ED 201 304

AUTHOR
TITLE

INSTITUTION
SPONS AGERCY
PUB DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTOLS

ABSTAACT

DOCUHENT RESCHE
IR 009 186

Jarvis, Jchn J.: And Others

EZLP: An Interactive Computer Program for Solving
Linear Prograaming Problems. Final Report.
Georgia Inst. of Tech., Atlanta.

National Science Foundation, Washingtor, D.C.

Sep 76

NSF-SEL-75-17476

66p.

MF01/PC03 Plus Postage.
Computer Assisted Instructions
Education: *Linear Prcgraming:
*Models; *Problem Solving

Computer Science
*Man Machine Systems:

Designed for student use in solving .inear

programming problems, the interactive computer program described

(EZLP)

permits the student to input the linear programming nodel in

exactly the same maaner in which it would be written on paper. This
report includes a brief review of the development of EZLP; narritive
descriptions »f program features, including the driver, the editor,
syntactical analysis, optimization and output, segmentation of EZLP,
and machine dependence of EZLP: user instructions for entering,
editing, and solving the model, as well as analyzing results,
restarting and terminating the program, the HELP command, and
external file-handling capabilities: and printouts of five termiaal
sessions providing simple and advanced examples of EZLP, as well as
transportation, integer programming, and sensitivity analysis
problems. A user's manual suitable for handout to students learning

EZLP is appended.

{CHC)

sk 8 3k 3 2o ok 3 e o i ok o s 3 ke ok ok o e o o ok e e Kok o kKoK oK ok oK K BT - Aol ok oK ek e o6 e Ak o sk o e o o ek ik o K koK oK
* Reproductions supplied by EDRS ar= th2 best taat can be made

%*

o 3 3ok Aok ok e e e i ok ok ok ke ae s ok 2 ofe k3 sfe ok 3K ke ofe ok ok dkeake e ofe ek ok ok

from the origina. dozument.

*
*

e ez 3k ol oK o o e 25 ok e Aok ok ook Ak K 3K e Aok K ek ke ik dkok

US BEPARTH TNY ClF k"éAETH
EDUCAWIT - &W:Lf-ﬁk -
NATIONAL NSTITUY 2 CF

gC' “ATIOM
: e.%. REPRO-
1HI5 DOCUMER as : 0.- :PRO-
OUCED EXA':C"‘ SG R ",:)mG'NA
oty t(":Ei‘:S("" . 5¢INIONS
ATIN I SHINIONS
STATED W) : L LEeRE
SENTOFF!I o
EDUCATION *

FL

NSF Grant N:iwoe

Lul01504

EZLP: An Inte—uc. . _T=rater "ro.gram
for Solving L.-=2ar -——=_ing -zcdleus

John J. Jz . - 2z Dimes
V. Ed Ung::. L. mnTzies

Frank H. Culler s¢ Tz .35 . =TIt
~ 's Fapaconstacdspe ... zwn-72h sozistar

School of Industrial znd Systems Enginserin:
Georgia Insti:ze . £ Technology
Atlanta, =crgia 30332

Septemz~, 976

Loo0g /56

——
L

E

Aruitoxt provided by Eic:

@)
o

TABLE OF CGNT:EN:=

Chapter 1: Ictroduction
1.1 Background . . . e e e e e e e e .
1.2 TIni=ial Project Ef s o4
1.3 In=:=1 Project Pim. . . . - . . . e
1.4 ¥ollic—on Project) ol . e
1.5 Mazhi—= Dependenc: i the EZT Y iZam . . .
1.6 Avc—il=zsility of tie “ZLP Syslem
1.7 Co=t::ruing Effort

Chapter 2: III=: A Narrat. ve Dascristic:
2.1 Intrcduction s e e e e
2.2 A Gemeral Qutlinz . . e e e e e e e
2.3 The Driver . . . : . . -
2.4 The Editor . . e e ke e e e
2,5 Syntactical Anal'“ls S s e e e .
2.6 Optimization and vutpr: ..
2.7 Segmentation of ZZLP « e
2.8 Machine Dependence of TZLT . AN

Chapter 3: User Imnstruc:-ions

Introduction e e e

3.1 -
3.2 Sstarting EZ2LP e e e e e e
3.3 Entering the Model . . : e e e
3.4 Editing the Model . . . e e

3.5 Solving the Mod=l . . e e e e e s

3.6 Sensitivity Analysis of zhe Wesult:s . .
3.7 Restarting and Terminz:i.ng ZZIIP . .

3.8 The HELP Command . . - .. D e e e s

3.9 External File-Handlirz Ca::;t_ltie~ . .o

Chapter 4: Terminal Sessions

Introductior. . e e e e .
Sessiocn 1: A Simple Exam__. of IUAT .~ . .
Session 2: An Advanced Ex=mpl- of LI.P
Session 3: A Transportation Ex aplc

Session 4: An Integer Progremm . —xm&wm

Session 5: A Sensitivity Ana"ys : zamo

R S -
L] L) [. . L)
AW

2
=]

Appendix A: A Simplified User's Manual for 2.7

I3

o

NN

P~ et
(g% t: P TR Ly ()

|4}
(W I

ABSTRACT

Thie report discusses the development of an interactive computer
srogram EZLP) designed for student-oriented use in solving linear
orogrammi-.g problems. The linear programming problem is inputted in
~he same wzy as it would be writtem on a sheet of paper.

The c:udent May Select either the (primal) simplex or the dual
simplex m==hod; the lower-upper bounded variables procedure with either
method; z—d real (0.5) or rational (1/2) arithmetic for the calculations.
" EZLP has znternal editing capability and is able to read lrom and write
to perman=nt files.

Duricg execution of EZLP, if the student has difficulty in remember-
ing what to do next, he may utilize a HELP command to obtain general or
specific information on EZLP's use.

Since EZLP was developed under a National Science Foundation grant
a program listing on computer paper is freely available. A listing on
cards or tape 1s available at a nominal charge to cover expenses. EZLP
may not be resold.

Finally, a simplified user's manual suitable for handout to students
learning ZZLP for the first -ime is contained in Appendix A.

4

Chagter 1: INTRODUCTION

1.1 Background

Linear programming is a mathematical optimization technique utiiized
intensively in the fields of mathemstics, management =<: engineering—
especially within the areas of oper=tioms research anc =Zanagement sciance.
The simplex method--the standard tcchnique for solving linear programs--—
is an iterative method, and, as such. is dependent on the computer tc
carry out the rote calculations. Computerized simplex codes are available
in small problem-solving verzious znd in large production versions in most
university, private and governmental computing centers. Students find
that interaction with these computer codes is often very difficult. The
result is that small scale usage in the classroom or laboratory or for
homework is discouraged. This bad experience carries over and tends to
discourage the student's use of linear programming on tﬁe job.

In m&st universities today there are a number of undergraduate and
graduate courses utilizing linear programming as a problem-solving tool.
Georgia Tech is typical with as many as 6-10 undergraduace courses and
15-20 graduate courses utilizing linear programming. In these coursas
the student is expected to develop modelling skills with linear program-
ming, appreciate the simplex method (or its variants) as a solution tool
and to interpret the output results of the simplex method in the parti-
cular problem situation. In addition to course work there are usually
a number of students performing research on new techniques which require
a check by solving small linear programming problems. Hand calculations
are good up to about four constraiats and ten variables. Beyond this

number the student must go to the computer in order tc have the calcu-

lations performed, otherwise, negative feedback resuits. The student

remembers the difficult: .ith sol-Zxr = zodel and not the pow - of
the modelling tec:nique Waen tnz : L--z= gets to the ¢ aputer he
usually finds a+ .le nm.- - =2t of =—..- :c:lzies with regar- to the facc

that in order to . vic. t-= o . +:th his model he must lez=m a

rt

computer-oriented a2t zr .zan o —-r<ented) "input lenguage’.

A number of :z=ti-uticmz .. gy Northwesternm Univessity,
Stanford Uni—=rsi- cne U »re_- . Zzzas, and Geczglz Zech have
developed linear ;- vammi=g c=r. 2 T ITZ3rams which are 1 ore directl:

student oriented i+ =zeir desigr

-

Tn the School ¢. Indust _al - jystems Engineering =t Georgia Tech

an experimental prc. =t haz ' 2er mdwmrway since 1971 to develop a stucent-

oriented conversati-=al _.: sat = .zz-mming code (EZLP) for use on small
problems (up to 50 zomstr:.m.: anz 0 variables). The innovation is
in the special way that the . Tudes: ‘nteracts with the computer. The

student inputs his Iinear drcgrac. .ag model to the computer in exactlw
the same manner t:.z- he w -1d wrizs it down on paper., Evolution of th-s

code has been thr—g-n cla: . proje . Despite limitations in its init-al

design, EZLP was =5 :thzlcss widely accepted by the students.

1.2 Initial Proj: fforc

The Nationz. 3c—=nc¢ Foundation agreed Lo support a concerted
effort, during to= 75-1376 academic year, to redesign and develop a
conversational cocpu. .r code bzsed on the concepts developed at Georgi=z
Tech.

To accomplish the -iven task, a Georgia Tech team was organized.

The Georgia Tech t-zm c.-isisted of:

Dr. John J. Jarvis, Projezt Direcker

Frank H. Cullen, Rezearch Assistant

Chris Papaconstzdopouios. 3esearch ..rcoistant
- téam had the overall r- -ocasibilit: -~ :iesigning, dev:=_or:ng, codirg
-+ documenting the comput: -istem.
An Advisory Cor=-ttee -~ eminent re -.zr hers and prac:_tioxers in the

f . -1d of linear prog— mmi- - s also org=—ize tc provide zuidance to the
Gzorgia Tech team. . 7izory Committ== c¢_--isted of the followins indi--
v-duals:
1. Dr. Claude .
Northweste— Ur =rsity
2. Dr. Harve . v :mberg
Federal E- -gy . a1inistration
3. Dr. Marvi . Gr ’fin
Universit .© il=dama
4. Dr. Michs. E. Thomas
Universit - -f Florida
T-is commitiee hac significant impact on :zhe design of the final computer

rstem.

2.3 Initial Project Plan

During the early stages .of the project the Georgia Tech team devoted a
great deal of time and effort to the development and documentation of a
preliminary design of a computer system for EZLP. This documentation was
submitted to the Advisory Committee for their review.

A meeting of the Advisory Committee was conducted on the Georgia Tech
campus to discuss the preliminary design. This discussion lead to a much

improved design. On advice of the committee, the fundamental concept of

complete machine independence was replaced by a moderate level of machmme
dependence to permit substantial reduction in program size and complexz'ty.
Also, a number of general fea-ures were eliminated from the initial‘dezig:
while many others were added. The Georgia Tech tesan was very pleised -7ita
the structure that emerged from that meeting. |

The Advisory Committee also suggested, at its meeting, that the Gz gla
Tech team retain a certain dezrsze of flexibility in its development o-
so that the Tech team might be able to react in an expeditious manner -
potential difficult situations whick <culd arise during coding.

The remainder of the initial grant period, following the Advisor:z
Committee meeting, was spent developing and testing the EZLP code. itna
a few changes, the initial EZLP system developed was the one which ' merged

from the Advisory Committee meeting.

1.4 Follow-on Project Effort

The initial project phgse concluded with the development of the basic
EZLP system. The project then proceeded into a second phase consisting -of
dissemination, formative evaluation, and modification/improvenent.

During the second phase, the dissemination task consisted of mailing
literature on the basic EZLP system to approximately one nundred and fifty (150)
departments of Industrial (and Systems) Engineering, Cperations Research,
Manzgement Science, Computer Science &and Mathematics throughout the United
States. The literature described the EZLP system, its functions and operation.
Copies of the computer code were offered at nominal o no charge to interested
institutions. The objectives of this offering were to (1) achieve wide.dissemina-
tiorn. of the project results, and (2) generate a subset of implementing institu-

tions from which a formative evaluation of the EZLP system could be conducted.

Some two dozen institutions - .ested the EZLP code for implementation.

It was anticipated that a group ~ :--7e institutionms, providing a cross
section of EZLP users, would be _..-: fied for participation in a seminar
on EZLP to be held at Georgia Tzi:: Znwgever, it soon became evident that

the critical link would not be :mcsrstanding the EZLP system, but, instead,
would be getting EZLP operation=’ or the myriaa of different computers
(UNIVAC, Burroughs, Prime, IBM, =tc.) involved.

After discussions with NSF.. it was decided to carry the EZLP seminar
to the users, instead of having the users come to Georgia Tech. A quali-
fied graduate research assistant was sent to several targeted institutions
to (i) solve EZLP implementatZ.:n problems, (2) give a seminar/demonstration
of the EZLP system and its camzbilities, and {3) establish the necessary
mechanism for receiving comments and evaluations of the EZLP system.
Several institutions were targeted on the basis of their interest aund enthu-
siasm and the type of computer system involved. It was hoped that the for-
mative evaluation could include results of experienge on as many different
computer systems as possible.

The implementation, testing and evaluation process proved invaluable
to the continued improvement of the EZLP system. EZLP users <valuations
included (1) modifications of the code to provide easier installation of
differing computer systems, (2) changes in the materials, handouts, etc.

describing EZLP and its uses, (3) expansion and improvement of the EZLP code

"to include additional features requested by the users, (4) modularization

of the EZLP system to overcome the problems associated with core memory require-
ments for operation of the system, (5) changes in EZLPvcommand structures and
output formats to provide more intuitive understanding of the system opera-
tion and results, and (6) the alleviation of minor bugs and difficulties asso-

ciated with the EZLP system.

The EZLP system which resulted from this testing and evaiuation process
is greatly improved. EZLP is currently operational on approximately two
dozen computer installations throughout the United States. This list in-
cludes academic'institutions, governmental agencies and private firms. EZLP
users repori great popularity and success of EZLP. The Georgia Tech team is
pleased with the resulting system and its acceptance by others. EZLP is
becoming known worldwide, and already copies of the code have been sent to
several European countries.

The remaining chapters discuss the specific structure of EZLP and its
use. Appendix A contains a simplified user's manual which could be passed

out to students learning EZLP for the first time.

1.5 Machine Dependence of the EZLP System

The EZLP computer system has been intentionally designed to minimize
the level of machine dependence within the coustraint of reasonable pro-
gram size and complexity. EZLP has been coded iu FORTRAN and special
forms which may be available only on the CDC Cyber 74 (the machine used)
are avoided. Those places in the code where machine dependence was unavoid-
able are few in number and clearly identified.

Section 2.8 of Chapter 2 discusses the required changes to convert

the machine dependent portions of EZLP to other computer systems.

1.6 Availability of the EZLP System

Development of the EZLP computexr system was sponsored by a grant from
the National Science Foundation. As such, the EZLP computer system is
freely available to anyone desiring a copy. A computer listing on paper

ig available at no charge. There is a nominal charge, to cover expenses,

3

for a listing on cards or tape. EZLP may not be resold. For further infor-
write

Dr. John J. Jarvis, EZLP Project Director

School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

1.7 Continuing Effort

EZLP is an evolving computer system. Effort continues at Georgia Tech
to maintain and improve the EZLP code. We invite comments and suggestions

on improving EZLP.

Chapter 2: EZLP - A NARRATIVE DESCRIPTION

2.1 Introductien

This chapter presents the workings of EZLP in a narrative form.
Emphasis is given to the identification of the components of EZLP, their
attributes, and a discussion of their mutual interaction. Coded in standard
FORTRAN, EZLP nonetheless :2s certain functions which cannot be written in
machine-independent code. ‘inese are discussed in the last part of this

chapter.

2.2 A General Outline

In overview, BZLP consists of three main subprograms tied together by
a controlling mein program, or "driver." The three main subprograms are:

a. Editor - the ability to create and maintain (update) a current

model “: =% physieally in an exterior mass storage device
b. Sy« i..-% Imalysis - inputting the model statements from the ex-
ternal i+ vi"eated by the EZLP Editor, performing parsing

and syntax-checking operations, and generating a tableau
for input to the optimization process
c. Optimization - a solution and output of a model in tableau form
by simplex procedures
Figure 2.1 presents a géneral diagram of the program flow of EZLP which

also indicates the interaction of the three main subprograms.

2.3 The Driver

The main program, or driver program, has several functions. Among
these are:
a. distribute and pass control among the three main subprograms

b. perform ancillary operations not handled by the subbrograms

Subprogram:

Tableau and Basis
Qutput’

Editor‘ - "And" ’"St"
"'] "Alsoh MMin® :
I ' "Max" Model Entry [
l §
1 —
i EZLP M e 7ol
| Editor ; - "Change" Title
{ "elete” '
' l'] "Run"
¥ ' nSave®
' 1 "L istn Editing Input Ancillary
L....%.J?.....; e Model Operations
b
o I
b
r—-——\ll—*-l—‘~———“_u———“--—.]
&. | |
|
Current | | 1 Syntactical = Model Statement :
Model I Analysis Parser
File R I
e Subprogram:
i I Syntactical Analysis
i Simplex]
Optimization f
Procedures !
!
l 1
I Subprogram:
| Optimization
|
|
[
|
|
i

Figure 2.1: EZLP Program Logic Flow

Upon program execution, the driver program assumes control and examines
the first input statement. If the keyword (the first word) of the input
statement is an editor associated keyword (e.g., AND, MIN, CHANGE), the
driver continues to parse the input statement to determine the row name
if it is there and to construct the default value if it ié not; control is
then passed to the editor subprogram. If thelkeyword of the input statement
is associated with an ancillary operation (e.g., RUN, SAVE, or PRINT), the
driver continues to parse'the input statement to determine what internal
program switches are to be set, and in the case of the SAVE statement, per-
form the requested file operations. If.the keyword is USE, to trigger
a solution attempt, the driver parses the remainder of the input statement
to determine the simple# method to be used, passes control first to the
syntactical analysis subprogram, and then to a tableau-building subroutine
énd the optimization subprogram in succession, if there are no syntactical
errors in the model.

In Figure 2.1 the driver program may be considered to be everything

not within a subprogram boundary.

2.4 The Editor

The editor subprogram is primarily responsible for model file maintenance
and performs four principal functions:

a. Addsva statement to the model file

b. Deletes a statement in the model file

c. Changes a statement in the model file

d. Lists either a single row or the entire contents of the model file

Model File Organization

The model file itself is a simple linked-list structure with chaining

used for continuation lines. Two vectors in the COMMON block EDIT, CNTNME

10

14

and LINKS, Store‘the alpha name.and the relative location of the first
record for the particular row of the model on mass storage. This record
has a forward link to a continuation record if used. This forward link

is zero (0) if there are no further continuations after the current record.
The program logic and passed parameters to the mass storage read and write
subroutine are such that first-available and other random access techniques

can be used on computers of various manufacture.

Subprogram Operation

Upon passage of control and the appropriate parameters, the Editor ac-—
cesses the model file to perform the desired function, and returns control
to the driver which then reads in the next input statement.

Continuations of rows in the model are handled directly by the Editor,
which reads in successive input statements and sets up the chaining relation-

ship until the continuation situation no longer exists.

2.5 Syntactical Analysis

The syntactical analysis subprogram is the process wherein the model
file contents are read in, parsed, checked for errors in syntax, and trans-
lated into a coded form which is subsequently transformed into a tableau
structure.

In overview, the syntactical analysis subprogram has two main entities:

a. the model statement parser, which takes lines from the model file

and generates a uniform symbol table in which the components of the
model line (e.g. coefficient, name or identifier, delimiter) are
described and;

b. the analysis routine which uses as input the uniform symbol table,

checks for syntax errors, and outputs a quasi-diagonal tableau

11

r—

D

which later serves as input to = tableau-building subroutine which
adds slack and artificial varizbles and generates = rectanéular
tableau structure.
Other output from the syntactical analysis subprogram includes:
a. a vector containing row names as they appear in the tableau
b. a vector containing variable names as they were first mentioned
in the model file
c¢. vectors containing lower and upper bourds for each variable in
the same order as (b)
d. A designator of which rows of the tahiean are associated with ob-
Jective functions
e. an indication of which objective function row is to be optimized
during phase two of the optimization process
In the instance that there are syntax errors present in thé model file,
descriptive error messages and pointers are printed in an attempt to pin-
point the exact location of the trouble.
The memory locations used by the syntactical analysis are focused in

tbe COMMON area OPT and WORK.

2.6 Optimization and Output

The optimization and output subprégram is the process by which the
simplex operations are performed on the rectangular tableau created by the
tableau-building subroutine which, in turn, receives its input from the syn-
tactical analysis subprogram. Depending upon the value of the parametric
switch METHOD.set by the driver program during the parsing of the USE state-
ment, the optimization process selects from four basic algorithms: primal
or dual simplex with or without rational arithmetic. The lower-upper bounded

simplex approach is used throughout the bptimization routines. The different

12

16

results obtained by the specification of <l.: UPPER parameter in the USE
stabement owe to the generation of expliecit bound constraints by the syn-
tactical analysis subprogram when UPPER i.- not specified.

The primal algoritihw: (real and rational) employ a two-phase method
for which the Phase 1 objective function and the starting basis are de-~
termined by the tableau-building subroutine. At the successful completion
of Phase 1, the Phase 2 objective function (which has been stored as a null
constraint in the tableau) is written over the Phase 1 ébjective function
and the process resumes.

The dual algorithms begin with the creation of the Phase 2 objective func-
tion from the appropriate null constraint (objective function)-in the tableau.
The rational algdrithms require the maintenance of both a numerator

and a denominator for each tableau entry (and each element of the right-
hand side). For example, the numerator for an element in an array may be
stored in position I, while the cérresponding denominator will be stored in
position J+I, where the Jth position of the array held the value of the
numerator of highest subscript index.

"At the end of each simplex iteration, or both before and after the
optimization process has been completed, there might be output specified
by the user via a‘PRINT statement. In this instance, control within the
optimization process is passed to a point which prints out the values of
the nonzero variables, the current Sasis and basis activity, or the current
tableau and updated objective furct-on. Control is then returned to the
appropriate place in the optimization process.

Upon reaching an optimal solution, control within the optimization process
passes to a point at which the default output (the optimal primal and dual |

solutions) is printed out. Even if no cther output is specified or requested,

the default output is printed.
13

When the printing default output is completed, control returns to the
driver program which then reads in and parses the next input statement.
The memory locations used by the optimization and output subprogram

are focuc-2 in the COMMON area OPT and WORK.

2.7 Segmentation of EZLP

In dealing with computers with smaller capacity than large-scale university
computing systems, memory economy via code segmentation or overlay is often
of considerable interest.

The modular subprogram concept allows some or all of the subprogranm code
to be overlayable, and hence less wasteful.

Specifically, the three subprograms are mutually overlayable as well

as those functions which serve only one of the subprograms. Graphically,

_ we can represent the code components of EZLP as a tree, the root of which

is non-overlayable, and the separate branches of which form the overlays.
In Figure 2.2, this tree structure is represented in terms of the actual

FORTRAN subroutines and function names.

Syntactical Optimization &
: Analysis Tableau Output
Editor Subprogram Subprogram Builder Subprogcam _
EDITOR TYPENT BUILD . RATPRT
CHANGE BMPUST RATCNG
GETWRD SYNERR RATSUB
MSWRIT PARSER RATMLT
GCW
SYNT SPXRTL
s

EZLP '

PACK

DSPNUM

NUMGET

MSREAD

Figure 2.2: Segmentation Tree-Structure of EZLP
14 -

2.8 Mnchine Dependence of EZLP

There are two‘aspects of the code of EZLP which are likely to cause
difficulties when an attempt is made to convert the code to a machine
other than the one for which EZLP was written (the CDC Cyber 74). These
are

a. Alpha variables - packing :nd unpacking, and manipulation -

b. File manipulations - pafticularly with respect to error

and end-of-file conditions

Alpha Variables

The storing of alphanumeric information in variables has always been
a weaknesss in the design of FORTRAN. Consequently, the use of either integer
or real variables to store alphanumeric information is bound to be non-
standard and change from machine to machine. For the purpose of program
design and implementation, EZLP uniformly uses real variables. For those
compilers aﬂd computers which require that some other type be used for
alpha variables, explicit type statements must be added to those portions
of the code affected for the alpha variables.

A ba51c assumption of the EZLP code is that the alpha varlables can
hold at least eight (8) characters and are appropriately filled so that
a comparison with a Hollerith constant is meaningful. Hexadecimal machines
(or character machines) mnormally have type statements which allow the length
of the variable in bytes (characters) to be specified. Where applicable,
these constructs should be used.

An often-used subroutine in EZLP for composing a single eight-character

alpha variable from eight single-character alpha variables is called PACK.

15

19

This subroutine is <otally machine-dependent and must be changed for dif-

ferent computers.

File Manipuiation

FZLP employs a number of files during execution. These files are
summarized in Table 2.1. These files, with the possible exception of file
are stirictly sequential files and require no special programmatic conside:
File 8, the model file, because of the random way in which editing is applied
to it, can be effectively used as a random access file. Since random access
is normally a machine-dependent function, EZLP separates out the random
access read and write functions into separate subroutines MSREAD and MSWRIT.

These two subroutines must be re-written for different computers.

Tabl. 2.1: EZLP Files and Their Description

File Number Description

Input file (from the terminal)

Output file (to the terminal)

Message file (for syntax error messages)
Model file (linked and chained mass storage)
Runt file (alternate input file)

Save file (model output file)

Help stored-text file (instructions)

H O WO o

o

End-of-file checking is also achieved differently with different FORTRAN
compilers. On the CYBER 74, the test is the impliecit function EOF(u).
Occurrences of this furnetion should be replaced by the appropriate READ

statemen: construct for the local FORTRAN compiler. For example, the sequence

READ (INFILE, 102) (BUFFER(I), I=1, 80)

IF (EOF(INFILE) .NE.O) GO TO 320

16

<l

could be replaced by something resembling

READ (INFILE, 102, END=320) (BUFFER(I), I=1, 80)

if such was the appropriate end-of-file construct.

17

Chapter 3: USER INSTRUCTIONS

3.1 Intioduction and Notation

This chapter is designed to describe the operation of EZLP from the
user's point-of-viéw. The material covered herz is somewhat more com-
prehensive than that which would be required for the user with simple
problems. Appendix A contains a simplified user's manual.

For clarity of presentation, this chapter uses BNF notation in de-
scribing syntactical rules. Briefly, capitalized words indicate keywords,
[] indicates an optional clause, { } indicates a'choice of two or more

alternatives, and <> enclose a descriptive term for a syntactical entry.

3.2 Starting EZLP

The exact syntax of executing EZLP will vary from computer to computer

. and from installation to installation, and so cannot be explicitly stated

here. For the sake of clarity, let it be assumed that EZLP has been exe-
cuted and is awaiting input from the user.

At this point, the user has the option of proceeding to enter the model
(3.3) or getting a brief (about two pages) description of how EZLP is operated.
This description, in thg absence of this chapter or other documentation should
supply a minimvm of information to the user so that he can use the program.

To obtain this brief description, the user must enter the following command:

HELP BRIEF

This command is discussed further in section 3.7.

3.2 Entering the Model

The first thing the user must do is enter the model. The entry of the
model follows certain rules - there are rules concerning the order in which

inputted statements must be organized, and there are rules which govern the

18

way in which different types of statements are made up. Before these rdles
are discussed, it would be best if some basic ideas were explained: A
statement is a single logical input. A constraint is a statement. The
objective function is a statement. A delimiter is a single character which
serves to terminate one entry and perhaps begir the next. For the entry of
the model, the space character (¥) is the usual delimiter. A name provides
the conyenience of letting the user assign unique identifiers to variables,
constraints, and objective functions. The names themselves are composed
of from one to eight characters. The first character must be alphabetic
(A-Z), while the remaining characters must be albhabetic, numeric (0-9),
or numerics separated by commas. X2, PROFIT, ITEM3, and Y2,3 are examples
of acceptable names, while ITEM-3 and $VAR are not. A space character
cannot be part of a name. EZLP réserves certain names for its internal
use. Row names of the form ROW#n are reserved for each objeétive function
or constraint statement which was unnamed by the user. This generated
name can be used for editing purpouses. In addition, EZLP uses the names
SLK#n and ART#n for the slack and artificial variables that it generates.
Since the user may not input any name containing the # character there can
never be any confusion between user-generated names and.EZLP;generated
names. An input-line corresponds to a line of input on the terminal. 1In
batch processing, this is equivalent to a card image.

If desired the user may indicate that heading information is to be
printed at the top of the optimal soiutipn output. The user must type

in

TITLE <heading information>

where <heading information> appears as a heading at the top of the output.

19

23

The actnal entry of the model ijs divided into two basic parts: the

objective function and the constraints.

Entering the Objective Function

The syntactical rule for the entry of the objective function is:

{MIN} o {MINIMIZE
MAX MAXIMIZE

} E<objective-function-namé>ﬂ: <arithmetic expression?
where <objective-function-name> is an optional user-assigned name for the
objective function and <arithmetic expression> is‘a linear combination of
variable-names.

Note that the colon (:) is required at all times.

{f the objective function statement is too large to be entered on one
input line, continuation of the statement is accomplished by placing an
ampersand (&), after the jast character of the current input line and con-
tinuing the statement on the next input line. There are no 1imits on the
number of continuations allowed for a single statement.

Examples of possible objective function statements:

1. MIN: 2 + 3X2 - 2.3%X4

2. MAX PROFIT: 3INCOME - YEXPNSE -~ .6730VERHD

3. MIN COST: 2.BVARL - 3.53VAR2 + .O0OUVAR3 &

-VARY

Alternate Objective Functions

In some applications of linear programming, it is of interest to con-
sider a number of possible objective functions subject to the same set of
constraints. EZLP allows for the entry and subsequent optimization of the

entered model in coordination with alternate objective functions.

20 24

The syntactical rule for the entry of an alternate objective function

is:
ALSO [<objective-function-name>]}: <arithmetic expression>

Notice that the above differs from the ordinary entry of the objective
function in that the keyword "ALSO" is rejuired and -eplaces the keywords
"MIN" and "MAX".

Each model must contain exactly one primary objective function (using
the keywords "MAX" or "MIN"). However, a model may contain any number of
alternate objective fﬁnctions. EZLP operates with énly one objective
function at a time.

Specifying an alternate objecfive function for the purpose of optimi-
zation is accomplished just prior to specifying the method of solution.

This is discussed in Section 3.5 ii.

Entering the Constraints

The constraints associated with normal linear programming model can be
broken down into thfee general classes:

1. Simple arithmetic constraints - those comnstraints which involve

| - more than one variable and oﬁly one relational operator; and

2. Range constraints - those constraints which involve more than one
variable and two identical 6perators; and

3. List constraints - those constraints which involve only one
variable. Constraints of this type usually specify upper or

lower bounds on a particular variable or a list of variables.

;" 21

Simple Arithmetic Constraints

The syntactical riule for the entry of 3 simple arithmetic constraint

ig:

{igp} [<COHStPaint-name>]: <arithmetic expression>

<relational operater> <arithmetic expression>

where <vonstraint-name> ig an cptional user-assigned name for the particular

constraint. The <arithmetic expression> is a linear combination of variable

operator> tales one of the following forms:

1. {=>.or >z} (greater than or equal to)

2. = | (equal to)

3. {=< or‘<=} (less than or equal to).

Note that the colon is required at all times.

If any particular constraint statement is too large to be entered on
one output line continuation of the statement is accomplished by Placing an
ampersand (&) after the last character of the current input line anq con-
tinuing the statement on the next input lipe. There are no limits on the
number of continuations'allowed for a single constraint statement.

The first constraint Statement should begin with the keyword "sT", whiéh
stands for "subject tow, Subsequent constraint statements must begin with
the keyword manpw.

Constraint.statements which ‘nclude the optional <constraint-name>
are easily referenced for editing by this user-assigned name. Unnamed con-
straints are assigned a napge by EZLP so that the user can also reference

and edit these constraints. This ig further- discussed in section 3.4,

Examples of possible simple arithmetic constraints:

2 2§

1. AND CNSTR2: 20WIDTH2 <= 15 - LENGTH
2. AND POWER: TOTAL + 3TIMEAVL> = 16.45

3. AND: U4.3X1 + 6X7 = U.57

Range Constraints

EZLP is designed to accommodate range constraints. The syntactical rule

for the entry of range constraints is:

3§§D£ [<°°n5traint-name>]: <constant-1><inequality-operator-1>

<arithmetic expression> <inequality-operator-2><constant-2>

where the following rules apply:

1. <inequality-operator-1> and <inequality-operator-2> must Le exactly
alike and must be either >= or.<=.

2. 1If the relational operators are >=, then <constant-1> must be
greater than or equal to <constant-2>

3. And, if the relational operators are <=, then <constant-1> must be
less than or equal to <constapt—2>.

Examples of possible range constraints are:

1. AND: 4 <= 3x1 + U4.2x3 - Uxl <= 6.2

2. AND WORKERS: 500 >= 6.3FORCEL - 5.3FORCE2 >= 243

3. AND CONSTRNT: 3.4 <= T+ VAR3 =<8.U6

List Constraints

The syntactical rule for the entry of a list constraint is:

<const
AND [<constraint-name>]: ’ALL [OTHER] VARS}{(rela’cional operator><constant>

)<variable-list> URS

where <constraint-name>> and <relational operator>are described above for
simple arithmetic constraints; and <variable-list> is a list of one or
more variable names, separated by commas (,).

The reserved phrase "ALL VARS" indicates that the bound specified ap-
plies to all variables in the model. The reserved phrase "ALL OTHER VARS"
indicates that the bound specified applies to all variables which are not
included in another list constraint for the same type bound (i.e., upper
or lower),

The reserved word "URS" stands for "unrestricted in sign".

The default option for all variables 1if they do not appear in a

list constraint is "URS". EZLP prints a notification of the unrestricted

variables.
Examples of possible.list cor.straints:
1. AND: X1, X2, X3 <=0
2. AND: ALL VARS > = 0
3. AND: OIL <= 375.43
4. AND: ALL OTHER VARS <=1
5. AND: PROFIT URS
6. AND MYCNSTR: WIDTH,LENGTH >= 0
An example of an entry of a complete model:
MIN: 10.5WIDTH1 + 11.8WIDTH2 - 30LENGTH -
ST CNSTRL: 15LENGTH - 2WIDTHL <=10
AND CNSTR2: 20WIDTH2 + LENGTH < = 15

AND: ALL VARS > = 0

3.4 Editing the Model

After completion of the model entry, the user has the ability to per-

form certain editing functions. These functions are:

24

1. Adding a constraint or objective function
2. Deleting a constraint or objective functiocn
3. Changing a constraint or objective function
4, Listing the model in whole or in part

i) Adding a Constraint or Objective Function

At all times the user has direct aécess to his model. Thus, addition
of a new constraint or objective function to the eﬁa of the current model
may be accomplished by simply typing the appropriate constraint or objective
function stateménts. EZLP will automatically append the new statement to
the previous model.

For example, suppbse that the user has attempted to solve his model and
this attempt resulted in an unboundedness indication. Having determined

that he failed to require nonnegativity he may do so by simply typing
AND: ALL VARS >=0

If one wishes to insert a constraint into the middle of the current

model, this may be accomplished by typing

AFTER

INSERT ;BEFORE

2 <row-name> {model entry statement}

where <model entry statement> is either a constraint or objective function
statement. Examples of the INSERT command are:
| 1. INSERT AFTER ROW#2 AND: X1 + 2X2 <=7
2. TINSERT BEFORE CONST6 AND CONST5: 7 <= X1 <=9

3. INSERT AFTER ROW#3 ALSO: 3X1 + 2POWER

25 ;2:}

ii) Deleting a Constraint or Objective Function

The syntactical rule for the deletion of a constraint is:
DELETE <row-name>

where <row-name> is either the user assigned name, or in the absence of
this name, the row name assigned by EZLP. The assigned name is simply
ROW#n, where n is the number of’the model entry as it was entered. Ex-
‘. amples of assigned row-names are ROW#Y4, ROW#13, and ROW#123.
1. DELETE ROW#13 |
2. DELETE SURPLS

141) Changing a Constraint or Objective Function

The syntactical rule for the changing of a constraint or the objective

function is:

CHANGE < row-namé&> "<stringl>'<string2>"

where <row-rame> must be identical to scme existing row name.
The CHANGE command will replace <stringld oy Cstring2>. The construct
ngstringI>"" will gdelete Lstringl™. _
Examples of possible CHANGE statements are:
1. CHANGE CONSTR1 "ENG"G"
2. CHANGE SURPLS "3.2""

iv) Listing the Model

The syntactical rule for listing the model on the terminal is:

LIST [(row-name)ﬂ

26

()
<&

where the optional <row-name> is included if only a single row is to be
Printed. If <row-name> is omitted the entire model will be printed. Ex~
amples of possible LIST commands are:

1. LIST

2. LIST ROW#5

3. LIST MYCSTR

3.5 Solving the Model

Once the model has been entered and edlted to the user's satisfaction,

the user takes the following steps: B

1. Specifying the Desired Output (this step is optional and, if omitted,
results in only the optimal solution being printed).

2. Specifying the Objective Function to be Optimized (this step is
optional and is only to be used when selecting an altermate ob-
Jective function).

3. Specifying the Method of Solution.

i) Specifying the Desired Qutput

If the user wishes to obtain more output than the optimal solution he

May use the PRINT command.

The syntactical rules for the PRINT command are:

VARS
BASIS :
PRINT [INITIAL] [FINAL] {TABLEAU [.<trequency count>]
ALL
NONE
This statement concerns the output on the terminal of information
directly related to the optimization process. The following descriptions

apply:

27

Ji

VARS:

BASIS:

TABLEAU:

ALL:

NONE:

prints the name and value of each nonzero primal variable;

and the name and value of each nonzerb dual variable.

prints the names of the variables in the basis and the objective
function value.

prints the tableau.

prints all of the above.

prints only the optimal solutoin.

<frequency-count>--the PRINT statement is executed every <frequency-count>

INITIAL:

FINAL:

iterations. If this optional clause is omitted, the PRINT
statement will be execu.2d after every iteration unless the
keywords INITIAL and/or FINAL are used. When ALL or NONE

are present <frequency-count> is ignored.

prints the requested information only for the initial iteration.
prints the requested information only for the final iteration.

(Note that INITIAL and FINAL may be used together.)

Examples of possible PRINT commands are:

1. PRINT VARS 5

2. PRINT ALL

3. PRINT BASIS, VARS,3

4, PRINT FINAL TABLEAU

5. PRINT INITIAL, FINAL BASIS

11) Specifying the Objective Function to be Optimized

In the‘event that the user has entered alternate objective functions,

he may wish to specify the name of the objective function to be optimized.

If this is not done, EZLP defaults to either the original objective function

entered with the model or the last objective function name specified in a

prior ALTOBJ statement. The syntactical rule for the specification of the

objective function command is

28

o
oD

MIN

MAX} <pbjective-function-name>

_ ALTOBJ {

If an ALTOBJ command has been previously given, then to determine the

row name of the current objective function being used, the user should type
ALTOBJ STATUS

iii) Specifying the Method of Solution

The specification of the method of solution triggers an attempt by
EZLP to solve the entered model and produce output as specified in 3.5.i.

The syntactical rule for specifying the method of solution is:

PRIMAL
USE [#ATIONAL] [UPPER] { DUAL }

Specifying'RATIONAL keeps all data in rational form, i.e. "0.5" would
become "1/2". Sinc% the RATIONAL option requires storing both a numerator
and a denominator métrix, the maximal allowable problem size is cut in
half under this option. Further, all coefficients and constants muét be
entered as integers.

Specifying UPPER before PRIMAL or DUAL will cause the lower-upper
bounded primal or dual algoritﬁm to be used.

Examples of possible USE commands are:

1. USE PRIMAL

2. USE UPPER DUAL

3. USE RATIONAL PRIMAL

4. USE RATIONAL UPPER PRIMAL

29

3.6 Sensitivity Analysis of the Results

Once an EZLP model has been optimally solved by any of the USE commands,
the user has the option of requesting a sensitivity analysis of the cost
coefficients or the right~hand-side constants. The syntax of this command

is:

RHS < name > 1
RANGE 0OBJ or OBJFCN
ALL ALL ‘

The effect of the RANGE command is the determination of lower and upper
limits on various model parameters which maintain the current (optimal)

basis. Examples of possible RANGE commands and their effects are:

COMMAND EFFECT
1. RANGE RHS ROW#l Provides lower and upper sensitivity
limits for the right-hand-side con—
stant for the ROW#l constraint.
2. RANGE OBJ X22 Provides sensitivity information for
the cost coefficient for variable ¥2?

in the objective.

3. RANGE OBJ, ALL Provides sensitivity information for
all objective function coefficients.

4. RANGE ALL Provides sensitivity information for

all objective function coefficients
and all right-hand-side constants.

If a constraint specified in the RANGE command is, itself, a range

constraint, then separate sensitivity information will be printed for the

lower constant and the upper constant of the constraint.

30

O
>,

3.7 Restarting and Terminating EZLP

At the completion of any model solution the user has three options:

1. Editing the current model and re-solving it,

2, Starting fresb with a new model, or

3. Terminating EZLP

The first of these options is accomplished by simply entering the ap-
propriate edit statements (see 3.4) followed by the appropriate USE commands
(see 3.5).

The second of these options is accomplished by the RESTART command.

The syntax of this command is:

RESTART
The RESTART command re-initializes all areas. The effect of this command
is to clear out the current model and print options.

Terminating EZLP is accomplished by the END command. The syntax of

this command is:

3.8 The HELP Command

This command allows the user, after he has started the program, to
obtain a short set of instructions on how to solve simple LP problems, The
user,' at any point in his run, may request additional help in. the following

manner:

HELF [<keyword>]

1

where the optional clause keyword refers to abtreviated instructions con-

cerning a particular area of interest. A list of keywords is:

General Keywords:

BRIEF
EDIT
EXAMPLES
- FILES
KEYWORDS

SOLVING

MODEL

(briefly describes the general features of EZLP)

(describes edit commands)

(presents examples of EZLP models)

(discusses extermal file handling capabilities)
(gives the current list of keywords)

(indicates the methods and options for optimization
and discusses output options)

(discusses model entry syntax)

Specific Keywords:

ADD

ADVANCED

ALTOBJ

CHANGE

CONT

CONS

DFELETE

LIST

NAMES

OBJ

PRINT

RUN

SAVE

TITLE

USE

(indicates how to add a constraint or objective)
(presents an advanced example)

(indicates how to specify an alternate objective
function for optimization)

(indicates how to change a constraint or objective)
(discusses the continuation of model statements)
(describes the options for inputting constraints)
(indicates how to delete a comstraint or objective)
(discusses tb- list options for model display)
(provides a definition of acceptable variable names)
(discusses objective functions)

(discusses the output print options)

(describes procedure for inputting a model from an
external file)

(discusses procedure for saving a model)
(discusses the options for method of optimization)

(provides a definition of acceptable variable names)

32

g
(32N

e

If the keyword is omitted, EZLP will print a short description of how

to ghtain additional information on the operation of EZLP.

3.9 External File-Handling Capabilities

Tﬁere are certain situations wherein the user wishes to eliminate input
effort by storing all or part of his input on a mass storage device. EZLP
provides for this capability with two commands: the RUN command and the SAVE
command.

i) The RUN Command

At any point in the execution of EZLP, the user may elect to refer
EZLP to a mass storage file for subsequent input. This input must be in
the form of 80 character source records and must be accessible sequentially

by EZLP. The syntax of the RUN command is
RUN <file-name®>

1f the RUN command is inputted, EZLP will read the model directly from
the working file <file-namé>, print a question mark and await the next

command.

ii) The SAVE Command

Upon completion of model entry, the user may elect to save the input

model in source form in a mass storage file. The syntax of the SAVE

command is
SAVE <file-name>

If the SAVE command is inputted, EZLP will write the current model into the

working file <file-namé>, print a question mark and await the next command.

13 37

Chapter 4: TERMINAL SESSIONS

4.1 Introduction

This chapter contains several examples of EZLP used to solve normal

linear programming problemé. These examples include:

1, Simple example - getting on, solving a simple
' problem, and getting off.

2. Advanced example - naming rows, =diting the model,
requesting additional output,
and responding to an error in
syntax.

3. Transportation problem example - two sources and two sinks to
illastrate multiply-indexed
variable names and the treat-
ment of primal redundancy.

4, Branch and Bound example - assignment of titles to optimal
solution output in addition to
using the editing features of
EZLP to easily solve a small
integer programming problem
using the Branch and Bound

method.

5. Sensitivity Analysis - ranging applied tc all constraints
and all variables of a simple
example. -

34

38

4.2 Session 1: A Simple Example of EZLP

EZLP — VERSION 9/17/76 ‘
- TYPE HELP IF YOU HAVE QUESTIONS» OTHERWISE PROCEED

? MAXS 3X1+2X2 .
7 ST: S5X143%2 <= 19 :
7 AND: X1-X2 >= 3
7 AND: ALL VARS >= 0
7 USE RATIONAL PRIMAL '
%% NO UNRESTRICTED VARIABLES IN THE HODEL *X

x% VARIABLE LIST XX

X1 X2

SOLUTION

OBJECT HMAXIMIZE ROUWZ1
Zz 23/72
ITERATIONS 2 :

VARIABLE SECTION

NAME . ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED CDSf

X1 72 0 pog INF . 0
X2 ' 172 o . pOS INF 0

CONSTRAINT SECTION

NAME SLACK ACTIVITY DUAL PRICE
ROW2 : 0 5/8

ROWES o : -1/8
7 END

,223 CP SECONDS EXECUTION TIME

> 39

RHS VALUE
172 .
7/2

4.3 Session 2: An Advanced Example of EZLP

EZLP - VERSION 9/17/76 .
. TYPE HELF IF YOU HAVE QUESTIONS: OTHERWISE PROCEED

MINS 4.3 A - 5.6 B ++7C
ST: A+ C =8B+ 7

AND BOUNDA? A <+ C + 7
CHANGE BOUNDA *"<+°<="

AND BOUNPA: A <=C + 7
AND BOUNDB: 1 <= B <= 6
AND: A>= 0 '

7 USE UFPER PRIMAL

T Y

o

MIN: 4.3 A — G.6 B +i 7C

1
FATAL ERROR # 1 ¢ ARITHMETIC OPERATOR IN WRONG PLACE

%% UNRESTRICTED VARIABLES %X

c
FATAL ERRORS IN THE MODEL.,
FLEASE EDIT THE MODEL
INPUT WILL BE RECOMPILED
? LIST
ROW#1
MIN: 4.3 A - 5.6 B ++ 7 C
ROWE2
ST A+ C=B+7
BOUNDA
AND BOUNDAS A <= C + 7
BOUNDB . _
, AND BOUNDB: 1 <= B <= &
ROWES
ANDS A>= 0

7 CHANGE ROW#1 °"++°"+°

. MIN: 4.3 A-S5S.,6B+7C
? PRINT FINAL ALL

7 USE UPPER PRIMAL

%% UNRESTRICTED VARIABLES *%

%% VARIABLE LIST *x

36

PHASE 2 ITERATION - 1 CURRENT OBJ VALUE = ,3015E+02°
PRIMAL NON-ZERO VARIABLES

A BASIC WITH VALUE .7S00E+01
B NON-BASIC WITH VALUE .1000E+01)
c BASIC WITH VALUE +5000E+00

DUAL NON~ZERO VARIABLES
ROWE2 DUAL = S565E+01
BOUNDA DUAL = -.135E+01
THE CURRENT BASIC VARIABLES ARE -
A

>
CURRENT TABLEAU -

RHS A B C SLK$3
ROWE1 ~+302E402 0. +500E-01 O. +135E+01
c +S00E+00 0. © ~,500E+00 +100E+01 —.SO00E+00
A +7SO0E+01 +100E+01 -+500E+00 0. +S00E+00
UPDATED OBJECTIVE FUNCTION ROW o '

0. ~.500E-01 0. -+135E401

SOLUTION

OBJECT MINIMIZE ROW%1
z - +3015E402
ITERATIONS 1

VARIABLE SECTION

— i SO o B S e S S A S e GO S B S 4 U e T W S 4 4

NAME ACTIVITY LEVEL LOWER BOUND UFFER BO&ND REﬂUCED CosT
A | +7500E+01 0. +1000E+22 O,

B }1000E+O; +1000E+01 «46000E+01 ._ +5000E-01
c ‘ +,5000E+00 = -—.1000E+22 +1000E+22 0.

C ONSTRAINT SECTION

NAME . SLACK ACTIUITY DUAL PRICE RHS VALUE
ROWE2 0. +5450E+01 +S000E+00
BOUNDA 0. ~+1350E+01 .7500E+01

? END

+400 CP SECONDS EXECUTION TIME

37 ' .

1i

4.4, Session 3: A Transportation Problem Examﬁle

EZLP - VERSION 9/17/76 .
. TYPE HELP IF YOU HAVE QUESTIONSs OTHERWISE PROCEED

? TITLE TRANSFORTATION PROBLEM - SOLUTIGN VIA EZLP.
7 MAX TRANSOBJ? 2X1s1 + 3X1,2 + 4X2,1 + 2X2,2 :
7 ST SUPPLY1: X1s1 + X1,2 = 3

7 AND SUPPLY2? X251 + X2+2 = 4

7 AND DEMAND1: X1s3 + X251 =9

T AND DEMAND23 X1,2 + X2,2 =2

? AND? ALL VARS >= 0

? PRINT BASIS

7 USE RATIONAL PRIMAL

*% NO UNRESTRICTED VARIABLES IN THE MODEL XX

X% VARIABLE LIST %%

X1y1 X1y2 X251 X2,2
PHASE 1 ITERATION - 1 CURRENT OBJ VALUE = 14
THE CURRENT BASIC VARIABLES ARE - - :

ART#2 ARTE3 ART#4 ART45
PHASE 1 ITERATION - 2 CURRENT OBJ VALUE = 8
AT THIS ITERATION, X1,1 ENTERED THE BASIS AND ART#2 LEFT
THE CURRENT BASIC VARIABLES ARE - -

X1s1 ART$3 ART24 ART$5
PHASE 1 ITERATION - 3 CURREi.7 OBJ VALUE = 4
AT THIS ITERATION» X2»1 ENTERED THE BASIS AND ART#4 LEFT
THE CURRENT BASIC VARIABLES ARE ~

X1r1 ART#3 X2s1 ART4S
PHASE 1 ITERATION - 4 CURRENT OBJ VALUE = 0
AT THIS ITERATIONy X1,2 ENTERED THE BASIS AND ART#3 LEFT
THE CURRENT BASIC VARIABLES ARE -

X1,1 X1,2 X2y1 ART#S
PHASE 2 ITERATION - 1 CURRENT OBJ VALUE = 24
THE CURRENT PASIC VARIAELES ARE -

X1s1 X1,2 X2,1 ART2S

i
38

TRANSFORTATION PRORBLEM - SOLUTION VIA EZLF.,

SOLUTTION

e s e s O S iyt e s D g O O S

OBJECT MAXIMIZE TRANSOBJ
Zz . 24
ITERATIONS 1

VARIABLE SECTION

NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1s1 1 0 - POS INF 0
X1s2 2 0 POS INF 0

X2,1 4 0 PPS-INF 0

CONSTRAINT SECTION

NAME SLACK ACTIVITY DUAL PRICE RHS VALUE
SUPPLY1 0 : 3 1
SUPPLY2 0 5 2
DEMAND1 o -1 4
DEMAND2 0 0 0
? END 4

+413 CP SECONDS EXECUTION TIME

4.5 Session 4: A Branch and Bound Example

R

- R - e

If we consider the integer program

Max X -+X2
ST X, + 3%, <9

o
N

3 + X, <9

X, > 0 and integer

o 1 2 3\ X

Using EZLP, we can coustruct the following Branch and Bound tree:

= 9/4
2% =3
L=
o
X, = 3 (fathomed by
‘ Node 2)
X* = 0
) =

(fathomed by Node 2)

4.6 Session 5: A Sensitivity Analysis Example

EZLP - VERSION 9/17/76 ‘
TYPE HELF IF YOU HAVE QRUESTIONS, OTHERWISE PROCEED

'TITLE NODE 0 - SOLUTION VIA EZLF

MAXS X14X2 :

ST X143X2 <= 9

ANDS 3X1+X2 <= 9

AND: ALL VARS >= 0 , N
USE RATIONAL UPPER PRIMAL . -

)

%% NO UNRESTRICTED VARIABLES IN THE MODEL %x

X% VARIABLE LIST %X
X1 : X2

NODE O - SOLUTION VIA EZLP

SOLUTION

0BJECT MAXIMIZE ROWE1
z : - 9/2
ITERATIONS 3

VARIABLE SECTTION

NAME - ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST
X1 9/4 0 "POS INF o
X2 . 9/4 0 ' POS INF o

CONSTRAINT SECTION

NAME SLACK ACTIVITY DUAL PRICE RHS VALUE’
ROWE2 0 | 174 974
ROWS3 0 1/4 9/4

T AND? Xi<=2 :
? TITLE NODE 1 - ADDITION OF ONE EOUND ON X1
7 USE RATIONAL UPFER FRIMAL
%% NO UNRESTRICTED VARIABLES IN THE MODEL %%

%% VARIABLE LIST *X

X1 X2

NODE 1 - ADDITION OF ONE ROUND ON X1

SOLUTTION

ORJECT MAXIMIZE ROWS1
Z 13/3
ITERATIONS 3

VARIARLE SECTIGON

——— S S ot i e e 7 i S e e S o da S St e S S e Sai o S D St St

NAME ACTIVITY LEVEL LOWER EROUND UPFER ROUND
X1 2 0 2

X2 7/3 2 . POS INF
SLK#3 2/3 0 FOS INF

CONSTRAINT SECTION

REDUCEDR COST
2/3
0

0

NAME - SLACK ACTIVITY DUAL PRICE RHS VALUE
ROWE2 0 - . 1/3 _ 7/3

/
ROWE3 2/3 0 2/3

? AND?! X2 <= 2
? TITLE NODE 2 - UFFER EOUNDS ON X1y X2
? USE RATIONAL UFFER FRIMAL - '
x¥ NO UNRESTRICTED VARIAELES IN THE MODEL *X

X% VARIARLE LIST kX
X1 X2

NODE 2 - UFPER ROUNDS ON X1, X2

SOLUTION

ORJECT MAXIMIZE ROW#1
Z 4 _
ITERATIONS 3

' VARIAERLE SECTION

NAME ACTIVITY LEVEL LOWER EOUND UFFER ROUND

X1 2 0 . 2
X2 2 0 y 2
SLK#2 1 0 POS INF
o SLK#3 1 o FOS INF
- 42

AN
<

REDUCED COST
i

1
0
0

t CONSTRAINT SECTION

NAME SLACK ACTIVITY DUAL PRICE RHS VALUE
ROWS2 i 0 1
ROWE3 1 0 1

? LIST
ROW#1
MAXS X1+X2 .
ROWE2 _ : -
ST: X143%X2 <= 9
ROWE3
AND: 3X14X2 <= ¢ : . .
ROWE4 ' '
. AND: ALL VARS >= 0
ROW$S .
AND? X1<=2
ROWES
AND? X2 <= 2
7 CHANGE ROUW$6 °®<= 2°>= 3°
AND: X2 >= 3
2 TITLE NODE 3 - LOWER BOUND ON X2» UPFER BOUND ON X1
% USE RATIONAL UPPER PRIMAL :

%% NO UNRESTRICTED VARIABLES IN THE MODEL %X

%%k VARIABLE LIST *X
. X1 X2

NODE 3 - LOWER BOUND ON X2, UPPER BOUND ON X1

SOLUTION

OBJECT MAXIMIZE ROWE1
3

Y4
ITERATIONS : 2

VARIABLE SECTION

NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X2 3 A 3 POS INF 2
SLK#3 6 0 POS INF 0

NAME SLACK ACTIVITY LUAL FRICE RHS VALUE
ROWE2 0 1 0
ROW%3 -] 0 é

43

? DELETE ROUW#é
7 LIST ROW#S
ROWES
AND: X1<=2
? CHANGE ROW35 °<{=2">=3"
ANDS X1>=3
% TITLE NODE 4 - LOWER EOUND ON X1 (FINAL NODE)
? USE RATIONAL UFFER PRIMAL

%X NO UNRESTRICTED VARIARLES IN THE MODEL XX

%X VARIAELE LIST XX
X1 X2

NODE 4 - LOWER BOUND ON X1 (FINAL NODE)

SOLUTTION

v o S ot . i gt St T o G it

OBJECT MAXIMIZE ROW#1
z 3

ITERATIONS 3

VARIARBRLE SECTION

NAME ACTIVITY LEVEL LOWER EOUND UFFER BOUND REDUCED COST
X1 3 3 . POS INF 2
SLK#2 6 . 0 POS INF 0

CONSTRAINT SECTION

NAME SLACK ACTIVITY puaL FRICE RHS VALUE
ROW$2 é 0 6
ROW#3 0 1 0

? LIST
ROW#1
MAXS X1+X2
ROW#2
ST: X143X2 <= 9
'ROW$3 .
AND: 3X1+X2 <= 9
ROWE4
: AND: ALL VARS >= 0
ROW#5 .
‘ ANDIS X1>=3
? END ,
1.152 CP SECONDS EXECUTION TIME

44

1

EZLP - VERSION 12/6/79 - RAN
TYFE HELP IF YOU HAVE QUESTI
7 MAX3 3X144X2
7 ST! X1<=3
7 ANDS X2<=S
7 AND! X14X2<=7
7 AND! X1»X2>=0
7 USE UPPER PRIMAL
VARIABLE LIST -
X1 X2 .
ND UNRESTRICTED VARIABLES IN THE MODEL

TEST
’

GE
ONSy OTHERWISE PROCEED

SOLUTION

OBJECT MAXIMIZE ROWS1
z +2600E4+02
ITERATIONS 3

NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST
X1 +2000E+01 0. . +3000E+01 0.
X2 +S000E+01 0. +S000E+01 +1000E+01

CONSTRAINT SECTION

NAME SLACK ACTIVITY DUAL PRICE RHS VaALUE
ROW$4 0. +3000E+01 +«2000E+01
T RANGE ALL

RANGE INFORMATION

CONSTRAINT NAME Low CURRENT HIGH
ROWE4 .50000E+01 +70000E+01 .BOO0OE+01
VAR TYPE MAME - LOW CURRENT HIGH -
BASIC ROWE4 X1 0. +30000E+01 +40000E+01
NON-BASIC X2 .30000E+01 .40000E+01 .10000E+21
NON-BASIC SLK#2 -.10000E+21 0. +30000E+01
7 END . : .

+320 CP SECONDS EXECUTION TIME

'

45

APPENDIX A

A SIMPLIFIED USER'S

MANUAL FOR EZLP

The first three pages of this appendix serve as a reasonable
handout for most beginning users. The remainiﬁg nine pages pro-
vide more detailed discussion of the topics covered in the first
three pages. By employing the "HELP" command the user can obtain

any or all of this information during execution of EZLP.

1

)

46

EZLP: AN INTERACTIVE COMPUTER PROGRAM DESIGNED TO SOLVE

STUDENT~ORIENTED LINEAR PROGRAMMING PROBLEMS.T

l: General

The first word of éach line is a keyword, and indicates the function
of the input line. The keywords are "MIN" or '"MAX" for the objective
functibn, “"ST" for the first constraint, followed by "AND" for each addi-
tional constraint. Each name (e.g. variable name) consists generally of a
combination of up to 8 alphabetic and numeric characters with the first

character being alphabetic.

Model Entry
ﬁodel entry statements are composed of a keyword, an optional name,
a mandatory colon, and either an objeccive function or a constraint.
Example of a model entry:
MAX: 2PROD1 + 3PROD2 -~ 4 COST
ST: PROD1 + PROD2<=150

AND: COST >= 5
AND: ALL OTHER VARS >= O

Editing
The input model can be edited by "DELETE" and "CHANGE" statements.
Adding a constraint is accomplished by simply typing the constraint.
Examples:
AND NEWROW: 5COST-PROD1°=20.23

CHANGE NEWROW "PROD1"PROD2"
DELETE NEWROW

+EZLP was developed in the School of Industrial and Systems Engineering,
Georgia Tech, Atlanta, Georgia 30332 under NSF grant #SED75-17476,
John J. Jarvis, project director; Frank H. Cullen and Chris Papaconstadopoulos,
research assistants. '

47

o
ot
/

EZLP internally numbers the input model lines and if the optional name
before the colon is omitted during model entry, a name of the form
"ROW#D'' (e.g., ROWH#6) 1s assigned as a default.

The model can be listed either in total or 6ne line at a time as
follows:

LIST (THE ENTIRE MODEL)
LIST CONSTR2 (LINE"CONSTR2" ONLY)

Continuation of the input line iz achieved by placing an ampersand (&)
after a complete name. Example:

AND: HEAT -~ 2,.34W0OO0D &
-6.45POWER>=16.4

Specifying Output

EZLP always outputs the final optimal solution. Other output can

be requested after every iteration or after every n iteration. Examples:

PRINT BASIS 5 (The names of the basic variables every
fifth iteration)
PRINT TABLEAU, 2 (The tableau at every other iteration)
PRINT VARS (The value of primal and dual variables)
PRINT NONE (Resets print specs to only final solution)
- PRINT INITIAL, FINAL TABLEAU
PRINT ALL (Prints everything)

Specifying the Method of Solution

After model entry, editing, and output specification, the USE
statement triggers the optimization. Examples:

USE PRIMAL
(Ordinary simplex method)
USE RATTONAL PRIMAL
{Ordinary simplex method with rational arithmetic)

USE UPPER DUAL
(Lower-upper bounded dual simplex method)

USE RATIONAL UPPER PRIMAL
(Lower-upper bounded simplex method with ratiomal

arithmetic)

Upon completion of the solution attempt, EZLP returns to the editing

phase.

48

Sensitivity Analysis

After executing any of the USE commands to obtain an optimal solu;ion,
the user may obtain sensitivity information by use of the RANGE command.
Application of thé'range command determines lower and upper limits on
the objective coefficients and/or right-hand-side constants which keep
the current optimal basis.

Examples:
RANGE RHS . ROW#6
RANGE OBJ X54

RANGE OBJ ALL
RANGE ALL

Restarting and Stopping EZLP

1f another model is to be entered from scratch, type "RESTART", and
EZLP will re-initialize the model file area. If EZLP is to be terminated,
type “END".

File-Handling Capabilities

EZLP has the ability to use external mass storage files for both
input and output. Information on these options can be obtained by con-
sulting Section 5 "FILE-HANDLING'".

Simple Example of a Complete EZLP Run

MAX: 2X1+3X2+4.5X3

ST: X1+X2 <=75.3
AND: X2 +X3 =45
AND: ALL VARS >=0

USE PRIMAL

END

The Heip Command

During execution EZLP permits the user to obtain specific information
concerning its use. The user may obtain a short introduction to EZLP and
its use by typing

HELP

If the user desires more specific instructions, he may type "HELP<keyword>",
(e.g., HELP MODEL) where the acceptable keywords are:

General keywords

EDIT EXAMPLES FILES KEYWORDS
MODEL SOLVING BRIEF

Specific keywords
ADD ADVANCED CHANGE CONT
CONS DELETE 0BJ PRINT
RUN * SAVE TITLE USE
ALTOBJ NAMES LIST

50

2: 'The Model

Providing a Title for the Model

EZLP permits the input of a title for the model. This title will
appear just tefore the optimal solution is printed. The title command
consists of:

1. The keyword “TITLE"
2. The title text
Example:

TITLE THIS IS MODZL 4

Variable and Constraint Names

In entering the model, the user has the ability of assigning his

own names to the variables and the constraints. These names must be from
one to eight characters long, bégin with an alpha character, and contain
no special characters. A variable name may contain a comma provided that
the comma separates two numerics. Spaces are not allowed within names.
EZLP generates constraint names for unnamed rows and variable names for
slack and artificial variables. These take the form:

ROW#n - fof generated constraint names

SLK#n - for generated slack variable names

ART#n - for generated artificial variable names

Continuation of Lines

In the event that an input line exceeds 80 characters, continuation
is accomplished by placing an ampersand (&) after a complete name and
resuming input on the following line.

Objective Functions

EZLP allows for the specification of two kinds of objective func-
tions: primary and alternate. For the simple model there usually will
not be an alternate objective function. In essence, this concept allows
the user to enter more than one objective function and optimize the

various objective functions subject to the same constraints during the

5
55

course of the interactive session.
Primary objective function - The entry of the objective function
consists of:
1. The keywords 'MAX", "MIN"
2. An optional objective function name
3. A mandatory colon
4., And a linear combination of user-defined variable names.
If tke optional objective function is omitted, EZLP will generate a name
of the form ROWi#n for use in editing and output. Examples:
MIN: 2X1 + 2X2 + 3X3
MAX MYOBJ: 3.54 COLUMN1-4.543COLUMN2 + 6.25.
MINIMIZE: 5.76 X1,2 - 4.33 X1,3 + 5.45 X2,1 & - 6.43 X2,3
Alternate Objective'Functions - Alternate objective functions are
entered in the same way as the primary objective function, excepc that
the keyword "MIN" or "MAX" is replaced by the keyword "ALSO". The use of
an alternate objective functicn is discussed in Section 4 '"Solving the

Model". Examples:

ALSO: 2X1 - 3X2 - 4X3
ALSO 0BJ2: 3,43 COLUMN1 - 4.511COLUMN2

Constraints
- Constraints are divided into three generic types.
1. Simple zrithmetic constraints
2. Range constraints
3. List constraints

Each is discussed below.

Simple Arithmetic Constraints

A simple arithmetic constraint consists of

1. The keyword "AND" or "ST"

2. An optional constraint name

3. A mandatory colon

4. A linear combination of user—-defined variable names

5. A relational operator (=,<=,>=)

6. A second linear combination of user-defined variable names.

52

c
ol

It is not allowable to have the same variable name in both 4 and 6 above.

Examples:

AND: X1+X2 =7
AND MYCSTR: 5X1 + 8.3 X2 >= X3 +4

Range Constraints

EZLP allows the entry of bounded arithmetic expressions (range
constraints). Range constraints consist of the following:

The keyword "AND" or "ST"

An optional user-defined constraint name

A mandatory colon

A constant (constant=-1)

An inequality relational operator (>= or <=)
A linear combination of the user-assigned

An inequality operator (>= or <=)

A constant (constant-2)

o~ SN

The restriction on range constraints are that the two inequality
operators must be identical and that the two constants must be consis-
tent. (i.e. if the inequality operators are <=, constant-1 must be
<= constant-2).

AND: & <= 3X1+4.3X2<= 6.2
AND BOUND1: 7.2>= 3X2+HEAT - 5POWER>= 5

List Constraints

EZLP allows bounds for collective groups (or lists) of user-defined
variable names to be specified in 1list constraints. The variable lists

can be either explicit or implicit.

Explicit List Constraints
(These constraints consist of:}

1. The keyword "AND"

2. An optional constraint name
3. A mandatory colon

4. A list of variable names

5. A relational operator

6. A constant

53

1
~J

The variable list is simply a list of variable names separated by
commas. 1If the "UPPER" option is not specified in the "[JSE" statement,
those list constraints in which the censtant is not 0 are considered as
explicit rows in the simplex tableau. Examples:

AND: X1,X2,X5 >=0
AND UBND: HEAT, POWER, LIGHT <=100.3
AND: MYVAR, YOURVAR URS
(Here URS = unrestricted in sign and takes the
place of 5 and 6 above.)
Bounded lists are also permitted, for example

AND: 4< = X1,X2,X5< =7

Implicit List Constraints

Special abbreviations are available to describe either all variables
or variables not appearing in another list constraint. Examples:
AND: ALL VARS>

AND: ALL VARS<
AND MYBOUND: ALL OTHER VARS >= 3

o
= O

The phrase "ALL VARS" is a synonym for 1,11 variables", while the phrase
"ALL OTHER VARS" refers only to those variables not included in some

earlier list constraint,

54

oy
Co

3: Editing the Model

Adding Rows

New rows may be either appended to the current modei file or inserted
within the current model file.

a, Appending rows to the end of the model. This is easily accomplished
by simply typing in the row exactly as it was donevduring model entry,
Example:

AND: X14X2 <= 7
ALSO: 3.5X1+4+4.6FLOW1

b. Insertion of rows within the model file - Rows may be inserted

within the model file by simply typing in:

INSERT AFTER <old-row> <model entry statement>
or

INSERT BEFORE <old-row> <model entry statement>
For example, if the current model file contained:

MIN OBJ: 2X143X2

ST CON: X1+X2<=3

AND: ALL VARS >=0
an entry of

INSERT AFTER CON AND CON2: X142X2 >=1
would result in a model file of

MIN OBJ: 2X1+3X2

ST CON: X1+X2<=3

AND CON2: X1+2X2 >=1

AND: ALL VARS >=0

Deleting Rows

The deletion of a row is accomplished by entering DELETE <row name>
where <row name> is the user-assigned name, or in ihe absence of such,
takes the form "ROW#n". If a delete is followed by the addition of a
row having the same name, the new row is inserted in the model file in
the same piace. Examples:

DELETE MYCSTRNT
DELETE ROW#7

55 &y

an entry of
CHANGE ROW#5 "'3"X2+4"
would result in ROW{#5 becoming
AND: 2X1+X2+4X3<=5
whereupon an entry of
CHANGE ROW#5 '"'3<""
would yleld ROWHS as
AND: 2X1+X2+4X=5
Changes involving row names and/or continuation characters (&)
are illegal. Changes of this type should be accomplished by a "DELETE"

followed by retyping the entire row.

Listing the Model

The 1list command allows the user to list the current contents of the

model file in total or in part. Two options are available:

1. LIST (1ists the whole model)

2. LIST <row name> (1ists only row <row name>)
Examples:

LIST

LIST ROWi#5
LIST CONSTR3

Changing Rows

To change a character string in a Specified row (say ROW#5), the
following 1s entered
CHANGE ROW#5 "<stringl>"<string2>"
The §ouble quote (") is the only allowable delimiter. For example if
ROW#5 was originally

AND: 2X1+3X3<=5

56

[ATa

4: Solving the Mcdel

Specifying Alternate Objective Functions

The user may specify an alternmate objective function to be opti-
mized by typing:
ALTOBJ MIN <row name>
or
ALTOBJ MAX <row name>
where <row name> is the name of an objective function in the model.
Examples:

ALTOBJ MAX ROWi#2
ALTOBS MIN OBJ4

This objective function specificatioﬁ remains in forcé until such time
as a "RESTART" or another "ALTOBJ" command is entered.
The user may identify the current specified alternate objective
function row name by typing:
ALTOBJ STATUS

Specifying Output

The PRINT command is used to specify the type and frequency of out-
put to be printed during the optimization process. Parameters which
can be used are:

1. VARS prints the values of the non-zero primal

and dual variables in the current tableau.

2. BASIS prints the current basic variables and
denotes entry and exit activities

3. TABLEAU prints the current tableau and the updated
objective function row

4., ALL Synonym for "VARS,BASIS,TABLEAU"

Parameters 1-4 can optionally be followed by an integer indicating the

frequency with which the output is to be given. If omitted, the default

value is 1 (output after every iteration). Examples:

PRINT TABLEAU, BASIS
PRINT VARS 5
PRINT ALL 4

57, 61

Initial and/or final tableau output can also be indicated. In this case,
the integer described does not apply and is ignored if present. Examples:
PRINT INITIAL TABLEAU

PRINT FINAL ALL
PRINT INITIAL, FINAL BASIS TABLEAU

1f print specifications are to be altered, the proper action is to enter
PRINT NONE
which resets print parameters to the default mode.

Specifying the Method of Solution

The USE command is entered when an attempt to solve the input model
is to be made. The following parameters are legal (the order of the

parameters is important).

1. RATIONAL - (Optional) Rational arithmetic is to be used.
Rational arithmetic is 3 to 4 times slower
than real arithmetic, and can only solve
problems half the size.

2. UPPER - (Optional) Lower—upper bounded simplex is
to be used. List constraints are implicit

in the tableau.

3. PRIMAL
or DUAL - A specification of the type simplex method
to be used. "FRIMAL" refers to the simplex
method and "DUAL" refers to the dual simplex
method.

Examples:
USE RATIONAL PRIMAL
USE DUAL
USE UPPER DUAL
USE RATIONAL UPPER PRIMAL
When possible, "UPPER" should be specified for dual simplex, as this im-—

proves the chance of obtaining a starting dual feasible basis.

58

5: Sensitivity Analysis

EZLP contains capability for sensitivity analysis of an optimal solu-
tion of a model. This is accomplished by use of a RANGE command. The
format of this command is:

1. The keyword "RANGE".

2. User defined options for ranging: "RHS", "OBJ" or

"OBJFCN", "ALL".

3. Optioni? uver defined variable names or row names, Or the

. optional modifier "ALL".
EXAMPLES:
RANGE RHS ROW{ &
RANGE 0BJ
RANGE 0BJ X55
RANGE 0BJ ALL

RANGE ALL

59

6: File-Handling

Input From an External File

The "RUN" command enables the user to use an external file as a
store of input statements and commands. Upon entering the command
RUN <file name>, EZLP opens the local file <file name> and references
this file for all subsequent input commands, until such time as an "END"
statement is encountered or an end-of-file condition on <file name> exists.
If an end-of-file is encountered, control returns to the live user. The
form of the file should be 80 characters per line.

Output to an External File

The "SAVE" command enables the user to place the current concepts
‘of the model file into a local file. The form of this file is 80
characters per line and editable by the system editor or usable as
input to 2 later execution of EZLP. ENTER:

SAVE <file name>

“ 64

6: Batch Processing

EZLP can be used in a batch environment in much the same way that
it is used interaccively. The sole restricﬁion is that the command BAT’
must be the first entry in the input deck to EZLP. Omission of this
command can result in an infinite print loop at job termination time.

Aslo the command END must be the last entry in the input deck to EZLP.

61 55

7: Advanced Example

TITLE ** ADVANCED MODEL *#*

MAX OBJ: 2INTERST1+3,24INTERST2-5CAPITAL

ALSO OBJ2: 3.4INTERST1+2,54INTERST2-5 CAPITAL

ST CONSTR1: INTERST1-4INTERST2 = 108

AND MINCAP: CAPITAL> = 4.6 INTERST1 + 5.7INTERST2

AND MAXCAP: &4 CAPITAL< = 10345.65 - 3.224 INTERSTL &
~5.231 INTERST2

AND CAPBNG: 800 <=CAPITAL <= 10000

AND INTBND: INTERST1, INTERST2 <=10825

AND NONNEG: INTERST1, INTERST2 >= 0

CHANGE MINCAP “4.6"4.76"

CHANGE INTBND "825".825"

PRINT ALL

USE UPPER PRIMAL

DELETE NONNEG

AND NEWCSTR: INTERST2 >= 1.342

AND UBND: INTERST1, INTERST2,CAPITAI, <= 100000.3

ALTOBJ MAX 0BJ2

PRINT FINAL TABLEAU, BASIS, VARS

LIST

USE UPPER DUAL

END

62

o
2

