
DOCOMENT.RESOME

ED 207 581 IR ao9 699

AUTHOR Miller, dark L.; Goldstein, Ira P.
TITLE Parsing Protocols Using Problem Solving Granmars. AI

Memo 385.
INSTITUTION Massachusetts Inst. of Tech., Cambridge. Artificial

Intelligende Lab.
SPOTS AGENCY Advanced Research Projects Agency (DOD), Washin4zon,

D.C.; Lktional Science Foundation, Washington,
D.C.

REPORT NO LOGO-32
PU8 DATE Dec 76
-GRANT NSF-EC4070BX
NOTE 57p.

IDES PRrCE 11F01/PC03 Plus Postage.
DESCRIPTORS Computer Graphics; *Conputer Programs; *Context Free

Grammar; *Planning; *Problem Solving; *Programing;
Task Analysis

IDENTIFIERS *LOGO System

ABSTRACT,.
A theory of the planning and debugging of computer

programs is formalized as a conte free gransar, which is used to
reveal the constituent structure Problem solving episodes by
parsing protocols in which Programs are written, tested, akd
debugged. Antis is illustrated by the detailed analysis of an actual
session with a beginning student working on a typical introductory
IOGO project. Tee virtues and limitations of the context-free fors of
the grammar as a technique for summarizing certain insights into the
structure of planning and debugging are discussed, and 17 references
are listed. (Author/LLS)

a

* Reproductions supplied by EDRS are the best that can be made *

* from the orisfinal document. *
**t

4

41,

u-Nt-
cp
r\I

AI Memo 385

.:,

U S DEPARTMENT OF HEW'S
EDUCATION a W

NATIONAL INSTITUTE OF
EDUCATION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICYY

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

,

December 1976 '-' Logo Memo 32

e
Parsing Protocols Using Problem Solving Grammars

Mark L. Miller and Ira P. Goldstein

A theory of the planning and debugging of programs is formalized as a .'

context free grammar. The grammar is used to reveal the constituent structure of

problem solving episodes, by parsing protocols in which programs are written, tested and

debugged. This is illustrated by the detailed analysis of an actinl session with a.

beginning student. The virtues and limitations of the context free formalism are

considered.

el-

,

Cr' This report is a revised version of the second half of Al Working Paper 122 (Logo

C.) Working Paper 50). It describes research done at the Artificial Intelligence LAboratory of the

r0 Massachusetts Institute of Technology. This research was supported in part by the National Science

\V Foundation under grant C40708X, and in part by the Division for Study and Research. in

[i Education, Massachusetts Institute of Technology.

0
0
ti

or

Problem Solving Grammars 2 Miller & Goldstein.

Table Of Contents

I. A Planning TaxonoMy S

2. A Planning Grammar o 8

3. A Debugging Grammar IP

4. Structural Protocol Analysis 18

5. Analysis of a Sequential Plan for Drawing a G

6. Analysis of an Evolutiontry Sequence for Drawing an R

7. Conclusion

8. Notes

9. Ref.: cnces

e-

Acknowled ements

28

38

49

,51

54-

. Thanks are due to H. Abelson and H. Peelle-for carefully criticizing an earlier

version of this paper. The authors would also like to thank Carol Roberts for assistance

with the illustrations.

3

I

o

Problem Solving Grammars 3

1. A Planning Taxonomy

Miller & Goldstsin

O

This study ...-forms part of an attempt to construct a formalized general theory

... and to explore the. foundations of rich a theory. The search for rigorous formulation

... has a much more serious motivation than mere concern for logical niceties or the desire

to purify well-established methods of ... analysis. Precisely constructed models ..: can play

an important role, both negative and positive, in the process of discovery itself. Ey

pushing a precise but inadequate formulation to an unacceptable conclusion, we can often

'expose the exact source of this inadequacy and, consequently, gain a deeper

understanding of the-:-.. data.
[Chomsky 1957)

t, In this papr, we explore the use of a grammar to parse problem solving protocols for the

purpose of revealing more clearly their constituent structure. We view problem solving as an

alternating sequence of planning and debugging episodes. In the next section, we develop a

taxonomy of plans, i.e. problem decomposition techniques. Section 3 formalizes the decisions

involved in choosing among alternative methods in this taxonomy by means of a grammar. Section

4 develops a complementary grammar for debugging. Both these grammars are then applied in

sections 5 and 6 to parse a protocol of a student engaged in an elementary graphics programming

project.

Our planning theory derives from the common observation that the fundamental

technique for solving a seemingly intractable problem is tc divide it into more manageable

subproblems. A critical question for the aspiring problem solver then becomes, on what basis shall I

decompose this problem into subproblems ?". Plans are strategies for performing this

decomposition.'

(Figure 1) illustrates part of our planning taxonomy. The top level classification 'is into

four mutually exclusive categories:

(1) General Principle Plans

(2) Evolutionary Plans

(3) Anticipatory Plans

4

a

sProblem Solving Grammars 4 Miller & Goldstein

A Taxonomy of Planning

...

Plans

based on

General Principles

.nterrtiql

I

--*--[Round Plans]

I

--[Sequential'Plans]

Flores]

Plans based on

Domain Dependent

Rules

...[Similar

1

I

[Answer Library]

PLANS -* - --[Use of Solution Procedure]

*--[Use of Plan]

-- Evolutionary

Plans

--[Use of Model]

--[Use of Caveats]

Anticipatory

1

*Ions

[Generalization]

I

[Rational form Criteria]

--[Experiment]

{Figure 1)

r()-

4

II

t

o

Priblem Solving Grammars 5
r

. ...

Miller & Goldstein

(4) Domain-dependent Plans.2

. ,

These four categories reflect the intuition that guidance for aiproblem solver can come
from only four directions: (s)he can look upwards to general principles, downwards to the specifics

of the domain, backwards to past solutions, or forwards to anticipated futtire difficulties. There are
interactions: A past solution can be useful simply as a concrete embodiment of a general principle,
domain dependent plans can range in specificity from the very general to the very specific.
Nevertheless, division into mutually exclusive categories serves as a useful first approximation. Tke

remainder of this section defines each category in greater detail.
.

The first category consists of Plans based on General Principles having wide applicability

to many domains. Perhaps the most important member of this class is the Sequential Plan which

attempts to structure the problem into independent pieces. Other important General Principle Plans

which we shall not define here but whose names are indicative of their nature are: Recursive
Plank Interrupt Plans, Search Plans and Timesharing Plans. The strength of General Principle
Plans is their wide applicability: their weakness Is the abstractness and hence potential vagueness of

their advice.

Evolutionary Plaits supplement and constrain these General Principle Plans by suggesting

that the critical problem decomposition be made on the basis of an analogy to a previously solved
problem. Evolutionary Plans are particularly useful when they are applied to projects, i.e. sequences

of problems, one building upon the next towards some ultimate goal.3

Antkipatory Plans constrain the form of the problem decomposition in order to ensure
that the solution will, be extensible and °modifiable. They anticipate potential goals by applying

aesthetic criteria to the structure of the problem solving process. The use of variables for
generalization and st ',procedures for modularity are two examples of Anticipatory Planning
applicable to the programming domain. Anticipatory Plans involving preliminary experimentation

interact closely with Evolutionary Plans when the experimentation involves first solving an
auxiliary problem in order to try out possible consequences, followed by evolutionary use of the

knowledge acquired in a subsequent attark' upon the original problem.

Domain Dependent Plans form a fourth class. These Plans structure the solution
procedure In a manner which depends on properties specific to the particular domain. Polya's

Pattern of Similar Figures (a plan for solving geometry construction problems) is one such example

[Poly& 19621 The use of a domain dependent Answer Library is another. Descriptions of the

6

\

4

Problem Solving Grammars 6 Miller & Goldstein

applicability conditions for domain dependent methods provide the basis for matching problems to

solutions. This plan type is the framework for pattern directed invocation, an organizational scheme

for problem solvinecentril to systems such as Planner [Hewitt 1972] and Hacker [Sussman 19743]..

' Complete descriptions of planning behavior are hierarchical, and can include severkl
______.;--

different kinds of plans, as well as multiple instances of the same plan type. For example, at one

level, the Plan may be Sequential, consisting of an ordered sequence of steps. But a given step of

the sequence may be accomplished by an Evo henna.) Plan, in which the solution is obtained by
retrieving a solution from the Answer Library. At yet another level of detail, the existing solution

...
proCedure .found in the Answer Library would perhaps be an embodiment of some General
Principle plan, perhaps representing a recursive solution. [Figure 2) illustrates this hierarchy.

o

c)

P

L

Problem Solving Grammars 7 Miller & Goldstein

TO WISHINGWELL
10 RIGHT 30
20 TRIANGLE
30 RIGHT 60
40 FORWARD '0
50 RIGHT 90
60 FORWARD 100
70 LEFT 90
80 FORWARD 50
90 RIGHT 90
100 SQUARE
END

TC TRIANGLE

HIERARCHICAL PLANNING

.1111,1
See.
plan

WW

evol. plan
1

2

3

mainstep

mainstep

mainstep

'10 REPEAT TRIANGLESIDE 3
END.

-TO TRIANGLESIDE
10 FORWARD 100
20 RIGHT,120
END

Figure 2

8

iterative plan

Problem Solving G/t21;17,1IITS, 8 Millorgst Goldtttin.

2. A Planning Grammar

It would help a great deal if ire had a general language specially designed for

Talking abOut Plans.... SuCh A language would, presumably, give us a convenient notation

for such aspects as flexibility of Plans, the substitution of subplans, conditional and

preparatory subplans, etc. For example, it does nit particularly matter in what order Mrs.

Jones, chooses to run her errands when she ,gets to town.. The ... subplans can be

permuted in orderand ao we say that this part of her Plan is flexible. But she cannot

permute the order of theseowith the subplan for driving to town, or for driving home.

That part Of the plan is inflexible. Some subplans are executed solely for the purpose of

creating -the conditions under which inother subplan is relevant: Such preparatory or

mobilizing subplans cannot be freely moved about with respect to the other subplans that

they anticipate. Another important dimension of freedom that should be analyzed is the

interchangeability of subPlans.` Mrs.' ,Janes can drive to town over a variety of
equivalent routes. The variety is limited only by the condition that they terminate when

one of her three 'alternative destinations i r4ched, since only then would the next part

of her Plan become relevant. Given a satisfactory Plan and ataterrient of the flexibility

and substitutability of its subplans,, we should then be able td generate many alternative

Plans that are also satisfactory. And we should .like to have ways for deciding which

combinations of Plans 'are most efficient....

Miller et al. 1960)

a

We view planning as a process in which the problem solve selects the appropriate plan

type and then carries out the subgoals defined by that plan applied to the current problem.4 From

thfs viewpoint, the taxonomy of the previotis section represents a decision tree of alternative plans.

Following this planning process, debugging may be required. This decision process can be
formalized by a context free grammar.5 A grammar is chosen to present these rules because it:

provides a simple and compact representation, useful for characterizing the hierarchical structure of

planning and debugging episodes. We would not argue that a context free grammar is necessarily

the best formalism for representing, a theory of. problem solving in our other papers a more

elaborate formalism is employed. However, we believe that the decisionvoints implicit in the

grammar correspond, for the most part, to actual choices. which must be made by the problem solver

at some time in the course of the solution.
0

9

4.

1110 Problem Solving Grammars
.

N

9 Miller & Goldstein

The top level rule in the problem solving grammar is:

P1: SOLVE -) PLAN + (DEBUG)6

.,

The nonterminal SOLVE is formally analogous to the nonterminal SENTENCE in a linguistic
grammar for parsing or generating sentences.

P1 states that planning is first used to generate an almost-right Plan, with subsequent

debugging then being required to complete the solution. Of course, the plan may be entirely correct,

or even if. incorrect, the problem solver may choose not to debug, in which case the plan remains,

unvetlfied. For this reason, DEBUG is in parentheses, indicating that it is an optional constituent.

The taxonomy of the previous section chiracterized the planning process- as involving
., i
four mutually exclusive plan categories: General Principle Plans, Evolutionary Plans, Domain

Dependent Plins and Anticipatory Plans. Hence, in planning, the problem solver must chooie

among these alternatives. We represent this by the disjunctive rule P2.

P2: PLAN -) GP-PLAN I Eli -PLAN I DD-PLAN I AN-PLAN,

Now let us consider the details of each of these planning categories. Two important

General Principle Plans are SequentiarPlans, in which the problem is subdivided into independent _

.. .

parts, and Round Plans, in which the problem is characterized in terms of a sub-problein repeated -

some number of times. L, '

P3: GP-PLAN -) SEQ-PLAN I RND-PLAN

Were we to include other general principle plans such as full recursion (round plans are limited to

tail recursion), this rule would be extended by adding additional disjuNits.

P4 states that Round Plans can be accomplished either. by iterative or recursive
procedures.

P4: RND-PLAN -> ITER-PLAN I RECUR-PLAN

l0

No

1

116

Problem Solvigg Grammars 10 Miller & Golds siein

- (Figure illustrates a triangle being accomplished by three different Logo prograins.

These correspond to the use of a Sequential Plan, a Recursive Round Plan and an Iterative Round

Plan. The annotations in parentheses, stating what the planning step is intended to accomplish, are

semantic descriptions not generated by the grammar.. The grammar must be supplemented by

semanticinP7oretation rules to allow for such analysii (Goldstein & Miller 1976b) does this.

A Sequential Plan consists of a- sequen4 of actions, each consisting of an optional Setup

Step folloi:td by a Main Step and concluding with an optional Cleanup Step.

PS: SEQ-PLAN (S.ETUP) + MAINSTEP + (CLEANUP) l*

The essence of a Sequential Plan is that the solutions to ,the Main 'Steps can be designed
independently of each other..

For the Logo graphics programming domain, a Setup, Main Step, or Cleanup consists of

either the addition of a line of Logo code or a recursive application of Solve, delimited by optional

punctuation.7

P6: SETUP

P7: MAINSTEP

P8: CLEANUP

P9: STEP

P10: PUNCT

- > STEP

- > STEP

- > STEP

- > (PUNCT) « t ADD I SOLVE') + (PUNCT)

-> TO I EDIT I END I CSI ST I PO

The grammar now admits potentially infinite recursion. What is not formalized is the

fact that SOLVE is always attempted with respect to some specific problem and in a definite

context. Successful problem solving involves solving successively simpler problems until a direct

solution in terms.of the answer library is possible. The semantic component, not formalized in the

current essay, wo uld constrain the potentially infinite recursion allowed by the grammar.

Similarly, the grammar does not capture the distinction between a SETUP, MAINSTEP,

and CLEANUP: they are all simply STEPS. There is, however, a semantic distinction. For
example, the distinction between a Main Step and a Setup depends on whether the code is designed

to directly accomplish some subgoai (such as drawing a visible part of the picture) or to establish

some prerequisite for accomplishing some subgoal (such as invisibly modifying the position or

11

Problem Solving Grammars

TO TRI -SEQ

Accomplishing A Triangle

, (Sequential Plan)

... FD 100 -----ftin.Step---(accomplish side one)

L
N..

.-- . ti 120 ---,Setup Step---(prepare heading fiiipelditwo)

FD 100 Main Step---(accomplish.side two)

Miller. ft Goldstein

1111

Sequential

RT 120 Setup Step---(prepare heading for side three) -- Plan
'

FO 100''-----Main Step--(accompllsq side three)

RT 120' --Cleanup Step---(accomplish heading transparency

ENO

iTail Recursive Plan)

TO TRI-REC

Fb 100 Mein Step - (accomplish side n)

1 (no stoprule: doss not halt) 1

. 1

*-11

RT 120 7-Setup'Step-(prepare heading siden+1)--1

-- Tail

Recursive

Plan

TR1 -AEC- ----Recursion Step

ENO

(Iterative Plan)

TO TRI-ITER 1 (does not WW1

FO 100 ---Maln Step-(accomplish side n)

-Sag

0,120 --Setup Step-(prepare heeding side n+1)--1
4 0- Iterative

.

SOTO pop Step Plan

END

(Figure 3)

12 1 .

.1.

. ' L.

I

Problem Solving Grammars 12 Miller & Goldstein

hlading of the turtle between adjacent Main Steps). The Mycroft rtmgram (Goldstein 1974]
included a program annotator that made such distinctions by comparing ne picture drawn by the

code with the "model" <or problem description), noting the penstate, and observing the user-defined

subprocedure strucure. In the protOcol analysis of later sections, we apply such criteria informallr,

when deciding which of these non-terminals td assign to a given STEP.

A simple type ?cursive Plan may be repreiented as a Sequential Plan plus Recursion

and Stop Steps.

P11: RECUR-PLAN -> STOP-STEP SEQ-PLAN RECUR-STEP

P12: RECUR-STEP -> <RECURSIVE-PROGRAM-CALL>

P13: STOP-STEP -> <STOP-PROGRAM-CALL>

Evolutionary Plans can be based on using previous procedures, plans or models.

P14: EV-PLAN -> 11:1-CODE I USE-PLAN `1 USE-MODEL

P15: USE-PLAN -> <ADAPTATION-OF-PREVIOUS-PLAN>

For the purpose of analyzing the protocol in the next sectior, it suffices to assume that Evolutionary

Plans based on the Use-Plan rule result in new code whose Plan is a slightly modified version of

the Plan of the existing code. Further details concerning Evolutionary Plans are given in (Miller
19761

An Anticipatory Plan modifies or experiments with a program .n preparation for
,potential future needs. Typical instances of anticipatory strategies are generalization,
ddrumentation, and experimentation with a procedure in order to better understand its performance.

P16: AN-PLAN -> EXPERIMENT .1 GENERALIZE 1 DOCUMENT

P17: EXPERIMENT - >r(STEP) + TRYOUT + SOLVE

' Acta' instructions to the computer consist of either primitives of the Logo language or

subprocedures defined by the user. Thus, rules such as P10 and P18 bridge the gap between the

nonterminal symbols of the grammar and the actual events of the student protocol which constitute

the-term-inal symbols of the grammar.

13

O

,,

Problem Solving Grammars 13 Miller & Goldstein

P18:' TRYOUT -> <NON-EDIT-EVENT)*

A Domain Dependent Plan for designing a step available to the student is to recall the

solution directly from his or her "iinswer Library..

P19: DD-PLAN -) USE-ANS-LIB

P20: USE-ANS-LIB -) (PREVIOUSLY-PARSED-CODE)

For example, after the student has learned the meaning of the FORWARD primitive, steps which

simply require drawing individual vectors can be accomplished ,in this way. As a file of user-

Sz defined subprocedures is developed, application of P19 can result in the inclusion of any previously

parsed code.

(Figure 4) presents the complete grammar. (The debugging rules are discussed in the

next section.) The grammar is used for the purpose of parsing protocols. A parsed protocol, likiNa

parsed sentence, reveals its intermediate constituents. For language, these are noun phrases andi
verb phrases; for problejn solving they are the particular sub-plans guiding the problem
decomposition.

As a generative problem so' - , 'dry, the grammar is non-deterministic. It specifies a

set of possible decisions: but it does no indicate which choice should be made. The protocol
provides evidence for which planning decision was made. A more complete theory would
supplement the grammar with a semantics for describing particular problems situation and a
pragmatics for specif Ong which among alternative options are appropriate for the given semantic

context. This additional knowledge would extend the approach to provide a complete, deterministic

theory of problem solving. Without semantics and pragmatics, one can, nonetheless, parse a
protocol, revealing which decisions the problem solver has made. The constituent structure, of the

protocol corresponds to the sub-plans which have been pursued. But the reasons for each decision,

in terms of the specific problem and pragmatic preferences, are not modelled. We take steps in this

direction by moving from a context free grammar to an Augmented Transition Network in
[Goldstein & 1 :filer 1976b1.

The 'Planning Rules alone are sufficient to describe programs as static, finished objects.

Debugging Rules become necessary, however, when the analysis is extended to handle protocols in

which a student is dynamically designing (or redesigning) a program. We have already briefly

,.

14

Problem' Solving Grammars 14 Miller td Goldstein

A Grammar for Planning and Debugging

PI: SOLVE PLAN + (016U11)

P2: PLAN -> a-1.6 I IV-PLAN I DO-PLAN I AN-PLAN

P3: OP-PLAN -> , SEQ-PLAN I RNO-PLAN

P4: RED-PLAN -> ITER-PLAN I RECUR-PLAN

P5: SEP:PLAN ->. ((SETUP) + MAINSTEP + (CLEANUP)]'

P0: SETUP STEP

P7: MAINSTEP -> STEP

P0: CLEANUP -> STEP

P1: Site -> (PUNCT) + [ADD I SOLVE] + (PUNCT)

P10: PUNCT -> TO I EDIT I ENO 1 CS I ST I PO

P11: RECUR-PLAN -> STOP-STEP + SEG-PLAN + RECUR-STEP

P12: RECUR-STEP -> (RECURSIVE-PROGRAM-CALL>

P13: STOPSTEP -> (STOP-PROGRAM-CALL>

P14: EV-PLAN -> USE -CODE I USE -PLAN I USE-MODEL

P15: USE-PLAN -> (ADAPTATION -OF- PREVIOUS -PLAN)

P16: AN-PLAN -> EXPERIMENT I GENERALIZE I DOCUMENT
1

P17: EXPERIMENT -> (STEP) + TRYOUT + SOLVE

P16: TRYOUT -> (NON-EDIT-EVENT>4

P19: 00-PLAN -> USE- ANS -LIS

'20: USE- ANS -LIl -> (PREVIOUSLY-PARSED-CODE>

01: DENG -> [DIAGNOSE + (FIX)]
. A3

02: DIAGNOSE -> [DESKCNECK I TRYOUT I LOCALIZE]-

03: OISKCMICK -> (PRINTOUT) + (LONG-LATENCY)

04: LOCALIZE -> TRACE I PRINTOUT t ADD-PAUSE I ADD-PRINT

05: FIX -> EDIT I SOLVE

06: EDIT 4 [ADD I DEL]4

07: A00 -> (DEFINEIEDIT-EVENT)

0$: OIL -> (DEFINE/EDIT-EVENT>

(Figure 4}

15

Problem Solving Grammars Miller & Goldstein

indicated (in the third figure) the manner in witch the grammar describes the planning structure of

completed programs. In the next section, we describe a complementary set of debugging rules.

0

is

1.

Problem Solving Grammar, 16 Miller & Gldstsin

3. A Debugging Grammar

.7 genetic epistemology deals with both the formulation and the meaning of knowledge.

We can formulate our problem in the following terms: by what means does the human

mind go from a state of less sufficient kn-owledge to a state of ,higher knowledge? The

deciston of what is lower or less adequate knowledge, and what-is higher knowledge, has

of course formal and normative aspects. It is not up to psychologists to determine
whether or not a certain state of knowledge is superior to another state. That decision is

one for logicians or for specialists within a given realm of science. For instance, in the

a-ea of physics, it is up to physicists to decide whether or not a given theory shows some

progress over another theory. Our problem, from the point of view of psychology and

from the point of view of genetic epistemology, is to explain how the transition is made

from a lower level of knowledge to a level that is judged to be higher. The nature Of

these transitions is a factual question.

[PlagPt I97:]

Planning is only the first phase in moving from problem description to solution
procedure; debugging the plan is the second. A view of problem solving as alternating planning

and debugging episodes is based on two theoretical observations: (a) it would be far toolielmre a

restriction on the planner to always demand entirely correct plans; (b) debugging cannot take place

in a vacuum; rather, it is a process guided by the known weak points of the particular plan that

has failed.

Grammar rule DI describes debugging as a two-stage process in which first the cause of

the bug(s) (if any are discovered) is determined, and then the culpable code is either edited or

redefined.

Di: DEBUG -> ((DIAGNOSE) + (FIX))*

D2: DIAGNOSE -> (DESKCHECK I TRYOUT I LOCALIZE)*

D2 states three strategies for diagnosing the problem.8 When the student prints out the

developing program and then does not return to the computer for a period of time much longer

than the usual intervals between typing, it may be reasonablItinfer that a "desk checking" episode

has occurred. D3 describes this behavior.

Problem Solving Grammars 17 Miller & Goldstein

D3: DESKCHECK -> (PRINTOUT) + <LONG-LATENCY>

D4 specifies certain common strategies that are used to localize a bug.

D4: LOCALIZE -> TRACE I PRINTOUT 1 ADD-PAUSE I ADD-PRINT

The occurrence of any of these is easy to detect; however, this level of analysis is too coarse to

provide much insight into the underlying reasoning. [Miller & Goldstein 1976c) and [Goldstein &

Miller 1976b] provide a deeper and more detailed theory of localization, in which evidence from the

plan and problem supplement the traditional rtamination of code (PRINTOUT) and process

(TRACE, ADD-PAUSE, ADD-PRINT).

Fixing a program can be accomplished either by editing the existing code or by writing

new code. The latter is described as recursively entering the grammar and solving for a program

that can replace the culpable code entirely.

editor.

DS: FIX -> 'EDIT 1 SOLVE

D6, D7, and D8 terminate the debugging grammar in calls to the programming language

D6: EDIT

D7: ADD

D8: DELETE

-> [ADD I DELETE I*

-> <EDIT-EVENT>

-> <EDIT-EVENT>

Of course, the grammar is incomplete, not only with respect to the procedural knowledge

necessary to apply it, either analytically to parse protocols or synthetically to predict a student's

behavior; but also with respect to the set of possible plans and debugging strategies. Moreover, the

grammar is both too weak and too powerful: while it fails to account for some aspects of the

problem solving process which are not dealt with in this paper, it also fails to rule out some

derivations which we find implausible. However, the grammar is adequate to analyze the structure

of the protocol presented in the next sections.

18

Problem Solving Grammars 18 Miller & Goldstein

4. Structural Protocol Analysis

In assessing the validity of the program to describe or explain the iubject's

beNavior, two things are missing to which psychologists have become accustomed. First,

there is no acceptable way to quantify the degree of correspondence between the trace of

the program and the protocol. This is not a problem of making the inference definite or

public. Trace and protocol can be laid side by side... However, a comparison still must

be made between an elaborate output statement and a free linguistic utterance. Although

a human can assess each instance qualitatively, there are no available techniques for

quantifying the comparison, or summarizing the results of a large set of comparisons.

Second, the program has been created partly with the subject's protocol in view.,

Thus, something analogous to the cakulation of degrees of freedom used in fitting curves

with free parameters fo data is appropriate. But programs are not parameterized in any

simple way and no analytic framework yet Exists for allowing for degrees of freedom.

[Newell, On the Analysis of Human Problem Solving Protocols, 1966, pp. 3-4.]

The problem solving grammar can be utilized to analyze a protocol of a student
designing, testing and debugging an elementary program. The analysis consists of constructing a

parse tree: a structural description of the behavior corresponding to the application of appropriate

grammatical rules. The parse represents a possible explanation of one aspee9 of the process by
which the student constructed his program. This hypothesis requires far more study than is
provided in this essay. Elaborations are required along at least two dimensions. Additional
theoretical assumptions are necessary in order to construct a predictive model of an individual's
problem solving, in terms of when -- and in what fashion -- particular plans will be applied.

Furthermore, the procedural knowledgg employed informally to guide the parsing process must be

formalized in order to automate it. Nevertheless, parsing protocols by hand with the simplified

grammar presented here is a necessary starting point for a more detailed computational theory of

problem solving.

Our objective, a computational model of cognition, and our methodology, the analysis of

human problem solving protocols, are both closely akin to those of NeWell and Simon and their

colleagues at Carnegie Mellon University. (See, for example, [Newell & Simon, 19721) The major

differences are two: (1) our use of a grammar rather than'a production system reflects a view of

problem solving as being more hierarchical than is typical for production models (though of course

19

N

e Problem Solving Grammars 19 Miller & Goldstein

production systems can model a context free grammar); (2) while there have been careful analyses

of specific problem domains such as logic and cryptarithmetic, we know of no comparable

production models for planning or deLugging.1°

The protocol we shall examine is of a student named Greg designing a program to draw

his name. a typical introductory Logo project.11 The protocol was obtained, and is presented, with

the student's permission. Greg was a high school freshman with four previous Logo sessions, each

approximately ninety minutes in length. It should be mentioned that the investigation of the

student's planning and debugging was not unobtrusive. He wa:, being taught many of the strategies

discussed in this document.

(Figures 5) shows an initial abridged segment of the protocol, in which Greg is writing

a subprocedure to draw the letter G. The several hundred !Ines of the total protocol, indeed even

the far fewer events shown in the G protocol, are by themselves virtually incomprehensible.

(Figures 6) presents a parsed version of the G protocol which we believe' to be a far more

comprehensible description. This description was generated by hand, but using relatively clearcut

guidelines described in the next section.12

Let us consider what aspects of the student's problem solving behavior the parse reveals:

1. The parse indicatis the kind of plan Greg applied to the problem. For the G, Greg

used a sequential plan. Later we examine Greg's protocol for the R and infer that he

applied a combination of evolutionary and anticipatory planning strategies.

2. For the particular kind of plan, the parse indicates the subgoal structure Greg chose.

Without evidente from the protocol, a human programmer or an automatic program

understanding system might expect a subgoal structure for a C of the kind shown in

(Figure 7). But the structure of Greg's debugged G program illustrated in (Figure 8)

shows another decomposition. If one takes advantage of the protocol clues indicating
s.

where Greg paused in defining the C program to do various diagnoses and repair,

then a decomposition even more in keeping with how he dealt with the problem

becomes apparent. (Figure 9) shows the modular structure of the program based on

the full protocol. This parse for the finished program is called the "collapsed plan"

and is arrived at in an algorithmic way by a simple pruning procedure on the

Problem Solving Grammars

,

tr

(

20

v

Unparsed GREG Protocol, Part'One

E0100 TO G

E0101 >10 PU

E0102 >10 FO 20

E0103)61T 90

(0105 >CS

E0106)20 RT 90

E0110 >30 FO 20

E0111 >PO

E0112 TO G

E0113 10 FORWARD 20

E0114 20 RIGHT 90

EOM 30 FORWARD 20

E0116 END

E0117 >40 RT 90

E0118 >50 PU

E0120 >60 TO 20

E0121 >70 PD

E0122 >80 FD 20

E0123 >90 RT 90

E0125 >100 FO 20

E0127 >110 RT 00

E0128 >120 Ft) 20

E0129 >END

E0130 G DEFINED

E0131 try

E0133 ?CS

E0149 ?EOIT G

E0150 >130 RT 90

(0151 >140 PU

E0152 >150 FD 10

E0153 >160 PO

E01S4 >170 FO 10

E0155)END

E0156 G DEFINED

E0157 ?G

E0168 ?EDIT G

E0169 >180 HIDETURTLE

E0170 >END

E0171 G DEFINED

£0172 7CS

E0173 7G

[Figure 51

I)ti

Miller CI Goldstein

Problem Solving Grammars 21

Parsed GREG Protocol, Part One

EOICO TO G punct

(0101 >10 PU -add- - -plan -- -solve - -step-, (buggy setup)

(0102 >10 -del- -, -debug -I

F0 20 --add--0--step --ID ----main----

E0103 >RT 90 ---1
1

(0105 >C5 ------- step-- -----setup -------- seal- -pp-0

E0106 >20 RT 90 --1

(0110 >30 'PO 20 -add -4, --step --. --mein--------I

E0111 >PO

E0112 TO 3

E0113 10 FORWARD 20 - desk

(0114 20 RIGHT 90 --- --diagnose

(0115 30 F!!!!!!!..20:jcheck

E0116 (ND

E0117 >40 RT 90

E0118 >50 PU ----

10120 >60 FO ZO -6-step-6-setup

(0121 >70 PD '
(0122 >80 FD 20 -edd ...1 -step --main ---

(0123 >90 RT 90 -add-. -step - -setup --, -sell - -9P- -Plan

(0125)100 FO 20 -odd - -step --maln--

10127 >110 RT 90 -add - -step -. -setup -

(0128 >120 FD 20 -0 -add - -step - -main

E0129 >END ----punct----J

E0130 G DEFINED

E0131 ?G -tryout - ---diegnose debug

debug

Plan

solve

-st 0
G-MS1

.

--1 main

step

Miller & Goldstein

solve seq. 9P

.--.-stee_._mein_ _elen-.-plen-,

IG-M52 for G

E0133 ?CS

E0149 ?EDIT G

E0150)130 RT 90 - (some details not shown)

(0151 >140 PU

E0152)150 FD 10 - -step - -setup -----1 . solve

(0153 >160 PD 1 . -seq -. -gp -. -Oen - --- -step -e-moin -

(0154)170 FD 10 -add - -step- -main- G -MS3_I

EOISS)(ND -puncti
E0156 G DEFINED

E0157 ?G -tryout -.-dlegnose- -----------debug

(0168 ?EDIT G ------punct------1

E0169)180 MIDETURTLE add --Itep ----cleanup
E0170 >END punct

E0171 G DEFINED

(0172 ?CS -1

E0173 ?G --0 ---tryout --- --diagnose debug

(Figure 6 }

22

)

plan

solve

far G

la

.

,

Problem Solving Grammars 22 Miller & Goldstein

Expected Sub-goal Structure for a G

Main Step #2

Jain Step #1

Main Step #5

Main Step #3

(Figure 7)

:2 3

Main Step #4

Problem Solving Grammars , 23 Miller & Goldstein,

Apparent Sub-goal Structure from Finished G Code

Main Step #1

Main Step #5

Main Step #2

Main Step #6

Main Step #4

(Figure 8]

Main Step #3

.4,

Problem Solving Grammars 24 Miller & Goldstein

A Segment of Protocol, and its "Collapsed" Plan

. The Segment of Protocol

£0100 TO G punct

£0101 >10 PU -add- - -plan-- -solve - -step-. (buggy setup)

E0102 >10 -del -debug-3

F8 20 --edd----stek------moin----4,

£0103 >RT 90
I

£0105 JCS- shtup--------.-seq-e-gp.... plan

£8106)20 RT 90 -I

£0110 >30 FO 20 -add- --step--, --mai solve

IG-MS1

main

£0115_30 FORWARD 20 - check step
£0116 END

£0117 >40 RT 90

£0116 >50 PU ---:1

£0120 >60 FD 20 - -step - -seotup

(8121 >70 PD

E0122 >60 FD 20 -edd -step --main

(0f23 >90 RT 90 -add - -step -setup 0 -seq - -9p- -plan

E0125 >100 FD 20 -add-, -step--main

/0127)110 RT 90 -add- -step -0 -setup - solve. seq. gp

(0126 >120 40 20 - -add - -step --main -- -step -0-mein- -plan - -plan

£0131 15 -tryout -* ---diagnose debug

E0130 G DEFINED

-M32 for G

plan

£0129 >END ----punct

E011 >PO

E011 '06
£0113 10 FORWARD 20 - desk

(0114 20 RiGHT 90 --- debug--diagnose

Figure 9a

Most Probable Actual Sub-goal Structure Using Protocol Clues

TO G

10 FD Z0 Main Step ---Seq. Plan for G-MS1-1
20 RT 90 --Setup Step -Main Step

30 FD 20 Main Step i Seq. Plan

40 RT 90 --Situp Step For G:

50 PU Setup Step---1 -Setup Step G-MS1 -Main Step-

60 FO 20 --MainSteg- --mein Step) Sequential Plan

70 PO Cleanup Step -I For GREG: G

60 FO 20 Main Step
90 RT 90 Setup Step -Maio Step

100 FO 20 Main Step Seq. Plan

110 RT 90 Setup Step For G:

120 FD 20 Main Step G -MS2

Figure 9b

25

Probiext Solving Grammars 25

complete parse as follows:,

7

:

Miller & Gialftstein

All events in the protocol that are not part of the final program definition

are deleted. Then all nonterminals that become singleton'nodes in the

abridged parie tree are recursively eliminated. Thus only ndnterminals of.

the planning grammar involved in an explanation of the final program

remain. Debugging operations are deleted since either the events that they

point to have been abridged andare not part of the finished program, or,'

due to previous deletions, the debugging operations have become singleton

nonterminal nodes.

Did Greg view the lem in exactly this waye Probably not in every

detail. But.the parse owsus as psychologists or teachers to begin a deeper study of

Greg's problem solving with the evidence of the protocol clearly delineated. In future

work, we envision interviewing and careful observation to understand more' precisely

the correspondence between the parse and the student's perception of his own

problem solving.

S. Examination of this and other parsed protocols for Greg re veals the existence of

certain diches (Solomon 1976) in, his problem solving. By a cliche, we mean a repeated

piece of sub-structure called forth by certain- circumstances, regardless of its

appropriateness: For example, Greg had ,a clear tendency to begin every procedure

with a PENUP (as in Event l01). In terms of grammar, we would say that for

Sequential Plans, whose grammar rule is;

P5: SEQ-PLAN -> t (SETUP) + MAINSTEP + (CLEANUP) I

Greg did not treat the initial setup as optional. Rather, his plans seemed to reflect a

. modified rule

P5': SEQ-PLAN -) I SETUP + MAINSTEP + (CLEANUP)]*

Another cliche present in this parse whose frequency was apparent in

examining other protocols was Greg's tendency to use the CLEARSCREEN command

as a t:Ansition from planning to debugging. This is not required, when the
debugging involves simply changing a definition. But whenever the bug involved

269

- .

a

4

Problem Solving Grammars

tit

26 Miller & Goldstein

an unwanted line on The screen, Greg cleared the screen before correcting the
definition.

4 The parse reveals how often Greg needed to debug particular kinds of plans. Greg,

for example, had more difficulty with domain dependent plans (such as piecewise

!!near approximation of a circle) than general principle plans (such as sequential or

round plans in general).

S. An examination of this and other parsed protocols reveals which planning methods

Greg was familiar with and Ihkh he never used. While sequential and round plans

were in Greg's repertoire of problem solving techniques at this point in his education,

a simplified kind of interrupt plan, in which the solutiouto one sub-problem is made

state transparent and then inserted in the midst of another, never occurred.

We do not claim that an insightful teacher carefully examining Greg's problem
solving behavior could not reach stogar condusiobs. Indeed, if our formal analysis is useul, it

should provide similar observations to those of 2 tutor. The More formal grammatical approach

has the virtue of (a) making explicit the problem solving knowledge that the teacher may only

know intuitively, thereby fadlitating_more uniform and articulate analyses13 and (b) moving us

closer to the capability for automating protocol analysis, thereby freeing teacher time for
interaction with the itudent. _ .

Lit us look more closely at the possibility of modelling the problem solving knowledge

er the individual with reference to a formal grammatical theory of platuting and debugging.

The grammar we presented earlier in the p:.per was an "expert grammar" m the sense that No

incorrect or incomplete plans were present. Let s call this the archetype: grammar. Our
perspective on modelling is based on perturbing is archetype to reflect the knowledge of- a

iarticular student. A personal grammar could be constructed from the archetype using the

following guidelines:

1. Ignorance of certain strategies, as evidenced by their continual non-appearance in

parses (even for situations-wherein the strategy is deemed highly applicable), would

result in deleting those strategies from the disjunctive rule in which they appear.

Thus, for Greg, at this point in hii education, he is apparently unaware of plans

involving full recursion. Hence, the rule for GP-PLANS need not include this

4

Problem Solving Grammars 27 11.0 » & Goldstein

2. A tendency to always err by including an optional constituent such as an initial Setup,

even where unnecessary, cAn be modelled by moaifying the grammatical rule in which

this constituent appears so that it is no longer optional. Greg, for example, had a

tendency to always include a PENUP command as a setup in his sequential plans.

S. Similarly, the complementary tendency to never include, an optional constituent can be

modelled by deleting the constituent from its rule. Most beginners when they first

learn recursion in Logo do not bother with the STOP-STEP. (The graphic picture

produced is one in v:hich the turtle moves endlessly around some figure.)

The validity of a given perturbed grammar as a model of an individual can be judged

by its relative simplicity, and tested by me extent to which it successfully parses protocols produced

by the individual. Of course, a student learns and we expect the grammar model for the individual

to change over time. But over the short term there will be a certain constancy. Over the long term.

(the changes in the grammar constitute a model of the knowledge being learned by the student. .

In this paper, we do not explore further the construction of personal grammars as

individual cognitive models. Instead, the next section explains how we arrived at the parse for

Greg's protocol. This begins a process that we hope will put us in a position to explore further the

construction of these personal grammars. If ultimately successful, we will have constructed a

formalism for describing and analysing individual cognitive differences:' an important step beyond

the statistical nctiun of educational evaluation that Is now prevalent.

28

Problem Solving Grammars 28 Miller & Goldstein

5. Anal Us a tLi for Drawini a G

This section begins the discussion of how we arrived at the parse of Greg's protocol.

Here we analyze thefirst part of the protocol in which he constructs a program for drawing the.G.

In the next section, we examine an evolutionary sequence for achieving the R.

In deriving the parse, we applied the following ci Pfa:

1. The grammar constrains the possible parses. Indeed, the grammar is already
personalized somewhat in that we did not include ir. the planning rules a number of

plans unfamiliar to Greg, such as full recursion.

2. Which plan is being used is determined by bottom up evidence related to the control

structure round plans involve iteration or tail recursion; sequential plans involve in-

line coding or sequences of subroutines.

3. As teachers we had already acquired some insight into Greg's typical cliches bi the time

this fourth session was analyzed; we preferred parses consistent with our previous

generalizations to alternatives which would have required addMonal assumptions.

4. As programmers, we had some expectations about how a project such as.drawing a G

would be accomplished. °These expectations had to be supported by the code, but

they nevertheless directed our attention to consider certain parses before others.

A standard issue in parsing is whether to work from the top downward, or from the
terminal units upward. An automatic protocol analyzer for dynamic use in tutoring would be
further constrained to proceed in left to right order (i.e., forward in time) as well. Backing up could

result in inappropriate tutorial commentary, or missed opportunities for providing assistance. The

presentation here is not systematic with respect to either dimension. There are clear cases where

lookahead could not be avoided; some of these are pointed out. Our goal here is to argue for the

viability of our theory as the basis for further research. We intend to implement The associated

parsing programs, thereby resolving some of these issues.

29

Problem Solving Grammars 29 Miller & Goldstein

The parse represents our interpretatior, that Greg's top level approach to generating a

GREG procedure was 2 Sequential Plan. Recall that our definition of a Sequential Plan is one in

which the problem as divided into subgoals, each solved independently and then recombined in

sequential order. In this case, the problem of drawing the word GREG was divided into the

independent subgoals of achieving each of the letteri. The recombination to accomplish the overall

goal was done via the usual sequencing of text in left-to-right order.

Note that there is a choice in the application of Sequential Plans. The top level
procedure could be defined, followed by the recursive expansion of lower levels; this amounts to a

breadth first analysis. Greg pursued the alternative depth first strategy, taking the first main step

and immediately expanding that. Thus, his initial goal was to define the "G's program. The
superprocedure for the entire name is not constructed until the latter half of the session. (This is a

decision which must be made by the problem solver which is not apparent in the grammar rules. A

theme of our current research is to refine the formalism so that all such decision points become

explicit.)

The G was also accomplished by a Sequential Plan. Events E0100 through E0110

constitute the first episode, which is the definition of a code segment for the initial part of the letter

G. See {Figure 10}.

E0100 TO G

E0101 >10 PU

E0102 >10 FD 20

E0103 >RT 90

E010S >CS

E0106 >20 RT 90

E0110 >30 FD 20

Event £0101 Is a PENUP. Such instructions at the beginning of a procedure usually

signify a Setup Step in which the turtle is being moved to the, initial position for the first Main

Step. But since the turtle is already at the initial position for 0, the PENUP is unnecessary. Event

£0102 indicates that the student has recognized this and corrected it by typing another Logo line

with the same line number. This has the effect of deleting the PENUP of E0101. An alternative

interpretation is that the student is designing a position Setup and that E0101 and E0102 were
intended to have distinct line numbers. But this interpretation is less probable, since, in fact, the G

Problem Solving Grammars 30 Miller fo' Goldstein

To Draw a C. Nersion 1

(dotted lines show future additions}'

(Figure 101

31

Problem Solving Grammars 31 Miller & Goldstein

does not require such a preparatory step.

(0100 TO 6 ---------punct
1-014-1--)tePO--es14-----p-tenemtalvests7 (buggy setup)

E0102 >10 debug
FO 20 add--step Me n---

Events E0103 through E0106 are another subgrouping, in which an attempt to type in a

Setup Step for the second stroke of the G fails. The bug is the omission of line number 20 in
E0103. This error is so frequent that it will not be mentioned again in the analysis. Event E0105 is

interesting in that it represents a common recovery behavior -- the screen is invariably cleared [CS]

after errors -- thus it can serve as a useful clue for an automated parser.

(0103 >RT 90
E0105 step -------setup-------
E0100)20 RT 90 I

Event E0106 corrects Event E0103 by typing the line over'with the line number.

Events E0111 through E0116 were a printout of the partly defined procedure. In the

parsed figure, they are interpreted as an instance of desk checking the partially completed code.

Such debugging events segment the protocol that;at an intermediate level of the parse tree is a

Sequential Plan for the G whose Main Steps (e.g., G-MSI m the figure) are "chunks" rather than

single vectors; each is in turn expanded by a Sequential Plan whose Main Steps are individual

vectors.

.4"

32

Problem Solving Grammars 32 Miller fe Goldstein

E0100 TO G --------punct

E0101 >10 PU add plan-- solve step. 1 (buggy setup)
15142 >10 del debugI

FO 20 addo--step--*--moin---
(0103)RT 90

(0106)CS -- step -- setu

1.0140 >20 AT 90
164 9P Plan

1

E0110 >30 FD 20 add-4 --step--4, solve
10111)P0 --- step
(0112 TO 6 16NS1
E0113 10 FORWARD 20 -: desk

(0114 20 RIGHT 90 --- . --diagnose -- ebug----1 main
Z0113 30 FORWARD 20 check step
E0114 END

Of course, it is not possible to be absolutely certain that the student's overt behavior is an

accurate reflection of his covert thought processes. The annotation is an educated guess based upon

certain empirical evidence. For example: how 'can the interpretation of a PRINTOUT [PO) as a

debugging event, rather than as punctuation, be justified? Sometimes the student explains his

intention when printing out the code, and there is no reason to disbelieve him. Sometimes the PO

is followed by testing and then editing, thereby increasing the likelihood that the PO was the desk

checking part of a debugging episode. Them are occasions when a different' interpretation of PO

is preferable, however, such as when the student performs PO ALL and then goes home for the

day. Since alternative interpretations do not seem appropriate here, and since the interpretation

given results in an expected division of the protocol into planning and then debugging sequences,

the desk checking explanation is accepted. The absence of further testing and patching can be

accounted for by assuming that the desk check concluded that the procedure was correct so far.

For brevity, the next part of the protocol (E0117 to EOM) is not presented in detail. Greg

continued defining the G procedure. The episode is still within the context of a Sequential Plan.

We resume the discussion at Event E0131, a Tryout of the G program.

E0131 ?G

E0133 ?CS

(See (Figure 11).)

E0131 is successful in drawing the first five visible vectors of the G. Event E0133, a

33

Problem Solving Grammars 33 Miller & Goldstein

To Draw a C, version 2

(As of E0131)

{Figure

34

Problem Solving Grammars 34 Miller & Goldstein

CLEARSOREEN (CS], is a frequent signal to expect a mode change. Emution of a CS which
serves no preparatory function (as is the case here, since a clear screen Is not a pre-requisite for
defining procedures), and which does not eradicate an error, provides strong evidence that a
segment boundary may exist at this point in the protocol. Here, it flags the end of testing and the
commencement of planning the next step. (Events E0134 through,E0148, deleted, were a
PRINTOUT of the G procedure as currently defined.)

The next episode (E0149 - E0156) is the addition of code preparing for and accomplishing
the last Main Step of the G.

E0149 ?EDIT G

E0150 >130 RT 90

E0151 >140 PU

E0152 i150 FD 10

E0153 >160 PD

E0154 >170 FD 10

E0155 >END

E0156 G DEFINED

E0157 ?G (See (Figure 1 2).)

All of the Main Steps of G have now been defined. Greg verifies this by executing the program
(E0157).

E0133 ?CS

E0149 ?EDIT G

>130 RT 90 - (some details not shown)
E0151 >140 PU

E0152 >150 FD 10 - -step -setup solve
E0153 >160 PO -sag-I.-pp-40 -step-a-mein.
E0154 >170 FO 10 -add-e-step-e-mein-J 6-RS3
E0155 >ENO -punct

E0156 6 DEFINED

F0157 '6 -tryout - -diegnoae -*--debug

The final part of a Sequential Plan is the design of an optional Cleanup Step. In this
case, tK turtle is still appearing on the screen. A Cleanup Step is defined to eliminate this.

35

Problem Solving Grammars 35

To Draw a C. version 3

(As of E0157)

Miller ti Goldstein

(Figure 12

36

Problem Solving Grommrs 36 Miller & Goldstein

E0168 ?EDIT G

E0169 >180 HIDETURTLE

E0170 AND

E0171 G DEFINED

A final Tryout, signalled by the CLEARSCREEN of E0172, is done to verify that the G procedure
is satisfactory.

E0172 ?CS

E0173 ?G (See ;sure 13).)

G now satisfies its specifications, and Greg resumes the higher level Sequential Plan

currently in effect for accomplishing his entire name. (The SHOWTURTLE command of E0174 is

further evidence of this segment boundary.) The next Main Step in this plan is to design the R

program.

[0166 ?EDIT 6 ------punct------1

[0169 >160 NIDETURTLE ---add---.--step--4------clienu

E0170 >END punct

E0171 6 DEFINED

EOM ?CS 1
10173 76 ..---tryout---.--diagnose--41

0

3;

debut

Problem Solving Grammars 37

To Draw a C, finished

(E0173)

Miller & Gold ftein

...

1

(Figure 13

.7

38
,

n

Problem Solving Grammars 38 Miller & Goldstein

6. Analysis of an Evolutionary Sequence for Drawing an R

, -

(Figure P4) shows the segment of protocol during which Greg is constructing his R
program. (Figure 15) shows the parsed version. The interesting part of this protocol involves

Greg's exploration of a CIRCLE program. He requires a semi -circle for the R. Previously he had
'' been exposed to the standard program for drawing circles in Logo. His behavior involves

experimenting with that program, modifying it until it serves his purpose in the R. We do not show .

all of that here. The parse does show, hotvev,er, an Anticipatory Plan in which the fulfzircle
procedure is examined, in expectation of its use in the R semicircle. The fine structure of Greg's

experimentation is evolutionary, involving successive modifications of the circle.

We now begin a detailed analysis of how the parse of the R session was derived...

Event E0174 commences the definition of the Main Step for R in the GREG plan.

E0174 ?SHOWTURTLE

E0176 ?TO R

E0177 >10 PU

E0178 >20 PD 10

0

!Figure 161 shows what would be drawn by the first two lines of the R procedure, in relation to the

R as eventually completed.

.
. .

Very careful analysis is required in parsing student protocols. Events £0177 and E0178

provide a good example of the subtleties which can be involved. The PENUP of E0177 would

normally indicate preparation for a position Setup. But the relation of the FD 10 in £0178 to the

finished R implies that it is intended to draw a visible first part of the R, not merely an Invisible

position Setup for the second part. It is possible but unlikely that Greg intends this.as a Setup and

Plans to redraw the' vector with the pen down later. Greg's predilection for ordered Sequential,

Plans, in which the first part to be executed is coded first, alsO argues that the FD 10 (Event E0176)

is intended to draw a visible vector. Consequently the preceding PENUP of £0177 is interpreted as

a bug.

9

,

Problem Solving Grammars 39 Miller fa' Goldstein

it...

..

Unparsed aREC Protocol, Part Two

E0174 7SHOWP2RTLE

E0176 7T0 R,

E0177 >10 PU

E0178 >20 FD 10

E0179 >30 CS

E0183)30

E4164 >G

E0199 >CS

E0202 >SHOwTURTLE

E02.03 >G

E0204 >END

(0205 R DEFINED

E0233 7CS

E0234 7SMOMTURTLE

E0236 7T0 CIRCLE

E0237 >10 FO 1

E0242 >20 RT 1

E0245 >30 CIRCLE

(0246 >CIRCLE

E0248 ,END

E0249 CIRCLE DEFINED

E0263 7T0 CIRCLE2

E0284 N10 FO .5

E0290 >20 RT .5

E0291 >30 CIRCLE2

E4292 >CS

E0293 ?END

E0294 CIRCLE2 DEFINED

E0295 7CIRCLE2

E0298 7T0 CIRCLE3 :FO, :WI

E0299 >10 FO :F0

E0300 >20 RT :RT

E0302 >30 CIRCLE3 :FO :RT

E0303 >END

E0304 CIRCLE3 DEFINED

E0307 7CS

(0312 7CIRCLE3 1 1

E0314 7CIRCLE3 1 2

E0320 7CIRCLE3 3 1

(Figure .14 }

40 ,

I

r

-
tos

Problems Solving 07rasmuirs

£0174

(017f,

E4171

E0176

(0179

£0163

(0164

E0199

(0202

£0201

£0204

(0205

£0233

£0214

E0236

£0237

E0242

E0245

(0246

rpm
£0249

(0263

(0284

E0290

(0291

(0292

(0293

(0294

[0295

(0296

(0299

E0300

(0302

E0303

E0304

(0307

E0312

(0314

(0320

40 Miller & Golds tin

Parsed GREG Protocol, Part Twt.

7SNOWTURTLE -IpunCt
tTO t -punct -- -step -4, (buggy setup)
)10 PU -*add -I

I SaCI

>30 C$ add- - - -owl ----. --solve
--. --step-- --(buggy

1

720 FO 10 addestep----- -Tel n3I,op .

'>20 del- - - -fix - -debug --)
cleanup) '>6

,,

>CS
-tryout -(includes CS of E0179)

diagnose4 ----debug ---1>SNOWTURTLE -
>6

>ENO (punct -- part of step in (0179)
(R-IttvS:)R'OEFINE0

TCS ----punct
steptSNOWTURTLE -1

fttTO CIRCLE -1 use

mainstep I>1Q. FO 1 -----ans
lib --1, -dd -4, -plan- -solye - -step

>20 RT 1 ---I

>30 CIRCLE -1
debug I

seq(join) : exp solve main plan>CIRCLE tryout
an -plan - --40 -step--z-- -for R>ENO -----punct (transposed)

(R -M32) stepCIRCLE DEFINED
solve7T0 CIRCLE2

>10 FO .5 -:1

)20 RT .5 --*--evo plan -- -plan-. -solve-. -step
>30 CIRCLE/ -' debug I

I
plan>Cf --- (trans). . punct

AN: ounct- -
'antic. planCIRCLE2 evimEo ---tryout exp

7CIRCLE2

7T0 CIRCLE3 :FD :RT

,)10 FO

>20 RT :RT

>30 CIRCLE3 :F0 :RT- -1

>ENO ------punct----- -
CIRCLE3 OEFINED

7CIRCLE3 1 1 = trympt
?CIRCLE3 1 2

?C!RCLE3 3 1 -I

(join)

gen plan

plan-0--- -an--sOlve

plan I

debug

(join)

step

I exp

solve

antic. plan

ingure15

41

. -
Problem Solving Grammars 41 Mil lir & Goldiftetn

To' Draw' an R: version 1

i (dotted lines show future additions)

1,

./

/ 0

r

.

{Figure .16 1

42

\

...

.1

Problem Solving Grammar: 42 Miller & Goldstein

10174 PSHOWTURTLE 1punct

10176 PTO R (buggy setup)

10170)20 FD 10

10177 >10 IN add '
Is"

add --- ---ste0 ---

This is the acme bug which was noticed in first defining the G (E010I-E0102). Moreover, it
..sp:obably had the same origin: the PENUP command was a imitate, Setup; Itrpreparation for

achieving a position Setup which, in fact was not required. There is no explicitly manifested
cfebygging sequence following the definition of part one of the R; hence it is not surprising that
Greg has failed to detect the problem.

he next event is a CLEARSCREEN, which may appear to be an anomaly.

E0179 >30 CS

Why include a CLEARSCREEN at this point in the definition, as its effect will be to undo
previously accomplished subgoals? What probably happened is that the line number was typed,

followed by several minutes of off-line planning by Greg. If so, a breakdown of the elapsed time

for the type-in, which was not collected, would have provided an additional clue.

Subsequent events suggest the hypothesis that £0179 was not.intended to add a CS to the

procedure, but to execute a CS directly (as in fact occurs in Event E0199). Event E0183 undoes the

previous type-in.

E0183 >30

EOlt4 >G

E0199 >CS

£0202 >SHOWTURTLE

E0203 >G

E0204 >END

E0205 R DEFINED

Events £0184 through £020314 are interpreted as part of a Tryout for R (R -MSI), in that they serve

to check the initial state for R b'y observing where G leaves the turtle. Ace .rding to this view, the

CS part of E0179 should be included as part of '.,te Tryout episode, but the line number (30) part

should be included as part of a (buggy) Cleanup episode. Since the debugging event for the

43

410
Problem Solving Grammars 43 Miller & Goldstein

Cleanup episode (E0183) intervenes, this analysis requires a transposition.

E0174 ?SHOWTURTLE ipunct

E0176 ?TO R punct -- step ------(buggy setup)

E0177 >10 PU
Iseq

>10-FD 10 add --- ---step ---,---mainstep
an

E0179 >30 CS add plan ---- --solve--6 --step --(buggy

E0163 >30 --del fix debug ' cleanup)

E0164 >G

E0199 >CS tryout (includes CS of E0179) ----4iegnose ----debug----I

E0202 >SNOWTURTLE I

E0203)G
E0204 >END (punct -- part of step. in E0179)

E0205 R DEFINED

At this point, Greg should br about to define the curved portion of the R (labelled R-

MS2). If he were pursuing his usual depth first Sequential strategy, he should SOLVE for this

Main Step now rather than simply leaving it as an undefined subprocedure and completing the

super-procedure for the R. But instead of defining R-MS2 or the rest of R, Greg constructs a

CIRCLE program! What is he doing?

E0233 ?CS

E0234 ?SNOWTURY12

E0236 ?TO CIRCLE

E0237 >10 FD 1

E0242 >20 RT 1

E0245 >30 CIRCLE

E0248 >END

EC249 CIRCLE DEFINED

We would maintain that Greg is applying an Anticipatory Plan at this point. An

Experiment is devised, which involves constructing a related procedure -- to draw circles -- and then

trying it out. He utilizes a Round Plan to accomplish his goal. This commences an evolutionary

sequence In which the knowledge acquired from successive auxiliary problems is later employed in

solving the original problem.

44

Proble&Solving Grammars 44 Miller & Goldstein

(0233 ?CS punct
(0234 7SHOWTURTLE-1

(0236 ?TO CIRCLE I use

(0237 >10 FO 14 --ans lib dd plan** solve step

1
(0242 >20 RT 1 ---I debug I

(0245 >30 CIRCLE 4 (Join) :

(0246)CIRCLE tryout

(0246)ENO.-----punet (transposed)

(0249 CIRCLE DEFINED

exp solve main

anrlanstep
(RMS2) step

solve

What is ultimately taken from the procedure is its Plan to draw arcs by means of
piecewise linear approximations. This adaptation of its Domain Dependent Plan is accomplished

by experimenting with successively modified versions of the CIRCLE procedure. As first typed in,

CIRCLE had spelling 'bugs, which are not presented here. After debugging, CIRCLE draws
(Figure 17 }.

The circle drawn is too large for the corresponding part of the R. The size of the circle is

adapted in a succession of new versions, a strategy which ensures that the existing circle will not be

harmed by the changes.

E0283 ?TO CIRCLE2

E0284 >10 FD . 5
E0290 >20 RT . 5
E0291 >30 CIRCLE2

E0292 >CS

E0293 >END

E0294 CIRCLE2 DEFINED

E0295 ?CIRCLE2

The Plan oi CIRCLE evolves int) that of CIRCLE2, but Greg's adaptation, based on an analogy

with standard uses of scale factors, has a theory bug. Scaling both the rotation and the movement

will not change the total size of the circle. Note that the Tryout events (such as E0295) are really

serving two purposes: the auxiliary procedure is being debugged to meet its own specifications, and

used as part of an Experiment prior to another Solve. Consequently these events appear as "Joins*

in the figure.

45

Problem Solving Grammars 43

To Circle, first attempt

(too big for an R)

Miller & Goldstein

(Figure 171

46

Problem Solving Grammars 46 Miller & Goldstein

£0283 ?TO CIRCLE2

£0284 >10 FO .5 --1

E0290 >20 RT ,,S ----evo plan--plansolve step

E0291 >30 C1RCLE2J debug I

£0292 >CS (trans) punct

£0293 >END punct .
J (antic. plan

£0294 CIRCLE2 DEFINED ---tryout exp
E0295 ?CiRCLE2 (join)

solve

An unfortunate fact about current Logo is that the interesting bugs are not always the
ones which are tackled by the student. Before manifesting the theory bug, Logo first manifested
several less enlightening bugs (which are not shown here) related to the use of fixed rather than
floating point arithmetic. If the computer learning environment were intelligent enough to
recognize such situations, it could increase the frequency with which pedagogically valuable bugs

were encountered. Here, for example, an intelligent tutoring module could interject queries about
the predicted effects of doubling the sale factor, perhaps leading to an example which would
illustrate the basic theory misunderstanding, but avoid the idiosyncrasies of Logo arithmetic
conventions The human tutor, in this case, allowed events to take their course.

The production of the semi-circle program (R -MS2) by successively modifying the circle

(not all of the versions of which are shown here) is prototypical of our notion of an "evolutionary
sequence," involving a tight interaction between Anticipatory and Evolutionary Plans. Each
version was written, not for its own intrinsic interest, but purely as an auxiliary problem
anticipating the further development. The generation of each version was accomplished by a Plan
which takes the previous version as a pattern for substitution or adaptation.

Insufficient knowledge of the domain brought Greg to arrimpasse. His expectations
about the modified circle were wrong. Before attempting to further debug the procedure, Greg
needed to debug his theory. In order to induce an alternative theory of circles, Greg wished to

experiment with a wider variety of inputs to FORWARD and RIGHT. Events E0298 to E0304
involve the definition of another auxiliary procedure as a subgoal of an Experiment type
Anticipatory Plan.

E0298 ?TO CIRCLE3 : FD :RT

E0299 >10 FD :FD

E0300 >20 RT :RT

E0302 >30 CIRCLE3 : FD : RT

4 7

Problem Solving Grammars

E0303 >END

E0304 CIRCLE3 DEFINED

47 Miller & Goldstein

The Experiment turns out to yield tangible results. In order to explore a wider range of

possible circle programs, the auxiliary procedure was constructed. The auxiliary procedure, which

was built as an experimental tool for the express purpose of "making it easier to try out different

Inputs to FD and RT," turned out to be the general case of the previous problem. Consequently.

the generation of this procedure was the appropriate next step in the evolutionary sequence.

E0298 1T0 CIRCLE3 :F0 :RT

(0299 >10 FD :FD

E0300 >20 RT :RT ---ev
(0302 >30 ,CIRCLE3 :FD :RTJ

E0303 >END unct

_EIMLCIRCLE3 pl4NED

antic. plan

gen plan

planinsel vs
plan j exp

debug

This was an exciting discovery-for Greg, an l'AHA experience." The feeling of elegance

apparent in this episode seems to arise from the fact that the reasoning process led to the generation

of a single procedure which simultIneously served two distinct purposes. In E0307 through E0322.

the Tryout phase of the Experiment proceeds smoo:hly. Not only is the routine appropriate for

testing the limiting cases of the domain primitives, it -suggests the patch for Greg's internal theory

bug.

E0307 ?CS

E0312 '7CIRCLE3 1 1-

E0314 ?CIRCLE3 1 2

E0316 ?CIRCLE3 2 2

E0318 ?CIRCLE3 1 3

The CIRCLES episode is a convenient place to conclude the analysis of this protocol. In

the subsequent episodes, the circle evolves into a general ARC program, which is used to draw the

semi-circle, which in turn is used to draw the R. An E procedure is written, and finally GREG itself

is written and debugged. (Figure 18) shows the debugged GREG as eventually completed.

Although the notion of protocol parsing developed here is primarily descriptive, some
A

simple testable predictions are provided. For example, one would expect that instances of Plans

which are initiated but whose goals have not been satisfied should be reactivated when the subplans

which they have invoked have terminated. In every case this simple prediction is borne out by the

more complete records of this session.

48

Problem Solving Grammars 48 s Miller & Goldstein

To GREG

(As Eventually Finished)

{Figure 18 I
V

49

o

/

1,

Problem Solving Grammars 49 Miller & Goldstein

7. Conclusion

The fundamental hypothesis of genetic epistemology is that there is a parallelism between

the progress made in the logical and rational organization of knowledge and the

corresponding formative psychological processes. Well, now, if that is our hypothesis,

what will be our field of study? Of course the most fruitful, most obvious field of study

would be reconstituting human history the history of human thinking in prehistoric

man. Unfortunately; we are not very well informed about the psychology of Neanderthal

man or about the psychology of Homo siniensis of Teilhard de Chardin., Since this field

of biogenesis is not available to us, we shall do as biologists do'and turn, to ontogenesis.

Nothing could be more accessible to study than the ontogenesis of these notions. There

are children all around us. It is with children that we have the best chance of studying

the development of logical knowledge, mathematical knowledge, physical knowledge, and

so forth.
miaget 1971)B,

Programs and protocols, !hie% by themselves have a very unclear structure, become easier

to understand when an hierarchical explanation is imposed. This explanation reveals the goal

f-- structure, plans, and bugs of the problem solving process. Such an explanation can be generated by

parsing the protocol with' a problem solving grammar. We believe that these explanations
represent. at least to some extent, decisions being made by the human problem solver. This belief is

supported partly by theoretical analyses of planning and debugging, and partly by a detailed
analysis of therotocol behavior. Further experimental work is necessary to provide clear evidence

for our grammatical approach as a theory of this aspect Of human problem solving.

The context-free form which the grammar assumed for parsing the example programs

and protocol was a technique for summarizing certain insights into the structure of planning and
debugging. Context free grammars, however, are limited and do not capture certain generalities.

An example of the formal inadequacy of cot :ext free grammar for our purposes is its inability to

specify parameters to plans: a rule that introduces a SOLVE recursively should express the fact

that its argument is a subproblem. Hence, the sort of structural protocol analysis provided by the

grammar needs to be supplemented by corresponding semantic and pragmatic annotation. The

semantic annotation would describe the particular problem; the pragmatic commentary would
describe why a particular planning strategy was chosen over other alternatives. This formalization

SO

Problem Solving Grammars 30 Miller & Goldstein
-1)

is undertaken in (Goldstein de Miikr 1976b1

The analysis procedure should-be at least partially automated, to improve the
practicability and objectivity of the enterprise. With a formalization of semantic and pragmatic

problem solving knowledge to supplement the basic grammar, this becomes possible. (Miller &

Goldstein 1976d) describes the design of an automated parser. When implemented, such a protocol

analysis system should be valuable as an experimental crucible for our theory of problem" solving.

v and as a module for incorporation into intelligent tutors .(Goldstein & Miller 1976a1 In the latter
case, the parsed protocol would constitute a database from which the tutor could abstract a

description of the student's problem solving strategies: those being successfully applied, as well as

those being ignored or applied incorrectly.

Finally, there is another way of testing the power of our problem solving grammar. This

is to4mbed it in an editor for defining and modifying programs. In such an environment, there is

no need to guess which planning rule is being applied by the programmer: the choice is made

'explicitly by the user. While this editor will not reveal by itself whether our theory is
psychologically valid, it will indicate whether an individual can be comfortable within the problem

solving confines dictated by the grammar. We have des.,:ned such an editor (Miller, &
Goldstein 1976c3 and plan to experiment with its utility as an assistant to a human problem solver.

The construction of computational models of human cognition is an ambitious
undertaking. An approach based on the use of concepts from computational linguistics --
grammmars, semantics, pragmatics, parsing appears to be profitable. To justify this statement,

the next phase of our research will involve a series of experiments in Al (is the theory sufficiefit to

support competent problem solving); in psychology (do protocols reveal the structure suggested by

the theory, can individuals be modelled by perturbed versions of the grammar); and in education

(does exposure to the theory improve an individual's problem solving competence).

51

---0-- p aj ga-- 11-. 1.Irlft --Ding _rtillinsdrs- 51 Miller & Goldstein

IL Notes

1. To be of any use, a Plan or problem decomposition strategy must include "recomposition"

information (i.e., advice on how the solutions to the subproblems are to be recombined to obtain a complete

solution to the original problem). Moreover, it should be stressed that we recognize other aspects to the

problem solving process besides planning. For example, certain coherent techniqbes for gathering

information are essential for "exploring the problem space." Similarly, methods for "debuggiitt! an 'almost -

right Plan" are essential for bringing a planning process to fruition. Without debugging techniques, the
_

resulting requirement that a Plan bring complete success would be far too restrictive. Debugging is

analysed in section 4, [Goldstein 1974], aswell as in [Goldstein & 1411er 1976b] and [Miller &

Goldstein 19764

2. We present an early version of the taxonomy and planning giumniar, reflecting the state of

our -mderstanding as of the original writing of this essay. In later papers we revise many.of the details.

Nevertheless, we adhere both to the appropriateness of a formalism. based upona grammatical analogy, and

to the approximate content of the rules. In short, we have not revised our primary hypothesis, that a

theory of this sort can account for a wide range of problem solving phenomena. The evolution of our

theory is further explained/in [Miller & Goldstein 19764\

3. Projects are the normal state of affairs in real-life problem solving, r ther than the

alternative paradigm of isolated problems suggested by the typical textbook.

0

4. This view of planning is a simplification. It asserts that the problem is analyzed in a top

down fashion. Of course, the problem solver can engage in exploration and experimentation; or can identify

a subgoal without having a clear understanding of the overall plan: The dynamics of exploration are not

formalized by this grammar.

S. Our use of a context free grammar for problem solving closely resembles D. Rumelhart's
,

[1975] work on story grammars. It should be interesting to see to what extent our respective theories,

designed to account for superficially very different phenomena, continue to develop in parallel.

a

Problem Solving Grammars
447

52 Miller & Goldstein

6. The rules of the grammar are written using the following syntax:

disjunction:. "a I b* is read as, "kor le.

conjunction: "a b" is read as, "a and h".

optionality: "(a)" is read as, "a is optional"

iteration: "<a)*" is read as, *a repeated one °remora times".

7. Some events which are treated as "punctuation" by these rules might be further analyzed as

part of a "secretarial process" which itself was described by a slight extension of the grammar. For

example, the TO and END punctuation might be classified as Setup and Cleanup steps in a Plan to define

the procedure. Additionally, thetitructure of the problem solver per st- and perhaps even the development

of the peoblem solver might be describable using such a grammar. Such generalizations would be
encouraging, but are merely speculation at this point.

8. Note that TRYOUT now occurs on the right hand side of two rules. It occurred in the
grammar rule P17 describing ar experiment as well as in this grathmar rule describing diagnosis. Hence,

the problem arises in analyzing a protocol in deciding which purpose a given tryout is intended to

accomplish -- an anticipatory experiment or a debugging test. The grammar is non-deterministic and does-

not decide this issue. Additional semantic and pragmatic constraints are necessary. For example, has a

program just been completed and is the tr9out an execution of this program. On the other hand, is the

tryout an' execution of a previously debugged program in some new etinexi. The former suggests diagnosis:

the latter experimentation. In generating the parse of sections 5 & 6, we apply this kind of criteria to

choose between alternative interpretations allowed by the grammar. Whenever this is done, we cite the

basis of our decision. In (Goldstein & Miller 1076b] some of these additional constraints are formalized.

9. Our hypothesis is that a full accounting for the problem solving process will involve at least
. -

these distinct aspects: structural, semantic, and pragmatic. We find, it kuitfut to think of the structural

component as a specification of the potential control paths in a procedural problem solving system. The

framework provided here addresses itself only to this structural component. The data flow and branching

conditions are not specified. (The extent to which it is possible to study a given component separately from

the others, as has been attempted here, is an empirical question.) The partial theory presented in this essay

-- one describing only the structural component -- can provide, at best, only a partial account: one which

is inherently nondetermininic. That is, while the theory imposes constraints on the allowable behaviors,
.

it is unable In principle to predict precisely what the student will do next. This is entirely analogous to

, the constraints on natural language utterances imposed by the syntactic component of a generative grammar
Nir .

in modern linguistic theory. &

1

53

.

I

le%

e

re

o

Problem Solving Grammars

,

53 Miller Crt-toldstein

10. A more detailed comparison of production systems to our own approach, as applied to

automatic protocol analysis, is undertaken -in [Miller & Goldstein 1976d].
r , 3,

11. The protocol is data !rem en actual session with a single student, abridged only by deleting
. .

lines which were not essential for analyzing the underlying problem solving behavior. Typically these

deletions involved the use of the BREAK character to delete a mistyped line, lengthy PRINTOUTS of

procedures, system errors, and less interesting @pimples involving spelling mistakes and the like. The

complete, unmodified version of this. file; as well as several similar files, are available from the authors in

machine readable form. Omissions are indicated by gaps in the Event numbering (left most, beginning

with WE'').

12. We have tolerated a few instances of two minor deviations from a strict context free

derivation. When a single event seemed to serve twio distinct purposes (such as both deleting a previous line

of code; and adding a new one), we have allowed "wins," which are analogous to copying an event so that it

appears twice in the parse tree. When an event seemed to be out of order with respect to episode grouping

(such as an END which comes after the defined procedure, has been tried out), we have allowed

'transpositions," which are shown as crossed lines in the diagram. Both of these violations-could be avoided

-.by slightly altering the grammar. however, it. would be more parsinionious to assume a simple

transformational component.. In. order "to improve the page layout, we have Suppressed some low level

details. In all other respects, the figures represent a correct derivation in our grammar. r

13. One way to experiment with the nature of the analyses generated by the grammar is to

define a set of summarization rules. These rules take a parsed protocol and generate a summary. This

validation technique (e.g., does the summary seem reasonable to an unbiased human teacher?) is modelled

upon Rumelhart's use of the technique for. testing his grammatical theory of stories. We have already semen

one example of summarisation, namely, generating a collapsed plan of the final program. Other kinds of

summarization rules might accept a parse as input, and return as output a list of the plan-types or

diagnostic strategies which were employed.

14. The deleted lines here were due a minor hardware failure: intermittent printing errors local

to the computer terminal.

54

a ,.

Problem Solving Grammars 54 Miller & Goldstein
,

\..
tChomsky 1957j

Chomaky, Nosin,'Syntactic Structures, The Netherlands, Mouton (Eighth printing, 1969), 1957.

9. References

[Goldstein 1974]

Goldstein, Ira ' , Understanding Simple Picture Programs, Massachusetts Institute of Technology,

Artificial Ice iiiz .:e Laboratory, Technical Report 294, September 1974.

[Goldstein i>j Miler 1976a]

Goldstein, Ira P., and Mark L Miller, Al Based Personal Learning Environments: Directions for Long

Term Research, Massachusetts Institute of Technology, Artificial IntelLgence Laboratory, Memo 384

(Logo Memo 31), December 976a.

[Goldstein it Miller 19766]

Goldstein, Ira P., and Mark' L Miller, Structured Planning and Debugging: A Linguistic Theory of

Design, Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Memo 387 (Logo

Memo 34), December 1976b.

[Hewitt '1972]

Hewit4 Carl, Description , id Theoretical Analysis (Using Schemata) of PLANNER: A Language for

Proving Theorems and Manipulating Models in a Robot, Massachusetts Institute of Technology,

Artificial Intelligence Laboratory, Technical Report 258, April 1972.

[Miller et al. 1960]

Miller, George ,, Eugene Galanter and Karl H. Pribram, Plans and the Structure of Behavior, New

York, Holt, Rinihart, and Winston, 1960.
0

[Miller 1976]

Miller, Mark Li Cognitive and Pedagogical Considerations for a Tutorial LOCO Monitor: An
Investigation Into the Evolution of Procedural Knowledge (Master's Thesis), Massachusetts Institute

of Technology, Department of Electrical Engineering and Ccmpu_m Science, February, 1976.

55

a

Problem Solving Grammars 55 Miller & Goldstein

[Miller & Goldstein 1976a]

Miller, Mark L, and Ira P. Goldstein, Overview of a Linguistic Theory of Design, Massachusetts

Institute of Technology, Artificial Intelligence Laboratory, Memo 383 (Logo Memo 30), December 1976a.

[Miller & Goldstein 1976c]

Miller, Mark L, and Ira P. Goldstein, SPADE: A Grammar Based Editor for Planning and
Debugging Programs, Massachusetts Institute of Technology, Artificial Intelligence Laboratory,

Memo 386 (Logo Memo 33), December 1976c.

Miller & Goldstein 1976d]

Miller, Mark L., and Ira P. Goldstein, PAZATN: A Linguistic Appl'oach to Automatic Analysis of

Elementary Programming 7 9toco/s, Massachusetts Institute of Technology, Artificial Intelligence

Laboratory, Memo 388 (Logo Memo 35), December 1976d.

[Newell 1966]

Newell, Allen, On the Analysis of Human Problem Solving Protocols, Carnegie Institute of
Technology, paper for International Symposium on Mathematical and Computational Methods in the

Social Sciences, Rome, July 1966.

j_iewell 5 Simon 1972]

Newell, Allen, and Herbert Simon, Human Problem Solving, Englewood Cliffs, New Jersey, Prentice-

Hall, 1972.

Vince 1971]
. 4

Piaget, Jean, Genetic Epistemology (trans. Eleanor Duckworth), New York, W.W. Norton, 1971.

[Polya 1962]

Polya, George, Mathemcslcal Di.Povery (Volume 1), New Y-rk, John Wiley and Sons, 1962.

[Rumelhart 1975]

Rumelhart; David E., "Notes on a Schema for Stories," in D. Bobrow & A. Collins, Representation and

Understanding: Studies in Cognitive Science, New York, Academic Pre 1975, pp. 211-236.

56

,-- Problem Solving Grammars 56 Miller & Goldstein

I
[Solomon 1970

Solomon, Cynthia J. , A Case Study of a Young Child Doing Turtle Graphics in Logo, Massachusetts

Institute of Technology, Artificial Intelligence Laboratory, Memo 375 (Logo Memo 28), July 1976.

[Sussman 1973]

Sussman, Gerald Jay, A Computational Model of Skill Acquisition, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Technical Report 297, 1973.

v

