Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals, (6) Fluids and Filters, (7) Pumps, (8) Valves, (9) Cylinders, (10) Motors, (11) Accessories, (12) Circuits, Diagrams, and Symbols, (13) General Maintenance, and (14) Diagnosis and Testing. Each instructional unit includes some or all of the basic components of a unit of instruction: performance objectives, suggested activities for teachers and students, information sheets, assignment sheets, job sheets, visual aids, tests, and answers to the tests. It is noted that each unit is planned for more than one lesson or class period of instruction.
HYDRAULICS

by

Robert L. Decker

Developed by the
Mid-America Vocational Curriculum Consortium, Inc.

Board of Directors
David Merrill, South Dakota, Vice Chairman
Peggy Patrick, Arkansas
Darrell Anderson, Colorado
Alyce Williamson, Kansas
David Foston, Louisiana
Amon Herd, Missouri
Merle Rudebusch, Nebraska
Alan Morgan, New Mexico
Larry Barnhardt, North Dakota
Bob Patton, Oklahoma
Pat Lindley, Texas
Ann Benson, Executive Director
TABLE OF CONTENTS

Section A--Introduction

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Introduction</th>
<th>H-1-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Fundamentals of Hydraulics</td>
<td>H-11-A</td>
</tr>
</tbody>
</table>

Section B--Components

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Reservoirs</th>
<th>H-1-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>Lines, Fittings, and Couplers</td>
<td>H-19-B</td>
</tr>
<tr>
<td>Unit III</td>
<td>Seals</td>
<td>H-49-B</td>
</tr>
<tr>
<td>Unit IV</td>
<td>Fluids and Filters</td>
<td>H-77-B</td>
</tr>
<tr>
<td>Unit V</td>
<td>Pumps</td>
<td>H-97-B</td>
</tr>
<tr>
<td>Unit VI</td>
<td>Valves</td>
<td>H-157-B</td>
</tr>
<tr>
<td>Unit VII</td>
<td>Cylinders</td>
<td>H-201-B</td>
</tr>
<tr>
<td>Unit VIII</td>
<td>Motors</td>
<td>H-231-B</td>
</tr>
<tr>
<td>Unit IX</td>
<td>Accessories</td>
<td>H-257-B</td>
</tr>
</tbody>
</table>

Section C--Systems

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Circuits, Diagrams, and Symbols</th>
<th>H-1-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit II</td>
<td>General Maintenance</td>
<td>H-41-C</td>
</tr>
<tr>
<td>Unit III</td>
<td>Diagnosis and Testing</td>
<td>H-55-C</td>
</tr>
</tbody>
</table>
FOREWORD

The Mid-America Vocational Curriculum Consortium (MAVCC) was organized for the purpose of developing instructional materials for the member states. Priorities for developing MAVCC material are determined annually based on the needs as identified by all member states. One of the priorities identified was hydraulics, and this publication is designed to provide the needed instructional material for many types of hydraulics programs.

The success of this publication is due, in large part, to the capabilities of the personnel who worked with its development. The technical writer has several years of industry as well as teaching experience. Assisting him in his efforts were representatives of the diesel engine and hydraulics professions who brought with them technical expertise and the experience related to the classroom and to the trade. To assure that the materials would parallel the industry environment and be accepted as a transportable basic teaching tool, organizations and industry representatives were involved in the developmental phases of the manual. Appreciation is extended to them for their valuable contributions to the manual.

This publication is designed to assist teachers in improving instruction. As these publications are used, it is hoped that the student performance will improve and that students will be better able to assume a role in an occupation where hydraulics skills are applicable.

Instructional materials in this publication are written in terms of student performance using measurable objectives. This is an innovative approach to teaching that accents and augments the teaching/learning process. Criterion referenced evaluation instruments are provided for uniform measurement of student progress. In addition to evaluating recall information, teachers are encouraged to evaluate the other areas including process and product as indicated at the end of each instructional unit.

It is the sincere belief of the MAVCC personnel and all those members who served on the advisory committee that this publication will allow the students to become better prepared and more effective members of the work force.

David Merrill, Chairman
Board of Directors
Mid-America Vocational
Curriculum Consortium
For many years those responsible for teaching hydraulics have felt a need for instructional materials to use in this area. A team of teachers, industry representatives, and trade and industrial education staff members accepted this challenge and have produced manuals which will meet the needs of many types of courses where students are expected to become proficient in the area of hydraulics, including Diesel Engine Mechanics programs.

Every effort has been made to make this publication basic, readable and by all means usable. Three vital parts of instruction have been intentionally omitted from this publication: motivation, personalization, and localization. These areas are left to the individual instructors and the instructors should capitalize on them. Only then will this publication really become a vital part of the teaching-learning process.

In addition, we would appreciate your help. We check for content quality, spelling, and typographical errors many times in the development of a manual. It is possible, however, for an error to show up in a publication.

If, in the use of this publication, you should find something questionable we would appreciate your bringing it to our attention. A copy of the page or pages in question with your suggestions for correction would certainly help us when we revise and update materials.

We're trying to provide you with the best possible curriculum materials and will certainly appreciate your help in detecting areas where possible corrections are needed to maintain the quality you want and deserve.

Ann Benson
Executive Director
Mid-America Vocational Curriculum Consortium, Inc.
ACKNOWLEDGMENTS

Appreciation is extended to those individuals who contributed their time and talents to the development of *Hydraulics*.

The contents of this publication were received by:

The Mid-America Vocational Curriculum Consortium Committee

Roger Miller
T.J. Holland
C.F. Kirkpatrick
William A. August
John Dagel
Ted Modica
Dean Carter
Ronald L. Vines
David Goodacre
Eugene Kemmet
W.H. Parkinson

Salina, Kansas
Lakewood, Colorado
Levelland, Texas
Mildord, Nebraska
Watertown, South Dakota
Albuquerque, New Mexico
Malvern, Arkansas
Tallulah, Louisiana
Drumright, Oklahoma
Wahpeton, North Dakota
Many, Louisiana

Gratitude is expressed to Dr. Don Phillips, Dean of Instruction, Cameron University, Lawton, Oklahoma and Ivan Armstrong, District Supervisor, Oklahoma State Department of Vocational-Technical Education for their professional contributions in relating the content to an instructional situation.

Special appreciation is extended to Harlan Gjoraas, Trainee Instructor, Kearns Machinery Co./Caterpillar Tractor Company, Sioux Falls, South Dakota for his valuable assistance in the technical development of this book.

A special thanks is extended to Wendy Rodebaugh, Alice Mulder, Terry Stanley, Gari Sha Leisher, and Rose Primeaux for typing and to Bill Dunn, Robert Randall, Lin Thurston, Nancy Hilley, Edith Mekis, and Carrie Williams for the illustrations used in this book.

Appreciation is extended to Regina Decker and Kathy Dolan for editing.

The printing staff of the Oklahoma State Department of Vocational-Technical Education is deserving of much credit for printing this publication.
USE OF THIS PUBLICATION

Instructional Units

The *Hydraulics* curriculum includes 14 units. Each instructional unit includes some or all of the basic components of a unit of instruction: performance objectives, suggested activities for teachers and students, information sheets, assignment sheets, job sheets, visual aids, tests, and answers to the test. Units are planned for more than one lesson or class period of instruction.

Careful study of each instructional unit by the teacher will help determine:

A. The amount of material that can be covered in each class period
B. The skills which must be demonstrated
 1. Supplies needed
 2. Equipment needed
 3. Amount of practice needed
 4. Amount of class time needed for demonstrations
C. Supplementary materials such as pamphlets or filmstrips that must be ordered
D. Resource people who must be contacted

Objectives

Each unit of instruction is based on performance objectives. These objectives state the goals of the course, thus providing a sense of direction and accomplishment for the student.

Performance objectives are stated in two forms: unit objectives, stating the subject matter to be covered in a unit of instruction; and specific objectives, stating the student performance necessary to reach the unit objective.

Since the objectives of the unit provide direction for the teaching-learning process, it is important for the teacher and students to have a common understanding of the intent of the objectives. A limited number of performance terms have been used in the objectives for this curriculum to assist in promoting the effectiveness of the communication among all individuals using the materials.

Following is a list of performance terms and their synonyms which may have been used in this material:

<table>
<thead>
<tr>
<th>Name</th>
<th>Identify</th>
<th>Describe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Select</td>
<td>Define</td>
</tr>
<tr>
<td>List in writing</td>
<td>Mark</td>
<td>Discuss in writing</td>
</tr>
<tr>
<td>List orally</td>
<td>Point out</td>
<td>Discuss orally</td>
</tr>
<tr>
<td>Letter</td>
<td>Pick out</td>
<td>Interpret</td>
</tr>
<tr>
<td>Record</td>
<td>Choose</td>
<td>Tell how</td>
</tr>
<tr>
<td>Repeat</td>
<td>Locate</td>
<td>Tell what</td>
</tr>
<tr>
<td>Give</td>
<td></td>
<td>Explain</td>
</tr>
</tbody>
</table>
Order
Arrange
Sequence
List in order
Classify
Divide
Isolate
Sort

Demonstrate
Show your work
Show procedure
Perform an experiment
Perform the steps
Operate
Remove
Replace
Turn off/on
(Dis) assemble
(Dis) connect

Distinguish
Discriminate

Construct
Draw
Make
Build
Design
Formulate
Reproduce
Transcribe
Increase
Figure

Additional Terms Used
Evaluate
Complete
Analyze
Calculate
Estimate
Plan
Observe
Compare
Determine
Perform

Prepare
Make
Read
Tell
Teach
Converse
Lead
State
Write

Reading of the objectives by the student should be followed by a class discussion to answer any questions concerning performance requirements for each instructional unit.

Teachers should feel free to add objectives which will fit the material to the needs of the students and community. When teachers add objectives, they should remember to supply the needed information, assignment and/or job sheets, and criterion tests.

Suggested Activities

Each unit of instruction has a suggested activities sheet outlining steps to follow in accomplishing specific objectives. The activities are listed according to whether they are the responsibility of the instructor or the student.

Instructor: Duties of the instructor will vary according to the particular unit; however, for best use of the material they should include the following: provide students with objective sheet, information sheet, assignment sheets, and job sheets; preview filmstrips, make transparencies, and arrange for resource materials and people; discuss unit and specific objectives and information sheet; give test. Teachers are encouraged to use any additional instructional activities and teaching methods to aid students in accomplishing the objectives.
Information Sheets

Information sheets provide content essential for meeting the cognitive (knowledge) objectives of the unit. The teacher will find that information sheets serve as an excellent guide for presenting the background knowledge necessary to develop the skills specified in the unit objective.

Students should read the information sheets before the information is discussed in class. Students may take additional notes on the information sheets.

Transparency Masters

Transparency masters provide information in a special way. The students may see as well as hear the material being presented, thus reinforcing the learning process. Transparencies may present new information or they may reinforce information presented in the information sheets. They are particularly effective when identification is necessary.

Transparencies should be made and placed in the notebook where they will be immediately available for use. Transparencies direct the class’s attention to the topic of discussion. They should be left on the screen only when topics shown are under discussion.

Job Sheets

Job sheets are an important segment of each unit. The instructor should be able to and in most situations should demonstrate the skills outlined in the job sheets. Procedures outlined in the job sheets give direction to the skill being taught and allow both student and teacher to check student progress toward the accomplishment of the skill. Job sheets provide a ready outline for students to follow if they have missed a demonstration. Job sheets also furnish potential employers with a picture of the skills being taught and the performances which might reasonably be expected from a person who has had this training.

Assignment Sheets

Assignment sheets give direction to study and furnish practice for paper and pencil activities to develop the knowledges which are necessary prerequisites to skill development. These may be given to the student for completion in class or used for homework assignments. Answer sheets are provided which may be used by the student and/or teacher for checking student progress.

Test and Evaluation

Paper-pencil and performance tests have been constructed to measure student achievement of each objective listed in the unit of instruction. Individual test items may be pulled out and used as a short test to determine student achievement of a particular objective. This kind of testing may be used as a daily quiz and will help the teacher spot difficulties being encountered by students in their efforts to accomplish the unit objective. Test items for objectives added by the teacher should be constructed and added to the test.

Test Answers

Test answers are provided for each unit. These may be used by the teacher and/or student for checking student achievement of the objectives.
INSTRUCTIONAL ANALYSIS

SECTION A--UNIT I: INTRODUCTION TO HYDRAULICS

1. Definition of hydraulics
2. Systems utilizing hydraulics
3. Advantages and disadvantages
4. Hazards
5. Safety practices

UNIT II: FUNDAMENTALS OF HYDRAULICS

1. Terms and definitions
2. Functions
3. Pressure, force, and area
4. Pascal's law
5. Operating principles
6. Bernoulli's theorem
7. Components of hydraulic circuit
8. Power transfer
9. Components of hydraulic jack
10. Lifting and lowering of hydraulic jack
11. Block diagram
12. Disassemble, clean and reassemble a hydraulic jack
SECTION I: RESERVOIRS

1. Definition of reservoir
2. Types of reservoirs
3. Reasons for using pressurized reservoir
4. Functions
5. Parts of vented reservoir
6. Parts of pressurized reservoir
7. Symbols
8. Clean and inspect a vented reservoir

UNIT II: LINES, FITTINGS, AND COUPLERS

1. Terms and definitions
2. Characteristics of steel pipe
3. Types, construction, and size of steel tubing
4. Characteristics of hydraulic hose
5. Types of fittings used with tubing
6. Types of hose-ends
7. Types of fittings in hydraulic systems
8. Factors when routing tubing
9. Conditions to avoid
10. Replace a reusable hose end
UNIT I: INSTALLATION

7. Install an O-ring
8. Install a seal
9. Install a packing

UNIT III: SEALS

1. Terms and definitions
2. Types of leakage paths
3. Types of sealing devices
4. Types of seals and applications
5. Types of seal construction
6. Factors

UNIT IV: FLUIDS AND FILTERS

1. Terms and definitions
2. Effects of contaminants
3. Practices of cleanliness
4. Functions of filter
5. Surface and depth filters
6. Locations and types
7. Types of filter circuits
8. Factors in specifying a filter
9. Symbol for a filter
10. Functions of fluid
11. Effect of temperature
12. Common additives
13. Safety rules
UNIT V: PUMPS

1. Terms and definitions
2. Positive and nonpositive displacement pumps
3. Kinds of positive displacement pumps
4. Calculation of pump displacement
5. Calculation of pump flow rate
6. Calculation of pump input and output power
7. Calculation of pump volumetric efficiency
8. Operation of gear pump
9. Operation of vane pumps
10. Axial and radial piston pumps
11. Operation of radial piston pump
12. Types of axial piston pumps
13. Construction and operation of axial piston pumps
14. Operation of variable displacement axial piston pump
15. Parts of servo-controlled variable displacement pump
16. Components and functions
17. Causes of cavitation
18. Causes of pump failure
19. Symbols for pumps
JOB TRAINING: What the Worker Should Be Able to Do (Psychomotor)

20. Disassemble, inspect, and reassemble a gear pump

21. Disassemble, inspect, and reassemble a pressure compensated variable displacement pump

RELATED INFORMATION: What the Worker Should Know (Cognitive)

UNIT VI: VALVES

1. Terms and definitions
2. Categories of valves
3. Types of pressure control valves
4. Types of pressure relief valves
5. Operation of pressure reducing valve
6. Types of flow control valves
7. Operation of needle valve
8. Operation of pressure compensated flow control valve
9. Operation of priority flow divider
10. Operation of proportional flow divider
11. Types of directional control valves
12. Operation of check valve and spool direction control valve
13. Flow paths
14. Open and closed center systems
15. Types of actuators
JOB TRAINING: What the Worker Should Be Able to Do (Psychomotor)

17. Disassemble, inspect, and reassemble a pressure control valve

18. Disassemble, inspect, and reassemble a flow control valve

19. Disassemble, inspect, and reassemble a directional control valve

RELATED INFORMATION: What the Worker Should Know (Cognitive)

16. Symbols

UNIT VII: CYLINDERS

1. Terms and definitions

2. Operation of hydraulic cylinder

3. Operations of single and double-acting cylinders

4. Types of double-acting cylinders

5. Parts of single-acting cylinder

6. Parts of double-acting cylinder

7. Sources of failure

8. Force output

9. Speed

10. Power output

11. Flow rate

12. Symbol

13. Disassemble, inspect, and reassemble a hydraulic cylinder

14. Test a cylinder for internal and external leakage
UNIT VIII: MOTORS

1. Terms and definitions
2. Kinds of hydraulic motors
3. Hydraulic motor load torque
4. Displacement of motor
5. Speed
6. Inlet pressure
7. Input and output power
8. Overall efficiency
9. Operation of gear motor
10. Operation of unbalanced motor vane
11. Types of piston motors
12. Operation of in-line axial piston motor
13. Disassemble, inspect, and reassemble a gear motor

UNIT IX: ACCESSORIES

1. Terms
2. Functions of accumulator
3. Types of accumulators
4. Types of gas-loaded accumulators
5. Safety precautions
6. Reasons for heat exchanger
7. Types of heat exchangers
8. Common failures
9. Reasons for heater
JOB TRAINING: What the Worker Should Be Able to Do (Psychomotor)

RELATED INFORMATION: What the Worker Should Know (Cognitive)

10. Types of heaters
11. Failures of heaters

12. Inspect, clean, and test a heat exchanger
13. Inspect, clean, and test a heater

SECTION C--UNIT I: CIRCUITS, DIAGRAMS, AND SYMBOLS

1. Terms and definitions
2. Components of basic hydraulic circuit
3. Types of hydraulic circuits
4. Fluid flow in open-center circuit
5. Fluid flow in multiple actuator open-center systems
6. Valves in neutral and shifted position in fluid flow
7. Symbols in hydraulic schematic
8. Symbols for directional control valves
9. Schematic of open and closed-center systems
10. Open-center hydraulic circuit
11. Oil flow

UNIT II: GENERAL MAINTENANCE

1. Reasons for preventive maintenance
2. Damage in hydraulic systems
3. Key maintenance problems

xxii
JOB TRAINING: What the Worker Should Be Able to Do (Psychomotor)

6. Perform general maintenance procedures on a hydraulic system
7. Change hydraulic fluid and filter

RELATED INFORMATION: What the Worker Should Know (Cognitive)

4. Cleanliness
5. Steps for general maintenance

UNIT III: DIAGNOSIS AND TESTING

1. Terms
2. Steps in trouble-shooting
3. Types of hydraulic system testers
4. Problems and remedies for inoperative system
5. Problems and remedies for erratic system
6. Problems and remedies for slow system
7. Problems and remedies for fast system
8. Problems and remedies for overheated system
9. Problems and remedies for foaming of fluid
10. Problems and remedies for excessive noise
11. Problems and remedies for leaking pump
12. Problems and remedies for load drop
13. Problems causing valve to stick or work hard
19. Test a hydraulic pump
20. Locate a problem in a hydraulic system
21. Test a relief valve
22. Test a control valve
23. Test an actuator

14. Problems causing control valve to leak
15. Problems causing cylinder to leak
16. Problems in lowering and raising
17. Improper power steering
18. Malfunction of brakes
Tools

(Note: These are the recommended tools and equipment necessary to complete the jobs required in these instructional materials.)

Air-to-oil heat exchanger
Caps to cover fluid ports
Cylinder
Cylinder test fixture
Cylinder using wiper seal
Directional control valve
Double-acting cylinder
Emery cloth
Fitting assembly with O-ring seal
Flow control valve
Gear motor
Gear pump
Hand tool set
Hose with reusable hose ends
Hydraulic filter
Hydraulic fluid
Hydraulic jack
Hydraulic power supply
Hydraulic system-defective
Hydraulic system-open center
Hydraulic system tester
Hydraulic system with actuator
Knife

Lint free rope
Lint free towels
Motor shaft speed measure
O-ring
O-ring remover tool
Packings
Pressure compensated pump
Pressure control pump
Replacement hose
Replacement piston seal
Replacement rod seal
Replacement wiper seal
Safety glasses
Screwdriver
Seal installation tool
Shipping plugs
Solvent
Tape measure
Vented reservoir
Vise
Wiper seal
Wrenches
REFERENCES

(Note: This is an alphabetized list of publications used in completing this manual.)

INTRODUCTION TO HYDRAULICS
UNIT I

UNIT OBJECTIVE

After completion of this unit, the student should be able to discuss advantages and disadvantages of hydraulics, name hazards to safety when working with hydraulic systems, and safety practices when working on hydraulic systems. This knowledge will be evidenced by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Define hydraulics.
2. Select systems which utilize hydraulics.
3. Discuss advantages and disadvantages of hydraulics.
4. Name six hazards to safety when working with hydraulic systems.
5. List five safety practices when working on hydraulic systems.
INTRODUCTION TO HYDRAULICS
UNIT I

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.

II. Provide student with information sheet.

III. Discuss unit and specific objectives.

IV. Discuss information sheet.

V. Show examples of different types of systems which utilize hydraulics.

VI. Demonstrate hazards that can occur when working with hydraulic systems.

VII. Demonstrate safety procedures which should be practiced when working with hydraulics.

VIII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:

A. Objective sheet

B. Information sheet

C. Test

D. Answers to test

II. References:

INTRODUCTION TO HYDRAULICS
UNIT I

INFORMATION SHEET

I. Hydraulics--The study of fluids in motion or at rest

II. Systems which utilize hydraulics

(NOTE: There are many systems which utilize hydraulic power. The following are some of the applications on different types of machinery.)

A. Hitch control

(NOTE: Hitch controls can be found on agricultural tractors.)

B. Backhoe

(NOTE: A backhoe is a commonly used piece of construction equipment.)

C. Power steering

(NOTE: Power steering systems are commonly used on automobiles, trucks, construction equipment, and agricultural equipment.)

D. Machine tools

1. Numerically controlled milling machine

2. Industrial robot

E. Brakes

(NOTE: Hydraulic brakes can be found on automobiles, trucks, construction equipment, and agricultural tractors.)

F. Auxiliary controls and actuators

III. Advantages and disadvantages of hydraulics

A. Advantages

1. Flexibility--Allows a flexible transfer of large forces

2. Multiplication of force--Small forces can be used to control large forces

3. Simplicity

 a. Has fewer moving parts and points of wear than a mechanical system

 b. Is able to lubricate itself
4. Compactness—Hydraulic motors are more compact than electrical motors of equal horsepower

5. Economy
 a. Low installation cost
 b. Low operating cost

6. Safety—Hydraulic systems have fewer moving parts and present fewer potential hazards than mechanical systems with gears and chains

B. Disadvantages
 1. Safety—High pressure is potentially dangerous
 2. Cleanliness—System must be kept very clean to prevent excessive wear of the components

IV. Safety hazards when working with hydraulic systems
 A. Components subjected to excessive pressure may explode
 B. Accidental release of trapped oil in hydraulic circuits supporting booms or attachments may cause these components to malfunction or fall suddenly
 C. Hot oil from leaks, disconnected lines, or reservoir drains can cause severe burns
 D. Pin-hole leaks in high pressure circuits can release potentially dangerous fluids
 E. Many hydraulic fluids are extremely flammable
 F. Some hydraulic fluids can irritate or burn when they come in contact with the skin or eyes

V. Safety practices when working on hydraulic systems
 A. Support booms and attachments before working on a hydraulic system
 B. Operate all control levers to insure hydraulic pressure has been relieved
 C. Loosen lines and components in a circuit slowly to relieve trapped pressure
 D. Stop equipment and repair leaks immediately
 E. Observe normal shop safety practices including the wearing of safety glasses and safety helmets
INTRODUCTION TO HYDRAULICS
UNIT I

NAME__________________________

TEST

1. Define hydraulics.

2. Select systems which utilize hydraulics by placing an "X" in the appropriate blanks.
 ___ a. Brakes
 ___ b. Power steering
 ___ c. Hitch control
 ___ d. Mechanical differential
 ___ e. Machine tools

3. Discuss four advantages and two disadvantages of hydraulics.
 a. Advantages
 1)
 2)
 3)
 4)
 b. Disadvantages
 1)
 2)

4. Name six hazards to safety when working with hydraulic systems.
 a.
 b.
 c.
 d.
 e.
 f.
5. List five safety practices when working on hydraulic systems.

 a.
 b.
 c.
 d.
 e.
INTRODUCTION TO HYDRAULICS
UNIT I

ANSWERS TO TEST

1. The study of fluids in motion or at rest
2. a, b, c, e
3. Discussion should include four of the following advantages and the two disadvantages
 a. Advantages
 1) Flexibility—Allows a flexible transfer of large forces
 2) Multiplication of force—Small forces can be used to control large forces
 3) Simplicity
 a) Has fewer moving parts and points of wear than a mechanical system
 b) Is able to lubricate itself
 4) Compactness—Hydraulic motors are more compact than electrical motors of equal horsepower
 5) Economy
 a) Low installation cost
 b) Low operating cost
 6) Safety—Hydraulic systems have fewer moving parts and present fewer potential hazards than mechanical systems with gears and chains
 b. Disadvantages
 1) Safety—High pressure is potentially dangerous
 2) Cleanliness—System must be kept very clean to prevent excessive wear of the components
4. a. Components subjected to excessive pressure may explode
 b. Accidental release of trapped oil in hydraulic circuits supporting booms or attachments may cause these components to malfunction or fall suddenly
 c. Hot oil from leaks, disconnected lines, or reservoir drains can cause severe burns
 d. Pin-hole leaks in high pressure circuits can release potentially dangerous fluids
 e. Many hydraulic fluids are extremely flammable
 f. Some hydraulic fluids can irritate or burn when they come in contact with the skin or eyes
5. a. Support booms and attachments before working on a hydraulic system
b. Operate all control levers to insure hydraulic pressure has been relieved
c. Loosen lines and components in a circuit slowly to relieve trapped pressure
d. Stop equipment and repair leaks immediately
e. Observe normal shop safety practices including the wearing of safety glasses and safety helmets.
FUNDAMENTALS OF HYDRAULICS
UNIT II

UNIT OBJECTIVE

After completion of this unit, the student should be able to discuss the four functions of hydraulic fluids and select true statements concerning the power transfer in a hydraulic system. The student should also be able to identify the components of a basic hydraulic circuit and a hydraulic jack and disassemble, clean, inspect, and reassemble a hydraulic jack. This knowledge will be evidenced by correctly performing the procedures outlined in the assignment and job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms associated with fundamentals of hydraulics with the correct definitions.
2. Discuss briefly four functions of hydraulic fluids.
3. Calculate pressure when given force and area.
4. State Pascal's law.
5. Explain the operating principles of a hydraulic press.
6. Discuss Bernoulli’s theorem.
7. Identify the components of a basic hydraulic circuit.
8. Select true statements concerning the power transfer in a hydraulic system.
9. Identify the components of a hydraulic jack.
10. Distinguish between the lifting and lowering of a hydraulic jack.
11. Draw a block diagram of a simple hydraulic system.
12. Demonstrate the ability to disassemble, clean, and reassemble a hydraulic jack.
SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information, assignment, and job sheets.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information and assignment sheets.
VI. Demonstrate and discuss the procedures outlined in the assignment and job sheets.
VII. Demonstrate how hydraulic pressure is calculated.
VIII. Show examples of hydraulic jacks and assist students in identifying components.
IX. Let students practice operating hydraulic jack in order to understand operation.
X. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Calculation of Hydraulic Pressure
 2. TM 2--Basic Hydraulic Press
 3. TM 3--Bernoulli’s Theorem
 4. TM 4--Block Diagram of Hydraulic System
 5. TM 5--Operation of a Hydraulic Jack
 D. Assignment Sheet #1--Draw a Block Diagram of a Simple Hydraulic System
 E. Job Sheet #1--Disassemble, Clean, and Reassemble a Hydraulic Jack
F. Test

G. Answers to test

II. References:

FUNDAMENTALS OF HYDRAULICS
UNIT II

INFORMATION SHEET

I. Terms and definitions

A. Hydraulics--The study of fluids in motion or at rest
B. Fluid--A substance which has no shape of its own
C. Pressure--The force exerted over a surface divided by its area
D. Liquid--A fluid which is relatively incompressible
 (NOTE: A gas is a fluid that can be compressed.)
E. Reservoir--A container for keeping a supply of working fluid in a hydraulic system
F. Pump--A device which creates the flow of hydraulic fluid
 (NOTE: A pump converts mechanical energy into hydraulic energy.)
G. Line--A tube, pipe, or hose for conducting a fluid
H. Valve--A device which controls either pressure of fluid, direction of fluid flow, or rate of flow
I. Actuator--A device which converts hydraulic energy into mechanical energy
 Example: Hydraulic cylinders
 Hydraulic motors
J. Cylinder--An actuator which converts hydraulic energy into linear or rotary mechanical energy
 (NOTE: Rotary cylinders usually rotate less than one full revolution.)
K. Motor--An actuator which converts hydraulic energy into rotary mechanical energy

II. Functions of hydraulic fluids

A. Power transmission--Provides a medium for transferring force from one location to another
B. Lubrication--Lessens friction on internal surfaces of hydraulic system components in order to reduce wear
C. Sealing--Reduces flow through leakage paths
D. Cooling--Provides a medium for removing heat generated in the system
III. Calculation of pressure (Transparency 1)
 A. Determine force
 B. Determine area of surface to which force is applied
 C. Divide force by area of surface to which force is applied
 (NOTE: Pressure is normally measured in units of pounds per square inch (PSI). Therefore, the force should be expressed in units of pounds, and area should be expressed in square inches.)
 Example: If the force is four pounds, and the area equals 2 square inches, then the pressure will be 2 PSI.

IV. Pascal's law--Pressure on a confined fluid is transmitted undiminished in every direction to the surface of the containing vessel

V. Operating principles of a hydraulic press (Transparency 2)
 (NOTE: The operation of a hydraulic press is an example of the application of Pascal's law.)
 A. A hydraulic press consists of two pistons supported by a quantity of hydraulic fluid
 B. A force on one piston creates a pressure in the hydraulic fluid equal to the force divided by the piston area
 C. Pascal's law states the pressure will be equal at all points within the fluid including the fluid at the second piston
 D. The force applied by the second piston is equal to the pressure times the area of the second cylinder
 (NOTE: This is an example of force multiplication in a hydraulic system.)

VI. Bernoulli's theorem (Transparency 3)
 (NOTE: The following discussion does not take into account friction loss in the pipe.)
 A. Fluid flowing in a pipe will have some pressure and flow rate
 B. If the cross-sectional area of the pipe decreases, then the pressure will decrease
 (NOTE: The flow rate will increase.)
 C. If the cross-sectional area increases to its original size, then the pressure will return to its original value
 (NOTE: The flow rate will also return to its original value.)
VII. Components of a basic hydraulic circuit (Transparency 4)
 A. Reservoir
 B. Pump
 C. Lines
 D. Valves (optional)
 E. Actuator
 1. Motor
 2. Cylinder

VIII. Power transfer in a hydraulic system
 A. Power is supplied into pump from
 1. Electric motor
 2. Gasoline or diesel engine
 B. Mechanical power is converted to hydraulic power by the pump
 C. Hydraulic power is transmitted by lines
 D. Hydraulic power is regulated by valves
 E. Hydraulic power is converted to mechanical power by actuators
 1. Motor
 2. Cylinder

IX. Components of a hydraulic jack (Transparency 5)
 A. Reservoir
 B. Pump
 C. Actuator (cylinder)
 D. Check valve 1
 E. Check valve 2
 F. Release valve
X. Operation of a hydraulic jack (Transparency 5)

A. Lifting

1. Fluid is pulled from reservoir through check valve 1 on upward stroke of hand pump
2. Check valve 2 is closed by a spring
3. Fluid is forced past check valve 2 to cylinder to raise object on downward stroke of hand pump
4. Check valve 1 is closed by a spring

B. Lowering

1. Release valve is opened to return fluid to reservoir
2. Pumping with the release valve open causes fluid to circulate from reservoir to pump then back to reservoir
Calculation of Hydraulic Pressure

Pressure = \frac{4 \text{ lbs.}}{2 \text{ sq. in.}} = 2 \text{ PSI.}

Area = 2 \text{ Square Inches}
Basic Hydraulic Press

Diagram showing a basic hydraulic press with a pump and a cylinder.
Bernoulli's Theorem

1. In the Small Section Pipe, Velocity is Maximum. More Energy is in the Form of Motion, So Pressure is Lower.

2. Velocity Decreases in the Larger Pipe. The Kinetic Energy Loss is Made Up by an Increase in Pressure.

3. Ignoring Friction Losses, the Pressure Again Becomes the Same as at "A" When the Flow Velocity Becomes the Same as at "A"
Block Diagram of Hydraulic System

Reservoir

Pump

Valve

Actuator

Hydraulic Lines

Flow

Output

Power

Flow

Flow
Operation of a Hydraulic Jack

Reservoir

Check Valve 1

Pump

Check Valve 2

Actuator (Cylinder)

Release Valve (Closed)

Reservoir

Check Valve 1

Pump

Check Valve 2

Actuator (Cylinder)

Release Valve (Open)
FUNDAMENTALS OF HYDRAULICS
UNIT II

ASSIGNMENT SHEET #1 - DRAW A BLOCK DIAGRAM OF A SIMPLE HYDRAULIC SYSTEM

Directions: Draw a block diagram of a simple hydraulic system showing a reservoir, pump, valves, lines, and actuator. Designate flow direction by drawing arrows in the lines.
FUNDAMENTALS OF HYDRAULICS
UNIT II

JOB SHEET #1--DISASSEMBLE, CLEAN, AND REASSEMBLE A HYDRAULIC JACK

I. Tools and materials
 A. Hydraulic jack
 B. Hand tools
 C. Lint free shop towels
 D. Solvent
 E. Hydraulic fluid for jack
 F. Vise
 G. Safety glasses

II. Procedure
 A. Disassemble
 1. Use the solvent to clean any dirt or grease from the external surfaces
 2. Place the jack on a clean surface for disassembly
 3. Remove the drain plug and drain oil from the jack
 4. Remove the retaining nut which holds the ram (cylinder) in place
 5. Remove the ram
 6. Remove pumping piston
 7. Remove the check valve balls and spring
 8. Remove the release valve
 B. Clean and inspect
 1. Use the solvent to clean all of the removed parts and housing internal surfaces
 2. Inspect all surfaces for damage
 3. Inspect seals for nicks and cuts
 4. Replace seals
C. Reassemble

1. Install the release valve
2. Install the check valve balls and spring
3. Make sure balls are properly seated and operate properly
4. Install pumping piston with seal
5. Install the ram with seal
6. Install the retaining ring
7. Fill with fluid

(NOTE: It may be necessary to bleed air from the jack.)

8. Test the operation of the jack
1. Match the terms on the right with the correct definitions.

 a. The study of fluids in motion or at rest
 b. A substance which has no shape of its own
 c. The force exerted over a surface divided by its area
 d. A fluid which is relatively incompressible
 e. A container for keeping a supply of working fluid in a hydraulic system
 f. A device which creates the flow of hydraulic fluid
 g. A tube, pipe, or hose for conducting a fluid
 h. A device which controls either pressure of fluid, direction of fluid flow, or rate of flow
 i. A device which converts hydraulic energy into mechanical energy
 j. An actuator which converts hydraulic energy into linear or rotary mechanical energy
 k. An actuator which converts hydraulic energy into rotary mechanical energy

2. Discuss briefly four functions of hydraulic fluids.

 a.
 b.
 c.
 d.

 1. Line
 2. Fluid
 3. Pump
 4. Motor
 5. Hydraulics
 6. Liquid
 7. Reservoir
 8. Cylinder
 9. Pressure
 10. Actuator
 11. Valve
3. Calculate pressure in the following problems when given area and force.

 A. Force = 100 lbs, Area = 10 square inches

 B. Force = 10 lbs, Area = 1 square inch

 C. Force = 5 lbs, Area = 1/2 square inch

4. State Pascal's law.

5. Explain the operating principles of a hydraulic press.

 a.

 b.

 c.

 d.

6. Discuss Bernoulli's theorem.

 a.

 b.

 c.
7. Identify the components of a basic hydraulic circuit.

8. Select true statements concerning the power transfer in a hydraulic system by placing an "X" in the appropriate blanks.

 _____ a. Power is supplied into the pump from the reservoir
 _____ b. Mechanical power is converted to hydraulic power by the pump
 _____ c. Hydraulic power is transmitted by lines
 _____ d. Hydraulic power is regulated by actuators
 _____ e. Hydraulic power is converted to mechanical power by actuators
9. Identify the components of a hydraulic jack.

10. Distinguish between the lifting and lowering operation of a hydraulic jack by placing an "X" next to the description of the lowering operation.

 a. 1) Release valve is opened to return fluid to reservoir

 2) Pumping with the release valve open causes fluid to circulate from reservoir to pump then back to reservoir

 b. 1) Fluid is pulled from reservoir through check valve 1 on upward stroke of hand pump

 2) Check valve 2 is closed by a spring

 3) Fluid is forced past check valve 2 to cylinder to raise object on downward stroke of hand pump

 4) Check valve 1 is closed by a spring

11. Draw a block diagram of a simple hydraulic system.

12. Demonstrate the ability to disassemble, clean, inspect, and reassemble a hydraulic jack.

 (NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
ANSWERS TO TEST

1. a. 5 e. 7 i. 10
 b. 2 f. 3 j. 8
 c. 9 g. 1 k. 4
 d. 6 h. 11

2. Discussion should include:
 a. Power transmission--Provides a medium for transferring force from one location to another
 b. Lubrication--Lessens friction on internal surfaces of hydraulic system components in order to reduce wear
 c. Sealing--Reduces flow through leakage paths
 d. Cooling--Provides a medium for removing heat generated in the system

3. a. 10 PSI
 b. 10 PSI
 c. 10 PSI

4. Pressure on a confined fluid is transmitted undiminished in every direction to the surface of the containing vessel

5. Explanation should include:
 a. A hydraulic press consists of two pistons supported by a quantity of hydraulic fluid
 b. A force on one piston creates a pressure in the hydraulic fluid equal to the force divided by the piston area
 c. Pascal's law states the pressure will be equal at all points within the fluid including the fluid at the second piston
 d. The force applied by the second piston is equal to the pressure times the area of the second cylinder

6. Discussion should include:
 a. Fluid flowing in a pipe will have some pressure and flow rate
 b. If the cross-sectional area of the pipe decreases, then the pressure will decrease
 c. If the cross-sectional area increases to its original size, then the pressure will return to its original value

7. a. Reservoir
 b. Pump
 c. Lines
 d. Valves
 e. Actuator

8. b, c, e
9. a. Reservoir
 b. Pump
 c. Actuator
 d. Check valve 1
 e. Check valve 2
 f. Release valve

10. a

11. Performance skills evaluated to the satisfaction of the instructor

12. Performance skills evaluated to the satisfaction of the instructor
RESERVOIRS
UNIT I

UNIT OBJECTIVE

After completion of this unit, the student should be able to select reasons for using a pressurized reservoir and functions of a reservoir. The student should also be able to draw symbols for reservoirs and clean and inspect a reservoir. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheet and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Define reservoir.
2. Name two types of reservoirs.
3. Select reasons for using a pressurized reservoir.
4. Select functions of a reservoir.
5. Identify the parts of a properly designed, vented reservoir.
6. Identify the parts of a properly designed, pressurized reservoir.
7. Draw the symbol for a vented and pressurized reservoir.
8. Demonstrate the ability to clean and inspect a vented reservoir.
RESERVOIRS
UNIT I

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.

II. Provide student with information and job sheets.

III. Make transparencies.

IV. Discuss unit and specific objectives.

V. Discuss information sheet.

VI. Demonstrate and discuss the procedures outlined in the job sheets.

VII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1-Parts of a Properly Designed, Vented Reservoir
 2. TM 2-Parts of a Properly Designed, Pressurized Reservoir
 D. Job Sheet #1-Clean and Inspect a Vented Reservoir
 E. Test
 F. Answers to test

II. References:
RESERVOIRS
UNIT I

INFORMATION SHEET

I. Reservoir--Container for holding a supply of fluid

II. Types of reservoirs
 A. Vented to atmosphere
 B. Pressurized and sealed

III. Reasons for using a pressurized reservoir
 A. Contamination is reduced
 B. Condensation is reduced
 C. Helps to force fluid to the pump

IV. Functions of a reservoir
 A. Provides fluid to replace system leakage
 B. Contains excess fluid resulting from system volume changes
 (NOTE: System volume changes occur when a cylinder is retracted or extended.)
 C. Helps to cool system
 D. Helps to separate dirt and air from fluid

V. Parts of a properly designed, vented reservoir (transparency 1)
 A. Filler cap
 B. Fluid level gauge
 C. Baffle
 (NOTE: The baffle is optional. It helps to separate inlet fluid from the outlet fluid. It also assists in air and dirt separation and cooling.)
 D. Reservoir outlet
 (NOTE: The reservoir outlet goes to the pump.)
INFORMATION SHEET

E. Return lines
F. Intake filter screen
 (NOTE: The intake filter screen protects the pump.)
G. Drain plug
 (NOTE: Some drain plugs are magnetic to help remove metal chips in fluid.)
H. Inspection plate

VI. Parts of a properly designed pressurized reservoir (Transparency 2)
 A. Filler cap
 B. Fluid level gauge
 C. Baffle
 D. Reservoir outlet
 E. Return lines
 F. Intake filter screen
 G. Drain plug
 H. Inspection plate
 I. Pressure regulator
 J. Air line

VII. Symbols for reservoirs
 A. Vented
 B. Pressurized

Parts of a Properly Designed, Vented Reservoir

- Filler Cap
- Air Vent
- Level Gauge
- Return Line
- Baffle
- Intake Filter Screen
- Drain Plug
- Inspection Plate
- Reservoir Outlet
Parts of a Properly Designed, Pressurized Reservoir

- Filler Cap
- Return Line
- Air Line
- Pressure Regulator
- Baffle
- Inspection Plate
- Drain Plug
- Intake Filter Screen
- Reservoir Outlet
RESERVOIRS
UNIT I

JOB SHEET #1: CLEAN AND INSPECT A VENTED RESERVOIR

I. Tools and materials
 A. Wrenches (as required)
 B. Screwdriver (as required)
 C. Vented reservoir
 D. Lint-free shop towel
 E. Solvent

II. Procedure
 A. Clean
 1. Drain fluid
 2. Remove inspection plate
 3. Remove sludge on bottom of reservoir with cloth wetted with solvent
 4. Clean air vent
 (NOTE: Inspect relief valve on pressurized reservoir.)
 5. Clean intake filter screen with solvent
 6. Rinse inside of reservoir with solvent
 B. Inspect
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Examine reservoir for leaks, cracks, and broken welds</td>
<td>✓</td>
</tr>
<tr>
<td>2. Inspect inlet filter screen; replace if damaged</td>
<td></td>
</tr>
<tr>
<td>3. Inspect filler cap to insure proper operation</td>
<td></td>
</tr>
<tr>
<td>4. Check air vent to insure that it is not plugged</td>
<td></td>
</tr>
<tr>
<td>5. Check operation of relief valve</td>
<td></td>
</tr>
</tbody>
</table>

C. Have instructor check work
1. Define reservoir.

2. Name two types of reservoirs.
 a.
 b.

3. Select reasons for using a pressurized reservoir by placing an "X" in the appropriate blanks.
 _____ a. Condensation is increased
 _____ b. Contamination is reduced
 _____ c. Helps to force the fluid to the baffle
 _____ d. Condensation is reduced
 _____ e. Helps to force fluid to the pump

4. Select functions of a reservoir by placing an "X" in the appropriate blanks.
 _____ a. Helps to cool system
 _____ b. Contains excess fluid resulting from system volume changes
 _____ c. Connects main components of system
 _____ d. Helps to separate dirt and air from fluid
 _____ e. Provides mechanical action for movement of fluid
 _____ f. Provides fluid to replace system leakage
5. Identify the parts of a properly designed, vented reservoir.

a.

b.

c.

d.

e.

f.

g.

h.

6. Identify the parts of a properly designed, pressurized reservoir.

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.
7. Draw the symbol for reservoirs.
 a. Vented
 b. Pressurized

8. Demonstrate the ability to clean and inspect a vented reservoir.
 (NOTE: If this activity has not been accomplished prior to the test, ask your instructor when it should be completed.)
ANSWERS TO TEST

1. Container for holding a supply of fluid

2. a. Vented to atmosphere
b. Pressurized and sealed

3. b, d, e

4. a, b, d, f

5. a. Filler cap
b. Fluid level gauge
c. Baffle
d. Reservoir outlet
e. Return lines
f. Intake filter screen
g. Drain plug
h. Inspection plate

6. a. Filler cap
b. Fluid level gauge
c. Baffle
d. Reservoir outlet
e. Return lines
f. Intake filter screen
g. Drain plug
h. Inspection plate
i. Pressure regulator
j. Air line

7. a.
b.

5. Performance skills evaluated to the satisfaction of the instructor.
UNIT OBJECTIVE

After completion of this unit, the student should be able to select true statements concerning the characteristics of steel pipe and hydraulic hose and discuss the types, construction, and size of steel tubing. The student should also be able to identify hose-ends and fittings used in hydraulic systems and replace a reusable hose end. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheet and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to lines, fittings, and couplers with the correct definitions.
2. Select true statements concerning the characteristics of steel pipe.
3. Discuss the types, construction, and size of steel tubing.
4. Select true statements concerning the characteristics of hydraulic hose.
5. Identify types of fittings commonly used with tubing.
6. Identify types of hose-ends used in hydraulic systems.
7. Identify types of fittings used in hydraulic systems.
8. Select factors to consider when routing tubing in hydraulic systems.
9. List conditions to avoid when routing hydraulic hose.
10. Demonstrate the ability to replace a reusable hose end.
LINES, FITTINGS, AND COUPLERS
UNIT II

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information sheet.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheet.
VI. Demonstrate and discuss the procedures outlined in the job sheet.
VII. Show students examples of lines, fittings, and couplers, and discuss safety precautions which should be practiced when working with them.
VIII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Sizing of Steel Pipe
 2. TM 2--Working Pressure for Steel Pipe
 3. TM 3--Hose Construction and Hose Types
 4. TM 4--Types of Fittings Commonly Used with Tubing
 5. TM 5--Types of Hose Ends
 6. TM 6--Types of Fittings Used in Hydraulic Systems
 7. TM 7--Routing Hydraulic Hose and Tubing
 D. Job Sheet #1--Replace a Reusable Hose End
 E. Test
 F. Answers to test
II. References:

INFORMATION SHEET

I. Terms and Definitions

A. Pipe--Rigid fluid conductor which is not intended to be bent or shaped

B. Tubing--A semi-rigid fluid conductor which is customarily bent into a desired shape

C. Hose--Flexible fluid conductor which can readily bend with movement of machine members

D. Hose end--A fitting which is attached onto a hose to allow the hose to be connected to other components

E. Fittings--A device for connecting hydraulic components, such as a hose to a valve

F. Joint Industrial Council--An organization which is responsible for promotion of industrial standards

(NOTE: JIC is the abbreviation for the Joint Industrial Council.)

G. Skive--To remove the outer covering on a hose

II. Characteristics of steel pipe

(NOTE: Do not use galvanized pipe in hydraulic systems.)

A. Size (Transparency 1)

1. Size typically specified by nominal inside diameter

2. Wall thickness (for a given size) is described by a schedule number

B. Pressure range (Transparency 2)

1. Schedule 40 is commonly used for low pressure lines

2. Schedule 80 is commonly used for high pressure lines

3. Schedule 160 is commonly used for very high pressure lines

III. Characteristics of steel tubing

A. Types

1. Stainless

2. Nonstainless
INFORMATION SHEET

B. Construction
 1. Seamless
 2. Welded

C. Size (Table 1)

<table>
<thead>
<tr>
<th>TUBE OD</th>
<th>WALL THICKNESS</th>
<th>TUBE ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>0.028</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>0.032</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.055</td>
</tr>
<tr>
<td>3/16</td>
<td>0.032</td>
<td>0.1235</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.1175</td>
</tr>
</tbody>
</table>

Table 1

1. Indicated by (actual) outside diameter and wall thickness
2. Wall thickness sometimes described as:
 a. Thin wall (low pressure)
 b. Standard (high pressure)
 c. Thick wall (very high pressure)

IV. Characteristics of hydraulic hose

A. Construction (Transparency 3)
 1. Inner tube
 2. Reinforcement
 3. Cover
 (NOTE: The reinforcement typically consists of one or more layers of steel or fabric braid.)

B. Size
 1. Factors to specify
 a. Inside diameter
 b. Working pressure
 c. Construction
INFORMATION SHEET

2. Standard hose types (Transparency 3)
 a. Standard developed by Society of Automotive Engineers (SAE)
 b. Hose guaranteed by the manufacturer to meet a minimum safety standard

V. Types of fittings commonly used with tubing (Transparency 4)

A. Flare (JIC 37° flare or 45° flare)
 (NOTE: The end of the tubing is flared to mate with a fitting. 37° is most common and 45° is used in some low pressure applications.)

B. Flareless
 1. Swage type
 (NOTE: The tubing material is compressed to form a build-up of tubing material around a retaining ring. This ring is used to hold the fitting on the tubing.)
 2. Bite type
 (NOTE: A retaining ring is compressed onto the tube. The ring "bites" into the tubing. The primary difference between these two types of fittings is that the swage type displaces the tubing to conform around the retaining ring. The bite type cuts or bites into the tubing.)

C. Braze-on
 (NOTE: The fitting is brazed or welded onto the end of the tubing.)

VI. Types of hose-ends used in hydraulic systems (Transparency 5)

A. Permanent
 (NOTE: The fitting is crimped or swaged onto the hose.)

B. Reusable
 1. Nonskive
 (NOTE: The hose cover is not removed. The hose-end nipple is inserted into the hose. A socket (sleeve) is screwed or pushed onto the hose-end to clamp it to the hose.)
INFORMATION SHEET

2. Skive

(NOTE: The hose cover is removed (skived) prior to the installation of the hose end. The installation is the same as the nonskive.)

3. Clamp-on

(NOTE: A barbed hose-end nipple is inserted into hose and a clamp is bolted onto the hose to provide grip.)

VII. Types of fittings used in hydraulic systems (Transparency 6)

A. Pipe thread

B. Straight thread

(NOTE: Straight thread should be used with an O-ring.)

C. Flare

D. Split flange

VIII. Factors to consider when routing tubing in hydraulic systems

A. Avoid straight-line hook-ups

(NOTE: These do not allow expansion and contraction.)

B. Use the fewest and simplest bends possible

C. Support long runs of tubing

D. Avoid interference with operator controls

IX. Conditions to avoid when routing hydraulic hose (Transparency 7)

A. Taut hose

B. Loops

C. Twists

D. Rubbing

E. Heat

F. Sharp bends
Sizing of Steel Pipe

Wall Thickness

Schedule 40 Schedule 80 Schedule 160

<table>
<thead>
<tr>
<th>Nominal Size</th>
<th>Pipe O.D.</th>
<th>Schedule 40</th>
<th>INSIDE DIAMETER Schedule 80</th>
<th>Schedule 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>.405</td>
<td>.269</td>
<td>.215</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>.540</td>
<td>.364</td>
<td>.302</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>.675</td>
<td>.493</td>
<td>.423</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>.840</td>
<td>.622</td>
<td>.514</td>
<td>.466</td>
</tr>
<tr>
<td>5/8</td>
<td>1.050</td>
<td>.824</td>
<td>.742</td>
<td>.587</td>
</tr>
<tr>
<td>1</td>
<td>1.315</td>
<td>1.049</td>
<td>.957</td>
<td>.815</td>
</tr>
<tr>
<td>1 1/8</td>
<td>1.660</td>
<td>1.380</td>
<td>1.278</td>
<td>1.160</td>
</tr>
<tr>
<td>1 1/2</td>
<td>1.900</td>
<td>1.610</td>
<td>1.500</td>
<td>1.338</td>
</tr>
<tr>
<td>2</td>
<td>2.375</td>
<td>2.067</td>
<td>1.939</td>
<td>1.689</td>
</tr>
<tr>
<td>2 1/2</td>
<td>2.875</td>
<td>2.469</td>
<td>2.323</td>
<td>2.125</td>
</tr>
<tr>
<td>3</td>
<td>3.500</td>
<td>3.068</td>
<td>2.900</td>
<td>2.624</td>
</tr>
</tbody>
</table>
Working Pressure for Steel Pipe

Working Pressure (PSI)
Burst Pressure

<table>
<thead>
<tr>
<th>Nominal Size</th>
<th>Schedule 40</th>
<th>Schedule 80</th>
<th>Schedule 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼</td>
<td>2100 (19,500)</td>
<td>4350 (26,400)</td>
<td>—</td>
</tr>
<tr>
<td>⅜</td>
<td>1700 (16,200)</td>
<td>3800 (22,500)</td>
<td>—</td>
</tr>
<tr>
<td>½</td>
<td>2300 (15,600)</td>
<td>4100 (21,000)</td>
<td>7300 (26,700)</td>
</tr>
<tr>
<td>¾</td>
<td>2000 (12,900)</td>
<td>3500 (17,600)</td>
<td>8500 (25,000)</td>
</tr>
<tr>
<td>1</td>
<td>2100 (12,100)</td>
<td>3500 (15,900)</td>
<td>5700 (22,300)</td>
</tr>
<tr>
<td>1¼</td>
<td>1800 (10,100)</td>
<td>3000 (13,900)</td>
<td>4400 (18,100)</td>
</tr>
<tr>
<td>1½</td>
<td>1700 (9,100)</td>
<td>2800 (12,600)</td>
<td>4500 (17,700)</td>
</tr>
<tr>
<td>2</td>
<td>1500 (7,800)</td>
<td>2500 (11,000)</td>
<td>4600 (17,500)</td>
</tr>
</tbody>
</table>
Hose Construction and Hose Types

<table>
<thead>
<tr>
<th>SAE Number</th>
<th>Inner Tube</th>
<th>Reinforcement</th>
<th>Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 100R1</td>
<td>Synthetic Rubber</td>
<td>1 High Tensile Steel</td>
<td>Synthetic Rubber</td>
</tr>
<tr>
<td>SAE 100R2</td>
<td>Synthetic Rubber</td>
<td>2 Wire Braids 2 Spiral Plies and 1 Wire Braid</td>
<td>Synthetic Rubber</td>
</tr>
<tr>
<td>SAE 100R3</td>
<td>Synthetic Rubber</td>
<td>2 Textile Braids</td>
<td>Synthetic</td>
</tr>
<tr>
<td>SAE 100R4</td>
<td>Synthetic Rubber</td>
<td>Braided Textile Fibers/Spiral Body Wire</td>
<td>Synthetic</td>
</tr>
<tr>
<td>SAE 100R5</td>
<td>Synthetic Rubber</td>
<td>1 Textile Braid a High Tensile Steel Wire Braid</td>
<td>Cotton Braid</td>
</tr>
<tr>
<td>SAE 100R6</td>
<td>Synthetic Rubber</td>
<td>1 Textile Braid</td>
<td>Synthetic Rubber</td>
</tr>
<tr>
<td>SAE 100R7</td>
<td>Thermoplastic</td>
<td>Synthetic Fiber</td>
<td>Thermoplastic</td>
</tr>
<tr>
<td>SAE 100R8</td>
<td>Thermoplastic</td>
<td>Synthetic Fiber</td>
<td>Thermoplastic</td>
</tr>
<tr>
<td>SAE 100R9</td>
<td>Synthetic Rubber</td>
<td>4 Spiral Plies Wrapped In Alternating Directions</td>
<td>Synthetic Rubber</td>
</tr>
<tr>
<td>SAE 100R10</td>
<td>Synthetic Rubber</td>
<td>4 Spiral Plies of Heavy Wire Wrapped in Alternating Directions</td>
<td>Synthetic Rubber</td>
</tr>
<tr>
<td>SAE 100R11</td>
<td>Synthetic Rubber</td>
<td>6 Spiral Plies of Heavy Wire Wrapped in Alternating Directions</td>
<td>Synthetic Rubber</td>
</tr>
</tbody>
</table>

Flexible Hose Construction

SAE Hose Types

Diagram:
- **Outer Cover**
- **Reinforcement Layers**
- **Inner Tube**
Types of Fittings Commonly Used with Tubing

- **Flared**
- **Bite Type Flareless**
- **Heat-Sealed Tube Connection**
 - **Welded or Brazed**
 - **O-Ring**
 - **Union Nut (N)**
 - **Body (T)**
- **Braze-on**
- **Swage Type Flareless**
Types of Hose Ends

Permanent Hose Fitting

Skive Fitting

No-Skive Fitting

Clamp Type Fitting
Types of Fittings Used in Hydraulic Systems

1. Pipe Thread (Tapered)

2. Dry Seal To 30° Cone Seat (Inverted Flare)

3. Flare Seal To Cone Seat

 J.I.C. Flare Seal to 37° Cone Seat
 S.A.E. Flare Seal to 45° Cone Seat

4. Straight Thread With O — Ring Seal

5. Split Flange O — Ring Seal
Routing Hydraulic Hose and Tubing

1. Avoid Taut Hose
 - Wrong
 - Right

3. Avoid Twisting
 - Wrong
 - Right

5. Avoid Heat
 - Wrong
 - Right

2. Avoid Loops
 - Wrong
 - Right

4. Avoid Rubbing
 - Wrong
 - Right

6. Avoid Sharp Bends
 - Right
 - Wrong
 - Right
 - Wrong
 - Right
 - Wrong
LINES, FITTINGS, AND COUPLERS
UNIT II

JOB SHEET #1--REPLACE A REUSABLE HOSE END

I. Tools and materials
 A. Wrenches as required
 B. Hose with reusable hose ends
 C. Replacement hose
 (NOTE: Replacement hose must be matched to the hose ends.)
 D. Tape measure
 E. Tool to cut hose
 F. Vise
 G. Knife

II. Procedure
 A. Remove the hose ends from the old hose
 (NOTE: For clamp on hose ends the screw should be removed and the two
 halves of the clamp are to be removed. The hose-end nipple can then be
 removed. For skive and nonskive hose-ends the socket (sleeve) should
 be pulled off or unscrewed as appropriate. The hose-end nipple can then be
 removed.)
 B. Measure replacement hose and cut to length
 C. If the hose end is a skive type, use the knife to remove the outer covering
 where the sleeve is to be placed on the hose
 D. Lubricate the end of the hose and place the sleeve on the hose
 E. Place the sleeve and hose assembly into the vise
 F. Insert the nipple and screw it into the sleeve and hose assembly until the
 nipple seats against the sleeve
 G. Repeat for the other end
LINEs, FITTINGs, AND COUPLERS
UNIT II

NAME ________________________

TEST

1. Match the terms on the right with the correct definitions.

 ____ a. Rigid fluid conductor which is not intended to be bent or shaped

 ____ b. A semi-rigid fluid conductor which is customarily bent into a desired shape

 ____ c. Flexible fluid conductor which can readily bend with movement of machine members

 ____ d. A fitting which is attached onto a hose to allow the hose to be connected to other components

 ____ e. A device for connecting hydraulic components, such as a hose to a valve

 ____ f. An organization which is responsible for promotion of industrial standards

 ____ g. To remove the outer covering on a hose

 1. Fittings
 2. Pipe
 3. Skive
 4. Hose
 5. Joint Industrial Council
 6. Tubing
 7. Hose end

2. Select true statements concerning the characteristics of steel pipe by placing an "X" in the appropriate blanks.

 ____ a. Size is typically specified by outside diameter

 ____ b. Wall thickness is described by a schedule number

 ____ c. Schedule 40 is commonly used for low pressure lines

 ____ d. Schedule 160 is commonly used for very high pressure lines

 ____ e. Schedule 80 is commonly used for low pressure lines

3. Discuss the types, construction, and size of steel tubing.

 a. Types

 1)

 2)
b. Construction

1)

2)

c. Size

1)

2)

 a)

 b)

 c)

4. Select true statements concerning the characteristics of hydraulic hose by placing an "X" in the appropriate blanks.

 a. The construction of hydraulic hose consists of an inner tube, reinforcement, and cover

 b. Factors to specify size include outside diameter, working pressure, and construction

 c. Standard hose types were developed by the Society of Automotive Engineers (SAE)

 d. Hoses are guaranteed by the manufacturer to meet a minimum safety standard

5. Identify the types of fittings commonly used with tubings.

 a.

 b.

 c.

 d.

 Tailpiece (R)

 Heat-Sealed Tube Connection
 Welded or Brazed

 O-Ring Body (T)

 Union Nut (N)
6. Identify types of hose-ends used in hydraulic systems.

 a.
 b.
 c.
 d.

7. Identify types of fittings used in hydraulic systems.

 a.
 b.
 c.
 d.

8. Select factors to consider when routing tubing in hydraulic systems by placing an "X" in the appropriate blanks.

 _ a. All hook-ups should be straight-line
 _ b. Use as many bends as possible
 _ c. Support long runs of tubing
 _ d. Avoid interference with operator controls

9. List five conditions to avoid when routing hydraulic hose.

 a.
 b.
 c.
d.

10. Demonstrate the ability to replace a reusable hose end.

(NOTE: If this activity has not been accomplished prior to the test, ask your instructor when it should be completed.)
LINES, FITTINGS, AND COUPLERS
UNIT II

ANSWERS TO TEST

1. a. 2 e. 1
 b. 6 f. 5
 c. 4 g. 3
 d. 7

2. b, c, d

3. Discussion should include:
 a. Type
 1) Stainless
 2) Nonstainless
 b. Construction
 1) Seamless
 2) Welded
 c. Size
 1) Indicated by outside diameter and wall thickness
 2) Wall thickness sometimes described as:
 a) Thin wall
 b) Standard
 c) Thick wall

4. a, c, d

5. a. Flare
 b. Swage type flareless
 c. Bite type flareless
 d. Braze-on

6. a. Permanent
 b. Nonskive reusable
 c. Skive reusable
 d. Clamp-on reusable

7. a. Pipe thread
 b. Flare
 c. Straight thread
 d. Split flange

8. c, d

9. Any five of the following:
 a. Taut hose
 b. Loops
 c. Twists
 d. Rubbing
 e. Heat
 f. Sharp bends

10. Performance skill evaluated to the satisfaction of the instructor
UNIT OBJECTIVE

After completion of this unit, the student should be able to describe the leakage paths within a hydraulic system and match types of seals with their applications. The student should also be able to install an O-ring, a seal, and a packing. The knowledge will be evidenced by correctly performing the procedures outlined in the job sheet and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms associated with seals with the correct definitions.
2. Describe two types of leakage paths in hydraulic systems.
3. Identify types of sealing devices used in hydraulic systems.
4. Match types of seals with their applications.
5. Identify types of seal construction.
6. Select factors to consider concerning seal material.
7. Demonstrate the ability to:
 a. Install an O-ring.
 b. Install a seal.
 c. Install a packing.
SEALS
UNIT III

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information and job sheets.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheet.
VI. Demonstrate and discuss the procedures outlined in the job sheets.
VII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Typical Leakage Paths
 2. TM 2--Types of Sealing Devices
 3. TM 3--Types of Seal Construction
 4. TM 4--Types of Seal Construction (Continued)
 5. TM 5--Types of Seal Construction (Continued)
 D. Job sheets
 1. Job Sheet #1--Install an O-ring
 2. Job Sheet #2--Install a Seal
 3. Job Sheet #3--Install a Packing
 E. Test
 F. Answers to test
II. References:

I. Terms and definitions

A. Sealing device—Any device which keeps hydraulic fluid from flowing between certain passages or keeps foreign material from entering the system.

B. Seal ring (seal)—A type of seal whose basic shape is a ring; may use various complex shapes to improve sealing characteristics.

C. O-ring—A simple seal with a round cross section.

D. Gasket—A thin flat seal sandwiched between two metal surfaces.

E. Packing—A seal which resembles a spring.

F. Counter-bore—An enlarged area around a spool or shaft to allow room to accommodate a seal or O-ring.

G. Back-up ring—A ring installed behind an O-ring or seal to hold it in place.

II. Types of leakage paths in hydraulic systems (Transparency 1)

A. Internal—Leakage from one compartment to another within a component.

B. External—Leakage from within the component to the outside.

(Note: Although leakage is generally considered undesirable, some leakage may be designed into the component. For example, some pumps have internal leakage paths to help cool the pump. Also, some seals allow a small amount of leakage to lubricate the seal.)

III. Types of sealing devices (Transparency 2)

A. Seal.

B. Packing.

C. O-ring.

D. Back-up ring.

E. Gasket.

F. Sealing compounds

1. Liquid sealing compounds.

2. Plastic tape.

(Note: Teflon tape is often used for sealing.)
IV. Types of seals and their applications
 A. Static--Used where no mechanical movement occurs
 E. Dynamic--Used where rotary or linear motion occurs
 C. Wiper seal--Used to prevent dirt from entering the system
 (NOTE: Wiper seals "wipe" dirt from a cylinder rod.)

V. Types of seal construction (Transparencies 3, 4, and 5)
 A. T-ring seal
 B. Lip seal
 C. Cup seal
 D. Face seal
 E. Piston ring seal

VI. Factors to consider concerning seal material
 A. Compatibility with the hydraulic fluid
 B. Temperature extremes
 C. Exposure to environment
 D. Wear characteristics
 (NOTE: Improper hydraulic fluid, excessive temperature extremes, and sunlight may cause seal material to become hard or spongy. These conditions may cause the seal to fail to perform as desired.)
Typical Leakage Paths

[Diagram showing internal and external leakage paths]
Types of Sealing Devices

Seal

Back-up Ring

O-Ring

Chevron or V-Shaped Packing

(Note: The Lip is Installed Towards Pressure.)

Gasket

Sealing Compounds

Liquids

Plastic Tape
Types of Seal Construction

T-Ring Seal

A Stamped Housing Gives the Seal Rigidity and Facilitates Alignment at Installation.

The Lip is Formed of a Synthetic or Leather; it is Installed Toward the Pressure Source.

Pressure Forces the Lip Tighter Around the Shaft to Aid Sealing.

Spring Helps Sealing When There is No Pressure.

Lip-Type Seal
Types of Seal Construction

(Continued)

1. Cup-Type Seal

Cup Seals Are Pressure Actuated

Pressure Piston Rod

Cylinder Barrel

Wave Washer Provides Spring Tension to Force Stationary Face Against Rotating Face

Backing Plate and Retainers Clamp Cups Tightly in Place

2. Face-Type Seal

Shaft

This Part of Seal Remains Stationary in Housing

Sealing Surface

This Part of Seal Rotates with Shaft
Types of Seal Construction
(Continued)

Piston Ring Seal

Piston

Seal Ring

"O" Ring

Nut

Cylinder Barrel
JOB SHEET #1--INSTALL AN O-RING

I. Tools and materials
 A. Wrenches as required
 B. O-ring remover tool
 C. Fitting assembly which uses an O-ring seal
 (NOTE: Other components which use O-ring seals may be used.)
 D. O-ring of appropriate size
 E. Abrasive material such as emery cloth

II. Procedure
 A. Clean dirt and other foreign material from assembly
 B. Disassemble fitting (or other component) to have access to the O-ring
 C. Remove old O-ring
 D. Inspect

 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inspect O-ring groove</td>
<td>✓</td>
</tr>
<tr>
<td>2.</td>
<td>Remove sharp edges, nicks, or burrs with a fine abrasive stone</td>
<td></td>
</tr>
</tbody>
</table>
 (NOTE: Extreme care should be taken with this operation.) |
| 3. | Inspect shaft or spool for sharp edges | |
| 4. | Remove nicks or burrs with abrasive material | |
| 5. | Polish with a fine abrasive cloth | |

E. Reclean assembly, removing any debris from above inspection
JOB SHEET #1

F. Install O-ring
 1. Lube O-ring
 2. Protect O-ring from sharp edges
 3. If necessary, cover sharp edges with a thin plastic shim during installation
 (NOTE: Avoid twisting O-ring during installation.)

G. Reassemble
 1. Align parts and reassemble
 2. During reassembly, observe that the O-ring is properly seated and not cut or twisted
 (NOTE: Only a slight squeeze should be applied to the O-ring. Normally, the component will be cycled for a few cycles and then visually inspected for leakage. This operation will not be performed at this time.)

I. Have instructor inspect
I. Tools and materials
 A. Wrenches as required
 B. Seal installation tool (if required)
 C. Cylinder which uses a wiper seal
 D. Wiper seal
 E. Abrasive material such as emery cloth

II. Procedure
 (NOTE: This procedure may also be used for pressure type seals.)
 A. Clean cylinder rod and end cap
 B. Remove end cap
 C. Remove old seal
 D. Clean shaft and bore of cylinder
 E. Inspect
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check shaft for nicks and burrs</td>
<td>✓</td>
</tr>
<tr>
<td>2. Repair damaged area with abrasive material</td>
<td></td>
</tr>
<tr>
<td>3. Polish with fine emery cloth</td>
<td></td>
</tr>
<tr>
<td>4. Reclean</td>
<td></td>
</tr>
</tbody>
</table>

F. Lubricate seal with recommended fluid to ease installation

G. Load seal onto shaft
 1. Use plastic shim to protect seal from sharp edges
 2. Insure that the seal is oriented properly

H. Coat outside diameter of metal cased seals with gasket cement to prevent leakage
JOB SHEET #2

I. Seat seal
 (NOTE: Press-fit seals may require the use of a special tool to press the seal in place.)

J. Insure that the seal is securely installed

K. Reinstall end cap
 (NOTE: Normally, the cylinder will be cycled for a few cycles then visually inspected for leakage. This operation will not be performed at this time.)

L. Have instructor inspect
JOB SHEET #3--INSTALL A PACKING

I. Tools and materials
 A. Wrenches as required
 B. Pump or other component which uses a seal
 C. Packings
 D. Abrasive material such as emery cloth

II. Procedure
 A. Remove the gland or ring which retains the packs
 B. Remove old packings
 C. Inspect the shaft surface
 D. Remove any nicks or scratches with the abrasive material
 E. Soak the packing in hydraulic oil prior to installation
 F. Install packings with the cup or V portion toward the pressure
 (NOTE: Packs which are composed of individual rings should be installed with each rotated 180° from the last ring.)
 G. Re-install the gland or retaining ring
 H. Tighten only enough to prevent leakage
1. Match the terms on the right with the correct definitions.

 a. Any device which keeps hydraulic fluid from flowing between certain passages or keeps foreign material from entering the system
 1. Gasket
 2. Packing
 3. Sealing device
 4. O-ring
 5. Seal ring
 6. Counterbore
 7. Back-up ring

 b. A type of seal whose basic shape is a ring; may use various complex shapes to improve sealing characteristics

 c. A simple seal with a round cross section

 d. A thin flat seal sandwiched between two metal surfaces

 e. A seal which resembles a spring

 f. An enlarged area around a spool or shaft to allow room to accommodate a seal or O-ring

 g. A ring installed behind an O-ring or seal to hold it in place

2. Describe two types of leakage paths in hydraulic systems.
 a. Internal-

 b. External-

3. Identify types of sealing devices used in hydraulic systems.

 a. ___
 b. ___

 c. ___
 d. ___
4. Match the types of seals on the right with their applications.

a. Used to prevent dirt from entering the system
b. Used where no mechanical movement occurs
c. Used where rotary or linear motion occurs

5. Identify types of seal construction.

6. Select factors to consider concerning seal material by placing an "X" in the appropriate blanks.

a. Temperature extremes
b. Wear characteristics
c. Noise conditions
d. Dynamic elasticity
e. Compatibility with the hydraulic fluid
f. Exposure to environment
g. Pressure of components

7. Demonstrate the ability to:

a. Install an O-ring.
b. Install a seal.
c. Install a packing.

(NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
SEALS
UNIT III

ANSWERS TO TEST

1. a. 3 e. 2
 b. 5 f. 6
 c. 4 g. 7
 d. 1

2. Description should include:
 a. Leakage from one compartment to another within a component
 b. Leakage from within the component to the outside

3. a. Cool
 b. Packing
 c. O-ring
 d. Gasket
 e. Liquid sealing compound
 f. Plastic tape
 g. Back-up ring

4. a. 2
 b. 1
 c. 3

5. a. T-ring
 b. Lip seal
 c. Cup seal
 d. Face seal
 e. Piston ring seal

6. a, b, e, f

7. Performance skills evaluated to the satisfaction of the instructor.
FLUIDS AND FILTERS
UNIT IV

UNIT OBJECTIVE

After completion of this unit, the student should be able to select the effects of contaminants and functions of filters in a hydraulic system and list functions of the fluid in a hydraulic system. The student should also be able to match the locations to the types of filters in the hydraulic system and identify types of filter circuits. This knowledge will be evidenced by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms associated with fluids and filters with the correct definitions.
2. Select the effects of contaminants in the hydraulic system.
3. List practices for assuring hydraulic system cleanliness.
4. Select functions of the filter in a hydraulic system.
5. Distinguish between surface filters and depth filters.
6. Match the locations with the types of filters in the hydraulic system.
7. Identify types of filter circuits.
8. Select factors used in specifying a filter.
9. Draw the symbol for a filter.
10. List four functions of the fluid in hydraulic systems.
11. Select true statements concerning the effect of temperature on the viscosity of hydraulic fluids.
12. Name common additives in hydraulic systems.
13. List five safety rules to remember when working with hydraulic fluid.
FLUIDS AND FILTERS
UNIT IV

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information sheet.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheet.
VI. Show students types of filters.
VII. Disassemble filter to show functions of filters.
VIII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Types of Filters
 2. TM 2--Locations of Filters in Hydraulic System
 3. TM 3--Types of Filter Circuits
 D. Test
 E. Answers to test

II. References:
I. Terms and definitions

A. Contaminant--Any unwanted material in the hydraulic system
 (NOTE: This includes various chemicals and particles such as metal, rust, and sand.)

B. Particulate contaminant--Contaminant which is composed of particles

C. Filter--A device which removes contaminants from hydraulic systems

D. Strainer--A very coarse filter typically used to prevent large items such as rocks and bolts from entering the system

E. Viscosity--A measure of the fluid's resistance to flow
 (NOTE: The viscosity will vary as temperature varies.)

F. Micron--A measure of size equal to one millionth of a meter
 (NOTE: Micron size is often used to describe the size of particles which a filter will remove from the fluid. For example, a 10 micron absolute filter is said to remove all particles greater than 10 microns.)

II. Effects of contaminants in the hydraulic system

A. Reduced component life
 (NOTE: Even small amounts of contaminant in the system may wear out a hydraulic pump in as little as a few hours.)

B. Scored internal surfaces
 (NOTE: Scored internal surfaces can result in excess leakage and poor performance.)

C. Clogged internal passages

D. Seized components

E. Poor performance

F. Improper operation
 (NOTE: One teaspoon of dust in 5 gallons of oil is a dirty system.)
INFORMATION SHEET

III. Practices for assuring hydraulic system cleanliness
 A. Change fluid and filter regularly
 B. Fill system only with clean oil
 (NOTE: Factory fresh oil is often quite dirty.)
 C. Clean dirt off breather caps and filler plugs prior to opening system
 D. Use a clean, lint-free towel to wipe dipstick
 E. Replace worn seals
 (NOTE: Worn wiper seals on cylinders can allow a large amount of dirt
to enter the system through the cylinder.)
 F. Keep work area clean
 (NOTE: This is especially important when disassembling components such
as pumps.)
 G. Clean and flush components prior to installing in system

IV. Functions of the filter in a hydraulic system
 A. To remove dirt that has entered the system through breather caps, seals,
open lines, and unclean components
 B. To remove metal particles generated by wear processes
 C. To remove particles resulting from rust or corrosion of internal surfaces

V. Types of filters (Transparency 1)
 A. Surface filter--Has a single surface that catches and removes dirt particles
larger than the holes in the filter
 B. Depth filter--Uses a large volume of filter material to trap the particles as the
oil passes through
 (NOTE: This filter material is similar to cotton.)

VI. Locations of filters in the hydraulic system (Transparency 2)
 A. Strainer or suction line filter--Inlet of the pump
 (NOTE: An inlet strainer is used only to prevent objects such as nuts,
bolts, and metal chips from entering the pump.)
 B. Pressure line filter--Outlet of the pump
 C. Return line filter--Return line between outlet of load and reservoir
INFORMATION SHEET

VII. Types of filter circuits (Transparency 3)
 A. Full flow filter
 B. Partial flow filter
 C. Auxiliary flow filter

VIII. Factors used in specifying a filter
 A. Degree of filtration (performance)
 (NOTE: This is commonly expressed as an efficiency or as minimum size
 particle removed.)
 B. Flow rate
 C. Pressure drop
 D. Dirt capacity
 E. System pressure
 F. Operating temperature

IX. Symbol for a filter
 ![Symbol for a filter]
 (NOTE: This symbol is also used for a strainer.)

X. Functions of the fluid in hydraulic systems
 A. Transmit power
 B. Lubricate system
 C. Assist in sealing system
 D. Transport heat

XI. Effect of temperature on the viscosity of hydraulic fluids
 A. Viscosity will decrease as temperature increases
 B. Viscosity will increase as temperature decreases
 C. The amount of change in viscosity for a specified change in temperature is
 known as the viscosity index
INFORMATION SHEET

XII. Common additives in hydraulic systems
A. Viscosity index improver
B. Anti-wear additives
C. Anti-oxidation compounds
D. Corrosion inhibitors
E. Anti-foam additives

XIII. Safety rules to remember when working with hydraulic fluids
A. Allow the system to cool prior to working on it
 (NOTE: Fluid in a working hydraulic system will commonly be in the
 temperature range of 150°F to 225°F or even higher. These temperatures
 can cause severe burns.)
B. Avoid contact with skin and eyes
 (NOTE: Some hydraulic fluids are very caustic, particularly aircraft fluids.)
C. Remove filler cap slowly to relieve any trapped pressure
 (NOTE: Some systems are capable of pressure build up in the reservoir
 from thermal expansion of the fluid caused by a hot day. It is possible that
 you may be sprayed with oil if the pressure is not slowly released.)
D. Since many hydraulic fluids are flammable, treat all fluids as flammable
 material
 (NOTE: Most hydraulic fluids used on mobile equipment are flammable.)
E. Avoid contact with hot objects such as exhaust manifolds
Location of Filters in Hydraulic System

- Strainer or Suction Line Filter
- Pressure Line Filter
- Return Line Filter
Types of Filter Circuits

Full Flow Filter

Partial Flow Filter

Auxiliary Flow Filter
1. Match the terms on the right with the correct definitions.

 1. a. Any unwanted material in the hydraulic system
 2. b. Contaminant which is composed of particles
 3. c. A device which removes contaminants from hydraulic systems
 4. d. A very coarse filter typically used to prevent large items such as rocks and bolts from entering the system
 5. e. A measure of the fluid's resistance to flow
 6. f. A measure of size equal to one millionth of a meter

 2. Select the effects of contaminants on hydraulic systems by placing an "X" in the appropriate blanks.

 a. Clogged internal passages
 b. Better performance
 c. Smooth internal surfaces
 d. Improper operation
 e. Reduced component life
 f. Better availability of parts
 g. Scored internal surfaces
 h. Seized components

 3. List five practices for assuring hydraulic system cleanliness.
 a.
 b.
 c.
4. Select functions of the filter in a hydraulic system by placing an "X" in the appropriate blanks.

 a. To remove rocks and bolts in the hydraulic fluid
 b. To remove particles resulting from rust or corrosion of internal surfaces
 c. To remove water in the oil
 d. To remove metal particles generated by wear processes
 e. To remove dirt that has entered the system through breather caps, seals, open lines, and unclean components

5. Distinguish between surface filters and depth filters by placing an "X" next to the description of depth filters.

 a. Has a single surface that catches and removes dirt particles larger than the holes in the filter
 b. Uses a large volume of filter material to trap the particles as the oil passes through

6. Match the locations on the right with the correct filters.

 a. Pressure line filter
 b. Return line filter
 c. Strainer or suction line filter

 1. Inlet of the pump
 2. Outlet of the pump
 3. Return line between outlet of load and reservoir

7. Identify types of filter circuits.

 a.
 b.
 c.

 ![Diagram of filter circuits]
8. Select factors used in specifying a filter by placing an "X" in the appropriate blanks.

 ____ a. Degree of filtration
 ____ b. Flow rate
 ____ c. Water pressure
 ____ d. Dirt capacity
 ____ e. Pressure drop
 ____ f. Size of hydraulic lines
 ____ g. System pressure
 ____ h. Amount of water in the oil
 ____ i. Operating temperature

9. Draw the symbol for a filter.

10. List four functions of the fluid in hydraulic systems.

 a. __
 b. __
 c. __
 d. __

11. Select true statements concerning the effect of temperature on the viscosity of hydraulic fluids by placing an "X" in the appropriate blanks.

 ____ a. Viscosity will decrease as temperature increases
 ____ b. Viscosity will increase as temperature increases
 ____ c. Viscosity will decrease as temperature decreases
 ____ d. Viscosity will increase as temperature decreases
 ____ e. The amount of change in viscosity for a specified change in temperature is known as the viscosity index.
12. Name three common additives in hydraulic systems.
 a.
 b.
 c.

13. List five safety rules to remember when working with hydraulic fluids.
 a.
 b.
 c.
 d.
 e.

 118
FLUIDS AND FILTERS
UNIT IV

ANSWERS TO TEST

1. a. 2 d. 1
 b. 6 e. 3
 c. 4 f. 5

2. a, d, e, g, h

3. Any five of the following:
 a. Change fluid and filter regularly
 b. Fill system only with clean oil
 c. Clean dirt off breather caps and filler plugs prior to opening system
 d. Use a clean, lint-free towel to wipe dipstick
 e. Replace worn seals
 f. Keep work area clean
 g. Clean and flush components prior to installing in system

4. b, d, e

5. b

6. a. 2
 b. 3
 c. 1

7. a. Full flow filter
 b. Partial flow filter
 c. Auxiliary flow filter

8. a, b, d, e, g, i

9.

10. a. Transmit power
 b. Lubricate system
 c. Assist in sealing system
 d. Transport heat

11. a, d, e
12. Any three of the following:
 a. Viscosity index improver
 b. Anti-wear additives
 c. Anti-oxidation compounds
 d. Corrosion inhibitors
 e. Anti-foam additives

13. a. Allow the system to cool prior to working on it
 b. Avoid contact with skin and eyes
 c. Remove filler cap slowly to relieve any trapped pressure
 d. Since many hydraulic fluids are flammable, treat all fluids as flammable material
 e. Avoid contact with hot objects such as exhaust manifolds
UNIT OBJECTIVE

After completion of this unit, the student should be able to calculate pump displacement, flow rate, input and output power, and pump volumetric efficiency. The student should also be able to discuss the operation of a gear pump, and axial piston pump, and select true statements concerning the operation of vane pumps. The student should also be able to disassemble, inspect, and reassemble a gear pump and a pressure compensated pump. This knowledge will be evidenced by correctly performing the procedures outlined in the assignment and job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to pumps with the correct definitions.
2. Distinguish between positive and nonpositive displacement pumps.
3. Name kinds of positive displacement pumps.
4. Given the formula, calculate pump displacement.
5. Given the formula, calculate pump flow rate.
6. Given the formulas, calculate pump input and output power.
7. Calculate pump volumetric efficiency.
8. Discuss the operation of a gear pump.
9. Select true statements concerning the operation of vane pumps.
10. Distinguish between an axial and a radial piston pump.
11. Select true statements concerning the operation of a radial piston pump.
12. Name two types of axial piston pumps.
13. Discuss the construction and operation of axial piston pumps.
14. Select true statements concerning the operation of a variable displacement axial piston pump.
15. Identify the parts of a servo-controlled variable displacement pump.
16. Match the components of pressure compensated axial piston pumps with their functions.
17. List four causes of hydraulic pump cavitation.

18. List common causes of hydraulic pump failure.

19. Draw the symbols for types of pumps.

20. Demonstrate the ability to:

 a. Disassemble, inspect, and reassemble a gear pump.

 b. Disassemble, inspect, and reassemble a pressure compensated variable displacement pump.
SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information, assignment, and job sheets.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheet.
VI. Demonstrate and discuss the procedures outlined on the assignment and job sheets.
VII. Show students different types of pumps and demonstrate their operation.
VIII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Gear Pump
 2. TM 2--Vane Pumps
 3. TM 3--Types of Piston Pumps
 4. TM 4--Construction and Operation of Axial Piston Pumps
 5. TM 5--Bent-Axis Axial Piston Pump--Fixed Displacement
 6. TM 6--Operation of Variable Displacement Axial Piston Pump
 7. TM 7--Parts of a Servo-Controlled Variable Displacement Pump
 8. TM 8--Operation of Pressure Compensated Axial Piston Pumps
 D. Assignment Sheet #1--Calculate Pump Displacement, Flow rate, Input and Output Power, and Overall Efficiency
E. Answers to assignment sheet

F. Job sheets
 1. Job Sheet #1--Disassemble, Inspect, and Reassemble a Gear Pump
 2. Job Sheet #2--Disassemble, Inspect, and Reassemble a Pressure Compensated Variable Displacement Pump

G. Test

H. Answers to test

II. References
PUMPS
UNIT V

INFORMATION SHEET

I. Terms and definitions

A. Pump--A device which creates the flow of fluid

B. Displacement--The volume of fluid which is transferred from the pump inlet to the outlet during one revolution of the pump

C. Volumetric efficiency--The actual flow rate from a pump divided by the theoretical flow rate

(NOTE: The theoretical flow rate is calculated using $Q = n \times \frac{d}{231}$ where Q is the theoretical flow rate, n is the speed in revolutions per minute, and d is the displacement in cubic inches. Efficiency is often expressed as a percentage.)

D. Cavitation--The formation of air bubbles in the inlet of a pump because the inlet does not completely fill with fluid

E. Aeration--Air in the fluid

F. Back pressure--Pressure in the return line caused by flow through the line from the pump to the reservoir

II. Types of pumps

A. Positive displacement--A pump whose inlet is sealed from the outlet; will deliver fluid any time the inlet is kept supplied and the pump is driven

B. Nonpositive displacement--A pump whose inlet and outlet are hydraulically connected so that the fluid can recirculate in the pump when pressure builds up

III. Kinds of positive displacement pumps

A. Gear

B. Vane

C. Piston

D. Screw
IV. Formula for calculation of pump displacement

\[d = \frac{231Q}{n} \]

where
- \(d \) = displacement in in\(^3\)/revolution
- \(Q \) = pump outlet flow rate in gallons per minute (GPM)
- \(n \) = pump speed in revolutions per minute (RPM)

Example: A pump which has an outlet flow of 20 GPM at 1800 RPM has a displacement of 2.56 in\(^3\)/rev

\[d = \frac{231 \times 20 \text{ GPM}}{1800 \text{ RPM}} = 2.56 \text{ in}^3/\text{rev} \]

V. Formula for calculation of pump flow rate

\[Q = \frac{n \times d}{231} \]

Example: A 2.56 in\(^3\)/rev. pump operating at 2400 RPM has a flow rate of 26.6 GPM

\[Q = \frac{2400 \times 2.56}{231} = 26.6 \text{ GPM} \]

VI. Formula for calculation of pump power

A. Output power

\[\text{Power} = P \times \frac{Q}{1714} \]

where
- \(\text{Power} \) = Output power in horsepower
- \(P \) = Outlet pressure in PSI
- \(Q \) = Outlet flow in GPM

Example: A pump operating with 20 GPM flow and 3000 PSI outlet pressure has output power of 35 HP

\[\text{Power} = \frac{3000 \text{ PSI} \times 20 \text{ GPM}}{1714} = 35 \text{ HP} \]
B. Input power

\[\text{Power} = \frac{n \times \text{Torque}}{5252} \]

where

- \(\text{Power} \) = Input power in horsepower
- \(\text{Torque} \) = Input shaft torque in ft./lbs.
- \(n \) = Speed in RPM

Example: A pump operating at 2400 RPM with a shaft torque of 70 ft.lbs. has input power of 32 HP

\[\text{Power} = \frac{(2400 \text{ RPM})(70 \text{ ft.lbs.})}{5252} = 32 \text{ HP} \]

VII. Formula for calculation of volumetric efficiency

\[\text{Volumetric Eff} = \frac{\text{Actual flow rate}}{\text{Theoretical flow rate}} \]

Example: The outlet flow rate of a 2.56 in³/rev pump operating at 2400 rpm is measured to be 22.5 gallons per minute (GPM). The volumetric efficiency is 84.4%.

\[\text{Theoretical flow rate} = \frac{n \times d}{231} = \frac{2400 \text{ RPM} \times 2.56\text{in}^3}{231} = 26.6 \text{ GPM} \]

\[\text{Volumetric Eff} = \frac{22.5 \text{ GPM}}{26.6 \text{ GPM}} = 0.846 \]

VIII. Operation of a gear pump (Transparency 1)

A. The gear pump consists of two or more gears

1. Drive gear--Power from engine or motor is applied to this gear
2. Driven gear--Rotation of drive gear also causes rotation of drive gear

B. As the gears pass the inlet of the pump, the space between the gear teeth fills with fluid

C. The rotation of the gears carries the fluid around the outside perimeter of the gears to the outlet

IX. Construction and operation of vane pumps (Transparency 2)

A. Fixed displacement

1. A fixed displacement vane pump consists of a slotted rotor inside a circular chamber
INFORMATION SHEET

2. The chamber has inlet and outlet ports for supplying low pressure fluid and expelling pressurized fluid.

3. Vanes are installed into the slots in the rotor and are free to move in a radial direction (that is, towards or away from the center of the rotor).

4. As the rotor rotates, the vanes are forced outward to contact the surface of the circular chamber.

5. The rotor is installed offset (not in the center) in the circular chamber.

6. As the rotor rotates a vane past the inlet port, a volume of fluid is trapped between two vanes.

7. Because the rotor is installed offset in the circular chamber, the volume contained between two rotors becomes smaller and the trapped fluid is expelled from the outlet.

 (NOTE: This is the operation of an unbalanced vane pump. A balanced vane pump is similar except it has two inlets and two outlets.)

B. Variable displacement--The displacement of a vane pump can be changed by changing the position of the rotor in the circular chamber.

 (NOTE: Only unbalanced vane pumps may be used as variable displacement pump.)

X. Types of piston pumps (Transparency 3)

 A. Axial--Pistons are parallel to the axis of the pump.

 B. Radial--Pistons are perpendicular to the axis of the pump.

XI. Operation of a radial piston pump (Transparency 3)

 A. Pistons are installed radially to the pump, or perpendicular to the shaft.

 B. The pistons are driven by a cam on the pump shaft.

 C. As the shaft rotates, the cam moves the pistons.

 D. On the downward stroke of each piston, a spring-loaded valve opens and fluid is drawn into the piston cylinder from the pump inlet.

 E. During the upward stroke the inlet valve is forced closed and another valve directs the oil to the outlet.
XII. Types of axial piston pumps
 A. In-line
 B. Bent-axis

XIII. Construction and operation of axial piston pumps
 A. In-line (Transparency 3)
 1. The pistons are installed in a circular cylinder block (Transparency 4)
 2. The cylinder block is attached to the pump shaft and rotates with the shaft
 3. The pistons extend out the cylinder block to contact a fixed plate, called the swash plate, which is installed at an angle and does not rotate
 4. As the pump shaft rotates, the cylinder block and pistons also turn
 5. Since the swash plate is fixed (does not rotate) the pistons are forced in and out of the cylinder (Transparency 4)
 6. The pump inlet and outlets are positioned so that fluid is drawn into the cylinder bore from the inlet when the piston is retracted and forced out the outlet when the piston is extended
 7. The port plate (also called valve plate) is a stationary plate which directs the flow in the correct direction
 B. Bent-axis (Transparency 5)
 1. The bent-axis pump consists of a drive member connected to the pump shaft
 2. The pistons are installed in a cylinder block
 3. The cylinder block is mounted at an angle to the pump shaft and drive member
 4. As the pump shaft turns, the drive member and cylinder block are also turned
 5. Since pistons are attached to the drive member, they are forced to reciprocate (move in and out) in the cylinder bore
 6. During the downward stroke (retracting) fluid is pulled into the cylinder bore from the inlet port
 7. During the upward stroke fluid is pushed out of the cylinder bore to the outlet port
INFORMATION SHEET

XIV. Operation of a variable displacement axial piston pump (Transparency 6)

A. The displacement of an axial piston pump can be changed by changing the angle the swash plates makes with the pump shaft

B. The displacement is determined by the piston's travel into and out of the cylinder barrel

(NOTE: A small swash plate angle causes a small amount of piston travel and therefore small displacement. Similarly, a large angle causes large displacement.)

C. Varying the displacement is a common method of changing the flow rate of a pump when the pump speed (RPM) is fixed

D. Hand screws and hydraulic cylinders are two means of varying the swash plate angle

XV. Parts of a servo-controlled variable displacement pump (Transparency 7)

A. Tilting swash plate

B. Upper servo cylinder

C. Lower servo cylinder

(NOTE: The upper and lower servo cylinders are used to position the swash plate to the correct angle and hold it at that angle. Hydraulic cylinders are used because of the very large forces required to move and hold the swash plate.)

D. Control lever

(NOTE: The control lever is used to set a desired displacement.)

E. Displacement control valve

(NOTE: When the control lever is moved, the displacement control valve is opened to direct flow to the correct servo cylinder to move the swash plate. As the swash plate moves to the correct position, the linkage connecting the swash plate, control valve, and control lever tends to close the valve. When the swash plate reaches the correct position the valve closes to trap fluid in the two servo cylinders and hold the swash plate in the correct position. This servo system allows the large forces required for moving and holding the swash plate to be controlled by much smaller forces at the control lever.)
F. Charge pump

(Note: Most piston pumps require a charge pump on the inlet. This insures that the cylinders fill with oil and that the pistons maintain contact with the swash plate at all times. Servo-controlled variable displacement pumps also use this for force (pressure) for the servo system. The charge pump is usually a gear pump which supplies the fluid at the inlet of the piston pump in the range of 25 to 150 PSI. The charge pump may be physically a part of the piston pump or may be externally mounted.)

XVI. Components and functions of pressure compensated axial piston pumps (Transparency 8)

(Note: Many hydraulic systems are designed to operate with a constant pressure at the outlet of the pump. Because the amount of flow required from the pump by the rest of the system may change, the displacement of the pump must be changed. A pump which will automatically change its displacement (in order to keep a constant pressure) is known as a pressure compensated pump.)

A. Swash plate--Varies the displacement of the pump

(Note: The term yoke is often used instead of swash plate. Although yoke is a more common term when discussing pressure compensated pumps, either is acceptable.)

B. Swash plate (yoke) return cylinder--Normally holds the pump at full displacement

C. Servo cylinder--Moves and holds the swash plate

D. Compensator adjustment spring--Used to set the compensator pressure, that is, the pressure at the pump outlet

E. Compensator (servo) valve--Controls the flow of oil to the servo cylinder

(Note: When the force on the servo valve created by the outlet pressure is exactly balanced by the compensator spring, fluid flow to the servo cylinder is blocked. When the outlet pressure is too low, the valve shifts to allow the fluid in the cylinder to be released to the pump case thus causing the pump displacement to increase. When the outlet pressure is too high, the valve shifts the other direction to allow the fluid from the outlet to flow into the servo cylinder and decrease the displacement.)

F. Drain to case--Drains fluid from the servo cylinder to the pump case

(Note: In addition, continuous flow from the pump outlet is maintained through the case. This provides cooling flow for the pump.)

G. Load pressure (outlet pressure)--Used to shift the compensator valve
XVII. Causes of hydraulic pump cavitation

(NOTE: Cavitation occurs when there is not ample fluid to fill the pump's inlet and air bubbles form. When these bubbles collapse, a small implosion (inward explosion) occurs which tends to erode and destroy the pump's internal surfaces.)

A. Restriction in the pump inlet line

(NOTE: A restriction in the inlet can cause a drop in the pressure at the pump inlet. This low pressure allows the formation of the air bubbles and thus cavitation.)

B. Replacing pump inlet lines with lines which are too small

(NOTE: Lines too small can also cause low pressure at the pump inlet.)

C. Placing reservoir too far from pump

(NOTE: Long lines to the pump can cause low inlet pressure.)

D. Low fluid level in the reservoir

(NOTE: Low fluid level can cause the pump to "starve.")

XVIII. Common causes of hydraulic pump failure

A. Contaminated fluid

(NOTE: This is one of the most common causes of pump failure. Contamination includes not only solid particles, but also other contaminants such as water and air.)

B. Improper fluid

(NOTE: The incorrect fluid may result in pump failure in a very short time. The fluid must have the correct viscosity properties, temperature range, and additives.)

C. Improper operating procedures

(NOTE: Continuous operation at the pump's maximum limits or exceeding its limits can greatly reduce the pump life. For example, excessive pump pressure or speed can vastly reduce the life of the bearings.)

D. Cavitation

E. Improper pump maintenance
XIX. Symbols for types of pumps

A. Fixed displacement

(B) [Diagram of energy triangle]

(NOTE: The fluid flow is in the direction of the energy triangle.)

B. Variable displacement

C. Pressure compensated

D. Bi-directional

[Diagram of bi-directional symbol]
Vane Pumps

Unbalanced Vane Pump
in Operation

Balanced vs. Unbalanced Vane Pumps --
Pressure on Rotor and Shaft
Types of Piston Pumps

Axial Piston Pump

- Swashplate
- Bore
- Inlet
- Piston
- Drive Shaft
- Rotating Cylinder Block
- Outlet

Operation of an In-line Axial Piston Pump

Radial Piston Pump

- Cam
- Piston Cylinder
- Pistons
- Rotating Cam

Operation of Radial Piston Pump
Construction and Operation of Axial Piston Pumps

Piston Installation in Circular Cylinder Block

Swash-Plate
Piston Shoe
Cylinder Barrel
Port Plate
Outlet Port
Inlet Port
Shoeplate Bias Spring
Piston Bore
Piston Shoe
Cylinder Barrel
Piston
Swash-Plate
Piston Forced in and out of Cylinder
Bent-Axis Axial Piston Pump - Fixed Displacement

Cylinder Bore
Piston
Inlet Port
Outlet Port
Rotating Drive Member
Pump Shaft
Rotating Cylinder Block
Operation of Variable Displacement Axial Piston Pump

Medium Displacement

Large Displacement

Small Displacement

Trunnion
Parts of a Servo-Controlled Variable Displacement Pump

- Upper Servo Cylinder
- Charge Pump
- Lower Servo Cylinder
- Swashplate (Tilting)
- Control Lever
- Displacement Control Valve
Operation of Pressure Compensated Axial Piston Pumps

- Swash Plate (Yoke)
- Compensator Adjustment Spring
- Compensator (Servo) Spool
- Drain to Case
- Load Pressure
- Servo Cylinder
- Return Spring
PUMPS
UNIT V

ASSIGNMENT SHEET #1--CALCULATE PUMP DISPLACEMENT, FLOW RATE, INPUT AND OUTPUT POWER, AND OVERALL EFFICIENCY

Directions: Solve the following problems using the formula which applies to that problem.

Pump displacement = \(d = \frac{231 \times Q}{n} \)

Pump flow rate = \(Q = \frac{n \times d}{231} \)

Pump output power = \(HP = \frac{P \times Q}{1714} \)

Pump input power = \(HP = \frac{n \times Torque}{5252} \)

Pump overall efficiency = \(\frac{Output \ power}{Input \ power} \)

a. What is the pump displacement when the flow rate is 23 GPM at 1900 RPM?

b. What is the flow rate of a 3.0 in\(^3\)/rev. pump operating at 2600 RPM?

c. What is the output power of a pump with 21 GPM flow and 3200 PSI outlet pressure?

d. What is the input power of a pump operating at 2500 RPM with a shaft torque of 70 ft. lbs.?

e. What is the overall efficiency of a pump if the output power is 40 HP and the input power is 46 HP?

f. What is the flow rate of a 3.12 in\(^3\)/rev. pump operating at 2200 RPM?

g. What is the input power of a pump operating at 3000 RPM with a shaft torque of 75 ft.lbs.?

h. What is the pump displacement if the outlet flow is 26 GPM at 2000 RPM?

i. What is the output power of a pump with a 25 GPM flow and 3000 PSI pressure?
PUMPS
UNIT V

ANSWERS TO ASSIGNMENT SHEET #1

a. 2.80 in³/rev.
b. 34 GPM
c. 39 HP
d. 33 HP
e. 87%
f. 29.7 GPM
g. 43 HP

h. 3 in³/rev.
i. 44 HP
PUMPS
UNIT V

JOB SHEET #1--DISASSEMBLE, INSPECT AND REASSEMBLE A GEAR PUMP

I. Tools and materials
 A. Gear pump
 B. Service manual for pump (if available)
 C. Hand tool set
 D. Solvent
 E. Lint free shop towels
 F. Safety glasses

II. Procedure
 (NOTE: Figure 1 shows a cut-away drawing of a typical gear pump with an outboard bearing on the pump shaft. Figure 2 is an exploded view of this pump.)

 Figure 1
 Low Pressure Double Lip Shaft Seals
 "O" Ring Seals
 Outboard Bearing
 Patented Thrust Plates
 Drive And Driven Gears
 Heavy Duty Gear Journal Bearings
 Hardened Drive Shaft
JOB SHEET #1

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Snap Ring</td>
</tr>
<tr>
<td>1B</td>
<td>Outboard Bearing</td>
</tr>
<tr>
<td>1</td>
<td>Double Lip Seal</td>
</tr>
<tr>
<td>2</td>
<td>Shaft End Cover</td>
</tr>
<tr>
<td>3</td>
<td>Shaft Seals</td>
</tr>
<tr>
<td>4</td>
<td>Check Assemblies</td>
</tr>
<tr>
<td>5</td>
<td>Roller Bearings</td>
</tr>
<tr>
<td>6</td>
<td>Thrust Plates</td>
</tr>
<tr>
<td>7</td>
<td>Pocket Seals</td>
</tr>
<tr>
<td>8</td>
<td>Integral Shaft and Gear Set</td>
</tr>
<tr>
<td>9</td>
<td>Gasket Seals</td>
</tr>
<tr>
<td>10</td>
<td>Gear Housing</td>
</tr>
<tr>
<td>11</td>
<td>Port End Cover</td>
</tr>
<tr>
<td>12</td>
<td>Washers</td>
</tr>
<tr>
<td>13</td>
<td>Cap Screws</td>
</tr>
</tbody>
</table>

A. Disassemble

1. Thoroughly clean the external surfaces of the pump with solvent
2. Dry the pump with shop towels
3. Place the pump on a clean surface for disassembly
4. Remove the clip ring retainer on the outboard shaft bearing (if used)
5. Remove the bearing
6. Remove the four cap screws which hold the pump housing together
7. Slowly remove the port (rear) end cover from the pump
8. Remove the two port side roller bearings from the assembly
9. Remove the rear thrust plate
 (NOTE: Note the orientation of the plate.)
10. Remove the gear housing from the pump
11. Carefully remove the two gears from the pump
JOB SHEET #1

12. Remove the shaft side thrust plate noting orientation
13. Remove the two shaft side roller bearings
14. Remove shaft seal

B. Inspect

(NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Examine the two thrust plates for excessive wear or scoring</td>
</tr>
<tr>
<td>2.</td>
<td>Examine the gears for excessive wear and broken teeth</td>
</tr>
<tr>
<td>3.</td>
<td>Examine the roller bearings for excessive wear and fractured bearings</td>
</tr>
<tr>
<td>4.</td>
<td>Examine the shaft seal for scoring</td>
</tr>
<tr>
<td>5.</td>
<td>Examine the gear housing seals (usually O-rings) for nicks or breaks</td>
</tr>
<tr>
<td>6.</td>
<td>Replace any part found to be defective</td>
</tr>
</tbody>
</table>

C. Reassemble

(NOTE: Pre-lube parts during assembly.)

1. Carefully install the shaft seal
2. Install the two shaft-side roller bearings
3. Install the shaft side thrust plate
4. Install the two gears into the shaft end cover
5. Insure that the two seals on the gear housing are properly installed and then lower the gear housing around the two gears and align with the shaft end cover
6. Install the port side thrust plate
7. Install the port side roller bearings
8. Install the port side end cover onto the assembly and carefully align
JOB SHEET #1

9. Install the four cap screws

10. Uniformly torque the screws by alternately applying torque to screws on opposite sides of the pump

11. Reinstall the shaft outboard bearing and clip ring

12. Fill pump with fluid as necessary before operation
JOB SHEET #2—DISASSEMBLE, INSPECT, AND REASSEMBLE A PRESSURE COMPENSATED VARIABLE DISPLACEMENT PUMP

I. Tools and materials

A. Pressure compensated pump
 (NOTE: This job sheet assumes that an in-line axial piston pump will be used. The procedures are similar for other types of pressure compensated pumps.)

B. Service manual for pump

C. Hand tool set

D. Solvent

E. Lint free shop towels

F. Safety glasses

II. Procedures

 (NOTE: The procedures here assume a pressure compensated in-line axial piston pump. A cut-away view of such a pump is shown in Figure 1. An exploded view of this pump is shown in Figure 2.)

FIGURE 1
JOB SHEET #2

Figure 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Qty.</th>
<th>No.</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acorn nut</td>
<td>1</td>
<td>17</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>1A</td>
<td>Packing, preformed</td>
<td>1</td>
<td>18</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Jam nut</td>
<td>1</td>
<td>19</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>2A</td>
<td>Packing, preformed</td>
<td>1</td>
<td>20</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Adjustment plug</td>
<td>1</td>
<td>21</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Preformed packing</td>
<td>1</td>
<td>22</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Adjustment screw</td>
<td>1</td>
<td>23</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spring seat</td>
<td>1</td>
<td>24</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Compensator spring</td>
<td>1</td>
<td>25</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Spring seat</td>
<td>1</td>
<td>26</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Compensator shell</td>
<td>1</td>
<td>27</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Compensator piston</td>
<td>1</td>
<td>28</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Quad ring</td>
<td>1</td>
<td>29</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Quad ring</td>
<td>1</td>
<td>30</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Starting spring</td>
<td>1</td>
<td>31</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Control piston</td>
<td>1</td>
<td>32</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Acorn nut</td>
<td>1</td>
<td>33</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>15A</td>
<td>Packing, preformed</td>
<td>1</td>
<td>34</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Jam nut</td>
<td>1</td>
<td>35</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>16A</td>
<td>Packing, preformed</td>
<td>1</td>
<td>36</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Adjustment plug</td>
<td>1</td>
<td>37</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Preformed packing</td>
<td>1</td>
<td>38</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Adjustment screw</td>
<td>1</td>
<td>39</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>Compensator shell</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>Ball bushing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>Port end cover</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td>Spring</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>Bearing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td>Dowel</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>Fixed port plate</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>Rotating port plate</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>Cylinder seal</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>Preformed packing</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td>Washer</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td>Spring</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>Spring sleeve</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>Wave washer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>Snapring</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>Drive shaft</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td>Rotor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>Key</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>Bearing race</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>Bearing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>61</td>
<td>Case dowel</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>Pipe plug</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>Pipe plug</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>Key</td>
<td>1</td>
</tr>
</tbody>
</table>
A. Disassemble

1. Clean the external surfaces of the pump using solvent to remove all dirt and grime.

2. Dry pump with shop towels.

3. Loosen the jam nut and unscrew the compensator adjustment screw (Figure 3).

4. Remove the compensator spring seat and compensator spring (Figure 4).
JOB SHEET #2

5. Remove the compensator spool (Figure 5)

FIGURE 5

6. Remove the compensator piston and spring (Figure 6)

FIGURE 6

7. Remove the retaining nut for the compensator piston on the other side of the pump

8. Remove the spring and piston
9. Unscrew the cap screws that hold the pump housing together (Figure 7)

FIGURE 7

(NOTE: Be careful to lift the cover straight up. Be especially careful to insure that the pistons are free of the swash plate (Figure 8)

10. Carefully remove the drive end cover from the port end cover (Figure 9)

FIGURE 8

FIGURE 9
11. Remove the trunnion nut from the assembly (Figure 10)

FIGURE 10

12. Remove the swash plate from the drive cover (Figure 11)

FIGURE 11

13. Remove the snap ring, seals and bearings from the shaft cover (Figure 12)

FIGURE 12
14. Remove the pistons from the assembly (Figure 13)

FIGURE 13

15. Remove the port end cover from the barrel and shaft assembly (Figure 14)

FIGURE 14
16. Remove the port plate from the port end cover (Figure 15)

FIGURE 15

B. Inspect

(NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect the pistons and piston bore for scoring or excessive wear</td>
<td>✓</td>
</tr>
<tr>
<td>2. Inspect the piston shoe for excessive wear</td>
<td></td>
</tr>
<tr>
<td>3. Examine the swash plate for excessive wear</td>
<td></td>
</tr>
<tr>
<td>4. Inspect the shaft seat for scoring and excessive wear</td>
<td></td>
</tr>
<tr>
<td>5. Examine the compensator piston</td>
<td></td>
</tr>
<tr>
<td>6. Examine the compensator spool for wear</td>
<td></td>
</tr>
<tr>
<td>7. Inspect the compensator fluid passages for blockage and clean if necessary</td>
<td></td>
</tr>
<tr>
<td>8. Examine the port plate for wear or cracking</td>
<td></td>
</tr>
</tbody>
</table>
C. Reassemble

1. Install the port plate into the port end housing

2. Place the cylinder barrel and shaft assembly into the port end housing

3. Install the pistons into the assembly

4. Install the bearing, seal and seal-retainer ring into the shaft end cover

5. Install the swash plate into the shaft end cover

6. Install the trunnion nut to secure the swash plate

7. With the port end cover laying on a flat surface with the ports down carefully lower the shaft end cover onto the assembly

8. Make sure that the piston shoes properly contact the swash plate

9. Install the cap screws to secure the two halves of the pump assembly

10. Torque the screws to manufacturer's recommended specifications by tightening screws on opposite sides of the pump in sequence

11. Install the lower piston with spring and tighten screw cap

12. Install the upper piston with spring, compensator spool, spool spring, and adjustment screw

13. Tighten adjustment screw only partially into the pump
PUMPS
UNIT V

NAME ____________________________

TEST

1. Match the terms on the right with the correct definitions.

 _____ a. A device which creates the flow of fluid
 _____ b. The volume of fluid which is transferred from the pump inlet to the outlet during one revolution of the pump
 _____ c. The actual flow rate from a pump divided by the theoretical flow rate
 _____ d. The formation of air bubbles in the inlet of a pump because the inlet does not completely fill with fluid
 _____ e. Air in the fluid
 _____ f. Pressure in the return line caused by flow through the line from the pump to the reservoir

1. Displacement
2. Back pressure
3. Pump
4. Volumetric efficiency
5. Cavitation
6. Aeration

2. Distinguish between positive and non-positive displacement pumps by placing an "X" next to the description of positive displacement pumps.

 _____ a. A pump whose inlet and outlet are hydraulically connected so that fluid can recirculate in the pump when pressure builds up
 _____ b. A pump whose inlet is sealed from the outlet; will deliver fluid any time the inlet is kept supplied and the pump is driven

3. Name three kinds of positive displacement pumps.

 a. __
 b. __
 c. __

4. Calculate the pump displacement for a pump which has an outlet of 30 GPM at 200 RPM, using the formula for displacement, \(d = \frac{231Q}{n} \).
5. Calculate the flow rate for a 2.88 in3/rev. pump operating at 2000 RPM using the formula for flow rate, $Q = n \times d$.

6. a. Calculate the output power for a pump operating with 18 GPM flow and 2700 PSI outlet pressure using the formula, Power = $P \times Q$.

 b. Calculate the input power for a pump operating at 2000 RPM with a shaft torque of 50 ft.-lbs. using the formula, Power = $n \times \text{Torque}$.

7. Calculate the volumetric efficiency of a 2.56 in3/rev pump operating at 2300 RPM with an outlet flow rate of 22 gallons per minute (GPM).
8. Discuss the operation of a gear pump.

9. Select true statements concerning the operation of vane pumps by placing an "X" next to the statements which are true.

 a. A fixed displacement vane pump consists of a slotted rotor inside a circular chamber
 b. In a fixed displacement pump, vanes are installed into the slots in the rotor and are free to move in an axial direction
 c. As the rotor rotates in a fixed displacement pump, the vanes are forced outward to contact the surface of the circular chamber
 d. In a fixed displacement pump, as the rotor rotates a vane past the inlet port, a volume of fluid is trapped between two vanes
 e. Because the rotor is installed offset in the circular chamber in the fixed displacement pump, the volume contained between two rotors becomes smaller and the trapped fluid is expelled from the outlet
 f. The trapped fluid is expelled from the outlet of the pump and is at a lesser pressure than the inlet
 g. In a variable displacement pump, the displacement vane can be changed by changing the position of the rotor in the circular chamber

10. Distinguish between axial and radial piston pumps by placing an "X" next to the description of an axial piston pump.

 a. Pistons are parallel to the axis of the pump
 b. Pistons are perpendicular to the axis of the pump
11. Select true statements concerning the operation of a radial piston pump by placing an "X" next to the statements which are true.

_____ a. Pistons are installed radially to the pump

_____ b. The pistons are driven by a cam on the pump shaft

_____ c. As the shaft rotates, the pistons move the cam

_____ d. On the downward stroke of each piston, a spring-loaded valve opens and fluid is drawn into the piston cylinder from the pump inlet

_____ e. During the upward stroke the inlet valve is forced closed and another valve directs the oil to the outlet

12. Name two types of axial piston pumps.

 a. __

 b. __

13. Discuss the construction and operation of axial piston pumps.

 a. In-line
14. Select true statements concerning the operation of a variable displacement axial piston pump by placing an "X" next to the statements which are true.

_____ a. The displacement of an axial piston pump can be changed by changing the angle the rotor makes with the pump shaft

_____ b. The displacement is determined by the piston's travel into and out of the cylinder barrel

_____ c. Varying the displacement is a common method of changing the flow rate of a pump when the pump speed is fixed

_____ d. Hand screws and hydraulic cylinders are two means of varying the swash plate angle
15. Identify the parts of a servo-controlled variable displacement pump.

a.

b.

c.

d.

e.

f.

1:0
16. Match the components of the pressure compensated axial piston pumps on the right with the correct functions.

 a. Varies the displacement of the pump
 b. Normally holds the pump at full displacement
 c. Moves and holds the swash plate
 d. Used to set the compensator pressure, that is, the pressure at the pump outlet
 e. Controls the flow of oil to the servo cylinder
 f. Drains fluid from the servo cylinder to the pump case
 g. Used to shift the compensator valve

17. List four causes of hydraulic pump cavitation.

 a. __
 b. __
 c. __
 d. __

18. List four common causes of hydraulic pump failure:

 a. __
 b. __
 c. __
 d. __

19. Draw the symbols for the following pumps.

 a Fixed displacement
b. Variable displacement

c. Pressure compensated

d. Bi-directional

20. Demonstrate the ability to:
 a. Disassemble, inspect, and reassemble a gear pump.
 b. Disassemble, inspect, and reassemble a pressure compensated variable displacement pump

 (NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
PUMPS
UNIT V

ANSWERS TO TEST

1. a. 3 c. 4 e. 6
 b. 1 d. 5 f. 2

2. b

3. Any three of the following:
 a. Gear
 b. Vane
 c. Piston
 d. Screw

4. 3.465 in³/rev.

5. 24.9 GPM

6. a. 28 HP
 b. 19 HP

7. 86%

8. Discussion should include:
 a. The gear pump consists of two or more gears
 1) Drive gear--Power from engine or motor is applied to this gear
 2) Driven gear--Rotation of driver gear also causes rotation of driven gear
 b. As the gears pass the inlet of the pump, the space between the gear teeth fills with fluid
 c. The rotation of the gears carries the fluid around the outside perimeter of the gears to the outlet

9. a, c, d, e, g,

10. a

11. a, b, d, e

12. a. In-line
 b. Bent-axis

13. Discussion should include:
 a. In-line
 1) The pistons are installed in a circular cylinder block
 2) The cylinder block is attached to the pump shaft and rotates with the shaft
 3) The pistons extend out the cylinder block to contact a fixed plate, called the swash plate, which is installed at an angle and does not rotate
4) As the pump shaft rotates, the cylinder block and pistons also turn
5) Since the swash plate is fixed, the pistons are forced in and out of the cylinder
6) The pump inlet and outlets are positioned so that fluid is drawn into the cylinder bore from the inlet when the piston is retracted and forced out the outlet when the piston is extended
7) The port plate is a stationary plate which directs the flow in the correct direction

b. Bent-axis
1) The bent axis consists of a drive member connected to the pump shaft
2) The pistons are installed in a cylinder block
3) The cylinder block is mounted at an angle to the pump shaft and drive member
4) As the pump shaft turns, the drive member and cylinder block are also turned
5) Since pistons are attached to the drive member, they are forced to reciprocate in the cylinder bore
6) During the downward stroke fluid is pulled into the cylinder bore from the inlet port
7) During the upward stroke fluid is pushed out of the cylinder bore to the outlet port

14. b, c, d

15. a. Tilting swash plate
 b. Upper servo cylinder
 c. Lower servo cylinder
 d. Control lever
 e. Displacement control valve
 f. Charge pump

16. a. 5 d. 3 g. 1
 b. 2 e. 7
 c. 6 f. 4

17. a. Restriction in the pump inlet line
 b. Replacing pump inlet lines with lines which are too small
 c. Placing reservoir too far from pump
 d. Low fluid level in the reservoir

18. Any four of the following:
 a. Contaminated fluid
 b. Improper fluid
 c. Improper operating procedures
 d. Cavitation
 e. Improper pump maintenance

19. a. Energy Triangle
b.

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram a} \\
\text{Diagram b}
\end{array}
\end{array} \]

c.

d.

20. Performance skills evaluated to the satisfaction of the instructor.
UNIT VI

UNIT OBJECTIVE

After completion of this unit, the student should be able to select true statements concerning the operations of pressure reducing valves, pressure compensated flow control valves, priority flow dividers, and proportional flow dividers, and discuss the operation of a needle valve as a flow control device and the flow paths in a directional control valve controlling a cylinder. The student should also be able to disassemble, inspect, and reassemble a pressure control valve, a flow control valve, and a directional control valve. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to valves with the correct definitions.
2. Name three categories of valves.
3. Name three types of pressure control valves.
4. Name the types of pressure relief valves when given a description of their operations.
5. Select true statements concerning the operation of a pressure reducing valve.
6. List three types of flow control valves.
7. Select true statements concerning the operation of a needle valve as a flow control device.
8. Select true statements concerning the operation of a pressure compensated flow control valve.
9. Select true statements concerning the operation of a priority flow divider.
10. Select true statements concerning the operation of a proportional flow divider.
11. Identify types of directional control valves.
12. Distinguish between the operation of a check valve and a spool direction control valve.
13. Discuss the flow paths in a directional control valve controlling a cylinder.
14. Distinguish between open center and closed center systems.

15. Select types of actuators for directional control valves.

17. Demonstrate the ability to:
 a. Disassemble, inspect, and reassemble a pressure control valve.
 b. Disassemble, inspect, and reassemble a flow control valve.
 c. Disassemble, inspect, and reassemble a directional control valve.
VALVES
UNIT VI

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information and job sheets.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Demonstrate and discuss the procedures outlined in the job sheets.
VI. Show students examples of valves.
VII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1-Operation of a Pressure Relief Valve
 2. TM 2-Type of Pressure Relief Valves
 3. TM 3-Operation of a Pressure Reducing Valve
 4. TM 4-Operation of Flow Control Valves
 5. TM 5-Types of Directional Control Valves
 6. TM 6-Operation of Directional Control Valves
 7. TM 7-Open and Closed Center Spool Valves (In Neutral)
 8. TM 8-Symbols for Hydraulic Valves
 D. Job sheets
 1. Job Sheet #1-Disassemble, Inspect, and Reassemble a Pressure Control Valve
 2. Job Sheet #2-Disassemble, Inspect, and Reassemble a Flow Control Valve
3. Job Sheet #3 - Disassemble, Inspect, and Reassemble a Directional Control Valve

E. Test

F. Answers to test

II. References:

VALVES
UNIT VI

INFORMATION SHEET

I. Terms and definitions
A. Valve--A device which controls fluid flow directions, pressure, or flow rate
B. Pressure control valve--A valve whose function is to control pressure
C. Flow control valve--A valve whose function is to control flow rate
D. Directional control valve--A valve whose primary function is to direct or prevent flow through selected passages
E. Relief valve--A valve which is used to limit the maximum pressure in a hydraulic system
F. Poppet--That part of certain valves which prevents flow when it closes against a seat
G. Spool--A term loosely applied to almost any moving cylindrically shaped part of a hydraulic component which moves to direct flow through the component
H. Pilot--An auxiliary valve used to control the operation of another valve; the controlling stage of a 2-stage valve
I. Feathering--The operation of moving a valve through partial travel in order to get reduced flow rate

II. Categories of valves
A. Pressure control
B. Flow control
C. Directional control

III. Types of pressure control valves
A. Relief valve
 1. Simple
 2. Compound or pilot operated
B. Pressure reducing
INFORMATION SHEET

IV. Types and operation of pressure relief valves (Transparency 1)

A. Simple (Transparency 2)

1. A spring holds a poppet against a seat

2. When the pressure in the system is large enough to overcome the spring force, the poppet moves off of the seat to allow fluid flow to the bypass

3. The spring tension is set so that the poppet opens to divert sufficient flow from the rest of the system and limit the pressure to a specified value

 (NOTE: It is important to remember that pressure and flow in a hydraulic system are directly related.)

B. Compound (Transparency 2)

1. A spring holds the main stage spool so that the discharge port is normally blocked

2. A small amount of fluid flows past the main stage spool through a passage to another valve which is also part of the relief valve

 (NOTE: This valve is known as the pilot valve.)

3. The pressure of the fluid emitted to the pilot valve creates a force on the pilot valve poppet

4. If this force is greater than the spring force then the poppet moves off its seat thus allowing a small amount of fluid to flow out the drain

5. The pressure resulting from flow past the pilot valve poppet is applied to the back side of the main stage spool

6. This pressure force on the spool plus the main stage spring force must be overcome by the system pressure on the front side of the main stage spool before this spool moves off its seat to allow flow to the discharge

 (NOTE: Remember that force = pressure x area.)

7. In operation, the tension on the pilot stage spring is adjusted so that the main stage spool opens at some specified pressure

 (NOTE: Although the compound relief valve is more complex than a simple relief valve, it is often used because it does a better job of limiting the system pressure to a specified value.)
INFORMATION SHEET

C. Pilot operated
 1. The operation is similar to a compound relief valve except the pilot stage is not part of the relief valve package
 2. A separate pilot valve in a remote location is used to adjust relief valve pressure

V. Operation of a pressure reducing valve (Transparency 3)
 A. A pressure reducing valve controls the pressure in a secondary circuit to a specified value, and when the pressure in this circuit is low, the spool is fully open
 B. The secondary circuit pressure acts on one side of the spool, and when this pressure is great enough to move the spool against the spring, the flow passage from the main to the secondary circuit is restricted
 C. This operation will tend to regulate the pressure in the secondary as long as the main circuit pressure is greater than the desired second circuit pressure
 D. The secondary circuit pressure can be adjusted by adjusting the spring tension
 (NOTE: Only constant reduced pressure valves have been discussed. Some pressure reducing valves provide a fixed amount of pressure reduction (such as 500 PSI) across a valve. The operation of this valve is similar, except secondary circuit pressure is applied to both sides of the spool.)

VI. Types of flow control valves
 A. Needle valve
 (NOTE: This is also called a simple restrictor.)
 B. Compensated flow control valve
 C. Flow divider

VII. Operation of a needle valve as a flow control device (Transparency 4)
 A. A needle valve serves as an adjustable means of regulating the flow to a secondary circuit (such as a motor or a cylinder) by restricting the fluid flow
 B. As the knob on the needle valve is turned a needle is lowered into the fluid stream
 C. With the knob turned to its extreme position the needle closes onto a seat restricting the fluid flow
 (NOTE: A needle valve is considered an uncompensated flow control because flow will increase if the inlet pressure increases.)
INFORMATION SHEET

VIII. Operation of a pressure compensated flow control valve (Transparency 4)

A. Flow through a fixed orifice in the inlet causes a pressure drop

B. The full inlet pressure is applied to the inlet side and a reduced pressure is applied to the spring side of the spool

C. If the force created by the pressure differences is greater than the spring force, the valve spool moves to close the outlet orifice and thus reduces the flow rate

D. The system functions to maintain a constant pressure drop across the inlet orifice, and if this pressure drop is controlled, then the flow will be controlled

E. The flow may be varied by varying the spring tension

IX. Operation of a priority flow divider (Transparency 4)

A. A priority flow divider functions to supply a regulated flow to the priority output, and the remaining flow is routed to the secondary circuit

B. As the flow divider spool slides in its bore, one outlet is opened wider when the other is closed off

C. Fluid from the inlet is metered through an orifice in the spool, causing a pressure drop which tends to displace the spool to close off the priority outlet, and this displacement is resisted by the spring

D. The spool will position to maintain a constant pressure drop across the spool orifice and thus a constant flow to the priority outlet

E. The secondary outlet will be opened to receive the remaining flow that is available

(NOTE: A priority flow divider is used in circuits where flow must be maintained to some part of the circuit. A common example is when a single pump is both used to supply steering and used to insure that a constant flow rate, say 2 GPM, to the steering. Any remaining flow is then available to the auxiliary circuits.)

X. Operation of a proportional flow divider (Transparency 4)

A. A proportional flow divider is used to divide the flow into two circuits

B. Fluid from the inlet flows through two orifices (one on each side of the spool) causing a pressure drop across the two orifices; the resulting pressure is applied to each side of the spool
C. If the pressure drop across the two orifices is not equal the spool shifts and changes the restriction at the outlet orifice.

D. The valve functions to maintain equal pressure drop across the inlet orifices. (NOTE: The ratio of the flow from the two outlets is set by the size of the two inlet orifices. Equal orifice sizes result in equal flow rates.)

XI. Types of directional control valves (Transparency 5)

A. Check valve
B. Rotary valve
C. Spool valve

XII. Operation of a check valve and a spool direction control valve (Transparency 6)

A. Check valve
 1. Only allows fluid to flow in one direction, from inlet to outlet
 2. When pressure is applied to the inlet, it causes the valve to open against the spring allowing flow to pass
 3. When pressure is applied to the outlet side of the check valve, the valve is held firmly against its seat thus blocking fluid flow in this direction

B. Spool direction control valve
 1. A directional control valve serves to "direct" the fluid from the pump to an actuator such as a motor or cylinder
 2. Lands on spool are used to open or close openings to passages in the valve body

XIII. Flow paths in a directional control valve controlling a cylinder (Transparency 6)

A. Valve shifted to extend cylinder
 1. The handle is moved to the left and the lands open flow passages from the pump to the head side of the cylinder
 2. A flow passage from the rod side of the cylinder is opened to route this flow to the reservoir
INFORMATION SHEET

3. Valve shifted to retract the cylinder
 1. The valve is moved to the right and lands open flow passages from
 the pump to the rod side of the cylinder
 2. A flow passage from the head side of the cylinder is opened to route
 this to the reservoir

XIV. Fluid flow in directional control valves in the neutral position (Transparency 7)

A. Open center
 1. These valves have lands which direct the pump to the reservoir when
 the valve is in the neutral position
 2. The lands may be positioned on the spool to block flow from both
 sides of the cylinder (as shown on Transparency 8) or allow flow
 to pass from one side to the other side of the cylinder
 (NOTE: These are called open center valves. These are used with
 fixed displacement pumps (constant flow pumps). Such systems are
 called open center systems.)

B. Closed center
 1. The lands are positioned on the spool to block flow from the pump
 when the valve is in the neutral position
 2. The lands may be positioned on the spool to block flow from both
 sides of the cylinder, or allow flow to pass from one side to the other
 side of the cylinder

XV. Actuators for directional control valves

A. Hand lever

B. Electrical solenoid
 (NOTE: This allows an electric signal to shift the valve to either extreme.)

C. Servo valve
 (NOTE: This allows an electric signal to shift the valve to various intermediate positions.)

D. Pilot operated
 (NOTE: This allows hydraulic pressure to shift the valve.)
XVI. Symbols for hydraulic valves (Transparency B)

A. Pressure control
 1. Relief valve
 2. Pressure reducing valve

B. Flow control
 1. Restrictor
 2. Pressure compensated flow control

C. Directional control
 1. Check valve
 2. Spool valves
 a. 3 position, 4 way open center
 b. 3 position, 4 way closed center
Operation of a Pressure Relief Valve
Types of Pressure Relief Valves

Simple

Compound
Operation of a Pressure Reducing Valve

From Main Circuit

Valve Open, Not Operating

To Secondary Circuit

Valve Partly Closes to Reduce Pressure
Operation of Flow Control Valves

Needle Valve

Fixed Orifice

Control Orifice

Outlet

Inlet

Control Orifice Fully Open

Priority Outlet

Secondary Outlet

Inlet

Control Orifice Partly Closed (Compensating)

Pressure Compensated Flow Control Valve

Priority Flow Divider

Outlet No. 2

Outlet No. 1

Inlet

Proportional Flow Divider
Types of Directional Control Valves

- Check Valve
- Rotary Valve
- Spool Valve
Operation of Directional Control Valves

Check Valve In Operation

Spool Directional Valve

Spool Valve Directing Oil to Cylinder
Open and Closed Center Spool Valves
(In Neutral)
Symbols for Hydraulic Valves

Pressure Control
- Relief Valve
- Pressure Reducing Valve

Flow Control
- Restrictor
- Pressure Compensated Flow Control

Directional Control
- Check Valve
- 3 Position, 4 Way Open Center Spool Valve
- 3 Position, 4 Way Closed Center Spool Valve
VALVES
UNIT VI

JOB SHEET #1—DISASSEMBLE, INSPECT AND REASSEMBLE
A PRESSURE CONTROL VALVE

I. Tools and materials
 A. Pressure control valve
 B. Service manual (if available)
 C. Hand tool set
 D. Solvent
 E. Lint free shop towels
 F. Safety glasses

II. Procedures
 A. Disassemble
 1. Remove the valve adjustor screw
 2. Remove the valve spring
 3. Remove the valve spool or poppet
 4. If the valve is a compound valve remove the main stage spring and spool
 B. Inspect
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inspect the spool(s) or poppet and body for unusual wear</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2. Inspect any O-ring seals for nicks and breaks, and replace if necessary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Inspect internal fluid passages then clean with solvent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 C. Reassemble
 (NOTE: Lube components prior to reassembly.)

 1. Install main stage spool and spring if compound valve
JOB SHEET #1

2. Install poppet or spool

3. Install spring

4. Replace adjustor screw and tighten only partially into valve body
VALVES
UNIT VI

JOB SHEET #2-DISASSEMBLE, INSPECT, AND REASSEMBLE
A DIRECTIONAL CONTROL VALVE

I. Tools and materials
 A. Directional control valve
 (NOTE: This procedure assumes that a manually operated directional control valve will be used. Other types of directional control valves may be used with minor changes to this procedure.)
 B. Service manual if available
 C. Hand tools
 D. Lint free shop towels
 E. Shipping plugs for open ports
 F. Safety glasses

II. Procedure
 (NOTE: Figure 1 shows a cut-away view of a typical directional control valve.)

A. Disassemble
 (NOTE: Be sure spools are replaced into the openings from which they were removed.)
 1. Install the shipping plugs into the valve ports
 2. Clean the external surfaces of the valve with solvent
 3. Place the valve in a clean area for disassembly
JOB SHEET #2

4. Remove the spool handle if not already removed

5. Remove the end cap

6. Remove the nut that holds the centering spring and remove spring

7. Carefully slide the spool from the valve body

B. Inspect

(NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Examine the spool for excessive wear</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NOTE: The lands on the spool may become eroded from forces resulting from the fluid flow. Wear can also occur from contaminated fluid.)</td>
<td></td>
</tr>
<tr>
<td>2. Examine the spool O-ring seals, and replace if worn or nicked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Examine the valve body for cracks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Reassemble

(NOTE: Lubricate all components during reassembly.)

1. Carefully install the spool into the valve body, and use special care to insure that the O-rings are not damaged during installation

2. Install the centering spring and washers (if used) and retaining nut

3. Tighten nut

4. Install end cap

5. Install spool handle
JOB SHEET #3—DISASSEMBLE, INSPECT, AND REASSEMBLE A FLOW CONTROL VALVE

I. Tools and materials
 A. Flow control valve
 B. Service manual (if available)
 C. Hand tool set
 D. Solvent
 E. Lint free shop towels
 F. Safety glasses
 G. Shipping plugs

II. Procedure
 A. Disassemble
 1. Place shipping plugs into the valve ports
 2. Clean the external surfaces
 3. Place the valve on a clean surface for disassembly
 4. Remove the spring retainer cap
 5. Remove the spring and spool
 B. Inspect
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

 | | Condition |
 |---|-----------|
 | 1. Examine any O-ring seals, and replace | ✔ |
 | 2. Inspect spool for excessive wear | |
 | 3. Inspect spool body for unusual wear | |
 C. Reassemble
 (NOTE: Lubricate all parts during reassembly.)
 1. Clean all internal surfaces with the solvent
 2. Install the spool taking care not to damage the O-ring seals
3. Install the spring
4. Replace the spring retainer cap
VALVES
UNIT VI

NAME ____________________________

TEST

1. Match the terms on the right with the correct definitions.

____ a. A valve whose function is to direct or prevent flow through selected passages

____ b. A term loosely applied to almost any moving cylindrically shaped part of a hydraulic component which moves to direct flow through the component

____ c. A valve whose function is to control pressure

____ d. An auxiliary valve used to control the operation of another valve; the controlling stage of a 2-stage valve

____ e. A device which controls fluid flow directions, pressure, or flow rate

____ f. A valve whose function is to control flow rate

____ g. That part of certain valves which prevents flow when it closes against a seat

____ h. A valve which is used to limit the maximum pressure in a hydraulic system

____ i. The operation of moving a valve through partial travel in order to get reduced flow rate

1. Poppet

2. Pressure control valve

3. Spool

4. Directional control valve

5. Feathering

6. Flow control valve

7. Relief valve

8. Pilot

9. Valve

2. Name three categories of valves.

a. ________________

b. ________________

c. ________________
3. Name three types of pressure control valves.

 a.

 1.

 2.

 b.

4. Name the types of pressure relief valves for the following operations:

 a.

 1. The operation is similar to a compound relief valve except the pilot stage is not part of the relief valve package

 2. A separate pilot valve in a remote location is used to adjust relief valve pressure

 b.

 1. A spring holds a poppet against a seat

 2. When the pressure in the system is large enough to overcome the spring force, the poppet moves off of the seat to allow fluid flow to the bypass

 3. The spring tension is set so that the poppet opens to divert sufficient flow from the rest of the system and limit the pressure to a specified value

 c.

 1. A spring holds the main stage spool so that the discharge port is normally blocked

 2. A small amount of fluid flows past the main stage spool through a passage to another valve which is also part of the relief valve

 3. The pressure of the fluid emitted to the pilot valve creates a force on the pilot valve poppet

 4. If this force is greater than the spring force then the poppet moves off its seat thus allowing a small amount of fluid to flow out the drain

 5. The pressure resulting from flow past the pilot valve poppet is applied to the back side of the main stage spool
6. This pressure force on the spool plus the main stage spring force must be overcome by the system pressure on the front side of the main stage spool before the spool moves off its seat to allow flow to the discharge.

7. In operation, the tension on the pilot stage spring is adjusted so that the main stage spool opens at some specified pressure.

5. Select true statements concerning the operation of a pressure reducing valve by placing an "X" in the appropriate blanks.

 _____ a. A pressure reducing valve controls the pressure in a secondary circuit to a specified value, and when the pressure in this circuit is low, the spool is fully open.

 _____ b. The secondary circuit pressure acts on both sides of the spool, and when this pressure is great enough to move the spool against the spring, the flow passage from the main to the secondary circuit is completely open.

 _____ c. The secondary circuit pressure can be adjusted by adjusting the spring tension.

6. List three types of flow control valves.

 a.

 b.

 c.

7. Select true statements concerning the operation of a needle valve as a flow control device by placing an "X" in the appropriate blanks.

 _____ a. A needle valve serves as an adjustable means of regulating the flow to a secondary circuit by restricting the fluid flow.

 _____ b. As the knob on the needle valve is turned a needle is lowered into the fluid stream.

 _____ c. With the knob turned to its extreme position the needle closes onto a seat restricting the fluid flow.

8. Select true statements concerning the operation of a pressure compensated flow control valve by placing an "X" in the appropriate blanks.

 _____ a. Flow through a fixed orifice in the inlet causes a pressure rise.

 _____ b. The full inlet pressure is applied to the inlet side and a reduced pressure is applied to the spring side of the spool.

 _____ c. If the force created by the pressure differences is greater than the spring force, the valve spool moves to close the outlet orifice and thus reduce the flow rate.
d. The system functions to maintain a constant pressure rise across the inlet orifice, and if this pressure rise is controlled, then the flow will be controlled.
e. The flow may be varied by varying the spring tension.

9. Select true statements concerning the operation of a priority flow divider by placing an "X" in the appropriate blanks.

a. A priority flow divider functions to supply a regulated flow to the priority output, and the remaining flow is routed to the secondary circuit.
b. As the flow divider spool slides in its bore, both outlets are opened.
c. Fluid from the inlet is metered through an orifice in the spool, causing a pressure drop which tends to displace the spool to close off the priority outlet, and this displacement is resisted by the spring.
d. The spool will position to maintain a constant pressure drop across the spool orifice and thus a constant flow to the priority outlet.
e. The primary outlet will be opened to receive the remaining flow that is available.

10. Select true statements concerning the operation of a proportional flow divider by placing an "X" in the appropriate blanks.

a. A proportional flow divider is used to divide the flow into three circuits.
b. Fluid from the inlet flows through two orifices causing a pressure drop across the two orifices; the resulting pressure is applied to each side of the pool.
c. If the pressure drop across the two orifices is not equal the spool shifts and changes the restriction at the outlet orifice.
d. The valve functions so that inlet orifices have an unequal pressure drop across them.

11. Identify the types of directional control valves.

![Diagram of directional control valves]

a. ____________ b. ____________ c. ____________
12. Distinguish between the operation of a check valve and a spool direction control valve by placing an "X" next to the descriptions which apply to the operation of a check valve.

_____ a. Serves to "direct" the fluid from a pump to an actuator such as a motor or cylinder

_____ b. When pressure is applied to the inlet, it causes the valve to open against the spring allowing flow to pass

_____ c. Lands on spool are used to open or close openings to passages in the valve body

_____ d. Only allows fluid to flow in one direction, from inlet to outlet

_____ e. When pressure is applied to the outlet side, the valve is held firmly against its seat thus blocking fluid flow in this direction

13. Discuss the flow paths in a directional control valve controlling a cylinder.

a. Valve shifted to extend cylinder

b. Valve shifted to retract the cylinder

14. Distinguish between open and closed center systems by placing an "O" next to the descriptions which apply to open center systems and a "C" next to descriptions which apply to closed center systems.

(NOTE: Some descriptions may apply to both systems.)

_____ a. The lands may be positioned on the spool to block the flow from both sides of the cylinder, or allow flow to pass from one side to the other side of the cylinder

_____ b. The lands are positioned on the spool to block flow from the pump when the valve is in the neutral position

_____ c. These valves have lands which direct the pump to the reservoir when the valve is in the neutral position
15. Select types of actuators for directional control valves by placing an "X" in the appropriate blanks.

 _____ a. Hand lever
 _____ b. Electrical solenoid
 _____ c. Relief valve
 _____ d. Servo valve
 _____ e. Open center valve
 _____ f. Pilot operated

16. Identify the symbols for hydraulic valves.

 a.
 b.
 c.
 d.
 e.
 f. 210
17. Demonstrate the ability to:

a. Disassemble, inspect, and reassemble a pressure control valve.

b. Disassemble, inspect, and reassemble a flow control valve.

c. Disassemble, inspect, and reassemble a directional control valve.

(NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
VALVES
UNIT VI

ANSWERS TO TEST

1. a. 4 e. 9 i. 5
 b. 3 f. 6
 c. 2 g. 1
 d. 8 h. 7

2. a. Pressure control
 b. Flow control
 c. Directional control

3. a. Relief valve
 1) Simple
 2) Compound or pilot operated
 b. Pressure reducing

4. a. Pilot operated
 b. Simple
 c. Compound

5. a, c

6. a. Needle valve
 b. Compensated flow control valve
 c. Flow divider

7. a, b, c

8. b, c, e

9. a, c, d

10. b, c

11. a. Check valve
 b. Rotary valve
 c. Spool valve

12. b, d, e

13. Discussion should include:
 a. Valve shifted to extend cylinder
 1) The handle is moved to the left and the lands open flow passages from the pump to the head side of the cylinder
 2) A flow passage from the rod side of the cylinder is opened to route this flow to the reservoir

 212
b. Valve shifted to retract the cylinder

1) The valve is moved to the right and lands open flow passages from the pump to the rod side of the cylinder
2) A flow passage from the head side of the cylinder is opened to route this to the reservoir

14. a. O, C
 b. C
 c. O

15. a, b, d, f

16. a. Check valve
 b. Pressure reducing valve
 c. Restrictor
 d. 3 position, 4 way open center spool valve
 e. Relief valve
 f. Pressure compensated flow control valve
 g. 3 position, 4 way closed center spool valve

17. Performance skills evaluated to the satisfaction of the instructor.
UNIT OBJECTIVE

After completion of this unit, the student should be able to calculate the force output, speed, and power output of a hydraulic cylinder. The student should also be able to disassemble, inspect, and reassemble a hydraulic cylinder and test a hydraulic cylinder for internal and external leakage. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms related to cylinders with the correct definitions.
2. Discuss the operation of a hydraulic cylinder.
3. Distinguish between the operation of single-acting and double-acting cylinders.
4. Identify types of double-acting cylinders.
5. Identify the parts of a single-acting cylinder.
6. Identify the parts of a double-acting cylinder.
8. Given a formula, calculate the force output of a cylinder.
9. Given a formula, calculate the speed of a hydraulic cylinder.
10. Given a formula, calculate the power output of a cylinder.
11. Given a formula, calculate the flow rate required to move a cylinder a given distance in a given time.
12. Draw the symbol for a cylinder.
13. Demonstrate the ability to:
 a. Disassemble, inspect, and reassemble a hydraulic cylinder.
 b. Test a cylinder for internal and external leakage.
CYLINDERS
UNIT VII

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information sheet.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheet.
VI. Demonstrate and discuss the procedures outlined in the job sheets.
VII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Operation of a Hydraulic Cylinder
 2. TM 2--Operation of Single and Double-Acting Hydraulic Cylinders
 3. TM 3--Types of Double-Acting Hydraulic Cylinders
 4. TM 4--Single-Acting Cylinder
 5. TM 5--Double-Acting Cylinder
 D. Job Sheets
 1. Job Sheet #1--Disassemble, Inspect, and Reassemble a Hydraulic Cylinder
 2. Job Sheet #2--Test a Cylinder for Internal and External Leakage
E. Test
F. Answers to test

II. References

I. Terms and definitions
 A. Cylinder--An actuator which converts hydraulic power into linear mechanical force and motion
 B. Piston area--Area of the cylinder piston
 C. Rod area--Area of the piston rod
 D. Rod side area--Effective area on the rod side of the cylinder; equal to the piston area minus the rod area
 E. Back pressure--Pressure in the return lines caused by flow in these lines

II. Operation of a hydraulic cylinder (Transparency 1)
 A. Hydraulic oil flows into a chamber of the cylinder, causing the cylinder rod to move
 B. Pressure of the fluid acting on the surface of a piston creates a force on the rod

III. Operation of single and double-acting cylinders (Transparency 2)
 A. Single-acting
 1. Oil flows into only one side of the cylinder
 2. The cylinder is retracted by gravity or a spring
 B. Double-acting
 1. Oil flows into one side to extend the cylinder
 2. The cylinder is retracted by oil flow into the other side of the cylinder

IV. Types of double-acting cylinders (Transparency 3)
 A. Balanced
 (NOTE: A balanced double-acting cylinder has an equal area on both sides of piston.)
 B. Unbalanced
 (NOTE: Unbalanced double-acting cylinders have unequal areas on each side of the piston.)
V. Parts of a single-acting cylinder (Transparency 4)
 A. Piston
 B. Piston rod
 C. Piston seal
 D. Rod wiper seal
 E. Air vent
 F. Oil inlet
 G. Cylinder housing
 H. Cylinder bore
 I. Mount

VI. Parts of a double-acting cylinder (Transparency 5)
 A. Piston
 B. Piston rod
 C. Piston seals
 D. Oil ports
 E. End cap
 F. Rod (pressure) seal
 G. Cylinder housing
 H. Cylinder bore
 I. Mount
 J. Wiper seal

VII. Common sources of failures of hydraulic cylinders
 A. Bent rod
 B. Scored cylinder barrel
 C. Nicked or damaged rod
INFORMATION SHEET

D. Leaking piston seal
E. Leaking rod seal
F. Defective wiper seal

(NOTE: A defective wiper seal will often cause a leaking piston or rod seal or other problem.)

VIII. The force output of hydraulic cylinders

A. Single-acting--Force = Pressure x Piston Area or F=PA

Example: Calculating force when pressure and area are known
Pressure = P = 1500 Pounds per Square Inch (PSI)
Piston diameter = D = 3.0 inches

(Note: \(\pi = 3.14 \))

Piston area = \(A = \pi \frac{D^2}{4} = 3.14 \frac{(3^2)}{4} = 7.07 \) sq. in.

Force = \(F = 1500 \text{ lbs./sq. in.}\times 7.07 \text{ sq. in.} = 10,600 \text{ lbs.} \)

Example: Calculating pressure when force and diameter are known

Force = 5,000 lbs.
Piston Diameter = 2.0 inches

Piston area = \(A = \pi \frac{D^2}{4} = 3.14 \frac{(2^2)}{4} = 3.14 \) sq. in.

Pressure = \(P = \frac{F}{A} = \frac{5,000 \text{ lbs.}}{3.14 \text{ sq. in.}} = 1590 \text{ PSI} \)

B. Double-acting--Force = Piston Area \(\times \) Piston Pressure - Rod side Area \(\times \) Rod side Pressure

Example: Piston diameter = 4 inches
Rod diameter = 2 inches
Piston pressure = 1500 Pounds per Square Inch (PSI)
Rod-side pressure = 500 Pounds per Square Inch (PSI)

Piston area = \(\pi \frac{D^2}{4} = 3.14 \frac{(4^2)}{4} = 12.6 \) sq. in.

Rod area = \((3.14) \frac{(2^2)}{4} = 3.14 \) sq. in.

Rod-side area = 12.56 - 3.14 = 9.42 sq. in.

\[F = (1500 \frac{\text{lbs.}}{\text{sq. in.}}) \times (12.6 \text{ sq. in.}) - (500 \frac{\text{lbs.}}{\text{sq. in.}}) (9.42 \text{ sq.in.}) \]

\[F = 14,190 \text{ lbs.} \]
IX. Formulas for speed of a cylinder

A. Single-acting--

\[
\text{Rod speed} = \text{flow rate} \times \frac{19.25}{\text{Piston Area}} \quad \text{or} \quad V = \frac{Q}{A} \times 19.25
\]

(NOTE: This equation requires that the unit of measure of flow rate be GAL/MIN (GPM) and unit of measure of piston area be square inches. The rod speed will be in feet per minute.)

Example:

Flow rate into cylinder = \(Q = 5 \text{GPM} \)

Piston Diameter = \(D = 3 \)

Then:

\[
\text{Piston Area} = 3.14 \frac{(3)^2}{4} = 7.07 \text{ sq. in.}
\]

\[
V = \frac{Q \times 19.25}{7.07 \text{ sq.in.}} = 5 \text{ Gal/Min} \times \frac{19.25}{13.6 \text{ ft/min.}} = 13.6 \text{ ft/min.}
\]

B. Double-Acting--

\[
\text{Rod Speed} = \frac{\text{flow rate} \times 19.25}{\text{Area}} \quad \text{or} \quad V = \frac{Q}{A} \times 19.25
\]

where the area is the piston area when the rod is extending and the rod-side area when the piston is retracting

Example:

Piston Diameter = 4 inches
Rod Diameter = 2 inches
Piston Area = 12.6 sq. in.
Rod Area = 3.14 sq. in.
Rod-Side Area = 9.42 sq. in.

If the cylinder is extending and the flow into the piston side is 10 GPM, then:

\[
V = \frac{10 \text{ GPM} \times 19.25}{12.6 \text{ sq.in.}} = 15.3 \text{ ft/min.}
\]

If the cylinder is retracting and the flow into the rod side is 10 GPM, then:

\[
V = \frac{10 \text{ GPM} \times 19.25}{9.42 \text{ sq.in}} = 20.4 \text{ ft/min.}
\]
X. Formula for power output of a cylinder--

\[
\text{Power} = \frac{V \times F}{33,000}
\]

Where:
- \(V\) = Rod velocity (ft/sec)
- \(F\) = Rod force (pounds force)
- Power = Power Out (Horsepower)

Example:
- \(V = 10\) ft/sec
- \(F = 5000\) pounds force
- Power = \(\frac{(10)(15000)}{33000}\) = 4.5 HP

XI. Formula for the flow rate required to move a cylinder a given distance in a given time--

\[
Q = \frac{A \times L}{T \times 231}
\]

Where:
- \(Q\) = Flow rate in gallons per minute (GPM)
- \(A\) = Area in square inches (in\(^2\))
- \(L\) = Length in inches (in)
- \(T\) = Time in minutes

Example:
To move a 2 inch diameter cylinder 20 inches in 0.5 minutes the flow rate required is 0.54 GPM.

\[
A = \frac{\pi D^2}{4} = \frac{3.14 \times (2^2)}{4} = 3.14 \text{ in}^2
\]

\[
Q = \frac{(3.14) \times 20 \text{ inches}}{0.5 \text{ minutes} \times 231} = 0.54 \text{ GPM}
\]

XII. Symbol for a cylinder

![Symbol for a cylinder]
Operation of a Hydraulic Cylinder

Force

Pressure Applied to Piston

Oil Flow
Operation of Single and Double Acting Cylinders

Gravity Return

Raise

Single-Acting

Lower

Extend

Double Acting

Retract
Types of Double-Acting Hydraulic Cylinders

Unbalanced (Differential Type)

Balanced (Equal force both ways)
Single-Acting Cylinder
Double-Acting Cylinder

Extend

Retract

Oil Port
Piston Seals
Mount
Piston
Cylinder Bore
Cylinder Housing
End Cap
Rod (Pressure) Seal
Wiper Seal
Oil Port
Piston Rod

H. 219-B
CYLINDERS
UNIT VII

JOB SHEET #1-DISASSEMBLE, INSPECT, AND REASSEMBLE A HYDRAULIC CYLINDER

I. Tools and Materials
 A. Tools--Wrenches of appropriate sizes
 B. Materials
 1. Cylinder
 2. Replacement piston seal
 3. Replacement rod seal
 4. Replacement wiper seal

II. Procedure
 A. Disassemble
 1. Use scribe to place match marks on end caps
 2. Use appropriate wrenches to remove end cap
 3. Remove rod assembly from cylinder barrel
 B. Inspect
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Examine cylinder barrel for scoring or abnormal wear</td>
<td>✓</td>
</tr>
<tr>
<td>2. Examine piston seal for nicking or uneven wear</td>
<td></td>
</tr>
<tr>
<td>3. If the cylinder uses a piston seal, inspect for nicking or uneven wear</td>
<td></td>
</tr>
<tr>
<td>4. If the cylinder uses a wiper seal, inspect for damage or nicking</td>
<td></td>
</tr>
<tr>
<td>5. Examine the air vent on single-acting cylinders to insure the opening is not obstructed</td>
<td></td>
</tr>
<tr>
<td>6. Report findings to instructor</td>
<td></td>
</tr>
</tbody>
</table>

229
JOB SHEET #1

C. Reassemble
 1. Remove old piston seal
 2. Carefully install a new piston seal onto the piston
 3. Carefully insert rod assembly into the cylinder barrel
 4. Install a new rod seal (if used)
 5. Make sure orientation is correct (lip is out) and that seal is square to the rod
 6. Install end cap
 7. Align match marks
 8. Tighten the bolts on cylinders using the rods evenly

D. Have instructor inspect work
CYLINDERS
UNIT VII

JOB SHEET #2-TEST A CYLINDER FOR INTERNAL AND EXTERNAL LEAKAGE

I. Tools and Materials
A. Wrenches as required
B. Cylinder test fixture capable of holding a pressurized cylinder
C. Double-acting cylinder
D. Safety glasses

II. Procedure
A. Test for external leakage
 1. With cylinder installed on machine or test fixture, apply pressure and visually inspect for leakage around the rod at the end cap
 2. Repeat for several different positions
B. Test for internal leakage (double-acting cylinders)
 1. Install cylinder on test fixture, leaving the line to one side of the cylinder unconnected
 (NOTE: Only one side of the cylinder will be pressurized at a time.)
 2. Bleed air from the side of the cylinder which will be pressurized
 3. Apply pressure
 4. Observe upper outlet for any leakage flow
 5. Repeat for several cylinder extensions
 6. Remove pressure
 7. Disconnect line to cylinder and reconnect to other side
 8. Repeat steps 2 to 6 for other side of cylinder
1. Match the terms on the right with the correct definitions.

 a. Area of the piston rod
 b. Area of the cylinder piston
 c. Effective area on the rod side of the cylinder; equal to the piston area minus the rod area
 d. An actuator which converts hydraulic power into linear mechanical force and motion
 e. Pressure in the return lines caused by flow in these lines

 1. Piston area
 2. Back pressure
 3. Rod area
 4. Rod side area
 5. Cylinder

2. Discuss the operation of a hydraulic cylinder.

3. Distinguish between the operation of single-acting and double-acting cylinders by placing an "x" next to the descriptions of single-acting cylinders.

 a. Oil flows into only one side of the cylinder
 b. The cylinder is retracted by oil flow into the other side of the cylinder
 c. The cylinder is retracted by gravity or a spring
 d. Oil flows into one side to extend the cylinder

 x a.
 x b.
 x c.
 x d.

4. Identify types of double-acting cylinders.

 a. ____________________________ b. ____________________________
5. Identify the parts of a single-acting cylinder.

6. Identify the parts of a double-acting cylinder.

7. List five common sources of failure of hydraulic cylinders.
 a.
 b.
 c.
 d.
 e.

\[2^{3/3} \]
8. Calculate the force output in the following problems.

a. Using the formula for single-acting force, \(F = PA \), calculate the force if \(P = 2000 \) PSI and \(D = 4.00 \) inches

b. Using the formula for double-acting force, Piston Area \(\times \) Piston pressure, and Rod side area \(\times \) Rod side pressure, calculate the force when

\[
\begin{align*}
\text{Piston pressure} & = 2000 \text{ PSI} \\
\text{Rod diameter} & = 3.0 \text{ inches} \\
\text{Piston diameter} & = 4.00 \text{ inches} \\
\text{Rod-side pressure} & = 500 \text{ PSI}
\end{align*}
\]

9. Calculate the speed of hydraulic cylinders in the following problems.

a. Using the formula for single-acting rod speed, \(\frac{\text{flow rate} \times 19.25}{\text{Piston area}} \), calculate rod speed when

\[
\begin{align*}
\text{Flow rate into cylinder} = Q & = 10 \text{ GPM} \\
\text{Piston diameter} & = P = 4 \text{ inches} \\
\text{Constant} & = 19.25
\end{align*}
\]

b. Using the formula for double-acting rod speed, \(\frac{\text{flow rate} \times 19.25}{\text{Area}} \), calculate the retracting and extending speed when

\[
\begin{align*}
\text{Piston diameter} & = 3 \text{ inches} \\
\text{Rod diameter} & = 2 \text{ inches} \\
\text{Piston area} & = 7.07 \text{ sq.in.} \\
\text{Rod area} & = 3.14 \text{ sq.in.} \\
\text{Rod side area} & = 3.93 \text{ sq.in.} \\
\text{Flow rate} & = 10 \text{ GPM}
\end{align*}
\]

1. Retracting speed ________________

2. Extending speed ________________
10. Using the formula for power output of a cylinder, $V \times F$, calculate the power output of a cylinder, when

$V = \text{Rod velocity} = 20 \text{ ft./sec.}$

$F = \text{Rod force} = 10,000 \text{ pounds force}$

$\text{Constant} = 33,000$

11. Using the formula for the flow rate required to move a cylinder a given distance in a given time, $Q = \frac{A \times L}{T \times 231}$, calculate the flow rate required to move a 2 inch diameter cylinder 10 inches in one minute.

12. Draw the symbol for a cylinder.

13. Demonstrate the ability to:

a. Disassemble, inspect, and reassemble a hydraulic cylinder.

b. Test a cylinder for internal and external leakage.

(Note: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
CYLINDERS
UNIT VII

ANSWERS TO TEST

1. a. 3 c. 4 e. 2
 b. 1 d. 5

2. Discussion should include:
 a. Hydraulic oil flows into a chamber of the cylinder, causing the cylinder rod to move
 b. Pressure of the fluid acting on the surface of a piston creates a force on the rod

3. a, c

4. a. Unbalanced
 b. Balanced

5. a. Piston
 b. Piston rod
 c. Piston seal
 d. Rod wiper seal
 e. Air vent
 f. Oil inlet
 g. Cylinder housing
 h. Cylinder bore
 i. Mount

6. a. Piston
 b. Piston rod
 c. Piston seals
 d. Oil ports
 e. End cap
 f. Rod seal
 g. Cylinder housing
 h. Cylinder bore
 i. Mount
 j. Wiper seal

7. Any five of the following:
 a. Bent rod
 b. Scored cylinder barrel
 c. Nicked or damaged rod
 d. Leaking piston seal
 e. Leaking rod seal
 f. Defective wiper seal
8. a. 25,120 lbs.
b. 22,157.5 lbs.

9. a. 15.33 ft./min.
b. 1.) 48.98 ft./min.
2.) 15.33

10. 6.06 HP

11. .136 GPM

12.

13. Performance skills evaluated to the satisfaction of the instructor.
UNIT OBJECTIVE

After completion of this unit, the student should be able to calculate hydraulic motor load torque, displacement, speed, inlet pressure, power, and efficiency. The student should also be able to select true statements concerning the operation of a gear motor, a vane motor, and an in-line axial piston motor. The student should also be able to disassemble, inspect, and reassemble a gear motor. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheet and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Match terms associated with motors with the correct definitions.
2. Name three kinds of hydraulic motors.
3. Given a formula, calculate hydraulic motor load torque.
4. Given a formula, calculate the displacement of a hydraulic motor.
5. Given a formula, calculate the speed of a hydraulic motor.
6. Given a formula, calculate hydraulic motor inlet pressure.
7. Given a formula, calculate hydraulic motor input and output power.
8. Given a formula, calculate motor overall efficiency.
9. Select true statements concerning the operation of a gear motor.
10. Select true statements concerning the operation of an unbalanced vane motor.
11. Name three types of piston motors.
12. Select true statements concerning the operation of an in-line axial piston motor.
13. Demonstrate the ability to disassemble, inspect, and reassemble a gear motor.
MOTORS
UNIT VIII

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information and job sheets.
III. Make transparencies.
IV. Discuss unit and specific objectives.
V. Discuss information sheets.
VI. Demonstrate and discuss the procedures outlined in the job sheet.
VII. Show students examples of vane, gear, and piston motors.
VIII. Give test

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1 - Hydraulic Motor Load Torque
 2. TM 2 - Operation of a Gear and Vane Motor
 3. TM 3 - Operation of an In-Line Axial Piston Motor
 D. Job Sheet #1 - Disassemble, inspect, and Reassemble a Gear Motor
 E. Test
 F. Answers to test

II. References:
I. Terms and definitions

A. Hydraulic motor--A device for converting fluid energy into mechanical force and motion

B. Torque--A measure of rotational (twisting) load or effort; calculated as force times distance

C. Displacement--The volume of fluid which is transported from the motor inlet to the outlet during one revolution of the motor

D. Efficiency--The output power divided by the input power

E. Foot-pound--A unit of torque equal to 12 inch-pounds

 (NOTE: Foot-pounds are abbreviated ft-lbs.)

F. Back-pressure--Pressure at the outlet of a motor caused by pressure drop in the return lines

II. Kinds of hydraulic motors

A. Gear

B. Vane

C. Piston

 (NOTE: These are positive displacement motors. Nonpositive displacement motors do exist but are not commonly used in hydraulic systems.)

III. Formula for calculation of hydraulic motor load torque (Transparency 1):

\[
\text{Torque} = \text{Distance} \times \text{Force}
\]

Where

- Torque is expressed in ft-pounds or inch-pounds
- Force = Load force expressed in pounds
- Distance = Distance from center of shaft to line of action of applied force, measured perpendicular to line of action of force and expressed in units of inches or feet

Example:
If a 100 pound force is applied to the shaft of a hydraulic motor one foot from the center of the shaft, then the output torque is 100 ft-pounds

\[
\text{Torque} = \text{Distance} \times \text{Force} = (1 \text{ ft}) \times (100 \text{ pounds}) = 100 \text{ ft-pounds}
\]
IV. Formula for calculating the displacement of a hydraulic motor--
\[d = \frac{231 \times Q}{n} \]

Where
\[d = \text{Displacement in units of cubic inches per revolution (in.}^3/\text{rev)} \]
\[Q = \text{Motor inlet flowrate in units of gallons per minute (GPM)} \]
\[n = \text{Shaft speed in units of revolutions per minute (RPM)} \]

Example:
The displacement of a motor which has a shaft speed of 1800 RPM when the inlet flowrate is 20 GPM is 2.56 in\(^3/\text{rev}\).
\[d = \frac{231 \times 20 \text{ GPM}}{1800 \text{ RPM}} = 2.56 \text{ in}^3/\text{rev}. \]

V. Formula for calculating the speed of a hydraulic motor--
\[n = \frac{Q \times 231}{d} \]

Where
\[n = \text{Shaft speed in units of revolutions per minute (RPM)} \]
\[Q = \text{Motor inlet flowrate in units of gallons per minute (GPM)} \]
\[d = \text{Displacement in units of cubic inch per revolution (in.}^3/\text{rev)} \]

Example:
The speed of a 2.56 in\(^3/\text{rev}\) motor with an inlet flowrate of 25 GPM is 2255 RPM.
\[n = \frac{(25 \text{ GPM}) \times 231}{2.56 \text{ in}^3/\text{rev}} = 2255 \text{ RPM} \]

VI. Formula for calculating hydraulic motor inlet pressure--
\[P = \frac{\text{Torque} \times 2\pi}{d} \quad (\pi = 3.14) \]

Where
\[P = \text{Inlet pressure in units of pounds per square inch (PSI)} \]
\[\text{Torque} = \text{Shaft torque in units of inch-pounds (in.-lbs)} \]
\[d = \text{Displacement in cubic inches per revolution (in}^3/\text{rev)} \]

Example:
A hydraulic motor has a displacement of 2.56 cubic inches per revolution. The load torque is 700 in-lbs. The inlet pressure is 1717 PSI.
\[P = \frac{(700 \text{ in-lbs.}) \times 6.28}{2.56} = 1700 \text{ PSI} \]
VII. Formula for calculating hydraulic motor power

A. \(\text{Input Power} \cdot \text{Power} = \frac{P \times Q}{1714} \)

Where \(\text{Power} = \) Input in units of horsepower (HP)
\(P = \) Inlet pressure in units of PSI
\(Q = \) Inlet flowrate in units of GPM

Example: The input power of a hydraulic motor operating at 20 GPM inlet flow and 3000 PSI inlet pressure is 35 HP

\[\text{Power} = \frac{3000 \text{ PSI} \times 20 \text{ GPM}}{1714} = 35 \text{ HP} \]

B. \(\text{Output Power} \cdot \text{Power} = \frac{n \times \text{Torque}}{5252} \)

Where \(\text{Power} = \) Output Power in units of horsepower (HP)
\(n = \) Shaft speed in units of revolutions per minute (RPM)
\(\text{Torque} = \) Output torque in units of foot-pounds (ft-lbs)

Example: The output power of a hydraulic motor operated at 2400 RPM with an output load of 70 ft-lbs is 32 HP

\[\text{Power} = \frac{(2400 \text{ RPM}) \times (70 \text{ ft-lbs})}{5252} = 32 \text{ HP} \]

VIII. Formula for the calculation of motor overall efficiency:

\[\text{Eff} = \frac{\text{Output Power}}{\text{Input Power}} \]

Example: A motor is operated at the output power of 27 HP. The input power required is 32 HP. The efficiency is 0.844

\[\text{Eff} = \frac{27}{32} = 0.844; \text{ Therefore the motor is 84.4\% efficient.} \]

IX. Operation of a gear motor (Transparency 2)

A. Pressurized hydraulic fluid is supplied to the inlet of the motor

B. The pressure creates a force on the face of each gear tooth

C. The pressure force on the gear teeth is balanced; a force on one face which would tend to cause rotation in the clockwise direction is balanced by a force on an adjacent face which would tend to cause rotation in the opposite direction
INFORMATION SHEET

D. This balancing of forces exist at all gear teeth except where the teeth just begin to unmesh.

E. At this location, the forces are not balanced which tends to cause the motor to rotate.

F. As the motor rotates, small volumes of fluid are trapped between the gear teeth and are carried to the outlet.

G. The fluid at the outlet is expelled at a lower pressure.

(NOTE: The operation of an external gear motor has been discussed. Other types of gear motors do exist.)

X. The operation of an unbalanced vane motor (Transparency 2)

A. A vane motor consists of a ring, vanes, rotor, shaft, and a port plate with kidney shaped inlet and outlet ports.

B. The rotor is installed off-centered in the ring.

C. The vanes are installed into the rotor and are free to move radially.

D. The vanes are spring-loaded to force the vanes to contact the surface of the ring.

(NOTE: Hydraulic pressure may be used to force the rotors against the ring.)

E. Pressurized hydraulic fluid is supplied to the inlet of the motor.

F. Because the rotor is installed off center, an imbalance on the vanes is created which tends to cause the rotor and motor shaft to turn.

G. As the rotor turns a small volume of fluid is trapped and carried to the outlet and expelled at a lower pressure.

(NOTE: Some vane motors are designed to balance the load on the shaft bearing by having two inlet and two outlet ports. The inlet ports are positioned directly opposite each other. This design is called a balanced vane motor.)

XI. Types of piston motors

A. Radial

B. In-line axial

C. Bent axis axial
INFORMATION SHEET

XII. Operation of an in-line axial piston motor (Transparency 3)

A. The motor consists of a swash plate, pistons with shoes, a cylinder barrel, shaft, and port plate

B. The pistons are installed in the cylinder barrel and are connected with the swash plate

C. The swash plate is positioned at an angle thus causing the pistons to extend into the cylinder block a varying amount

D. Pressurized hydraulic fluid is supplied to the inlet of the motor, which causes a force to be applied to the top of a piston

E. This, in turn, causes the piston and shoe to slide on the swash plate from the high side to the low side causing the cylinder barrel and shaft to rotate (Transparency 5)

 (NOTE: The swash plate does not rotate with the pistons, cylinder barrel and shaft.)

F. As each piston is forced to move, it rotates from the inlet to the outlet

G. In doing this it carries a small amount of fluid from the inlet to outlet

H. This fluid is expelled from the outlet at a lower pressure
Motor Load Torque

Torque = (1 ft.) (100 lbs.) = 100 ft.-lbf.
Operation of a Gear and Vane Motor

Internal Gear Motor
- Commutator
- Spacer Plate
- End Plate
- Stator
- Rotor Drive Link
- Rotor

External Gear Pump in Operation
- Motor Housing
- Drive Shaft
- Inlet
- Outlet
- Forces on these two faces are balanced out
- Forces on these faces are not balanced
- Stub Shaft

Vane Motor
- Inlet
- Outlet
- Vane
- Ring
- Shaft
- Rotor
Operation of an In-Line Axial Piston Motor

Swashplate Shoeplate Cylinder Barrel Shaft Hole Port Plate
Piston Shoe Piston Shoeplate Bias Spring Piston Bore Inlet Port Outlet Port

Swashplate Cylinder Barrel
Direction of Slide Force
Barrel and Shaft Rotation

249
MOTORS
UNIT VIII

JOB SHEET #1--DISASSEMBLE, INSPECT AND REASSEMBLE A GEAR MOTOR

I. Tools and materials
A. Gear motor
B. Service manual for motor (if available)
C. Hand tool set
D. Solvent
E. Lint free shop towels
F. Safety glasses

II. Procedure

(NOTE: Figure 1 shows a cut-away drawing of a typical gear motor with an outboard bearing on the motor shaft. Figure 2 is an exploded view of this motor.)

![Diagram of Gear Motor]

FIGURE 1
A. Disassemble

1. Thoroughly clean the external surfaces of the motor with solvent and dry the motor with shop towels.

2. Place the motor on a clean surface for disassembly.

3. Remove the clip ring retainer on the outboard shaft bearing (if used).

4. Remove the bearing.

5. Remove the four cap screws which hold the motor housing together.

6. Slowly remove the port (rear) end cover from the motor.

7. Remove the two port side roller bearings from the assembly.

8. Remove the rear thrust plate, noting orientation of the plate.

9. Remove the gear housing from the motor.

10. Carefully remove the two gears from the motor.

11. Remove the shaft side thrust plate, noting orientation of plate.

12. Remove the two shaft side roller bearings.

13. Remove shaft seal.

B. Inspect

(NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Examine the two thrust plates for excessive wear or condition scoring</td>
</tr>
<tr>
<td>2.</td>
<td>Examine the gears for excessive wear and broken teeth</td>
</tr>
<tr>
<td>3.</td>
<td>Examine the roller bearings for excessive wear and fractured bearings</td>
</tr>
<tr>
<td>4.</td>
<td>Examine the shaft seal for scoring</td>
</tr>
<tr>
<td>5.</td>
<td>Examine the gear housing seals (usually orings) for nicks or breaks</td>
</tr>
<tr>
<td>6.</td>
<td>Replace any part found to be defective</td>
</tr>
</tbody>
</table>

C. Reassemble

(NOTE: Pre-lube parts during assembly.)

1. Carefully install the shaft seal.

2. Install the two shaft side roller bearings.

3. Install the shaft side thrust plate.

4. Install the two gears into the shaft end cover.

5. Insure that the two seals on the gear housing are properly installed and then lower the gear housing around the two gears and align with the shaft end cover.

6. Install the port side thrust plate.

7. Install the port side roller bearings.

8. Install the port side end cover onto the assembly and carefully align.

9. Install the four cap screws.
10. Uniformly torque the screws by alternately applying torque to screws on opposite sides of the motor

11. Reinstall the shaft outboard bearing and clip ring

12. Fill motor with fluid as specified by the manufacturer before operation
1. Match the terms on the right with the correct definitions.

 a. A measure of rotational load or effort; calculated as force times distance
 1. Back pressure

 b. The output power divided by the input power
 2. Hydraulic motor

 c. The volume of fluid which is transported from the motor inlet to the outlet during one revolution of the motor
 3. Displacement

 d. A device for converting fluid energy into mechanical force and motion
 4. Torque

 e. A unit of torque equal to 12 inch-pounds
 5. Efficiency

 f. Pressure at the outlet of a motor caused by pressure drop in the return lines
 6. Foot-pound

2. Name three kinds of hydraulic motors.

 a.

 b.

 c.

3. Using the formula for torque, calculate hydraulic motor load torque if a 150 pound force is applied to the shaft of a hydraulic motor two feet from the center of the shaft.

 Torque = Distance x Force
7. a. Using the formula for input power, calculate the input power of a motor operating at 21 GPM inlet flow and 2500 PSI inlet pressure.

\[
\text{Power} = \frac{P \times Q}{1714}
\]

b. Using the formula for output power, calculate the output power of a motor which is operating at 2000 RPM with an output load of 50 ft-lbs.

\[
\text{Power} = \frac{n \times \text{Torque}}{5252}
\]

JOB SHEET #1

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Examine fins for damage</td>
</tr>
<tr>
<td>3.</td>
<td>Examine the fittings for damage</td>
</tr>
</tbody>
</table>

C. Test

1. Connect the heat exchanger to the hydraulic power supply
2. Slowly increase the pressure on the inlet side of the heat exchanger until rated pressure is attained by slowly closing the load valve
3. Examine the cooler for leaks, paying close attention to the area near weld, joints and fluid fittings
4. Note any leaks
5. Open the load valve
6. Supply the cooler with fluid flow at flow rate equal to its rated capacity
7. Allow the fluid to circulate until operating temperature is reached
8. Measure the differential pressure across the heat exchanger with rated flow rate
9. Record and compare to manufacturer's specifications

(Note: Excessive differential pressure is an indication of internal blockage. If pressure is too great examine internal surfaces for blockage.)
8. Using the formula \(\text{Eff} = \frac{\text{Output power}}{\text{Input power}} \), calculate the motor overall efficiency if the output power is 25 HP and the input power is 30 HP.

9. Select true statements concerning the operation of a gear motor by placing an "X" in the appropriate blanks.

 _____ a. Pressurized hydraulic fluid is supplied to the inlet of the motor
 _____ b. The pressure creates a force on the face of each gear tooth
 _____ c. The pressure force on the gear teeth is balanced; a force on one face which would tend to cause rotation in the clockwise direction is balanced by a force on an adjacent face which would tend to cause rotation in the opposite direction
 _____ d. This balancing of forces exist at all gear teeth except where the teeth just begin to unmesh
 _____ e. At this location, the forces are not balanced which tends to cause the motor to rotate
 _____ f. As the motor rotates, small volumes of fluid are trapped between the gear teeth and are carried to the outlet
 _____ g. The fluid at the outlet is expelled at a much higher pressure

10. Select true statements concerning the operation of an unbalanced vane motor by placing an "X" in the appropriate blanks.

 _____ a. A vane motor consists of a ring, vanes, rotor, shaft, and a port plate with kidney shaped inlet and outlet ports
 _____ b. The rotor is installed in the center of the ring
 _____ c. The vanes are installed into the port plate and cannot move
 _____ d. The vanes are spring-loaded to force the vanes to contact the surface of the ring
 _____ e. Pressurized hydraulic fluid is supplied to the inlet of the motor
 _____ f. At this point the vanes are balanced and the rotor turns
 _____ g. As the rotor turns a small volume of fluid is trapped and carried to the outlet and expelled at a lower pressure
11. Name three types of piston motors.
 a.
 b.
 c.

12. Select true statements concerning the operation of an in-line axial piston motor by placing an "X" in the appropriate blanks.

 _____ a. The motor consists of a swash plate, pistons with shoes, a cylinder barrel, shaft, and port plate

 _____ b. The swash plate is positioned at an angle thus causing the pistons to extend into the cylinder block a varying amount

 _____ c. Pressurized hydraulic fluid is supplied to the inlet of the motor, which causes a force to be applied to the shaft

 _____ d. This in turn causes the piston and shoe to slide on the swash plate from the high side to the low side, causing the cylinder barrel and shaft to rotate

 _____ e. As each piston is forced to move, it rotates from the outlet to the inlet

 _____ f. In doing this it carries a small amount of fluid from the inlet to the outlet

 _____ g. This fluid is expelled from the outlet at a lower pressure

13. Demonstrate the ability to disassemble, inspect, and reassemble a gear motor.

 (NOTE: If this activity has not been accomplished prior to the test, ask your instructor when it should be completed.)
MOTORS
UNIT VIII

ANSWERS TO TEST

1. a. 4 c. 3 e. 6
 b. 5 d. 2 f. 1

2. a. Gear
 b. Vane
 c. Piston

3. 300 ft-lbs.

4. 2.9 in³/rev.

5. 2165 RPM

6. 1840 PSI

7. a. 30.6 HP
 b. 19 HP

8. 83%

9. a, b, c, d, e, f

10. a, d, e, g

11. a. Radial
 b. In-line axial
 c. Bent axis axial

12. a, b, d, f, g

13. Performance skill evaluated to the satisfaction of the instructor.
ACCESSORIES
UNIT IX

UNIT OBJECTIVE

After completion of this unit, the student should be able to list safety precautions for working with accumulators and explain reasons for using a heat exchanger and a heater. The student should also be able to inspect, clean, and test a heat exchanger and a heater. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Define terms associated with accessories.
2. Select functions of an accumulator.
3. Identify types of accumulators.
4. Identify types of gas-loaded accumulators.
5. List safety precautions for working with accumulators.
6. Explain reasons for using a heat exchanger.
7. Describe types of heat exchangers.
9. Explain reasons for using a heater.
10. Describe two types of heaters.
11. List two common failures of heaters.
12. Demonstrate the ability to:
 a. Inspect, clean, and test a heat exchanger.
 b. Inspect, clean, and test a heater.
ACCESSORIES
UNIT IX

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.

II. Provide student with information and job sheets.

III. Make transparencies.

IV. Discuss unit and specific objectives.

V. Discuss information sheet.

VI. Demonstrate and discuss the procedures outlined in the job sheets.

VII. Demonstrate how to recharge an accumulator according to manufacturer's specifications.

VIII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency masters
 1. TM 1--Types of Accumulators
 2. TM 2--Types of Gas-Loaded Accumulators
 3. TM 3--Types of Heat Exchangers
 D. Job sheets
 1. Job Sheet #1--Inspect, Clean, and Test a Heat Exchanger
 2. Job Sheet #2--Inspect, Clean, and Test a Heater
 E. Test
 F. Answers to test

I. Terms and definitions
A. Accumulator--A device for storing hydraulic energy
B. Heat exchanger--A device for removing or adding heat to hydraulic fluids
C. Heater--A device for adding heat to hydraulic fluids
D. Thermostat--An automatic device for regulating temperature

II. Functions of an accumulator
A. Stores energy
B. Absorbs shock
C. Allows the system to build pressure gradually
D. Maintains pressure

III. Types of accumulators (Transparency 1)
A. Gas-loaded (gas charged)
B. Weight-loaded
C. Spring-loaded

IV. Types of gas-loaded accumulators (Transparency 2)
A. Piston type
B. Bladder type
C. Diaphragm type

V. Safety precautions for working with accumulators
(Note: Accumulators are used to store energy and therefore can pose severe safety hazards.)

A. Always discharge stored hydraulic fluid from the accumulator prior to removing it from the system
(Note: Valves, brake pedals, etc., should be operated to insure all stored hydraulic energy has been expelled. Failure to do this could result in severe injury from high pressure fluid escaping.)
INFORMATION SHEET

B. Never charge an accumulator to a pressure more than that recommended by the manufacturer.

C. *Never* fill an accumulator with oxygen; an explosion could result if oil and oxygen mix.

D. Only fill the accumulator with an inert gas such as dry nitrogen, because dry nitrogen is free of water vapor and oxygen.

(NOTE: Allowing water vapor to enter the accumulator can cause the accumulator to rust.)

E. Do not use compressed air in an accumulator.

F. Before disassembling an accumulator, release both gas and hydraulic pressures.

G. Use extreme care in removing the springs from spring-loaded accumulators.

VI. Reasons for using a heat exchanger.

A. Power losses (inefficiencies) in various hydraulic components, such as pumps, valves, and lines, result in heating of the hydraulic fluid.

B. In order to prevent excessive operating temperatures, this heat must be removed.

C. The heat exchanger removes heat from the hydraulic system.

VII. Types of heat exchangers (Transparency 3)

A. Air-to-oil cooler--Uses moving air past a radiator to dissipate the heat.

B. Water-to-oil cooler--Uses water flowing through tubes immersed in the oil to remove the heat.

VIII. Common failures of heat exchangers.

A. Cooling fins on air-to-oil heat exchangers become clogged with dirt and debris.

B. Water tubes on water-to-oil heat exchangers become plugged with sediment.

C. Water leaks into fluid.

D. Fluid leaks into water.

IX. Reasons for using a heater.

A. The viscosity of hydraulic fluid is sensitive to temperature; at cold temperatures the fluid is thick and large pressure losses can occur in the lines.
INFORMATION SHEET

B. In cold environments heaters are often used to help raise the temperature to the desired operating temperature or to help maintain the desired operating temperature.

X. Types of heaters

A. Electric--Uses electric heating element to add heat to the system

B. Heat exchangers--Uses the same principle as when used to cool, except instead of removing heat, hot air or liquid is used to add heat

XI. Common failures of heaters

A. Electrical heating element fails

B. Heat exhanger fails (see above)
Types of Accumulators

- Gas Loaded
- Spring Loaded
- Weight Loaded
Types of Gas-Loaded Accumulators

Inflatable-Type Accumulator

Diaphragm-Type Accumulator

Biad Jer-Type Accumulator in Operation
Types of Heat Exchangers

Air-to-Oil Heat Exchanger

Water-to-Oil Heat Exchanger
ACCESSORIES
UNIT IX

JOB SHEET #1--INSPECT, CLEAN, AND TEST A HEAT EXCHANGER

I. Tools and materials
 A. Air-to-oil heat exchanger
 B. Hand tool set
 C. Service manual, if available
 D. Solvent
 E. Lint free shop towels
 F. Safety glasses
 G. Caps for covering fluid ports
 H. Hydraulic power supply capable of providing hydraulic fluid at the rated pressure and flow capacity of the cooler

 (NOTE: The power supply should have a load valve in the return line.)

II. Procedures
 A. Clean
 1. Install caps to cover the fluid ports
 2. Remove any caked-on dirt and mud from outside of the heat exchanger
 3. Use solvent to remove any residual grease or films from external surfaces
 4. Allow solvent to dry
 5. Remove the caps on the fluid ports
 6. Flush the unit with solvent
 B. Inspect

 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

 1. Examine external welds and joints for any signs of cracking
JOB SHEET #1

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Examine fins for damage</td>
</tr>
<tr>
<td>3.</td>
<td>Examine the fittings for damage</td>
</tr>
</tbody>
</table>

C. Test

1. Connect the heat exchanger to the hydraulic power supply
2. Slowly increase the pressure on the inlet side of the heat exchanger until rated pressure is attained by slowly closing the load valve
3. Examine the cooler for leaks, paying close attention to the area near weld, joints and fluid fittings
4. Note any leaks
5. Open the load valve
6. Supply the cooler with fluid flow at flow rate equal to its rated capacity
7. Allow the fluid to circulate until operating temperature is reached
8. Measure the differential pressure across the heat exchanger with rated flow rate
9. Record and compare to manufacturer's specifications

(NOTE: Excessive differential pressure is an indication of internal blockage. If pressure is too great examine internal surfaces for blockage.)

230
ACCESSORIES
UNIT IX

JOB SHEET #2--INSPECT, CLEAN, AND TEST A HEATER

I. Tools and materials
 A. Thermostatically controlled electric heater
 B. Hand tool set
 C. Service manual, if available
 D. Solvent
 E. Lint free shop towels
 F. Safety glasses
 G. A container of hydraulics fluid large enough to accommodate the heater
 H. Thermometer
 I. Fire extinguisher

II. Procedures
 A. Clean--Use the solvent to remove any film buildup on the shell of the heater
 B. Inspect
 (NOTE: After completing each point in this inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>✓</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Examine the shell for any cracks</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Examine the electric connections to insure the terminals are not damaged or corroded</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Examine the heating element area for any leaks which will allow fluid to enter this area</td>
</tr>
</tbody>
</table>

 C. Test
 (NOTE: This must be done only under instructor’s supervision.)

 (CAUTION: Do not touch bare wires.)

 1. Insert the heater into the container of hydraulic fluid
 (NOTE: Only the heating element portion should be immersed. Power should never be applied to the heater when not immersed.)
JOB SHEET #2

2. Apply power

3. Observe the fluid temperature

(NOTE: It should slowly rise until the thermostat setting is reached. The heater should then turn off. This can often be heard. The temperature should get no higher than approximately 10°F greater than the thermostat setting. If the temperature continues to rise then the thermostat is not functioning properly.)
ACCESSORIES
UNIT IX

NAME ____________________________

TEST

1. Define terms associated with accessories.
 a. Accumulator--
 b. Heat exchanger--
 c. Heater--
 d. Thermostat--

2. Select functions of an accumulator by placing an "X" in the appropriate blanks.
 a. Provides cooling for the system
 b. Absorbs shocks
 c. Allows the system to build pressure gradually
 d. Stores energy
 e. Filters dirt particles
 f. Maintains pressure

3. Identify the types of accumulators.

a. ____________________________ b. ____________________________
Components of a Basic Hydraulic Circuit

- Reservoir
- Pump
- Relief Valve
- Lines
- Control Valve
- Cylinder (Actuator)
Types of Hydraulic Circuits

Open-Center in Neutral

- Pump Oil Returns to Reservoir
- The Pump Runs Constantly
- Trapped Oil Holds Cylinder Piston in Place During Neutral, Oil Flows Through the Valve

Closed-Center in Neutral

- Valve Stops Oil, But Oil Stays at Full System Pressure
- This Pump Can Stop Pumping During Neutral
- Trapped Oil Holds Cylinder Piston in Place
Fluid Flow in an Open-Center Circuit
Fluid Flow in a Multiple Actuator Open-Center Series Circuit

Diagram:
- Directional Control Valve (Open Center)
- Relie Valve
- Fixed Displ. Pump
- Reservoir
- Cylinders
Fluid Flow in an Open-Center Series-Parallel Circuit

Cylinders

Three Directional Control Valves (Stacked)

Relief Valve

Fixed Displacement Pump

Reservoir
Fluid Flow in Closed-Center Systems
Hydraulic Schematic Symbols

- **Fixed Displacement Pump**
- **Variable Displacement Pump**
- **Pressure Compensated Pump**
- **Directional Control Valve**
- **Pressure Relief Valve**
- **Flow Control Valve**
- **Check Valve**
- **Pilot Operated Check Valve**
- **Pressurized Reservoir**
- **Vented Reservoir**
- **Filter**
- **Motor**
- **Cylinder**
- **Heat Exchanger**
- **Pressure Gauge**
- **Temperature Gauge**
- **Flowmeter**
- **Lines not Joined**
- **Joining Lines**
Directional Control Valve Symbols

Two-way, two position valve

Four-way, two position valve

Four-way, three position open-center

Four-way, three position closed-center
Schematic Representations of Hydraulic Circuits

Schematic of an Open-Center System

Schematic of a Closed-Center System
CIRCUITS, DIAGRAMS, AND SYMBOLS
UNIT I

ASSIGNMENT SHEET #1--DRAW AN OPEN-CENTER HYDRAULIC CIRCUIT

Directions: Draw an open-center hydraulic circuit which uses a reservoir, lines, pump, relief valve, 3 position 4 way directional control valve, and cylinder.
CIRCUITS, DIAGRAMS, AND SYMBOLS
UNIT I

ASSIGNMENT SHEET #2 - SHOW THE OIL FLOW IN A CIRCUIT

Directions: Show the oil flow in this circuit when the middle valve has been shifted to the left.
1. Match the terms on the right with their correct definitions.

 a. A series of component parts connected to each other by fluid lines or passages; the complete path of flow
 1. Port
 2. Float position

 b. A check valve which is used to support the load in the event a line breaks or the engine dies; also used to keep a load from momentarily dropping when it is initially started to raise
 3. Schematic
 4. Actuator

 c. Inlet or outlet connection on a valve
 5. Regenerative valve

 d. A simplified symbol which indicates essential characteristics applicable to all similar components
 6. Symbol

 e. A valve which permits flow only in one direction
 7. Circuit

 f. A device which converts hydraulic energy into mechanical force and motion
 8. Load check

 g. A representation of the characteristics of a hydraulic component by means of lines on a flat surface
 9. Check valve

 h. A position on a directional control valve which allows the load to move freely or float

 i. A valve which allows the oil to flow from one side of a cylinder to the other when the load is dropped

2. Identify the components of a basic hydraulic circuit.

 a. ____________________________

 b. ____________________________

 c. ____________________________

 d. ____________________________
3. Distinguish between types of hydraulic circuits by placing an "O" next to open center circuit descriptions and a "C" next to closed center circuit descriptions.

 a. Constant pressure system
 b. Flow from pump is varied to satisfy the requirements of the rest of the circuit
 c. Constant flow system
 d. Pump maintains a constant pressure in the system
 e. Oil flows continuously from the pump

4. Select true statements concerning fluid flow in an open-center circuit by placing an "X" in the appropriate blanks.

 a. There is constant flow from reservoir to the pump to the rest of the system
 b. When fluid flows to the control valve, if the valve is in neutral position, then the fluid is returned to the reservoir
 c. When fluid flows to the control valve, if the valve is shifted, then the fluid is diverted to the pump
 d. If the pressure of the system exceeds the setting of the relief valve a portion of the flow from the pump will be diverted back to the reservoir

5. Select true statements concerning fluid flow in multiple actuator open-center systems by placing an "X" in the appropriate blanks.

 a. In the series connection, when one valve is shifted the fluid is diverted to the reservoir
 b. The series-parallel connection is similar to the series connection, except when a valve is shifted the open-center neutral is opened
 c. In the series connection configuration, the first valve has priority over the next valve, etc.
 d. In the series parallel connection, if two actuators require approximately the same pressure then both will be operated

6. Distinguish between valves in the neutral and shifted positions in the fluid flow in a closed-center system by placing an "N" next to descriptions of valves in the neutral position and an "S" next to descriptions of valves in the shifted position.

 a. The pressure builds up at the outlet until the compensator pressure is reached and the pump "destrokes" and no fluid is pumped from the pump
 b. The pressurized fluid is directed to the actuators, which causes a drop in the pump outlet pressure
c. The drop in compensator pressure causes the pump to "stroke" and increase the displacement until adequate flow is available to satisfy the demands of all actuators.

d. There is no flow path from the outlet of the pressure-compensated pump to the reservoir.

7. Identify the symbols used in a hydraulic schematic.

```
a.  

b.  

c.  

d.  

e.  

f.  

g.  

h.  

i.  

j.  

k.  

l.  

m.  

n.  

o.  

p.  

q.  

r.  

s.  
```
8. Identify the symbols for the various directional control valves.

 a.
 b.
 c.
 d.

9. Draw a schematic of an open-center and a closed-center system.

 a. Open-centered
b. Closed-center

10. Draw an open-center hydraulic circuit.

11. Show the oil flow in a circuit.

(NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
CIRCUITS, DIAGRAMS, AND SYMBOLS
UNIT I

ANSWERS TO TEST

1. a. 7 e. 9 i. 5
 b. 8 f. 4
 c. 1 g. 6
 d. 3 h. 2

2. a. Reservoir
 b. Pump
 c. Control valve
 d. Cylinder (actuator)
 e. Lines

3. a. C d. C
 b. C e. O
 c. O

4. a, b, d

5. c, d

6. a. N
 b. S
 c. S
 d. N

7. a. Fixed displacement pump
 b. Variable displacement pump
 c. Pressure compensated pump
 d. Directional control valve
 e. Pressure relief valve
 f. Flow control valve
 g. Check valve
 h. Vented reservoir
 i. Filter
 j. Motor
 k. Cylinder
 l. Heat exchanger
 m. Pressure gauge
 n. Temperature gauge
 o. Flowmeter
 p. Lines, not joined
 q. Joining lines
 r. Pressurized reservoir
 s. Pilot operated check valve

8. a. Two-way, two position valve
 b. Four-way, two position valve
 c. Four-way, three position, open-center valve
 d. Four-way, three position, closed-center valve
9. a. Schematic of an Open-Center System
 b. Schematic of a Closed-Center System

10. Evaluated to the satisfaction of the instructor.

11. Evaluated to the satisfaction of the instructor.
GENERAL MAINTENANCE
UNIT II

UNIT OBJECTIVE

After completion of this unit, the student should be able to list steps in keeping the hydraulic system clean and steps to be performed for general maintenance on a hydraulic system. The student should also be able to perform general maintenance procedures on a hydraulic system and change hydraulic fluid and filter. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Name three reasons for performing preventive maintenance.
2. List four factors that can damage a hydraulic system.
3. Select key maintenance problems.
4. List steps in keeping the hydraulic system clean.
5. List steps to be performed for general maintenance of a hydraulic system.
6. Demonstrate the ability to:
 a. Perform general maintenance procedures on a hydraulic system.
 b. Change hydraulic fluid and filter.
GENERAL MAINTENANCE
UNIT II

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information and job sheets.
III. Discuss unit and specific objectives.
IV. Discuss information sheet.
V. Demonstrate and discuss the procedures outlined in the job sheets.
VI. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:

A. Objective sheet
B. Information sheet
C. Job sheets
 1. Job Sheet #1--Perform General Maintenance Procedures on a Hydraulic System
 2. Job Sheet #2--Change Hydraulic Fluid and Filter
D. Test
E. Answers to test

GENERAL MAINTENANCE
UNIT II

INFORMATION SHEET

I. Reasons for performing preventive maintenance
 A. Prolong the life of the system
 B. Reduce the down-time
 C. Reduce or eliminate needless failures

II. Factors that can damage a hydraulic system
 A. Too much speed
 B. Too much heat
 C. Too much pressure
 D. Too much contamination

III. Key maintenance problems
 A. Not enough oil in the reservoir
 B. Clogged or dirty oil filters
 C. Loose inlet lines
 D. Incorrect oil in the system

IV. Steps in keeping the hydraulic system clean
 A. Keep the oil clean
 B. Keep the system clean
 C. Keep the work area clean
 D. Be careful when changing or adding oil!

V. Steps to be performed for general maintenance of a hydraulic system
 A. Check fluid level
 B. Inspect for leaks
 C. Inspect hoses, lines, and drive components for excessive wear
 D. Check for proper system operation
E. During operation, watch and listen to system to check for:

1. Unusual sounds

2. Abnormal flow through the relief valve
 (NOTE: This can usually be detected by a high-pitched sound.)

3. Cavitation
 (NOTE: This can often be detected by a low-pitched sound.)

F. Change filter and fluid according to manufacturer's recommendations.
GENERAL MAINTENANCE
UNIT II

JOB SHEET #1--PERFORM GENERAL MAINTENANCE PROCEDURES ON A HYDRAULIC SYSTEM

I. Tools and materials--Clean hydraulic fluid, according to manufacturer's specifications

II. Procedure

A. Clean filter cap and remove

B. Visually check fluid level
 (NOTE: Level should be to according to manufacturer's specifications.)

C. If the fluid level is low, add clean fluid to the reservoir
 (NOTE: The fluid must be according to manufacturer's specifications.)

D. Visually inspect the system
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<table>
<thead>
<tr>
<th></th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check for frayed hoses and protect or cover hoses that are showing signs of wear</td>
<td></td>
</tr>
<tr>
<td>2. Check for damaged lines</td>
<td></td>
</tr>
<tr>
<td>3. Check drive line couplings to insure they are not excessively worn</td>
<td></td>
</tr>
<tr>
<td>4. Check couplings to insure they are securely attached to the shafts</td>
<td></td>
</tr>
</tbody>
</table>

E. Replace hoses, lines, and couplings that are damaged or excessively worn and report the problem to the instructor

F. Check the system for leaks and tighten any fitting which is leaking
 (NOTE: If this does not stop the leak, the fitting may have to be replaced.)

G. Start the system
JOB SHEET #1

H. Check the operation of all the functions of the system

I. Report any improper operation or any part that fails to function properly to the instructor

J. With the system operating, listen for unusual sounds, such as cavitation or improper operation of the relief valve

K. Change the filter and fluid according to manufacturer’s specification

(Note: This operation will be discussed in Job Sheet #2.)
GENERAL MAINTENANCE
UNIT II

JOB SHEET #2--CHANGE HYDRAULIC FLUID AND FILTER

I. Tools and materials
 A. Wrench to fit reservoir drain plug
 B. Wrench for removing filter
 C. Clean lint-free shop towels
 D. Hydraulic fluid according to manufacturer's recommendations
 E. Hydraulic filter

II. Procedure
 A. Operate levers to release system pressure
 B. Slowly open reservoir filler cap to relieve pressure on reservoir
 C. Drain the fluid by removing the drain plug in the reservoir
 D. Open the inspection plate on the reservoir
 E. Remove any dirt and foreign material which has settled in the bottom of the reservoir
 F. Replace the inspection plate and drain plug
 G. Clean the area around the filter
 H. Remove the old filter
 I. For cartridge type filters, clean the filter housing
 J. Install a new filter and tighten to manufacturer's specifications
 K. Fill the reservoir with hydraulic fluid
 L. Bleed system if necessary
 M. Operate system and check for leaks
 N. Check fluid level to insure it is still within specifications
1. Name three reasons for performing preventive maintenance.
 a.
 b.
 c.
2. List four factors that can damage a hydraulic system.
 a.
 b.
 c.
 d.
3. Select key maintenance problems by placing an "X" in the appropriate blanks.
 ______ a. Too much oil in the reservoir
 ______ b. Clogged or dirty oil filters
 ______ c. Tight inlet lines
 ______ d. Incorrect oil in the system
4. List three steps in keeping the hydraulic system clean.
 a.
 b.
 c.
5. List five steps to be performed for general maintenance of a hydraulic system.
 a.
 b.
 c.
 d.
 e.

NAME ____________________________
TEST
6. Demonstrate the ability to:

 a. Perform general maintenance procedures on a hydraulic system.

 b. Change hydraulic fluid and filter.

 (NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
GENERAL MAINTENANCE
UNIT II

ANSWERS TO TEST

1. a. Prolong the life of the system
 b. Reduce the down-time
 c. Reduce or eliminate needless failures

2. a. Too much speed
 b. Too much heat
 c. Too much pressure
 d. Too much contamination

3. b, d

4. Any three of the following:
 a. Keep the oil clean
 b. Keep the system clean
 c. Keep the work area clean
 d. Be careful when changing or adding oil

5. Any five of the following:
 a. Check fluid level
 b. Inspect for leaks
 c. Inspect hoses, lines, and drive components for excessive wear
 d. Check for proper system operation
 e. During operation, watch and listen to system to check for:
 1) Unusual sounds
 2) Abnormal flow through the relief valve
 3) Cavitation
 f. Change filter and fluid according to manufacturer’s recommendations

6. Performance skills evaluated to the satisfaction of the instructor.
UNIT OBJECTIVE

After completion of this unit, the student should be able to arrange in order the steps in troubleshooting and match problems which can cause a system to be inoperative, operate slowly, or overheat, with the correct remedies. The student should also be able to match the problems which cause a pump to make excessive noises and leak with the correct remedies and list problems which cause foaming of the fluid, a pump to leak, a control valve to stick, or a cylinder to leak. The student should be able to locate a problem in a hydraulic system and test a hydraulic pump. This knowledge will be evidenced by correctly performing the procedures outlined in the job sheets and by scoring 85 percent on the unit test.

SPECIFIC OBJECTIVES

After completion of this unit, the student should be able to:

1. Define terms associated with diagnosis and testing.
2. Arrange in order the steps in troubleshooting.
3. Identify the types of hydraulic system testers.
4. Match the problems which can cause an inoperative system with the correct remedies.
5. List remedies for problems which can cause a system to operate erratically.
6. Match the problems which can cause a system to operate slowly with the correct remedies.
7. Discuss two problems which can cause the system to operate too fast and the correct remedies.
8. Match problems which can cause the system to overheat with the correct remedies.
9. List problems which can cause foaming of the fluid and their correct remedies.
10. Match problems which can cause the pump to make excessive noises with the correct remedies.
11. List two problems which can cause the pump to leak and their correct remedies.
12. Match the problems which can cause the load to drop when the control valve is in the neutral position with the correct remedies.

13. List problems which can cause the control valve to stick or work hard.

14. Select problems which can cause a control valve to leak.

15. List problems which can cause a cylinder to leak.

16. List two problems which can cause a cylinder to actually lower when a control valve is moved to slowly raise a cylinder.

17. Match the problems which can cause the power steering to function improperly with the correct remedies.

18. Match the problems which can cause the brakes to malfunction with the correct remedies.

19. Demonstrate the ability to:
 a. Test a hydraulic pump.
 b. Locate a problem in a hydraulic system.
 c. Test a relief valve.
 d. Test a control valve.
 e. Test an actuator.
DIAGNOSIS AND TESTING
UNIT III

SUGGESTED ACTIVITIES

I. Provide student with objective sheet.
II. Provide student with information and job sheets.
III. Make transparency.
IV. Discuss unit and specific objectives.
V. Discuss information sheets.
VI. Demonstrate and discuss the procedures outlined in the job sheets.
VII. Give test.

INSTRUCTIONAL MATERIALS

I. Included in this unit:
 A. Objective sheet
 B. Information sheet
 C. Transparency Master 1--Hydraulic System Testers
 D. Job sheets
 1. Job Sheet #1--Test a Hydraulic Pump
 2. Job Sheet #2--Locate a Problem in a Hydraulic System
 3. Job Sheet #3--Test a Relief Valve
 4. Job Sheet #4--Test a Control Valve
 5. Job Sheet #5--Test an Actuator
 E. Test
 F. Answers to test

II. References:
DIAGNOSIS AND TESTING
UNIT III

INFORMATION SHEET

I. Terms and definitions
 A. Troubleshooting--The systematic diagnosis of hydraulic system malfunctions
 B. Diagnosis--A statement or conclusion concerning the nature or cause of a problem
 C. Hydraulic system tester--A device which is capable of measuring hydraulic system pressure flow and temperature and also has a valve for imposing a load onto the system

II. Steps in troubleshooting
 A. Know the system
 (NOTE: Study technical manuals and how the system works to familiarize yourself with the operation of the circuit.)
 B. Discuss the problems with the operator
 (NOTE: Ask operator what warning signs preceded the trouble, what previous work has been done on the system, and if similar trouble occurred before.)
 C. Operate the machine
 D. Inspect the machine
 (NOTE: Make a close inspection for unusual noises and smells. Look for damaged lines and excessive temperature.)
 E. List the possible causes
 F. Reach a conclusion
 G. Test your conclusion

III. Types of hydraulic system testers (Transparency 1)
 A. By-pass tester
 B. In-line tester
IV. Problems which can cause an inoperative system and correct remedies

A. No oil in system
 1. Fill to full mark
 2. Check system for leaks

B. Oil low in reservoir
 1. Check level and fill to full mark
 2. Check system for leaks

C. Oil of wrong viscosity--Refer to specifications for proper viscosity

D. Filter dirty or plugged
 1. Drain oil and replace filters
 2. Try to find source of contamination

E. Restriction in system
 1. Oil lines could be dirty or have inner walls that are collapsing to cut off oil supply
 2. Clean or replace lines
 3. Clean orifices

F. Air leaks in pump suction line--Repair or replace lines

G. Dirt in pump
 1. Clean and repair pump
 2. If necessary, drain and flush hydraulic system
 3. Try to find source of contamination

H. Badly worn pump
 1. Repair or replace pump
 2. Check for problems causing pump wear such as misalignment or contaminated oil

I. Badly worn components--Examine and test valves, motors, cylinders, etc. for external and internal leaks
 (NOTE: If wear is abnormal, try to locate the cause.)
INFORMATION SHEET

J. Oil leak in pressure lines
 1. Tighten fittings or replace defective lines
 2. Examine mating surfaces on couplers for irregularities

K. Components not properly adjusted--Refer to machine technical manual for proper adjustment of components

L. Relief valve defective
 1. Test relief valves to make sure they are opening at their rated pressure
 2. Examine seals for damage that could cause leaks
 3. Clean relief valves and check for broken springs, etc.

M. Pump rotating in wrong direction--Reverse to prevent damage

N. Operating system under excessive load--Check specifications of unit for load limits

O. Hoses attached improperly--Attach properly and tighten securely

P. Slipping or broken pump drive
 1. Replace couplers or belts if necessary
 2. Align them and adjust tension

Q. Pump not operating--Check for shut-off device on pump or pump drive

V. Problems which can cause a system to operate erratically and correct remedies

A. Air in system
 1. Examine suction side of system for leaks
 2. Make sure oil level is correct
 (NOTE: Oil leak on the pressure side of the system could account for loss of oil.)

B. Cold oil
 1. Viscosity of oil may be too high at start of warm-up period
 2. Allow oil to warm up to operating temperature before using hydraulic functions
C. Components sticking or binding
 1. Check for dirt or gummy deposits, and if dirt is caused by contamination, try to find the source
 2. Check for worn or bent parts

D. Pump damaged--Check for broken or worn parts and determine cause of pump damage

E. Dirt in relief valves--Clean relief valves

F. Restriction in filter or suction line
 1. Suction line could be dirty or have inner walls that are collapsing to cut off oil supply
 2. Clean or replace suction line
 3. Check filter line for restrictions

VI. Problems which can cause a system to operate slowly and correct remedies
A. Cold oil--Allow oil to warm up before operating machine
B. Oil viscosity too heavy--Use oil recommended by the manufacturer
C. Insufficient engine speed
 1. Refer to operator's manual for recommended speed
 2. If machine has a governor, it may need adjustment

D. Low oil supply
 1. Check reservoir and add oil if necessary
 2. Check system for leaks that could cause loss of oil

E. Adjustable orifice restricted too much
 1. Back out orifice and adjust it
 2. Check machine specifications for proper setting

F. Air in system: Check suction side of the system for leaks

G. Badly worn pump
 1. Repair or replace pump
 2. Check for problems causing pump wear such as misalignment or contaminated oil
INFORMATION SHEET

H. Restriction in suction line or filter
 1. Suction line could be dirty or have inner walls that are collapsing to cut off oil supply
 2. Clean or replace suction line
 3. Examine filter for plugging

I. Relief valves not properly set or leaking
 1. Test relief valves to make sure they are opening at their rated pressure
 2. Examine valves for damaged seats that could leak

J. Worn components
 1. Examine and test valves, motors, cylinders, etc. for external and internal leaks
 2. If wear is abnormal, try to locate the cause

K. Valve or regulators plugged
 1. Clean dirt from components
 2. Clean orifices
 3. Check source of dirt and correct

L. Oil leak in pressure lines
 1. Tighten fittings or replace defective lines
 2. Examine mating surfaces on couplers for irregularities

M. Components not properly adjusted—Refer to machine technical manual for proper adjustment of components

VII. Problems which can cause the system to operate too fast and correct remedies
 A. Adjustable orifice installed backward or not installed—Install orifice parts correctly and adjust
 B. Obstruction or dirt under seat of orifice—Remove foreign material and readjust orifice

VIII. Problems which can cause the system to overheat and the correct remedies
 A. Operator holds control valves in power position too long, causing relief valve to open—Return control lever to neutral position when not in use
INFORMATION SHEET

B. Using incorrect oil
 1. Use oil recommended by manufacturer
 2. Be sure oil viscosity is correct

C. Low oil level
 1. Fill reservoir
 2. Look for leaks

D. Dirty oil
 1. Drain and refill with clean oil
 2. Look for source of contamination

E. Engine running too fast--Reset governor or reduce throttle

F. Incorrect relief valve pressure--Check pressure and clean or replace relief valves

G. Internal component oil leakage--Examine and test valves, cylinders, motors, etc. for external and internal leaks

 (NOTE: If wear is abnormal, try to locate cause.)

H. Restriction in pump suction line--Clean or replace

I. Dented, obstructed or undersized oil lines
 1. Replace defective or undersized oil lines
 2. Remove obstructions

J. Oil cooler malfunctioning--Clean or repair

K. Control valve stuck in partially or full open position--Free all spools so that they return to neutral position

L. Heat not radiating properly--Clean dirt and mud from reservoir, oil lines, coolers, and other components

M. Automatic unloading control inoperative (if equipped)--Repair valve

IX. Problems which can cause foaming of fluid and correct remedies

A. Low fluid level--Fill reservoir, and look for leaks

B. Water in fluid--Drain and replace fluid

C. Wrong kind of fluid being used--Use fluid recommended by manufacturer
INFORMATION SHEET

D. Air leak in line from reservoir to pump--Tighten or replace suction line

E. Kink or dent in fluid lines (restricts fluid flow)--Replace fluid lines

F. Worn seal around pump shaft--Clean sealing area, replace seal, and check fluid for contamination or pump for misalignment

X. Problems which can cause the pump to make excessive noise and correct remedies

A. Low fluid level
 1. Fill reservoir
 2. Check system for leaks

B. Fluid viscosity too high--Change fluid to correct viscosity

C. Pump speed too fast--Operate pump at recommended speed

D. Suction line plugged or pinched--Clean or replace line between reservoir and pump

E. Sludge and dirt in pump
 1. Disassemble and inspect pump and lines
 2. Clean hydraulic system
 3. Determine cause of dirt

F. Reservoir air vent plugged--Remove breather cap, flush, and clean air vent

G. Air in fluid
 1. Tighten or replace suction line
 2. Check system for leaks
 3. Replace pump shaft seal

H. Worn or scored pump bearings or shafts
 1. Replace worn parts or complete pump if parts are badly worn or scored
 2. Determine cause of scoring

I. Inlet screen plugged--Clean screen
INFORMATION SHEET

J. Broken or damaged pump parts
 1. Repair pump
 2. Look for cause of damage like contamination or too much pressure

K. Sticking or binding parts
 1. Repair binding parts
 2. Clean parts and change fluid if necessary

XI. Problems which can cause the pump to leak and correct remedies

A. Damaged seal around drive shaft—Tighten packing or replace seal
 (NOTE: Trouble may be caused by contaminated oil. Check oil for abrasives and clean entire hydraulic system. Try to locate source of contamination. Check the pump drive shaft. Misalignment could cause the seal to wear. If shaft is not aligned, check the pump for other damage.)

B. Loose or broken pump parts—Tighten or replace parts
 (NOTE: Make sure all bolts and fittings are tight. Check gaskets. Examine pump castings for cracks. If pump is cracked, look for a cause like too much pressure or hoses that are attached incorrectly.)

XII. Problems which can cause the load to drop when the control valve is in the neutral position and their remedies

A. Leaking or broken oil lines from control valve to cylinder
 1. Check for leaks
 2. Tighten or replace lines
 3. Examine mating surfaces on couplers for irregularities

B. Oil leaking past cylinder packings or O-rings
 1. Replace worn parts
 2. If wear is caused by contamination, clean hydraulic system and determine the source

C. Oil leaking past control valve or relief valves
 1. Clean or replace valves
 2. Wear may be caused by contamination
 3. Clean system and determine source of contamination
D. Control lever not centering when released
 1. Check linkage for binding
 2. Make sure valve is properly adjusted and has no broken or binding parts

XIII. Problems which can cause the control valve to stick or work hard
 A. Misalignment or seizing of control linkage
 B. Tie bolts too tight (on valve stacks)
 C. Valve broken or scored internally

XIV. Problems which can cause a control valve to leak
 A. Tie bolts too loose (on valve stacks)
 B. Worn or damaged O-rings
 C. Broken valve parts

XV. Problems which can cause a cylinder to leak
 A. Damaged cylinder barrel
 B. Rod seal leaking
 (NOTE: If contamination has caused seal to wear, look for source. Wear may be caused by external as well as internal contaminants. Check piston rod for scratches or misalignment.)
 C. Loose parts
 D. Piston rod damaged

XVI. Problems which can cause a cylinder to actually lower when control valve is moved to slowly raise a cylinder
 A. Damaged check valve in lift circuit
 B. Leaking cylinder packing
 C. Leaking lines or fittings to cylinder

330
INFORMATION SHEET

XVII. Problems which can cause the power steering to function improperly and correct remedies

A. Air in system
 1. Bleed system
 2. Check for air leaks

B. Internal leakage in system
 1. Components may not be adjusted properly
 2. Parts may be worn or broken
 3. Check for cause of wear

C. System not properly timed--Time according to manufacturer's instructions

D. Worn or damaged bearings--Check and replace bearings in steering components

E. Insufficient pressure
 1. Check pump and relief valves
 2. Contamination could cause valves to leak or pump to wear

XVIII. Problems which can cause the brakes to malfunction and correct remedies

A. Heavy oil or improper brake fluid
 1. Warm up fluid or change to one of lighter viscosity
 2. Use proper oil or brake fluid (see machine operator’s manual)

 (CAUTION: Many brake circuits use brake fluid instead of hydraulic oil. DO NOT MIX.)

B. Air in system
 1. Bleed brake system
 2. Find out where air is coming from

C. Contaminated oil--Clean and repair system and check for cause of contamination
INFORMATION SHEET

D. Brake pedal return restricted
 1. Clean dirt from moving parts
 2. Check linkage for damage

E. Accumulator not working (if equipped)
 1. Check accumulator precharge
 2. If accumulator is defective, repair or replace it
Hydraulic System Testers

By-Pass Tester

Flow Meter
High Pressure
Load Valve
Control Knob

Temperature
Gauge

Pressure Gauge

Load Valve

Low
Pressure Gauge

Flow Meter

In-Line Tester
DIAGNOSIS AND TESTING
UNIT III

JOB SHEET #1--TEST A HYDRAULIC PUMP

I. Tools and materials
 A. Open center hydraulic system
 B. Hydraulic system tester
 C. Hand tools
 D. Service manual for hydraulic system
 E. Safety glasses

II. Procedure

 (NOTE: The performance of a fixed displacement pump is to be tested using a hydraulic system tester.)

 A. Disconnect the line connected to the pump outlet
 B. Connect the pump outlet to the inlet of the tester, connect the tester outlet to the reservoir, and make sure line is secure into reservoir
 C. Open the load valve completely
 (CAUTION: Important! Failure to do this could cause serious damage or injury.)
 D. Start pump and check for leaks
 E. Slowly close the load valve so that the pump outlet is approximately 500 PSI, and let the system operate at this pressure until it has reached operating temperature
 F. Open the load valve and record the no-load flow
 G. Slowly close the load valve until the pump outlet pressure has reached 250 PSI and record the flow rate at this pressure
 H. Slowly close the load valve and record the flow rate out of the pump in 250 PSI increments until maximum system pressure is reached, then record reading in Table 1
 I. The pump is faulty if it fails to supply 70% of the no-load flow at full load; the pump is also faulty if it fails to supply adequate no-load flow

 (NOTE: Refer to service manual for proper no-load flow.)
JOB SHEET #1

J. Stop engine, remove tester, and reconnect the pump outlet line

<table>
<thead>
<tr>
<th>Outlet Pressure (PSI)</th>
<th>Outlet Flow Rate (GPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td></td>
</tr>
<tr>
<td>2000*</td>
<td></td>
</tr>
<tr>
<td>2250*</td>
<td></td>
</tr>
<tr>
<td>2500*</td>
<td></td>
</tr>
<tr>
<td>2750*</td>
<td></td>
</tr>
<tr>
<td>3000*</td>
<td></td>
</tr>
</tbody>
</table>

(CAUTION: Do not exceed rated pressure for system.)

Flow ratio = Full load flow rate =

No-load flow rate

Table 1 Pump Test Data
DIAGNOSIS AND TESTING
UNIT III

JOB SHEET #2--LOCATE A PROBLEM IN A HYDRAULIC SYSTEM

I. Tools and materials
 A. Hydraulic system with a known defect
 B. Service manual
 C. Hand tools
 D. Safety glasses

II. Procedures
 (NOTE: The seven basic steps for diagnosing a system are to be followed.)
 A. Review the service manual so that you will know the system
 B. Discuss the symptoms with the operator or the person reporting the problem
 C. Check fluid levels
 D. Operate the machine
 (NOTE: Make sure no one is in the way.)
 1. Operate it until it has warmed up and observe the problem yourself
 2. Note any unusual sounds or smells
 3. Note sluggish or erratic behavior
 E. Inspect the machine
 (NOTE: After completing each point in the inspection, check the appropriate box and briefly describe the condition of the components.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Look for leaks and damaged lines</td>
</tr>
<tr>
<td>2.</td>
<td>Check the reservoir for low or oil foaming</td>
</tr>
<tr>
<td>3.</td>
<td>Does it look milky? Does the oil smell scorched?</td>
</tr>
</tbody>
</table>

F. List possible causes
JOB SHEET #2

G. Reach a conclusion--Decide on the most likely cause of the problem based on the symptoms previously observed

H. Test your solution

(NOTE: Do this by reporting your findings to your instructor.)
DIAGNOSIS AND TESTING
UNIT III

JOB SHEET #3-TEST A RELIEF VALVE

I. Tools and materials
 A. Open center hydraulics system
 B. Hydraulic system tester
 C. Hand tools
 D. Service manual for hydraulic system
 E. Operator's manual for tester
 F. Safety glasses
 G. Lint-free rope

II. Procedure
 A. Verify that pump is functioning properly
 B. If using a bypass tester disconnect the pump outlet past the relief valve and connect as shown (Figure 1)

 ![Figure 1]

 C. Connect the outlet of the test back to the reservoir and secure this line with lint-free rope

 (NOTE: If using an in-line tester connect in series after the relief valve. See Figure 2.)

 ![Figure 2]
D. Make sure the load valve is in the no-load position

E. Start hydraulic system drive and operate at rated speed

F. Operate system until fluid reaches rated temperature

G. Slowly close the load valve until the flow measured on the tester reaches 0 or the pressure exceeds the maximum allowable value

 1. If the flow is zero and the pressure is within 50 PSI of the rated setting then the relief valve is set to the correct value
 2. Record relief valve pressure: ___________ PSI
 3. If the flow is zero and the pressure is less than 50 PSI below the rated setting then slowly adjust the relief valve to the specified value
 4. Record actual setting: ___________ PSI

 (Note: If the pressure is at the maximum value and the flow is not zero then the relief valve is set too high.)

 5. Adjust the relief valve setting until the flow thru the tester has been reduced

 6. Slowly continue to close the load until the pressure reaches the maximum value

 7. Repeat this process until the flow rate is zero and the pressure is within specification

 8. Record actual setting: ___________ PSI

H. Slowly open the load valve until the pressure is 200 PSI for compound (or 500 for a simple) relief valve

I. Measure the flow rate

 (NOTE: This should be the rated flow rate of the system. If this flow rate is low then the relief valve is leaking or the pump is faulty.)

J. Record flow rate: ___________ GPM

K. Open load valve

L. Shut-off drive

M. Remove tester and reconnect lines
DIAGNOSIS AND TESTING
UNIT III

JOB SHEET #4-TEST A CONTROL VALVE

I. Tools and materials
 A. Open center hydraulic system
 B. Bypass or inline hydraulic system tester
 C. Hand tools
 D. Service manual for hydraulic system
 E. Operator's manual for tester
 F. Lint-free rope
 G. Safety glasses

II. Procedure
 A. Verify that the pump and relief valve are functioning properly
 B. Connect the tester to one of the outlet parts of the control valve similar to Figure 1
 C. Connect to return line from the tester to the reservoir and secure with the lint-free rope
 D. Make sure any buckets or attachments are firmly secured
 E. Open the tester load valve
 F. Start the pump drive and operate at rated speed
 G. Operate the system until the fluid reaches operating temperature
H. Check to insure that buckets and attachment are firmly supported, then shift the valve to direct flow through the tester

(CAUTION: Failure to properly secure attachments can result in severe bodily injury.)

(NOTE: Do NOT shift the valve the other direction.)

I. With no load on the system (load valve completely open) measure the flow rate through the tester

(NOTE: This should be approximately the rated capacity of the pump.)

J. Record the flow rate: __________ GPM

K. Slowly close the load valve until the pressure is 100 PSI less than the relief valve pressure

L. Measure the flow rate at the above settings

M. Record flow rate __________ GPM

(NOTE: If the load flow rate measured above is close to the no-load flow rate previously measured then the valve is functioning properly. If a large drop occurs (more than 50 percent) then the valve is leaking and should be repaired.)

N. Record the observed condition: ________________

O. Repeat this procedure for the other outlet part (if any)

P. Turn off drive

Q. Disconnect the tester

R. Reconnect the lines
JOB SHEET #5--TEST AN ACTUATOR

I. Tools and materials
 A. Hydraulic system with an actuator (cylinder or a motor)
 B. Hand tools
 C. Service manual for hydraulic system
 D. In-line hydraulic system tester
 E. Manual for tester
 F. Safety glasses
 G. Device for measuring the motor shaft speed

II. Procedure
 A. Verify that the pump, relief valve, and control valve are functioning properly
 B. Connect the in-line tester between the control valve and actuator as shown in Figure 1
 FIGURE 1
 Relief Valve
 ![Diagram of hydraulic system showing relief valve, tester, and actuator]
 C. Open the tester load valve
 D. Start the pump drive and operate at rated speed
 E. Operate the system until the fluid has reached operating temperature
 F. Shift the control valve to direct flow to the actuator
JOB SHEET #5

G. If a cylinder is being tested then measure the pressure and flow when the cylinder is fully retracted and extended

Extended:
Pressure __________ PSI
Flow __________ GPM

Retracted:
Pressure __________ PSI
Flow __________ GPM

(NOTE: If any flow is measured then the cylinder is leaking internally and is defective and must be repaired. The pressure shows relief valve pressure in one direction and zero in the other direction. If this is not found to be correct then either the test configuration is not correct or some other component is faulty.)

H. If a motor is being tested, measure the shaft speed to the motor with no load

I. Record the motor inlet pressure and the motor speed

(NOTE: The speed should be close to the theoretical value.)

No load pressure: ______________ PSI
No load speed: ______________ RPM
Theoretical flow: ______________ RPM (if known)

J. Apply a load to the motor to obtain a motor inlet pressure which is 200 PSI less than the relief valve pressure

K. Measure the pressure and speed and record

(NOTE: The ratios of the full-load speed to the no load speed should be no less than 0.7. If it is less than this figure then the motor is defective and should be repaired.)

Full-load pressure: ______________ PSI
Full-load flow rate: ______________ RPM
Full-load speed : ______________
No-load speed

L. Turn off the pump drive

M. Disconnect tester

N. Reconnect lines
DIAGNOSIS AND TESTING
UNIT III

NAME ________________________

TEST

1. Define the following terms associated with diagnosis and testing.
 a. Troubleshooting-
 b. Diagnosis-
 c. Hydraulic system tester-

2. Arrange in order the steps for troubleshooting by placing the correct sequence number in the appropriate blanks.
 _____ a. Operate the machine
 _____ b. List the possible causes
 _____ c. Reach a conclusion
 _____ d. Discuss the problems with the operator
 _____ e. Test your conclusion
 _____ f. Inspect the machine
 _____ g. Know the system

3. Identify the types of hydraulic system testers.

 a. ________________________ b. ________________________
4. Match the problems which can cause an inoperative system on the right with the correct remedies.

 a. 1) Fill to full mark
 2) Check system for leaks
 b. 1) Check level and fill to full mark
 2) Check system for leaks
 c. Refer to specifications for proper viscosity
 d. 1) Drain oil and replace filters
 2) Try to find source of contamination
 e. 1) Oil lines could be dirty or have inner walls that are collapsing to cut off oil supply
 2) Clean or replace lines
 3) Clean orifices
 f. Repair or replace lines
 g. 1) Clean and repair pump
 2) If necessary, drain and flush hydraulic system
 3) Try to find source of contamination
 h. 1) Repair or replace pump
 2) Check for problems causing pump wear such as misalignment or contaminated oil
 i. Examine and test valves, motors, cylinders, etc., for external and internal leaks
 j. 1) Tighten fittings or replace defective lines
 2) Examine mating surfaces on couplers for irregularities
 k. Refer to machine technical manual for proper adjustment of components
 l. 1) Test relief valves to make sure they are opening at their rated pressure
 2) Examine seals for damage that could cause leaks
 3) Clean relief valves and check for broken springs, etc.

1. Badly worn pump
2. Components not properly adjusted
3. Pump rotating in wrong direction
4. Oil of wrong viscosity
5. Hoses attached improperly
6. Air leaks in pump suction line
7. No oil in system
8. Oil leak in pressure lines
9. Operating system under excessive load
10. Restriction in system
11. Dirt in pump
12. Slipping or broken pump drive
13. Relief valve defective
14. Oil low in reservoir
15. Badly worn components
16. Pump not operating
17. Filter dirty or plugged
m. Reverse to prevent damage

n. Check specifications of unit for load limits

o. Attach properly and tighten securely

p. 1) Replace couplers or belts if necessary
 2) Align them and adjust tension

q. Check for shut-off device on pump or pump drive

5. List one remedy for each of the following problems which can cause a system to operate erratically.
 a. Air in system
 b. Cold oil
 c. Components sticking or binding
 d. Pump damaged
 e. Dirt in relief valves
 f. Restriction in filter or suction line

6. Match the problems which can cause a system to operate slowly with the correct remedies.

 a. Allow oil to warm up before operating machine
 b. Use oil recommended by the manufacturer
 c. 1) Refer to operator's manual for recommended speed
 2) If machine has a governor, it may need adjustment
 d. 1) Check reservoir and add oil if necessary
 2) Check system for leaks that could cause loss of oil
 e. 1) Back out orifice and adjust it
 2) Check machine specifications for proper setting
 f. Check suction side of the system for leaks

 1. Low oil supply
 2. Air in system
 3. Oil leak in pressure lines
 4. Relief valves not properly set or leaking
 5. Oil viscosity too heavy
 6. Valve or regulators plugged
g. 1) Repair or replace pump 2) Check for problems causing pump wear such as misalignment or contaminated oil

h. 1) Suction line could be dirty or have inner walls that are collapsing to cut off oil supply 2) Clean or replace suction line 3) Examine filter for plugging

i. 1) Test relief valves to make sure they are opening at their rated pressure 2) Examine valves for damaged seats that could leak

j. 1) Examine and test valves, motors, cylinders, etc. for external and internal leaks 2) If wear is abnormal, try to locate the cause

k. 1) Clean dirt from components 2) Clean orifices 3) Check source of dirt and correct

l. 1) Tighten fittings or replace defective lines 2) Examine mating surfaces on couplers for irregularities

m. Refer to machine technical manual for proper adjustment of components

7. Adjust the orifice restricted too much

8. Badly worn pump

9. Cold oil

10. Components not properly adjusted

11. Insufficient engine speed

12. Restriction in suction line or filter

13. Badly worn components

7. Discuss two problems which can cause the system to operate too fast and the correct remedies.

a.

b.
8. Match the problems which can cause the system to overheat with the correct remedies.

_____ a. Return control lever to neutral position when not in use

_____ b. 1) Use oil recommended by manufacturer
 2) Be sure oil viscosity is correct

_____ c. 1) Fill reservoir
 2) Look for leaks

_____ d. 1) Drain and refill with clean oil
 2) Look for source of contamination

_____ e. Reset governor or reduce throttle

_____ f. Check pressure and clean or replace relief valves

_____ g. Examine and test valves, cylinders, motors, etc. for external and internal leaks

_____ h. Clean or replace

_____ i. 1) Replace defective or undersized oil lines
 2) Remove obstructions

_____ j. Clean or repair

_____ k. Free all spools so that they return to neutral position

_____ l. Clean dirt and mud from reservoir, oil lines, coolers, and other components

_____ m. Repair valve

9. List four problems which can cause foaming of fluid and their correct remedies.

a.

b.

c.

d.

319
10. Match the problems which can cause the pump to make excessive noises with the
correct remedies.

 a. 1) Fill reservoir
 2) Check system for leaks

 b. Change fluid to correct viscosity

 c. Operate pump at recommended speed

 d. Clean or replace line between reservoir and pump

 e. 1) Disassemble and inspect pump and lines
 2) Clean hydraulic system
 3) Determine cause of dirt

 f. Remove breather cap, flush, and clean air vent

 g. 1) Tighten or replace suction line
 2) Check system for leaks
 3) Replace pump shaft seal

 h. 1) Replace worn parts or complete pump if parts are badly worn or scored
 2) Determine cause of scoring

 i. Clean screen

 j. 1) Repair pump
 2) Look for cause of damage like contamination or too much pressure

 k. 1) Repair binding parts
 2) Clean parts and change fluid if necessary

11. List two problems which can cause the pump to leak and their correct remedies.

 a.

 b.

12. Match the problems which can cause the load to drop when the control valve is in the neutral position with the correct remedies.

 a. 1) Check for leaks
 2) Tighten or replace lines
 3) Examine mating surfaces on couplers for irregularities

 b. 1) Replace worn parts
 2) If wear is caused by contamination, clean hydraulic system and determine the source

 c. 1) Clean or replace valves
 2) Wear may be caused by contamination
 3) Clean system and determine source of contamination

 d. 1) Check linkage for binding
 2) Make sure valve is properly adjusted and has no broken or binding parts

13. List two problems which can cause the control valve to stick or work hard.

 a.

 b.

14. Select the problems which can cause a control valve to leak by placing an "X" in the appropriate blanks.

 a. Tie bolts too loose
 b. Worn or damaged O-rings
 c. Oil level too low
 d. Cracked reservoir
 e. Broken valve parts

15. List three problems which can cause a cylinder to leak.

 a.

 b.

 c.
16. List two problems which can cause a cylinder to actually lower when a control valve is moved to slowly raise a cylinder.

a.

b.

17. Match the problems which can cause the power steering to function improperly with the correct remedies.

_____ a. 1) Bleed system
 2) Check for air leaks

_____ b. 1) Components may not be adjusted properly
 2) Parts may be worn or broken
 3) Check for cause of wear

_____ c. Time according to manufacturer's instructions

_____ d. Check and replace bearings in steering components

_____ e. 1) Check pump and relief valves
 2) Contamination could cause valves to leak or pump to wear

1. Worn or damaged bearings
2. Internal leakage in system
3. System not properly timed
4. Insufficient pressure
5. Air in system

18. Match the problems which can cause the brakes to malfunction with the correct remedies.

_____ a. 1) Warm up fluid or change to one of lighter viscosity
 2) Use proper oil or brake fluid

_____ b. 1) Bleed brake system
 2) Find out where air is coming from

_____ c. Clean and repair system and check for cause of contamination

_____ d. 1) Clean dirt from moving parts
 2) Check linkage for damage

_____ e. 1) Check accumulator precharge
 2) If accumulator is defective, repair or replace it

1. Accumulator not working
2. Contaminated oil
3. Heavy oil or improper brake fluid
4. Brake pedal return restricted
5. Air in system

19. Demonstrate the ability to:

a. Test a hydraulic pump.

b. Locate a problem in a hydraulic system.
c. Test a relief valve.

d. Test a control valve.

e. Test an actuator.

(NOTE: If these activities have not been accomplished prior to the test, ask your instructor when they should be completed.)
ANSWERS TO TEST

1. a. The systematic diagnosis of hydraulic system malfunctions
 b. A statement or conclusion concerning the nature or cause of a problem
 c. A device which is capable of measuring hydraulic system pressure flow and
 temperature and also has a valve for imposing a load onto the system

2. a. 3 d. 2 g. 1
 b. 5 e. 7
 c. 6 f. 4

3. a. By-pass tester
 b. In-line tester

4. a. 7 g. 11 m. 3
 b. 14 h. 1 n. 9
 c. 4 i. 15 o. 5
 d. 17 j. 8 p. 12
 e. 10 k. 2 q. 16
 f. 6 l. 13

5. Any one of the following under each problem:
 a. 1) Examine suction side of system for leaks
 2) Make sure oil level is correct
 b. 1) Viscosity of oil may be too high at start of warm-up period
 2) Allow oil to warm up to operating temperature before using hydraulic
 functions
 c. 1) Check for dirt or gummy deposits, and if dirt is caused by contamination, try to find the source
 2) Check for worn or bent parts
 d. Check for broken or worn parts and determine cause of pump damage
 e. Clean relief valves
 f. 1) Suction line could be dirty or have inner walls that are collapsing to cut off oil supply
 2) Clean or replace suction line
 3) Check filter line for restrictions

6. a. 9 f. 2 k. 6
 b. 5 g. 8 l. 3
 c. 11 h. 12 m. 10
 d. 1 i. 4
 e. 7 j. 13

7. Discussion should include:
 a. Adjustable orifice installed backward or not installed--Install orifice parts correctly and adjust
 b. Obstruction or dirt under seat of orifice--Remove foreign material and readjust orifice
8. a. 6 f. 3 k. 12
 b. 13 g. 11 l. 4
 c. 8 h. 5 m. 9
 d. 1 i. 7
 e. 10 j. 2

9. Any four of the following:
 a. Low fluid level-Fill reservoir and look for leaks
 b. Water in fluid-Drain and replace fluid
 c. Wrong kind of fluid being used-Use fluid recommended by manufacturer
 d. Air leak in line from reservoir to pump-Tighten or replace suction line
 e. Kink or dent in fluid lines-Replace fluid lines
 f. Worn seal around pump shaft-Clean sealing area, replace seal, and check fluid for contamination or pump for misalignment

10. a. 5 e. 1 i. 3
 b. 10 f. 8 j. 9
 c. 7 g. 11 k. 4
 d. 6 h. 2

11. a. Damaged seal around the drive shaft-Tighten packing or replace seal
 b. Loose or broken pump parts-Tighten or replace parts

12. a. 3 c. 2
 b. 1 d. 4

13. Any two of the following:
 a. Misalignment or seizing of control linkage
 b. Tie bolts too tight
 c. Valve broken or scored internally

14. a, b, e

15. Any three of the following:
 a. Damaged cylinder barrel
 b. Rod seal leaking
 c. Loose parts
 d. Piston rod damaged

16. Any two of the following:
 a. Damaged check valve in lift circuit
 b. Leaking cylinder packing
 c. Leaking lines or fittings to cylinder

17. a. 5 d. 1
 b. 2 e. 4
 c. 3

18. a. 3 d. 4
 b. 5 e. 1
 c. 2

19. Performance skills evaluated to the satisfaction of the instructor.