
DOCUMENT RESUME

BD 201 304 IR 009 1B6

AUTHOR Jarvis, John J.: And Others
TITLE EZLP: An Interactive Computer Program for Solving

Linear Programming Problems. Final Report.
INSTITUTION Georgia Inst. of Tech., Atlanta.
SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE Sep 76
GRANT NSF-SED-75-17476
NOTE 66p.

EDRS PRICE
DESCRIPTOES

ABSTiiACT

MF01/PC03 Plus Postage.
Computer Assisted Instruction; Computer Science
Education; *Linear Programing; *Man Machine Systems;
*Models; *Problem Solving

Designed for strident use in solving linear
programming problems, the interactive computer program deszribed
(EZLP) permits the student to input the linear programming model in
exactly the same manner in which it would be written on paper. This
report includes a brief reviei of the development of EZLP; narrative
descriptions of program features, inclzding the driver, the editor,
syntactical analysis, optimization and output, segmentation of EZLP,
and machine dependence of EZLP: user instructions for entering,
editing, and solving the model, as well as analyzing results,
restarting and terminating the program, the HELP command, and
external file-handling capabilities: and printouts of five terminal
sessions providing simple and advanced examples of EZLP,.as well as
transportation, integer programming, and sensitivity analysis
problems. A user's manual suitable for handout to students learning
EZLP is appended. (CHC)

* Reproductions supplied by EDRS are tf.,e best that can be made *

* from the origina: do::ument. *

************************************** ',w*****************************

U S DEPARU,'
TNT OF *EALTH

EDUCAliz &WELF ARE

NATIONAL RSTiTuT
2 oF

c, -ATION

HIT. DOCUME^. 1,0. : EPRO-

DUCED EXACT ,,, ;TT:. ,- D FROM

THE RERSC
DNIGIN.

AI ING IT ,',:
,)NtONS

STATED
PRE-

SENT OFF 1 T ,NA

EDUCATION

FI;AL
NSF Grant Fil1er S1:75-13476

EZLP: An Int=ac_ . =71ter gram

for Solving L:...L.ar a1n rcblevs

John J.
V. Ed UngL:,

Frank H. CnIlec rz: it
's Eapaconstaepc.

School of Indus:riai mmi Systems Enginaerfm;.
Georgia instia E Technology

Atlanta, :-.:1c71:zia 30332

SepterMt77, 1976

0

TABLE OF CUTT,YS

Chapter 1: Introduction

1.1 Background 1

1.2 In4 al Project Ef 2

1.3 Project Pte: 41 . - 3

1.4 FoLl-on Project 4

1.5 Maze Dependence- ,i the EZLP ay_iaeim 6

1.6 Availability of tie ZLP Syvtem . . 6

1.7 Co=lauing Effort 7

Chapter 2:

2.1
2.2

=IF: A Narrat ie Dascritfc.-

Introduction . .

A General OutlinE

. . . .

2.3 The Driver . . .
.

2.4 The Editor

2.5 Syntactical Analsis I . .

2.6 Optimization and autpul: . . . 12

2.7 Segmentation of .2LP .
. . 14

2.8 Machine Dependence of 7.717 . 15

Chapter 3: User InstrucAons

3.1 Introduction ,

3.2 Starting EZLP

3.1 Entering the Model

.

. .

3.4 Editing the Model
2-

3.5 Solving the Model 27

3.6 Sensitivity Analysis of :he 'moult: . . 3C

3.7 Restarting and Termins:_ng 1L.2 .

3.8 The HELP Command 31

3.9 External Fi1e-Handlit.7.;

Chanter 4: Terminal Sessions

4.1 Introductior, . . . 34

4.2 Session 1: A Simple Exam-_-__ of Ea? 35

4.3 Session 2: An Advanced Fammpt- 36

4.4 Session 3: A Transportation .1:, Jpia 38

4.5 Session 4: An Intege,.7 Progra=m -Lam: 40

4.6 Session 5: A Sensitivity Analys 41

Appendix A: A Simplified User's Manual for 46

)

f

ABSTRACT

:hii report discusses the development of an interactive computer

program 71,11.P) designed for student-oriented use in solving linear

programmL:Lg problems. The linear programming problem is inputted in
the same way as it would be written on a sheet of paper.

The i7tudent may select either the (primal) simplex or the dual
simplex ma:thud; the lower-upper bounded variables procedure with either
method; tii real (0.5) or rational (1/2) arithmetic for the calculations.
EZLP has -nternal editing capability and is able to read :rom and write
to permanent files.

Duri=g execution of EZLP, if the student has difficulty in remember-
ing what to'do next, he may utilize a HELP command to obtain general or
specific information on EZLP's use.

Since EZLP was developed under a National Science Foundation grant
a program listing on computer paper is:freely available. A listing on
cards or tape is available at a nominal charge to cover expenses. EZLP

may not he resold.
Finally, a simplified L:ser's manual suitable for handout to students

learning EZLP for the first time is contained in Appendix A.

Chapter 1: INTRODUCTION

1.1 Background

Linear programming is a mathematical optimization technique utilized

intensively in the fields of mathematics, management __= engineering-

especially within the areas of operations research anc management science.

The simplex method--the standard technique for solving linear program-3--

is an iterative method, and, as such is dependent on the computer to

carry out the rote calculations. Computerized simplez codes are available

in small problem-solving vercions and in large production versiJns in most

university, private and governmental computing centers. Students find

that interaction with these computer codes is often very difficult. The

result is that small scale usage in the classroom or laboratory or for

homework is discouraged. This bad experience carries over and tends to

discourage the student's use of linear programming on the job.

In most universities today there are a number of undergraduate and

graduate courses utilizing linear programming as a problem-solving tool.

Georgia Tech is typical with as many as 6-10 undergraduae courses and

15-20 graduate courses utilizing linear programming. In these courses

the student is expected to develop modelling skills with linear program-

ming, appreciate the simplex method (or its variants) as a solution tool

and to interpret the output results of the simplex method in the parti-

cular problem situation. In addition to course work there are usually

a number of students performing research on new techniques which require

a check by solving small linear programming problems. Hand calculations

are good up to about four constraints and ten variables. Beyond this

number the student must go to the computer in order to have the calcu-

lations performed, otherwise, negative feedback results. The student

remembers the difficult: .ith codel and not the pow of

the modelling teniquE Wen t-La gets to the c-mputer he

usually finds a ,at of ___ties with regar: to the lact

that in order to vi:. ;-it:71 his model he must learn a

computer-oriented at .ar -Driented) "input la_aguage".

A number of La=thuticaz northwestern Univaasity,

Stanford Uni-arsi- :ha UT__ _a::as, and Gee:git :ech have

developed linear T -7ammimz, r?r=grams which are are directl]

student oriented 17, tmeir de5igr

In the School c_ ;ystems Engineering at Georgia Tech

an experimental pro haEs' aer ==,..rway since 1971 to develop a student-

oriented conversatinal !at '- -:coming code (EZLP) for use on small

problems (up to 50 tonstn: a __?13 variables). The innovation is

in the special way that the ;:ader interacts with the computer. The

student inputs his Linear prc gran. _ag model to the computer in exact17

the same manner he VT: id :z771- it down on paper. Evolution of th:_s

code has been thrn proje: Despite limitations in its initial

design, EZLP was -=7 'Ithel.,,,ss widely accepted by the students.

1.2 Initial Proj

The Nationz.....:3=.3ncc Foundation agreed to support a concerted

effort, during to 75-1976 academic year, to redesign and develop a

conversational conpu_r code based on the concepts developed at Georgia

Tech.

To accomplish the -ven task, a Georgia Tech team was organized.

The Georgia Tech t, _m c-.21sisted of:

2

Dr. John J. Jarvis, ?rojezt Director

Frank H. Cullen, Research Assistant

Chris Papaconstadopoulos. Research F.7istant

team had the overall r- resigning, dev_LopLng, coding

documenting the comput 7.ystem.

An Advisory Comlf..ttee eminent re hers and pract_tio:lers in the

f .:1d of linear progmmi7.- -:_as also org,,,--ize to provide guidance to the

Georgia Tech team. . .7iLory Committer -- c__L_Lsted of the followin7, indi

vIduals:

1. Dr. Claude

Northweste.7 Ur ,3rsity

2. Dr. Harve -berg

Federal E- 7gy dinistration

3. Dr. Marvi . Gr 'fin

Universit f ALabama

4. Dr. Riche_ E. Thomas

Universit :f Florida

T=is committee hac significant impact on he design of the final computer

E-stem.

L.3 Initial Project Plan

During the early stages of the project the Georgia Tech team devoted a

great deal of time and effort to the development and documentation of a

preliminary design of a computer system for EZLP. This documentation was

submitted to the Advisory Committee for their review.

A meeting of the Advisory Committee was conducted on the Georgia Tech

campus to discuss the preliminary design. This discussion lead to a much

improved design. On advice of the committee, the fundamental concept of

3

complete machine independence was replaced by a moderate level of machmne

dependence to permit substantial. reduction in program size and complerLIty.

Also, a number of general features were eliminated from the initial dE=ig=

while many others were added. The Georgia Tech team was very pleased -irl

the structure that emerged from that meeting.

The Advisory Committee also suggested, at its meeting, that the Ca: -gia

Tech team retain a certain decree of flexibility in its development

so that the Tech team might be able to react in an expeditious manner

potential difficult situations which :.ould arise during coding.

The remainder of the initial grant period, following the Advisor::

Committee meeting, was spent developing and testing the EZLP code. iti

a few changes, the initial EZLP system developed was the one which merged

from he Advisory Committee meeting.

1.4 Follow-on Project Effort

The initial project phase concluded with the development of the basic

EZLP system. The project then proceeded into a second phase consisting

dissemination, formative evaluation, and modification/improvement.

During the second phase, the dissemination task consisted of mailing

literature on the basic EZLP system to approximately one nundred and fifty (150)

departments of Industrial (and Systems) Engineering, Cperations Research,

Management Science, Computer Science and Mathematics throughout the United

States. The literature described the EZLP system, its functions and operation.

Copies of the computer code were offered at nominal oz no charge to interested

institutions. The objectives of this offering were to (1) achieve wide dissemina-

tion of the project results, and (2) generate a subset of implementing institu-

tions from which a formative evaluation of the EZLP system could be conducted.

Some two dozen institutions .ested the EZLP code for implementation.

It was anticipated that a group _1-e institutions, providing a cross

section of EZLP users, would be _ for participation in a seminar

on EZLP to be held at Georgia Eosever, it soon became evident that

the critical link would not be _alicanstanding the EZLP system, but, instead,

would be getting EZLP operation:11 or_ the myriad of different computers

(UNIVAC, Burroughs, Prime, IBM, involved.

After discussions with NSF, it was decided to carry the EZLP seminar

to the users, instead of having the users come to Georgia Tech. A quali-

fied graduate research assistanz was sent to several targeted institutions

to (1) solve EZLP implementati2n problems, (2) give a seminar/demonstration

of the EZLP system and its canabilities, and (3) establish the necessary

mechanism for receiving comments and evaluations of the EZLP system.

Several institutions were targeted on the basis of their interest acid enthu-

siasm and the type of computer system involved. It was hoped that the for-

mative evaluation could include results of experience on as many different

computer systems as possible.

The implementation, testing and evaluation process proved invaluable

to the continued improvement of the EZLP system. EZLP users c:valuations

included (1) modifications of the code to provide easier installation of

differing computer systems, (2) changes in the materials, handouts, etc.

describing EZLP and its uses, (3) expansion and improvement of the EZLP code

to include additional features requested by the users, (4) modularization

of the EZLP system to overcome the problems associated with core memory require-

ments for operation of the system, (5) changes in EZLP command structures and

output formats to provide more intuitive understanding of the system opera-

tion and results, and (6) the alleviation of minor bugs and difficulties asso-

ciated with the EZLP system.

The EZLP system which resulted from this testing and evaluation process

is greatly improved. EZLP is currently operational on approximately two

dozen computer installations throughout the United States. This list in-

cludes academic institutions, governmental agencies and private firms. EZLP

users report great popularity and success of EZLP. The Georgia Tech team is

pleased with the resulting system and its acceptance by others. EZLP is

becoming known worldwide, and already copies of the code have been sent to

several European countries.

The remaining chapters discuss the specific structure of EZLP and its

use. Appendix A contains a simplified user's manual which could be passed

out to students learning EZLP for the first time.

1.5 Machine Dependence of the EZLP System

The EZLP computer system has been intentionally designed to minimize

the level of machine dependence within the covstraint of reasonable pro-

gram size and complexity. EZLP has been coded IL FORTRAN and special

forms which may be available only on the CDC Cyber 74 (the machine used)

are avoided. Those places in the code where machine dependence was unavoid-

able are few in number and clearly identified.

Section 2.8 of Chapter 2 discusses the required changes to convert

the machine dependent portions of EZLP to other computer systems.

1.6 Availability of the EZLP System

Development of the EZLP computer system was sponsored by a grant from

the National Science Foundation. As such, the EZLP computer system is

freely available to anyone desiring a copy. A computer listing on paper

is available at no charge. There is a nominal charge, to cover expenses,

V.

for a listing on cards or tape. EZLP may not be resold. For further infor-

write

Dr. John J. Jarvis, EZLP Project Director
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

1.7 Continuing Effort

EZLP is an evolving computer system. Effort continues at Georgia Tech

to maintain and improve the EZLP code. We invite comments and suggestions

on improving EZLP.

Chapter 2: EZLP - A NARRATIVE DESCRIPTION

2.1 Introduction

This chapter presents the workings of EZLP in a narrative form.

Emphasis is given to the identification of the components of EZLP, their

attributes, and a discussion of their mutual interaction. Coded in standard

FORTRAN, EZLP nonetheless !:al certain functions which cannot be written in

machine-independent code. 'these are discussed in the last part of this

chapter.

2.2 A General Outline

In overview, ULF consists of three main subprograms tied together by

a controlling main program, or "driver." The three main subprograms are:

a. Editor - the ability to create and maintain (update) a current

model -. physically in an exterior mass storage device

b. ST-, s - inputting the model statements from the ex-

terhal .Tated by the EZLP Editor, performing parsing

and syntaxchecking operations, and generating a tableau

for input to the optimization process

c. Optimization - a solution and output of a model in tableau form

by simplex procedures

Figure 2.1 presents a general diagram of the program flow of EZLP which

also indicates the interaction of the three main subprograms.

2.3 The Driver

The main program, or driver program, has several functions. Among

these are:

a. distribute and pass control among the three main subprograms

b. perform ancillary operations not handled by the subprograms

8

Subprogram:
Editor

1

I

I

AI

1 I

I I

I I

"And" "St"
"Also" "Min"

"Max" Model Entry

EZLP
Editor I

I

"Change"

"Delete"

Current
Model
File

"List" Editing Input
Model

"Title"

"Run"

"Save"

r111. awl Ma ..01. 1111.111 twews 0111.11 owlo

1

L

Syntactical
Analysis

Ancillary
Operations

11 INION1

-4-

=Num empil damn 000111 wami.1

-- a -- a
V

Simplex

Optimizat_on
Procedures

Tableau and Basis I

Output

---- I

Subprogram:

Optimization

Figure 2.1: EZLP Program Logic Flow

9

13

Model Statement
Parser

Subprogram:
Syntactical Analysis

I

I

Upon program execution, the driver program assumes control and examines

the first input statement. If the keyword (the first word) of the input

statement is an editor associated keyword (e.g., AND, MIN, CHANGE), the

driver continues to parse the input statement to determine the row name

if it is there and to construct the default value if it is not; control is

then passed to the editor subprogram. If the keyword of the input statement

is associated with an ancillary operation (e.g., RUN, SAVE, or PRINT), the

driver continues to parse the input statement to determine what internal

program switches are to be set, and in the case of the SAVE statement, per-

form the requested file operations. If the keyword is USE, to trigger

a solution attempt, the driver parses the remainder of the input statement

to determine the simplex method to be used, passes control first to the

syntactical analysis subprogram, and then to a tableau-building subroutine

and the optimization subprogram in succession, if there are no syntactical

errors in the model.

In Figure 2.1 the driver program may be considered to be everything

not within a subprogram boundary.

2.4 The Editor

The editor subprogram is primarily responsible for model file maintenance

and performs four principal functions:

a. Adds a statement to the model file

b. Deletes a statement in the model file

c. Changes a statement in the model file

d. Lists either a single row or the entire contents of the model file

Model File Organization

The model' file itself is a simple linked-list structure with chaining

used for continuation lines. Two vectors in the COMMON block EDIT, CNTNME

10

and LINKS, store the alpha name and the relative location of the first

record for the particular row of the model on mass storage. This record

has a forward link to a continuation record if used. This forward link

is zero (0) if there are no further continuations after the current record.

The program logic and passed parameters to the mass storage read and write

subroutine are such that first-available and other random access techniques

can be used on computers of various manufacture.

Subprogram Operation

Upon passage of control and the appropriate parameters, the Editor ac-

cesses the model file to perform the desired function, and returns control

to the driver which then reads in the next input statement.

Continuations of rows in the model are handled directly by the Editor,

which reads in successive input statements and sets up the chaining relation-

ship until the continuation situation no longer exists.

2.5 Syntactical Analysis

The syntactical analysis subprogram is the process wherein the model

file contents are read in, parsed, checked for errors in syntax, and trans-

lated into a coded form which is subsequently transformed into a tableau

structure.

In overview, the syntactical analysis subprogram has two main entities:

a. the model statement parser, which takes lines from the model file

and generates a uniform symbol table in which the components of the

model line (e.g. coefficient, name or identifier, delimiter) are

described and;

b. the analysis routine which uses as input the uniform symbol table,

checks for syntax errors, and outputs a quasi-diagonal tableau

which later serves as input to a tableau-building subroutine which'

adds slack and artificial variables and generates rectangular

tableau structure.

Other output from the syntactical analysis subprogram includes:

a. a vector containing row names as they appear in the tableau

b. a vector containing variable names as they were first mentioned

in the model file

c. vectors containing lower and upper bounds for each variable in

the same order as (b)

d. A designator of which rows of the tahlean are associated with ob-

jective functions

e. an indication of which objective function row is to be optimized

during phase two of the optimization process

In the instance that there are syntax errors present in the model file,

descriptive error messages and pointers are printed in an attempt to pin-

point the exact location of the trouble.

The memory locations used by the syntactical analysis are focused in

the COMMON area OPT and WORK.

2.6 Optimization and Output

The optimization and output subprogram is the process by which the

simplex operations are performed on the rectangular tableau created by the

tableau-building subroutine which, in turn, receives its input from the syn-

tactical analysis subprogram. Depending upon the value of the parametric

switch METHOD_set by the driver program during the parsing of the USE state-

ment, the optimization process selects from four basic algorithms: primal

or dual simplex with or without rational arithmetic. The lower-upper bounded

simplex approach is used throughout the optimization routines. The different

12

16

results obtained by the specification of IA.,: UPPER parameter in the USE

statement owe to the generation of explicit bound constraints by the syn-

tactical analysis subprogram when UPPER i not specified.

The primal algorit:IT2 (real and rational) employ a two-phase method

for which the Phase 1 objective function and the starting basis are de-

termined by the tableau-building subroutine. At the successful completion

of Phase 1, the Phase 2 objective function (which has been stored as a null

constraint in the tableau) is written over the Phase 1 objective function

and the process resumes.

The dual algorithms begin with the creation of the Phase 2 objective func-

tion from the appropriate null constraint (objective function) in the tableau.

The rational algorithms require the maintenance of both a numerator

and a denominator for each tableau entry (and each element of the right-

hand side). For example, the numerator for an element in an array may be

stored in position I, while the corresponding denominator will be stored in

position J+I, where the Jth position of the array held the value of the

numerator of highest subscript index.

At the end of each simplex iteration, or both before and after the

optimization process has been completed, there might be output specified

by the user via a PRINT statement. In this instance, control within the

optimization process is passed to a point which mrints out the values of

the nonzero variables, the current oasis and basis activity, or the current

tableau and updated objective function. Control is then returned to the

appropriate place in the optimization process.

Upon reaching an optimal solution, control within the optimization process

passes to a point at which the default output (the optimal primal and dual

solutions) is printed out. Even if no other output is specified or requested,

the default output is printed.

When the printing default output is completed, control returns to the

driver program which then reads in and parses the next input statement.

The memory locations used by the optimization and output subprogram

are focus:2d in the COMMON area OPT and WORK.

2.7 Segmentation of EZLP

In dealing with computers with smaller capacity than large-scale university

computing systems, memory economy via code segmentation or overlay is often

of considerable interest.

The modular subprogram concept allows some or all of the subprogram code

to be overlayable, and hence less 1,;asteful.

Specifically, the three subprograms are mutually overlayable as well

as those functions which serve only one of the subprograms. Graphically,

we can represent the code components of EZLP as a tree, the root of which

is non-overlayable, and the separate branches of which form the overlays.

In Figure 2.2, this tree structure is represented in terms of the actual

FORTRAN' subroutines and function names.

Syntactical
Analysis Tableau

EditorStroram Subprogram Builder

EDITOR
CHANGE
GETWRD
MSWRIT

Optimization &
Output

Subprogram

TYPENT BUILD RATPRT

BMPUST RATCNG

SYNERR RATSUB

PARSER RATMLT
GCD1

SYNT SP TL

EZLP
PACK
DSPNUM
NUMGET
MSREAD

Figure 2.2: Segmentation Tree-Structure of EZLP

14

SPXREL

2.8 MPchine Dependence of EZLP

There are two aspects of the code of EZLP which are likely to cause

difficulties when an attempt is made to convert the code to a machine

other than the one for which EZLP was written (the CDC Cyber 74). These

are

a. Alpha variables - packing 4.nd unpacking, and manipulation

b. File manipulations - particularly with respect to error

and end-of-file conditions

Alpha Variables

The storing of alphanumeric information in variables has always been

a weakness in the design of FORTRAN. Consequently, the use of either integer

or real variables to store alphanumeric information is bound to be non-

standard And change from machine to machine. For the purpose of program

design and implementation, EZLP uniformly uses real variables. For those

compilers and computers which require that some other type be used for

alpha variables, explicit type statements must be added to those portions

of the code affected for the alpha variables.

A basic assumption of the EZLP code is that the alpha variables can

hold at least eight (8) characters and are appropriately filled so that

a comparison with a Hollerith constant is meaningful. Hexadecimal machines

(or character machines) normally have type statements which allow the length

of the variable in bytes (characters) to be specified. Where applicable,

these constructs should be used.

An often-used subroutine in EZLP for composing a single eight-character

alpha variable from eight single-character alpha variables is called PACK.

This subroutine is totally machine-dependent and must be changed for dif-

ferent computers.

File Manipulation

EZLP employs a number of files during execution. These files are

summarized in Table 2.1. These files, with the possible exception of file

are strictly sequential files and require no special programmatic consider 3.

File 8, the model file, because of the random way in which editing is applied

to it, can be effectively used as a random access file. Since random access

is normally a machine-dependent function, EZLP separates out the random

access read and write functions into separate subroutines MSREAD and MSWRIT.

These two subroutines must be re-written for different computers.

TabL 2.1: EZLP Files and Their Description

File Number Description

5 Input file (from the terminal)

6 Output file (to the terminal)

7 Message file (for syntax error messages)

8 Model file (linked and chained mass storage)

9 Run file (alternate input file)

10 Save file (model output file)

11 Help stored-text file (instructions)

End-of-file checking is also achieved differently with different FORTRAN

compilers. On the CYBER 74, the test is the implicit function EOF(u).

Occurrences of this function should be replaced by the appropriate READ

statement construct for the local FORTRAN compiler. For example, the sequence

READ (INFILE, 102) (BUFFER(I), I=1, 80)

IF (EOF(INFILE) .NE.0) GO TO 320

16

could be replaced by something resembling

READ (INFILE, 102, Eta:320) (BUFFER(I), I=1, 80)

if such was the appropriate end-of-file construct.

Chapter 3: USER INSTRUCTIONS

3.1 Introduction and Notation

This chapter is designed to describe the operation of EZLP from the

user's point-of-view. The material covered hera is somewhat more com-

prehensive than that which would be required for the user with simple

problems. Appendix A contains a simplified user's manual.

For clarity of presentation, this chapter uses BNF notation in de-

scribing syntactical rules. Briefly, capitalized words indicate keywords,

[] indicates an optional clause, 1 1 indicates a choice of two or more

alternatives, and <> enclose a descriptive terE for a syntactical entry.

3.2 Starting EZLP

The exact syntax of executing EZLP will vary from computer to computer

and from installation to installation, and so cannot be explicitly stated

here. For the sake of clarity, let it be assumed that EZLP has been exe-

cuted and is awaiting input from the user.

At this point, the user has the option of proceeding to enter the model

(3.3) or getting a brief (about two pages) description of how EZLP is operated.

This description, in the absence of this chapter or other documentation should

supply a minimvm of information to the user so that he can use the program.

To obtain this brief description, the user must enter the following command:

HELP BRIEF

This command is discussed further in section 3.7.

3.3 Entering the Model

The first thing the user must do is enter the model. The entry of the

model follows certain rules - there are rules concerning the order in which

inputted statements must be organized, and there are rules which govern the

18

way in which different types of statements are made up. Before these rules

are discussed, it would be best if some basic ideas were explained: A

statement, is a single logical input. A constraint is a statement. The

objective function is a statement. A delimiter is a single character which

serves to terminate one entry and perhaps begir the next. For the entry of

the model, the space character (0) is the usual delimiter. A name provides

the convenience of letting the user assign unique identifiers to variables,

constraints, and objective functions. The names themselves are composed

of from one to eight characters. The first character must be alphabetic

(A-Z), while the remaining characters must be alphabetic, numeric (0-9),

or numerics separated by commas. X2, PROFIT, ITEM3, and Y2,3 are examples

of acceptable names, while ITEM-3 and $VAR are not. A space character

cannot be part of a name. EZLP reserves certain names for its internal

use. Row names of the form ROW#n are reserved for each objective function

or constraint statement which was unnamed by the user. This generated

name can be used for editing purposes. In addition, EZLP uses the names

SLK #n and ART#n for the slack and artificial variables that it generates.

Since the user may not input any name containing the # character there can

never be any confusion between user-generated names and EZLP-generated

names. An input-line corresponds to a line of input on the terminal. In

batch processing, this is equivalent to a card image.

If desired the user may indicate that heading information is to be

printed at the top of the optimal solution output. The user must type

in

TITLE <heading information>

where <heading information> appears as a heading at the top of the output.

19

The act'al entry of the model is divided into two basic parts: the

objective function and the constraints.

Entering the Objective Function

The syntactical rule for the entry of the objective function is:

iMIN} {MINIMIZE} r

MAX
or

MAXIMIZE
i<objective-function-name>]:

<arithmetic expression>

where
<objective-function-name> is an optional user-assigned name for the

objective function and <arithmetic expression> isa linear combination of

variable-names.

Note that the colon (0 is required at all times.

If the objective function statement is too large to be entered on one

input line, continuation of the statement is accomplished by placing an

ampersand (&), after the last character of the current input line and con-

tinuing the statement on the next input line. There are no limits on the

number of continuations allowed for a single statement.

Examples of possible objective function statements:

1. MIN: 2 + 3X2 - 2.3X4

2. MAX PROFIT: 3INCOME - 4EXPNSE - .6730VERHD

3. MIN COST: 2.4VAR1 - 3.53VAR2 + .004VAR3 &

-VAR4

Alternate Objective Functions

In some applications of linear programming, it is of interest to con-

sider a number of possible objective functions subject to the same set of

constraints. EZLP allows for the entry and subsequent optimization of the

entered model in coordination with alternate objective functions,

20 2 4

is:

The syntactical rule for the entry of an alternate objective function

ALSO [<objective-function-name>]: <arithmetic expression>

Notice that the above differs from the ordinary entry of the objective

function in that the keyword "ALSO" is required anel -eplaces the keywords

"MIN" and "MAX".

Each model must contain exactly one primary objective function (using

the keywords "MAX" or "MIN"). However, a model may contain any number of

alternate objective functions. EZLP operates with only one objective

function at a time.

Specifying an alternate objective function for the purpose of optimi-

zation is accomplished just prior to specifying the method of solution.

This is discussed in Section 3.5 ii.

Entering the Constraints

The constraints associated with normal linear programming model can be

broken down into three general classes:

1. Simple arithmetic constraints - those constraints which involve

more than one variable and only one relational operator; and

2. Range constraints - those constraints which involve more than one

variable and two identical operators; and

3. List constraints - those constraints which involve only one

variable. Constraints of this type usually specify upper or

lower bounds on a particular variable or a list of variables.

Simple Arithmetic Constraints

is:

The syntactical rule for the entry of a simple arithmetic
constraint

u*constraint-name>]: <arithmetic expression>

ST

<relational operator> <arithmetic expression>

where <k-onstraint-name> is an optional
user-assigned name for the particular

constraint. The <arithmetic
expression>is a linear combination

of variable
names as described in the objective function statement above; and <relational
operator> takes one of the following forms:

1. {=> or >74 (greater
than or equal to)

2. =
(equal to)

3. 1=< or <=1 (less than or equal to).

Note that the colon is required at all times.

If any particular constraint statement is too large to be entered on
one output line

continuation of the statement is accomplished by placing an
ampersand (&) after the last character of the current input line and con-
tinuing the statement on the next input line. There are no limits on the
number of continuations allowed for a single constraint

statement.
The first constraint statement should begin with the keyword "ST", whichstands for "subject to".

Subsequent constraint statements must begin with
the keyword "AND".

Constraint statements which Anclude the optional
<constraint-name>

are easily referenced for editing by this user-assigned name. Unnamed con-
straints are assigned a name by EZLP so that the user can also reference
and edit these constraints. This is further

discussed in section 3.4.
Examples of possible simple arithmetic constraints:

22 26,

1. AND CNSTR2: 20WIDTH2 <= 15 -. LENGTH

2. AND POWER: TOTAL + 3TIMEAVL> = 16.45

3. AND: 4.3x1 + 6x7 = 4.57

Range Constraints

EZLP is designed to accommodate range constraints. The syntactical rule

for the entry of range constraints is:

ST r
L<constraint-name>]: <constant-1><inequality-operator-1>

AND

<arithmetic expression> <inequality-operator-2><constant-2>

where the following rules apply:

1. <inequality-operator-1> and <inequality-operator-2> must Le exactly

alike and must be either >= or <=.

2. If the relational operators are >=, then <constant-1> must be

greater than or equal to <constant-2>

3. And, if the relational operators are <=, then <constant -l> must be

less than or equal to <constant-2>.

Examples of possible range constraints are:

1. AND: 4 <= 3x1 + 4.2x3 - 4x4 <= 6.2

2. AND WORKERS: 500:>= 6.3FORCE1 - 5.3FORCE2 >= 243

3. AND CONSTRNT: 3.4 <= 7+ VAR3

List Constraints

The syntactical rule for the entry of a list constraint is:

AND [<constraint-name>j:
ALL EpTHER] VARS <relational operator><constant>

)<variable-list> URS

where <constraint -name> and <relational operator> are described above for

simple arithmetic constraints; and <variable-list> is a list of one or

more variable names, separated by commas (,).

The reserved phrase "ALL VARS" indicates that the bound specified ap-

plies to all variables in the model. The reserved phrase "ALL OTHER VARS"

indicates that the bound specified applies to all variables which are not

included in another list constraint for the same type bound (i.e., upper

or lower).

The reserved word "URS" stands for "unrestricted in sign".

The default option for all variables if they do not appear in a

list constraint is "URS". EZLP prints a notification of the unrestricted

variables.

Examples of possible list constraints:

1. AND: Xl, X2, X3 <:= 0

2. AND: ALL VARS >= 0

3. AND: OIL <:= 375.43

4. AND: ALL OTHER VARS < = 1

5. AND: PROFIT URS

6. AND MYCNSTR: WIDTH,LENGTH)>= 0

An example of an entry of a complete model:

MIN: 10.5WIDTH1 + 11.8WIDTH2 - 30LENGTH

ST CNSTR1: 15LENGTH - 2WIDTH1 <:= 10

AND CNSTR2: 20WIDTH2 + LENGTH < = 15

AND: ALL VARS > = 0

3.4 Editing the Model

After completion of the model entry, the user has the ability to per-

form certain editing functions. These functions are:

24

1. Adding a constraint or objective function

2. Deleting a constraint or objective function

3. Changing a constraint or objective function

4. Listing the model in whole or in part

i) Adding a Constraint or Objective Function

At all times the user has direct access to his model. Thus, addition

of a new constraint or objective function to the end of the current model

may be accomplished by simply typing the appropriate constraint or objective

function statements. EZLP will automatically append the new statement to

the previous model.

For example, suppose that the user has attempted to solve his model and

this attempt resulted in an unboundedness indication. Having determined

that he failed to require nonnegativity he may do so by simply typing

AND: ALL VARS > = 0

If one wishes to insert a constraint into the middle of the current

model, this may be accomplished by typing

INSERT <row-name > jmodel entry statement}
BEFORE

where <model entry statement> is either a constraint or objective function

statement. Examples of the INSERT command are:

1. INSERT AFTER ROWI2 AND: X1 2X2 <= 7

2. INSERT BEFORE CONST6 AND CONST5: 7 <r- X1 <7: 9

3. INSERT AFTER ROW#3 ALSO: 3X1 2POWER

25 23

ii) Deleting a Constraint or Objective Function

The syntactical rule for the deletion of a constraint is:

DELETE <row-name>

where <row -name> is either the user assigned name, or in the absence of

this name, the row name assigned by EZLP. The assigned name is simply

ROW#n, where n is the number of the model entry as it was entered. Ex-

amples of assigned row-names are ROW #14, ROW#13, and ROW#123.

1. DELETE ROW#13

2. DELETE SURPLS

iii) Changin: a Constraint or Ob ective Function

The syntactical rule for the changing of a constraint or the objective

function is:

CHANGE <row-nam "<stringl>"<string2>"

where <row-name> must be identical to some existing row name.

The CHANGE command will replace <sLring1),by (string2. The construct

"<stringl>" will oeleta Otring17%

Examples of possible CHANGE statements are:

1. CHANGE CONSTR1 "ENG"G"

2. CHANGE SURPLS "3.2"

iv) Listing the Model

The syntactical rule for listing the model on the terminal is:

LIST [<row-name>]

26

00

where the optional <row-name> is included if only a single row is to be
printed. If <row -name> is omitted the entire model will be printed. Ex-
amples of possible LIST commands are:

1. LIST

2. LIST ROW#5

3. LIST MYCSTR

3.5 Solving the Model

Once the model has been entered and edited to the user's satisfaction,
the user takes the following steps:

1. Specifying the Desired Output (this step is optional and, if omitted,

results in only the optimal solution being printed).

2. Specifying the Objective Function to be Optimized (this step is

optional and is only to be used when selecting an alter-ate ob-

jective function).

3. Specifying the Method of Solution.

i) Specifying the Desired Output

If the user wishes to obtain more output than the optimal solution he
may use the PRINT command.

The syntactical rules for the PRINT command are:

VARS
BASIS

PRINT [INITIAL] [FINAL] TABLEAU [,<frequency count>]
ALL
NONE

This statement concerns the output on the terminal of information
directly related to the optimization process. The following descriptions
apply:

27

VARS: prints the name and value of each nonzero primal variable;

and the name and value of each nonzero dual variable.

BASIS: prints the names of the variables in the basis and the objective

function value.

TABLEAU: prints the tableau.

ALL: prints all of the above.

NONE: prints only the optimal solutoin.

<frequency-count--the PRINT statement is executed every <frequency-count>

iterations. If this optional clause is omitted, the PRINT

statement will be execu,,:id after every iteration unless the

keywords INITIAL and/or FINAL are used. When ALL or NONE

are present <Trequency-count >is ignored.

INITIAL: prints the requested information only for the initial iteration.

FINAL: prints the requested information only for the final iteration.

(Note that INITIAL and FINAL may be used together.)

Examples of possible PRINT commands are:

1. PRINT VARS 5

2. PRINT ALL

3. PRINT BASIS, VARS,3

4. PRINT FINAL TABLEAU

5. PRINT INITIAL, FINAL BASIS

ii) Specifying the Objective Function to be Optimized

In the event that the user has entered alternate objective functions,

he may wish to specify the name of the objective function to be optimized.

If this is not done, EZLP defaults to either the original objective function

entered with the model or the last objective function name specified in a

prior ALTOBJ statement. The syntactical rule for the specification of the

objective function command is

28

32

ALTOBJ NAxMIN)bj ec dye-function-name>

If an ALTOBJ command has been previously given, then to determine the

row name of the current objective function being used, the user should type

ALTOBJ STATUS

iii) Specifying the Method of Solution

The specification of the method of solution triggers an attempt by

EZLP to solve the entered model and produce output as specified in 3.5.i.

The syntactical rule for specifying the method of solution is:

USE [RATIONAL] [UPPER]
JPRIMAL}
1 DUAL

Specifying RATIONAL keeps all data in rational form, i.e. "0.5" would

become "1/2". Since the RATIONAL option requires storing both a numerator

and a denominator matrix, the maximal allowable problem size is cut in

half under this option. Further, all coefficients and constants must be

entered as integers.

Specifying UPPER before PRIMAL or DUAL will cause the lower-upper

bounded primal or dual algorithm to be used.

Examples of possible USE commands are:

1. USE PRIMAL

2. USE UPPER DUAL

3. USE RATIONAL PRIMAL

4. USE RATIONAL UPPER PRIMAL

29

33

3.6 Sensitivity Analysis of the Results

Once an EZLP model has been optimally solved by any of the USE commands,

the user has the option of requesting a sensitivity analysis of the cost

coefficients or the right-hand-side constants. The syntax of this command

is:

RHS

RANGE OBJ or OBJFCN
ALL

name

ALL

The effect of the RANGE command is the determination of lower and upper

limits on various model parameters which maintain the current (optimal)

basis. Examples of possible RANGE commands and their effects are:

COMMAND EFFECT

. RANGE RHS ROW#1

2. RANGE OBJ X22

Provides lower and upper sensitivity
limits for the right-hand-side con-
stant for the ROW#1 constraint.

Provides sensitivity information for
the cost coefficient for variable X2?

in the objective.

3. RANGE OBJ, ALL Provides sensitivity information for
all objective function coefficients.

4. RANGE ALL Provides sensitivity information for
all objective function coefficients
and all right-hand-side constants.

If a constraint specified in the RANGE command is, itself, a range

constraint, then separate sensitivity information will be printed for the

lower constant and the upper constant of the constraint.

30

3.7 Restarting and Terminating EZLP

At the completion of any model solution the user has three options:

1. Editing the current model and re-solving it,

2. Starting fresh. with a new model, or

3. Terminating EZLP

The first of these options is accomplished by simply entering the ap-

propriate edit statements (see 3.4) followed by the appropriate USE commands

(see 3.5).

The second of these options is accomplished by the RESTART command.

The syntax of this command is:

RESTART

The RESTART command re-initializes all areas. The effect of this command

is to clear out the current model and print options.

Terminating EZLP is accomplished by the END command. The syntax of

this command is:

END

3.8 The HELP Command

This command allows the user, after he has started the program, to

obtain a short set of instructions on how to solve simple LP problems, The

user,' at any point in his run, may request additional help in the following

manner:

HELP [<keyword>]

31

where the optional clause keyword refers to abEreviated instructions con-

cerning a particular area of interest. A list of keywords is:

General Keywords:

BRIEF (briefly describes the general features of EZLP)

EDIT (describes edit commands)

EXAMPLES (presents examples of EZLP models)

FILES (discusses external file handling capabilities)

KEYWORDS (gives the'current list of keywords)

SOLVING (indicates the methods and options for optimization

and discusses output options)

MODEL (discusses model entry syntax)

Specific Keywords:

ADD (indicates how to add a constraint or objective)

ADVANCED (presents an advanced example)

ALTOBJ (indicates how to specify an alternate objective
function for optimization)

CHANGE (indicates how to change a constraint or objective)

CONT (discusses the continuation of model statements)

CONS (describes the optf.ons for inputting constraints)

DELETE (indicates how to delete a constraint or objective)

LIST (discusses tt list options for model display)

NAMES (provides a definition of acceptable variable names)

OBJ (discusses objective functions)

PRINT (discusses the output print options)

RUN (describes procedure for inputting a model from an

external file)

SAVE (discusses procedure for saving a model)

TITLE (discusses the options for method of optimization)

USE (provides a definition of acceptable variable names)

32

tr

If the keyword is omitted, EZLP will print a short description of how

to obtain additional information on the operatidh of EZLP.

3.9 External File-Handling Capabilities

There are certain situations wherein the user wishes to eliminate input

effort by storing all or part of his input on a mass storage device. EZLP

provides for this capability with two commands: the RUN command and the SAVE

command.

i) The RUN Command

At any point in the execution of EZLP, the user may elect to refer

EZLP to a mass storage file for subsequent input. This input must be in

the form of 80 character source records and must be accessible sequentially

by EZLP. The syntax of the RUN command is

RUN <file-name>

If the RUN command is inputted, EZLP will read the model directly from

the working file <file-ramp, print a question mark and await the next

command.

ii) The SAVE Command

Upon completion of model entry, the user may elect to save the input

model in source form in a mass storage file. The syntax of the SAVE

command is

SAVE <f i 1 e -n am e>

If the SAVE command is inputted, EZLP will write the current model into the

working file <file -name, print a question mark and await the next command.

33 37

Chao ter 4: TERMINAL SESSIONS

:.;

4.1 Introduction

This chapter contains several examples of EZLP used to solve normal

linear programming problems. These examples include:

1. Simple example -

2. Advanced example -

getting on, solving a simple
problem, and getting off.

naming rows, editing the model,
requesting aeditional output,
and responiing to an error in

syntax.

3. Transportation problem example - two clources and two sinks to

illustrate multiply-indexed
variable names and the treat-
ment of primal redundancy.

4. Branch and Bound example -

5. Sensitivity Analysis -

assignment of titles to optimal
solution output in addition to
using the editing features of
EZLP to easily solve a small
integer pLogramming problem
using the Branch and Bound.

method.

ranging applied to all constraints
and all variables of a simple"
example.

4.2 Session 1: A Simple Example of EZLP

EZLP VERSION 9/17/76
TYPE HELP IF YOU HAVE OUESTIONS, OTHERWISE PROCEED

? MAX: 3X14.2X2
? ST: 5X1-1-3X2 <= 19
7 AND: X1X2 >= 3
? AND: ALL VARS >= 0
? USE RATIONAL PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE'LIST **

X1 X2

SOLUTION

OBJECT MAXIMIZE ROLM
Z 23/2

ITERATIONS 2

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 7/2 0 POS INF . 0'

X2 1/2 0 POS INF 0

CONSTRAINT SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROW#2 0 5/8 1/2

ROW#3 0 =1/8 7/2

? END
.223 CP SECONDS EXECUTION TIME

35

4.3 Session 2: An Advanced Example of EZLP

EZLP VERSION 9/17/76
TYPE HELP IF YOU HAVE QUESTIONS, OTHERWISE PROCEED

? MIN: 4.3 A 5.6 B ++ 7 C
? ST: A + C = B 7
? AND BOUNDA: A <+ C + 7
? CHANGE BOUNDA °<+ <=1

AND BOUNDA: A <= C + 7
? AND BOUNDS: 1 <= B <= 6
? AND: A>= 0
? USE UPPER PRIMAL

MIN: 4.3 A 5.6 B ++ 7 C
A

1

FATAL ERROR * 1 : ARITHMETIC OPERATOR IN WRONG PLACE

** UNRESTRICTED VARIABLES **

C

FATAL ERRORS IN THE MODEL.
PLEASE EDIT THE MODEL
INPUT WILL BE RECOMPILED

? LIST
ROW*1

MIN: 4.3 A 5.6 B ++ 7 C
ROLM

ST: A + C = 4. 7

BOUNDA
AND BOUNDA: A <= C + 7

BOUNDB
AND BOUNDB: 1 <= B <= 6

ROW$5
AND: 0.= 0

? CHANGE ROM e++°+'
MIN: 4.3 A 5.6 B + 7 C

? PRINT FINAL ALL
? USE UPPER PRIMAL

** UNRESTRICTED VARIABLES **

C
** VARIABLE LIST **

A

36.

PHASE 2 ITERATION 1 CURRENT OBJ VALUE = .301

PRIMAL NON-ZERO VARIABLES
A BASIC WITH VALUE .7500E+01

B NON-BASIC WITH VALUE .1000E+01

C BASIC WITH VALUE .5000E+00

DUAL NON-ZERO VARIABLES
ROLM DUAL = .565E+01
BOUNDA DUAL = -.135E+01

THE CURRENT BASIC VARIABLES ARE '-
. C A
CURRENT TABLEAU -

RHS A

5E+02

SLK#3

ROW#1 - .302E +02 O. .500E--01 O. .135E+01

C .500E+00 O. -i500E+00 .100E+01 - .500E +00

A .750E+01 .100E+01 -.500E+00 O. .500E+00

UPDATED OBJECTIVE FUNCTION ROW
O. ..-.500E-01 O.

SOLUTION

OBJECT
Z
ITERATIONS

MINIMIZE ROM
.3015E+02

1

.135E+01

V A R I A B L E SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

A .7500E+01 O. .1000E+22 O.

B .1000E+01 .1000E+01 .6000E+01 .5000E01

C .5000E+00 ..-.1000E+22 .1000E+22 O.

C O N S T R A I N T SECT ION

NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROWI2 O. .5650E+01 .5000E+00

BOUNDA 0. -..1350E+01 .7500E+01

? END
.400 CP SECONDS EXECUTION TIME

37

4.4 Session 3: A Transportation Problem Example

EZLP - VERSION 9117/76
TYPE HELP IF YOU HAVE QUESTIONS, OTHERWISE PROCEED
? TITLE TRANSPORTATION PROBLEM - SOLUTION VIA EZLP.
7 MAX TRANSOBJ: 2X1,1 3X1,2 4X2,1 2X2,2
7 ST SUPPLY1: X1,1 + X1,2 = 3

? AND SUPPLY2: X2,1 + X2,2 = 4
7 AND DEMAND1: X1,1 X2,1 = 5
7 AND DEMAND2: X1,2 + X2,2 = 2
7 AND: ALL VARS 7= 0
? PRINT BASIS
7 USE RATIONAL PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE LIST **

X1,1 X1,2 X2,1 X2,2

PHASE 1 ITERATION - 1 CURRENT OBJ VALUE = 14
THE CURRENT BASIC VARIABLES ARE -

ART*2 ART03 ART04 ART *S

PHASE 1 ITERATION - 2 CURRENT OBJ VALUE = 8
AT THIS ITERATION, X1,1 ENTERED THE BASIS AND ART$2 LEFT
THE CURRENT BASIC VARIABLES ARE -

X1,1 ARM ART$4 ART*5

PHASE 1 ITERATION - 3 CURREi.1 OBJ VALUE = 4

AT THIS ITERATION, X2,1 ENTERED THE BASIS AND ART*4 LEFT
THE CURRENT BASIC VARIABLES ARE -

X1,1 ARM X2,1 ART*5

PHASE 1 ITERATION - 4 CURRENT OBJ VALUE = 0
AT THIS ITERATION, X1,2 ENTERED THE BASIS AND ARTt3 LEFT
THE CURRENT BASIC VARIABLES ARE

X1,1 X1,2 X2,1 ART*5

PHASE 2 ITERATION - 1 CURRENT OBJ VALUE = 24
THE CURRENT BASIC VARIABLES ARE -

X1,1 X1,2 X2,1 ART45

TRANSPORTATION PROBLEM - SOLUTION VIA EZLP.

SOLUTION

OBJECT

ITERATIONS

MAXIMIZE TRANSOBJ
24

1

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1,1 1 0 POS INF 0

X1.2 2 0 POS INF 0

X2,1 4 0 POS INF 0

CONSTRAINT SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

SUPPLY1 0 3 1

SUPPLY2 0 2

DEMAND1 0 -1 4

DEMAND2 0

END
.413 CP SECONDS EXECUTION TIME

4.5 Session 4: A Branch and Bound Example

If we consider the integer program

Max X
1
+ X

2

ST X
1
+ 3X

2
< 9

3X
1
+ X

2

X1, X
2
> 0 and integer

described by the graph

optimal LP solution

optimal IP solution

0 1 2 3 X
1

Using EZLP, we can construct the following Branch and Bound tree:

Z
o

= 9/2

* *
X
1

= x2 = 9 / 4

>3

= 13/3 4
= 3

X
*

= 2
X
1
= 3 (fathomed by

1
Node 2)

X
2
= 7/3 X

2
= 0

<
2

2
2
= 4 No3e Node

* *
X
1

*
= 0 (fathomed by Node 2)

X
1
= X

2
= 2 *

X
2
= 3

> 3

*
Z
3
= 3

(Incumbent Solution)

40

.44

4.6 Session 5: A Sensitivity Analysis Example

EZLP - VERSION 9/17/76
TYPE HELP IF YOU HAVE QUESTIONS, OTHERWISE PROCEED

? 'TITLE NODE 0 - SOLUTION VIA EZLP
? MAX: X14.X2
9 ST: X11-3X2 <= 9
? AND: 3X1+X2 <=
? AND: ALL VARS >= 0
? USE RATIONAL UPPER PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE LIST **

X1 X2

NODE 0 - SOLUTION VIA EZLP

S 0 L U_T I 0 N

OBJECT MAXIMIZE ROW41
T/2

ITERATIONS 3

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 9/4 0 POS INF 0

X2 9/4 0 POS INF 0

CONSTRAINT SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROW$2 0 1/4 9/4 ,'

ROW*3 0 1/4 9/4

? AND: Xl<=2
7 TITLE NODE 1 - ADDITION OF ONE BOUND ON X1
? USE RATIONAL UPPER PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE LIST **

X1 X2

NODE 1 - ADDITION OF ONE BOUND ON X1

S OLUTION

OBJECT

ITERATIONS

MAXIMIZE ROWt1
13/3

3

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 2 0 2 2/3

X2 7/3 0 POS INF 0

SLKS3 2/3 0 POS INF 0

C O N S T R A I N T SECTION

NAME' SLACK ACTIVITY DUAL PRICE RHS VALUE

ROWI2 0 1/3 7/3

ROW43 2/3 0 2/3

AND: X2 (= 2
TITLE NODE 2 - UPPER BOUNDS ON X1, X2

7 USE RATIONAL UPPER PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

. ** VARIABLE LIST **

X1 X2

NODE 2 - UPPER BOUNDS ON X1, X2

S OLUTION

OBJECT MAXIMIZE ROW#1
Z 4
ITERATIONS 3

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 2 ,..
0 2 ,.. 1

X2 2 0 2 1

SLIM 1 0 POS INF 0

SLIM 1 0 POS INF 0

42

40

CONSTRAINT SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROW42 1 0 1

ROWt3 1 0 1

? LIST
ROWt1

MAX: X1 +X2
ROWt2.

Si: X1+3X2 <= 9
ROM

AND: 3X1+X2 <= 9
ROW #4

AND: ALL VARS >= 0
ROWt5

AND: X1<=2
ROWt6

AND: X2 <= 2
? CHANCE ROWt6 °<= 2'>= 3°

AND: X2 >= 3
? TITLE NODE 3 - LOWER BOUND ON X2. UPPER BOUND ON X1

? USE RATIONAL UPPER PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE LIST **

. X1 X2

NODE 3 - LOWER BOUND ON X21 UPPER BOUND ON X1

S OLUTION

OBJECT MAXIMIZE ROWt1

Z 3

ITERATIONS 2

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X2 3 3 POS INF 2

SLIM 6 0 POS INF 0

CONSTRAINT SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROM 0 1 0

ROWt3 6 0 6

? DELETE ROWt6
LIST ROW#5

RDWIP5
AND: X1<=2

? CHANGE ROWt5 g.,=2.>=3"
AND: X1>=3

7 TITLE NODE 4 - LOWER BOUND ON XI (FINAL NODE)

7 USE RATIONAL UPPER PRIMAL

** NO UNRESTRICTED VARIABLES IN THE MODEL **

** VARIABLE LIST **

X1 X2

NODE 4 LOWER BOUND ON X1 (FINAL NODE)

S O L U T I O N

OBJECT
Z
ITERATIONS

MAXIMIZE ROW#1
3

3

VARIABLE SECTION
NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 3 3 POS INF 2

SLK#2 6 0 POS INF 0

C O N S T R A I N T SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROW#2 6 0 6

ROW#3 0 1 0

7 LIST
ROW#1

MAX: X1+X2
ROW#2

ST: X1+3X2 <= 9
ROW#3

AND: 3X14.X2 <= 9

ROW#4
AND: ALL VARS := 0

ROW#5
AND: X1>=3

END
1.152 CP SECONDS EXECUTION TIME

44

A0

4

EZLP - VERSION 12/6/79 - RANGE TEST
TYPE HELP IF YOU HAVE QUESTIONS, OTHERWISE PROCEED

? MAX: 3X1+4X2
7 ST: X1<=3
7 AND: X2<=5
7 AND X1+X2<=7
7 AND: X1,X2>=0
I USE UPPER PRIMAL
VARIABLE LIST -
X1 X2
NO UNRESTRICTED VARIABLES IN THE MODEL

SOLUTION

OBJECT MAXIMIZE ROW#1
Z .2600E+02
ITERATIONS 3

V A R I A B L E SECTION

NAME ACTIVITY LEVEL LOWER BOUND UPPER BOUND REDUCED COST

X1 .2000E+01 O. .3000E+01 0.

X2 .5000E+01 O. .5000E+01 .1000E+01

CONSTRAINT' SECTION
NAME SLACK ACTIVITY DUAL PRICE RHS VALUE

ROW#4 O. .3000E+01 .2000E+01

? RANGE ALL

RANGE INFORMATION

CONSTRAINT NAME LOW CURRENT HIGH

ROW#4 .50000E+01 .70000E+01 .80000E+01

VAR TYPE NAME LOW CURRENT HIGH.

BASIC ROWt4 X1 O. .30000E+01 .40000E+01

NON -BASIC X2 .30000E+01 .40000E+01 .10000E+21

NON-BASIC SLK#2 -.10000E+21 0. .30000E+01

7 END
.320 CP SECONDS EXECUTION TIME

APPENDIX A

A SIMPLIFIED USER'S

MANUAL FOR EZLP

The first three pages of this appendix serve as a reasonable

handout for most beginning users. The remaining nine pages pro-

vide more detailed discussion of the topics covered in the first

three pages. By employing the "HELP" command the user can obtain

any or all of this information during execution of EZLP.

46 50

EZLP: AN INTERACTIVE COMPUTER PROGRAM DESIGNED TO SOLVE

STUDENT-ORIENTED LINEAR PROGRAMMING PROBLEMS.t

1: General

The first word of each line is a keyword, and indicates the function

of the input line. The keywords are "MIN" or "MAX" for the objective

function, "ST" for the first constraint, followed by "AND" for each addi-

tional constraint. Each name (e.g. variable name) consists generally of a

combination of up to 8 alphabetic and numeric characters with the first

character being alphabetic.

Model Entry

Model entry statements are composed of a keyword, an optional name,

a mandatory colon, and either an objective function or a constraint.

Example of a model entry:

MAX: 2PROD1 + 3PROD2 - 4 COST
ST: PROD1 + PROD2<=150
AND: COST >= 5
AND: ALL OTHER VARS >= 0

Editing

The input model can be edited by "DELETE". and "CHANGE" statements.

Adding a constraint is accomplished by simply typing the constraint.

Examples:

AND NEWROW: 5COST-PROD1>=20.23
CHANGE NEWROW "PR0D1"PROD2"
DELETE NEWROW

tEZLP was developed in the School of Industrial and Systems Engineering,

Georgia Tech, Atlanta, Georgia 30332 under NSF grant #SED75-17476.
John J. Jarvis, project director; Frank H. Cullen and Chris Papaconstadopoulos,
research assistants.

47

EZLP internally numbers the input model lines and if the optional name

before the colon is omitted during model entry, a name of the form

"ROWitn" (e.g., ROW#6) is assigned as a default.

The model can be listed either in total or one line at a time as

follows:

LIST
LIST CONSTR2

(THE ENTIRE MODEL)
(LINE"CONSTR2" ONLY)

Continuation of the input line is achieved by placing an ampersand (&)

after a complete name. Example:

AND: HEAT - 2.34WOOD &

-6.45POWER>=16.4

Specifying Output

EZLP always outputs the final optimal solution. Other output can

be requested after every iteration or after every n iteration. Examples:

PRINT BASIS 5 (The names of the basic variables every
fifth iteration)

PRINT TABLEAU, 2 (The tableau at every other iteration)

PRINT VARS (The value of primal and dual variables)

PRINT NONE (Resets print specs to only final solution)

PRINT INITIAL, FINAL TABLEAU
PRINT ALL (Prints everything)

Specifying the Method of Solution

After model entry, editing, and output specification, the USE

statement triggers the optimization. Examples:

USE PRIMAL
(Ordinary simplex method)

USE RATIONAL PRIMAL
(Ordinary simplex method with rational arithmetic)

USE UPPER DUAL
(Lower-upper bounded dual simplex method)

USE RATIONAL UPPER PRIMAL
(Lower -upper bounded simplex method with rational

arithmetic)

Upon completion of the solution attempt, EZLP returns to the editing

phase.

48

Sensitivity Analysis

After executing any of the USE commands to obtain an optimal solution,

the user may obtain sensitivity information by use of the RANGE command.

Application of the range command determines lower and upper limits on

the objective coefEiCieftts and/or right-hand-side constants which keep

the current optimal basis.

Examples:

RANGE RHS. ROW#6

RANGE OBJ X54
RANGE OBJ ALL
RANGE ALL

Restarting and Stopping EZLP

If another model is to be entered from scratch, type "RESTART", and

EZLP will re-initialize the model file area. If EZLP is to be terminated,

type "END".

File-Handling Capabilities

EZLP has the ability to use external mass storage files for both

input and output. Information on these options can be obtained by con-

sulting Section 5 "FILE-HANDLING".

Simple Example of a Complete EZLP Run

MAX: 2X1+3X2+4.5X3
ST: X1 +X2 <=75.3

AND: X9 +X3 <=45

AND: ALL VARS >=0
USE PRIMAL
END

The Help Command

During execution EZLP permits the user to obtain specific information

concerning its use. The user may obtain a short introduction to EZLP and

its use by typing

HELP

49

If the user desires more specific instructions, he may type "HELP<keyword>",

(e.g., HELP MODEL) where the acceptable keywords are:

General keywords
EDIT EXAMPLES FILES KEYWORDS

MODEL SOLVING BRIEF

Specific keywords
ADD ADVANCED CHANGE CONT

CONS DELETE OBJ PRINT

RUN SAVE TITLE USE

ALTOBJ NAMES LIST

2: The Model

Providing a Title for the Yodel

EZLP permits the input of a title for the model. This title will

appear just before the optimal solution is printed. The title command

consists of:

1. The keyword "TITLE"
2. The title text

Example:

TITLE' THIS IS MODEL.4

Variable and Constraint Names

In entering the model, the user has the ability of assigning his

own names to the variables and the constraints. These names must be from

one to eight characters long, begin with an alpha character, and contain

no special characters. A variable name may contain a comma provided that

the comma separates two numerics. Spaces are not allowed within names.

EZLP generates constraint names for unnamed rows and variable names for

slack and artificial variables. These take the form:

ROW/in - for generated constraint names
- for generated slack variable names

ART/In - for generated artificial variable names

Continuation of Lines

In the event that an input line exceeds 80 characters, continuation

is accomplished by placing an ampersand (&) after a complete name and

resuming input on the following line.

Objective Functions

EZLP allows for the specification of two kinds of objective func-

tions: primary and alternate. For the simple model there usually will

not be an alternate objective function. In essence, this concept allows

the user to enter more than one objective function and optimize the

various objective functions subject to the same constraints during the

course of the interactive session.

Primary objective function - The entry of the objective function

consists of:

1. The keywords "MAX", "MIN"
2. An optional objective function name
3. A mandatory colon
4. And a linear combination of user-defined variable names.

If the optional objective function is omitted, EZLP will generate a name

of the form ROW #n for use in editing and output. Examples:

MIN: 2X1 + 2X2 + 3X3
MAX MYOBJ: 3.54 COLUMN1-4.543COLUMN2 + 6.25
MINIMIZE: 5.76 X1,2 - 4.33 X1,3 + 5.45 X2,1 & - 6.43 X2,3

Alternate Objective Functions - Alternate objective functions are

entered in the same way as the primary objective function, except that

the keyword "MIN" or "MAX" is replaced by the keyword "ALSO". The use of

an alternate objective function is discussed in Section 4 "Solving the

Model". Examples:

ALSO: 2X1 - 3X2 4X3

ALSO OBJ2: 3.45 COLUMN1 4.511COLUMN2

Constraints

Constraints are divided into three generic types.

1. Simple arithmetic constraints
2. Range constraints
3. List constraints

Each is discussed below.

Simple Arithmetic Constraints

A simple arithmetic constraint consists of

1. The keyword "AND" or "ST"
2. An optional constraint name
3. A mandatory colon
4. -A linear combination of user-defined variable names

5. A relational operator (=,<=,>=)
6. A second linear combination of user-defined variable names.

52

It is not allowable to have the same variable name in both 4 and 6 above.

Examples:

AND: Xl+X2 =7

AND MYCSTR: 5X1 + 8.3 X2 >= X3 +4

Range Constraints

EZLP allows the entry of bounded arithmetic expressions (range

constraints). Range constraints consist of the following:

1. The keyword "AND" or "ST"

2. An optional user-defined constraint name

3. A mandatory colon
4. A constant (constant-1)
5. An inequality relational operator (>= or

6. A linear combination of the user-assigned

7. An inequality operator (>= or <.)

8. A constant (constant-2)

< =)

The restriction on range constraints are that the two inequality

operators must be identical and that the two constants must be consis-

tent. (i.e. if the inequality operators are <=, constant-1 must be

<= constant-2).

AND: 4 <= 3X1+4.3X2<= 6.2

AND BOUND1: 7.2>= 3X2+HEAT - 5POWER>= 5

List Constraints

EZLP allows bounds for collective groups (or lists) of user-defined

variable names to be specified in list constraints. The variable lists

can be either explicit or implicit.

Explicit List Constraints

(These constraints consist of:\

1. The keyword "AND"
2. An optional constraint name
3. A mandatory colon
4. A list of variable names

5. A relational operator
6. A constant

The variable list is simply a list of variable names separated by

commas. If the "UPPER" option is not specified in the "USE" statement,

those list constraints in which the constant is not 0 are considered as

explicit rows in the simplex tableau. Examples:

AND: Xl,X2,X5 >=0
AND UBND: HEAT, POWER, LIGHT <=100.3

AND: MYVAR, YOURVAR URS
(Here URS = unrestricted in sign and takes the

place of 5 and 6 above.)

Bounded lists are also permitted, for example

AND: 4< = X1,X2,X5< =7

Implicit List Constraints

Special abbreviations are available to describe either all variables

or variables not appearing in another list constraint. Examples:

AND: ALL VARS> = 0

AND: ALL VARS< = 1
AND MYBOUND: ALL OTHER VARS >= 3

The phrase "ALL VARS" is a synonym for "all variables", while the phrase

"ALL OTHER VARS" refers only to those variables not included in some

earlier list constraint.

54

3: Editing the Model

Adding Rows

New rows may be either appended to the current model file or inserted

within the current model file.

a. Appending rows to the end of the model. This is easily accomplished

by simply typing in the row exactly as it was done during model entry.

Example:

AND: X1 +X2 <= 7

ALSO: 3.5X1+4.6FLOW1

b. Insertion of rows within the model file - Rows may be inserted

within the model file by simply typing in:

or

INSERT AFTER <old-row> <model entry statement>

INSERT BEFORE <old-row> <model entry statement>

For example, if the current model file contained:

an entry of

MIN OBJ: 2X1+3X2
ST CON: Xl+X2<=3
AND: ALL VARS >=0

INSERT AFTER CON AND CON2: X1+2X2 >=1

would result in a model file of

MIN OBJ: 2X1+3X2
ST CON: X1 +X2<=3

AND CON2: X1+2X2 >=1
AND: ALL VARS >=0

Deleting Rows

The deletion of a row is accomplished by entering DELETE <row name>

where <row name> is the user-assigned name, or in the absence of such,

takes the form "ROW#n". If a delete is followed by the addition of a

row having the same name, the new row is inserted in the model file in

the same place. Examples:

DELETE MYCSTRNT
DELETE ROW#7

55

an entry of

CHANGE ROW#5 "3"X2+4"

would result in ROW#5 becoming

AND: 2X1+X2+4X3<=5

whereupon an entry of

CHANGE ROW#5 "3<""

would yield ROW#5 as

AND: 2X1+X2+4X=5

Changes involving row'names and/or continuation characters (&)

are illegal. Changes of this type should be accomplished by a "DELETE"

followed by retyping the entire row.

Listing the Model

The list command allows the user to list the current contents of the

model file in total or in part. Two options are available:

L. LIST (lists the whole model)

2. LIST <row name> (lists only row <row name>)

Examples:

LIST
LIST ROW#5
LIST CONSTR3

alCaraing Rows
To change a character string in A specified row (say ROW //5), the

following is entered

CHANGE ROW#5 "<stringl>"<string2>"

The double quote (") is the only allowable delimiter. For example if

ROW#5 was originally

AND: 2X1+3X3<=5

56

4: Solving the Model

ecif in Alternate Ob'ective Functions

The user may specify an alternate objective function to be opti-

mized by typing:

ALTOBJ MIN <row name>

or

ALTOBJ MAX <row name>

where <row name> is the name of an objective function in the model.

Examples:

ALTOBJ MAX ROW#2
ALTOBJ MIN OBJ4

This objective function specification remains in force until such time

as a "RESTART" or another "ALTOBJ" command is entered.

The user may identify the current specified alternate objective

function row name by typing:

ALTOBJ STATUS

Specifying Output

The PRINT command is used to specify the type and frequency of out-

put to be printed during the optimization process. Parameters which

can be used are:

1. VARS prints the values of the non-zero primal
and dual variables in the current tableau.

2. BASIS prints the current basic variables and
denotes entry and exit activities

3. TABLEAU prints the current tableau and the updated
objective function row

4. ALL Synonym for "VARS,BASIS,TABLEAU"

Parameters 1-4 can optionally be followed by an integer indicating the

frequency with which the output is to be given., If omitted, the default

value is 1 (output after every iteration). Examples:

PRINT TABLEAU, BASIS
PRINT VARS 5
PRINT ALL 4

57 ,

Initial and/or final tableau output can also be indicated. In this case,

the integer described does not apply and is ignored if present. Examples:

PRINT INITIAL TABLEAU
PRINT FINAL ALL
PRINT INITIAL, FINAL BASIS TABLEAU

If print specifications are to be altered, the proper action is to enter

PRINT NONE

which resets print parameters to the default mode.

Specifying the Method of Solution

The USE command is entered when an attempt to solve the input model

is to be made. The following parameters are legal (the order of the

parameters is important).

Examples:

1. RATIONAL - (Optional) Rational arithmetic is to be used.

Rational arithmetic is 3 to 4 times slower
than real arithmetic, and can only solve

problems half the size.

2. UPPER - (Optional) Lower-upper bounded simplex is

to be used. List constraints are implicit

in the tableau.

3. PRIMAL
or DUAL - A specification of the type simplex method

to be used. "PRIMAL" refers to the simplex
method and "DUAL" refers to the dual simplex

method.

USE RATIONAL PRIMAL
USE DUAL
USE UPPER DUAL
USE RATIONAL UPPER PRIMAL

When possible, "UPPER" should be specified for dual simplex, as this im-

proves the chance of obtaining a starting dual feasible basis.

58

5: Sensitivity Analysis

EZLP contains capability for sensitivity analysis of an optimal solu-

tion of a model. This is accomplished by use of a RANGE command. The

format of this command is:

1. The keyword "RANGE".

2. User defined options for rangingt "RHS", "OBJ" or

"OBJFCN", "ALL".

3. Options.'. user defined variable names or row names, or the

optional modifier "ALL".

EXAMPLES:

RANGE RHS ROW#4

RANGE OBJ
RANGE OBJ X55
RANGE OBJ ALL
RANGE ALL

6: File-Handling

Input From 'an External File

The "RUN" command enables the user to use an external file as a

store of input statements and commands. Upon entering the command

RUN <file name>, EZLP opens the local file <file name> and references

this file for all subsequent input commands, until such time as an "END"

statement is encountered or an end-of-file condition on <file name> exists.

If an end-of-file is encountered, control returns to the live user. The

form of the file should be 80 characters per line.

Output to an External File

The "SAVE" command enables the user to place the current concepts

of the model file into a local file. The form of this file is 80

characters per line and editable by the system editor or usable as

input to later execution of EZLP. ENTER:

SAVE <file name>

60
64.

6: Batch Processing

EZLP can be used in a batch environment in much the same way that

it is used interaccively. The sole restriction is that the command BAT'

must be the first entry in the input deck to EZLP. Omission of this

command can result in an infinite print loop at job termination time.

Aslo the command END must be the last entry in the input deck to EZLP.

61 65

7: Advanced Example

TITLE ** ADVANCED MODEL **
MAX OBJ: 2INTERST1+3.24INTERST2-5CAPITAL
ALSO OBJ2: 3.4INTERST1+2.54INTERST2 -5 CAPITAL

ST CONSTR1: INTERST1-4INTERST2 = 108

AND MINCAP: CAPITAL> = 4.6 INTERST1 + 5.7INTERST2

AND MAXCAP: 4 CAPITAL< = 10345.65 3.224 INTERST1 &

-5.231 INTERST2

AND CAPBND: 800 <=CAPITAL <= 10000

AND INTEND: INTERST1, INTERST2 <=10825
AND NONNEG: INTERST1, INTERST2 >= 0
CHANGE MINCAP "4.6"4.76"
CHANGE INTEND "825".825"
PRINT ALL
USE UPPER PRIMAL
DELETE NONNEG
AND NEWCSTR: INTERST2 >= 1.342

AND UBND: INTERST1, INTERST2,CAPITAI, <= 100000.3

ALTOBJ MAX OBJ2
PRINT FINAL TABLEAU, BASIS, VARS
LIST
USE UPPER DUAL
END

