Shepard, Clinton L.; Walasek, James B.
Activated Sludge. Selected Instructional Activities and References. Instructional Resources Monograph Series.
Ohio State Univ., Columbus, Ohio. Information Reference Center for Science, Mathematics, and Environmental Education.
Office of Water Program Operations (EPA), Cincinnati, Ohio. National Training and Operational Technology Center.
EPA-430/1-90-008.
Jul 90
EPA Information Dissemination Project, 1200 Chambers Rd., 3rd Floor, Columbus, OH 43212 (free).
MF01/PC08 Plus Postage.
Activated Sludge: Waste Water Treatment
This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. Part II, Instructional Units, contains selected portions of existing programs which may be utilized in implementing a training program for the activated sludge process. (Author)
Monograph Series: ACTIVATED SLUDGE

Selected Instructional Activities and References

Clinton L. Shepard and James B. Walasek

Compiled by the staff of the EPA Information Dissemination Project SMEAC Information Reference Center 1200 Chambers Rd., 3rd Floor Columbus, Ohio 43212

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Program Operation National Training and Operational Technology Center Cincinnati, Ohio 45268
FOREWORD

The National Training & Operational Technology Center in cooperation with Ohio State University is offering an Instructional Resources Monograph Series. The monograph series is an extension of the information provided in the "Instructional Resources Information System" (IRIS) for water quality.

This document is one of the Instructional Resources Monograph Series. These documents will assist the professional in identifying and locating instructional and reference materials related to various technical aspects of water quality control. Emphasis is given to items useful in the development and presentation of wastewater treatment training programs.

Each monograph reviews the technical aspects of a pollution control process, provides representative examples of available instructional materials, and includes an annotated bibliography plus additional references.

Your comments and suggestions regarding these publications are invited.

Walter G. Gilbert
Director
NTOTC
Cincinnati, Ohio

This monograph has been reviewed by the U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. Environmental Protection Agency, nor does mention of trade names of commercial products constitute endorsement of recommendation for use.
ABOUT THE AUTHORS

James B. Walasek is an Environmental Engineer in the Operational Technology Branch at the U.S. Environmental Protection Agency National Training and Operational Technology Center in Cincinnati, Ohio. Mr. Walasek has extensive experience in the operation of wastewater treatment facilities.

Clinton L. Shepard is an Assistant Professor of Environmental Education in the School of Natural Resources at The Ohio State University. Dr. Shepard teaches a course in Environmental Education Programs and has served as a Research Associate for the EPA Information Dissemination Project and the ERIC Clearinghouse for Science, Mathematics and Environmental Education at The Ohio State University.

Credits

Primary staff work for this publication was completed by Ms. Beverly Malcolm, Dr. Robert W. Howe, and Mrs. Maxine Weingarath.
This monograph contains a variety of selected materials related to wastewater treatment and water quality education and instruction. Part I presents a brief discussion of the activated sludge process in wastewater treatment operations. The overlying premise is that operator training is a vital part of the operation of a wastewater treatment facility. Also included in this section are procedures to illustrate how instructors and training personnel in the water quality control field can locate instructional materials to meet general or specific program requirements.

Part II, Instructional Units, are selected portions of existing programs which may be utilized in implementing a training program for the activated sludge process. Each unit has been selected for its representativeness to training level, subject area and instructional approach. A reference to the source where the unit may be found in more detail is included. (A list of additional references for those materials currently available through the Water Resources Center, ERIC, and IRIS systems is found at the end of Part II.)

It is hoped that the instructors and trainers who use these materials will recognize that the instructional units herein serve only as a guide in selecting appropriate training materials and should not be considered a fixed structure. It is recommended that instructors check for other activities appropriate for use or to adapt for use in their own particular situation.

For further information about these materials contact:

EPA Information Dissemination Project
1200 Chambers Road, 3rd Floor
Columbus, Ohio 43212

Phone: 614-422-7853
TABLE OF CONTENTS

Part I: The National Training and Technology Center and Selected Information Sources .. 1

Part II: Instructional Units .. 13

Part III: Abstracted Reference Materials 119

Part IV: Reference Materials, Not Abstracted 165
PART I

The National Training and Operational Technology Center and Selected Information Sources
THE NATIONAL TRAINING AND OPERATIONAL TECHNOLOGY CENTER

The entire program responsibility for water pollution control training within the Environmental Protection Agency is assigned to the National Training and Operational Technology Center (NTOTC), located at EPA's Environmental Research Center in Cincinnati, Ohio.

The NTOTC is responsible for conducting training sessions, developing instructional materials and courses, providing training assistance, operating the Instructional Resources Center, and developing operational technology. The Center is also responsible for the management of the Section 104(g) operator training grant program, the academic training grant program, other training-grant and contract programs, and related training activities.

As an instructional resource, NTOTC's purpose is to help regions, states, local governments, and educational institutions become knowledgeable about the Environmental Protection Agency's goals, regulations, and strategies, as well as the implications of EPA programs.

Activities encompass three categories: (1) instruction; (2) course development; and (3) information management.

Instruction

NTOTC offers a variety of training courses in water quality control. Such courses are taught at many locations, but most are presented at the Environmental Research Center in Cincinnati, Ohio. Area training centers will soon act as satellites to the NTOTC program, offering similar courses and instructional support. Select universities with broad pollution control curricula will act as area training centers within a region. As a result, more pollution control personnel will have access to needed specialized training.

Some courses are conducted at wastewater treatment plants, enabling USEPA to work directly with plant personnel to improve treatment plant effluent. While working on site at treatment plants, staff can diagnose and discuss particular problems and provide information on design and operation to many technicians within the local region.

Courses currently are offered in five general categories: wastewater treatment technology, treatment facility evaluation and inspection, water quality surveillance and monitoring, water quality analysis, and drinking water quality monitoring.
Students attend courses from all states, and from some foreign countries. The largest percentage represent federal, state, and municipal pollution control agencies. A relatively small number of college and university instructors attend these short courses which are typically one week in length. USEPA encourages more participation by the educational community so that current skills and knowledge will be transmitted to students to enable them to deal with pollution control problems as they enter environmental occupations. Community college and university instructors may attend courses free of charge by following prescribed application procedures.

Course Development

NTOTC is active in the field of course development. As new educational and training needs are identified, appropriate instructional packages are developed. Almost all such development is based on current research and agency regulations. Materials include instructor guides, student manuals and supporting audiovisual materials. If USEPA's pollution control training programs are to be successfully implemented, college and university staff from various departments must cooperate and integrate these instructional activities within their curricula; or students will not be adequately prepared, either theoretically or practically.

Information Management

The goal of USEPA's information management system is to support, in a comprehensive and systematic manner, those involved with pollution control education and training. A central location within the NTOTC facility is designed to provide a contact point and to coordinate assistance efforts and has been designated the Instructional Resources Center (IRC).

Through the IRC, NTOTC maintains a central location to inventory, evaluate, catalog, and disseminate instructional materials in the areas of water pollution control, water supply, and pesticides. The IRC provides those involved in water quality control education and training with an information management system and acts as a primary communications link between the Environmental Protection Agency and educators at all post-secondary levels. Activities of IRC include:

IRIS

The focal point of the IRC is the Instructional Resources Information System (IRIS), a compilation of abstracts on print and non-print materials related to water quality and water resources education. Obtainable in paper, microfiche, and computer versions, the IRIS contains more than 3,000...
entries from local, state, and federal government sources, as well as from private concerns and educational institutions. The system allows the user to discover what material can be utilized, the title, the author, cross references, and a brief abstract describing the content. IRIS users can also readily determine where the material can be obtained, whether it can be purchased, borrowed, or rented, and the cost. The IRIS is kept current through constant revision, adding new material as it becomes available and deleting outdated information.

IRIS can be scanned for a particular subject or author, both by hand and by computer. Any institution with appropriate computer terminals can access the search and retrieval capabilities of the system.

Audiovisual Library

The IRC facilities include an audiovisual library equipped with individual study carrels for viewing movies, videocassettes, slide/tape presentations, filmstrips, and tape programs. Before determining curriculum requirements or making purchases, educators can use the library to review water quality-oriented materials for use in training courses.

Nearly 200 of these audiovisuals are also available to instructors for free, short-term loans. Not intended as self-instructional units, these materials are meant to be used as part of a complete training program. A catalog of audiovisual units can be obtained through the IRC.

Workshops

The center also conducts a variety of water-related workshops each year. Designed for state and local agencies, as well as college and university educators, these seminars enable individuals to become familiar with USEPA developed and sponsored resources, descriptions of ongoing programs, and specific instructional techniques. Participants also assist NTOTC in determining instructional priorities.
IRC Bulletin

The IRC maintains communications with its users through the IRC Bulletin. Published approximately six times a year and mailed to interested parties at no charge, the Bulletin provides current news on IRC events. It also includes descriptions of model programs, current instructional materials available, and education strategies. Articles for the Bulletin are accepted from various organizations, education institutions, and governmental agencies.

Interested persons are invited to Cincinnati to use IRC facilities for reviewing tapes, slides, films, and other materials before deciding about purchases or curriculum development requirements. IRC staff assist visitors by determining the most appropriate ways to use the Center's resources, or in determining educational and training program requirements and available resources. During the past year, universities and state and local governments have been assisted with curriculum design, course materials selection, and audiovisual support efforts.
THE INSTRUCTIONAL RESOURCES
INFORMATION SYSTEM

General Information about Materials in IRIS

The EPA Information Dissemination Project acquires, reviews, indexes, and makes available both print and non-print materials related to water quality and water resources education and instruction.

Before materials are entered into IRIS they are reviewed by the project staff. Availability of the material is checked, and the materials are abstracted and indexed. The abstract describes the contents of the material.

When items are processed they are entered on the IRIS computer tape maintained by the EPA Information Dissemination Project at The Ohio State University. These tapes are used for producing tapes for other information systems, publications, and for computer searches conducted at The Ohio State University.

Materials entered into the IRIS collection can be located by manual search or by computer. The first compilation contains resumes of selected materials processed for the previous IRIS collection and resumes of selected materials of items added to the IRIS collection during 1979. Quarterly updates of the IRIS compilation are available by subscription on a yearly basis.

A number of the materials processed for the IRIS system are entered into the ERIC system and announced in Resources in Education (RIE). Most of the materials announced in RIE are available on microfiche at various sites throughout the United States. Users can view these materials on site at many locations to identify what they believe will be useful to them at no cost.

Description of Information in Resumes in IRIS

Two samples of resumes are provided to explain the data fields in the resumes. Sample resume #1 is a sample resume of an item not entered in ERIC. Sample resume #2 is a sample resume of an item entered into ERIC; a few additional data elements are in these resumes and are explained.
Sample resume of materials not entered into ERIC.

1. IRIS NUMBER: EW03059
2. PUBLICATION DATE: 1978
3. TITLE: WATER POLLUTION MICROBIOLOGY, VOL. 2
4. PERSONAL AUTHOR: MITCHELL, RALPH
5. DESCRIPTOR: BIOCHEMISTRY; *COLLEGE SCIENCE; DISEASE CONTROL; ECOLOGY; *ENVIRONMENTAL INFLUENCES; *INSTRUCTIONAL MATERIALS; *MICROBIOLOGY; NATURAL RESOURCES; *POLLUTION; *PUBLIC HEALTH; *WATER POLLUTION CONTROL; WATER QUALITY
6. DESCRIPTIVE NOTE: 442P.
7. ABSTRACT: THIS VOLUME CONTAINS INFORMATION FOR ENVIRONMENTAL AND SANITARY ENGINEERS, PUBLIC HEALTH SCIENTISTS AND MICROBIOLOGISTS CONCERNED WITH WATER POLLUTION. IT EXAMINES MICROORGANISMS AS CAUSITIVE AGENTS OF ECOLOGICAL AND PUBLIC HEALTH HAZARDS IN NATURAL WATERS, AND TREATS THE USE OF MICROORGANISMS IN POLLUTION CONTROL FROM A VARIETY OF PERSPECTIVES.
8. AVAILABILITY: JOHN WILEY & SONS, ONE WILEY DR., SOMERSET NJ 08873 ($24.95)

a. IRIS NUMBER—this is the identification number sequentially assigned to materials as they are processed. Gaps in numbers mean that some items have been deleted, are being processed to add new information, or have been delayed in processing for some reason.

b. PUBLICATION DATE—date material was published according to information on the material.

c. TITLE

d. PERSONAL AUTHOR—person or persons who wrote, compiled, or edited the material. Up to two personal authors can be listed.

e. DESCRIPTOR—subject terms which characterize substantive contents and form of the materials. The major terms are preceded by an asterisk. Terms used to index all resumes in this compilation can be reviewed in the Subject Index.

f. DESCRIPTIVE NOTE—various items of information may be contained in this section. For print materials the number of pages is usually listed.
ABSTRACT: Some early materials entered into IRIS did not have abstract information. All materials currently being entered into IRIS have an informative abstract that describes the content of the item.

AVAILABILITY: Information in this field indicates where the material can be obtained and the price of the material quoted the last time information was received from the source. Please note: prices of nearly all materials are subject to changes and may not be accurate at the time a person orders a specific item.

2. Sample resume of material entered into ERIC (Resources in Education)

Item entered into ERIC (Resources in Education) will have a few additional data fields.

IRIS NUMBER: EW002998
ERIC NUMBER: ED151236
PUBLICATION DATE: SEP 77
TITLE: CHLORINATION TRAINING MODULE 2.300.2.77.
INSTITUTION CODE: BBB08399
SPONSORING AGENCY CODE: BBB15379; FGK21436
DESCRIPTOR: *CHEMISTRY; INSTRUCTIONAL MATERIALS;
*POST SECONDARY EDUCATION; SECONDARY EDUCATION;
*TEACHING GUIDES; UNITS OF STUDY; WATER POLLUTION;
CONTROL; CHLORINATION; WATER TREATMENT

EDRS PRICE: EDRS PRICE MF 83 HC $3.50 PLUS POSTAGE
DESCRIPTIVE NOTE: 60P. FOR RELATED DOCUMENTS, SEE:
SE024 025-046

ISSUE: RIEJUL78
ABSTRACT: THIS DOCUMENT IS AN INSTRUCTIONAL MODULE
PACKAGE PREPARED IN OBJECTIVE FORM FOR USE BY AN
INSTRUCTOR FAMILIAR WITH CHLORINE. THE REASONS FOR
CHLORINATION AND SAFE OPERATION AND MAINTENANCE OF
GAS CHLORINE, DRY CALCIUM HYPOCHLORITE AND LIQUID
SODIUM HYPOCHLORITE CHLORINATION SYSTEMS FOR WATER
SUPPLY AND WASTEWATER TREATMENT FACILITIES ARE GIVEN.
INCLUDED ARE OBJECTIVES, INSTRUCTOR GUIDES, STUDENT
HANDBACKS AND TRANSPARENCY MASTERS. THE MODULE
CONSIDERS PURPOSES OF CHLORINATION, PROPERTIES OF
CHLORINE, METHODS OF CHLORINATION, SAFETY,
MAINTENANCE OF CHLORINATION UNITS, AND INTERPRETATION
OF TEST RESULTS. (AUTHOR/RH)

INSTITUTION NAME: KIRKWOOD COMMUNITY COLL., CEDAR
RAPIDS, IOWA.
SPONSORING AGENCY NAME: DEPARTMENT OF LABOR,
WASHINGTON, D.C.; IOWA STATE DEPT. OF ENVIRONMENTAL
QUALITY, DES MOINES.
How to Locate Desired Materials in IRIS

Users can identify materials of interest by scanning the resume listing, or using the Subject Index, Author Index, or Institution Index in the IRIS Compilation.

The Subject Index is designed to enable the user to search for information on either a broad subject or a narrow information concern. An EW number is included for each item listed under the subject heading. The EW number refers to the abstract entry in the resume section where complete bibliographic information, an abstract of the item, and availability information can be found.

A user can also coordinate a search by checking EW numbers that appear under two or more subject headings. For example, you could check all the EW numbers under Water Treatment and all the EW numbers under Films. EW numbers included under both subject headings would include information relevant to Water Treatment that were films. EW numbers under wastewater treatment and laboratory techniques would provide a list of materials related to laboratory techniques and wastewater treatment. Similar techniques could be used to identify other information desired.

If you desire to locate a document by the name of the author, you can use the Author Index. EW numbers are provided under the author in the Author Index as in the Subject Index. Some documents do not have a listed author. These documents are listed under the name of the institution or organization responsible for developing the document in the Institution Index. Both sources can be used to help you locate documents.

The ERIC System

Another excellent source of educational information and materials is the ERIC system. ERIC is a national information system designed and developed by the U.S. Office of Education, and now supported and operated by the National Institute of Education (NIE), for providing ready access to descriptions of exemplary programs, research, instructional materials, teaching guides, and other related information that can be used to develop effective educational programs.
There are 16 clearinghouses in the nationwide ERIC network. Each clearinghouse has responsibility for collecting and analyzing materials related to their scope.

ADULT, CAREER, AND VOCATIONAL EDUCATION
The Ohio State University
Center for Vocational Education
1960 Kenny Road
Columbus, Ohio 43210
(614) 486-3655

COUNSELING AND PERSONNEL SERVICES
University of Michigan
School of Education, Rm. 2108
Ann Arbor, Michigan 48109
(313) 764-9492

ELEMENTARY AND EARLY CHILDHOOD EDUCATION
University of Illinois
College of Education
805 W. Pennsylvania
Urbana, Illinois 61801
(217) 333-1386

EDUCATIONAL MANAGEMENT
University of Oregon
Eugene, Oregon 97403
(503) 686-5043

HANDICAPPED AND GIFTED CHILDREN
Council for Exceptional Children
1920 Association Drive
Reston, Virginia 22091
(703) 620-3660

HIGHER EDUCATION
George Washington University
One Dupont Circle, Suite 630
Washington, DC 20036
(202) 296-2597

INFORMATION RESOURCES
Syracuse University
School of Education
Syracuse, New York 13210
(315) 423-3640
PART II

INSTRUCTIONAL UNITS
Activated Sludge

Activated sludge may be defined as a biological wastewater treatment process in which a mixture of wastewater and biological floc (microorganisms) is mixed and aerated for the purpose of converting non-settleable dissolved and colloidal material to a settleable form. The biological floc is then removed from the treated wastewater by sedimentation and returned to the process as needed or wasted.

The activated sludge process compresses, in both time and space, aerobic biological reactions which occur naturally in streams. This naturally occurring process of decay may, however, take several hours or even days in a receiving water and is often accompanied by undesirable effects such as: low dissolved oxygen (DO), septicity, odors, deposition of solids, etc. By concentrating the proper microorganisms, providing an adequate oxygen supply, a settling tank to concentrate the microorganisms and provisions for returning them to the process, smaller volumes and shorter detention times may be used to complete the biological reactions.

The objective of the activated sludge process is to convert non-settleable biodegradable pollutants to settleable solids thereby producing a clarified effluent low in total suspended solids (TSS) and biochemical oxygen demand (BOD). This is accomplished by microorganisms utilizing the organic material in the wastewater for both energy and new cell mass. Microorganisms, however, can use only soluble organics which readily pass through the cell membrane. Suspended particles must first be absorbed onto the surface of the bacterium cell and then broken down by enzymes before they can be absorbed into the cell and metabolized. The biological reactions associated with metabolism stabilize the waste by conversion of biodegradable organics to new cell mass and the waste products of carbon dioxide (CO₂) and water (H₂O). Both sorption reactions require intimate contact between the wastewater and the activated sludge. Absorption takes place quickly and is usually completed in 30 minutes or less while adsorption takes place much more slowly (4 - 12 hours).

Microorganisms reproduce by a mechanism known as binary fission. If an unlimited supply of food is available and the proper amount of nutrients are available the microorganisms will reproduce at a very rapid rate. This is called the log growth phase. Several factors affect the rate at which growth occurs. Among these are: temperature, pH, type of food, nutrients present, species of microorganisms, and toxic substances. The growth rate decreases as food becomes limiting. This phase is known as the declining growth phase. In the endogenous phase the energy requirement (or the energy needed to maintain life functions and cell integrity)
exceeds the externally available food source. When this happens the microorganism begins to break down non-essential intracellular components in an effort to maintain vital life functions.

The activated sludge system is a complex aerobic biological wastewater treatment process that requires diligent and consistent process control to maintain process equilibrium and final effluent quality. Numerous techniques and strategies for managing these systems have been proposed and used.

Activated Sludge Processes

A typical flow schematic for the conventional activated sludge process is shown in Figure 1. The aeration basin provides space for contact between the wastewater, microorganisms, and oxygen. It also provides detention time which allows the microorganisms to assimilate the organic materials in the wastewater. An air supply system (diffused or mechanical) supplies oxygen to keep the basin aerobic and also provides mixing energy to keep the microorganisms dispersed throughout the tank.

![Activated Sludge Process Diagram](image)

Figure 1 - CONVENTIONAL

The final clarifier follows the aeration tank in the conventional activated sludge process. This unit provides space, time and quiescent flow conditions to permit the suspended solids to separate from the mixed liquor to produce a clarified supernatant and a concentrated blanket of activated sludge solids. Most of the settled solids are then returned to the aeration tank. However, since the activated sludge tends to accumulate in the system a portion of the clarifier sludge must be removed from the system and "wasted" to the sludge handling system for treatment and disposal. This excess sludge is known as waste activated sludge.
Over the years, several variations of this conventional system have evolved, the most common being: tapered aeration, step-feed, contact stabilization, and complete-mix activated sludge. The tapered aeration process provides a greater amount of air at the head end of the aeration basin to help satisfy the greater oxygen demand that exists there. Less air is supplied at the outlet end of the basin where most of the oxygen demand has already been satisfied.

The principle of step-aeration is to distribute the incoming wastewater load the length of the aeration basin. Step-feed (Figure 2) would probably be a more accurate description of this process since multiple feed locations spread the oxygen demand over more of the basin resulting in a more efficient use of the oxygen.

![Diagram of step aerated system](image)

Figure 2 - STEP AERATION

Contact-stabilization (Figure 3) can be thought of as an extreme of the step-aeration process. In this variation only return activated sludge would be aerated most of the tank length with the wastewater being added near the end. There the wastewater is mixed briefly with the activated sludge to allow the organic waste to be adsorbed onto the biological floc.
The sludge is settled out in the clarifier and returned to the stabilization tank where it is aerated for a longer time to permit the bacteria to break down the adsorbed organics. The contact-stabilization process offers several advantages over conventional activated sludge including reduced tank volumes, high sludge inventories and the benefits of a sludge buffer during times of hydraulic overload.

Complete mix (Figure 4) activated sludge provides some protection against shock loads by dispersing the influent load along the entire length of the aeration tank.
The process flow diagram for extended aeration is essentially the same as that for conventional activated sludge except these plants usually have no primary treatment and the aeration basin is sized for an 18-24 hour detention period rather than the 6-8 hour period common for conventional plants. The long aeration period and high sludge age associated with these plants produces a nitrified effluent and a stable, rapidly settling, partially digested sludge.

Another variation of the activated sludge process which is gaining in popularity in the U.S. is the oxidation ditch. Originally developed in Europe it is essentially an extended aeration plant with a "race track" configuration. Surface type aerators are used to provide aeration and circulation around the ditch.

Recently, high-purity oxygen has come into widespread use as a substitute for air in the activated sludge process. To prevent the loss of oxygen to the atmosphere these aeration basins are usually covered and the oxygen recirculated through several stages. Mixing is accomplished either with surface mechanical aerators or submerged rotating spargers. Because of the enhanced oxygen transfer much smaller tanks can be designed.

The purpose of the final clarifier is to separate activated sludge solids from the liquid stream and to concentrate these solids before they are returned to the process. The final clarifier may be operated as a solids storage reservoir with a constant solids inventory.

As discussed earlier, several factors affect the activated sludge process. Some of the more important factors are: the microorganisms, the incoming food, temperature, detention time, nutrients and toxic substances. The operator of an activated sludge facility usually has direct control of the recycle rate, the wasting rate and the air input. In addition to these controllable variables the operator also has limited control over the volume under aeration, the incoming wastewater (through sewer use control) and can use chemical additives for improved settleability.

Whatever control strategy is used, the objectives should be to control the solids inventory, control the distribution of solids between the clarifier and the aeration basin and to control the sludge age/ation time. Some of the better known control strategies are based on food to microorganism ratio (F/M), mean cell residence time (MCRT), constant mixed liquor suspended solids, respiration rate and sludge settleability. There is no universal number for these parameters that will work for every plant. The best value to be used for process control must be determined for each plant individually. There is also no single parameter which will tell the operator the complete story. The operator must combine information from several parameters to get the complete picture necessary for accurate process control decisions.
SAMPLES OF ACTIVATED SLUDGE TRAINING MATERIALS
General

Procedures for starting the activated sludge process are outlined in this lesson. An initial average daily flow of 4.0 MGD will be assumed; and the plant will be operated as a conventional activated sludge plant.

Start-up help should be available from the design engineer, vendors, nearby operators, or other specialists. During start-up the equipment manufacturers should be present to be sure that any equipment breakdowns are not caused by improper start-up procedures.

The operator may have several options in the choice of start-up procedures with regard to number of tanks used and procedures to establish a suitable working culture in the aeration tanks. The method described in this lesson is recommended because it provides the longest possible aeration time, reduced chances of solids washout, and provides the opportunity to use most of the equipment for a good test of its acceptability and workability before the end of the warranty.

First Day

First, start the air blowers and have air passing through the diffusers before primary effluent is admitted to the aeration tanks. This prevents diffuser clogging from material in the primary effluent.

Fill both aeration tanks to the normal operating water depth, thus allowing the aeration equipment to operate at maximum efficiency. Employing all of the aeration tanks will provide the longest possible aeration time. You are trying to build up a population with a minimum amount of seed organisms, and you will need all the aeration capacity available to give the organisms a chance to reach the settling stage.

When both aeration tanks have been filled, begin filling the two secondary clarifiers. Use of all the secondary clarifiers will provide the longest possible detention time to reduce washout of light solids containing rapidly growing organisms and will help enhance solids build-up.
When the secondary clarifiers are approximately three-fourths full, start the clarifier collector mechanism and return sludge pumps. Return sludge pumping rates must be adjusted to rapidly return the solids (organisms) back to the aeration tanks. The solids should never remain in the secondary clarifiers longer than 1.5 hours. Trouble also may develop if the return sludge pumping rate is too high (greater than 50% of the raw wastewater flow), because the high flow through the clarifier may not allow sufficient time for solids to settle to the bottom of the clarifier. A conventional activated sludge plant usually operates satisfactorily at return sludge rates of 20 to 30 percent of raw wastewater flow, but the rate selected should be based upon returning organisms back to the aeration where they can treat the incoming wastes. A thin sludge will require a higher return percentage than a thick one. Addition of a coagulant or coagulant aid at the 'end' of the aeration tank will hasten solids build-up and improve effluent during start-up.

When the secondary clarifiers become full and begin to overflow, start effluent chlorination to disinfect the plant effluent.

Filling the aeration tanks and aerating the wastewater starts the activated sludge process. The aerobes in the aeration tank have food and are now being supplied with oxygen; consequently, this worker population will begin to increase.

After two or three hours of aeration you should check the dissolved oxygen (DO) of the aeration tanks, to determine if sufficient air is being supplied.

Check the DO at each end and at the middle of the aerator. Oxygen must be available for the aerobes throughout the tank. If the DO is less than 2.0 mg/l, increase the air supply. If the DO is greater than 2.0 mg/l, the air supply may be decreased, but not to the point where the tank would stop mixing. There will probably be an excess amount of DO at first due to the limited number of organisms initially present to use it.

The effluent end of the aerator should have a dissolved oxygen level of 2.0 mg/l. DO in the aerator should be checked every two hours until a pattern is established. Thereafter, DO should be checked as frequently as needed to maintain the desired DO level. Daily flow variations will create different oxygen demands; and until these patterns are established, it is not known whether sufficient or excess air is being delivered to the aeration tanks. Frequently excess air is provided during early mornings when the inflow waste load is low. Air supply may be too low during the afternoon and evening hours because the waste load tends to increase during the day.
Second Day

Collect a sample from the aeration tank and run a 60-minute settleability test using a 1000 ml graduated cylinder. If possible, use a 2000 ml cylinder with a five-inch diameter in order to obtain better results. Observe the sludge settling in the sample for approximately one hour. It will probably have the same color as the primary effluent during the first few days. After a few minutes in the cylinder, very fine particles will start forming with a light buff color. The particles remain suspended, not settling, similar to fine particles of dust in a light beam. After an hour, a small amount of these particles may have settled to the bottom of the cylinder to a depth of 10 or 20 ml, but most are still in suspension. This indicates that you are making a start toward establishing a good condition in the aeration tank, but many more particles are needed for effective wastewater treatment.

Third through Fifth Days

During this period of operation the only controls applied to the system usually consist of maintaining DO concentrations in the system and maintaining proper sludge return rates. A sampling program should be started to develop and record the necessary data required for further plant control.

Aeration of wastewater to maintain DO will require some time before settling will produce a clear liquid over the settled liquids. Time is required for organisms to grow to the point where there are sufficient numbers to perform the work needed—to produce an activated sludge. Usually within 24 to 72 hours of aeration you will note that the settleable solids do not fall through the liquid quite so rapidly, but the liquid remaining above the solids is clearer.

The active solids (organisms) are light and may wash out of the clarifier to some extent. Hopefully you can retain most of them, because a rapid solids build-up will not occur unless they are retained. A good garden soil will add organisms and solids particles for start-up. Mix the soil with water and hose in the lighter slurry, but try to avoid a lot of grit. A truckload of activated sludge from a neighboring treatment plant also will help to start the process. Hopefully you will not have to treat design flows during plant start-up. More time is needed both for aeration and clarification until you have collected enough organisms in your return sludge to enable you to produce a clear effluent after a short period of mixing with the influent followed by settling.

Sixth Day

A reasonably clear effluent should be produced by the sixth day. Solids build-up in the aeration tank should be closely checked using the 60-minute settleable solids test during the first week. Results of this test indicate the
flocculating, settling, and compacting characteristics of the sludge. Suspended solids build-up is very slow at first but increases as the waste removal efficiency improves. This build-up should be carefully measured and evaluated each day.

To obtain an indication of the size of the organism population in the aeration tank, the solids are measured either in mg/1 or in pounds of dry solids. Suspended solids determinations for aeration mixed liquor will give the desired information in mg/1, and the total pounds of solids may be calculated on the basis of the size of the aerator.

\[
\text{Total Susp. Solids, lbs} = \text{Suspended Solids, mg/l} \times \text{Aerator Volume, MG} \times 8.34 \text{ lbs/gal}
\]

The suspended solids test conducted on activated sludge plant mixed liquor is normally a grab sample obtained at the effluent end of the aerator. The sample should be collected at the same time every day, preferably during peak flows, in order to make day-to-day comparisons of the results. Collect the mixed liquor sample approximately five feet from the effluent end of the aeration tank and 1.5 to 2 feet below the water surface to insure a good sample. A return sludge sample also should be collected at this time every day to determine its concentration.

With information from the lab tests, estimates of the organism mass (weight) in the aeration can be calculated.

Information Needed:

1. Aeration Tank Dimensions
 - 100 ft long, 45 ft wide, and 16.5 ft deep
2. Results of Laboratory Tests
 - Mixed Liquor Suspended Solids, 780 mg/l

Steps to calculate pounds of solids in aeration tank:

1. **Determine aeration tank volume.**
 - Aerator Volume = Length, ft x Width, ft x Depth, ft cu ft
 - \(100 \text{ ft} \times 45 \text{ ft} \times 16.5 \text{ ft}\)
 - \(= 74,250 \text{ cu ft}\)
2. Convert cu ft to gallons.

Aerator Volume, = 74,250 cu ft x 7.48 gals/cu ft gals

= 555,390 gals

or = 555,000 gals (approximately)

or = 0.55 MG

3. Calculate pounds of solids under aeration.

Formula:

Solids lbs, = Mixed Liquor Suspended Solids, mg/l x Aerator Volume, MG x 8.34 lbs/gal

\[
\frac{780 \text{ mg}}{1,000,000 \text{ mg}} \times 0.55 \text{ M Gals} \times 8.34 \text{ lbs/gal} = 780 \text{ mg} \frac{0.55 \text{ M Gals}}{\text{M mg}} x 8.34 \text{ lbs/gal} = 780 \times 4.6^* \text{ lbs.}
\]

= 3588 lbs

*The factor 4.6 lbs is equivalent to 0.55 x 8.34, a constant for your plant. You will use this value every day as long as you use the same aeration tank capacity. Only a change in the suspended solids concentration will cause a change in the pounds of solids in the aeration tank.
Close observation of the suspended solids build-up and results from the 60-minute settleability test will indicate the solids growth rate, condition of solids in aerator, and how much sludge should be returned to insure proper return of the organisms to the aerator. It will be necessary to return all of the sludge for 10 to 15 days or longer if the wastewater is weak.

Results from the 60-minute settleability test can be used to estimate if the return sludge rate is too high or too low. If the volume of settle sludge in the cylinder is indicative of amount of sludge settling in the secondary clarifier, the volume of return sludge should be equal to or slightly greater than the percentage of settling sludge in the cylinder multiplied by the sum of the primary effluent and the return sludge flows.

Estimate the return sludge pumping rate.

Information needed:

1. Flow to Aerator from Primary Clarifier, 4.0 MGD
2. Return Sludge Flow, 1.0 MGD
3. Volume of Mixed Liquor Solids Settled in 60 Minutes, 360 ml in 2 liters, or 18%

Example:

Flow to Aerator from Primary Clarifier = 4.0 MGD
Return Sludge Flow to Aerator = 1.0 MGD
Total Flow through Aerator = 5.0 MGD

Return Sludge Rate, MGD = Aerator Flow, MGD x Settleable Solids, %
= 5.0 MGD x 0.18
= 0.9 MGD or 900,000 gals/day

Return Sludge Rate, GPM = 900,000 GPD
1440 min/day
= 625 GPM

Therefore, the initially selected 700 GPM return sludge rate is acceptable at this time. It insures that most solids are being returned to the aeration tank. A return sludge pumping rate slightly higher than calculated is recommended to return the organisms as fast as possible to the aerator. Too high a return sludge rate must be avoided because the resulting high flows reduce the detention time in the aerator and secondary clarifier.
If the return sludge rate is too low, the following undesirable conditions may develop:

1. Insufficient organisms will be in the aeration to treat the influent waste (food) load. This normally occurs during the first week or two of start-up.

2. Too long a detention time in the secondary clarifier could allow the sludge to become septic.

3. Accumulation of sludge in the clarifier creates a deep sludge blanket which will allow solids to escape in the effluent.

Questions

1. When and where should solids samples be collected to provide the operator with a record of solids build-up in the aeration tank?

2. Determine the pounds of solids in an aeration tank with a volume of 0.25 MG and a Mixed Liquor Suspended Solids (MLSS) concentration of 640 mg/l.

3. Estimate the return sludge pumping rate (GPM) if the plant inflow is 2.0 MGD and the return sludge flow is 0.5 MGD. The results of the 60-minute settleability test indicate the volume of solids settled to be 340 ml in 2 liters, or 17%.

4. When starting a new activated sludge plant, who might the operator contact for assistance and advice?

5. When starting the activated sludge process, why should you use all of the aerators and all of the secondary clarifiers?

6. What are the essential laboratory tests for starting the activated sludge process, and why?
LESSON TITLE: Process Interaction
Estimated time: One hour
Prerequisites for this lesson: Initial certification as a Wastewater Treatment Plant Operator

PERFORMANCE OBJECTIVES:
Trainees will be able to:
1. Identify the unit processes contributing to the solids and BOD loading in an activated sludge plant.
2. Identify the streams that provide an exit for sludge solids to be removed from the plant.

JUSTIFICATION:
Operator awareness of the feedback effect of the sludge handling unit processes on activated sludge is important.

INSTRUCTIONAL RESOURCES:
Trainee Manual
Slides and other visuals

INSTRUCTOR ACTIVITIES:
1. Review and organize the slides and audio visuals. Point out high concentrations of BOD and SS in these streams. Assess the recycle stream contributions to plant solids and BOD loadings, compared to raw sewage using appropriate visuals.

2. Review scenarios of wasted sludge getting back to Activated Sludge. Use visuals to show the limited possibilities for sludge solids to be actually removed. If the solids can't be removed by those routes, then the inventory piles up in the plant and interferes with the Activated Sludge process.

3. Discuss guidelines to reduce the effects of recycle streams on the activated sludge process.
a. Avoid pumping thin sludges to sludge handling unit processes.

b. Improve efficiency of sludge handling unit processes.

c. Pretreat recycle streams to reduce the loadings.

d. Be sure to meter and sample the actual influent to the activated sludge process, after all recycle streams from other unit processes have been added.

TRAINEE MANUAL SECTION

Introduction

The accompanying Figure 1 shows the potential for interaction between activated sludge and other unit processes, including thickening, stabilization and dewatering. Places where sludge solids can truly be wasted in the plant are shown by arrows. Direct wasting by landfill disposal or export to another plant is possible only in a few plants. Volatile solids reduction in the stabilization process is another important exit. Dewatered and dried solids are the two best ways for sludge handling unit processes to remove solids.

If the sludge handling unit processes fail, then the solids will inevitably return to the wet stream and eventually work their way out as undesirable solids and organic loading in the final effluent. (A sample scenario is included.) But there are interactions, even when the other unit processes operate normally.

EFFECTS OF SLUDGE-HANDLING UNIT- PROCESSES ON ACTIVATED SLUDGE

Sludge handling unit processes can add greatly to the loading of the Activated Sludge process through recycle streams that contain high concentration of organics and high solids. Recycle streams (Table 1) of this type include the supernatants from anaerobic digestion; heat treatment or aerobic digestion; the centrate from centrifugation; the filtrate from vacuum filtration; and the supernatant from thickening. Some of these processes are run only one or two shifts per day, and not every day. So the way that the sludge handling unit processes are operated can result in shock loading for the Activated Sludge process, depending on how they spread out the loads. (Loadings that are possible with some of the more common treatment schemes are shown in the accompanying Tables.)

The ideal thing for overall plant efficiency would be to have intermediate storage, so that the loadings from the recycle streams could be programmed to even out the overall daily loading cycle for the plant influent. Some new plants provide a separate treatment for the heavily loaded recycle streams, so that they do not interfere with the activated sludge process.
WHERE SLUDGE CAN BE WASTED

Figure 1
TABLE 1 - CHARACTERISTICS OF RECYCLE STREAMS (mg/liter)

<table>
<thead>
<tr>
<th></th>
<th>TS</th>
<th>SS</th>
<th>VSS</th>
<th>BOD</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic Digestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low rate supernatant</td>
<td>4,000-</td>
<td>2,000-</td>
<td>650-</td>
<td>2,000-</td>
<td></td>
</tr>
<tr>
<td>high rate supernatant</td>
<td>10,000-</td>
<td>4,000-</td>
<td>2,400-</td>
<td>6,000-</td>
<td></td>
</tr>
<tr>
<td>Aerobic Digestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>supernatant</td>
<td>50-</td>
<td></td>
<td>900-</td>
<td>230-</td>
<td></td>
</tr>
<tr>
<td>Heat Treated Sludge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>supernatant</td>
<td>100-</td>
<td></td>
<td>5,000-</td>
<td>10,000-</td>
<td></td>
</tr>
<tr>
<td>Centrate</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtrate</td>
<td></td>
<td>500-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
LOADINGS OF RECYCLE STREAMS COMPARED TO RAW SEWAGE

Conventional Activated Sludge Plant
With Anaerobic Digestion

<table>
<thead>
<tr>
<th></th>
<th>BOD</th>
<th>SS</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester</td>
<td>10.1%</td>
<td>10.7%</td>
<td>continuous</td>
</tr>
<tr>
<td>Supernatant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtrate</td>
<td>1.7%</td>
<td></td>
<td>1-2 shifts day</td>
</tr>
<tr>
<td>Centrate</td>
<td>13.0%</td>
<td></td>
<td>1-2 shifts day</td>
</tr>
</tbody>
</table>

31 37
<table>
<thead>
<tr>
<th></th>
<th>BOD</th>
<th>SS</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester</td>
<td>1.7%</td>
<td>9.1%</td>
<td>continuous</td>
</tr>
<tr>
<td>Supernatant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtrate</td>
<td>1.7%</td>
<td></td>
<td>1-2 shifts</td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrate</td>
<td>13.0%</td>
<td></td>
<td>1-2 shifts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>BOD</td>
<td>SS</td>
<td>Flow</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Heat Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supernatant</td>
<td>48%</td>
<td>48%</td>
<td>continuous</td>
</tr>
<tr>
<td>Filtrate</td>
<td>1.2%</td>
<td>1-2 shifts/day</td>
<td></td>
</tr>
<tr>
<td>Centrate</td>
<td>9.5%</td>
<td>1-2 shifts/day</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4

LOADINGS OF RECYCLE STREAMS COMPARED TO RAW SEWAGE.

Conventional Activated Sludge Plant
With Sludge Heat Treatment
EFFECTS OF ACTIVATED SLUDGE ON OTHER UNIT PROCESSES

Wasting from the activated sludge process has a definite effect on sludge handling unit processes. If the waste sludge is too thin (low RSC), it can cause hydraulic overloading of thickening and stabilization processes. This will eventually come back to haunt the activated sludge, in the form of high solids and organic loadings in the recycle streams.

Problems in the sludge handling unit processes can limit your freedom to operate the Activated Sludge process in the best way possible. You may be forced to accumulate sludge in the activated sludge process even when it is desirable to waste, because the sludge handling unit processes are temporarily unable to take additional load. For example, a digester failure may force you to postpone scheduled wasting.

Some plants do not have sludge handling facilities on site. These plants waste directly, either to disposal by landfill or by transfer to another plant via a force main or tanker truck. These plants export not only their sludge, but also the problems due to interactions of the activated sludge process with other unit processes.

SLUDGE QUALITY CONTROL

How can you account for the loading on the activated sludge process due to the recycle streams? The formulas used for sludge-quality control allow you to do that. For example, AFI is the total influent to the activated sludge process, not just the primary effluent. You should monitor that stream to determine its flow rate, solids concentration and diurnal cycling.
SCENARIO FOR SOLIDS RECYCLE
OR, WHEN IS WASTING NOT REALLY WASTING?

Assume that the plant operator has determined that wasting is really the only way the plant is controlled — that everything else relates to operation, not real control. Further assume that he has established a wasting scheme consistent with loading on the plant, aeration capacity, etc. In the normal plant then, all that should remain is to monitor the flow meters and make solids analyses on the waste sludge to confirm that the desired amount has actually been "wasted." Simple enough, and accurate, provided the following example situation does not arise!

In many plants, particularly smaller plants with limited staff and limited construction funds, waste activated sludge is directed, after to the head of the plant to be removed and blended with primary sludge for subsequent processing. If plant staff allows only 8 to 12 hours per day coverage, all operational, laboratory and maintenance tasks must be done during this time, including wasting.

Unfortunately, the wasting period coincides with the highest flow rates, with the result that solids wasted to the primary clarifiers are often carried through them with little or no removal of the waste activated sludge solids. These solids then are recycled back into the activated sludge system to be "wasted" again the next day. However, the next day's wasting will have to include this recycle plus the waste solids generated from the current day's BOD and SS removals.

Many plants are operated by wasting a constant volume of return activated sludge on a daily basis. In such a case, the excess recycle would not be wasted, and if control of MLTSS is by return sludge pumping rate, these solids will accumulate in the final clarifier. Assume, for purposes of illustration, that these recycled "wasted" solids occupy approximately one foot in the clarifier. Then for each day that wasted solids are in fact merely recycled through the system, one foot of new sludge blanket develops in the final clarifier. The return slow flow rates could be increased to remove the blanket, but in that case the MLTSS (and MCRT) will increase. Thus, two days "wasting" will produce a 2-foot blanket; a week's recycle produces a 7-foot blanket; and so on, until aerators and clarifiers are both filled with sludge. At which point, everything else being constant, the final clarifiers will "bulk."

This, of course, is not true bulking but is merely the result of the clarifier being full of solids which have no place to go other than over the final effluent weirs. The reason why a true bulking sludge is washed out over the effluent weirs is related to the inherent properties of the sludge itself, not to the fact that the tank has been filled with solids thought to have been wasted.
No amount of "blast wasting" through the primaries during high flow periods can possibly be effective in solving the problem of recycled waste activated sludge. An alternate method of disposal, perhaps as simple as wasting during periods of low flow, must be found. Once found, it must be adhered to rigidly, even after the excessive "circulating inventory" has been reduced to manageable levels.

Similar scenarios can be developed for digesters, decant tanks, mechanical dewatering devices, ash classifiers, etc. The point to be made, emphasized and clearly understood is this:

Solids are truly wasted only when they or their residues have been physically removed from the plant, with no connection which would allow their being recycled back to the wet stream in any form. In simpler form: Once solids in any form have entered the plant in the raw flow, there are only two places they can go: Out the gate or into the river.
SUBJECT: 1 - Sewage Treatment Operation

TOPIC: 5 - Problems Caused by Industrial Waste

OBJECTIVES: The trainee will be able to

1. List 8 features of a sewer-use by-law.

2. List 7 causes of problems at the treatment plant due to industrial wastes.

3. List 6 possible causes of problems in sewers due to industrial wastes.

PROBLEMS CAUSED BY INDUSTRIAL WASTES IN SEWERS AND SEWAGE PLANTS

General

Most sewage treatment plants have experienced the problems that can be caused by industrial wastes. In fact, life would be very simple if it were not for the occasional slugs of grease that send personnel scurrying for skimming buckets. Plant operation is easy under ideal operating conditions, but foresight and ingenuity are required to prevent problems, such as those resulting from industrial wastes, without upsetting the entire plant.

Sewer-use by-law

To control the quality of the waste flows being discharged to the sanitary system, a municipality usually enacts a sewer-use by-law, based on a model by-law published by the Ontario Ministry of the Environment. If the industries comply with this by-law, there should be no problems in the sewers or at the plant. The important features of such a by-law are that discharges must comply with certain standards for

1. Temperature

2. pH

3. Organic loading as measured by the 5-day biochemical oxygen demand (BOD-5)

4. Suspended solids

43
5. Toxic materials such as
 a. cyanide as HCN
 b. phenols
 c. sulphides as H2S
 d. metals

6. Oils and greases or those substances soluble in ether
 a. of mineral origin
 b. of animal or vegetable origin

7. There must be insignificant amounts of explosive, inflammable and/or radioactive materials present.

8. Flow volumes must not result in hydraulic overloading of the system.

The effect of any one industrial discharge on the entire sewage flow will depend on their relative volumes. As most industrial wastes can be treated with domestic sewage in municipality treatment plants, it may be possible for a municipality to accept and treat wastes that do not comply with the by-law limits without upsetting the operation of the sewage treatment plant. The municipality may wish to supply this additional service at no extra charge, or they may require a special agreement with the industry and additional money for this service. Normally, there is a section in the by-law that provides for this agreement. In order that the municipality may decide how to handle any particular situation, they must know the probable effect of any waste flow on their sewers and sewage treatment plant.

An Industrial Point of View

An industry views the treatment and disposal of its wastes as a matter of economics. It expects and deserves treatment of flows within the by-law limits for the normal sewer rate charge. If the municipality will accept a higher strength waste for a sum less than that needed to pretreat the wastes to by-law limits, it is good business for the industry to use this method of disposal. Many times, the full strength waste cannot be treated at the municipal plant. It is then up to the industry to pretreat to a level which is acceptable to the municipality. It is quite often easier to remove contaminants from a waste flow at the source within the industry, and this should be done where possible.
POSSIBLE PROBLEMS

Sewers

The problems that may be anticipated in sewers from flows not in compliance with sewer-use by-laws may be outlined under the following headings:

1. Flows - Excessively fluctuating flows may overload the hydraulic capacity of a sewer and cause backing up of sewage into basements, or overflowing at pumping stations.

2. Temperature - The higher the temperature of a waste discharge, the greater the biological activity in the sewer (rate doubles for every 10°C rise). Thus the oxygen supply is quickly depleted and septic conditions occur. Also, high temperatures speed up corrosion and place thermal stresses on the sewer pipes and joints.

4. pH - Variance beyond the acceptable limits will result in corrosion of the sewer.

5. Oils and greases will build up on the inside of the lines and reduce the sewer capacity.

6. Dissolved Salts - Certain dissolved salts may precipitate out in the sewers and lead to blockages and/or corroding conditions.

Sewage Treatment Plant

More important, however, is the effect of industrial waste discharges on the operation of the sewage treatment plant. First the symptoms must be recognized; then the type and extent of the problem diagnosed and the effect it will have, or has had, on the various processes must be assessed. Finally, and most important, quick remedial action must be taken to offset the changing conditions. Following are comments on characteristics of industrial waste discharges of concern to a sewage plant operator, and relating to the detection and effect on the (a) primary section and (b) biological processes, as well as the corrective action to be taken.

1. Flow - Excessive or surging flow conditions may be noted on the flow measuring devices within the plant or simply by noting the level of the flow on the walls of the channels. High flow rates tend to flush the tanks out, thus affecting the detention times and the
treatment provided. Little can be done to ease this condition at the sewage plant; it should be corrected at the industry where the flows may be equalized.

2. Temperature - The rate of biological activity increases with temperature in a waste flow and the resulting septic conditions may be noted by the smell and low dissolved oxygen content of the raw sewage at the plant. A septic sewage will cause septicity in the primary clarifiers and exert an increased oxygen demand in the secondary biological section. The action required in this case would be to pre-aerate or pre-chlorinate the raw sewage flow.

3. pH - A waste with a pH value outside of the accepted range (6.5 - 8.5), besides creating corrosive problems throughout the plant, will tend to reduce the settling and biological processes. This condition may be noted by checking the waste flow with pH paper at regular intervals. Again, little can be done at the plant. The situation should be corrected by having the industry neutralize its wastes before discharge.

4. Organic Loading (Biochemical Oxygen Demand - BOD) - High strength industrial discharges will show up in the 5-day BOD test, but this does not help the operating personnel concerned with operating conditions at any given moment. These high strength wastes can usually be spotted by an unusual colour (e.g., red, indicating blood, dye, etc.), smell (e.g., a putrid smell because of the rapid depletion of oxygen in the sewer lines) or the inclusion of tell-tale solids (feathers, hair, etc.). If the high strength is due mainly to dissolved components, it will have little effect on the primary treatment process but will create a high oxygen demand and extreme sludge growth in the secondary biological section. If a significant amount of suspended material is included in the high strength waste, additional quantities of sludge will accumulate in the primary tanks and the digesters may be taxed beyond capacity. The action that should be taken at the plant would include carrying a higher concentration of solids and air in the aeration section and the possible addition of alkaline materials to the digesters as well as additional hauling of digested sludge so that a correct environment may be maintained for the anaerobic decomposition process.
5. **Suspended Solids** - This characteristic of the waste flow is one of the most recognizable. Usually a close examination with the naked eye will reveal unusual conditions which should be taken into account. The majority of the particles in suspension should settle out in the primary settling tanks. While most will be controllable by anaerobic treatment, some particles such as clay, chicken beaks, hair and bark will decompose very slowly, using additional digester capacity. Adjustment in digester operation as well as cleaning of the digesters may be required if these solids are allowed to get through the preliminary screening devices.

6. **Toxic Materials** - Toxic materials such as copper, chromium, phenols, etc., may be difficult to detect in the raw sewage if they are present in low concentrations. Should either the aerobic or anaerobic biological section be upset, however, laboratory analysis is required to confirm any suspicion in this regard. Higher solids could be carried in the aeration section to help in preventing an upset.

7. **Oils and Greases** - These ether soluble materials will usually come to the surface in the grit tanks and primary clarifiers, making their presence obvious. If they can be skimmed, either by means of the regular skimming facilities or manually, these materials should be of little concern.

Note: In most cases, sophisticated laboratory equipment is not a necessary part of good sewage plant operation. More important is the ability of the operator to adapt his thinking to the situation at hand and take proper remedial action.

Resourceful plant personnel will not only provide good plant operation, but will also note the time and conditions of any upsets at the plant. An attempt should be made to determine the section of the sewer system from which the upsetting discharge came and to define as closely as possible the problem industry. Armed with this information, the municipal officials, after investigating conditions at the industries in the area, should be able to locate the culprit and thus be in a position to enforce their sewer-use by-law.
SUBJECT: Activated Sludge Process Control

TOPIC: 6 - Phosphorus Removal

OBJECTIVES: The trainee will be able to

1. Name three chemicals suitable for phosphorus removal.

2. Recall three possible application points for chemicals used in phosphorus removal.

3. List the effects that phosphorus removal chemicals have on the raw sludge concentration and the operation of anaerobic digesters.

4. Calculate the feed rate for chemicals used in phosphorus removal.

5. Recall five means by which the operator can control the phosphorus removal process.

PHOSPHORUS REMOVAL

General

In recent years the phosphates in wastewater treatment plant effluents have been identified as a major factor in the eutrophication (rapid aging) of receiving waters. Industrial waste discharges and run-off also contribute to this problem. Excessive amounts of nutrients (phosphorus, nitrogen, etc.) can cause the rapid growth of algae and weeds. Algae and weeds will settle to the bottom, decompose and use up the dissolved oxygen causing the destruction of the life cycle systems normally found in unpolluted lakes, rivers and streams.

Because it is a major cause of eutrophication and present technology provides a means to control it, phosphorus was the nutrient selected to be removed from plant effluents being discharged into Lake Erie, Lake Ontario, the Ottawa River system, and inland recreational areas. Phosphorus removal facilities have been installed in a number of wastewater treatment plants and future years will see an increasing number.
There are a number of ways to remove phosphorus. These include reverse osmosis, adsorption, ion exchange and chemical precipitation. Chemical precipitation using commercially available chemicals is the least costly, both from capital and operating costs, and is the system of choice in Ontario. It is the method discussed in this topic.

Source of Phosphorus

Phosphorus in the plant influent comes in many forms. It consists of organic phosphorus from food and wastes, polyphosphates from detergents, and precipitated orthophosphate from chemical reactions between metal ions in the wastewater and dissolved orthophosphates.

The concentration of the phosphorus in the wastewater is measured as:

1. Total phosphorus which includes all forms of phosphorus as mg/l P.
2. Soluble, reactive phosphates as mg/l P.

Because of the complexity of the test required to determine phosphorus in the influent or effluent, the tests are normally done by the Ministry Laboratories. The procedure is outlined in Topic 15 of this manual.

Mechanism of Removal

The mechanism of phosphorus removal is a combination of chemical and physical reactions which include the chemical precipitation of the soluble, reactive phosphates by the metal ions (Ca²⁺, Fe³⁺, Al³⁺) introduced. Other important reactions are the formation of metal hydroxides which adsorb non-reactive phosphates; and trap finely suspended material containing phosphates bound to organic matter. Sufficient time for flocculation and sedimentation of this combined floc is needed to produce an effluent with the desired low phosphorus concentration (<1.0 mg/l P). Good mixing at the point of chemical addition is also important. Rapid mixing followed by slow, gentle mixing before sedimentation will produce the best results. Sufficient clarifier (primary or secondary) detention time (over 2 hours) and low upflow rates (<800 gal/day/ft²) at peak flows are also needed to achieve good clarification if chemicals are added for phosphorus removal.

Chemicals Used

Jar tests and possibly full scale pilot studies should be conducted before the best suitable chemical is selected. The following commercially available chemicals are normally used for phosphorus removal.
1. Ferric Chloride \(\text{FeCl}_3\)
2. Ferrous Chloride \(\text{FeCl}_2\) (waste pickle liquor)
3. Ferrous Sulphate \(\text{FeSO}_4\) (waste pickle liquor)
4. Alum \(\text{Al}_2(\text{SO}_4)_3\cdot14\text{H}_2\text{O}\)
5. Hydrated Lime \(\text{Ca(OH)}_2\)

Of the chemicals listed above, alum, ferric chloride, and hydrated lime are most widely used although waste pickle liquor is gaining in popularity since a substantial cost saving can be realized. Waste pickle liquor should only be used in secondary treatment plants, because the 2-valent (ferrous) iron has to be oxidized to the 3-valent (ferric) iron in order to precipitate phosphates. To provide sufficient time and oxygen for oxidation, the point of addition of waste pickle liquor should be the influent end of the aeration tank. Handling, storage, bulk delivery, etc., are similar to ferric chloride.

Ferric Chloride

Ferric chloride is normally used in the liquid form although it is available in the dry form in drums. The reddish-brown liquid is corrosive and stains concrete. With proper dilution, fairly low temperatures can be tolerated. For outside storage in Ontario, heated, fibre-glass reinforced plastic storage tanks should be used. All other equipment used (pumps, feed lines, etc.) should be heat treated and able to handle corrosive liquids since commercial ferric chloride solution (and pickle liquor) contains strong acid. The acid in solution and the acid produced when ferric chloride is added is normally neutralized by natural alkalinity in the wastewater. Additional alkalinity (lime, caustic soda) may have to be added to wastewaters with low alkalinity. The ferric chloride can be added to either raw sewage or in the secondary section. Experience indicates that the latter point of addition yields better results at lower costs. The ferric ions (Fe³⁺) combine with the orthophosphate to produce a precipitate (iron phosphate) and with the hydroxyl ion to produce a floc (ferric hydroxide).

Alum

Alum is easier to handle than lime and is somewhat less corrosive than ferric chloride. It is usually purchased in liquid form although it can be procured in 100 lb bags in dry form. The aluminum ions (Al³⁺) combine with the orthophosphate to form a precipitate (aluminum phosphate) and with the hydroxyl ions in the water to form a floc (aluminum hydroxide). It also produces an acid (sulphuric acid) which may be neutralized by the alkalinity available in the sewage or by added alkalinity.
Alum is delivered and stored in liquid form and as for ferric chloride, involves a large capital outlay for storage tanks and ancillary equipment. As alum crystallizes at fairly high temperatures, heating of tanks and feed lines is also necessary.

Alum can be added to either the raw sewage for phosphorus removal in the primary clarifiers, or in the aeration tank effluent. At most Ministry of the Environment secondary treatment plants, addition is made to the secondary section of the plant in the aeration effluent.

Hydrated Lime

Lime is employed because it is comparatively inexpensive. A portion of lime reacts with the orthophosphate to form an insoluble compound. The remaining lime and the magnesium either in the sewage or introduced in the lime form a floe causing the precipitated phosphates and other suspended solids to settle quickly. Lime also reacts with the CO₂ in the wastewater to form calcium carbonate.

Bulk lime is delivered in 10 or 20 ton loads and blown into a storage hopper or slurry make-up tank. The quantity normally required makes the use of fifty pound bags impractical. Dry storage works well, although problems can result unless the lime remains dry, there are no uncalcined pebbles, and if there is sufficient and constant water pressure for slurry make-up. Slurry storage involves a large capital outlay, unloading of the bulk lime is less than clean and if the slurry is not used quickly it will lose some of its effectiveness.

Lime should normally be added to the raw sewage ahead of the primary clarifier. Dosage can be most effectively controlled by maintaining the pH of the primary effluent at about 9.5. A lower pH will probably not produce the right conditions for the reactions to proceed quickly and effectively, the phosphorus being carried over with the solids in the effluent. A high pH (>8.4) could inhibit biological growth in the mixed liquor. The primary effluent can be low in BOD because of the additional removal of organic materials by the lime.

Lime is particularly suitable from an economic point of view in waters of low alkalinity. Despite handling difficulties, lime will produce an effluent from which most of the heavy metals have been removed by precipitation as hydroxides and which has been softened to some extent. In some areas, because of a combination of factors, lime is the only viable choice. Digestion of lime sludge appears not to be a problem.
PROCESS CONTROL PROBLEMS

Those likely to be encountered with ferric chloride, pickle liquor and alum include:

1. If added to the raw sewage:
 a. increased raw sludge removal is required because of increased sludge volumes and lower sludge solids concentration. Increased raw sludge volumes could cause digester problems due to hydraulic overload.
 b. The raw sludge may be acidic (pH < 7.0) and could cause problems with anaerobic digestion. Alkalinity (lime) may have to be added to the digester.

2. If added to the aeration tank:
 a. sludge return and sludge wasting have to be increased to prevent excessive sludge accumulations in the clarifier and to prevent the formation of a non-volatile, inert mixed liquor.
 b. High dosages to the aeration tank could result in a mixed liquor with a low pH at which the precipitated phosphates may redissolve and biological growth may be retarded. Addition of alkalinity (lime, caustic soda) to the aeration tank will be necessary to counter this problem.

3. Feeding the chemicals at a constant rate (X ml/min) could lead to one or more of the aforementioned problems if extreme variations in daily flows are encountered at the plant. Pacing chemical addition according to incoming flows is therefore recommended.

4. Chemical addition for phosphorus removal usually results in increased removals of toxic heavy metals from the wastewater and this could result in high levels of heavy metals in the digested sludge and could make this sludge unsuitable for disposal on farmland.

Process control problems likely to be encountered with lime include:

1. The sludge produced, if high magnesium lime is used, tends to be fluffy and may float above the scraper mechanism of the clarifiers if it is allowed to build up. Normally, “High Calcium” lime does not give this problem.
2. The deposition of precipitate at points of turbulence and on all surfaces generally. Clarifier weirs and channels must be cleaned often and pipes flushed to prevent clogging. Recirculation of primary sludge will reduce this problem substantially.

3. Because the amount of sludge produced is greater, sludge must be removed from the primary clarifier more often.

4. pH control in the aeration tank. A close check must be maintained to keep the pH below 8.4 to prevent destruction of biological sludge.

5. Overdosing with lime may cause digester upsets.

SUMMARY

Table 6-1 summarizes the use of lime, alum and ferric chloride in phosphorus removal.

Table 6-1 CHEMICAL ADDITION FOR PHOSPHORUS REMOVAL

<table>
<thead>
<tr>
<th>CHEMICAL</th>
<th>POINT OF ADDITION</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>Raw Sewage</td>
<td>Increased raw sludge concentrations and volumes, higher raw sludge pH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary effluent will have lower BOD, higher pH values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintain close check on aeration tank - pH should not go over 8.4.</td>
</tr>
<tr>
<td>Lime</td>
<td>Final Effluent</td>
<td>Additional clarifier needed.</td>
</tr>
<tr>
<td></td>
<td>(Tertiary System)</td>
<td>Problems with chemical sludge volumes.</td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>Raw Sewage</td>
<td>Slight decrease in raw sludge concentrations possible, increased sludge volume.</td>
</tr>
<tr>
<td>Pickle Liquor</td>
<td></td>
<td>Primary effluent BOD values lower.</td>
</tr>
<tr>
<td>Alum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>Aeration Tank</td>
<td>Decrease in aeration tank volatile solids, increased activated sludge return and wasting required, resulting in changes in raw sludge concentration. Pickle liquor added to aeration influent.</td>
</tr>
<tr>
<td>Pickle Liquor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOSAGE

Control

Influent conditions cannot be used as a basis for determining the dosage required to produce the required effluent (1.0 mg/l) or 80% removal because:

1. Sewage is complex and variable mixture of organic and inorganic compounds.
2. Removal is not only a function of the completeness of chemical reactions but also of the degree of flocculation adsorption and sedimentation.

Dosage must be determined for each plant on the basis of experience gained from jar testing, full scale testing, and recent operations. The procedure for phosphorus determination is described in Topic 15.

If the plant is not producing an effluent which meets the standard, the operator can control the process of phosphorus removal by employing one or more of the following:

1. Changes in dosage.
2. Sludge wasting.
3. Changes in pH by addition of lime or soda ash.
4. Investigate use of other chemicals.
5. Change point of chemical addition.

Calculations

In calculating chemical dosage, the operator must bear in mind that the active ingredient of the chemical added is only the metal ion; e.g. calcium (Ca+2), aluminum (Al+3), ferric (Fe+3). One therefore calculates the amount of Fe+3 required to reduce the phosphorus and must then determine the amount of ferric chloride solution required which contains Fe+3, acid and water. See Mathematics for Operators page 50.

Chemical Dosage Calculation for Phosphorus Removal

Examples:

In a plant with an average flow of 4.0 MGD ferric chloride is used at a dosage of 10 mg/l Fe+3 added after the aeration tanks. What ferric chloride flow rate measured in ml/min is needed?
RETURN SLUDGE FLOW = 0.1

AERATION TANK INFLUENT = 0.3

AERATION TANK EFFLUENT

VOLUME = LENGTH X WIDTH X DEPTH = 20 X 80 X 12
VOLUME = 19,200 CUBIC FEET X 7.48 GAL./CUBIC FEET
VOLUME = 143,616 GALLONS
FLOW IN = .3 MGD + .1 MGD = .4 MGD
DETENTION TIME = VOLUME / FLOW IN
DETENTION TIME = 143,616 / 400,000
DETENTION TIME = 8.6 HOURS

FIGURE 4
DETENTION TIME CALCULATION EXAMPLE
Flow in = Flow out

TFL = AFI + RSF

TFL = CFO + CSF

CSF = RSF + XSF

Figure 2 - Flow Balance
Figure 3

MASS BALANCE

Pounds/day = Flow (mgd) x Conc. (mg/l) x 8.34
Pounds in = Pounds out
1. Complete Mixing
 a. Complete mixing provides some protection against "shock" or "slug" loads.
 b. Operating parameters
 1) F/M: 0.2-0.6 #BOD5/#MLSS/day
 2) Aerotor Loading: 50-120 #BOD5/1000 ft
 3) MLSS: 3000-6000 mg/l
 4) detention Time: 3-5 hours
 5) MCRT: 5-15 days
 6) Return sludge flow rate: 25-100% of influent
 c. Higher loadings tend to produce a slower settling sludge than conventional processes but otherwise the operation is similar.

2. Oxidation Ditch—an extended aeration plant with an "oval doughnut" aeration basin configuration. Brush aerators are used to circulate mixed liquor around the aeration basin. Sometimes called a "Dutch Ditch" or "Race Track".

3. Tapered aeration—a conventional plug flow plant with the air application tapered from the head of the plant (high oxygen demand zone and higher aeration rate) to the effluent end of the tank (low oxygen demand zone and lower aeration rate).

Key Points & Instructor Guide

Use Slide 179.2/11.4.5
Slide 179.2/11.4.5 is a schematic diagram of the complete mixing activated sludge process

Use Slide 179.2/11.3.6
Slide 179.2/11.3.6 is a blank

Refer class to Field Manual for Performance Evaluation and Troubleshooting at Municipal Wastewater Treatment Facilities, page 57.
III. Examples of Mode Change for Process Troubleshooting (5 minutes)

A. Ask class to cite examples from their experience of mode changes used for process control or troubleshooting.

B. Discuss class inputs.

C. Instructor should be prepared to cite examples if class does not offer examples.

Key Points & Instructor Guide

Example of Mode Change for Process Troubleshooting and Operational Control. (Example is based on the experiences of the Operational Technology Branch, National Training and Operational Technology Center, U.S. Environmental Protection Agency, Cincinnati, Ohio).

1. Plant design is about 2 MGD.

2. Plant has two aeration basins which can be operated:
 a. In series, plug flow.
 b. In parallel.
 c. One tank on-line, one tank off-line.
 d. One tank as "Contact Basin" and one tank as "Reaeration Basin".

3. Large portion of raw waste comes from a large bakery which discharges a high carbohydrate waste with high grease and oil content.

4. Plant has constant slow settling (bulking) sludge problems when aeration basins are operated in series or in parallel. Solids cannot be retained in the system.

5. By operating with one tank as a contact tank and the other as a reaeration tank, the solids could be retained and stabilized. However, prolonged operation in this mode resulted in over-oxidation of the sludge producing a fast settling sludge which left a turbid effluent which exceeded TSS standards.
6. Plant personnel were taught to monitor sludge settling characteristics and to switch the plant from the "re-aeration operating mode" to an operating mode with the aeration tanks in parallel when sludge settling began to increase. As settling rates became slower, the plant was switched back to the "re-aeration" mode.

7. The plant operated for over a year using mode change to control sludge quality and consistently produced a high quality effluent which exceeded NPDES permit requirements.
Lesson 7 of 14 Lessons
Recommended Time: 90 minutes

Purpose: Four major process control decision making tools, F/M, MCRT, Sludge Settleability and RR, are used in activated sludge process control, evaluation and troubleshooting. Many operators and troubleshooters routinely use only one or two of these tools and, therefore, attempt to control the process based on limited or partial information. The problem solving exercise in this lesson requires the trainee to solve a generalized process control problem, identify the possible causes of the problem, describe how the actual 'problem' cause would be determined and recommend corrective actions for each possible cause identified. The exercise forces the trainee to look at the interrelationships between the various process control decision making tools.

Trainee Entry Level Behavior: Trainees should have achieved the learning objectives specified for Unit II, Lessons 1 - 6 before beginning this lesson.

Trainee Learning Objectives: At the conclusion of this lesson, the trainee will be able to:

1. Given design information about a model activated sludge treatment plant, information that a change has occurred in one of the parameters F/M, MCRT, Sludge Settleability or RR and using Trainee Notebook references and class notes, list all possible causes of the observed change in the process control parameter, describe the expected change in other process control parameters which would confirm each possible cause as the most likely cause and list the recommended process control responses to each possible cause of the observed change in the process control parameter.

2. When called upon by the instructor, report his/her findings for the given conditions and justify his/her recommendations for process control responses.

3. Using class notes and Trainee Notebook references, explain why it is necessary to consider concurrent changes in at least four parameters, F/M, MCRT, Sludge Settleability and RR, when evaluating an activated sludge system to identify problems and their probable causes.
Instructional Approach: Trainee problem solving in work groups of four trainees and discussion of trainee findings.

Lesson Schedule: The 90 minutes allocated to this lesson should be scheduled as follows:

<table>
<thead>
<tr>
<th>TIME</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10 min</td>
<td>Instructor Introduces the Problem</td>
</tr>
<tr>
<td>10 - 45 min</td>
<td>Trainee Problem Solving</td>
</tr>
<tr>
<td>45 - 85 min</td>
<td>Trainees Report Findings</td>
</tr>
<tr>
<td>85 - 90 min</td>
<td>Instructor Summarized Lesson</td>
</tr>
</tbody>
</table>

Trainee Materials Used in Lesson:
4. All trainee references and Trainee Notebook materials used in Unit 11, Lessons 1 - 6.

Instructor Materials Used in Lesson:
1. Instructor Notebook, Unit 11, Lesson 7, pages 11.7.1 - 11.7.9.
2. Instructor Notebook, pages H11.7.1 - H11.7.37, "Activated Sludge Process Troubleshooting, Problem Identification and Process Control Response" (to be reproduced and distributed to trainees at the conclusion of the lesson).

Instructor Materials Recommended for Development: None

Additional Instructor References: As specified in Unit 11, Lessons 1 - 6.

Classroom Set-Up:
1. Lesson Introduction: As specified in Unit 11, Lessons 1.
2. Trainee Problem Solving: One separate breakout room for each trainee workgroup so that individual work groups have a private quiet area in which to meet and discuss the work group's assigned problem.

Lesson Outline

I. Instructor Introduces the Problem (10 minutes)

A. Introduction

1. Have discussed several process control and evaluation tools and their significance.
 a. F/M
 b. MCRT
 c. Sludge Settleability
 d. RR

2. Now it's time to apply what has been covered to activated sludge process troubleshooting.

3. Do this by developing a series of process control and troubleshooting guides.

 Key Points & Instructor Guide

 Refer class to Trainee Notebook, pages T11.7.1-T11.7.11 for a statement of the problem, instructions and worksheets.

B. Have class read Problem Situation

1. Refer class to Trainee Notebook, page T11.7.1-T11.7.2 for a statement of the situation. Trainee Notebook pages T11.7.1-T11.7.11 are included in the Instructor Notebook.

2. Emphasize that the situation is designed to provide a maximum of process control flexibility which is available to the operator and troubleshooter. The specifics of plant design are really immaterial to this problem.

3. The objective is to provide specific guidelines to the operator on how to correctly use the available process flexibility to achieve and maintain good effluent quality.

C. Instructions for Completing the Problem Worksheets

1. Refer class to Trainee Notebook, pages T11.7.4-T11.7.11 for activated sludge process troubleshooting, Problem Identification and Process Control Response Worksheets and page T11.7.3 for "Instructions for Completing Worksheets." These pages are included in the Instructor Notebook.
2. Review instructions and worksheets with the class.

Key Points & Instructor Guide

Instructor should refer to pages H11.7.1-H11.7.37 which are the completed worksheets to gain a better understanding of the expected trainee responses to the worksheet exercise.

D. Make Worksheet Assignments

1. Assign worksheets to trainee workgroups for completion.
 a. Trainee Group 1, page T11.7.4, F/M Increasing.
 b. Trainee Group 2, page T11.7.5, F/M Decreasing.
 c. Trainee Group 3, page T11.7.6, MCRF Increasing.
 d. Trainee Group 4, page T11.7.7, MCRF Decreasing.
 e. Trainee Group 5, page T11.7.8, MLSS RR Increasing.
 f. Trainee Group 6, page T11.7.9, MLSS RR Decreasing.
 g. Trainee Group 7, page T11.7.10, Settling Rate Increasing.
 h. Trainee Group 8, page T11.7.11, Settling Rate Decreasing.

2. Each work group should complete its assigned worksheet by working as a team. Stress the importance of discussion within the group.

3. Work groups will have about 35 minutes to complete their assigned worksheets.

4. Inform work groups that when the class reconvenes, each work group will report its findings to the class and justify its recommendations.
E. Direct Work Groups to Their Work Areas

1. Separate work areas, preferably separate rooms, should be provided for each work group so that the group may freely discuss the assigned problem and develop a group consensus solution without interfering with the work of another group.

2. Assign a work area to each group and give directions for finding the assigned work area.

F. Answer any questions about the exercise before sending groups to their work areas.

II. Trainee Problem Solving (35 minutes)

A. Circulate among work groups to monitor progress and answer questions.

B. Review each work group's product periodically and redirect their efforts as necessary.

C. If a group completes the assigned work sheet early, assign a second work sheet to the group.

D. Periodically inform groups of time remaining.

E. Reconvene groups in the main classroom at the end of the 35 minute work period.

III. Trainees Report Findings (40 minutes)

A. Reconvene class in main classroom.

B. Have work groups report their findings:

1. Call of groups sequentially, beginning with Group 1, to report findings (allocate about 8 minutes per group).

 a. Group 1 - F/M Increasing
 b. Group 2 - F/M Decreasing
 c. Group 3 - MCRT Increasing
 d. Group 4 - MCRT Decreasing
 e. Group 5 - MLSS RR Increasing
 f. Group 6 - MLSS RR Decreasing
 g. Group 7 - Settling Rate Increasing
 h. Group 8 - Settling Rate Decreasing
2. Encourage class discussion as each possible cause is presented.

3. Using the suggested solutions on pages H11.7.1-H11.7.37, challenge groups to justify their recommendations as appropriate.

4. Note that there is overlap and commonality between the correct responses for the eight observed conditions given in the worksheets, e.g., a rising F/M will cause a decreasing settling rate and an increasing MLSS RR which could be associated with a decreasing MCRT. Therefore, several groups should identify the same probable causes, confirmation observations and control responses. Use this information to draw several groups into the discussion.

5. Distribute solutions to the class after discussion is complete.

Key Points & Instructor Guide

School Solutions
Refer to pages H11.7.1-H11.7.7
Refer to pages H11.7.8-H11.7.13
Refer to pages H11.7.14-H11.7.19
Refer to pages H11.7.20-H11.7.23
Refer to pages H11.7.24-H11.7.28
Refer to pages H11.7.29-H11.7.33
Refer to pages H11.7.34-H11.7.37

Reproduce pages H11.7.1 - H11.7.37 in sufficient quantity to distribute to the class.
A. Using one solution sheet, page T11.7, the F/M increasing case, point out that there were many things which could have caused this observation. Point out that the correct process control response was different for each possible cause of the problem although several other control responses could be made to reverse the observed increase in F/M if this were the only information available to the operator and troubleshooter.

B. Point out that by looking at the four control parameters, F/M, MCRT, Sludge Settleability and MLSS RR, together it is fairly easy to eliminate several possible causes and narrow the list to the one most likely cause.

C. After identifying the cause of the problem, a correct process control response decision can be made.

D. Emphasize the importance of looking at all available information about the process before making a process control decision and changing process control variables. Incorrect control responses can be made if only one parameter is considered. This may cause more problems than it solves.

E. Recommend that routine monitoring of F/M, MCRT, Sludge Settleability and process respiration rates be considered for all activated sludge plants. If it is practical (personnel and dollar resources available) to institute a comprehensive process control management system, the process can be controlled to produce good effluents consistently.
Trainee Notebook Contents

Problem Identification and Process Control
Response - Problem Statement TII.7.1

Flow Schematic for Use in Problem Solving. TII.7.3

Problem Identification and Process Control
Response - Instructions for Completing Worksheet.... TII.7.4

Problem Identification and Process Control
Response - Worksheets... TII.7.5
Activated Sludge Process Troubleshooting

Problem Identification and Process Control Response

Problem Statement

While attending a local operator association meeting, you are introduced to John Schmitt, superintendent at a new 10 MGD step feed activated sludge plant. John has heard that you are an expert in activated sludge process control and asks you to help him solve recurrent process control problems which have occurred at the new plant. The plant has been in operation about a year but has never consistently produced a good effluent.

John informs you that he was superintendent at the city’s old trickling filter plant which was replaced by the new activated sludge plant about a year ago. John confesses that he knows very little about activated sludge treatment and process control. Everything he knows about process control in the plant he got from the O & M manual which was prepared by the design firm as the new plant was constructed. Because he knows little about activated sludge, John has mechanically followed the process control procedure outlined in the O & M manual but has never been able to get the plant to perform properly.

The plant design flow is 10 MGD. There are separate storm water and sewage collection systems. The raw sewage is pumped to the plant headworks from a large lift station which is equipped with one variable speed 5000 gpm, one constant speed 3000 gpm and one constant speed 3000 gpm raw sewage pumps activated by level controllers in the wet well. Preliminary treatment consists of bar screening, comminution, grit removal and flow measurement. The pretreated waste is fed to two circular primary clarifiers. The primary effluent from the two tanks discharges to a common channel which feeds the aeration basin. The aeration basin has step feed capability at the quadrant points in the four pass plug flow aeration tank. Mixed liquor is distributed to two circular final clarifiers. The final clarifier effluent is chlorinated before discharging to the river. The underflow from the two clarifiers discharges to a common return sludge wet well. There are two variable speed 5000 gpm return sludge pumps. All return sludge discharges to the first quadrant of the aeration basin. Return sludge flow is metered, and the return sludge flow can be varied from 1400 to 10,000 gpm. Waste activated sludge is pumped from the return sludge wet well to the primary clarifiers. The waste sludge pump is a 1500 gpm constant speed pump activated by a time clock mechanism. There have been no problems in solids handling.
John informs you that there are several industries in town which discharge to the plant and sometimes cause relatively large variations in hydraulic and organic load to the plant. The average daily flow to the plant is 9.0 MGD.

John always operates the plant in the conventional treatment mode with all influent wastewater and return sludge entering the first quadrant of the aeration basin. John normally operates with a constant return sludge flow rate of about 6 MGD and only varies the return rate if the sludge blanket in the final clarifier begins to fall or rise. A constant volume of sludge is wasted each day because the waste rate has not been changed from the wasting rate set by the engineer during plant start-up.

John tells you that plant performance is erratic. Sometimes the sludge bulks and washes out of the final clarifiers. Sometimes the sludge separates very well in the final clarifiers, but leaves a turbid ashy type effluent. Sometimes the plant produces a good effluent but not very often. John is upset because he has been told that this plant would produce an excellent effluent and consistently meet his discharge permit requirement of 20 mg/l BOD and 20 mg/l TSS. But he can't seem to make the thing work.

John tells you that he has a well equipped laboratory and a good lab technician who's running all the tests specified in the O & M manual and the permit. John knows that these test results should be used in controlling the plant but he doesn't know what the test results mean or how to use them.

John wants you to teach him how to make the plant work. You decide to accept the job.

To accomplish the task, you decide to develop a series of process control and troubleshooting charts as work aids which John can use to help him interpret his process control laboratory data.

You will use the attached worksheets, pages T11.7.5 - T11.7.12 to develop the process control and troubleshooting charts. You and the members of your workgroup will be assigned one worksheet to complete. After you have completed your assigned worksheet, you will present the information from your worksheet to the class.
FLOW SCHEMATIC FOR USE IN PROBLEM SOLVING

COLLECTION SYSTEMS → LIFT STATION → BAR SCREEN → COMMINUTOR → Grit Chamber → PARSUILL FLUME

WASTE ACTIVATED SLUDGE

RETURN SLUDGE PUMP

RETURN ACTIVATED SLUDGE

FINAL CLARIFIERS

RETURN SLUDGE FLOW METER

PRIMARY CLARIFIERS

TO SOLIDS HANDLING

TO CHLORINATION

PRIMARY EFFLUENT

FLOW SCHEMATIC FOR USE IN PROBLEM SOLVING

112
Activated Sludge Process Troubleshooting

Problem Identification and Process Control Response

Instructions for Completing Worksheet:

1. Prepare the worksheet in the context of the problem statement, i.e., a very flexible plant design which can accommodate many different process control adjustments in response to observed process conditions.

2. A change is observed in one process control parameter as specified at the top of the worksheet.

3. Possible Causes of Observed Condition. Possible Cause:
 List all things which could have occurred in the system to cause the change observed in the monitored parameter. Be as specific as possible. For example, if one possible cause for the observed condition is a change in applied load, specify the ways in which the load change could occur. Applied BOD load could increase because (a) the influent BOD concentration increases with flow remaining constant, (b) the influent flow rate increases with the BOD concentration remaining constant, (c) both flow rate and BOD concentration increase, (d) an internal plant recycle stream is returned to the aeration basin, etc.

 Observations and Data to Confirm Cause: What additional observations and tests would you perform to confirm this as the cause of the problem and what result would you expect to see? For each possible cause, include the expected change in F/M, MCRT, Sludge Settleability and MLSS RR as your minimum entry in this column.

4. Process Control Response to Observed Condition. For each possible cause of the observed condition, enter the correct process control response. Process control responses should be considered as immediate or temporary (things to do right now to solve an immediate problem) and long term (things to be done which will correct the problem and prevent possible recurrence of the problem). For example, suppose the sludge settling rate decreases because of organic overload and the final clarifier sludge blanket becomes very high and solids wash-out from the clarifier is imminent. Then an immediate response may be to lower the sludge blanket by increasing return rate temporarily to prevent solids wash-out, but the long term solution to correct the problem may be to reduce return sludge rate and increase solids inventory. Be as exact and complete as possible in listing process control responses.
Activated Sludge Process Troubleshooting
Problem Identification and Process Control Response
Worksheet

PARAMETER MONITORED: F/M
CONDITION OBSERVED: F/M Increasing

POSSIBLE CAUSES OF OBSERVED CONDITION:

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Observations and Data to Confirm Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

PROCESS CONTROL RESPONSE TO OBSERVED CONDITION:

<table>
<thead>
<tr>
<th>Possible Cause</th>
<th>Immediate or Temporary Response</th>
<th>Long Term Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instructor Handout Contents

Problem Identification and Process Control
Response Answer Sheets H11.7.1 – H11.7.37
Activated Sludge Process Troubleshooting

Problem Identification and Process Control Response

PARAMETER MONITORED: F/M
OBSERVED CONDITION: F/M Increasing

POSSIBLE CAUSES OF OBSERVED CONDITION:

Observations and Data to Confirm Cause

1. Settling rate - decreasing
 MLSS RR - increasing
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - increasing
 Influent Flow Rate - about the same
 Aeration Basin D.O. - decreasing
 Possible Causes - Increased organic load caused by increased influent BOD concentration with little change in influent flow rate

2. Settling rate - decreasing or no change
 MLSS RR - increasing or no change
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - increasing
 Influent Flow Rate - decreasing
 Aeration Basin D.O. - decreasing or about the same
 Possible Causes - Increased organic load caused by increased influent BOD concentration with a decrease in influent flow rate

3. Settling Rate - usually decreasing
 MLSS RR - Increasing
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - about the same
 Influent Flow Rate - increasing
 Aeration Basin D.O. - decreasing
 Possible Causes - Increased organic load caused by increase in influent flow rate with little change in influent BOD concentration
4. Settling Rate - decreasing or no change
 MLSS RR - increasing or no change
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - decreasing
 Influent Flow Rate - increasing
 Aeration Basin D.O. - decreasing or about the same

 Possible Causes - Increased organic load caused by increase in influent flow rate with a decrease in influent BOD concentration

5. Settling Rate - Decreasing
 MLSS RR - increasing
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - increasing
 Influent Flow Rate - increasing
 Aeration Basin D.O. - decreasing

 Possible Causes - Increased organic load caused by increase in both influent BOD and influent flow rate

6. Settling Rate - decreasing
 MLSS RR - increasing
 MCRT - constant or slowly increasing
 Solids Inventory - constant or slowly increasing
 Fed Sludge RR - about the same if sample collected before recycle stream enters the aeration system
 - increasing if sample collected after recycle stream enters the aeration system
 Influent Flow Rate - about the same
 Aeration Basin D.O. - decreasing

 Possible Causes - Increased organic load caused by internal plant recycles

7. Settling Rate - decreasing
 MLSS RR - increasing
 MCRT - decreasing
 Solids Inventory - decreasing
 Fed Sludge RR - about the same
 Aeration Basin D.O. - increasing or about the same

 Possible Causes - Decrease in solids inventory caused by excessive deliberate wasting
8. Settling Rate - decreasing
 MLSS RR - increasing
 MCRT - decreasing
 Solids Inventory - decreasing
 Fed Sludge RR - about the same
 Influent Flow Rate - about the same
 Aeration Basin D.O. - increasing or about the same
 Possible Causes - Decrease in solids inventory caused by excessive effluent suspended solids

9. Settling Rate - no change
 MLSS RR - no change
 MCRT - no change
 Solids Inventory - no change
 Fed Sludge RR - no change or increasing
 Influent Flow Rate - about the same
 Aeration Basin D.O. - about the same
 Possible Causes - Nitrification occurring in BOD test used to measure applied load

PROCESS CONTROL RESPONSE TO OBSERVED CONDITIONS:

Possible Cause 1

1. Immediate or Temporary Response:
 a. Check final clarifier sludge blanket depth.
 1. If the blanket is rising rapidly with possibility of solids' washout, then temporarily increase return rate or waste rate to lower sludge blanket. Reduce return or waste rate as soon as blanket can be retained in final clarifier. **CAUTION:** Increased hydraulic load on clarifier may cause solids washout. This action may cause slow sludge settling problem to get worse before long range corrective actions affect process. This temporary response is a calculated risk!
 2. If the sludge blanket is not out of control, implement long term corrective actions.
 b. Check aeration basin D.O. If D.O. is less than 1 mg/l, increase air supply.
2. Long Term Corrective Action
 a. When sludge blanket can be retained in final clarifier, reduce return sludge flow rate, concentrates return sludge and increases aeration detention time.
 b. Reduce deliberate wasting to increase solids inventory and sludge aeration time. Continue to monitor F/M, sludge settleability and MLSS RR and balance system to new conditions of solids inventory and MCRT to treat increased load.
 c. If a and b don't work, then
 1. Increase aeration detention time by placing additional aeration basins into service.
 2. Increase sludge detention time by converting to sludge reaeration operating mode.

Possible Cause 2
1. Immediate or Temporary Response
 (Same as possible cause 1 responses)
2. Long Term Corrective Action
 a. If settling rate and MLSS RR are not changing, continue current operating practices but monitor settleability and MLSS RR frequently and respond to any changes which occur because of increased organic load.
 b. If settling rate is decreasing and MLSS RR is increasing, then implement corrective actions listed for possible cause 1.

Possible Cause 3
1. Immediate or Temporary Response
 (Same as possible cause 1 responses)
2. Long Term Corrective Actions
 (Same as possible cause 1 responses)
Possible Cause 4

1. Immediate or Temporary Response
 (Same as possible cause 1 responses)

2. Long Term Corrective Actions
 (Same as possible cause 2 responses)

Possible Cause 5

1. Immediate or Temporary Response
 (Same as possible cause 1 responses)

2. Long Term Corrective Actions
 (Same as possible cause 2 responses. Need to use additional aeration volume or sludge reaeration to handle new load is more likely for these influent load conditions.

Possible Cause 6

1. Immediate or Temporary Response
 a. Same as possible cause 1 responses

 b. Identify source of internal recycle and modify operations creating the internal recycle to eliminate or reduce the recycle, if possible

2. Long Term Corrective Actions
 a. Same as possible cause 1 responses

 b. If internal recycle causes serious problems which interfere with treatment of influent wastewater, the recycle cannot be eliminated and the aeration system cannot be controlled by responses in a, then

 1. Pre-treat recycle streams before returning to aeration system;

 2. Provide means to equalize recycle loads and bleed them into aeration system;

 3. Pre-aerate recycle streams before returning to aeration system;

 4. Consider and evaluate use of chemical additives such as coagulants and coagulant aids in aeration system to maintain process integrity.
Possible Cause 7

1. Immediate or Temporary Response
 (Same as possible cause 1 responses)

2. Long Term Corrective Actions
 a. Decrease waste activated sludge to increase solids inventory. Monitor F/M and MCRT and readjust wasting rate when parameters are in optimum range.
 b. Decrease return activated sludge flow rate to concentrate return and increase aeration basin detention time
 c. If a and b are not effective
 1. Increase aeration volume in use
 2. Use sludge reaeration mode of operation

Possible Cause 8

1. Immediate or Temporary Response
 a. Same as possible cause 1 responses
 b. Check and evaluate final clarifier operation and design for possible problems
 1. Sludge collection, return or wasting systems not operating properly
 a. Rake or collector drive mechanism broken or shut off because of torque overload
 b. Broken chains
 c. Missing flights or scrapers
 d. Plugged collectors or pumps
 e. Pumps not operating
 2. Hydraulic overload
 3. Solids overload
 4. Improperly maintained clarifier weirs
5. Unequal load distribution to multiple clarifiers

6. Improperly designed clarifier
 a. High velocity currents at weirs
 b. Short circuiting

2. Long Term Corrective Action
 a. Same as possible cause 7 responses
 b. Correct final clarifier deficiencies
 1. Sludge collection, return or wasting systems not operating properly
 a. Repair or reset
 b. Repair or replace
 c. Repair
 d. Unplug collectors or pumps
 e. Repair or reset pumps
 2. Hydraulic overload
 a. Put additional clarifiers in service, if possible
 b. Reduce hydraulic load to clarifier, if possible
 3. Solids overload
 a. Put additional clarifiers in service
 b. Reduce solids load to clarifier, if possible
 c. Take actions to produce faster settling solids (possible cause 7 responses)
 4. Improperly maintained clarifier weirs
 (Check weirs for level and level if necessary)
5. Unequal load distribution to multiple clarifiers
 a. Check weirs to verify that all clarifiers have same weir elevation. Adjust as needed.
 b. Check inlet and effluent structures for obstructions - remove obstructions
 c. Check and adjust flow distribution system

6. Improperly designed clarifier
 a. High velocity currents at weirs
 1. Check adequacy of total weir length. Add weirs if needed
 2. Block excess weirs which may cause localized velocity currents
 3. If velocity currents caused by weir placement too close to wall, move weirs away from wall
 b. Short-circuiting
 1. Check and adjust weirs
 2. Check adequacy of inlet target baffles and skirts. Correct target baffles and skirt deficiencies.
 3. If inlet velocities are excessive, provide mechanism to dampen inlet velocities

Possible Cause 9
1. Immediate or Temporary Response
 (None)

2. Long Term Corrective Action
 a. Continue operation using current practices if process is performing well and there are no other problems
b. Check, evaluate and correct BOD test procedure. Most likely cause is high nitrifier population in seed organisms used in BOD test.

1. Change seed

2. Inhibit nitrification in BOD test using alternate procedure

NOTE: This problem frequently occurs in effluent BOD determination also

c. Nitrification in influent BOD test may be desirable, and hence, this is not a problem.
PART III

Abstracted Reference Materials
THE 1974 LITERATURE ON THE TREATMENT OF WASTE WATERS BY THE ACTIVATED SLUDGE PROCESS IS REVIEWED. TOPICS DISCUSSED INCLUDE: PROCESS MODELS, CONTROL, AND DESIGN AND OPERATION OF ACTIVATED SLUDGE PLANTS; MICROBIOLOGY AND BIOCHEMISTRY OF THE PROCESS; REMOVAL OF HEAVY METALS AND EFFECTS OF TOXICANTS; INDUSTRIAL WASTE, WATER TREATMENT; AERATION; NITROGEN AND PHOSPHORUS REMOVAL; SLUDGE THICKENING AND DISPOSAL; AND COSTS OF ACTIVATED SLUDGE PLANTS. REFINERY, PULP AND PAPER, AND DISTILLERY WASTES ARE CITED AS EXAMPLES OF SOME OF THE WASTE MATERIALS THAT ARE BEING TREATED BY THE ACTIVATED SLUDGE PROCESS.

THE DESIGN OF ACTIVATED SLUDGE SYSTEMS HAS EVOLVED SLOWLY AND PROGRESS HAS BEEN MADE LARGELY ON AN EMPIRICAL BASIS. THIS PAPER PRESENTS THE BASIC DESIGN CONCEPTS FOR A MODERN ACTIVATED SLUDGE SYSTEM INCLUDING THE FOUNDATIONS ON WHICH THESE CONCEPTS WERE DEVELOPED. DESIGN PARAMETERS DEVELOPED FOR CONVENTIONAL AND COMPLETELY MIXED SYSTEMS INDICATE THAT AERATION WILL BE FROM 3 TO 8 HOURS. TOTAL MLSS WILL RANGE FROM 1500 TO 4000 MG/L, ORGANIC LOADS OF 0.5 TO 0.7 LB BOD/LB
MICROBIAL SOLIDS WILL YIELD GOOD OPERATIONS, AND DIFFUSED AERATION OF 1000 CUBIC OF AIR PER POUND OF BOD REMOVED IS A SOUND PARAMETER. ALL ASPECTS OF ACTIVATED SLUDGE SCHEMES ARE DISCUSSED WITH DESIGN PARAMETERS GIVEN. (HANCUFF-TEXAS)

TITLE ACTIVATED SLUDGE PROCESS WORKSHOP MANUAL
PUB DATE JUL 76
AVAIL PUBLICATIONS CENTRE, ONTARIO MINISTRY OF GOVERNMENT SERVICES, 880 BAY STREET, 5TH FLOOR, TORONTO, ONTARIO, CANADA M7A 1N8 ($2.00; ORDERS MUST BE ACCOMPANYED BY CHECK OR MONEY ORDER PAYABLE TO "THE TREASURER OF ONTARIO")

ERIC NO. ED155033
EDRS PRICE EDRS PRICE MF-$0.83 PLUS POSTAGE. HC NOT AVAILABLE FROM EDRS

DESC NOTE 242P.; FOR RELATED DOCUMENT, SEE SE 024 226-233; NOT AVAILABLE IN HARD COPY DUE TO COPYRIGHT RESTRICTIONS; CONTAINS COLORED PAGES WHICH MAY NOT REPRODUCE WELL

ISSUE RIEOCT78
ABSTRACT THIS MANUAL WAS DEVELOPED FOR USE AT WORKSHOPS DESIGNED TO UPGRADE THE KNOWLEDGE OF EXPERIENCED WASTEWATER TREATMENT PLANT OPERATORS. EACH OF THE LESSONS IN THIS DOCUMENT HAS CLEARLY STATED BEHAVIORAL OBJECTIVES TO TELL THE TRAINEE WHAT HE SHOULD KNOW OR DO AFTER COMPLETING THAT TOPIC. AREAS COVERED IN THIS MANUAL INCLUDE: TYPES AND FACTORS AFFECTING ACTIVATED SLUDGE PROCESSES, IDENTIFICATION AND SOLUTION OF OPERATING PROBLEMS, SELECTED TESTS AND MEASUREMENT, AND CHEMICAL DETERMINATIONS. A GLOSSARY OF TERMS IS INCLUDED FOR REFERENCE. (CS)

TITLE ACTIVATED SLUDGE: TRAINING MODULE 2.117.4.77.
PUB DATE SEP 77
ERIC NO. ED151222
EDRS PRICE EDRS PRICE MF-$0.83 HC-$6.01 PLUS POSTAGE
THE SETTLING FLUX APPROACH CAN BE ADAPTED FOR EVALUATING ECONOMIC TRADEOFFS BETWEEN ALTERNATIVE DESIGNS FOR WASTE-WATER TREATMENT SYSTEMS. THE DESIGN BASIS FOR THE AERATOR INCORPORATES SOLIDS RESIDENCE TIME AND HYDRAULIC RESIDENCE TIME. THE DESIGN BASIS FOR THE CLARIFIER INCORPORATES THE CLARIFICATION CONSTRAINT, AND A RECYCLE RATE CONSTRAINT. THIS METHODOLOGY CAN BE USED FOR EVALUATING THE ECONOMIC ASPECTS OF AN ACTIVATED SLUDGE SYSTEM CONSISTING OF AN AERATION BASIN, CLARIFIER, AND SLUDGE PROCESSING EQUIPMENT. THE SETTLING FLUX APPROACH CAN ALSO BE USED IN OPERATIONS MONITORING OF AN ACTIVATED SLUDGE SYSTEM. THIS APPROACH INDICATES THAT INCREASED HYDRAULIC FLOW RATES WOULD ONLY CAUSE SOLIDS TO ENTER THE EFFLUENT AT CERTAIN CRITICALLY LOCATED POINTS NEAR THE SETTLING FLUX CURVE. FOR DECREASED HYDRAULIC FLOW RATES, THE RECYCLE RATE COULD BE REDUCED TO THE POINT OF CRITICAL LOADING. THE SETTLING FLUX APPROACH INDICATES THAT THE FLOW PROPORTIONAL RECYCLE CONTROLS CAN ESTIMATE THE
REQUIRED FLOW FAIRLY ACCURATELY. IT DOES NOT, HOWEVER, PROVIDE THE PRECISE RECYCLE RATE REQUIRED TO MAINTAIN THE CLARIFIER IN A CRITICALLY LOADED CONDITION. THIS APPROACH CAN ALSO ESTABLISH THE HYDRAULIC SURGE THAT A SYSTEM COULD ACCOMMODATE WITHOUT INDISCRIMINATE SOLIDS WASTING. THIS APPROACH CAN ONLY BE USED FOR OPERATIONS MONITORING AND CONTROL IF CURRENT SETTLING FLUX CURVES ARE AVAILABLE. CHANGES IN THE OPERATIONAL SET-POINT OF SOLIDS RESIDENCE TIME CAN BE ACCOMMODATED BY CHANGES IN THE SOLIDS WASTING PROGRAM. (SNYDER-FIIRL)

TITLE AERATION: PROPER SIZING IS CRITICAL

AUTHOR SHERRARD, J. H.

CORP AUTH VIRGINIA POLYTECHNIC INST. AND STATE UNIV., BLACKSBURG, DEPT. OF CIVIL ENGINEERING.

AVAIL WATER AND WASTES ENGINEERING, VOL. 14, NO 4, P 62, 66-67, 71, APRIL, 1977. 4 FIG, 4 TAB, 6 REF.

ABSTRACT THE SELECTION OF LOW SPEED MECHANICAL AERATORS WAS CONSIDERED. ANY AERATION METHOD MUST PRODUCE ENOUGH MIXING TO MAINTAIN ACTIVATED SLUDGE FLOC IN SUSPENSION AND SUPPLY SUFFICIENT OXYGEN TRANSFER TO MEET THE DEMANDS OF MICROBIAL GROWTH. EQUATIONS WERE PROVIDED TO HELP JUDGE A GIVEN AERATOR'S PERFORMANCE. MECHANICAL AERATORS MUST MEET TWO STANDARDS: POWER, AND SUFFICIENT OXYGEN FOR MICROBIAL METABOLISM. THE FIRST DEPEND UPON THE TYPE OF AERATOR AND THE GEOMETRY OF THE BASIN, THE LATTER INVOLVES OXYGEN FOR ORGANIC REMOVAL AND NITRIFICATION, AND DEPENDS ON PLANT OPERATION AND THE BOD5/ORGN + NH(+) RATIO. BIOKINETIC COEFFICIENTS SHOULD BE ESTABLISHED TO MAKE QUALITY AND OXYGEN NEEDS PREDICTABLE AS A FUNCTION OF TREATMENT PROCESS OPERATING CONDITIONS. SEVERAL EXAMPLES OF TYPICAL SOLUTIONS WERE PRESENTED. IT WAS CONCLUDED THAT THE USE OF A RATIO OF 1 MG/LITER OF OXYGEN TO 1 MG/LITER OF BOD5 COULD BE MISLEADING AND RESULT IN A FAULTY SELECTION. NITROGENOUS OXYGEN DEMAND FROM NITRIFICATION SHOULD BE USED FOR AERATOR SELECTION IF HIGHER MEAN CELL RESIDENCE TIME VALUES ARE USED. OXYGEN TRANSFER REQUIREMENTS CAN BE MET IN SOME INSTANCES...
AN AUTOMATED SPECTROPHOTOMETRIC SUSPENDED SOLIDS ANALYSIS FOR ACTIVATED SLUDGE.

AUTHOR
FINGER, R. E.; STRUTYNKI, B. J.

CORP AUTH
MUNICIPALITY OF METROPOLITAN SEATTLE, RENTON, WASH. RENTON TREATMENT PLANT

AVAIL
JOURNAL WATER POLLUTION CONTROL FEDERATION; VOL 47, NO 5, P 1043-1054, MAY, 1975. 11 FIG, 4 TAB, 15 REF.

IDENTIFKEYWORDS
SLUDGE VOLUME INDEX
ACTIVATED SLUDGE, BIOLOGICAL TREATMENT, SUSPENDED SOLIDS, WASTE WATER TREATMENT, COLORIMETRY, AUTOMATION, SAMPLING, MEASUREMENT, ANALYTICAL TECHNIQUES, POLLUTANT IDENTIFICATION, SPECTROPHOTOMETRY

ABSTRACT
THE MEASUREMENT OF SUSPENDED SOLIDS (SS) CONCENTRATION IN BIOLOGICAL WASTE TREATMENT IS USED AS A PRIMARY CONTROL FOR PROCESS ADJUSTMENT. THE SS MEASUREMENT IS NECESSARY FOR CALCULATION OF CELL RESIDENCE TIME, ORGANIC LOADING, AND SLUDGE VOLUME INDEXES. THE DETERMINATION OF TYPES OF POLYSACCHARIDES ASSOCIATED WITH ACTIVATED SLUDGE AND THEIR EFFECTS ON THE PHYSICAL CHARACTERISTICS OF SLUDGE HAVE BEEN INVESTIGATED BY A SIMPLE COLORIMETRIC TEST. THE PURPOSE OF THIS STUDY WAS TO CONSIDER THE POSSIBILITY OF ADAPTING THIS TEST TO AN AUTOMATED PROEDURE. A MANUAL COLORIMETRIC PROCEDURE WHICH TAKES TWO OR THREE HOURS WAS FIRST TESTED AND IT PROVED TO EFFECTIVELY MEASURE MIXED LIQUOR SUSPENDED SOLIDS AND VSS. THE AUTOMATED SPECTROPHOTOMETRIC SS TEST TAKES ONLY FIFTEEN MINUTES AND WAS DEMONSTRATED TO BE PRACIAL FOR USE ON A CONTINUOUS BASIS. THE MAJOR PROBLEM WITH THE TECHNIQUE IS SAMPLING, WHICH MAY BE IMPROVED BY THE INSTALLATION OF A HOMOGENIZATION SYSTEM. (PRAGLE-FIRL)
THIS DOCUMENT IS AN INSTRUCTIONAL MODULE PACKAGE PREPARED IN OBJECTIVE FORM FOR USE BY AN INSTRUCTOR FAMILIAR WITH OPERATION OF ACTIVATED SLUDGE WASTEWATER TREATMENT PLANTS. INCLUDED ARE OBJECTIVES, INSTRUCTOR GUIDES, STUDENT HANDOUTS, AND TRANSPARENCY MASTERS. THIS IS THE FIRST OF A THREE MODULE SERIES AND CONSIDERS DEFINITION OF TERMS, DESIGN AND OPERATION PARAMETERS, PROCESS OBSERVATIONS, BASIC PROCESS CONTROLS AND CONTROL TESTS. (AUTHOR/RH)

KIRKWOOD COMMUNITY COLL., CEDAR RAPIDS, IOWA.

BASIC LABORATORY SKILLS. TRAINING MODULE 5.300.2.77.

SEP 77

KIRKWOOD COMMUNITY COLL., CEDAR RAPIDS, IOWA.
BASIC SEWAGE TREATMENT OPERATION.

This manual was developed for use at workshops designed to introduce operators to the fundamentals of sewage plant operation. The course consists of lecture-discussions and hands-on activities. Each of the lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: introduction to sewage treatment, bacteriology, primary treatment, activated sludge process, sampling, and record keeping, safety, and selected tests. A glossary of terms is included for reference. (CS)
Laboratory data show that the metabolizing activity of activated sludge is seriously hampered at low temperatures, and BOD reduction data in activated sludge systems at low temperatures are partly contradictory. Pilot plant experiments were conducted with activated sludge and chemical treatment. The activated sludge treatment proved that biological treatment is possible even at very low sewage temperatures. As the metabolizing activity of the activated sludge bacteria is considerably reduced, long aeration periods, 4–5 hours, and large aeration basins, are required. Chemical treatment is much less sensitive to low temperatures and requires only about 0.5 hour detention time in flocculation tanks. Difference in investment costs will in many instances be so large that the increased running costs are justified. If a community has an existing primary treatment plant with a long detention time (more than 2 hours), it may be possible to achieve a substantial increase in treatment efficiency simply adding flocculating chemicals to the influent. BOD removal with chemical treatment is somewhat inferior to what can be achieved with biological treatment. This drawback, however, is compensated by superior phosphorus removal. (See also W72-12548) (Jones-Wisconsin)
RESEARCH WAS CONDUCTED TO DETERMINE THE FEASIBILITY OF USING ADENOSINE TRIPHOSPHATE (ATP) AS A MEASURE OF VIABLE BIOMASS IN ACTIVATED SLUDGE. METHODS WERE DEVELOPED FOR THE EXTRACTION OF ATP FROM SLUDGE AND MIXED LIQUOR, AND FOR THE DETERMINATION OF ATP USING THE FIREFLY BIOLUMINESCENT PROCEDURE. MEASUREMENTS OF ATP WERE CONDUCTED ON VARIOUS PURE CULTURES, PILOT PLANT AND FULL-SCALE ACTIVATED SLUDGE TREATMENT PLANTS. ADDITIONAL PARAMETERS INCLUDING BOD, TOC, OXYGEN UPTAKE RATE, AND SUSPENDED SOLIDS WERE MEASURED TO PROVIDE COMPARATIVE AND SUPPORTIVE INFORMATION. PRELIMINARY TESTS IN WHICH ATP MEASUREMENTS OF BIOMASS WERE USED TO CONTROL THE PERCENT SLUDGE RETURN WERE CONDUCTED AT TWO FULL-SCALE MUNICIPAL SEWAGE TREATMENT PLANTS. LOWERED RETURN SLUDGE RATES WERE FOUND TO PRODUCE EFFECTIVE TREATMENT AND INCREASE THE BIOLOGICAL ACTIVITY OF THE SLUDGE. CHANGES IN THE RATE OF RETURN SLUDGE RESULTED IN CHANGES IN ATP CONCENTRATION OF MIXED LIQUOR WHICH PRECEDED CHANGES IN SUSPENDED SOLIDS BY AS MUCH AS 24 HOURS. THE ASSAY WAS FOUND TO BE REPRODUCIBLE AND RAPID, RESULTS CAN BE OBTAINED WITHIN APPROXIMATELY TEN MINUTES. (LOWRY-TEXAS)
ABSTRACT
THE PERFORMANCE OF MANY PROCESSES AND OPERATIONS CAN BE IMPROVED APPRECIABLY BY THE CONTROLLED UNSTEADY OPERATIONS THAT ARE PROVIDED BY SEQUENCING BATCH (FILL AND DRAW) BIOLOGICAL REACTORS. THE LACK OF DESIGN AND OPERATION EXPERIENCE IN BATCH TREATMENT HAS RESULTED IN AN EXPERIENCE VOID THAT HAS FOSTERED THE SELECTION OF CONTINUOUS FLOW RATHER THAN BATCH TREATMENT SCHEMES. SYSTEM SELECTION SHOULD DEPEND INSTEAD UPON SUITABILITY OF THE SYSTEM, RELIABILITY, EFFICIENCY, CONSISTENCY, AND ECONOMIC. BENCH, PILOT, AND FULL-SCALE INVESTIGATIONS, AND DESK TOP AND COMPUTER ANALYSES MUST SUPPLEMENT EXISTING BENCH SCALE STUDIES IF THE EXPERIENCE VOID IS TO BE FILLED. SEVERAL HYPOTHETICAL EXAMPLES ARE USED TO "PARTIALLY FILL THE VOID BY COMPARING VOLUMES FOR BOTH THE BATCH AND CONTINUOUS FLOW SYSTEMS. IN THE EXAMPLES, SEQUENCING BATCH TREATMENT PROVIDES THE POTENTIAL FOR ACHIEVING EFFLUENT LIMITATIONS IN A TOTAL VOLUME NOTABLY LESS THAN THAT FOR A CONVENTIONAL CONTINUOUS FLOW SYSTEM. THIS ADDS TO PREVIOUSLY RECOGNIZED ADVANTAGES THAT INCLUDE HOLDING A WASTE UNTIL A PROPER TREATMENT IS ACHIEVED. THE COMPUTER SIMULATIONS HEREIN HAVE SHOWN HOW THE DESIGN VOLUME FOR A SEQUENCING BATCH SYSTEM DIFFERED AS A FUNCTION OF THE RELATIVE VARIABILITY OF THE MASS FLOW RATE EVEN THOUGH THE AVERAGE MASS FLOW RATE WAS THE SAME FOR ALL CASES INVESTIGATED. (GRAY-CORNELL)

TITLE CONTACT STABILIZATION IN SMALL PACKAGE PLANTS
AUTHOR DAGUE, R. R.; ELBERT, G. F.; ROCKWELL, M. D.
AFFIL IOWA UNIV., IOWA CITY.
AVAIL JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 44, NO 2, FEBRUARY 1972, P 255-264, 11 FIG, 3 TAB, 6 REF.
IDENTIF. *CONTACT STABILIZATION, *PACKAGE PLANTS
*ACTIVATED SLUDGE, *DESIGN CRITERIA, *ON-SITE INVESTIGATIONS, AERATION, RESPIRATION, ABSORPTION, ADSORPTION, MIXING, BIODEGRADATION, ORGANIC Loading, BIOCHEMICAL OXYGEN DEMAND, SUSPENDED SOLIDS, WASTE WATER TREATMENT
ABSTRACT INVESTIGATION WITH CONTACT STABILIZATION PACKAGE TREATMENT. PLANTS AS CURRENTLY DESIGNED HAS DEMONSTRATED THAT SUCH FACILITIES ARE UNSTABLE UNDER CONDITIONS OTHER THAN 24 HOUR OPERATION. TWO CONTACT STABILIZATION PLANTS CURRENTLY HAVING OPERATIONAL DIFFICULTIES WERE MODIFIED, ONE TO THE CONVENTIONAL ACTIVATED SLUDGE PROCESS AND THE
OTHER TO COMPLETE MIX OPERATION. THE DIFFICULTIES ENCOUNTERED BY THE CONTACT STABILIZATION STEMMED MAINLY FROM FLOW VARIATIONS, AND THE FACT THAT MOST PLANTS ARE DESIGNED FOR A 3-HOUR CONTACT TIME RATHER THAN THE 15 TO 30 MIN. CONTACT TIME ORIGINALY DEVELOPED. THE WIDE VARIABILITY OF THE MUNICIPAL WASTE FLOW FOR THE FIRST SYSTEM EVALUATED CAUSED THE WASTES IN THE CONTACT ZONE TO HAVE A RETENTION TIME VARYING FROM 2 TO 8 HOURS. EACH OF THE OTHER PLANT OPERATIONS WAS SIMILARLY AFFECTED. THE TROUBLE WHICH AROSE THEN WAS MAINLY IN SEPARATING THE SOLIDS FROM THE EFFLUENT, WHICH BECAME NEARLY IMPOSSIBLE. AFTER MODIFICATION, THE TWO PLANTS FUNCTIONED EXTREMELY WELL, PRODUCING EFFLUENTS OF 13 MG/L OR LESS OF BOD AND 12 MG/L OR LESS OF SUSPENDED SOLIDS. (LOWRY-TEXAS)
ABSTRACT

Design procedures and guidelines for the selection of aeration equipment and dissolved oxygen (DO) control systems for activated sludge treatment plants are presented. Process configurations and design parameters are reviewed to establish system requirements. Aeration methods, equipment, and application techniques, design systems, and control system selection procedures are examined. Recommendations for system applications to various aeration equipment types and process configurations are described. Performance, operational, and maintenance data for aeration equipment and DO control systems for 12 activated sludge plants are presented in the appendix. Automatic DO control systems for various size hypothetical activated sludge system configurations are presented to develop an economic analysis manual and automatic DO control. Conclusions indicate that capital and operating costs of automatic DO control systems are justified for activated sludge plants larger than 1 MGD (4.4 Mm3/s) only if equipment is selected and applied in accordance with guidelines of the design manual and a power cost is applicable which is equal to or greater than the national average power rate. Areas in which further research is indicated are discussed. (SEIP-IPA)

TITLE

Dissolved Oxygen Analysis - Activated Sludge Control Testing (XT-43)

AUTHOR

Ludzack, F. J.

PUB DATE

Jun 71

DESC NOTE: INCLUDED IS A 34 MINUTE TAPE, 72 SLIDES, AND A SCRIPT. AVAILABLE ON LOAN FROM NTOTC, 26 W ST. CLAIR, CINCINNATI, OHIO 45268.

ABSTRACT: THIS MODULE IS DESIGNED FOR ADVANCED WASTEWATER TREATMENT PLANT OPERATORS OR PLANT CONTROL SUPERVISORS. RAPID AND VALID TECHNIQUES ARE DESCRIBED FOR CONTROL OF THE ACTIVATED SLUDGE TREATMENT PROCESS USING ELECTRONIC MEASUREMENT OF DO AND DO CHANGES. SAMPLE DATA ARE DISCUSSED FOR INTERPRETATION OF SLUDGE CONDITION IN RESPONSE TO STABILIZATION, FEED, LOAD RATIO OR CONDITIONS. INFORMATION OBTAINABLE WITHIN 20 MINUTES PROVIDES SUGGESTED CORRECTIVE ACTION IN TIME TO UPGRADE EFFLUENT QUALITY. (AUTHOR/JK)

TITLE: DYNAMIC MODELING AND CONTROL STRATEGIES FOR THE ACTIVATED SLUDGE PROCESS.

AUTHOR: BUSBY, J. B.; ANDREWS, J. F.

CORP. AUTH: CLEMSON UNIV., S.C. DEPT. OF ENVIRONMENTAL SYSTEMS ENGINEERING; AND ENVIRONMENTAL DYNAMICS, INC., GR.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 47, NO 5, P 1055-1080, MAY 1975. 22 FIG, 3 TAB, 23 EQU, 45 REF.

IDENT: *PROCESS CONTROL, DYNAMIC MODELS, FEEDING, STEP-FEED PROCESS, RATIO CONTROL.

KEYWORDS: *ACTIVATED SLUDGE, *WASTE WATER TREATMENT, *WATER QUALITY, *SIMULATION ANALYSIS, BIOLOGICAL TREATMENT, WASTES, COMPUTERS, SUSPENDED SOLIDS, SYSTEMS ANALYSIS, MATHEMATICAL MODELS, RECYCLING.

COMPUTER SIMULATION RESULTS INDICATE THAT THE
MODEL SATISFACTORY DESCRIBES THE DIFFERENT
PROCESS VERSIONS AND THAT DYNAMIC VARIATIONS IN
WASTEWATER FEED PATTERN ARE VALUABLE FOR CONTROL.
(BELL-CORNELL)

TITLE
EFFECTS OF FLOW EQUALIZATION ON THE OPERATION AND
PERFORMANCE OF AN ACTIVATED SLUDGE PLANT.

AUTHOR
FOESS, G. W.; AND OTHERS

PUB DATE
AUG 77

AVAIL
NTIS, 5285 PORT ROYAL RD., SPRINGFIELD, VA 22161
($6.50)

DESC
*ACTIVATED SLUDGE, CHEMICAL OXYGEN DEMAND, *FLOW
MEASUREMENT, RESEARCH REPORTS, SEWAGE, *SLUDGE,
*WASTEWATER TREATMENT, *COST EFFECTIVENESS,
*OPERATIONS (WASTEWATER)

DESC NOTE
110P ORDER NO. PB 272 657

ABSTRACT
A PLANT-SCALE RESEARCH PROGRAM WAS CARRIED OUT
OVER A YEAR TO EVALUATE THE IMPACT OF
FLOW EQUALIZATION OF THE 14,000 CU.M/DAY (3.7 MGD)
UPGRADED ACTIVATED SLUDGE PLANT AT YPSILANTI
TOWNSHIP, MICHIGAN. PROCESS STEAMS WERE
CHARACTERIZED UNDER BOTH EQUALIZED AND UNEQUALIZED
FLOW CONDITIONS WITH RESPECT TO BOD, COD, TSS AND
FORMS OF NITROGEN AND PHOSPHORUS. THE EQUALIZATION
SYSTEM WAS EFFECTIVE IN ITS ABILITY TO DAMPEN
VARIATIONS IN WASTEWATER CONCENTRATION AND MASS
FLUX. SOME BIOCHEMICAL ACTION APPARENTLY OCCURRED
IN THE EQUALIZATION BASIN, ALTHOUGH BOD REMOVAL
WAS MARGINAL AND inconsistent. ANALYSIS OF
SECONDARY EFFLUENT INDICATED THAT PLANT
PERFORMANCE WAS SIMILAR WITH AND WITHOUT EQUALIZED
FLOW, SUGGESTING THAT THE THEORETICAL ADVANTAGES OF
FLOW EQUALIZATION MAY NOT BE ACHIEVED IN
MANUALLY CONTROLLED PLANTS. AN EXAMINATION OF
THEORETICAL POWER COSTS FOR EQUALIZED AND
UNEQUALIZED FLOW CONDITIONS INDICATED THAT USE OF
FLOW EQUALIZATION DID NOT RESULT IN POWER COST
ECONOMIES. (BB)

TITLE
EFFLUENT MONITORING PROCEDURES: BASIC PARAMETERS
FOR MUNICIPAL EFFLUENTS. STAFF GUIDE.

PUB DATE
77

DESC
CHEMISTRY, COURSE DESCRIPTIONS, *EDUCATIONAL
PROGRAMS, ENVIRONMENTAL EDUCATION, *INSTRUCTIONAL
MATERIALS, *LABORATORY TECHNIQUES, MICROBIOLOGY,
*POLUTION, *SECONDARY EDUCATION, SKILL
DEVELOPMENT, *WATER POLLUTION CONTROL, *WASTEWATER
TREATMENT, *EFFLUENTS, *MONITORING
This is one of several short-term courses developed to assist in the training of waste water treatment plant operational personnel in the tests, measurements, and report preparation required for compliance with their NPDES permits. This staff guide provides step-by-step guidelines on course planning, development and implementation involving classroom instruction and laboratory application of critical learning outcomes. Part I is concerned with the administrative aspects of the training program, Part II consists of instructional staff guidelines on technical content, learning objectives, and lesson-by-lesson guides for the self-monitoring procedures contained in this course. Included in this document are materials related to determining dissolved oxygen, pH, fecal coliform, water flow, suspended solids, and chlorine. (CS)
PROGRAM. PART II CONSISTS OF INSTRUCTIONAL STAFF GUIDELINES ON TECHNICAL CONTENT, LEARNING OBJECTIVES, AND LESSON-BY-LESSON GUIDES FOR THE SELF-MONITORING PROCEDURES CONTAINED IN THIS COURSE. INCLUDED ARE A VARIETY OF TECHNIQUES FOR DETERMINING VARIOUS MATERIALS IN WATER INCLUDING PHOSPHORUS, NITROGEN, AMMONIA, CADMIUM, OIL, AND GREASE. (CS)

TITLE
FACILITIES FOR CONTROLLING THE ACTIVATED SLUDGE PROCESS BY MEAN CELL RESIDENCE TIME

AUTHOR
BURCHETT, M.E.; TCHEBANPOULOS, G.

CORP AUTH
YODER-TROTTER-ORLOB AND ASSOCIATES, WALNUT CREEK, CALIF.

AVAIL
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 5, P 973-979, MAY 1974. 7 FIG, 6 REF.

*MEAN CELL RESIDENCE TIME.

*ACTIVATED SLUDGE, *TREATMENT FACILITIES, *CONTROL SYSTEMS, AUTOMATIC CONTROL, OPERATION AND MAINTENANCE, *WASTE WATER TREATMENT

ABSTRACT
SEVERAL METHODS NOW BEING USED BY OPERATORS TO CONTROL THE ACTIVATED SLUDGE PROCESS ARE DISCUSSED. THE USE OF THE MEAN CELL RESIDENCE TIME (MCRT) IS RECOMMENDED AS THE MOST SUITABLE OPERATIONAL CONTROL PARAMETER. THE BASIC CONCEPTS INVOLVING THE THEORETICAL AND PRACTICAL REASONS FOR CONTROLLING THE MCRT ARE DISCUSSED. THE PHYSICAL FEATURES OF A CONTROL SYSTEM DEVELOPED TO USE THIS METHOD ARE PRESENTED. THE FOLLOWING ADVANTAGES FOR THE PROPOSED CONTROL SYSTEM ARE: MINIMUM REQUIRED OPERATOR ATTENTION, INEXPENSIVE CAPITAL COSTS, MORE POSITIVE PROCESS CONTROL, AND MORE STABLE PROCESS OPERATION. (SA

TITLE
GET THE MOST FROM THE FINAL CLARIFIERS.

AUTHOR
BOYLE, W. H.

CORP AUTH
ENVIREX INC., WAUKESHA, WIS.

AVAIL
WATER AND WASTES ENGINEERING, VOL 12, NO 10, P 53-55, 82, OCTOBER, 1975. 4 FIG.

*CLARIFIERS, HYDRAULIC REMOVAL MECHANISMS, SLUDGE RETURN.

*WASTE WATER TREATMENT, *ACTIVATED SLUDGE, HYDRAULIC MACHINERY, HYDRAULICS, SLUDGE, DESIGN.

ABSTRACT
THE FINAL CLARIFIER PERFORMS ONE OF THE MOST IMPORTANT UNIT FUNCTIONS IN THE ACTIVATED SLUDGE PROCESS. THE HYDRAULIC REMOVAL MECHANISM, SOMETIMES CALLED A VACUUM OR SUCTION TYPE DEVICE, IS THE PREFERRED SLUDGE COLLECTION MECHANISM WHEN DEALING WITH A LIGHT FLOCCULANT SLUDGE. A BRIEF...
REVIEW IS PRESENTED OF THE MAIN REQUIREMENTS FOR A
HYDRAULIC REMOVAL MECHANISM WHICH ARE RAPID SLUDGE
Removal, MINIMUM SLUDGE AGITATION, MAXIMUM SOLIDS
CONCENTRATION, FLEXIBILITY, AND BALANCED HYDRAULIC
DESIGN. ONE OF THE TWO MAIN TYPES OF CIRCULAR
HYDRAULIC REMOVAL MECHANISMS IS A RECTANGULAR
TAPERED HEADER MADE OF 0.25 INCH STEEL PLATE WITH
ORIFICES DRILLED INTO THE HEADER FOR THE REMOVAL
OF SLUDGE (THE HEADER DESIGN). THE OTHER DEVICE
INTEGRATES SEVERAL WITHDRAWAL PIPES WITH THE
SLUDGE CHANNELED BY DEFLECTOR PLATES TO THESE
PIPES AND TRANSPORTED TO COLLECTION WELLS (RISER
PIPE DESIGN). THE HYDRAULIC DESIGN OF EACH OF
THESr DEVICES IS EXPLAINED. CHOICE OF HYDRAULIC
SLUDGE REMOVAL MECHANISM SHOULD BE BASED ON
PERFORMANCE, HOW THE DEVICES AFFECT THE MAIN
PROCESS REQUIREMENTS, AND AN ECONOMIC EVALUATION
OF, CAPITAL AND OPERATIONAL MAINTENANCE
EXPENDITURES. (ORR-FIRL)

TITLE
GUIDE TO WASTEWATER TREATMENT: BIOLOGICAL-SYSTEM
DEVELOPMENTS.

AUTHOR
FORD, D. L., TISCHLER, L. F.

CORP AUTH
ENGINEERING-SCIENCE, INC., AUSTIN, TX

AVAIL
CHEMICAL ENGINEERING, VOL 84, NO 17, P 131-135;
AUGUST, 1977. 2 FIG. 13 REF.

KEYWORDS
*BIOLOGICAL TREATMENT, *INDUSTRIAL WASTES,
*ACTIVATED SLUDGE, *TRICKLING FILTERS,
*BIODEGRADATION, EQUALIZING RESERVOIRS, ORGANIC
LOADING, DILUTION, SOLVENT Extractions, SUSPENDED
SOLIDS, DESIGN CRITERIA, NITRIFICATION,
FILTRATION, *WASTE WATER TREATMENT

ABSTRACT
HIGH-RATE BIOLOGICAL TREATMENT SYSTEMS SUCH AS
ACTIVATED SLUDGE, TRICKLING FILTERS, AND ROTATING
DISCS ARE REVIEWED FOR USE IN MUNICIPAL AND
INDUSTRIAL WASTE WATER TREATMENT. VARIOUS ASPECTS
OF SUSPENDED-GROWTH SYSTEMS SUCH AS THE
COMPLETELY-MIXED ACTIVATED SLUDGE PROCESS ARE
DISCUSSED, INCLUDING CONTACT STABILIZATION, SOLIDS
REMOVAL, AND EFFLUENT POLISHING, FIXED-GROWTH
SYSTEMS SUCH AS THE CONVENTIONAL TRICKLING FILTER
AND THE ROTATING BIOLOGICAL FILTER ARE DESCRIBED
AND COMPARED WITH SUSPENDED-GROWTH SYSTEMS. FLOW
EQUALIZATION AND AUXILIARY BASINS IN INDUSTRIAL
WASTE WATER TREATMENT ARE SUGGESTED TO OFFSET
PROBLEMS ASSOCIATED WITH HYDRAULIC-
AND ORGANIC-LOAD VARIATIONS TO BIOLOGICAL SYSTEMS.
PRETREATMENT WITH HYDROLYSIS IS SUGGESTED TO
ENHANCE BIODEGRADABILITY. PRE-DILUTION OF INFLUENT
STREAKS HAVING HIGH ORGANIC CONCENTRATIONS BY STREAMS HAVING LOW ORGANIC CONCENTRATIONS IS SUGGESTED TO IMPROVE OVERALL PERFORMANCE OF A BIOLOGICAL SYSTEM. STEAM OR SOLVENT STRIPPING OF INDUSTRIAL WASTE STREAMS IS RECOMMENDED TO REDUCE HIGH-ORGANIC LOADS, MINIMIZE LOADING VARIATIONS, AND REDUCE INHIBITION OF BIOLOGICAL PROCESSES BY PARTICULARLY TOXIC WASTES. INCREASING THE AMOUNT OF BIOLOGICAL SOLIDS IN THE AERATION BASIN OF SUSPENDED GROWTH SYSTEMS BY INCREASING THE SLUDGE-RECYCLE RATIO AND/OR REDUCING SLUDGE WASTAGE IS REPORTED TO PREVENT BIOLOGICAL UPSET. VARIOUS PROCESSES USED IN THE REMOVAL OF SECONDARY SOLIDS ARE DISCUSSED. DESIGN AND OPERATIONAL VARIABLES WHICH CAN AFFECT PROCESS PERFORMANCE ARE DISCUSSED, INCLUDING SLUDGE AGE, TEMPERATURE, SLUDGE BULKING, NITRIFICATION, AND ACTIVATED CARBON TREATMENT. (SCHULZ-FIRL)

TITLE

HANDBOOK FOR WATER AND WASTEWATER ANALYSIS

76

VWR SCIENTIFIC, PO BOX 3200, SAN FRANCISCO, CA 94119

*ANALYTICAL TECHNIQUES, CHEMICAL ANALYSIS, *INSTRUCTIONAL MATERIALS, *LABORATORY TECHNIQUES, *MANUALS, POST SECONDARY EDUCATION, WATER ANALYSIS

ABSTRACT

ANALYTICAL TECHNIQUES FOR USE IN WATER AND WASTEWATER LABORATORIES

TITLE

HANDBOOK OF ADVANCED WASTEWATER TREATMENT, 2ND EDITION

78

CULP, RUSSELL L.; AND OTHERS

VAN NOSTRAND/REINHOLD CO.; 300 PIKE ST, CINCINNATI, OH 45202

ABSTRACT

INCLUDED IN THIS BOOK ARE CHAPTERS ON THE PURPOSE AND BENEFITS OF ADVANCED WASTEWATER TREATMENT, CHEMICAL CLARIFICATION, RECARBONATION, FILTRATION, ACTIVATED CARBON ADSORPTION AND REGENERATION, DISINFECTION, NITROGEN REMOVAL, CHEMICAL SLUDGE
HANDLING, DEMINERALIZATION, LAND TREATMENT OF WASTEWATERS, ESTIMATING THE COSTS OF WASTEWATER TREATMENT FACILITIES AND SELECTING AND COMBINING UNIT PROCESSES. SOME OF THE TOPICS INCLUDED ARE: (1) COAGULATION, FLOCCULATION, AND SEDIMENTATION; (2) SINGLE STAGE VS TWO STAGE CARBONATION; (3) DESIGN OF FILTER SYSTEMS; (4) EVALUATION OF ACTIVATED CARBON; (5) CHLORINATION; (6) BIOLOGICAL NITROGEN REMOVAL; (7) ELECTRODIALYSIS; AND (8) ION EXCHANGE. THIS BOOK CONTAINS DESIGN EXAMPLES AND CASE HISTORIES OF OPERATING PLANTS. IT IS USEFUL AS A REFERENCE BOOK, OR A TEXT IN GRADUATE OR UNDERGRADUATE ENVIRONMENTAL ENGINEERING COURSES.

THE IMPACT OF OILY MATERIAL ON ACTIVATED SLUDGE SYSTEMS.

TITLE

COUP AUTH HYDROSCIENCE, INC., WESTWOOD, N.J.

AVAIL COPY AVAILABLE FROM GPO SUP DOC AS SN55010088, $1.25; MICROFICHE FROM NTIS AS PB-212 422, $0.95.

ENVIRONMENTAL PROTECTION AGENCY, WATER POLLUTION CONTROL RESEARCH SERIES, MARCH 1971, 110 P, 29 FIG, 10 TAB, 38 REF. EPA PROGRAM 12050 DSH 03/71.

IDEN *SPENT CRANKCASE OIL, *VEGETABLE OIL, *CRUDE OIL, REFINERY WASTE OIL, LOAD TOLERANCE.

KEYWORDS *OIL WASTES, *ACTIVATED SLUDGE, *SEWAGE TREATMENT, *WASTE WATER DISPOSAL, BIOLOGICAL TREATMENT, OIL, BIODEGRADATION, ABSORPTION, SLUDGE TREATMENT

ABSTRACT

THE PERFORMANCE OF SMALL SCALE CONTINUOUS ACTIVATED SLUDGE SYSTEMS WAS OBSERVED AFTER BEING EXPOSED TO A VARIETY OF OILY COMPOUNDS SUCH AS CRANKCASE OIL, CRUDE OIL AND VEGETABLE OIL, AT SEVERAL LOADING LEVELS. BATCH STUDIES WERE CONDUCTED TO DETERMINE BIODEGRADABILITY AND THE EFFECT OF EMULSIFICATION AND TEMPERATURE ON THE RATE OF BIOLOGICAL REACTION. OILS ARE ABSORBED ON THE FLOC AND SLOWLY DEGRADATION WHEN THEY ARE INTRODUCED INTO AN ACTIVATED SLUDGE SYSTEM. THE OIL ACCUMULATES ON THE SLUDGE CAUSING A LOSS OF DENSITY AND ACCEPTABLE SETTLING CHARACTERISTICS IF THE LOADING RATE IS HIGHER THAN THE DEGRADATION WASTAGE. THE ABILITY OF THE MICROBIAL SYSTEM TO REMOVE OTHER SUBSTRATES IS NOT INHIBITED ALTHOUGH THE BIOLOGICAL SYSTEM FAILS DUE TO THE LOSS OF SLUDGE. 0.10 POUNDS PER DAY PER POUND OF SLUDGE UNDER AERATION SHOULD BE THE MAXIMUM CONTINUOUS FEED LEVEL OF OILS TO ACTIVATED SLUDGE. SHOCK LOADS SHOULD NOT EXCEED 5% OF THE WEIGHT OF THE SLUDGE UNDER AERATION. (SMITH-TEXAS)
IS INADEQUATE SLUDGE AGE AND DISSOLVED OXYGEN CONTROL PREVENTING OPERATORS FROM GETTING THE BEST FROM THEIR ACTIVATED-SLUDGE PLANTS.

PITMAN, A. R.

WATER POLLUTION CONTROL, VOL 77, NO. 19, P 97-99, 1978. 1 FIG.

KEYWORDS

ABSTRACT

ABSTRACT

This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices, process control procedures, microorganisms and data trend chart plotting.

(Author/RH)

TITLE: INTRODUCTION TO WASTEWATER TREATMENT PROCESSES

AUTHOR: RAMALHO, R. S.

PUB DATE: 77

AVAIL: ACADEMIC PRESS, 111 FIFTH AVE., NEW YORK, NY 10003

DESC NOTE: 409P.

ABSTRACT: This book introduces fundamental processes of wastewater treatment. The text is designed to train the reader in evaluation of wastewater treatment problems so that proper processes and equipment may be selected. For each process the text provides: (1) a summary of theory involved in that process, (2) definition of important design parameters involved in the process, and (3) development of a systematic design procedure for the treatment plant. Every step of this sequence is illustrated with numerical examples. (CS)

TITLE: LABORATORY CONTROL FOR WASTEWATER FACILITIES

WASTEWATER TECHNOLOGY: A TWO-YEAR POST HIGH SCHOOL INSTRUCTIONAL PROGRAM. VOLUME III; PARTS A, B, C, D, E, F, G.

AUTHOR: WAGNER, DAVID; AND OTHERS

PUB DATE: JUL 76

ERIC NO.: ED148582
THIS VOLUME IS ONE IN A SERIES WHICH OUTLINES PERFORMANCE OBJECTIVES AND INSTRUCTIONAL MODULES FOR A COURSE OF STUDY WHICH EXPLAINS THE RELATIONSHIP AND FUNCTION OF THE PROCESS UNITS IN A WASTEWATER TREATMENT PLANT. EXAMPLES OF MODULES INCLUDE MEASURING SETTLEABLE MATTER, TOTAL SOLIDS, DISSOLVED SOLIDS, SUSPENDED SOLIDS, AND VOLATILE SOLIDS. THE MODULES ARE ARRANGED IN AN ORDER APPROPRIATE FOR TEACHING STUDENTS WITH NO EXPERIENCE. THEY CAN ALSO BE REARRANGED AND ADAPTED FOR COURSES TO UPGRADE PERSONNEL MOVING INTO SUPERVISORY POSITIONS OR DESIGNED AS A MINICOURSE. EACH MODULE CONTAINS A STATEMENT OF PURPOSE, OBJECTIVES, CONDITIONS, ACCEPTABLE PERFORMANCE, INSTRUCTOR ACTIVITY AND STUDENT ACTIVITY. THE TASKS ARE ORGANIZED IN THE GENERAL CATEGORIES: NORMAL OPERATIONS, ABNORMAL OPERATIONS, PREVENTIVE MAINTENANCE, CORRECTIVE MAINTENANCE, LABORATORY CONTROL, SYSTEMS INTERACTION, AND MANAGEMENT/SUPERVISORY PROCEDURES. INCLUDED IN THIS VOLUME ARE 29 MODULES. THE MODULES ARE DESIGNED TO TEACH THE STUDENT LABORATORY PROCEDURES FOR ANALYZING VARIOUS POLLUTANTS AND VARIABLES RELATED TO WASTEWATER. MOST STANDARD TESTS ARE INCLUDED.

INSTITUTION: CHARLES COUNTY COMMUNITY COLLEGE, LA PLAIA, MD.; CLEMSON UNIVERSITY, S.C.; GREENVILLE TECHNICAL COLLEGE, S.C.; LINN-BENTON COMMUNITY COLLEGE, ALBANY, OREG.

TITLE: MANUAL FOR ACTIVATED SLUDGE SEWAGE TREATMENT.

AUTHOR: GOODMAN, B. L.

PUB DATE: 71

AVAIL: TECHNOMIC PUBLISHING CO., INC., 265 WEST STATE STREET, WESTPORT, CT 06880

DESC: *ACTIVATED SLUDGE, ENVIRONMENTAL TECHNICIANS, INSERVICE EDUCATION, INSTRUCTIONAL MATERIALS, MANUALS, POST SECONDARY EDUCATION, SLUDGE, WASTE DISPOSAL, WASTEWATER TREATMENT, WATER POLLUTION CONTROL

DESC NOTE: 204P.

ABSTRACT: STEP BY STEP EXPLANATION OF THE PROCESS, FROM BASICS TO FINE POINTS OF ADVANCED WASTEWATER TREATMENT METHODS.
TITLE MANUAL OF INSTRUCTION FOR SEWAGE TREATMENT PLANT OPERATORS.

PUB DATE 65

AVAIL HEALTH EDUCATION SERVICE, PO BOX 7283, ALBANY, NY 12224 ($2.00)

DESC NOTE 243P.

ABSTRACT PREPARED FOR GRADE 2 OPERATORS, WRITTEN PRIMARILY AS A TEXT TO BE USED IN CONJUNCTION WITH TRAINING COURSE. HEAVILY NARRATIVE, AVOIDS OVERLY TECHNICAL TREATMENT, AND PRESENTS MATERIAL CONCISELY, APPENDICES SUPPORT BACKGROUND MATERIAL (EG ARITHMETIC, CHEMISTRY, BACTERIOLOGY, ETC).

TITLE MANUAL OF INSTRUCTION FOR WASTE TREATMENT PLANT OPERATORS.

AVAIL HEALTH EDUCATION SERVICE, PO BOX 7283, ALBANY, NY 12224 ($2.00)

DESC NOTE 308P.

ABSTRACT THIS MANUAL IS INTENDED TO BE A TEXTBOOK FOR A WASTE TREATMENT OPERATORS COURSE. IT CONTAINS CHAPTERS ON THE PURPOSE OF WATER TREATMENT, WATER SOURCES AND USES, HYDRAULICS AND ELECTRICITY, WATER CHEMISTRY, MICROBIOLOGY, WATER QUALITY, CHEMICAL COAGULATION, SEDIMENTATION, FILTRATION, CHLORINATION, SOFTENING, AERATION, IRON AND MAGNESIUM, TASTE AND ODOR CONTROL, CORROSION, FLUORIDATION, PROTECTION OF TREATED WATER, RECORDS AND REPORTING, TREATMENT PLANT MAINTENANCE AND ACCIDENT PREVENTION, MATHEMATICS, AND LABORATORY EXAMINATION OF WATER. THE MANUAL SHOULD BE UNDERSTANDABLE TO THE AVERAGE PLANT OPERATOR WITH A HIGH SCHOOL EQUIVALENT BACKGROUND. EXTREMELY TECHNICAL MATERIAL HAS BEEN AVOIDED. (BB)

TITLE A MANUAL OF SIMPLIFIED LABORATORY METHODS FOR OPERATORS OF WASTEWATER TREATMENT FACILITIES.

AUTHOR WESTERHOLD, ARNOLD F., ED.; BENNETT, ERNEST C., ED
This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses in accordance with standard methods. Each of the sections is designed to be complete within itself. The tests and measurements presented include: acids, biochemical oxygen demand (BOD); dissolved oxygen; residues; sludge, and suspended solids. (CS)

INSTITUTION NAME: ILLINOIS STATE ENVIRONMENTAL PROTECTION AGENCY, SPRINGFIELD.

TITLE: THE MATHEMATICS OF ACTIVATED SLUDGE CONTROL.

AUTHOR: BROWN, WARREN R.

AVAIL: JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL 42, NO. 7, P 1292-1304, JULY 1970. 1 FIG., 1 TAB.

KEYWORDS: *MATHEMATICAL MODEL, *ACTIVATED SLUDGE, *CONTROL, SLUDGE, KINETICS, DESIGN.

THE EFFLUENT WEIR AND THROUGH THE SOLIDS DISPOSAL SYSTEM. NUMERICAL EXAMPLES SHOW THESE COMPUTATIONS FOR CONVENTIONAL, STEP FEED, HIGH RATE AND MULTIPLE STEP OPERATIONS OF AN HYPOTHETICAL PLANT. ASSUMED PLANT DESIGN IS FOR AN 18-MGD FLOW. THE PLANT LAYOUT INCLUDES FOUR AERATION TANKS, MIXED LIQUOR CHANNEL AND RETURN ACTIVATED SLUDGE CHANNEL, AND FOUR SECONDARY SEDIMENTATION BASINS.

TITLE
MAXIMIZING PHOSPHORUS REMOVAL IN ACTIVATED SLUDGE.

AUTHOR
ELLIOTT, W. R.; RIDING, J. T.; SHERARD, J. H.

PUB. DESC.
WATER AND SEWAGE WORKS, VOL 125, NO 3, P 88-92, MARCH, 1978. 38 REF.

ABSTRACT
IMPROVING PHOSPHORUS REMOVAL IN ACTIVATED SLUDGE BY MICROBIAL GROWTH, EXCESS UPTAKE, AND CHEMICAL PRECIPITATION WAS DISCUSSED IN A REVIEW OF PUBLISHED EXPERIMENTAL DATA AND ON-SITE TESTS IN WASTE WATER TREATMENT PLANTS. LABORATORY DATA ON MICROBIAL UPTAKE IDENTIFIED THE C:P RATIO AS A LIMITING FACTOR IN PHOSPHORUS REMOVAL; THE HIGHER COD:P RATIO PROVIDED MORE OF THE STOICHIOMETRIC REQUIREMENT. VARIATIONS IN MEAN CELL RESIDENCE TIME AFFECTED PHOSPHORUS REMOVAL, ALTHOUGH THE AVERAGE SLUDGE PHOSPHORUS CONTENT OF 2-3% BY WEIGHT WAS NOT SIGNIFICANTLY IMPROVED. ENHANCED PHOSPHORUS REMOVAL WAS ACHIEVED IN PLUG FLOW REACTORS WITH DISSOLVED OXYGEN CONTROL AT PH6; ANAEROBIC CONDITIONS WERE AVOIDED BY ADEQUATE SLUDGE REMOVAL. BATCH STUDIES ON EXCESS UPTAKE DEMONSTRATED THAT 80% REMOVAL OCCURRED FOR A LOW PHOSPHATE CONCENTRATION, 5 mg/liter, IN THE PRESENCE OF A HIGH MICROBIAL POPULATION. THE PRESENCE OF Na(+) AND K AND THE RATE OF AERATION WERE CITED AS LIMITING FACTORS IN EXCESS PHOSPHORUS UPTAKE. FULL-SCALE STUDIES VERIFIED THAT PHOSPHORUS WAS RELEASED INTO THE EFFLUENT STREAM UNDER ANAEROBIC CONDITIONS. PRECIPITATION WITH CaCO3 RESULTED IN HYDROLYSIS OF PHOSPHATES AT THE HEAD OF THE AERATION TANK, DECREASED CO2
GENERATION, AND THE FORMATION OF CALCIUM PHOSPHATE SLUDGE. THE OPTIMUM CONDITIONS FOR PHOSPHORUS REMOVAL IN A PLUG FLOW SYSTEM WERE CONCLUDED TO BE: PH 7.5-8.5 LESS THAN 350 MG/LITER CACO3, AND 24 MG/LITER MG(++) (LISK-FITR).

Title
THE METAZOA OF WASTE TREATMENT PROCESSES—ROTIFERS.

Author
CALAWAY, W. T.

Corp Author
FLORIDA UNIV., GAINESVILLE.

Availability
JOURNAL OF WATER POLLUTION CONTROL FEDERATION, VOL 40, NO 11, PART 2, P R412-R422, NOV. 1968. 3 FIG, 0 TAB, 23 REF.

Abstract
DIFFERENT WASTE WATER TREATMENT PROCESSES DEVELOP DIFFERENT CHARACTERISTICS FAUNA. THE ACTIVATED SLUDGE PROCESS COMMONLY SUPPORTS ROTIFERS AS ITS PRINCIPAL METAZOA. TRICKLING FILTERS SUPPORT POPULATIONS OF ROTIFERS, ROUND WORMS, AND ANNEILDS, AND THE METAZOA OF LAGOONS VERY WIDELY. ALTHOUGH THE METAZOA SOMETIMES CAUSE TREATMENT PROBLEMS THEY CONSUME LARGE AMOUNTS OF BACTERIA AND SOLIDS AND THEREFORE ARE GENERALLY HELPFUL IN TREATMENT. THEY ALSO BREAK UP BIOLOGICAL MASSES AND EXPOSE NEW AREAS TO OXYGEN. THE ROTIFERS AID IN KEEPING AN ACTIVELY GROWING BACTERIAL POPULATION BY CONSUMING BACTERIA AND THEREBY ENCOURAGING REPLACEMENT GROWTH. BY CONSUMING UNFLOCCULATED BACTERIA, THE ROTIFERS CONTRIBUTE TO CLEAVER EFFLUENCE. THEIR SECRETION CAN ALSO CONTRIBUTE TO FLOCCULATION OF SUSPENDED MATERIALS. THE BDELLOID ROTIFERS DOMINATE AS PROCESS STABILITY IS APPROACHED. (DIFILIPPO—TEXAS)
This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation of plankton are compared with the results of microscopic examination in an extensive practical exercise. Problems of significance and control are also considered.

(AUTHOR/BB)

Title: Operation of Wastewater Treatment Plants: A Home Study Training Program.

Author: Kerri, K., Ed.

Pub Date: 70

Avail: Department of Civil Engineering, California State University at Sacramento, 6000 JAY STREET, SACRAMENTO, CA 95819

Desc Note: 1317p. Revised annually; also available on ERIC microfiche ED150008.

Abstract: Written by experienced operators with the intent of providing operators with the information they need to know to operate their plants as efficiently as possible. Operators, persons interested in becoming operators, and persons interested in the operation of treatment plants will find valuable info in the manual. Topics covered include description of plants, racks, screens, comminutors, grit removal, sedimentation, trickling filters, activated sludge, sludge digestion and handling, ponds, chlorination, maintenance, safety, math, lab, record.

Title: Operational Control Procedures for the Activated Sludge Process: Appendix.

Author: West, Alfred W.

Pub Date: MAR 74
This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability plot examples, testing equipment and symbols and terminology. (CS)

Author: West, Alfred W.

Pub Date: May 74

ERIC No. ED156469

EDRS Price MF-$0.83 HC-$2.06 Plus Postage.

Desc Note: 31P.; for related documents, see SE 024 422-424; contains occasional light type; photographs may not reproduce well.

Issue: RINOV78

Abstract: This is the first in a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Part I of this document deals with physical observations which should be performed during each routine control test. Part II discusses the control tests that are used to directly identify process performance and to dictate process control adjustments. Included are
CENTRIFUGE TESTS, EFFLUENT TURBIDITY TESTS AND DISSOLVED OXYGEN TESTS. (CS)

TITLE OPERATIONAL CONTROL PROCEDURES FOR THE ACTIVATED SLUDGE PROCESS, PART III-A: CALCULATION PROCEDURES.

AUTHOR WEST, ALFRED W.

PUB DATE DEC 73

ERIC NO. ED156470

EDRS PRICE EDRS PRICE MF-$0.83 HC-$3.50 PLUS POSTAGE.

DESC NOTE 56P., FOR RELATED DOCUMENTS, SEE SE 024 421-424

ISSUE RIENOV78

ABSTRACT THIS IS THE SECOND IN A SERIES OF DOCUMENTS DEVELOPED BY THE NATIONAL TRAINING AND OPERATIONAL TECHNOLOGY CENTER DESCRIBING OPERATIONAL CONTROL PROCEDURES FOR THE ACTIVATED SLUDGE PROCESS USED IN WASTEWATER TREATMENT. THIS DOCUMENT DEALS EXCLUSIVELY WITH THE CALCULATION PROCEDURES, INCLUDING SIMPLIFIED MIXING FORMULAS, AERATION TANK CHARACTERISTICS, ORGANIC LOADING AND PURIFICATION PRESSURES, CLARIFIER SLUDGE FLOW DEMAND, AND MIXING FORMULA DEVELOPMENT. (CS)

TITLE OPERATIONAL CONTROL PROCEDURES FOR THE ACTIVATED SLUDGE PROCESS, PART III-B: CALCULATION PROCEDURES FOR STEP-FEED PROCESS RESPONSES AND ADDENDUM NO. 1.

AUTHOR WEST, ALFRED W.

PUB DATE FEB 75

ERIC NO. ED156471

EDRS PRICE EDRS PRICE MF-$0.83 HC-$2.06 PLUS POSTAGE.

DESC NOTE 44P., FOR RELATED DOCUMENTS, SEE SE 024 421-424

ISSUE RIENOV78

ABSTRACT THIS IS THE THIRD IN A SERIES OF DOCUMENTS DEVELOPED BY THE NATIONAL TRAINING AND OPERATIONAL TECHNOLOGY CENTER DESCRIBING OPERATIONAL CONTROL PROCEDURES FOR THE ACTIVATED SLUDGE PROCESS USED
IN WASTEWATER TREATMENT, THIS DOCUMENT DEALS WITH THE CALCULATION PROCEDURES ASSOCIATED WITH A STEP FEED PROCESS. ILLUSTRATIONS AND EXAMPLES ARE INCLUDED TO EMPHASIZE HOW THE ACTIVATED SLUDGE PROCESS REACTS TO CHANGES IN WASTEWATER FEED-POINT LOCATIONS. THE SUMMARY ILLUSTRATES THE TYPES OF CHANGES THAT OCCUR WHEN A PLUG-FLOW SYSTEM IS SWITCHED TO VARIOUS STEP-FEED COMBINATIONS. (CS)

TITLE
OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS - PART I (XT-40).

AUTHOR
WEST, A. W.

PUB DATE
71

DESC

DESC NOTE
INCLUDED IS A 16 MINUTE TAPE, 51 SLIDES, ALSO A SCRIPT. AVAILABLE ON LOAN FROM NTOTC, 26 W ST. CLAIR, CINCINNATI, OHIO 45268

ABSTRACT
THIS MODULE IS DESIGNED FOR WASTEWATER WORKS OPERATORS WHO WISH TO UPGRADE PLANT PERFORMANCE AND TO INCREASE THEIR OWN KNOWLEDGE AND SKILLS. THIS IS PART ONE OF A THREE-PART LESSON SERIES ON OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS. ENTITLED "OBSERVATIONS." THIS FIRST PART IS CONCERNED WITH THE ACCURATE READING OF METERS AND WITH THE VISUAL OBSERVATIONS TO BE MADE BOTH AT THE AERATOR (FOAM CHARACTERISTICS, SLUDGE, COLOR, AND ODOR) AND AT THE FINAL CLARIFIERS (CLARITY, EVIDENCES OF BULKING AND OF SEPTIC SOLIDS). PROVISIONAL INTERPRETATIONS TO BE MADE OF THESE VISUAL OBSERVATIONS ARE PRESENTED, AND THE EFFECTIVE USE OF A SLUDGE BLANKET FINDER IS DISCUSSED IN DETAIL. (AUTHOR/JK)

TITLE
OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS - PART II (XT-41).

AUTHOR
WEST, A. W.

PUB DATE
71

DESC

DESC NOTE
INCLUDED IS A 17 MINUTE TAPE, 47 SLIDES AND A SCRIPT. AVAILABLE ON LOAN FROM NTOTC, 26 W ST. CLAIR, CINCINNATI, OHIO 45268

149
PERFORMANCE AND TO INCREASE THEIR OWN KNOWLEDGE AND SKILLS. THIS IS PART TWO OF A THREE-PART LESSON SERIES ON OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS. THIS PART IS A DETAILED DISCUSSION OF THE PREFERRED TECHNIQUES INVOLVED IN CONDUCTING SETTLOMETER TESTS TO DETERMINE SETTLING CHARACTERISTICS AND IN CENTRIFUGING SAMPLES TO DETERMINE THE CONCENTRATION OF MIXED LIQUOR AND RETURN SLUDGE. HANDLING THE RELATED SAMPLES IS INCLUDED ALONG WITH PROVISIONAL INTERPRETATIONS AND APPLICATIONS OF THE TESTS. (AUTHOR/JK)

TITLE
OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS - PART III (XI-42).

AUTHOR
WEST, A. W.

PUB DATE
71

DESC

DESC NOTE
INCLUDED IS A 22 MINUTE TAPE, 67 SLIDES, AND A SCRIPT. AVAILABLE—ON LOAN FROM NTOTC, 26 W. ST. CLAIR, CINCINNATI, OHIO 45268

ABSTRACT
THIS MODULE IS DESIGNED FOR EXPERIENCED WASTEWATER WORKS OPERATORS WHO WISH TO UPGRADE PLANT PERFORMANCE AND TO INCREASE THEIR OWN KNOWLEDGE AND SKILLS. THIS IS PART THREE OF A THREE-PART LESSON SERIES ON OPERATIONAL CONTROL TESTS FOR THE ACTIVATED SLUDGE PROCESS. THIS CONCLUDING PART PRESENTS DEVELOPMENT OF SETTLING AND CONCENTRATION CURVES FROM SETTLOMETER AND CENTRIFUGE TESTS: RESULTS, TECHNIQUES FOR CONDUCTING TURBIDITY TESTS AS WELL AS THE SIGNIFICANCE OF TURBIDITY RESULTS, A SUMMARY OF ALL THE TESTS PRESENTED IN THE THREE-PART SERIES, THE CONTROL ADJUSTMENTS WHICH ARE MADE ON THE BASIS OF THESE TEST RESULTS, AND PROGRESSIVE TREND CHARTS OF PROCESS CHARACTERISTICS. (AUTHOR/JK)

TITLE
OXYGEN ACTIVATED SLUDGE CONSIDERATIONS FOR INDUSTRIAL APPLICATIONS.

AUTHOR
ADAMS, C. E.; JR.; ECKENFELDER, W. W., JR.; KOON, J. H.; SHELBY, S. E.

CORP AUTH
WARE, INC., NASHVILLE, TN.

PUB DESC
AVAILABLE FROM COPYRIGHT CENTER, INC.; NEW YORK, NY AS 0065-8812-78-9754-0178 ($0.95). IN: WATER—1977, AIChE SYMPOSIUM SERIES, VOL 74, NO 178, EDITED BY G. F. BENNETT, P 93-101, 1978, 9 FIG, 6 REF.
A NUMBER OF FACTORS ARE DISCUSSED WHICH MUST BE EVALUATED WHEN ASSESSING THE RELATIVE MERITS OF AIR OXYGENATED VERSUS PURE OXYGEN ACTIVATED SLUDGE SYSTEMS FOR INDUSTRIAL USE. ORGANIC REMOVAL KINETICS MAY PLAY A MORE IMPORTANT ROLE IN TREATING INDUSTRIAL WASTES THAN MUNICIPAL WASTES BECAUSE OF THEIR HIGH STRENGTH. IT IS SHOWN THAT A HIGHER DISSOLVED OXYGEN LEVEL IN THE AERATION BASIN WILL RESULT IN A HIGHER RESISTANCE TO ORGANIC SHOCK LOADINGS AND A MORE AEROBIC FLOC. A HIGHER TEMPERATURE BECAUSE OF THE ENCLOSURE OF THE AERATION BASIN IS AN ADVANTAGE OF THE PURE OXYGEN SYSTEM, ESPECIALLY IN COLD CLIMATES. EQUILIBRIUM OF THE AERATION BASIN PH CAN BE A PROBLEM WITH THE PURE OXYGEN SYSTEM BECAUSE IT INTAILS A SLIGHTLY LOWER PH. WITH HIGHLY ACIDIC INDUSTRIAL WASTE WATERS IT MAY BE DIFFICULT TO MAINTAIN PH TO AN ACCEPTABLE RANGE BETWEEN 6.5 AND 7.5. ALSO, THE ENCLOSED OXYGEN SYSTEM MAY RESULT IN DIFFICULTIES BY RETAINING VOLATILE ORGANICS WHICH CAN INHIBIT THE SYSTEM. PURE OXYGEN SYSTEMS ARE PREFERABLE TO AIR OXYGEN SYSTEMS FOR CONTROL OF ODORS AND SUSCEPTIBILITY TO SHOCK LOADINGS. ANOTHER FACTOR TO BE CONSIDERED IS MIXED LIQUOR VOLATILE SUSPENDED SOLIDS CONCENTRATIONS WHICH CAN BE HANDLED EFFECTIVELY BY BOTH SYSTEMS IF THEY ARE PROPERLY DESIGNED; HOWEVER, THE PURE OXYGEN SYSTEM DOES HAVE THE ADVANTAGE OF BEING ABLE TO SUPPLY SUFFICIENT OXYGEN TO MAINTAIN RELATIVELY HIGH MIXED LIQUOR OR SOLIDS LEVELS WITHOUT REQUIRING USE OF HIGH POWER LEVELS WHICH WOULD PROMOTE BREAK-UP OF FLOC PARTICLES. ECONOMICALLY, A PURE OXYGEN SYSTEM COSTS MORE TO CONSTRUCT BUT MAY OFFER SUBSTANTIAL SAVINGS IN OPERATING COSTS BASED MOSTLY ON THE POWER REQUIREMENTS TO ACHIEVE THE NECESSARY DISSOLVED OXYGEN CONCENTRATION. (SEE ALSO W79-00342) (MAJENYI-IPA)
ABSTRACT

The performance of a 38 m-diam circular center-feed clarifier was evaluated under varying conditions of hydraulic and solids loading at an activated sludge treatment facility in Chicago, Illinois. Limiting the effluent flow to 0.66 cu m/sec with a 30% return rate allowed a maximum solids loading rate for efficient clarification of 146 kg/sq m/day at a mixed liquor concentration of 2,500 mg/liter. Higher flow rates were possible when the mixed liquor content was decreased. A higher solids loading rate was accommodated by the clarifier when the hydraulic loading rate was maintained below 0.83 cu m/sec, verifying the dependence of solids loading on hydraulic load. An increase in the thickness of the sludge blanket, occurring at hydraulic loading in excess of 0.83 cu m/sec at a 30% return, threatened the solids separation efficiency of the clarifier. Sludge blanket level, solids settleability, and hydraulic loading reportedly had a greater impact on clarifier solids separation performance than shock hydraulic loading. The actual maximum solids loading rate was significantly lower than the theoretical maximum. (Lisk-Firll)
ABSTRACT

This manual was developed for use at workshops designed to upgrade the knowledge of experienced wastewater treatment plant operators. Each of the sixteen lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: sewage characteristics; collection, treatment, and sedimentation; aerobic and anaerobic digestion; sampling and interpretation; monitoring and control; and selected tests.

TITLE

PROCESS CONTROL BY OXYGEN-UPTAKE AND SOLIDS ANALYSIS

AUTHOR

BENEFIELD, L. D.; RANDALL, C. M.; KING, P. H.

CORP AUTH.

MISSISSIPPI STATE UNIV., MISSISSIPPI STATE DEPT. OF CIVIL ENGINEERING

AVAIL

JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL. 47, NO. 10, P 2498-2503, OCTOBER, 1975

KEYWORDS

OXYGEN, SOLIDS, CONTACT PROCESSES, WASTE WATER TREATMENT, ACTIVATED SLUDGE, ANALYSIS, SLUDGE TREATMENT, MICROORGANISM, MATHEMATICS, CONTROL SYSTEMS

ABSTRACT

The most common methods used by plant operators to control the activated sludge process are discussed. The theoretical basis for another method having certain advantages over the others was studied. Four control methods in common use are: sludge wasting to maintain a constant mass of organisms in the system; sludge wasting to maintain a constant specific rate of substrate utilization; sludge wasting to maintain a constant sludge age; and hydraulic control to maintain a constant sludge age. The last two, in which the sludge age is kept constant, are the most favorable ones. The major weakness in these methods is the continual shifting in the solids balance between the aeration tank and the clarifier as the influent flow rate deviates. A new method is proposed in which the solids
SEPARATE AT A RATE SUCH THAT THE SOLIDS CONCENTRATION IS MAINTAINED IN THE SLUDGE RETURN LINES AND NO MICROBIAL GROWTH OCCURS IN THE SECONDARY CLARIFIER. ADVANTAGES OF THIS METHOD INCLUDE: THE EFFECT OF THE FLUCTUATING SOLIDS LEVEL IN THE SECONDARY CLARIFIER IS MINIMIZED; ANY CHANGE IN THE INFLOW SUBSTRATE CONCENTRATION WILL BE REFLECTED IMMEDIATELY IN THE OXYGEN UPTAKE RATE; AND LOADING FLUCTUATIONS CAN BE COMPENSATED FOR BY VARYING THE INTERVAL BETWEEN CONTROL PERIODS. DISADVANTAGES OF THIS METHOD INCLUDE: THE REQUIREMENT FOR A LABORATORY STUDY TO DETERMINE CHANGES IN THE CONSTANTS; MORE OPERATOR ATTENTION THAN IS REQUIRED IN THE HYDRAULIC METHOD FOR CONTROLLING SLUDGE AGE; AND MATHEMATICAL MANIPULATIONS ARE REQUIRED THAN IN ANY OTHER OF THE METHODS. (PINTO-FIRL)
This module is designed for experienced wastewater works operators who wish to upgrade plant performance and to increase their own knowledge and skills. One of a series, this module presents the derivation of mixing formula that will be used in subsequent sections to develop the return sludge flow demand formula used in operational control of an activated sludge process. A schematic is used to illustrate components of the formula and to develop a final mass balance ratio of return sludge concentration to mixed liquor concentration in terms of clarifier sludge percentage. Simple mixing formulas are then derived for each of the three factors along with example calculations. (Author/ JK)

This manual attempts to describe new treatment methods and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations; flow equalization; headworks components; clarification of raw wastewater; activated sludge; package plants; fixed growth systems; wastewater treatment ponds; filtration and microscreening; physical-chemical treatment, nutrient removal; sludge and process sidestream handling; disinfection and postaeration; operation and maintenance, and cost effectiveness. A glossary is also included. (Author/BB)
ROLE OF ACTIVATED SLUDGE FINAL SETTLING TANKS

DICK, RICHARD I.

ILLINOIS UNIV., URBANA. DEPT. OF CIVIL ENGINEERING.

IDEN

*THICKENING, *FINAL SETTLING TANK, *FLUX RATE, *CLARIFICATION, SUSPENDED SOLIDS.

KEYWORDS

*ACTIVATED SLUDGE, *SEWAGE TREATMENT, *SEDIMENTATION, *WASTE WATER TREATMENT.

ABSTRACT

ABSTRACT

Provided is information on the basic principles of the processes of sewage treatment, especially as it relates to the chemistry of sewage treatment. The text discusses the nature of sewage and chemical analysis and then proceeds through the treatment processes to final disposal. The last chapters deal with current trends in the field of water pollution control and with chemical calculations. Conversion tables for British metric units are included in the appendix.

TITLE

SEWAGE TREATMENT PLANT DEPENDABILITY WITH SPECIAL REFERENCE TO THE ACTIVATED SLUDGE PROCESS.

AUTHOR

WEST, A. W.

CORP AUTH

NATIONAL FIELD INVESTIGATIONS CENTER - CINCINNATI, OHIO.

AVAIL

AVAILABLE FROM THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161, AS PB-231 070, $3.25 IN PAPER COPY, $2.25 IN MICROFICHE, MARCH, 1971. 12 P.

KEYWORDS

ABSTRACT

This work is a reference for sewage treatment plant dependability lectures presented at training sessions, symposia, and workshops. Design considerations necessary to achieve consistently satisfactory plant performance and final effluent quality include the proper treatment processes, a generous plant capacity, essential flexibility, and true controllability of the plant. The treatment process or modification most appropriate to the known waste characteristics and effluent quality requirements should be chosen. Examples include the classic activated sludge process, the complete mix modification and the step aeration modification. Pilot studies on bench, pilot, or demonstration scale may be performed to resolve uncertainties about the correct process to choose. The suggestions contained in design criteria manuals such as the "to-States Standards" should be considered as minimum requirements needed to provide adequate safety factors to assure plant dependability. Items discussed under flexibility of a plant include: process; aeration tanks; final clarifiers; return sludge pumping facilities; excess sludge wasting; emergency
CHEMICAL TREATMENT; SLUDGE HANDLING FACILITIES; EQUALIZING TANKS; AND HOLDING PONDS. THE ACTIVATED SLUDGE SYSTEM IS A CONTROLLABLE PROCESS THAT SHOULD HAVE THE APPROPRIATE METERS AND ACCURATELY CONTROLLABLE GATES, VALVES, PUMPS, AND BLOWERS FOR OPTIMUM PERFORMANCE. QUALIFIED OPERATORS ARE NEEDED TO ACHIEVE THE HIGH QUALITY EFFLUENT THAT CAN BE PRODUCED BY A PROPERLY DESIGNED WASTE TREATMENT PLANT; DEDICATED, EXPERIENCED OPERATORS ARE NEEDED EVEN MORE AT PLANTS WHICH HAVE DESIGN DEFECTS. (ORR-FIRL).

TITLE
START-UP MUNICIPAL WASTEWATER TREATMENT FACILITIES.

AUTHOR
RADAR, R. D.; GREEN, R. L.; PAGE, G. L., JR.

WILEY AND WILSON, INC., LYNCHBURG, VA

AVAIL
FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON, D.C. 20402

IDENT PROCEDURES, PROCESS, SEED SLUDGE, STAFFING, STANDARD OPERATING PROCEDURES, SITE MEETINGS, INVENTORY - INSPECTION PRETESTING, OPERATOR TRAINING, SETTLEABLE SOLIDS, TOTAL SOLIDS, VOLATILE SOLIDS, VOLATILE ACIDS, MIXED LIQUOR SUSPENDED SOLIDS.

KEYWORDS
*ADMINISTRATIVE DECISIONS, *TREATMENT FACILITIES, *WASTE WATER TREATMENT, *OPERATIONS, *LABORATORY TESTS, *SAMPLING, TESTING, ANALYSIS, CONTROLS, ACTIVATED SLUDGE, TRICKLING FILTER, OXIDATION LAGOONS, ANAEROBIC DIGESTION, SAFETY, CHLORINATION, SUSPENDED SOLIDS, HYDROGEN ION CONCENTRATION, ALKALINITY, BIOCHEMICAL OXYGEN DEMAND, CHEMICAL OXYGEN DEMAND, PRE-TREATMENT (WATER), SEWAGE TREATMENT.

ABSTRACT
THIS MANUAL PROVIDES GUIDANCE FOR PUTTING INTO INITIAL OPERATION MUNICIPAL WASTEWATER TREATMENT PLANT, A NEW ADDITION TO AN EXISTING TREATMENT PLANT, OR A CHANGE IN THE MODE OF THE TREATMENT PLANT'S OPERATION SO THAT THE TREATMENT PLANT OR PROCESS WILL EFFECTIVELY TREAT THE WASTEWATER IN COMPLIANCE WITH SPECIFIC CONDITIONS AND LIMITATIONS ESTABLISHED FOR TREATMENT FACILITY. THE MANUAL WAS DEVELOPED AND PREPARED WITH THE AID AND COOPERATION OF WASTEWATER TREATMENT PLANT OPERATORS AND SUPERINTENDENTS, START-UP EXPERTS, THE ACADEMIC COMMUNITY, MANUFACTURERS AND

UPGRADING BIOLOGICAL TREATMENT (XT-25).

WEST, A. W.

AUG 71

INCLUDED IS A 28 MINUTE TAPE AND 63 SLIDES, ALSO A SCRIPT. AVAILABLE ON LOAN FROM NTOTC, 26 W. ST. CLAIR, CINCINNATI, OHIO 45268

THIS MODULE IS DESIGNED FOR EXPERIENCED AND SUPERVISORY WASTEWATER WORKS OPERATORS AND MANAGERIAL PERSONNEL, AND SHOULD ALSO BE OF INTEREST TO DESIGN ENGINEERING PERSONNEL. IT DISCUSSES WAYS TO GET MAXIMUM USE OF PRESENT EXISTING SECONDARY TREATMENT PROCESSES BY IMPROVED OPERATIONAL CONTROL OF DESIGN. IT INCLUDES CASE HISTORIES OF HOW THE POLLUTIONAL STRENGTH OF AN ACTIVATED SLUDGE PLANT EFFLUENT WAS REDUCED TO ONE-QUARTER OF ITS FORMER STRENGTH AT ONE LOCATION, AND HOW TRICKLING FILTER PRETREATMENT WITH ACTIVATED SLUDGE POLISHING ACCOMPLISHED 99% REDUCTION FOR A COMBINATION OF DOMESTIC SEWAGE AND STRONG MEAT PACKING WASTES AT ANOTHER. (AUTHOR/JK)

USE OF HIGH-PURITY OXYGEN IN THE ACTIVATED SLUDGE PROCESS, VOLUME I.

MCHIRTER, J. R.
USE OF HIGH-PURITY OXYGEN IN THE ACTIVATED SLUDGE PROCESS, VOLUME 2.

AUTHOR: McWHIRTER, J. R.

PUB DATE 78
AVAIL CRC PRESS, INC., 2255 PALM BEACH LAKES BLVD., WEST PALM BEACH, FL 33409

DESC NOTE 250P. CAT. NO. 5101EF32
CONSTITUTES A COMPREHENSIVE SOURCE OF BACKGROUND AS WELL AS CURRENT-DAY TECHNOLOGY STATUS REGARDING THE USE OF OXYGEN IN SECONDARY WASTEWATER TREATMENT. DIVIDED INTO THREE BASE PARTS, THE FIRST SECTION CONSISTS OF BACKGROUND AND HISTORICAL INFORMATION, THE SECOND DEALS WITH CURRENT-DAY DESIGN AND APPLICATIONS, THE LAST IS ON PRESENT-DAY EXPERIENCE AND OPERATIONAL INFORMATION FROM OXYGENATION SYSTEMS CURRENTLY IN OPERATION AND UNDER DESIGN.

TITLE WASTEWATER ENGINEERING: COLLECTION, TREATMENT, DISPOSAL

AUTHOR: McWHIRTER, J. R.

PUB DATE 72
AVAIL MCGRAW-HILL BOOK COMPANY, 1221 AVENUE OF THE AMERICAS, NEW YORK, NY 10020

DESC NOTE 782P. (NO. 041675-3); SOLUTION MANUAL (NO. 041676-1)
ABSTRACT INCLUDES: DEVELOPMENT AND TRENDS IN WASTEWATER ENGINEERING; DETERMINATION OF SEWAGE FLOWS; HYDRAULICS OF SEWERS; DESIGN OF SEWERS; PUMPS AND PUMPING STATIONS; WASTEWATER CHARACTERISTICS; PHYSICAL UNIT OPERATIONS; CHEMICAL UNIT PROCESSES; DESIGN OF FACILITIES FOR: PHYSICAL AND CHEMICAL
TREATMENT OF WASTEWATER, FOR BIOLOGICAL TREATMENT, DISPOSAL OF SLUDGE AND MORE.

WASTEWATER TREATMENT - SERIES C.
NEW ENGLAND REGIONAL WASTEWATER INST., 2 FORT ROAD, SOUTH PORTLAND, ME 04106 (FREE RENTAL).
CHEMICAL TREATMENT, DISINFECTION, FILTRATION, INSTRUCTIONAL MATERIALS, PRIMARY TREATMENT, POST SECONDARY EDUCATION, SEDIMENTATION, SECONDARY TREATMENT, SLIDES, SLUDGE DEWATERING, STABILIZATION LAGOONS, TERTIARY TREATMENT, VISUAL AIDS, WASTE DISPOSAL, WASTEWATER TREATMENT.

ORDER SERIES C WITH ACCOMPANYING NARRATIVE: 100 SLIDES.

FOCUSING ON THE TECHNICAL ASPECTS OF WASTEWATER TREATMENT. IT FEATURES PRIMARY AND SECONDARY FACILITIES AND INCLUDES SEGMENTS ON THE TRAINING OF PLANT OPERATORS AND ON SAFETY.

WATER AND WASTEWATER TREATMENT: CALCULATIONS FOR CHEMICAL AND PHYSICAL PROCESSES.
HUMENICK, MICHAEL J., JR.

PUB DATE 77,
AVAIL MARCEL DEKKER, 270 MADISON AVE., NEW YORK, NY 10016
ABSTRACT THIS BOOK PRESENTS THE INFORMATION NEEDED BY AN ENVIRONMENTAL TECHNICIAN TO PERFORM THE PROCESS CALCULATIONS NECESSARY IN THE OPERATION OF WATER OR WASTEWATER TREATMENT FACILITIES. THE MATERIAL IS ORGANIZED SO AS A PROBLEM IS PRESENTED, THE SOLUTION FOLLOWS IMMEDIATELY. EACH TOPIC AREA HAS NUMEROUS PRACTICE EXAMPLES WITH SOLUTIONS AND ANSWERS. SUBJECT AREAS INCLUDE: COAGULATION AND FLOCCULATION; WATER CONDITIONS, SEDIMENTATION; FILTRATION; ACTIVATED CARBON; ADSORPTION; CHLORINATION AND AERATION. THE APPENDICES CONTAIN INFORMATION REGARDING PHYSICAL AND CHEMICAL PROPERTIES, CONVERSION FACTORS, AND COMPUTER PROGRAMS (CS).

WATER AND WASTEWATER TREATMENT, VOL. 4
HUMENICK, MICHAEL J., JR.
77
CALCULATION, CHEMICAL REACTIONS, DESIGN, ENVIRONMENTAL INFLUENCES, ENGINEERING, INSTRUCTIONAL MATERIALS, POLLUTION, POST SECONDARY EDUCATION, PUBLIC HEALTH, WASTE DISPOSAL, WATER POLLUTION CONTROL, OPERATIONS (WASTEWATER), OPERATIONS (WATER), WASTEWATER
TREATMENT, WATER TREATMENT

ABSTRACT

INCLUDED IN THIS VOLUME ARE CALCULATION PROCEDURES WHICH CAN BE UTILIZED IN THE DESIGN OF SUCH PROCESSES AS EQUALIZATION, COAGULATION AND FLOCCULATION, CHEMICAL PRECIPITATION, AND GRAVITY SEDIMENTATION. EXAMPLES OF PROBLEMS RELATED TO FILTRATION, ACTIVATED CARBON ABSORPTION, ION EXCHANGE, CHLORINATION, DISINFECTION, AND AERATION ARE ALSO COVERED. INFORMATION OF PHYSICAL AND CHEMICAL PROPERTIES, CONVERSION FACTORS, AND COMPUTER PROGRAMS ARE DETAILED IN THE APPENDICES.

TITLE

WPCF WASTEWATER TREATMENT PLANT OPERATOR TRAINING PROGRAM, INTERMEDIATE COURSE: STUDENT WORKBOOK, VOL. 1, PARTS 1 AND 2.

PUB DATE

1978

AVAIL

WATER POLLUTION CONTROL FEDERATION, 2626 PENNSYLVANIA AVE., WASHINGTON, D.C. 20036

DESC

DESC NOTE

244P. COURSE MATER: 35 MM SLIDES (340), 9 TAPE CASSETTES, ADMINISTRATOR HANDBOOK, CARRYING CASE, AND STUDENT WORKBOOK (PARTS 1 AND 2) - ORDER NO. E0291 $400.00; STUDENT WORKBOOK ONLY - ORDER NO. E0292, $4.50; OTHER VOLUMES; EW001822 AND EW003823

ABSTRACT

THIS DOCUMENT IS ONE IN A SERIES OF SELF-INSTRUCTIONAL WORKBOOKS FOR TRAINING WASTEWATER TREATMENT PLANT OPERATIONS IN THE BASIC FUNCTIONS OF FACILITY OPERATION. THE WORKBOOK CONTAINS A PRE- AND POST-TEST QUESTIONNAIRE FOR EACH UNIT AS WELL AS SELF-TESTS AS INTERIM GUIDES. THE UNITS DISCUSSED IN THE VOLUME ARE A GENERAL INTRODUCTION, THE COMMUNITY WASTEWATER SYSTEM, PRE-TREATMENT, CLARIFICATION, AND ACTIVATED SLUDGE.

TITLE

WPCF WASTEWATER TREATMENT OPERATOR TRAINING PROGRAM, INTERMEDIATE COURSE: STUDENT WORKBOOK, VOL. 8.

PUB DATE

1978

AVAIL

WATER POLLUTION CONTROL FEDERATION, 2626 PENNSYLVANIA AVE., WASHINGTON, DC 20037
This document is one in a series of self-instructional workbooks for training wastewater treatment plant operators in the basic functions of facility operation. The workbook contains a pre- and post-test questionnaire for each unit as well as self-tests as interim guides. The units discussed in this volume are waste stabilization ponds, trickling filters, and sludge handling and digestion. (CS)
Part IV
Reference Materials
Not Abstracted
THE ABC WAY TO BETTER WASTEWATER TREATMENT.

AUTHOR
KERR, J. F.

CORP AUTH
ENVIRONMENTAL QUALITY ENGINEERING, INC., OAKLAND, CALIF.

AVAIL
AMERICAN DYESTUFF REPORTER, VOL. 62, NO 8, P 24-25, AUGUST 1973. 1 FIG, 1 ILLUSTRATION, 2 REF.

ACTINOMYCETES OF SEWAGE-TREATMENT PLANTS.

AUTHOR
LECHEVALIER, H. A.; LECHEVALIER, M. P.; WYSZKOWSKI, P. E.

CORP AUTH
RUTGERS -- THE STATE UNIV., PISCATAWAY, NJ. WAKSMAN INST. OF MICROBIOLOGY.

AVAIL
THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161, AS PB-272-589, IN PAPER COPY, IN MICROFICHE. REPORT EPA-600/2-77-145, 1977. 89 P. 6 FIG, 15 TAB, 5 REF.

ACTINOMYCETES OF SEWAGE-TREATMENT PLANTS.

AUTHOR
LECHEVALIER, H. A.

CORP AUTH
RUTGERS -- THE STATE UNIV., NEW BRUNSWICK, NJ. WAKSMAN INST. OF MICROBIOLOGY.

AVAIL
THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161, AS PB-245-914, $4.50 IN PAPER COPY, $3.00 IN MICROFICHE. ENVIRONMENTAL PROTECTION AGENCY, ENVIRONMENTAL PROTECTION TECHNOLOGY STUDIES SERIES NO. EPA-600/2-75-031, SEPTEMBER 1975. 62 P, 23 TAB, 19 REF. R-802003.

ACTIVATED SLUDGE.

AUTHOR
SANDERS, F. M.

CORP AUTH
GEORGIA INST. OF TECH., ATLANTA.

AVAIL
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL. 49, NO 6, P 1005-1016, JUNE, 1977. 114 REF.

ACTIVATED SLUDGE (LITERATURE REVIEW).

AUTHOR
SCHROEDER, E. D.

CORP AUTH
CALIFORNIA UNIV., DAVIS DEPT. OF CIVIL ENGINEERING.

AVAIL
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL. 48, NO 6, P 1098-1107, JUNE, 1976. 110 REF.

ACTIVATED SLUDGE (LITERATURE REVIEW).

AUTHOR
AZAD, H. S.; BERGMANN, D. E.; STUMPF, M. R.

CORP AUTH
WATER POLLUTION CONTROL FEDERATION, WASHINGTON, DC.

AVAIL
JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL. 42, NO 6, P 897-910, JUNE 1970. 105 REF.
TITLE: ADDITION OF POWDERED ACTIVATED CARBON TO ACTIVATED SLUDGE REACTORS.

AUTHOR: KLEI, H. E.; SUNDBRUM, D. W.

CORP AUTH: CONNECTICUT UNIV., STORRS. INST. OF WATER RESOURCES.

TITLE: ADVANCED AUTOMATIC CONTROL STRATEGIES FOR THE ACTIVATED SLUDGE TREATMENT PROCESS.

AUTHOR: PETERSACK, J. F.; SMITH, R. G.

CORP AUTH: SYSTEMS CONTROL, INC., PALO ALTO, CALIF.

TITLE: AERATION TANK FOR ACTIVATED SLUDGE TREATMENT OF WASTE WATER - IS SMALLER AND REQUIRES LESS POWER FOR A GIVEN TREATMENT CAPACITY.

TITLE: AIR VS OXYGEN IN DORSET.

AVAIL: WATER AND WASTE TREATMENT, VOL 20, NO 1, P 14-15, JANUARY, 1977. 1 FIG, 1 TAB.

TITLE: AIR VS O2: TWO ACTIVATED SLUDGE SYSTEMS COMPARED.

AUTHOR: MILLER, M. A.

CORP AUTH: E CORP., TONAWANDA, NY ENVIRONMENTAL SYSTEMS DEPT.

AVAIL: WATER AND WASTES ENGINEERING, VOL 15, NO 4, P 58-60, 62-65, APRIL, 1978. 6 FIG, 8 TAB, 17 REF.

TITLE: ALBUQUERQUE PLANT DESIGNED WITH COMPUTER IN MIND.

AUTHOR: RICOY, J. L.; MATOTAN, W. I.

CORP AUTH: WILLIAM MATOTAN AND ASSOCIATES, ALBUQUERQUE, NM

AVAIL: WATER AND WASTES ENGINEERING, VOL 13, NO 1, P 32-35, 37, JANUARY, 1976.

TITLE: ALUM ADDITION AIDS SLUDGE PROCESS IN PHOSPHORUS REMOVAL.

TITLE: ALUM ADDITION TO ACTIVATED SLUDGE WITH TERTIARY SOLIDS REMOVAL.

AUTHOR: SAIS, A. B.; STA. ERG, J. B.; BISHOP, D. F.

CORP AUTH: DISTRICT OF COUMBIA DEPT. OF ENVIRONMENTAL SERVICES, WASHINGTON.

TITLE: ALUM ADDITION AND STEP-FEED STUDIES IN OXYGEN ACTIVATED SLUDGE.

AUTHOR: BISHOP, D. F.; HEIDMAN, J. A.; BRENNER, R. C.; STAMBERG, J. B.

CORP AUTH: DEPARTMENT OF ENVIRONMENTAL SERVICES, WASHINGTON, DC.

AVAIL: THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161 AS PB-272 692, IN PAPER COPY, IN MICROFICHE, REPORT EPA-600/2-77/166, 1977. 31 P, 6 FIG, 10 TAB; 10 REF.

TITLE: APPLICATION OF MICROBIOLOGY AND BIOENGINEERING PRINCIPLES TO BIOLOGICAL WASTE TREATMENT.

AUTHOR: LEVIN, GILBERT V.; COHEN, OBADIAH P.

CORP AUTH: BIOSPHERICS INC., ROCKVILLE, MD.

AVAIL: CHEMICAL ENGINEERING PROGRESS, SYMPOSIUM SERIES, VOL 67, NO 107, P 131-134, 1971. 1 TAB, 44 REF.

TITLE: ATP POOLS IN ACTIVATED SLUDGE.

AUTHOR: CHIU, S. Y.; KAO, I. C.; ERICKSON, L. E.; FAN, L. T.

CORP AUTH: KANSAS STATE UNIV., MANHATTAN. DEPT. OF CHEMICAL ENGINEERING.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 45, NO 8, P 1746-1758, AUGUST 1973. 18 FIG, 4 TAB, 30 REF. EWR A-045-KAN(3) 14-31-0001-3516.

TITLE: AUTOMATIC DISSOLVED OXYGEN CONTROL.

AUTHOR: FLANAGAN, M. J.; BRACKEN, B. D.; ROESLER, J. F.

CORP AUTH: FLANAGAN AND ASSOCIATES, SAN FRANCISCO, CALIF.

AVAIL: JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION, PROCEEDINGS OF ASCE, VOL 103, NO EE4, P 707-722, DIVISION, PROCEEDINGS OF ASCE, VOL 103, NO EE4, P 707-722, AUGUST 1977. 9 TAB, 5 FIG, 3 REF; APPEND;

TITLE: AUTOMATION OF THE CONTROL AND OPERATION OF WATER POLLUTION CONTROL WORKS.

AUTHOR: COTTON, P.

CORP AUTH: NORWICH SEWAGE TREATMENT WORKS (ENGLAND)

AVAIL: WATER POLLUTION CONTROL, VOL 72, NO 8, P 635-657, 1973. 25 REF.
TITLE: BIOLOGICAL CONCEPTS FOR DESIGN AND OPERATION OF THE ACTIVATED SLUDGE PROCESS.

AUTHOR: GAUDY, F., JR.; GAUDY, T.

CORP AUTH: OKLAHOMA STATE UNIV., STILLWATER, BIOENVIRONMENTAL ENGINEERING LABS.

AVAIL:
- GO Sup Doc as EP 2.10: '17090 FQJ 09/71, $1.25;
- Microfiche from Ntis as PB-211: 131, $0.95.

ENVIRONMENTAL PROTECTION AGENCY, WATER POLLUTION CONTROL RESEARCH SERIES, SEPTEMBER 1971. 154 P, 36 FIG, 3 TAB, 69 REF. EPA PROGRAM 17090 FQJ 09/71.

TITLE: BIOLOGICAL METHODS FOR CONTROL OF NITROGEN IN MUNICIPAL WASTEWATERS.

AUTHOR: ROSENKRANZ, W. A.

CORP AUTH: ENVIRONMENTAL PROTECTION AGENCY, WASHINGTON, DC. OFFICE OF RESEARCH AND DEVELOPMENT.

AVAIL:

TITLE: BIOLOGICAL REGENERATION OF POWERED ACTIVATED CARBON ADDED TO ACTIVATED SLUDGE UNITS.

AUTHOR: DEWALLEF, B. AN, E. S. K.

CORP AUTH: ILLINOIS UNIV. AT URBANA-CHAMPAIGN, DEPT. OF CIVIL ENGINEERING.

AVAIL:
- Water Research, Vol 11, No 5, P 439-446, 1977. 9 FIG, 2 TAB, 33 REF.

TITLE: BIOLOGICAL TREATMENT PROCESS: IN COLD CLIMATES.

AUTHOR: BOYLE, J. D.

CORP AUTH: CH2M/HILL, CORVALLIS, OREG. WASTEWATER RECLAMATION.

AVAIL:

TITLE: BIOLOGICAL WASTE TREATMENT.

AUTHOR: JANK, B. E.

CORP AUTH: DEPARTMENT OF THE ENVIRONMENT, OTTAWA (ONTARIO). WASTEWATER TECHNOLOGY CENTRE.

AVAIL:
- In: PROCEEDINGS OF SEMINARS ON WATER POLLUTION ABATEMENT TECHNOLOGY IN THE PULP AND PAPER INDUSTRY, MAY 1975, OTTAWA, MONCTON, AND PRINCE GEORGE, CANADA. ENVIRONMENTAL PROTECTION SERVICE.
WATER POLLUTION CONTROL DIRECTORATE, ECONOMIC AND TECHNICAL REVIEW REPORT EPS 3-WP-76-4, P 35-80, MARCH, 1976. 14 FIG, 31 REF, 4 TAB.

TITLE: BULKING CONTROL MADE EASY - WITH HYDROGEN PEROXIDE.
AUTHOR: STRUNK, W. G.; SHAPIRO, J.
CORP AUTH: FMC CORP., PRINCETON, NJ.
AVAIL: WATER AND POLLUTION CONTROL, VOL 114, NO 7, P 10, 12, 14, 15, 40-41, JULY, 1976.

TITLE: CASE HISTORIES: IMPROVED ACTIVATED SLUDGE PLANT PERFORMANCE BY OPERATIONS CONTROL.
AUTHOR: WEST, A. W.
CORP AUTH: FEDERAL WATER POLLUTION CONTROL ADMINISTRATION, CINCINNATI, OHIO. DIV. OF TECHNICAL SERVICES.

TITLE: CELL YIELD AND GROWTH RATE IN ACTIVATED SLUDGE.
AUTHOR: SHERRARD, J. H.; SCHROEDER, E. D.
CORP AUTH: CORNELL UNIV., ITHACA, NY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING.
AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 45, NO 9, P 1889-1897, SEPTEMBER 1973. 8 FIG, 2 TAB, 12 REF.

TITLE: CHEMICALLY ASSISTED BIOLOGICAL OXIDATION OF WASTES AND EXCESS SLUDGE.
AUTHOR: GAUDY, A. F., JR.
CORP AUTH: OKLAHOMA STATE UNIV., STILLWATER, BIOENVIRONMENTAL ENGINEERING LABS.
AVAIL: WATER AND SEWAGE WORKS, REFERENCE ISSUE, P 48-50, 54-56, APRIL, 1977. 11 FIG, 10 REF.

TITLE: COMPARING DESIGN MODELS FOR ACTIVATED SLUDGE.
AUTHOR: GAUDY, A. F., JR.; KINGCANNON, D. F.
CORP AUTH: OKLAHOMA STATE UNIV., STILLWATER, BIOENVIRONMENTAL ENGINEERING LABS.
AVAIL: WATER AND SEWAGE WORKS, VOL 124, NO 2, P 66-70, FEBRUARY 1977. 1 FIG, 7 TAB, 16 REF.

TITLE: COMPARISON OF COMPLETELY MIXED AND PLUG FLOW BIOLOGICAL SYSTEMS.
AUTHOR: TOEBER, E. D.; PAULSON W. L.; SMITH, H. S.
CORP AUTH: FEHR AND GRAHAM CONSULTING ENGINEERS, FREEPORT, ILL.
AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.

TITLE: COMPUTER-ASSISTED OPERATING PLANT
AVAL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.

TITLE: EFFECT OF ACTIVATED SLUDGE FREEZE-THAW CYCLING ON MICROBIAL ACTIVITY AND METABOLIC PRODUCT FORMATION
AVAL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.

TITLE: CONTROL OF ACTIVATED SLUDGE BY MEAN CELL RESIDENCE TIME
AVAL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.

TITLE: DEMONSTRATION OF A HIGH-RATE ACTIVATED SLUDGE SYSTEM
AVAL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.

TITLE: DESIGN AND CONTROL OF NITRIFYING ACTIVATED SLUDGE SYSTEMS
AVAL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 46, NO 8, P 1995-2014, AUGUST 1974. 8 FIG, 3 TAB, 3 REF.
TITLE THE DESIGN AND OPERATION OF ACTIVATED SLUDGE FINAL SETTLING TANKS.
AUTHOR HIBBERD, R. L.; JONES, W. F.
CORP AUTH SATEC LTD., CREWE (ENGLAND);
AVAIL WATER POLLUTION CONTROL, VOL 78, NO 1, P 14-32, 1974, 13 FIG, 9 TAB, 11 REF.

TITLE THE DESIGN AND SELECTION OF MECHANICAL AERATION DEVICES.
AUTHOR SHAW, J. A.
CORP AUTH LIGHTNING MIXER PTY LTD., CAMBERWELL (AUSTRALIA);
AVAIL IN: WATER POLLUTION CONTROL IN DEVELOPING COUNTRIES. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE, HELD AT BANGKOK, THAILAND, FEBRUARY 1978. EDITED BY E.A.R. OUARDI, B. M. LOHANI & C.M. THANH. ASIAN INSTITUTE OF TECHNOLOGY, BANGKOK, THAILAND, (PERGAMON PRESS IN USA); P 709-722, 1978. 13 FIG.

TITLE DESIGNING AND OPERATING AN OXYGEN ACTIVATED SLUDGE SYSTEM INCLUDING TERTIARY ALUM MUD PRECIPITATION.
AUTHOR FULLER, R. R.; GILBERT, D. W.
CORP AUTH GULF STATES PAPER CORP., TUSCALOOSA, AL;

TITLE DESIGN AND OPERATIONAL MODEL FOR COMPLETE MIXING ACTIVATED SLUDGE SYSTEM.
AUTHOR MCKINNEY, R. E.
CORP AUTH KANSAS UNIV., LAWRENCE;
AVAIL BIOTECHNOLOGY AND BIOENGINEERING, VOL 16, NO 6, P 703-722, JUNE, 1974. 14 REF.

TITLE EFFECT OF PRIMARY-EFFLUENT SUSPENDED SOLIDS AND BOD ON ACTIVATED SLUDGE PRODUCTION.
AUTHOR VOSHSEL, DORIS; SAK, J. C.
CORP AUTH GRAND RAPIDS WATER POLLUTION CONTROL PLANT, MICH.; AND DOW CHEMICALS., MIDLAND, MICH.
AVAIL JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL 40, NO 5, PART 2, P E203-R212, MAY 1968. 6 FIG, 3 TAB, 10 REF.

TITLE EFFECT OF WASTEWATER COMPOSITION AND CELL RESIDENT TIME ON PHOSPHORUS REMOVAL IN ACTIVATED SLUDGE.
AUTHOR STALL, T. R.; SHERARD, J. H.
CORP AUTH PHILLIPS PETROLEUM CO., BARTLESVILLE, OKLA.
AVAIL

JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 2, P 307-322, FEBRUARY, 1976, 8 FIG, 4 TAB, 23 REF.

TITLE

EFFECTS OF DISSOLVED OXYGEN IN THE OXYGENATION ACTIVATED SLUDGE PROCESS.

AUTHOR

D'ANTONI, J. M.; STEIMLE, S. E.

NUS CORP., HOUSTON, TX.

COPYRIGHT CLEARANCE CENTER, INC., NEW YORK, NY AS 0065-8812-78-9823-1078 ($0.95). IN: WATER-1977, "AICHE SYMPOSIUM SERIES, VOL 74, NO 18, EDITED BY G. F. BENNETT, P 68-74, 1978, 9 FIG, 2 TAB, 10 REF.

AVAIL

EFFECTS OF FLOW EQUALIZATION ON THE OPERATION AND PERFORMANCE OF AN ACTIVATED SLUDGE PLANT.

AUTHOR

FOESS, G. W.; MEENAHAN, J. G.; BLOUGH, D.

YPSILANTI TOWNSHIP, MI.

THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161 AS PB-272 657, IN PAPER COPY, IN MICROFICHE. REPORT EPA-600/2-77-138, 1977. 95 P, 8 FIG, 17 TAB, 20 REF, 1 APPEND.

AVAIL

THE EFFECT OF HIGH PURITY OXYGEN ON THE ACTIVATED SLUDGE PROCESS.

AUTHOR

BENEFIELD, L. D.; RANDALL, C. W.; KING, P. H.

MISSISSIPPI STATE UNIV., MISSISSIPPI STATE. DEPT. OF CIVIL ENGINEERING.

AVAIL

JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 2, P 269-279, FEBRUARY, 1977. 17 FIG, 1 TAB, 12 REF.

AVAIL

EFFECTS OF IRON ON ACTIVATED SLUDGE TREATMENT.

AUTHOR

CARTER, J. L.; MCKINNEY, R. E.

MARQUETTE UNIV., MILWAUKEE, WIS.

JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION, AMERICAN SOCIETY OF CIVIL ENGINEERS, VOL 99-EE2, P 135-152, APRIL 1973. 9 FIG, 3 TAB, 24 REF.

AVAIL

THE EFFECT OF SLUDGE WITHDRAWALS ON THE OPERATION OF SMALL ACTIVATED SLUDGE PLANTS.

AUTHOR

DRAUTZ, K. E.

RENSSELAER POLYTECHNIC INST., TROY, NY.

MASTERS' S. THESIS, JUNE 1969. 111 P, 15 FIG, 34 TAB, 17 REF.
TITLE: EVALUATION OF A COMPLETE MIXING ACTIVATED SLUDGE PLANT.
AUTHOR: MCKINNEY, ROSS E.; BENJES, HENRY H., JR.; WRIGHT, JAMES R.
CORP AUTH: KANSAS UNIV., LAWRENCE.
AVAIL: JOURNAL OF WATER POLLUTION CONTROL FEDERATION, VOL 42, NO 5, PART 1, P 737-752, MAY 1970. 10 FIG, 1 TAB, 19 REF.

TITLE: EVALUATION OF THE KRAUS MODEL OF ACTIVATED SLUDGE BULKING.
AUTHOR: PIPES, WESLEY O.; MEADE, FRANK S.
CORP AUTH: NORTHWESTERN UNIV., EVANSTON, ILL.
AVAIL: PROCEEDINGS INDUSTRIAL WASTE CONFERENCE, 23RD, MAY 1968, P 111-125, 5 FIG, 7 TAB, 8 REF.

TITLE: AN EXPERIMENTAL STUDY OF THE ROLE OF THE CILIATED PROTOZOA IN THE ACTIVATED SLUDGE PROCESS.
AUTHOR: CURDS, C. R.; COCKBURN, A.; VANDYKE, JENNIFER M.
CORP AUTH: WATER POLLUTION RESEARCH LAB., STEVENAGE (ENGLAND).
AVAIL: WATER POLLUTION CONTROL, VOL 67, NO 3, 1968. P 312-329, 14 FIG, 3 TAB, 13 REF.

TITLE: FACTORS AFFECTING EFFLUENT QUALITY FROM FILL-AND-DRAW ACTIVATED SLUDGE REACTORS.
AUTHOR: DAIGGER, G. T.; GRADY, C. F. L., JR.
CORP AUTH: PURDUE UNIV., LAFAYETTE, IN. ENVIRONMENTAL ENGINEERING LAB.
AVAIL: JOURNAL OF WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 12, P 2390-2396, DECEMBER, 1977. 4 FIG, 4 TAB, 12 REF.

TITLE: FACTORS TO BE CONSIDERED IN THE DESIGN OF ACTIVATED SLUDGE PLANTS.
AUTHOR: DOWNING, I. L.
CORP AUTH: WATER POLLUTION RESEARCH LAB., STEVENAGE (ENGLAND).
AVAIL: ADVANCES IN WATER QUALITY IMPROVEMENTS, (EDITORS: GLOyna, E. P., AND ECKENFELDER, W. W., JR.), AUSTIN, TEXAS, UNIVERSITY OF TEXAS PRESS, 1968, P 190-202, 8 FIG, 14 REF.

TITLE: FATE OF PHOSPHORUS IN WASTE TREATMENT PROCESSES: ENHANCED REMOVAL OF PHOSPHATE BY ACTIVATED SLUDGE.
AUTHOR: MENAR, ARNOLD, B.; JENKINS, DAVID
CORP AUTH: CALIFORNIA UNIV., RICHMOND. SANITARY ENGINEER RESEARCH LAB.
AVAIL ENVIRONMENTAL SCIENCE AND TECHNOLOGY, VOL 4, NO 12, P 1115-1121, DECEMBER 1970. 6 TAB, 6 FIG, 12 REF.

AUTHOR HEGG, BOB A.; BURGESON, JOHN R.
CORP AUTH ENVIRONMENTAL PROTECTION AGENCY, KANSAS CITY, MO.
AVAIL MARCH 1971, 42 P, 5 TAB, 6 FIG, 12 REF.

TITLE FULL SCALE OPERATION OF PLUG FLOW ACTIVATED SLUDGE SYSTEMS.
AUTHOR BEER, C.; HETLING, L. J.; WANG, L. K.
CORP AUTH NEW YORK STATE DEPT. OF ENVIRONMENTAL CONSERVATION, ALBANY; AND RENSSELAER POLYTECHNIC INST., TROY.
AVAIL NEW YORK STATE DEPT. OF ENVIRONMENTAL CONSERVATION, TECHNICAL REPORT NO 42; AUG 1975, PRESENTED AT THE NEW ENGLAND WATER POLLUTION CONTROL ASSOCIATION MEETING, HARTFORD, CONN. OCTOBER 23, 1974, 45 P, 13 FIG, 7 TAB, 16 REF. EPA PROJECT 1705-1.

TITLE INDUSTRIAL WASTE PROCESS DESIGN.
AUTHOR ECKENFELDER, W. W., JR.; O'CONNOR, D. J.
CORP AUTH MANHATTAN COLL., BRONX, NY. DEPT. OF CIVIL ENGINEERING.
AVAIL PROCEEDINGS- AMERICAN SOCIETY OF CIVIL ENGINEERS; FEBRUARY 15-19, 1954, SANITARY ENGINEERING DIVISION, VOL 80, NO 411, P 411-1 TO 411-25, 7 FIG, 5 TAB, 26 REF.

TITLE THE INFLUENCE OF pH AND ORGANIC LOADING ON THE FILAMENTOUS BULKING OF ACTIVATED SLUDGE.
AUTHOR YASUDA, M.
CORP AUTH TOYAMA COLL. OF TECH. (JAPAN). DEPT. OF SANITARY ENGINEERING.
AVAIL TRANSACTIONS OF THE JAPAN SOCIETY OF CIVIL ENGINEERS, VOL 84, P 131-132, 1976. 5 FIG, 1 TAB.
TITLE INSTANTANEOUS METERING AIDS - ACTIVATED SLUDGE PLANT.
AUTHOR MATZNER, S.
CORP AUTH SUFFOLK COUNTY DEPT. OF ENVIRONMENTAL CONTROL,
 HAUPPAUGE, NY OPERATIONS DIV.
AVAIL WATER AND WASTES ENGINEERING, VOL 13, NO 8, P 18-20, AUG 1982.

TITLE INTRODUCTION TO WASTEWATER TREATMENT PROCESSES.
AUTHOR RAMALHO, R. S.
CORP AUTH LAVAL UNIV., QUEBEC.
AVAIL ACADEMIC PRESS (NEW YORK, SAN FRANCISCO, LONDON).
 1977. 409 P.

TITLE INVENTORY OF ENERGY USE IN WASTEWATER SLUDGE TREATMENT AND DISPOSAL.
AUTHOR SMITH, J. E.
AVAIL INDUSTRIAL WATER ENGINEERING, VOL 14, NO 4, P 20-26, JULY/AUGUST, 1977. 12 FIG, 16 TAB.

TITLE A KINETIC MODEL FOR DESIGN OF COMPLETELY-MIXED ACTIVATED SLUDGE TREATING VARIABLE-STRENGTH INDUSTRIAL WASTEWATERS.
AUTHORS ECKENFELDER, W. W.; HOVIOUS, J. C.
CORP AUTH STATE UNIVERSITY OF IOWA, WASHTON, IOWA.
AVAIL WATER RES. RESEARCH, VOL 9, NO 1, P 37-42, JANUARY 1975. 4 FIG, 1 TAB, 5 REF.

TITLE LEAST COST DESIGN OF ACTIVATED SLUDGE SYSTEMS.
AUTHORS MIDDLETON, A. C.; LAWRENCE, A. W.
CORP AUTH CORNELL UNIV., ITHACA, NY DEPT. OF ENVIRONMENTAL ENGINEERING.
AVAIL JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 5, P 889-905, MAY 1976. 11 FIG, 11 TAB, 17 REF.

TITLE LOAD BALANCING AT SEWAGE-TREATMENT WORKS - THE SOUTHERN UNIVERSITY PILOT PLANT AT MILLBROOK.
AUTHOR HELLWELL, P. F. R.; REED, R. J. R.
CORP AUTH SOUTHERN UNIVERSITY (ENGLAND). DEPT. OF CIVIL ENGINEERING.
AVAIL JOURNAL OF THE INSTITUTE OF WATER POLLUTION CONTROL, VOL 76, NO 3, P 355-372, 1977. 14 FIG, 2 TAB, 10 REF.
TITLE: PERFORMANCE OF A COUPLED TRICKLING FILTER-ACTIVATED SLUDGE PLANT.

AUTHORS: STENQUIST, R. J.; PARKER, D. S.; LOFTIN, W. E.; BRENNER, R. C.

CORP AUTH: BROWN AND CALDWELL, WALNUT CREEK, CA

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 1, P 2265-2284, NOVEMBER, 1977. 15 FIG, 16 TAB, 8 REF.

TITLE: DESIGN PROBLEMS OVERCOME IN STATEN ISLAND PLANT.

AUTHORS: MITCHELL, R. D.

CORP AUTH: PINEK (MALCOLM), INC., WHITE PLAINS, NY

AVAIL: WATER AND WASTES ENGINEERING, VOL 13, NO 12, P 57-68, DECEMBER, 1976. 1 FIG, 1 TAB.

TITLE: METHOD FOR MEASURING AEROBIC DECOMPOSITION ACTIVITY OF ACTIVATED SLUDGE IN AN OPEN SYSTEM.

AUTHOR: PÁRKA, Péter

CORP AUTH: RESEARCH INST. FOR WATER RESOURCES DEVELOPMENT, BUDAPEST (HUNGARY).

AVAIL: FOURTH INTERNATIONAL CONFERENCE ON WATER POLLUTION RESEARCH, PRAGUE, CZECH., SEPTEMBER 2-6, 1968. PREPRINT, SEC. II, PAPER 9, 1976. 6 FIG, 1 TAB, 15 REF.

TITLE: MICROBIOLOGY OF WASTE TREATMENT.

AUTHORS: LINZ, F.

CORP AUTH: PENNSYLVANIA STATE UNIV., UNIVERSITY PARK.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 9, P 1367-1378, JUNE, 1976. 101 REF.

TITLE: MICROBIOLOGY OF WASTE TREATMENT. (LITERATURE REVIEW).

AUTHOR: LINZ, F.

CORP AUTH: PENNSYLVANIA STATE UNIV., UNIVERSITY PARK.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 6, P 1255-1268, JUNE, 1977. 130 REF.
TITLE: **Microscopic Observation of Activated Sludge Applied to the Monitoring of Treatment Plants**

Authors: Dragides, C.

Corporation: Montpellier-2 Univ. (France), Lab. de Genie Chimique, Traitement et Epuration des Eaux.

TITLE: **Modeling and Optimization of Step Aeration Waste Treatment Systems**

Authors: Erickson, Larry E.; Ho, Y. S.; Fan, L. T.

Corporation: Kansas State Univ., Manhattan.

Available: Journal of the Water Pollution Control Federation, Vol. 40, No. 5, Part I, P. 717-732, May 1968. 6 FIG, 2 TAB, 5 REF.

TITLE: **Modules Permit Easy Expansion**

Authors: Weaver, J. H.

Available: Water and Wastes Engineering, Vol. 12, No. 11, P. 73-74, November, 1976, 1 FIG.

TITLE: **New System Puts the Wood to Wastewater**

Authors: Weber, C. L.; Jacobson, C. D.

Corporation: Kircham Michael and Associates, Omaha, Nebr.

TITLE: **Nitrification and Heavy Metal Removal in the Activated Sludge Treatment Process**

Authors: Richards, F. A.

Corporation: Texas A and M Univ., College Station.

TITLE: **Nitrification in Activated Sludge Plants—Guidelines on Some Operation and Design Aspects**

Authors: Smith, A. G.

Corporation: Ontario Ministry of the Environment, Toronto, Wastewater Treatment Section.

TITLE: NITRIFICATION IN HIGH-SLUDGE AGE CONTACT STABILIZATION.

AUTHOR: ZOLTEK, J., JR.; LEFEBVRE, L.

CORP AUTH: FLORIDA UNIV., GAINESVILLE. DEPT. OF ENVIRONMENTAL ENGINEERING SCIENCES.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 9, P 2183-2189, SEPTEMBER, 1976. 4 FIG, 1 TAB, 11 REF.

TITLE: NITRIFICATION IN TREATMENT PLANTS AND NATURAL WATERS: SOME IMPLICATIONS OF THE THEORETICAL MODELS.

AUTHOR: DOWNING, A.; KNOWLES, G.

CORP AUTH: WATER POLLUTION RESEARCH LAB., STEVENAGE (ENGLAND).

AVAIL: FIFTH INTERNATIONAL WATER POLLUTION RESEARCH CONFERENCE, SAN FRANCISCO, JULY 26-AUGUST 1, 1970. PREPRINT, PAPER:1-8, 8 P, 4 FIG, 1 TAB, 6 REF.

TITLE: NITROGEN REMOVAL AND IDENTIFICATION FOR WATER QUALITY CONTROL.

AUTHOR: CARP, D. A.

CORP AUTH: WASHINGTON UNIV., SEATTLE. DEPT. OF CIVIL ENGINEERING.

AVAIL: NATIONAL TECHNICAL INFORMATION SERVICE AS PB-204 231, $3.00 IN PAPER COPY, SO.95 IN MICROFICHE, AUGUST 15, 1971: 52 P, 12 FIG, 8 TAB, 85 REF. OWRR A-040-WASH(1).

TITLE: ONE-VERSUS TWO-STATE NITRIFICATION IN THE ACTIVATED SLUDGE PROCESS.

AUTHOR: STOVER, E. L.; KINCAID, D. F.

CORP AUTH: OKLAHOMA STATE UNIV., STILLWATER. SCHOOL OF CIVIL ENGINEERING.

AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 4, P 645-651, APRIL, 1976. 6 FIG; 17 REF.

TITLE: OPERATING ACTIVATED-SLUDGE PLANTS TO EFFECT NUTRIENT REMOVAL.

AUTHOR: NICHOLS, H. A.

TITLE: OPERATING EXPERIENCE AND DESIGN CRITERIA FOR "NOX" WASTEWATER TREATMENT SYSTEMS, DESIGN SEMINAR FOR WASTEWATER TREATMENT FACILITIES. UNION CARBIDE CORP., TONAWANDA, NY.
AVAIL REPORT PREPARED FOR ENVIRONMENTAL PROTECTION AGENCY, WASHINGTON, DC; TECHNOLOGY TRANSFER PROGRAM, FOR SEMINAR AT NEW YORK, NY, FEBRUARY 29-MARCH 2, 1972. 68 P.

TITLE OPERATION OF CONVENTIONAL ACTIVATED SLUDGE FOR MAXIMUM PHOSPHORUS REMOVAL.

AUTHOR MILBURY, WILLIAM F.; MCCAULEY, DONALD; HANThON, CHARLES H.

CORP. AUTH. WESTON (ROY F.), INC., WEST CHESTER, PA.

AVAIL JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 43, NO 7, JULY 1971, P 1890-1901. 3 FIG, 3 TAB, 7 REF.

TITLE OPERATIONAL CONTROL PROCEDURES FOR THE ACTIVATED SLUDGE PROCESS. PART III-B. CALCULATION PROCEDURES FOR STEMB-FEED PROCESS RESPONSES.

AUTHOR WEST, A. W.

CORP. AUTH. NATIONAL FIELD INVESTIGATIONS CENTER-CINCINNATI, OH.

AVAIL REPORT, 1975. 31 P, 7 FIG, 2 TAB.

TITLE OPTIMIZATION OF THE ACTIVATED SLUDGE PROCESS—OPTIMUM VOLUME RATIO OF AERATION AND SEDIMENTATION VESSELS.

AUTHOR NAITO, M.; TAKAMATSU, T.; FAN, L. T.

CORP. AUTH. KANSAS UNIV., LAWRENCE. DEPT. OF CHEMICAL AND PETROLEUM ENGINEERING; AND KYOTO UNIV. (JAPAN). DEPT.

AVAIL WATER RES, VOL 3, NO 6, P 433-443, JUNE 1969. 8 FIG, 6 REF.

TITLE OPTIMIZE THE EFFLUENT SYSTEM. PART 6: BIOCHEMISTRY OF ACTIVATED SLUDGE PROCESS.

AUTHOR ATTICCHI, J. F.; MALLATT, R. A.

CORP. AUTH. STANDARD OIL CO. (INDIANA), CHICAGO, IL.

AVAIL HYDROCARBON PROCESSING, VOL 55, NO 8, P 137-142, AUGUST, 1976. 7 FIG, 2 TAB, 15 REF.

TITLE THE ORBAL EXTENDED AERATION ACTIVATED SLUDGE PLANT.

AUTHOR DREW, R. L. C.; MALAN, W. M.; MEIRING, B. C. J.; MOFFATT, B.

CORP. AUTH. NATIONAL INSTITUTE FOR WATER RESEARCH, PRETORIA (SOUTH AFRICA).

AVAIL JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 44, NO 2, FEBRUARY 1972, P 221-224. 6 FIG, 5 TAB, 4 REF.
ORGANIC MATTER REMOVAL BY POWDERED ACTIVATED CARBON ADDED TO ACTIVATED SLUDE.

DEWALLE, F. B.; CHIAN, E. S. K.; SMALL, E. M.

ILLINOIS UNIV. AT URBANA-CHAMPAIGN. DEPT. OF CIVIL ENGINEERING.

JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 4, P 593-599, APRIL, 1977. 5 FIG, 1 TAB, 19 REF.

OXYGEN-ACTIVATED SLUDGE PLANT COMPLETES TWO YEARS OF SUCCESSFUL OPERATION.

MCDOWELL, C. S.; GIANELLI, J.

AIR PRODUCTS AND CHEMICALS, INC., ALLENTOWN, PA.

THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161 AS PB-272 271, IN PAPER COPY, IN MICROFICHE. REPORT EPA-800/2-77-040, JULY 1977. 195 P, 75 FIG, 6 TAB, 9 REF, 2 APPEND.

OXYGEN AERATION AT EYTON CREEK.

NASH, N.; KRASTOFF, P.; PRESSMAN, A. B.; BRENDO, R. C.

NEW YORK STATE DEPT. OF WATER RESOURCES, NEW YORK.

JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 3, P 388-400, MARCH 1977. 4 FIG, 6 TAB, EPA PROJECT 11010-GEV.

PHOSPHORUS REMOVAL WITH PICKLE LIQUOR IN AN ACTIVATED SLUDGE PLANT.

MILWAUKEE SEWERAGE COMMISSION, WIS.

GPO SUP DOC. 0.1.25; MICROFICHE FROM NTIS AS PB-208 216, 50795. ENVIRONMENTAL PROTECTION AGENCY WATER POLLUTION CONTROL RESEARCH SERIES, MARCH 1971. 143 P, 23 FIG, 7 TAB, 19 REF. EPA PROGRAM 11010-GEV.

PHYSICAL CONDITIONING OF ACTIVATED SLUDGE FLOC.

PAKIER, DENNIS S.; WAGMAN, WARREN E.; JENKINS, DAVID.

CALIFORNIA UNIV., BERKELEY.

JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 9, P 1217-1233, SEPTEMBER 1977. 14 FIG, 6 TAB, 25 REF.

PLANT DATA ANALYSIS OF TEMPERATURE SIGNIFICANCE IN THE ACTIVATED SLUDGE PROCESS.

LIN, K.-C.; HEINKE, G. W.

NEW BRUNSWICK UNIV., FREDERICKTON. DEPT. OF CIVIL ENGINEERING.
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 49, NO 2, P 286-295, FEBRUARY, 1977. 4 FIG, 3 TAB, 18 REF, 1 APPEND.

TITLE: POLLUTION ABATEMENT IN A BREWING FACILITY.
CORP AUTH: ENVIRONMENTAL PROTECTION AGENCY, WASHINGTON, DC, TECHNOLOGY TRANSFER STAFF.

TITLE: POLYMER ADDITION IMPROVES WASTE WATER TREATMENT PROCESS.
AUTHOR: CHURCHILL, R. J.; RYBACKI, R. L.
CORP AUTH: PETROLITE CORP., ST. LOUIS, MO, TRETOLITE DIV.
AVAIL: WATER AND SEWAGE WORKS, REFERENCE ISSUE, P 10-12, 14-17, 20, APRIL, 1977. 8 FIG, 2 TAB, 5 REF.

TITLE: PROCESS CONTROL OF ACTIVATED-SLUDGE TREATMENT: PHASE II.
AUTHOR: KERMODE, R. I.; BRETT, R. W. J.; PAULT, J. D., JR.
CORP AUTH: KENTUCKY WATER RESOURCES INST., LEXINGTON.

TITLE: PROCESS CONTROL OF ACTIVATED SLUDGE TREATMENT,
CORP AUTH: KENTUCKY WATER RESOURCES INST., LEXINGTON.

TITLE: PROCESS DESIGN MANUAL FOR UPGRADING EXISTING WASTEWATER TREATMENT PLANTS.
CORP AUTH: WESTON (ROY F.), INC., WEST CHESTER, PA.
AVAIL: EPA REGIONAL OFFICE TECHNOLOGY TRANSFER; IN MICROFICHE FROM NTIS AS PB-214 550 FOR $1.45.

TITLE: PROCESS OPTIMA IN ACTIVATED SLUDGE.
AUTHOR: POLOSIIK, S.; GRIEVES, R. B.; PIPES, W. O., JR.
CORP AUTH: ILLINOIS INST. OF TECH., CHICAGO.
PROCESS STABILITY OF ACTIVITY SLUDGE PROCESSES.
CHIANG, C. H.
PJRNE. (MALCOLM), INC., WHITE PLAINS, NY
JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION-ASCE, VOL 103, NO EE2, P 259-271, APRIL, 1977. 3 FIG, 3 TAB, 2 APPEND.

ROLE OF NITROGEN IN ACTIVATED SLUDGE PROCESS.
WU, Y. C.
PITTSBURGH UNIV., PA. DEPT. OF CIVIL AND ENVIRONMENTAL ENGINEERING.

SECONDARY TREATMENT.

SETTLING CHARACTERISTICS OF ACTIVATED SLUDGE AT LOW TEMPERATURE.
REED, SHERWOOD
COLD REGIONS RESEARCH AND ENGINEERING LAB., HANOVER, N.H.
NTIS AS AD-717 239, $3.00 IN PAPER COPY, $0.95 IN MICROFICHE. CRREL TECHNICAL REPORT 203, NOV 1970. 30 P, 17 FIG, 5 TAB, 25 REF.

SEWAGE TREATMENT WORKS FOR SMALL COMMUNITIES—A NEED FOR CAREFUL DESIGN AND OPERATION.
DREWS, R. J. L. C.; DENYSCHEN, J. H.
NATIONAL INST. FOR WATER RESEARCH, PRETORIA (SOUTH AFRICA).
IN: WATER POLLUTION CONTROL IN DEVELOPING COUNTRIES. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE HELD AT BANGKOK, THAILAND, FEBRUARY 1978, EDITED BY E.A.R. OUANO, B. M. LOHANI, N. C. THANH. ASIAN INSTITUTE OF TECHNOLOGY, BANGKOK, THAILAND (PERGAMON PRESS IN USA), P 381-397, 1978, 7 FIG, 1 TAB, 9 REF.
SHOCK LOAD RESPONSE OF ACTIVATED SLUDGE WITH CONSTANT RECYCLE SLUDGE CONCENTRATION.

SALEH, M. M.; GAUDY, A. F., JR.
EL-AZHAR UNIV., CAIRO (EGYPT). SCHOOL OF CIVIL ENGINEERING.
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 50, NO 4, P 764-77, APRIL, 1978. 190 FIG, 1 TAB, 11 REF.

SIMPLIFIED OPTIMIZATION OF ACTIVATED SLUDGE PROCESS.
GRADY, C. P. L.
PURDUE UNIV., LAFAYETTE, INDIANA, SCHOOL OF CIVIL ENGINEERING.
JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION, PROCEEDINGS OF THE AMERICAN SOCIETY OF CIVIL ENGINEERS, VOL 103, NO EE3, PROCEEDINGS PAPERS NO. 12974, P 413-429, JUNE 1977. 3 FIG, 6 TAB, 17 REF.

START-UP OF NEW WASTE WATER TREATMENT PLANTS.
CAVERLY, D. S.
ONTARIO WATER RESOURCES COMMISSION, TORONTO.
JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, VOL 40, NO 4, P 571-580, APRIL 1968.

SYSTEM ALTERNATIVES IN OXYGEN ACTIVATED SLUDGE.
STAMBERG, J. B.; BISHOP, D. F.; BENNETT, S. M.; HAIS, A. B.
DISTRICT OF COLUMBIA DEPT. OF ENVIRONMENTAL SERVICES, WASHINGTON.

ENVIRONMENTAL PROTECTION AGENCY, DENVER, CO., REGION 4.
THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161, AS PB-256 577, $2.25 IN PAPER COPY, IN MICROFICHE. ENVIRONMENTAL PROTECTION AGENCY, WASHINGTON, D.C., MP-1011, 22, 1973, 25 P, 4 FIG.
CORP AUTH: ENVIRONMENTAL PROTECTION AGENCY, DENVER, CO.
AVAIL: THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161 AS PB-255 257, IN PAPER COPY, IN MICROFICHE. REPORT EA/TSB-21, 1973: 31 P.
FIG, 2 REF.

TITLE: TEMPERATURE EFFECTS ON THE ACTIVATED SLUDGE PROCESS.
CORP AUTH: SAYIGH, B. A.; MALINA, J. F., JR.
AVAIL: TEXAS UNIV., AUSTIN, DEPT. OF CIVIL ENGINEERING.
JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 50, NO 4, P 678-687, APRIL, 1978. 13 FIG. 18 REF.

TITLE: TEMPERATURE EFFECTS ON GROWTH AND YIELD OF ACTIVATED SLUDGE.
AUTHOR: FRIEDMAN, A. A.; SCHROEDER, E. D.
CORP AUTH: TENNESSEE TECHNOLOGICAL UNIV., COOKEVILLE. DEPT. OF CIVIL ENGINEERING.
AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 44, NO 7, P 1433-1442, JULY, 1972. 5 FIG. 3 TAB. 25 REF.

TITLE: TOWARD A MORE MEANINGFUL INDEX OF SLUDGE QUALITY.
AUTHOR: FITCH, B.; XOS, P.
CORP AUTH: CARNEGIE-MELLON UNIV., PITTSBURGH, PA.
AVAIL: JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 48, NO 8, P 1979-1987, AUGUST, 1976. 11 FIG. 1 TAB. 11 REF.

TITLE: TRACE ELEMENTS IN BIOLOGICAL WASTE TREATMENT WITH SPECIFIC REFERENCE TO THE ACTIVATED SLUDGE PROCESS.
AUTHOR: WOOD, D. K.; TOBANOGLOUS, G.
CORP AUTH: CALIFORNIA UNIV., DAVIS.
AVAIL: IN: PROCEEDINGS OF THE 29TH INDUSTRIAL WASTE CONFERENCE, MAY 7-9, 1973, PART 2, LAFAYETTE, INDIANA, PURDUE UNIVERSITY. P 648-661. 4 FIG. 1 TAB. 21 REF.

TITLE: TRICKLING FILTER VERSUS ACTIVATED SLUDGE: WHEN TO SELECT EACH PROCESS.
AUTHOR: KINCANNON, D. F.; SHERARD, J. H.
CORP AUTH: OKLAHOMA STATE UNIV., STILLWATER, SCHOOL OF CIVIL ENGINEERING.
AVAIL < WATER AND SEWAGE WORKS, VOL 121, NO 4, P 32-34, 36 APRIL 30, 1974. 1 FIG, 4 TAB, 9 REF.

TITLE UNIFIED BASIS FOR BIOLOGICAL TREATMENT DESIGN AND OPERATION.
AUTHOR LAWRENCE, ALONZO W., MCCARTY, PERRY L.
CORP AUTH STANFORD UNIV., CALIF.
AVAIL JOURNAL, SANITARY ENGINEERING DIVISION, PROCEEDINGS AMERICAN SOCIETY OF CIVIL ENGINEERS, VOL. 96, NO SA3, P 757-778, JUNE 1970. 4 FIG, 6 TAB, 48 REF.

TITLE WASTEWATER CHARACTERIZATION AND PROCESS RELIABILITY FOR POTABLE WASTEWATER RECLAMATION.
-AUTHOR PETRASEK, A. C., JR.
-CORP AUTH DALLAS WATER UTILITIES DEPT., TX.
-AVAIL THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VA 22161 AS PB-274 874, IN PAPER COPY, IN MICROFICHE. REPORT EPA-600/2-77-210, 1977. 124 P, 56 FIG, 22 TAB, 10 REF.

TITLE WASTEWATER TREATMENT DESIGN: ECONOMICS AND TECHNIQUES, PART I.
-AUTHOR ECKENFELDER, W. W., JR.
-CORP AUTH VANDERBILT UNIV., NASHVILLE, TENN.
-AVAIL WATER AND SEWAGE WORKS, VOL 122, NO 6, P 63-65, JUNE, 1975. 67 FIG, 2 TAB.

TITLE WASTEWATER TREATMENT DESIGN, PART II.
-AUTHOR ECKENFELDER, W. W., JR.
-CORP AUTH VANDERBILT UNIV., NASHVILLE, TENN.
-AVAIL WATER AND SEWAGE WORKS, VOL 122, NO 7, P 70, 75, JULY, 1975; 2 FIG, 1 TAB, 3 REF.

TITLE WASTEWATER TREATMENT PROBLEMS AT NORTH KANSAS CITY, MISSOURI.
-AUTHOR SCHMIDT, P. J.
-CORP AVAIL BLACK AND WHITE, KANSAS CITY, MO
-AVAIL JOURNAL WATER POLLUTION CONTROL FEDERATION, VOL 50, NO 4, P 635-644, APRIL, 1978. 5 FIG, 3 TAB.

TITLE WATER AND WASTEWATER TREATMENT.
-AUTHOR SCHROEDER, E. G.
-CORP AUTH CALIFORNIA UNIV., DAVIS, DEPT. OF CIVIL ENGINEERING.
-AVAIL McGRAW-HILL, NEW YORK, NY 1977, 370 P. $3.95.