Noting that the equipment traditionally used in eye movement research is both expensive and stationary in nature, this report describes apparatus for collecting and interpreting eye movement data that is both relatively inexpensive and portable. The report lists and describes hardware and software components of a data collection and data analysis system that provides precise information regarding the location, duration, and sequence of eye fixations during the reading of materials that are composed of both text and pictures. It also describes a procedure for collecting eye movement data in nonlaboratory settings, such as classrooms. (Author/FL)
INSTRUMENTATION AND SOFTWARE FOR THE COLLECTION, ANALYSIS, AND INTERPRETATION OF EYE MOVEMENTS DURING READING

Raphael Hirschfeld
George Ellegaard

Technical Report No. 3

Reproduction in whole or part: authorized for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-80-C-0372, Contract Authority Identification Number NR157-452.

This report, No. 4, Series B, is issued by the Reading Research Group, Department of Education, New York State College of Agriculture and Life Sciences, a Statutory College of the State University of Cornell University, Ithaca, N.Y. 14853. It is supported in part by Hatch Funds Project #424 PRES. STRAT. IMP. COMP. PRINT MAT.

Approved for public release; distribution unlimited.
Title: Instrumentation and Software for the Collection, Analysis, and Interpretation of Eye Movement Data during Reading

Authors: Rafael Hirschfeld, Cornell University George Siger, Cornell University

Performing Organization Name and Address:
Cornell University, Dept. of Education, N.Y.
State College of Agriculture & Life Sciences:
A Statutory College of the State University

Contract or Grant Number: N00014-80-C-0372

Report Date: June 1981

Abstract:
Describes a method and apparatus for collecting and interpreting eye movement data, for research on reading as well as text, that is both relatively inexpensive and portable. Lists and describes hardware and software components of a data collection and data analysis system which provides precise information regarding the location, duration, and sequence of eye fixations during the reading of materials that are composed of both text and pictures. Also describes a procedure for collecting eye-movement data.
20.

data in non-laboratory settings such as classrooms.
Instrumentation and Software for the Collection, Analysis, and Interpretation of Eye Movement Data during Reading

Rafael Hirschfeld and George R. Bieger
Cornell University

Abstract

Describes a method and apparatus for collecting and interpreting eye movement data, for research on reading pictures as well as text, that is both relatively inexpensive and portable. Lists and describes hardware and software components of a data collection and data analysis system which provides precise information regarding the location, duration, and sequence of eye fixations during the reading of materials that are composed of both text and pictures. Also describes a procedure for collecting eye-movement data in non-laboratory settings such as classrooms.
Eye Movement Instrumentation

Instrumentation and Software for the Collection, Analysis, and Interpretation of Eye Movement Data during Reading

During the past few years investigators in several domains of cognitive psychology have begun to develop and use techniques for recording the pattern of small eye movements and "fixations" which they use as correlates of mental processes. In particular they have been studying fixation durations as indices of the temporal properties of mental operations, including those mental operations and processes involved in reading (Bouma & deVoogd, 1974; Carpenter & Just, 1972, 1977; Just & Carpenter, 1976a, 1976b, 1980; Lefebvre, 1973; Loftus, 1975; McConkie, 1976; Rayner, 1975a, 1977, 1978; Rayner & McConkie, 1976). Although such techniques have proven valuable, they have been found to have at least two major practical drawbacks limiting their widespread use in reading research. The first obstacle has been the high cost. Eye tracking devices are typically expensive themselves and usually require very costly accessory equipment to be useful. An equipment expenditure in excess of $50,000 is not unusual, but is often prohibitive to many prospective researchers in this field. A second problem is that such equipment is necessarily stationary and requires that all data be collected in the laboratory. This limitation often precludes (or at least makes more difficult) the use of subjects who do not have easy
access to the laboratory. Data from these subjects are often useful in those investigations concerned with individual differences in reading. This report describes apparatus and procedures designed to overcome these obstacles while retaining the precision and accuracy necessary for the use of eye movement techniques in reading research.

The development and use of the equipment, software, and procedures described below came about in response to problems encountered while investigating the ways readers use the information contained in materials consisting of pictures and text. Our intent was to manipulate the location of certain kinds of information (e.g., locative or descriptive information) in text or pictures and measure the effects of these manipulations on comprehension. We wanted to know what caused a reader to leave the text to search a picture for additional information and where in the picture they looked for that information. We also wanted to compare reading strategies among diverse categories of readers; for example, beginning and immature versus accomplished readers. These objectives required that we know: (a) where the reader was looking (i.e., the location of the eye fixation), (b) how long he/she attended to that location (i.e., the duration of the fixation), and (c) where he/she looked next (i.e., the sequence of fixations). Also, collecting data from people of various backgrounds, many of whom could not practically come to our laboratory, required a portable data collection system.
Given our budgetary limitations, we attempted to adapt our equipment to meet the specifications of our research. That equipment is described below and our laboratory layout is shown in Figure 1.

Insert Figure 1 about here.

Equipment

1) Gulf and Western Model 106 Eye-trac system (cost $2500)
 This device uses a differential reflection method of limbus and eyelid tracking, and produces an analog signal proportional to the displacement of the eye. Since it can follow each eye's movements in only one direction, we record horizontal movements from one eye and vertical movements from the other. It is equipped with a chin and temple rest and has been modified to include a head restraint to minimize head movements but allow reasonable comfort. The machine is easily portable and we have bolted it to a base which in turn can be clamped to any table or platform to provide it with stable support.

2) JVC KD-A2 stereo cassette deck (cost $300)
 We use this to store the output of the Eye-trac system
when we are from the laboratory and cannot send the signal directly to the computer. In order to record the D.C. signal we have built a detachable modulator/demodulator (see Figure 2).

3) Data Translation DT2762 A/D converter (cost $750)
 This takes the analog signal from the Eye-trac system or the tape deck and converts it to a digital value for computer analysis.

4) PDP-11/03 computer system (cost $4500)
 The computer system includes a dual floppy disk drive, 32K RAM, 4-port serial line interface, line time clock, and CRT terminal. The system accepts data from the analog to digital converter and stores them on floppy disks for subsequent analysis. This analysis will be described more fully in the section on software.

5) Hewlett-Packard 7221B plotter (cost $5000 - optional)
 Although this device is not essential, we have found it extremely useful for displaying eye positions and for setting up maps of the stimuli. The plotter sends the boundaries of all stimulus target regions to a mapping program (using a digitizing sight) and, after data have been collected, plots the eye positions over a larger scale reproduction of the stimulus.
Software

1) MAP - creates a map of target locations in the stimulus (i.e. words or parts of pictures) by accepting the digitized coordinates of the boundaries of the target areas from the plotter. In configurations without the plotter a modified version of MAP will accept the manually measured coordinates from the keyboard. This information is stored for subsequent comparison to the raw eye movement data gathered by the program ITRAK.

2) ITRAK - gathers data from the eye track machine. Two types of data are collected: the raw eye position data which is sampled at the rate of 60/sec., and calibration data used to map the eye position data onto the stored representation of the stimulus created by MAP. Currently, we ask the subjects to look at the corners of the stimulus card to determine the coordinates of the card boundaries. This information is then used to compute a linear transformation that changes the scale of the raw data to that of the stored stimulus map. We have found, however, that this method presents several problems. First, it is difficult to tell exactly when the subject is looking at a corner of the card. Second, due to nonlinearities inherent in the eye track machine and the analog/digital converter, these coordinates often do not define a rectangle, but rather some bizarre
quadrilateral. In order to remedy the first problem, we are installing a pushbutton switch connected to the external trigger input of the A/D converter. The subject would then push this button when looking at the calibration point to begin conversion. This will provide a more precise value for each calibration point. To overcome the nonlinearity problem, we are developing a more general interpolation algorithm.

3) MATCH - takes the eye movement data (from ITRAK) and determines the target area to which each pair of coordinates is closest. It does this by applying the transformation computed in ITRAK to the converted data and comparing the coordinates to those of the target regions in the stimulus map created by MAP. It then produces a summary listing of these target areas on the terminal, in the order they were scanned, and with the time spent on each.

4) PLOT (Optional) - makes a scaled reproduction of the stimulus and plots the eye movements on this depiction. For ease of interpretation we plot the reproduction of the stimulus in black ink; eye positions are shown in red ink; and a sequence of numerals is plotted in green ink at intervals of 60 eye positions, which corresponds to one second of sampling.
Procedures

1) After turning off the room lights to minimize artifacts, the experimenter calibrates the Eye-trac system for the particular subject.

2) The subject looks at each of the calibration points in succession and the coordinates of each is stored, either on floppy disks via the A-D converter and micro-computer, or on the cassette tape for later conversion and storage on floppy disks.

3) The subject begins reading and the program ITRAK collects eye position data and stores them on a floppy disk. In 'out of laboratory data collection', the subject's eye positions are sent from the eye track device to the cassette tape recorder, and later, in the laboratory, are sent from the tape recorder to the micro-computer using ITRAK. The subject is instructed to look at several 'landmarks' on the stimulus both before beginning and after finishing reading the material. During data analysis the eyes' positions before and after reading, as recorded by the equipment, are compared. If the recorded location for the same landmark has not changed from start to finish, we assume that the eyes' positions as recorded are accurate for the entire sample. If, however, there is a substantial difference (Just & Carpenter, 1980 suggest that 0.5
degrees visual angle constitutes a substantial difference) the subject's data are not useable.

4) After the data are collected and stored on floppy disks, the experimenter runs MATCH, which summarizes the location, duration, and sequence of the eyes' positions during reading (see Figure 3).

5) (Optional) The experimenter runs PLOT which reproduces a scaled enlargement of the stimulus and plots the eyes' positions on it. These are represented by points, connected by straight lines which indicate the sequence of fixations (see Figure 4).

Data Analysis

The data collected by ITRAK and displayed by MATCH and PLOT is in such a form that it can easily be analyzed to identify the location, duration, and sequence of eye fixations. Figure 3 depicts the output from MATCH and can be used by itself to
identify these important variables. The locations identified in Figure 3 represent the defined target area to which a given eye position was closest and the durations are measured in 'ticks' or sixtieths of a second. The order from top to bottom shows the sequence of fixations. The principle disadvantage with using MATCH alone is that the eyes will frequently stop at or near the boundary between two target areas. Because the eyes are never literally 'fixed' (there are small irregular movements called tremors that occur when the eyes appear stationary) this may cause MATCH to show a series of very brief fixations alternating between the two target areas surrounding the point of focus. Such a disadvantage is not necessarily serious if the general location of a fixation is all that is needed, however if more precise information about the eyes' position is required this limitation could be a problem.

The use of the graphics plotter has overcome this limitation. The plotter displays a reproduction of the original stimulus and PLOT draws the eyes' positions over this depiction. Figure 4 shows a sample of the PLOT and graphics plotter output. Note especially that the eyes' positions are indicated with substantial precision. This plotter and the program PLOT, used together with MATCH, allows us to determine the location, duration, and sequence of eye fixations with considerable precision.

The equipment, software, and procedures described above have
enabled us to make relatively precise observations of eye behavior during reading without the prohibitively high costs which typically characterize such systems. We are also able to make those observations wherever there is a room capable of being darkened and that has an electrical outlet and a table. We feel that this instrumentation and procedures will provide opportunities for research by investigators who do not have the funds to purchase more expensive equipment.

Note: FORTRAN IV source programs, for all of the user written software described in this paper, are available on request by contacting:

Reading Research Group
213 Stone Hall
Cornell University
Ithaca, NY 14853
(607)256-5423 or 256-7706
References

Carpenter, P. A. & Just, M. A. Semantic control of eye movements during picture scanning in a sentence-picture verification task. Perception and Psychophysics, 1972, 12, 61-64.

Just, M. A. & Carpenter, P. A. The role of eye fixation research in cognitive psychology. Behavior Research Methods and Instrumentation, 1976, 8, 139-143. (b)

Loftus, G. R. General software for an on-line eye movement recording system. Behavior Research Methods and Instrumentation, 1975, 7, 201-204.

Rayner, K. Parafoveal identification during a fixation in reading. ACTA Psychologica, 1975, 39, 271-282. (a)

Rayner, K. The perceptual span and peripheral cues in reading. Cognitive Psychology, 1975, 7, 65-81. (b)

Figure 1. Eye movement laboratory
Figure 2. Schematic for modulator/demodulator device.
Duration is indicated in "ticks" each of which is 1/60th of a second (16.7 ms)

Location indicates the word to which the eye's focus was closest

<table>
<thead>
<tr>
<th>duration</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 THIS</td>
<td>-- cluster of points in the upper left corner, at the beginning</td>
</tr>
<tr>
<td>4 TRACK</td>
<td></td>
</tr>
<tr>
<td>4 EYE</td>
<td></td>
</tr>
<tr>
<td>1 IS</td>
<td>-- eye blink</td>
</tr>
<tr>
<td>3 FOR</td>
<td></td>
</tr>
<tr>
<td>93 THIS</td>
<td>-- fixations #1 and #2</td>
</tr>
<tr>
<td>50 IS</td>
<td>-- #3</td>
</tr>
<tr>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>3 TEST</td>
<td>-- fixation between "A" and "TEST"</td>
</tr>
<tr>
<td>5 A</td>
<td></td>
</tr>
<tr>
<td>44 TEST</td>
<td></td>
</tr>
<tr>
<td>53 SENTENCE</td>
<td>-- #4</td>
</tr>
<tr>
<td>1 MACHINE</td>
<td></td>
</tr>
<tr>
<td>1 TRACK</td>
<td>-- regressive sweep to beginning of second line</td>
</tr>
<tr>
<td>1 THE</td>
<td></td>
</tr>
<tr>
<td>46 FOR</td>
<td>-- fixation above #5</td>
</tr>
<tr>
<td>7 THE</td>
<td></td>
</tr>
<tr>
<td>31 FOR</td>
<td>-- #6</td>
</tr>
<tr>
<td>37 THE</td>
<td>-- between "THE" and "EYE"</td>
</tr>
<tr>
<td>2 EYE</td>
<td></td>
</tr>
<tr>
<td>35 TRACK</td>
<td>-- #7</td>
</tr>
<tr>
<td>55 MACHINE</td>
<td>-- #8</td>
</tr>
<tr>
<td>1 TRACK</td>
<td></td>
</tr>
<tr>
<td>1 THE</td>
<td>-- movement back toward the top for second reading</td>
</tr>
<tr>
<td>2 FOR</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Sample of output from MATCH program.

(To be used with Figure 4b)
Figure 4: Samples of output from PLOT program
cornell/glock May 27, 1981

Navy

1 Mary L. Baker
WPDC
Code P309
San Diego, CA 92152

1 Dr. Alvah Bittner
Naval Biodynamics Laboratory
New Orleans, Louisiana 70189

1 Dr. Robert Breaux
Code N-711
NAVTRAERNPCEN
Orlando, FL 32813

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. PAT FEDERICO
NAVY-PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Henry M. Halff
Department of Psychology, C-009
University of California at San Diego
La Jolla, CA 92039

1 LT. Steven D. Harris, MSC, USN
Code 5021
Naval Air Development Center
Warminster, Pennsylvania 18974

1 Dr. Jim Hollen
Code 308
Navy Personnel R & D Center
San Diego, CA 92152

1 CDR. Charles W. Hutchins
Naval Air Systems Command Hq
AIR-340P
Navy Department
Washington, DC 20361

1 CDR. Robert S. Kennedy
Head, Human Performance Sciences
Naval Aerospace Medical Research Lab
Box 29007
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USN Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr William Montague
Navy Personnel R&D Center
San Diego, CA 92152

1 Ted M. I. Yellen,
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2527
Washington, DC 20390

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Office of Naval Research
Code 437
300 N. Quincy Street
Arlington, VA 22217

1 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Special Asst. for Education and
Training (OP-01E)
Rm. 2705 Arlington Annex
Washington, DC 20370
Navy

1 Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350
Dr. Donald F. Parker
Graduate School of Business Administration
University of Michigan
Ann Arbor, MI 48109

1 LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508.

1 Dr. Gary Poock
Operations Research Department
Code 55PK
Naval Postgraduate School
Monterey, CA 93940

1 Roger W. Remington, Ph.D.
Code L52
NAVAL
Pensacola, FL 32508

1 Dr. Worth Scanland, Director
Research, Development, Test & Evaluation
NAS-Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987R
Washington, DC 20350

1 Dr. Alfred F. Smoak
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Roger Weissinger-Saylor
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. John H. Wolfe
Code 310
U.S. Navy Personnel Research and Development Center
San Diego, CA 92152

Army

1 Technical Director
U.S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Beatrice J. Farr
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Dexter Fletcher
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frank J. Harris
U.S. Army Research Institute
5001 Eisenhouwer Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neill, Jr.
Attn: PERIO-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sammar
U.S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frederick Steinhilser
Dept. of Navy
Chief of Naval Operations
OP-113
Washington, DC 20350

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
| Non Govt |
|------------------|-------------------|
| 1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208 |
| 1 Dr. Jonathan Baron
Dept. of Psychology
University of Pennsylvania
3813-15 Walnut St. T-3
Philadelphia, PA 19104 |
| 1 Mr. Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305 |
| 1 CDR Robert J. Biersner
Program Manager
Human Performance
Navy Medical R&D Command
Bethesda, MD 20014 |
| 1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 |
| 1 Dr. Micheline Chyi
Learning & R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
| 1 Dr. Francois G. Christen
Perceptronics
6271 Varlen Avenue
Woodland Hills, CA 91367 |
| 1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305 |
| 1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138 |
| 1 Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
| 1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036 |
| 1 Dr. Kenneth B. Cross
Anacapa Sciences, Inc.
P.O. Drawer Q
Santa Barbara, CA 93102 |
| 1 Dr. Hubert Dreyfus
Department of Philosophy
University of California
Berkeley, CA 94720 |
| 1 LCol J. E. Eggenger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A OK2 |
| 1 ERIC Facility Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014 |
Non Govt

1. Dr. Albert Stevens
 BOLT BERNANEK & NEWMAN, INC.
 50 Moulton Street
 Cambridge, MA 02138

1. David E. Stone, Ph.D.
 Hazeltine Corporation
 7680 Old Springhouse Road
 McLean, VA 22102

1. Dr. Patrick Suppes
 Institute for Mathematical Studies in
 the Social Sciences
 Stanford University
 Stanford, CA 94305

1. Dr. Kikumi Tatsuoka
 Computer Based Education Research Laboratory
 252 Engineering Research Laboratory
 University of Illinois
 Urbana, IL 61801

1. Dr. Douglas Towne
 Univ. of So. California
 Behavioral Technology Labs
 1845 S. Elena Ave.
 Redondo Beach, CA 90277

1. Dr. J. Uhlaner
 Perceptronics, Inc.
 6271 Variel Avenue
 Woodland Hills, CA 91364

1. Dr. Phyllis Weaver
 Graduate School of Education
 Harvard University
 200 Larsen Hall, Appian Way
 Cambridge, MA 02139

1. Dr. David J. Weiss
 660 Elliott Hall
 University of Minnesota
 75 E. River Road
 Minneapolis, MN 55455

1. Dr. Gershon Weltman
 PERCEPTRONICS INC.
 6271 Variel Ave.
 Woodland Hills, CA 91367

1. Dr. Keith T. Wescourt
 Information Sciences Dept.
 The Rand Corporation
 1700 Main St.