin, which focuses on interchapter communications and meeting announcements ($4 a year); the AEDS Observer, which contains short, timely articles on current directions in educational data processing ($15 a year); and the AEDS Journal, which features articles illustrating the latest developments in the application of computer technology to all areas of education ($25 a year).

Annual individual membership ($35) includes subscriptions to all three publications. The special Fall 1979 issue of the AEDS Journal, "Microcomputers: Their Selection and Application in Education," can be purchased for $10.
Additional activities include an annual international convention, special seminars and workshops that provide opportunities to examine and discuss the latest developments in educational technology, and a computer programming contest for students in grades 7 through 12.

**Computertown, USA!**

P.O. Box E
Menlo Park, CA 94025

Contact: Ramon Zamora, director
415-327-0540

Computertown USA is a computer literacy project of the people of Menlo Park, the Menlo Park Library, and the People's Computer Company, a non-profit education corporation in Menlo Park. The goals of this National Science Foundation funded project are to develop, test, and evaluate a set of course materials and operating procedures for a transportable microcomputer-based community literacy program. The model project emphasizes the use of local community resources.

The courseware is based on a series of six-week classes for children and adults dealing with introductory materials. BASIC programming and project-based programming experiences. Courseware includes student workbooks, teacher guides, handouts, and lists of recommended software that complement the class activities. These items will be available for dissemination in late 1983.

A free newsletter, *Computertown USA News Bulletin* is published monthly. To obtain a subscription, write to the above address.

**CONDUIT**

P.O. Box 388
University of Iowa
Iowa City, IA 52244

Contact: Harold Peters, associate director
319-353-5789

CONDUIT is a source for computer-based instructional materials that are reviewed, documented, programmed for ease of transfer, and continually updated. Programs are written in BASIC and FORTRAN. Materials programmed in BASIC will run on most...
Microcomputer systems and some microcomputer materials are being translated to run on the more popular minicomputers.

Microcomputer materials are currently available in biology, chemistry, physics, mathematics, and statistics, Spanish, psychology, and sociology. Materials are available for use on the PEl 2001, Apple II, and TRS-80.

Three types of informational materials are also available from CONDUTI general information about the use of computers in higher education—ads for authors and developers of computer-based instructional materials and reports on CONDUTI reviewed and tested materials—CONDUTI Pipeline ($15 a year). A seminannual publication featuring ideas for use in higher education and complete documentation of CONDUTI latest reviewed and tested materials. Ads available for developing instructional computing materials include CONDUTI Bullets, Life in a Classroom, and Educational Material, the State of Distress, and Technical Assistance. Additional information is available from CONDUTI's newsletter, CONDUTI Notes, a quarterly newsletter to be placed on the MicroSFT News mailing list. Write to the above address.

Society for Applied Learning Technology (SALT)
50 Gilppper St
Watertown, MA 02180
Contact: Raymond Fox, president
703-347-0059

SALT is a nonprofit organization for professionals in the area of instructional technology membership, $20 a year.

Members receive the quarterly newsletter. Other publications include the Journal of Educational Technology Systems (S22 50 a year for members, $51 a year for nonmembers) and Computers in Education and Training, $40 a year. Additional information is available from the above address.

Technical Education Research Centers (TERC)
Compact Resource Center
8 Flat St
Cambridge, MA 02138
Contact: Ruth W. White, director
617-547-8900

TERC contains microcomputer hardware, software curriculum, and technical information of interest to educators.

The Computer Resource Center (CRC) offers a library of related technical and educational publications. The SALT Newsletter is an occasional newsletter that is free upon request.

CRC also conducts one-and two-day workshops on educational uses of microcomputers at CRC and at schools in the New England area. Contact the director for additional information.

International Council for Computers in Education (ICCE)
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403
Contact: Robert Munsat
503-686-1408

The International Council for Computers in Education (ICCE) is a nonprofit professional organization dedicated to improving the instructional use of computers. The Computer Bulletin is available for $4.50 for new issues or $6.00 for annual membership. This newsletter is published quarterly and is aimed at professionals in the field of education. The Bulletin provides information on the latest developments in computer education, as well as the latest research and developments in the field. It is an excellent resource for educators, researchers, and policymakers who are interested in the integration of technology into education.

In addition to the Computer Bulletin, ICCE also offers a variety of resources to support the use of computers in education. These resources include books, journals, and other publications that provide guidance on the effective use of technology in the classroom. ICCE's website, icce.org, is a valuable resource for educators seeking to integrate technology into their teaching.

ICCE's mission is to promote the effective use of technology in education and to support the professional development of educators in this area. Through a variety of programs and initiatives, ICCE provides a platform for the exchange of ideas and best practices and works to foster a culture of innovation and collaboration in the field of educational technology.