The chemistry test item banks contain 225 multiple-choice questions suitable for diagnostic and achievement testing: a three-page teacher's guide; answer key with item facilities; an answer sheet; and a 45-item sample achievement test. Although written for the new grade 12 chemistry course in Victoria, Australia, the items are widely applicable. Items are grouped in six course units and cover these topics: the nuclear atom; electronic structure; periodic table; mole and chemical formulae; chemical reactions; stoichiometric calculations; chemical equilibrium; transformation and production of energy by chemical reaction; chemical reactions driven by electrical energy; carbon and silicon (elements, hydrides, covalent bonding, oxides); oil and coal derivatives; polymers; molecules of biological importance; nitrogen and phosphorus (elements, oxides, role in living systems); ammonia and phosphine; oxygen, sulfur, and metals (elements, commercial sources); direct formation of oxides from metals; oxides of sulfur; sulfuric acid; water and hydrogen peroxide. (Author/CP)
ACER CHEMICAL
YEAR 12

ACER CHEMISTRY TEST ITEM COLLECTION

"PERMISSION TO REPRODUCE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY

J. P. Keeves

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

AUSTRALIAN COUNCIL FOR EDUCATIONAL RESEARCH
Contents

Acknowledgments .. (iii)
Introduction ... 1
The Chemistry Item Bank Project 2
Using the Collection .. 3
 Uses for the items ... 4
 Preparation of tests 4
 Selecting an item .. 4
 Writing additional test items 4
Topic Axis .. 6
Answer Key and Item Facilities 7
Answer Sheet ... 11
Unit 1 ... 12
Unit 2 ... 16
Unit 3 ... 21
Unit 4 ... 29
Unit 5 ... 35
Unit 6 ... 41
Unit 7 ... 45
Acknowledgments

Several chemistry teachers contributed outstandingly to the production and editing of items. Particular thanks are due to the following teachers, all of whom contributed many items, and were active participants at review panels.

Mr E. Clarke
Dr C. Commons
Mr R. Fox
Mr R. Stokes
Mr W. Facey
Mrs K. Mullins-Gunst
Mr D. Hyatt
Mr R. Fox
Mr R. Stokes
Syndal High School
Camberwell High School
Carey Baptist Grammar School, Kew
Elwood High School
Rosebud High School
Academy of Mary Immaculate, Fitzroy
Curriculum and Research Branch, Education Department, Victoria
Orbost High School
St Joseph's Regional College, Echuca
Upfield High School
Haileybury College, Springvale
Eltham College, Research
Derrinallum High School
State College of Victoria, Melbourne

Other teachers who contributed to this collection were

Mr D. Jenkins
Mr B. Kelly
Mr P. Kendall
Ms A. Meehan
Mr J. Neal
Dr R. Ross
Mr B. White
Mr D. Williams

The development of the collection was aided during the trial testing of the items by the co-operation, with ACER, of teachers and students from 50 secondary schools.
Introduction

This collection of chemistry items is a publication enabling Victorian chemistry teachers to have access to a range of items suitable for diagnostic and achievement purposes, pending the publication of a larger chemistry item bank. This publication contains 225 items relevant to the core syllabus for Year 12 chemistry, as published by VISE for 1980.

It is hoped that teachers will produce additional items of their own for this collection, and some notes on test construction and item writing techniques are included later. Although all the items in this publication are of the multiple choice form, teachers should feel free to include extended response type items as well as additional multiple choice items. The ACER would be grateful if individual teachers forwarded on to the Council their own original items. Suitable items will be added to the chemistry item bank at a later date. Items should be forwarded to:

ACER Chemistry Item Bank,
PO Box 210,
Hawthorn,
Victoria 3122.
During 1978 the VUSEB Chemistry Standing Committee suggested that the new Victorian Year 12 course would be assisted by the provision of a collection of test items. Later in 1978, the Victorian Education Department (Secondary Division) agreed to second a practising chemistry teacher to ACER to work on the preparation of a bank of chemistry items, related not only to the Victorian course, but to chemistry courses in each of the other States. Initially it was agreed to publish a collection of items for use in Victoria only, during 1980 and 1981, pending the completion of the item bank. The project was placed under the direction of a committee of management comprising:

- Dr. J. P. Keeves and Dr. J. F. Ilzard representing the ACER,
- Mr. M. Cropley representing the Victorian Institute of Secondary Education,
- Mr. R. Fox representing the VISE Chemistry Subject Committee, and
- Dr. I. Wilson representing the Chemistry Education Association.

Mr. Peter Martin was the seconded responsible for the day-to-day management of the project during 1979.

Most of the items included in the initial publication were written by practising chemistry teachers, although a few items were culled from the ACER Diagnostic Chemistry Tests ‘M’ Series (out of print). After an initial editing, items were reviewed by a panel comprising practising chemistry teachers and specialists in educational measurement. These reviewing panels had the task of correcting any mistakes in content, checking the plausibility of distractors, ensuring a uniformity of terminology, and imposing a consistent format which facilitates the answering of questions. Items which were found to have problems that could not be corrected were rejected. The remaining items were re-edited in the light of the reviewing panel’s suggestions, and then assembled into trial-tests.

Trial-testing was conducted to provide empirical evidence on the performance of the items. It also provided basic statistical data, such as the percentage of trial students who responded correctly, as an aid for teachers when selecting specific items from the collection.

Trial-testing was conducted in 50 Victorian secondary schools during August and September 1979. Each trial test was tried in a balanced sample of country and metropolitan, government and non-government schools.

The average sample size was 150 with a range of 124 to 163 students. Only items which had a discrimination index of 0.20 or greater were included in this publication. Items which were rejected will be re-written and re-trialled with a view to their eventual inclusion in the item bank.

The processes of item writing, editing, and trial-testing will continue and a comprehensive coverage of all chemistry topics taught in the Commonwealth is planned.
Using the collection

A Uses for the Items

1 Production of diagnostic tests

A diagnostic test is one which attempts to identify learning difficulties experienced by students and enables the provision of some form of assistance in overcoming the problems that are identified.

Such a test should

(a) contain a comprehensive range of items measuring the objectives of the syllabus area that is being evaluated, and

(b) enable the provision of some form of feedback to the students after they have attempted the items.

Although it is possible to use each sub-collection as a test in its own right, it is hoped that teachers will devise their own diagnostic tests. The flexibility allowed by this format enables teachers to present a course in different ways without being committed to testing all of a particular section of the course at one time.

Items have been constructed so that the choice of a particular distractor will allow the teacher to determine the nature of a student's error, and to advise the student of any appropriate remedial work necessary. Common errors could be discussed in class, and written explanations of the correct response (diagnostic aids) might be provided by the teacher.

Teachers should note that a sample answer sheet is provided at the back of the collection, and may serve as a master for the production of additional answer sheets.

2 Production of achievement tests

An achievement test is a test designed to measure a student's achievement in a particular syllabus area with a single score. Just as for a diagnostic test, it should contain a comprehensive range of items measuring the objectives of the syllabus area being evaluated. The degree of difficulty of an item can be approximately gauged by referring to the table of item facilities (giving the proportion of students who responded correctly to each item during trial-testing). As the collection includes items with a wide range of facilities, it is possible to prepare tests which

(a) discriminate very well between students in the more able section of the class (using items with a low facility);

(b) discriminate well between students in the weak section of the class (using items with a high facility); and

(c) spread the students over a wide range of marks (using items which have an average facility of about 50 per cent).

(Facility values may vary as emphasis on topics changes.)

A sample achievement test, covering the whole course, is included in this collection. However, teachers may well wish to set their own achievement tests covering different sections of the course.
B Preparation of Tests

Test construction

In preparing a test, teachers should:

1. Identify the particular syllabus areas that are to be evaluated.
2. Select items which appear to evaluate these areas.
3. Write items, where necessary, to provide an adequate coverage of the areas.
4. Place the items in a logical order. Group items relevant to similar syllabus areas together. If possible, place the easier items early in the test, with the more difficult items towards the end of the test.
5. Place items based on the same stimulus material on the one page.
6. Ensure that one item does not supply the correct response for another item.
7. Check that the items are not ambiguous and that each has a correct response listed.
8. Prepare an answer key.
9. Ask another teacher to work through the draft, to identify errors and omissions, as well as providing a check on the answer key.
10. Prepare an answer sheet (a sample answer sheet is provided at the back of the collection).

C Selecting an Item

Teachers should first select from the topic axis the topic of interest. Each item is keyed to a particular section of the topic axis to enable rapid identification of its relevance. To further facilitate item identification, the items have been grouped in 7 units:

- Unit 1 has 30 items covering Sections 1.1 to 2.1 of the topic axis
- Unit 2 has 30 items covering Sections 2.2 to 2.4 of the topic axis
- Unit 3 has 30 items covering Sections 3.2 to 3.4 of the topic axis
- Unit 4 has 30 items covering Sections 4.2 (i) to 4.2 (vii) of the topic axis
- Unit 5 has 30 items covering Sections 4.3 (i) to 4.3 (iv) of the topic axis
- Unit 6 has 30 items covering Sections 4.4 (i) to 4.4 (ivc) of the topic axis
- Unit 7 has 45 items from all areas of the topic axis.

Unit 7 is intended as a model achievement test and contains a broad range of items with an average facility of approximately 50 per cent. This model will be useful to teachers preparing their own achievement tests. When preparing a test made up of items from this collection, teachers should bear in mind that during the trial-testing of items, most students completed an average of six items per ten minutes.

D Writing Additional Test Items

Multiple-choice items should incorporate the following points:

1. The stem and each alternative must read grammatically when taken together.
 For example: Use of plural in the stem requires use of a plural in the alternatives.
2. The problem posed or the question asked must be clearly set out in the stem.
3. The whole item should be as brief as its proper presentation will allow.
 For example: Avoid superfluous words.
 Use a single idea in the stem.

Victorian teachers will note that the first six units correspond to the six major areas of the VISE syllabus. Nine of the items relate to syllabus areas which will be deleted from the core of the course in 1981. These items (5-3, 5-4, 5-11, 5-16, 5-17, 5-22, 6-16, 6-17 and 7-35) are denoted in the text by asterisks.

To keep the alternatives brief, incorporate the major part of the idea in the stem.
The following example illustrates this point:

Poor

Chemistry is

A a science that is concerned with the relationships and characteristics of matter.
B a science that is concerned with the relationships of living organisms, etc.

Better

Chemistry is a science that is concerned with

A the relationships of living organisms, etc.
B the relationships and characteristics of matter, etc.

Avoid a negative stem where possible.

If unavoidable, either (i) emphasize not or (ii) use: all of the following except one.

Which one?

All distractors should be equally attractive to the uninformed, yet the correct alternative must be unequivocally the best.

If the final alternative is an exclusion of the other alternatives, do not use 'none of the above'.

For example: D neither A, nor B, nor C.

All alternatives must be homogeneous in idea and style.

For example: Do not mix functions and structures.

Words such as 'all', 'never', 'always', 'only' should not be used indiscriminately.

Information presented in the stem must be factually correct.

Distractors must be clearly incorrect, and not merely incomplete.

For a more comprehensive treatment of test construction and item writing, see:

1.1 The nuclear atom
1.2 Electronic structure of atoms
1.3 The periodic table
2.1 The mole and chemical formulae
2.2 Chemical reactions
2.3 Stoichiometric calculations
2.4 Chemical equilibrium
3.2 Transformation of energy by chemical reaction
3.3 Production of electrical energy by chemical reaction
3.4 Chemical reactions driven by electrical energy
4.2(i) The elements C, Si
4.2(ii) Hydrides of C, Si
4.2(iii) Covalent bonding in compounds of C and Si
4.2(iv) Chemistry of some oil and coal derivatives
4.2(v) Polymers
4.2(vi) Some molecules of biological importance
4.2(vii) Oxides of C, Si
4.3(i) The elements N, P
4.3(ii) Ammonia and phosphine
4.3(iii) Oxides of nitrogen and phosphorus
4.3(iv) The role of nitrogen and phosphorus in living systems
4.4(i) Commercial sources of O, S, metals
4.4(ii) The elements O, S; metals
4.4(iii) Direct formation of oxides from metals
4.4(iva) Oxides of sulfur; sulfuric acid
4.4(ivb) Water
4.4(ivc) Hydrogen peroxide
Answer key and item facilities

Unit 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Correct Response</th>
<th>% Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>E</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>85</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>76</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>61</td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>85</td>
</tr>
<tr>
<td>23</td>
<td>D</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>B</td>
<td>81</td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>74</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>64</td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td>81</td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>82</td>
</tr>
<tr>
<td>30</td>
<td>D</td>
<td>41</td>
</tr>
</tbody>
</table>

Unit 2

<table>
<thead>
<tr>
<th>Item</th>
<th>Correct Response</th>
<th>% Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>A,B,E</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>54</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>77</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>88</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
<td>78</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>68</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>57</td>
</tr>
<tr>
<td>23</td>
<td>A,C</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>B</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>45</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>34</td>
</tr>
<tr>
<td>27</td>
<td>A</td>
<td>50</td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td>69</td>
</tr>
<tr>
<td>29</td>
<td>E</td>
<td>65</td>
</tr>
<tr>
<td>30</td>
<td>C</td>
<td>60</td>
</tr>
<tr>
<td>Item</td>
<td>Correct Response</td>
<td>Facility</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>69</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>D</td>
<td>77</td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>86</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>67</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>54</td>
</tr>
<tr>
<td>29</td>
<td>D</td>
<td>56</td>
</tr>
<tr>
<td>30</td>
<td>A</td>
<td>46</td>
</tr>
<tr>
<td>Item</td>
<td>Correct Response</td>
<td>% Facility</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>76</td>
</tr>
<tr>
<td>14</td>
<td>D</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>69</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>87</td>
</tr>
<tr>
<td>28</td>
<td>A</td>
<td>74</td>
</tr>
<tr>
<td>29</td>
<td>A</td>
<td>74</td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td>49</td>
</tr>
</tbody>
</table>

* Items relating to 1980 VISE syllabus core but being deleted from 1981 VISE syllabus core.

The Australian Council for Educational Research Limited; Radford House, Frederick Street, Hawthorn, Vic. 3122 — ACER CHEMISTRY YEAR 14
<table>
<thead>
<tr>
<th>Item</th>
<th>Correct Response</th>
<th>% Facility</th>
<th>Item</th>
<th>Correct Response</th>
<th>% Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>62</td>
<td>24</td>
<td>A</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>56</td>
<td>25</td>
<td>C</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>58</td>
<td>26</td>
<td>B</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>44</td>
<td>27</td>
<td>D</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>54</td>
<td>28</td>
<td>B</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>53</td>
<td>29</td>
<td>B</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>50</td>
<td>30</td>
<td>B</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>43</td>
<td>31</td>
<td>C</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>47</td>
<td>32</td>
<td>C</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>51</td>
<td>33</td>
<td>B</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>24</td>
<td>34</td>
<td>A,C,D</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>A</td>
<td>88</td>
<td>35</td>
<td>C</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>54</td>
<td>36</td>
<td>C</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>60</td>
<td>37</td>
<td>B</td>
<td>76</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>39</td>
<td>38</td>
<td>B</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>47</td>
<td>39</td>
<td>C</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>59</td>
<td>40</td>
<td>A</td>
<td>58</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>53</td>
<td>41</td>
<td>D</td>
<td>64</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>56</td>
<td>42</td>
<td>B</td>
<td>61</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>54</td>
<td>43</td>
<td>D</td>
<td>61</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>31</td>
<td>44</td>
<td>C</td>
<td>66</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>37</td>
<td>45</td>
<td>B</td>
<td>57</td>
</tr>
<tr>
<td>23</td>
<td>A</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Items relating to 1980 VISE syllabus core but being deleted from 1981 VISE syllabus core.
UNIT 1

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The nuclear atom</td>
</tr>
<tr>
<td>1.2</td>
<td>Electronic structure of atoms</td>
</tr>
<tr>
<td>1.3</td>
<td>The periodic table</td>
</tr>
<tr>
<td>2.1</td>
<td>The mole and chemical formulae</td>
</tr>
</tbody>
</table>
1-1 The nucleus of an isotope of beryllium can be formed by the following nuclear reaction.

\[^{4}\text{He} + ^{2}\text{n} \rightarrow ^{6}\text{Be} \]

The mass of the beryllium nucleus would be

A greater than the mass of the protons and neutrons.
B less than the mass of the protons and neutrons.
C equal to the mass of the protons and neutrons.
D equal to the mass of the protons, neutrons, and the nuclear binding energy.

1-2 The element mendelevium (Md) was first isolated by the bombardment of einsteinium atoms (Es) with \(\alpha \) particles in the process

\[^{253}\text{Es} + ^{4}\text{He} \rightarrow ^{257}\text{Md} + X \]

The particle represented by \(X \) must be

A a proton.
B a neutron.
C an electron.
D a hydrogen atom.

1-3 It is believed that in a supernova, iron nuclei break down according to the equation

\[^{56}\text{Fe} \rightarrow ^{56}\text{He} + 4\text{n} \]

Energy is required for this process.

As a result of this process, the mass of the system would

A depend on the conditions under which the reaction took place.
B remain unchanged.
C decrease.
D increase.

1-4 For a nuclear fusion to occur, two interacting nuclei must

A exert no electrostatic repulsions on each other.
B demonstrate a mutual electrostatic attraction.
C acquire sufficient kinetic energy to overcome an electrostatic repulsion.
D undergo a mass increase which accounts for the energy needed to overcome the net electrostatic repulsions.

1-5 The atomic number of an element is equal to

A the number of protons plus neutrons in a neutral atom of the element.
B the number of neutrons in a neutral atom of the element.
C the number of electrons in a neutral atom of the element.
D the weighted mean of the isotopic masses of the element.

1-6 An atom of rubidium \(^{87}\text{Rb} \) is ionized to yield the \(\text{Rb}^{+} \) ion.

In this ion, there are

A 85 neutrons.
B 85 electrons.
C 85 protons.
D 37 neutrons.
E 37 electrons.
F 37 protons.
1.7 The characteristic wavelengths of light produced when sodium is placed in a flame can best be explained by the fact that
A when excited to any higher energy level, atoms emit energy in specific amounts, as the electrons drop back to a lower energy level.
B when excited to any higher energy level, atoms absorb only specific amounts of energy, which correspond to light of particular wavelengths.
C atoms are only able to absorb energy in specific quantities.
D after absorbing energy, atoms release a specific amount of energy depending on the amount of substance present.

1.8 Which one of the following statements best expresses the idea of the Pauli principle?
A An orbital can never contain three or more electrons.
B An orbital must contain two electrons.
C An orbital may contain one electron.
D An orbital must always contain one or two electrons.

1.9 An element has atomic number 27.
Its ground state electronic configuration is best expressed as
A \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6\)
B \(1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 5s^1\)
C \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1\)
D \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4p^6 5s^1\)

1.10 Which of the following electronic configurations does not represent an atom in its lowest energy state?
A \(1s^2 2s^2 2p^2\)
B \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^1\)
C \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2\)
D \(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4p^6 5s^1\)

The following information refers to the next four items.
Consider the following elements labelled V, W, X, Y and Z. For each element the electronic configuration is listed in the table below.

<table>
<thead>
<tr>
<th>Element</th>
<th>Electronic-configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 6s^2)</td>
</tr>
<tr>
<td>W</td>
<td>(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6)</td>
</tr>
<tr>
<td>X</td>
<td>(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 4f^{14} 5s^2 5p^6 5d^6 6s^2)</td>
</tr>
<tr>
<td>Y</td>
<td>(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2)</td>
</tr>
<tr>
<td>Z</td>
<td>(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2)</td>
</tr>
</tbody>
</table>

1.11 Which element belongs in the first transition series?
A V
B W
C X
D Y
E Z

1.12 Which element occurs in Group II?
A V
B W
C X
D Y
E Z

1.13 Which element occurs in Group V?
A V
B W
C X
D Y
E Z

1.14 The number of orbitals in the f sub-shell is
A 2
B 5
C 7
D 14

The Australian Council for Educational Research Limited, Bedford House, Frederick Street, Hawthorn, Vic. 3122 ACER CHEMISTRY YEAR 12 Unit I
This page may not be reproduced, except for use within a school or similar educational establishment, without permission from the publisher.
1.3

In the original development of the periodic table, Mendeleev placed the then known elements in an order based on
A known properties and atomic numbers.
B known electronic structures and properties.
C atomic masses and known properties.
D the relative isotopic masses of the various known isotopes.

1.16 Lithium and sodium have similar physical and chemical properties. This is best explained by the fact that both elements
A are metals.
B have the same outer-shell electron configuration.
C have a low relative atomic mass.
D are in period 1 of the periodic table.

1.17 The Avogadro Constant is equal to
A the number of molecules in one mole of oxygen gas.
B the number of atoms in 12 g of pure carbon.
C the number of atoms in 16 g of O_2.
D the number of elementary charges in one coulomb of charge.

1.18 The mole is used as a measure of amount of substance in chemistry. In terms of which one of the following is it defined?
A volume of particles
B size of particles
C number of particles
D concentration of particles

1.19 12 g exactly of ^{12}C contains 6.0×10^{23} atoms of ^{12}C. Naturally occurring carbon contains 98.9% ^{12}C and 1.1% ^{13}C by mass. Hence, exactly 12 g of naturally-occurring carbon would contain
A more than 6.0×10^{23} atoms of ^{12}C.
B fewer than 6.0×10^{23} atoms of ^{12}C.
C atoms of ^{12}C and ^{13}C totalling 6.0×10^{23}.
D exactly 6.0×10^{23} atoms of ^{12}C.

1.20 Chlorine atoms exist in two isotopic forms: ^{35}Cl and ^{37}Cl. If it were possible to completely separate these isotopes, it would follow that, assuming that all gases behaved ideally,
A 1 mol of ($^{35}\text{Cl}_2$) gas would occupy a greater volume than 1 mol of ($^{37}\text{Cl}_2$) gas under the same conditions.
B 1 g of $^{35}\text{Cl}_2$ would contain more atoms than 1 g of $^{37}\text{Cl}_2$.
C 1 dm3 of ($^{35}\text{Cl}_2$) gas would contain more molecules than 1 dm3 of ($^{37}\text{Cl}_2$) gas under the same conditions.
D 1 dm3 of ($^{37}\text{Cl}_2$) gas would have a greater mass than 1 dm3 of ($^{35}\text{Cl}_2$) gas under the same conditions.

1.21 The element gallium has two isotopes of relative isotopic masses 68.95 and 70.95. Its relative atomic mass is 69.75. The percentage of isotope ^{69}Ga in naturally occurring gallium is
A 40.
B 50.
C 60.
D 70.
E 80.

1.22 Naturally occurring boron consists of two isotopes with the following approximate percentage abundances.

The best approximate relative atomic mass of boron is
A 10.0
B 10.2
C 10.5
D 10.8
E 11.0

The Australian Council for Educational Research Limited, Radford House, Frederick Street, Hawthorn, Vic. 3122 – ACER CHEMISTRY YEAR 12 – Unit 1
This page may not be reproduced, except for use within a school or similar educational establishment, without permission from the publisher.
A gaseous compound of nitrogen (\(A_\text{14}\)) and oxygen (\(A_\text{16}\)) is shown by experiment to have a relative molecular mass in the range of 50 to 100, and to contain a little over 30\% nitrogen by mass. The number of atoms of oxygen per molecule of the compound is

\[\text{A} 1, \quad \text{B} 2, \quad \text{C} 3, \quad \text{D} 4, \quad \text{E} 5\]

The percentage, by mass, of hydrogen in ammonium dichromate \((\text{NH}_4\text{Cr}_2\text{O}_7)\) is (given \(A, \text{N} 14; \text{H} 1; \text{Cr} 52; \text{O} 16\))

\[\begin{align*}
\text{A} & = \frac{1 \times \text{A} \times \text{N} + 4 \times \text{H}}{28 + 4 \times \text{O}} \\
\text{B} & = \frac{4 \times \text{H}}{28 + 4 \times \text{O}} \\
\text{C} & = \frac{14 \times \text{O}}{14 + 4 \times \text{O}} \\
\text{D} & = \frac{28 \times \text{O}}{28 + 4 \times \text{O}}
\end{align*}\]

Two vessels of equal volume contain helium gas (\(A, \text{He} 4\)) and nitrogen gas (\(M, \text{N} 28\)) respectively. The gas in each vessel is at the same temperature and pressure. When the gases in the two vessels are mixed, the percentage by mass of nitrogen in the mixture is

\[\begin{align*}
\text{A} & = \frac{4 \times \text{He} \times 100}{28 + 4 \times \text{N}} \\
\text{B} & = \frac{4 \times \text{He} \times 100}{28 + 4 \times \text{N}} \\
\text{C} & = \frac{4 \times \text{N} \times 100}{14 + 4 \times \text{N}} \\
\text{D} & = \frac{28 \times \text{N} \times 100}{28 + 4 \times \text{N}}
\end{align*}\]

The following information refers to the next two questions.

A student had two flasks of identical volume. He filled flask 1 with 1 mol of gas \(X (M, \text{X} 20)\) at a temperature of 400 K, and flask 2 with 2 mol of gas \(Y (M, \text{Y} 80)\) at 100 K.

The ratio of pressure of gas \(X\) to pressure of gas \(Y\), is equal to

\[\begin{align*}
\text{A} & = 4 : 1, \quad \text{B} 2 : 1, \quad \text{C} 1 : 1, \quad \text{D} 1 : 2, \quad \text{E} 1 : 4
\end{align*}\]

The ratio, number of molecules in flask 1 : number of molecules in flask 2, is equal to

\[\begin{align*}
\text{A} & = 4 : 1, \quad \text{B} 2 : 1, \quad \text{C} 1 : 1, \quad \text{D} 1 : 2, \quad \text{E} 1 : 1
\end{align*}\]

One mole of an ideal gas occupies

\[\begin{align*}
\text{A} & = 22.4 \text{ dm}^3 \text{ at } 273 \degree \text{C and } 101 300 \text{ Pa pressure.} \\
\text{B} & = 44.8 \text{ dm}^3 \text{ at } 546 \degree \text{C and } 101 300 \text{ Pa pressure.} \\
\text{C} & = 22.4 \text{ dm}^3 \text{ at } 273 \degree \text{C and } 202 600 \text{ Pa pressure.} \\
\text{D} & = 44.8 \text{ dm}^3 \text{ at } 546 \degree \text{C and } 202 600 \text{ Pa pressure.}
\end{align*}\]

A flask, \(M\), contains 1 mol of gas molecules at 250 K. A flask, \(N\), whose volume is the same as flask \(M\), contains 2 mol of gas molecules. The pressure in flask \(N\), however, is the same as that in flask \(M\). This could be explained if the gas in flask \(N\)

\[\begin{align*}
\text{A} & \quad \text{had half the relative molecular mass of the gas in flask } M. \\
\text{B} & \quad \text{was at a temperature of } 125 \degree \text{K.} \\
\text{C} & \quad \text{was composed of diatomic molecules.} \\
\text{D} & \quad \text{had half as many molecules as the gas in flask } M.
\end{align*}\]

If, at a fixed pressure, 2.20 g of a gas at 300 K occupies the same volume as 2.02 g of nitrogen gas at 290 K, then the molar mass of this gas is (given \(A, \text{N} 14\))

\[\begin{align*}
\text{A} & = \frac{2.20 \times 14}{2.02} \text{ g.} \\
\text{B} & = \frac{2 \times 2.20 \times 14}{2.02} \text{ g.} \\
\text{C} & = \frac{2 \times 2.20 \times 300 \times 14}{2.02 \times 290} \text{ g.} \\
\text{D} & = \frac{2 \times 2.20 \times 14}{2.02} \text{ g.} \\
\text{E} & = \frac{2 \times 2.20 \times 290 \times 14}{2.02 \times 300} \text{ g.}
\end{align*}\]
UNIT 2

2.2 Chemical reactions
2.3 Stoichiometric calculations
2.4 Chemical equilibrium
2.2 A reduction reaction may often involve the
(A) addition of hydrogen.
(B) removal of hydrogen.
(C) addition of hydrogen ion.
(D) removal of hydrogen ion.

2.2 In which of the following compounds does the underlined element have an oxidation number of +2?
(A) Zn(OH)\(_2\)
(B) CrO\(_2\)Cl\(_2\)
(C) NO\(_2\)
(D) CH\(_3\)OH

2.3 Concentrated sulfuric acid is able to act as an oxidising agent. Which one of the following equations illustrates this ability?
(A) \(2\text{NaOH(aq) + H}_2\text{SO}_4(aq) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2\text{H}_2\text{O(l)}\)
(B) NaCl(s) + H\(_2\)SO\(_4\)(aq) → NaHSO\(_4\)(aq) + Cl\(_2\)(aq)
(C) Zn(s) + 2H\(_2\)SO\(_4\)(aq) → ZnSO\(_4\)(aq) + 2H\(_2\)O(l) + SO\(_2\)(g)
(D) 2NH\(_3\)(g) + H\(_2\)SO\(_4\)(aq) → (NH\(_4\))\(_2\)SO\(_4\)(aq)

2.4 Which one or more of the following reactions of nitrogen oxides are redox reactions?
(A) 2NO + O\(_2\) → 2NO\(_2\)
(B) \(2\text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 + \text{H}_2\text{O}_3\)
(C) 2NO\(_2\) → N\(_2\)O\(_4\)

2.5 The permanganate ion, MnO\(_4^-\), can oxidize H\(_2\)S to elemental sulfur, according to the following equations:
\[
\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
\text{H}_2\text{S} \rightarrow \text{S} + 2\text{H}^+ + 2\text{e}^-
\]
When the redox reaction occurs, the ratio of number of mole of MnO\(_4^-\) reacting to number of mole of S produced is
(A) 1:1. (B) 1:2. (C) 5:1. (D) 5:2. (E) 2:5.

2.6 Heptane burns in air according to the equation
\[\text{C}_7\text{H}_{16(l)} + 11\text{O}_2(g) \rightarrow 7\text{CO}_2(g) + 8\text{H}_2\text{O(g)}\]
What volume of CO\(_2\) is produced at STP, by the complete combustion of 1.0 g of heptane? (\(A , H = 1; \ C_6 = 12\))
(A) 0.224 dm\(^3\) (B) 1.57 dm\(^3\) (C) 1.79 dm\(^3\) (D) 2.46 dm\(^3\)

2.7 A sample of impure limestone had a mass of 10.0 g. When heated strongly, various volatile
materials were evolved, but the CO\(_2\) component was isolated and absorbed by passing it through
CaO which showed a mass increase of 2.20 g.
Based on these figures, the carbonate ion (CO\(_{3}^\text{2-}\)) content in the limestone was (given \(A , Ca = 40; C = 12; \ O = 16\))
(A) 2.2% (B) 22.0% (C) 30.0% (D) 50.0%
2.3 The mass of anhydrous sodium carbonate required to make up exactly 2 dm3 of 0.025 M solution is (A, Na = 23; C = 12; O = 16)

A 2 x 0.025 x (23 + 12 + (3 x 16)) g.
B 0.025 x (23 + 12 + (3 x 16)) g.
C 2 x 0.025 x (23 + 12 + (3 x 16)) g.
D 2 x 0.025 x ((2 x 23) + 12 + (3 x 16)) g.
E 0.025 x ((2 x 23) + 12 + (3 x 16)) g.

The following information refers to the next two items.

2.45 g of pure potassium chlorate (KClO$_3$) was quantitatively decomposed to produce potassium chloride (KCl) and oxygen. The potassium chloride was dissolved in water and treated with a 0.2 M silver nitrate solution (AgNO$_3$) producing a precipitate of silver chloride.

(A, N = 14, O = 16; K = 39; Cl = 35.5; Ag = 108)

2.9 The volume of oxygen released from 2.45 g of KClO$_3$ at STP is

A 0.02 x 22.4 dm3.
B 0.03 x 22.4 dm3.
C 0.04 x 22.4 dm3.
D 0.06 x 22.4 dm3.
E 0.08 x 22.4 dm3.

2.10 The volume of silver nitrate solution required for the complete reaction of the potassium chloride solution is

A 0.2 x 1000 cm3.
B 0.02 x 1000 cm3.
C 0.2 x 1000 cm3.
D 0.02 x 1000 cm3.
E 1 dm3.

2.11 The volume of 0.1 M H$_2$SO$_4$ solution required to prepare 5.62 g of hydrated iron (III) sulphate ($M_r = 562$) from iron (III) oxide is

A 10 cm3.
B 30 cm3.
C 100 cm3.
D 300 cm3.
E 1 dm3.

2.12 When 20 cm3 of 1 M BaCl$_2$ solution is added to 40 cm3 of 2 M K$_2$SO$_4$ solution, the mass of the BaSO$_4$ precipitate formed is (given A, K = 39; S = 32; O = 16; Ba = 137; Cl = 35.5)

A 2.33 g.
B 4.66 g.
C 9.32 g.
D 18.64 g.
E 37.28 g.

The following information refers to the next four items.

A solution is prepared by adding 250 cm3 of 0.05 M Ba(OH)$_2$ solution to 250 cm3 of a 0.02 M solution of NaOH.

2.13 The molarity of the solution with respect to the OH$^-$ ion is

A 0.03 M.
B 0.04 M.
C 0.06 M.
D 0.07 M.
E 0.12 M.

2.14 The molarity of the solution with respect to the Na$^+$ ion is

A 0.005 M.
B 0.01 M.
C 0.02 M.
D 0.03 M.
E 0.04 M.

2.15 What would be the minimum volume of 0.05 M H$_2$SO$_4$ required to precipitate the Ba$^{2+}$ ions from 50 cm3 of the solution as BaSO$_4$?

A 25 cm3.
B 50 cm3.
C 100 cm3.
D 250 cm3.
E 500 cm3.

2.16 50 cm3 of the solution required 60 cm3 of an HCl solution for complete neutralization.

The molarity of the HCl was

A 0.03 M.
B 0.05 M.
C 0.06 M.
D 0.10 M.
E 0.12 M.

2.17 A student prepares a solution that has a pH of 8.8. The concentration of H$_3$O$^+$ in the solution is

A 8.8 M.
B 8 x 10$^{-8}$ M.
C 10$^{-8}$ M.
D 10$^{-9}$ M.
E 10$^{-10}$ M.
The Australian Council for Educational Research Limited, Radford House, Frederick Street, Hawthorn, Vic. 3122 — ACER CHEMISTRY YEAR 12 — Unit 2
This page may not be reproduced, except for use within a school or similar educational establishment, without permission from the publisher.
The following information refers to the next two items.

Carbon monoxide and chlorine react according to the equation:

\[\text{CO}(g) + \text{Cl}_2(g) \rightarrow \text{COCl}_2(g) \]

The forward reaction is exothermic.

2-25 If a mixture of CO, Cl₂, and COCl₂ at equilibrium at 1000 °C is cooled to 500 °C at constant volume, then, when the new equilibrium is attained,

A. the concentration of CO will decrease.
B. the concentration of COCl₂ will decrease.
C. the value of \(K \) will decrease.
D. the rate of reaction must remain unchanged.

2-26 If the volume of an equilibrium mixture of CO, Cl₂, and COCl₂ is halved, by increasing the pressure at constant temperature, then, at the new equilibrium

A. the concentration of CO will have decreased.
B. the concentration of COCl₂ will have increased.
C. the value of \(K \) will increase.
D. the rate of reaction must remain unchanged.

2-27 A closed vessel contains nitrogen and hydrogen in equilibrium with NH₃, as shown by the equation below:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2 \text{NH}_3(g), \Delta H = -92 \text{ kJ mol}^{-1} \]

Which one of the following procedures will shift the equilibrium position to the right?

A. decreasing the volume of the system
B. increasing the temperature of the system
C. introduction of an inert gas into the system
D. addition of a catalyst to the system
The following information refers to the next three items.

Some hydrogen and iodine were placed in a sealed vessel and heated to 500 °C, where equilibrium was established according to the equation

\[
\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})
\]

The reaction is endothermic.

The mixture was then quickly cooled so that no further reaction took place, and the equilibrium was undisturbed. Some I\(_2\) was removed and replaced by an equal amount of radioactive iodine, I\(_2^*\). Equilibrium was then re-established at 500 °C.

2-28 Upon re-establishment of the equilibrium mixture, the species present would be

\[\text{A} \quad \text{H}_2, \text{I}_2^*, \text{HI}^*\]
\[\text{B} \quad \text{H}_2, \text{HI}, \text{I}_2^*, \text{HI}^*\]
\[\text{C} \quad \text{H}_2, \text{I}_2, \text{HI}, \text{HI}^*\]
\[\text{D} \quad \text{H}_2, \text{I}_2, \text{HI}, \text{I}_2^*, \text{HI}^*\]

2-29 The volume of the container housing the equilibrium mixture was then halved, while keeping the temperature constant.

It would follow that

\[\text{A} \quad \text{the mass of I}_2^* \text{ would increase.}\]
\[\text{B} \quad \text{the mass of I}_2^* \text{ would decrease.}\]
\[\text{C} \quad \text{the mass of HI would decrease.}\]
\[\text{D} \quad \text{the mass of I}_2 \text{ would increase.}\]
\[\text{E} \quad \text{there would be no change in the relative masses of the reactants and product.}\]

2-30 The volume of the container was then returned to its original value and the temperature was increased to 600 °C.

It would follow that, compared to the original equilibrium situation,

\[\text{A} \quad [\text{HI}^*] \text{ and } [\text{I}_2^*] \text{ would both increase.}\]
\[\text{B} \quad [\text{HI}^*] \text{ and } [\text{I}_2^*] \text{ would both decrease.}\]
\[\text{C} \quad [\text{HI}^*] \text{ would increase but } [\text{I}_2^*] \text{ would decrease.}\]
\[\text{D} \quad [\text{HI}^*] \text{ would decrease but } [\text{I}_2^*] \text{ would increase.}\]
\[\text{E} \quad \text{the reagents would remain unchanged.}\]
UNIT 3

3.2 Transformation of energy by chemical reaction
3.3 Production of electrical energy by chemical reaction
3.4 Chemical reactions driven by electrical energy
The following information refers to the next two items.

150 cm³ of water at 303 K was placed in an insulated flask, and the temperature measured at 20 second intervals for 3 minutes. The results are shown on the graph below. After 60 seconds, 0.1 mole of the compound NaX was added to the water. Room temperature was 293 K throughout the experiment.

The graph shows the temperature in the flask over time. After 60 seconds, the temperature drops sharply, indicating the addition of NaX.

3.1 The solution process NaX(s) + aq → Na⁺(aq) + X⁻(aq) is
A exothermic. C endergonic.
B endothermic. D thermoneutral.

3.2 The sign for ΔH in the above reaction is
A negative, as the system gradually gains heat from its surroundings.
B positive, as the water tends to gain energy.
C positive, as the solid tends to lose energy to the water.
D negative, as the system produces heat which it gradually loses to its surroundings.

3.3 For the reaction H₂(g) + X₂(g) → 2HX(g) ΔH = -110 kJ
ΔH for the reaction HX(g) → 1/2H₂(g) + 1/2X₂(g) is
A -220 kJ. C -55 kJ. E +110 kJ.
B -110 kJ. D +55 kJ.

3.4 For the reaction HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(l) ΔH = -56 kJ mol⁻¹
When 10 cm³ of 0.25 M HCl solution is reacted with 20 cm³ of 0.15 M NaOH solution, the heat change occurring has the value
A 56 J. C 3 × 56 J. E 0.5 × 56 J.
B 5.5 × 56 J. D 2.5 × 56 J.

3.5 The equation below represents the solution of sodium thiosulphate in excess water.
\[\text{Na}_2\text{S}_2\text{O}_3(s) + \text{aq} \rightarrow 2\text{Na}^+(aq) + \text{S}_2\text{O}_3^{2-}(aq) \]
When 0.010 mole of sodium thiosulphate is dissolved in 100 cm³ of pure water in a thermally insulated container,
A the water will become warmer due to the reaction.
B the water will remain at the same temperature but heat will be given off to the surroundings.
C the water will become colder due to the reaction.
D the water will remain at the same temperature but heat will be absorbed from the surroundings.
3.2 The combustion of the fuel gas butane \((C_4H_{10})\) proceeds according to the equation

\[
2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l) \quad \Delta H = -5760 \text{ kJ}
\]

The mass of butane \((M = 58)\) which must be burned in order to produce \(1 \cdot 0 \text{ kJ}\) of heat according to the equation given is

A \(\frac{1 \cdot 0 \times 58}{5760} \text{ g}\)

B \(\frac{1 \cdot 0 \times 58}{\frac{1}{2}} \text{ g}\)

C \(\frac{5760 \times 2 \times 58}{5760} \text{ g}\)

D \(\frac{1 \cdot 0 \times 2 \times 58}{5760} \text{ g}\)

E \(\frac{5760 \times 1 \cdot 0 \times 58}{2} \text{ g}\)

3.7 Consider the following thermochemical equations:

\[
\text{CaSO}_4(s) + \text{aq} \rightarrow \text{Ca}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) \quad \Delta H = -66.5 \text{ kJ mol}^{-1}
\]

\[
\text{CaSO}_4 \cdot 5\text{H}_2\text{O(s)} + \text{aq} \rightarrow \text{Ca}^{2+}(\text{aq}) + \text{SO}_4^{2-}(\text{aq}) + 5\text{H}_2\text{O(l)} \quad \Delta H = +11.7 \text{ kJ mol}^{-1}
\]

A mixture of solid \(\text{CaSO}_4\) and \(\text{CaSO}_4 \cdot 5\text{H}_2\text{O}\) was added to a volume of water in a thermally insulated vessel, and no temperature change occurred. If the mixture contained \(2 \cdot 0 \text{ mol}\) of \(\text{CaSO}_4\), the number of mole of \(\text{CaSO}_4 \cdot 5\text{H}_2\text{O}\) present in the mixture was

A \(\frac{2 \cdot 0 \times 11.7}{66.5} \text{ mol}\)

B \(\frac{2 \cdot 0 \times 66.5}{11.7} \text{ mol}\)

C \(\frac{1 \times 11.7}{2 \cdot 0 \times 66.5} \text{ mol}\)

D \(\frac{1 \times 66.5}{2 \cdot 0 \times 11.7} \text{ mol}\)

3.8 Which of the following reactions would be least likely to occur in the furnace of a fossil fuel power station?

A \(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}\)

B \(\text{C} + \text{O}_2 \rightarrow \text{CO}_2\)

C \(\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}\)

D \(2\text{CaH}_{18} + 25\text{O}_2 \rightarrow 16\text{CO}_2 + 18\text{H}_2\text{O}\)

3.9 In Victoria, brown coal deposits will be able to supply the State's electrical needs for many years to come.

In a coal burning power station,

A all the chemical bond energy released from the coal is converted into electrical energy.

B all the heat energy released from the coal is converted into electrical energy.

C all the chemical bond energy released from the coal is converted into either electrical or heat energy.

D all the heat energy released from the coal is converted into either electrical or chemical bond energy.
The following diagram and data refers to the next four items.

\[\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad E^\circ = 0.77 \text{ V} \]
\[\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \quad E^\circ = 0.34 \text{ V} \]
\[\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad E^\circ = -0.41 \text{ V} \]

Concentrations are 1 M with respect to the ions listed.

3.10 For the above system:
- A there will be no electron flow in the wire.
- B electrons will flow in the wire from Cu to Pt.
- C electrons will flow in the wire from Pt to Cu.
- D electrons will flow through the salt bridge from the Cu\(^{2+}\) (aq) solution to the Fe\(^{3+}\) (aq) solution.
- E electrons will flow through the salt bridge from the Fe\(^{2+}\) (aq) solution to the Cu\(^{2+}\) (aq) solution.

3.11 For the system illustrated, the electrode polarity will be:
- A Pt positive, Cu negative.
- B Pt negative, Cu positive.

3.12 If a KNO\(_3\) containing salt bridge was used in the above system, then:
- A K\(^+\) ions migrate into Beaker I, and are replaced in the salt bridge by Cu\(^{2+}\) ions from Beaker II.
- B NO\(_3^-\) ions migrate into Beaker I, and are replaced in the salt bridge by SO\(_4^{2-}\) ions from Beaker II.
- C K\(^+\) ions migrate into Beaker I, and NO\(_3^-\) ions migrate into Beaker II.
- D K\(^+\) ions migrate into Beaker II, and NO\(_3^-\) ions migrate into Beaker I.

3.13 If the platinum electrode is replaced by an iron electrode, then:
- A there will be no electron flow in the wire.
- B electrons will flow in the wire from Cu to Fe.
- C electrons will flow in the wire from Fe to Cu.
- D electrons will flow through the salt bridge from the Cu\(^{2+}\) (aq) solution to the Fe\(^{2+}\) (aq) solution.
- E electrons will flow through the salt bridge from the Fe\(^{2+}\) (aq) solution to the Cu\(^{2+}\) (aq) solution.

3.14 When comparing galvanic cells with electrolysis cells, it is true to say that:
- A the anode is positive, and the cathode is negative in each case.
- B reduction occurs at the negative electrode in a galvanic cell.
- C reduction occurs at the cathode in both cases.
- D oxidation occurs at the cathode in an electrolysis cell.
The next two items refer to the following table of E° values.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E° (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Br}_2 + 2e^- \rightarrow 2\text{Br}^-$</td>
<td>$E^\circ = 1.087$</td>
</tr>
<tr>
<td>$\text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^-$</td>
<td>$E^\circ = 1.358$</td>
</tr>
<tr>
<td>$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$</td>
<td>$E^\circ = 1.33$</td>
</tr>
<tr>
<td>$\text{I}_2 + 2e^- \rightarrow 2\text{I}^-$</td>
<td>$E^\circ = 0.535$</td>
</tr>
<tr>
<td>$\text{MnO}_4^- + 8\text{H}^+ + 5e^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$</td>
<td>$E^\circ = 1.491$</td>
</tr>
</tbody>
</table>

3-15 From this table, we would predict that
A. bromine molecules will be oxidised to bromide ions by a solution containing iodide ions.
B. dichromate ions will not oxidise iodide ions unless an acid solution is present.
C. permanganate ions will only reduce a chlorine solution in the presence of H^+ ions.
D. dichromate ions will reduce chlorine solutions, but not a solution of permanganate ions.

3-16 The E° for the reaction $2\text{NO}_3^- + 10\text{H}^+ + 8\text{e}^- \rightarrow \text{N}_2\text{O}_5 + 5\text{H}_2\text{O}$ is 1.18 V.

This means that an acidic solution of NO_3^- would be reduced by solutions of

A. Cl^- or Cr^{3+}.
B. MnO_4^- or $\text{Cr}_2\text{O}_7^{2-}$.
C. Br^- or I^-.
D. MnO_4^- or Br^-.

3-17 Which one of the standard electrodes whose half cell reactions are given below would give the largest EMF when paired with a standard calomel electrode ($E^\circ = 0.24$ V)?

A. $\text{C}^{2+} + \text{e}^- \rightarrow \text{C}^{+}$
$E^\circ = +0.77$ V
B. $\text{Ni}^{2+} + 2\text{e}^- \rightarrow \text{Ni}$
$E^\circ = -0.23$ V
C. $\text{Zn}^{2+} + 2\text{e}^- \rightarrow \text{Zn}$
$E^\circ = -0.76$ V
D. $\text{Ag}^+ + \text{e}^- \rightarrow \text{Ag}$
$E^\circ = +0.80$ V

3-18 Use the following standard electrode potentials to determine which of the species listed will be reduced by hydrogen sulphide.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E° (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-$</td>
<td>$E^\circ = 1.36$</td>
</tr>
<tr>
<td>$\text{Br}_2 + 2\text{e}^- \rightarrow 2\text{Br}^-$</td>
<td>$E^\circ = 1.07$</td>
</tr>
<tr>
<td>$\text{Fe}^{3+} + \text{e}^- \rightarrow \text{Fe}^{2+}$</td>
<td>$E^\circ = 0.77$</td>
</tr>
<tr>
<td>$\text{I}_2 + 2\text{e}^- \rightarrow 2\text{I}^-$</td>
<td>$E^\circ = 0.53$</td>
</tr>
<tr>
<td>$\text{S} + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2\text{S}$</td>
<td>$E^\circ = 0.14$</td>
</tr>
<tr>
<td>$\text{Fe}^{2+} + 2\text{e}^- \rightarrow \text{Fe}$</td>
<td>$E^\circ = -0.41$</td>
</tr>
</tbody>
</table>

A. Cl_2, Br_2, Fe^{3+}, I_2
B. Cl^-, Br^-, Fe^{2+}, I^-
C. Fe^{2+} only
D. Fe only

3-19 Car batteries are of the lead-acid type. The overall reaction which occurs as the battery discharges is

$\text{Pb}(s) + \text{PbO}_2(s) + 4\text{H}^+ + 2\text{SO}_4^{2-} \rightarrow 2\text{PbSO}_4 + 2\text{H}_2\text{O}$

In the recharging process,
A. the pH of the solution in the battery increases.
B. all Pb^{2+} ions in the battery are oxidised to Pb^{4+} ions.
C. the lead plates in the battery dissolve as Pb^{2+} ions are produced.
D. Pb^{2+} ions are either oxidised or reduced depending on the electrode they are near.
The diagram shows a simple primary cell (the Daniell cell).

In this cell, the reactant involved at the cathode is
A Cu^{2+} B H_2O C Zn^{2+} D SO_4^{2-}

The nickel-cadmium cell commonly used in electronic calculators has as its overall cell reaction

\[
Ni_2O_3(s) + 3H_2O(l) + Cd(s) \rightarrow Cd(OH)_2(s) + 2Ni(OH)_2(s)
\]

and has an EMF of 1.3 V.

To recharge this cell it would be necessary to
A apply a potential of 1.3 V across the cell, with the Cd electrode connected to the positive terminal of the power source.
B apply a potential of 1.3 V across the cell, with the Cd electrode connected to the negative terminal of the power source.
C apply a potential of more than 1.3 V across the cell, with the Cd electrode connected to the positive terminal of the power source.
D apply a potential of more than 1.3 V across the cell, with the Cd electrode connected to the negative terminal of the power source.
3.22 The diagram below shows a cross-section through a functioning H₂ O₂ fuel cell.

Which one or more of the following statements is correct?
A. The anode consists of a strip of platinum.
B. Label X refers to a solution of an electrolyte.
C. Label Y refers to the oxygen gas outlet.
D. Label Z refers to the hydrogen gas inlet.

3.23 Which one of the following would be least likely to affect either the rate, or the type of reaction, at a fully immersed electrode in an electrolysis cell?
A. increasing the area of the electrodes
B. varying the potential difference across the electrodes
C. increasing the concentration of the electrolyte
D. increasing the volume of the solution to be electrolysed

3.24 Which of the following best identifies the cathode in an electrolytic cell?
A. the electrode at which cations are discharged
B. the electrode at which no gas can be evolved
C. the electrode at which OH⁻ ions are produced
D. the electrode at which reduction occurs

3.25 The numerical value of the Faraday Constant (F) is given as 96487. This value represents
A. the number of coulombs carried by 1 mol of charge.
B. the number of electrons corresponding to 1 coulomb of charge.
C. the number of electrons corresponding to 1 mol of electric charge.
D. the number of ions discharged by the passage of 1 mol of electrons.
Electrolysis of a concentrated solution of sodium chloride is an important industrial process. In this process, which uses a potential difference of 5 V,

A. oxygen is produced at the anode and chlorine is produced at the cathode.
B. chlorine is produced at the anode and hydrogen is produced at the cathode.
C. oxygen is produced at the anode and hydrogen is produced at the cathode.
D. OH⁻ ions are produced at the anode and chlorine is produced at the cathode.
E. chlorine is produced at the cathode and sodium is produced at the anode.

The diagram shows an electrolysis cell for the extraction of aluminium metal.

Which one of the following statements about this apparatus is correct?
A. Carbon anodes are used because they are unreactive.
B. At the cathode, alumina is reduced to aluminium and chlorine.
C. The aluminium must be continually removed so that it does not interfere with the carbon cathode.
D. Cryolite is used as a solvent because alumina reacts preferentially at the electrodes.
3.28 The diagram shows a simplified representation of a commercial electrolysis cell—

[Diagram of a commercial electrolysis cell]

the Nelson Cell

When this cell is used in industry, the products are
A chlorine and oxygen.
B chlorine and hydrogen.
C chlorine, hydrogen and sodium hydroxide.
D sodium hydroxide and hydrogen.

3.29 In the electrolytic manufacture of tin plate, a solution of $K_2Sn(OH)_6$ is used as the electrolyte. The mass of tin that would be deposited after electrolysis for 1 hour with a current of 0.3 A would be (given $F = 96487 \text{C mol}^{-1}$; $A_Sn = 118.69$)

A $\frac{0.3 \times 118.69}{96487 \times 2}$
B $\frac{0.3 \times 60 \times 118.69}{96487 \times 2}$
C $\frac{0.3 \times 60 \times 60 \times 118.69}{96487 \times 2}$
D $\frac{0.3 \times 60 \times 60 \times 118.69}{96487 \times 4}$
E $\frac{0.3 \times 60 \times 96487}{2 \times 118.69}$
F $\frac{0.3 \times 60 \times 60 \times 96487}{4 \times 118.69}$

3.30 A student wishes to determine the Avogadro Constant by electrolysing a solution of copper sulfate. Which one of the following quantities is not needed for his determination?

A the concentration of the copper sulfate solution
B the mass of copper deposited
C the amount of electricity in coulomb, passed through the electrolyte
D the value, in coulomb, of 1 elementary charge
UNIT 4

4.2(i) The elements C, Si
4.2(ii) Hydrides of C, Si
4.2(iii) Covalent bonding in compounds of C and Si
4.2(iv) Chemistry of some oil and coal derivatives
4.2(v) Polymers
4.2(vi) Some molecules of biological importance
4.2(vii) Oxides of C, Si
4.1 In the fractional distillation of crude oil.
A molecules are split into smaller molecules.
B alkanes are converted to alkenes.
C hydrocarbons are separated according to their boiling temperatures.
D aromatic hydrocarbons are produced from alkanes.

4.2 Over 50% of Bass Strait crude oil consists of fractions with a relative molecular mass of 150 or more, yet 80% of the crude oil is converted to petrol, which contains fractions with relative molecular masses of 120 or less.
This is achieved by
A vacuum distillation of the heavy hydrocarbon fractions.
B thermally or catalytically cracking the heavier hydrocarbon components.
C hydrogenation of the undesired fractions.
D catalytic reforming of the heavy hydrocarbon fractions.

4.3 A common feature of the alkanes is that they all have
A the same empirical formula.
B the same molecular formula.
C similar chemical properties.
D similar relative molecular masses.

4.4 When a hydrocarbon was burned in excess air, the volumes of water vapour and carbon dioxide gas produced were in the ratio 2:1.
If the volumes of both gases were measured at the same temperature and pressure the hydrocarbon could be
A benzene.
B ethane.
C ethylene (ethene).
D methane.

4.5 The major hydrocarbon constituent of petrol is octane \(C_8H_{18} \). Of the following, the equation which correctly describes the complete combustion of octane in air is
A \(2C_8H_{18} + 9O_2 \rightarrow 16C + 18H_2O \)
B \(2C_8H_{18} + 17O_2 \rightarrow 16CO + 18H_2O \)
C \(2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O \)
D \(2C_8H_{18} + 34O_2 \rightarrow 16CO_2 + 18H_2O_2 \)
4.6 Which of the following pairs of molecular structures represent isomers?

4.2(ii)

A
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]
and
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

B
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]
and
\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

C
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]
and
\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

D
\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]
and
\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H}
\end{align*}
\]

4.7 Which one of the following statements is consistent with the structure of silicon carbide?

4.2(iii)

A It is covalently bonded because it is formed by subjecting carbon and silicon to very high temperatures.
B It has strong covalent bonds in three dimensions.
C It is a layer lattice with each atom covalently bonded to three other atoms.
D Each carbon atom is covalently bonded to one other carbon atom.
4.2(iii) The addition of powdered graphite to a lock which has been sticking will often cause the key to turn more easily.

Graphite has this effect because
A each carbon atom has already formed four bonds, and hence can form an unreactive film over which metals can slide.
B its infinite lattice structure is very hard and strong, enabling moving parts to slide over a thin layer of graphite.
C the tetrahedral arrangement of bonds around each carbon atom causes neighbouring carbon atoms to slide past one another.
D the carbon atoms are bonded into two dimensional sheets which can slide freely over one another.

\[\text{Butadiene—structural formula} \]

\[
\begin{array}{c}
\text{H} \\
\text{C} \quad \text{C} \\
\text{H} \quad \text{H}
\end{array}
\]

is a reactive chemical used extensively in the production of synthetic rubber.

It is often described as an 'unsaturated' hydrocarbon because
A butadiene molecules are unstable and react easily.
B each butadiene molecule has two fewer hydrogen atoms than each butane molecule.
C each carbon atom in butadiene has only three shared electron pairs instead of four.
D each molecule of butadiene contains at least one double bond.

4.2(iv) The vapour above a candle which has just been extinguished contains hydrocarbons which are gases at room temperature.

The process leading to the formation of these compounds is best described as
A distillation.
B vaporization.
C cracking.
D reforming.

4.2(iv) Ethylene may be obtained from crude oil by
A separating out the lighter components by fractional distillation.
B separating out the heavier components by fractional distillation.
C catalytic cracking of the crude oil followed by distillation.
D catalytic reforming of the crude oil followed by distillation.

4.2(iv) Ethylene reacts with water to produce ethanol according to the equation

\[
\text{C}_2\text{H}_4 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH}
\]

This reaction is described as
A a condensation reaction.
B a substitution reaction.
C an acid-base reaction.
D an addition reaction.
4.13 For many years chemists used the following structure to represent the benzene molecule:

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
\end{array}
\]

This structure is unsatisfactory because:

A. in some benzene molecules the double bonds are adjacent to one another.
B. each benzene molecule actually has six equivalent double bonds.
C. two electrons from each double bond are actually shared with the other four carbon atoms.
D. the carbon atoms are arranged in a circle, and not in a hexagon, as this structure suggests.

4.14 Which one of the following structural formulae represents a segment of a polythene (poly(ethylene)) molecule?

4.2(vi)

A. \[\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}\]

B. \[\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \]

C. \[\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \]

D. \[\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \]

4.15 In the production of beer, yeast cells are added to a mixture of hops and barley. The purpose of the yeast is to:

A. convert sugar, derived from barley, into carbon dioxide and water; thus giving beer its effervescent nature.
B. convert chemicals in hops into small proteins, giving beer a nutrient value.
C. break down starch, from the barley, into glucose and carbon dioxide giving beer a high energy content.
D. convert sugar, derived from barley, into ethanol, giving beer its alcoholic nature.

4.16 Which of the following would not be a source of carbon dioxide?

A. fermentation of sugar to alcohols
B. photosynthesis
C. the production of calcium oxide from limestone
D. the burning of fossil fuels
4.17 The molecule \(\text{CH}_3\text{CH(NH}_2\text{)}\text{COOH} \) is an example of

A a protein.
B an amino acid.
C a peptide.
D a nucleic acid.

4.18 A characteristic of enzymes is that

A they increase the rate of any chemical reaction in a living system.
B they are much more reactive than protein molecules.
C they function best in neutral solutions.
D they specifically catalyze particular chemical reactions.

4.19 The peptide link is the group of atoms which bond amino acids into proteins.

A structural representation of the peptide link is

\[
\begin{align*}
\text{NH}_2 & \quad \text{C} & \quad \text{O} & \quad \text{O} \\
\text{O} & \quad \text{H} & \quad \text{NH}_2 & \quad \text{C} \\
\end{align*}
\]

4.20 A biologist isolated a high molecular mass chemical from some living tissue. He found that it contained the elements carbon, nitrogen, hydrogen, and oxygen, that it was insoluble at high and low pH, and that it was made up of numerous sub-units.

Further investigations would probably show that

A the sub-units are identical.
B the sub-units are separable by hydrolysis.
C the sub-units are linked by carbon-carbon single bonds.
D the sub-units become negatively charged at low pH.

4.21 Which one of the following groups contains the formula of a substance which is unlikely to be found in large organisms?

A \(\text{CO}_2; \ 	ext{O}_2; \ 	ext{C}_6\text{H}_12\text{O}_6 \)
B \(\text{H}_2\text{O}; \ 	ext{CO}_2; \ 	ext{NaCl} \)
C \(\text{CO}_2; \ 	ext{NH}_3; \ 	ext{SiO}_2 \)
D \(\text{O}_2; \ (\text{NH}_2)_2\text{CO}; \ 	ext{H}_2\text{O} \)

4.22 People intent on suicide may lock themselves in a confined space, and allow fumes from an internal combustion engine to fill the space.

High exhaust fume concentrations lead to death because

A carbon monoxide combines more extensively with haemoglobin than does oxygen, thus starving the tissues of oxygen.
B increased exhaust fume concentrations greatly lower the oxygen concentration in the air, causing death by asphyxiation.
C carbon dioxide dissolves in blood forming carbonic acid, causing death by acidosis.
D carbon monoxide and carbon dioxide dissolve more readily in blood than does oxygen, causing oxygen starvation in the tissues.

4.23 In which of the following processes does \(\text{CO}_2 \) not play an important role?

A photosynthesis
B combustion of hydrocarbons
C respiration
D petroleum refining
4-24 In order to make bread dough rise, a baker may use flour containing added chemicals. Which one of the following could be satisfactorily used by the baker?

A. Na₂CO₃
B. NaHCO₃
C. CaCO₃
D. Ca(IIHCO₃)₂

4-25 Most buildings constructed of quarried limestone show deterioration after a few years. A possible explanation of this phenomenon is that

A. water reacts with calcium carbonate releasing carbon dioxide and leaving a deposit of brittle calcium hydrogen carbonate.
B. carbon dioxide reacts with calcium oxide impurities in limestone, to produce reactive hydrogen carbonate ions.
C. water combines with atmospheric carbon dioxide, forming carbonic acid, which, in turn, reacts with calcium carbonate to form soluble calcium hydrogen carbonate.
D. water combines with calcium carbonate to form the strong base calcium hydroxide, which reacts with acidic impurities in the limestone.

4-26 Silane will burn spontaneously in air, yet methane has to be ignited. This difference can be attributed to

A. Si–H bonds being stronger than C–H bonds and SiO₂ being more stable than CO₂.
B. Si–H bonds being weaker than C–H bonds and SiO₂ being less stable than CO₂.
C. Si–H bonds being stronger than C–H bonds and SiO₂ being less stable than CO₂.
D. Si–H bonds being weaker than C–H bonds and SiO₂ being more stable than CO₂.

4-27 Silica (SiO₂) occurs naturally in three crystalline forms. Each of these forms

A. has a crystal structure identical to each of the other forms.
B. has the atoms arranged in a covalent network lattice.
C. has physical properties identical to each of the other forms.
D. has each silicon atom bonded to four oxygen atoms and vice versa.

4-28 Which of the following is not a property of glass?

A. Glass softens gradually over a range of temperatures.
B. The brittleness of glass is independent of the rate of cooling.
C. Glass crystallizes only slowly at room temperature.
D. Solid glass shows some of the properties of a liquid.

4-29 Clays are produced by

A. the dissolving of silicate minerals in rain water.
B. the weathering of sand grains containing silica.
C. the reaction between silica-containing quartz and bicarbonate ion in the soil.
D. the sticking together of small particles formed by the breakdown of silicate minerals.

4-30 In the manufacture of ceramics, the reason for the high firing temperature of the clay is to

A. soften the mixture as a preparation for pouring into moulds.
B. drive off the water of crystallization in order to increase the strength of the ionic bonding.
C. increase the rate of particle diffusion, to ensure a regular crystal lattice.
D. enable the particles present to fuse together to form a solid, coherent mass.
UNIT 5

4.3(ii) The elements N, P
4.3(iii) Ammonia and phosphine
4.3(iii) Oxides of nitrogen and phosphorus
4.3(iv) The role of nitrogen and phosphorus in living systems
The next three items refer to the following diagram of a plant producing phosphorus.

5-1 The purpose of the coke is to

4.3(i)
A oxidise PO_4^{3-} ions from calcium phosphate to P_4 molecules.
B oxidise SiO_2 from sand to SiO_3^{2-} ions.
C reduce P_4O_{10} molecules formed in the furnace to P_4 molecules.
D reduce atmospheric O_2 to CO, which acts as an inert atmosphere.

5-2 The purpose of the carbon electrodes is to

4.3(i)
A reduce the PO_4^{3-} ions to P_4, and oxidise SiO_2 to SiO_3^{2-}.
B reduce PO_4^{3-} ions to P_4, and oxidise carbon to CO.
C electrostatically attract the molten silicate slag to the bottom.
D allow current to pass through the mixture, thereby generating heat.

5-3 The phosphorus is initially produced in the plant in the form(s) of

4.3(i)
A red phosphorus. C black phosphorus.
B white phosphorus. D a mixture of more than one allotrope of phosphorus.

5-4 There are 3 main allotropes of phosphorus.

Which one of the following statements about the allotropes is correct?

4.3(i)
A In each allotrope, the 15 electrons in each phosphorus atom are arranged in 3 orbitals.
B The chemical properties of each allotrope are identical, although the physical properties differ.
C In each allotrope, the phosphorus atoms have 5 valence electrons.
D The allotropes have different physical and chemical properties, although the arrangement of bonds within each allotrope is identical.
5-5 In which of the following compounds does phosphorus show the lowest oxidation state?

4.3(i)
(2.2)
A PH₄Br C PF₃ E Ca₃(PO₄)₂
B POBr₃ D PCl₄

5-6 Which one or more of the following statements describe(s) a role of atmospheric nitrogen?

4.3(i)
A It is the immediate source of the nitrates required by plants.
B It is oxidised to NO₂ at the temperature of a lightning flash.
C It prevents excessive rates of combustion in systems exposed to the atmosphere.
D It is converted to HNO₃ and NH₃ at the temperature of a lightning flash.

5-7 Atmospheric fixation of nitrogen occurs in lightning flashes according to the equation

4.3(ii)
(2.4)
\[\text{N}_2(g) + \text{O}_2(g) \rightarrow 2\text{NO}(g) \]
For this reaction \(K = 10^{-31} \) at 25 °C, and \(5 \times 10^{-3} \) at 3000 °C.
The differing \(K \) values indicate that,
A the rate of NO formation is much greater at 3000 °C than at 25 °C.
B there will be a greater ratio of reactants to products at 3000 °C than at 25 °C.
C the reaction is exothermic.
D the decomposition of NO gives products with a heat content less than that of NO.

The next two items refer to the flow diagram below for the Haber Process.

X \[\text{compressor} \rightarrow \text{converter} \rightarrow \text{refrigerator} \rightarrow \text{NH}_3 \]

5-8 The gases X and Y are

4.3(ii)
A air and hydrogen.
B hydrogen and nitrogen.
C air and nitrogen.
D nitrogen and steam.

5-9 In the compressor, the pressure of the incoming gases is increased in order to

4.3(ii)
A facilitate the dissociation of reactant molecules.
B increase the yield of ammonia being formed in the compressor.
C force the equilibrium position to the right for the reaction in the converter.
D eliminate the need for a catalyst.

5-10 The commercial production of ammonia is represented by the equation

4.3(ii)
(2.4)
\[\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g) \quad \Delta H = -92 \text{kJ mol}^{-1} \]
The reaction conditions may be adjusted so that
A increasing the temperature allows the forward reaction to proceed to a greater extent.
B lowering the pressure allows the forward reaction to proceed to a greater extent.
C any change in the rate of the forward reaction is compensated by an equal change to the rate of the back reaction.
D the rate of the forward reaction is fast enough to partially compensate for its small extent.
Ammonia has a boiling temperature of 33 °C.

The boiling temperature of phosphine (PH₃) will be

A higher than 33 °C, because phosphine molecules contain more electrons than ammonia molecules.
B lower than 33 °C, because the bond polarity in phosphine is much less than that in ammonia.
C higher than 33 °C, because the hydrogen bonds between phosphine molecules are stronger than those between ammonia molecules.
D lower than 33 °C, because P-H bonds are stronger than N-H bonds.

Which one of the following expressions will have the lowest equilibrium constant at room temperature and atmospheric pressure?

A NH₃(g) + H₂O(l) → H⁺(aq) + OH⁻(aq)
B NH₃(aq) + H₂O(l) → H⁺(aq) + OH⁻(aq)
C NH₃(aq) + H₂O(l) → H⁺(aq) + OH⁻(aq)
D Ag⁺(aq) + 2NH₃(aq) → Ag(NH₃)₂⁺(aq)

If a saturated solution of copper hydroxide in equilibrium with excess solid was maintained at a constant temperature, which of the following would cause additional copper hydroxide to dissolve?

A evaporation of half the water
B addition of solid Cu(OH)₂
C addition of solid NaOH
D addition of NH₃ solution

Silver chloride is virtually insoluble in water, yet significant amounts dissolve in 2 M ammonia solution. The principle reaction involved in the dissolution of AgCl is

A the reaction of NH₄⁺ ions with Cl⁻ ions to form soluble NH₄Cl.
B the removal of Ag⁺ ions from solution as Ag(OH)₂ complex ions.
C the reaction of Ag⁺ ions with OH⁻ ions to form soluble AgOH.
D the removal of Ag⁺ ions from solution as Ag(NH₃)₂ complex ions.

Which of the following oxides of nitrogen cannot exist?

A NO₃
B NO
C N₂O₃
D N₂O₄
E N₂O₅

Which one of the following oxides does not react with water to form an acidic solution?

A N₂O
B N₂O₃
C N₂O₅
D P₄O₁₀
E P₄O₆

The acid anhydride of nitrous acid is

A N₂O
B N₂O₃
C N₂O₅
D HNO₃

A student claimed that he had prepared a jar containing only NO₂ gas in his school laboratory, by reacting copper with concentrated nitric acid at room temperature. His claim is likely to be incorrect because

A NO₂ is completely converted to NO at room temperature.
B NO₂ exists in an equilibrium mixture with N₂O₄, with the latter predominating at room temperature.
C NO₂ is present in an equilibrium mixture with NO, with the latter predominating at room temperature.
D NO₂ exists in an equilibrium mixture with N₂O₄, with the latter predominating at room temperature.
5-19 Which of the following species will be present in the greatest concentration when NO₂ is bubbled through cold water?

A. H₃O⁺(aq) B. HNO₂(aq) C. NO₃⁻(aq) D. HNO₃(aq)

5-20 If a car engine was tuned to admit more air into the combustion chambers, then which of the following changes in the composition of the exhaust gases would be expected?

A. NO₃ emissions would be halted.
B. The amount of unburnt hydrocarbon would increase.
C. The amount of CO₂ would increase.
D. The amount of CO would increase.

5-21 Which one or more of the following statements concerning the Ostwald Process is incorrect?

A. The production of nitric acid from ammonia involves a process of oxidation.
B. The conversion of ammonia to nitrogen oxide requires a catalyst.
C. Nitrogen oxide is heated to a high temperature to speed up its conversion to nitrogen dioxide.
D. The reaction of nitrogen dioxide with water produces a mixture of nitrous and nitric acids.

5-22 Addition of excess cold water to phosphorus (III) oxide produces

A. a neutral solution.
B. H₃PO₃.
C. H₃PO₄.
D. a mixture of H₃PO₃ and H₃PO₄.

5-23 Many chemical processes involve the use of a dehydrating agent—a chemical which absorbs water from its surroundings.

An example of the reaction of such a chemical is

A. the conversion of P₄O₁₀ to P₄O₁₀ and H₃PO₃, by reaction with water.
B. the conversion of P₄O₁₀ to H₃PO₃ and H₃PO₄, by reaction with water.
C. the conversion of P₄O₁₀ to H₃PO₄, by reaction with water.
D. the conversion of P₄O₁₀ to H₃PO₄ by reaction with water.

5-24 Watson and Crick proposed a structure for the DNA molecule, consisting of two chains wrapped around each other in a double helix.

The two chains are held together by

A. dispersion forces between adjacent bases.
B. covalent bonds between adjacent bases.
C. hydrogen bonds between adjacent bases.
D. peptide linkages between adjacent bases.
5.25 A build-up of nitrogen-containing waste products in the human body would lead to illness and eventual death.
Which of the following structures is most likely to represent a major human nitrogen-containing excretion product?

A.
B.
C.
D.

The following information refers to the next two items.
Part of the nitrogen cycle can be represented in the following way:

\[
\begin{align*}
\text{N}_2 & \rightleftharpoons \text{NO} \\
\text{NO} & \rightleftharpoons \text{NO}_2 \\
\text{NO}_3 & \rightleftharpoons \text{NO}_2
\end{align*}
\]

5.26 Which one of the following phenomena could not be involved in this part of the cycle?

A. the action of nitrogen fixing bacteria
B. high temperature combustion
C. electrical discharge
D. the action of denitrifying bacteria

5.27 Which of the following lists all the oxidation states shown by nitrogen in this part of the nitrogen cycle?

A. \(-3; 0; +1; +3\)
B. \(-3; +1; +2; +3\)
C. \(0; +2; +4; +5\)
D. \(0; +3; +4; +5\)

5.28 In which of the following ways do most plants obtain the nitrogen they require for their metabolic processes?

A. by taking up nitrate ions from the soil, through the roots
B. by taking up ammonium ions, produced by denitrifying bacteria, through the roots
C. by absorbing, through the roots, amino acids from the remains of dead organisms
D. by absorbing nitrogen directly from the atmosphere
4.3(iv) Ammonium sulphate is used as a fertiliser because

A. it acts as a source of \(\text{NH}_4^+ \) ions which can be used by plants as a source of nitrogen for amino acids.
B. it aids in the eutrophication of soils.
C. the \(\text{NH}_4^+ \) ions are easily oxidised to \(\text{NO}_3^- \) for incorporation into cellulose.
D. it hydrolyses within the plant to provide a source of \(\text{H}_3\text{O}^+ \) ions for amino acid production.

5.29 Ammonium sulphate is used as a fertiliser because

A. it acts as a source of \(\text{NH}_4^+ \) ions which can be used by plants as a source of nitrogen for amino acids.
B. it aids in the eutrophication of soils.
C. the \(\text{NH}_4^+ \) ions are easily oxidised to \(\text{NO}_3^- \) for incorporation into cellulose.
D. it hydrolyses within the plant to provide a source of \(\text{H}_3\text{O}^+ \) ions for amino acid production.

5.30 After placing large amounts of fertilizer on a paddock, a farmer was surprised to find that the fish in an adjacent pond were dying.

The best explanation of this phenomenon is that

A. the fertilizers act as a poison on fresh-water animals.
B. the resulting rapid growth of fresh-water plants has removed most of the available oxygen from the pond.
C. the subsequent growth of fresh-water plants has removed all the available minerals from the pond.
D. the accumulation of nitrogenous compounds in solution renders the pond unfit for animal life.
UNIT 6

<table>
<thead>
<tr>
<th>4.4(i)</th>
<th>Commercial sources of O, S, metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4(ii)</td>
<td>The elements O, S; metals</td>
</tr>
<tr>
<td>4.4(iii)</td>
<td>Direct formation of oxides from metals</td>
</tr>
<tr>
<td>4.4(iv)</td>
<td>Oxides of sulfur: sulfuric acid</td>
</tr>
<tr>
<td>4.4(ivb)</td>
<td>Water</td>
</tr>
<tr>
<td>4.4(ivc)</td>
<td>Hydrogen peroxide</td>
</tr>
</tbody>
</table>
Unit 6

6-1 Oxygen is obtained from liquid air by
B fractional distillation. D electrolytic decomposition.

6-2 Metals are prepared commercially by extraction from their ores. A major constituent of a
4.4(i) commercially extractable ore would be
A UF₆. B FeO. C AgNO₃. D PbS. E TiO₄.

6-3 The alkaline earth metals occur naturally as
4.4(i) A. metal halides. C metal sulfides.
B metal oxides. D free metals.

6-4 In the blast furnace, iron oxides are reduced to metallic iron.
4.4(i) The reducing agent is
A air. C SiO₂. E CO₂.
B coke. D limestone. F CO.

6-5 Haematite is reduced in the blast furnace to iron metal. Successive oxides occurring in this
4.4(i) process could be represented as
A FeO, Fe₂O₃, Fe₃O₄. C Fe₂O₃, FeO, Fe₃O₄.
B Fe₃O₄, FeO, Fe₂O₃. D Fe₂O₃, Fe₃O₄, FeO.

6-6 Which of the following processes would not occur in a blast furnace?
4.4(i) A Coke is added as a source of carbon monoxide.
B Carbon monoxide reduces Fe₂O₃ to Fe.
C Impurities in the ore combine with carbon monoxide to form a slag.
D The molten pig iron collects at the bottom of the furnace.

6-7 Copper that is 99% pure is produced by heating concentrated CuS ore with air in an electric
4.4(i) furnace. Similar treatment of FeS ore generally yields an oxide rather than metallic iron.
The best explanation of this is that
A iron is more readily oxidized than copper, in air.
B iron is more difficult to oxidize than copper, in air.
C iron(II) is more difficult to reduce than copper(I).
D iron(II) is more difficult to oxidize than copper(I).

6-8 When a copper sulfide ore is roasted to produce copper, the major gaseous product of the
4.4(i) roasting process is

6-9 It is predicted that more energy is required per mole in the refining of molten alumina than in
4.4(i) the refining of molten iron ore because
A the refining of alumina is an electrochemical process, whereas that of iron ore is a thermal
process.
B alumina has a much higher melting temperature than iron ore.
C alumina is more difficult to reduce to aluminium than iron oxide is to iron.
D aluminium has a much higher melting temperature than iron.
6-10 Which of the following is not a step in the industrial production of refined copper?

A the flotation of a copper ore
B the roasting of copper sulfide ores
C the heating of a mixture of copper oxide and coke in a furnace
D the electrolysis, using a copper anode, of an acidified copper sulfate solution

6-11 In which of the following alternatives are metals listed in order of increasing ease of extraction from their ores?

A Fe, Al, Cu
B Al, Fe, Cu
C Al, Cu, Fe

6-12 In the refining of copper, the electrolyte used is acidified copper sulfate, whereas in the refining of aluminium the electrolyte is molten cryolite (Na_3AlF_6) in which alumina (Al_2O_3) has been dissolved. The reason for the use of different electrolytes is that

A Al^{3+} ions do not dissolve in water, whereas Cu^{2+} ions do dissolve in water.
B Al^{3+} ions can only be reduced at high temperature, whereas Cu^{2+} ions are reduced at low temperatures.
C Al^{3+} ions are not reduced in aqueous solutions, whereas Cu^{2+} ions are reduced in aqueous solutions.
D Al^{3+} ions react to form Al(H_2O)_6^{3+} complex ions in aqueous solution, whereas Cu^{2+} ions do not form similar complex ions.

6-13 Sulfur can exist in several structural forms at room temperature. These forms are known as

A allotropes.
B homologues.
C isomers.
D isotopes.

6-14 An unusual property of sulfur is that, when it is heated beyond its melting temperature, its viscosity first increases before decreasing. A possible explanation for this is that

A sulfur atoms are arranged in rings which become entangled at moderate temperatures.
B the increase in temperature causes the chains of sulfur atoms to break up; thus increasing the number of molecules present.
C as the temperature increases, the sulfur rings first break up to form long chains, which themselves break up on further heating.
D as the temperature increases, the sulfur chains form larger and larger rings, which gradually become entangled.

6-15 The set of elements which characteristically form coloured compounds and show a number of oxidation states are

A alkali metals.
B alkaline earth metals.
C metals occurring in period 3.
D transition metals.

6-16 Brass is an alloy formed by combining

A copper and tin.
B copper and zinc.
C zinc and tin.
D tin and lead.
E copper and lead.
6-17 Steel is an alloy of iron and carbon.

The reason that carbon is present in steels is to
A increase hardness and tensile strength.
B increase ductility and ability to be welded.
C increase electrical conductivity.
D reduce the rate of corrosion.

The following information refers to the next three items.
The underground pipeline bringing natural gas from Gippsland to Melbourne must pass through salty marshlands. Iron pipes are particularly susceptible to corrosion in the environment.

6-18 The overall corrosion reaction involves
A reduction of the iron.
B reaction of the iron with the dissolved salt.
C reaction of the iron with the dissolved oxygen.
D reaction of the iron with acid from dissolved carbon dioxide.

6-19 The corrosion process occurs in several steps.
Which of the following is not likely to be occurring as the iron corrodes?
A Fe + O₂ + 2H₂O → Fe²⁺ + 4OH⁻
B 4Fe²⁺ + O₂ + 2H₂O + 8OH⁻ → 4Fe(OH)₃
C 2Fe(OH)₂ → Fe₂O₃ + 2H₂O
D 4Fe(OH)₃ → 4Fe(OH)₂ + O₂ + 2H₂O

6-20 By referring to the E° values below, select which one of the following methods would be least successful in reducing the corrosion of the iron.

\[E°_{Fe²⁺/Fe} = -0.44 \text{ V}; \quad E°_{Cu²⁺/Cu} = +0.34 \text{ V}; \quad E°_{Zn²⁺/Zn} = -0.76 \text{ V} \]

A completely plating the pipes with a coating of zinc
B attaching a piece of buried zinc metal to the pipe with an iron wire
C completely plating the pipes with a coating of copper
D attaching a piece of buried copper metal to the pipe with an iron wire

6-21 Freshly prepared aluminium filings react more vigorously with water than do freshly prepared iron filings, yet pots and pans are more likely to be made of aluminium than iron. This is because
A aluminium is less likely to react than iron.
B iron rapidly forms an oxide coating, whereas aluminium forms such a coating only slowly.
C aluminium is covered by a uniform protective oxide film, whereas iron does not form such a uniform film.
D aluminium is not oxidized as rapidly, at high temperatures, as is iron.

6-22 Which one of the following alternatives lists sulfur compounds in order of increasing oxidation number of sulfur?

\[\begin{align*}
A & : S; H₂S; SO₂; SO₃. & C & : H₂S; S; SO₂; H₂SO₃. \\
B & : S; SO₂; H₂SO₃; H₂SO₄. & D & : H₂S; S; SO₂; SO₃.
\end{align*} \]

6-23 The 'contact' process is the major source of the world's sulfuric acid.
Which of the following events would take place in industrial plants using this process?
A Oxygen is bubbled through liquid sulfur in the converter to form sulfur dioxide.
B Sulfur dioxide and oxygen are reacted catalytically to form sulfur trioxide.
C Sulfur trioxide and water are reacted catalytically to produce sulfuric acid.
D Pure sulfuric acid is separated from the water by fractional distillation.
6-24 High concentrations of SO₂ have been blamed for the increased mortality rates occurring in times of 'smog'.
Which of the following processes would not release SO₂ into the atmosphere?
A the action of water on superphosphate fertilisers
B the combustion of naturally occurring hydrocarbons
C the oxidation of sulfide ores in a smelter
D the emission of gases from a plant using the 'contact' process

6-25 One of the reactions involved in the production of H₂SO₄ is given by the following equation.

\[
\text{SO}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{SO}_3(g) \quad \Delta H = -380 \text{ kJ mol}^{-1}
\]
In industrial plants, this reaction takes place at moderately high temperatures, because
A the equilibrium constant is too low at low temperatures.
B SO₂ is a liquid at room temperature.
C the rate of reaction is low at room temperature.
D the SO₂ used is already at a high temperature from the previous reaction.

6-26 Which of the following could not be produced if sulfuric acid were added to a reactive metal?
A S
B SO₃
C SO₂
D H₂S

6-27 A feature of the reaction between sulfuric acid and glucose is that
A each sulfuric acid molecule donates protons to a glucose molecule.
B each glucose molecule is rapidly oxidised by sulfuric acid to carbon dioxide and water.
C sulfuric acid extracts hydrogen and oxygen from glucose leaving only carbon.
D the heat evolved in this exothermic reaction causes the combustion of the glucose.

6-28 The water molecules in ice are essentially bonded to each other by attractions between
A instantaneous dipoles within each water molecule.
B instantaneous ion-dipole interactions formed between adjacent water molecules.
C permanent dipoles within each water molecule.
D permanent ion-dipole interactions formed between adjacent water molecules.

6-29 Despite the fact that the molar mass of H₂S is approximately double that of H₂O, H₂S has a boiling temperature of -62 °C, while that of H₂O is 100 °C under the same pressure. This apparent anomaly is due to
A the weakly acidic nature of H₂O compared to H₂S.
B the greater reactivity of H₂S compared to H₂O.
C the stronger attraction between hydrogen atoms in H₂O compared with H₂S.
D the existence of stronger dipoles in liquid H₂O than in liquid H₂S.

6-30 Hydrogen peroxide is often used as a bleaching agent—for example, it may be used to lighten the colour of hair.
In such a reaction, the H₂O₂
A reacts with natural body acids to produce O₂ and OH⁻
B reacts with oxidants present in hair to produce O₂
C is reduced to H₂O by chemicals present in hair.
D catalyses the breakdown of pigment molecules present in hair.
UNIT 7
ACHIEVEMENT TEST

1.1 The nuclear atom
1.2 Electronic structure of atoms
1.3 The periodic table
2.1 The mole and chemical formulae
2.2 Chemical reactions
2.3 Stoichiometric calculations
2.4 Chemical equilibrium
3.2 Transformation of energy by chemical reaction
3.3 Production of electrical energy by chemical reaction
3.4 Chemical reactions driven by electrical energy
4.2(i) The elements C, Si
4.2(ii) Hydrides of C, Si
4.2(iii) Covalent bonding in compounds of C and Si
4.2(iv) Chemistry of some oil and coal derivatives
4.2(v) Polymers
4.2(vi) Some molecules of biological importance
4.2(vii) Oxides of C, Si
4.3(i) The elements N, P
4.3(ii) Ammonia and phosphine
4.3(iii) Oxides of nitrogen and phosphorus
4.3(iv) The role of nitrogen and phosphorus in living systems
4.4(i) Commercial sources of O, S, metals
4.4(ii) The elements O, S; metals
4.4(iii) Direct formation of oxides from metals
4.4(iva) Oxides of sulfur; sulfuric acid
4.4(ivb) Water
4.4(ivc) Hydrogen peroxide
7-1 One of the nuclear reactions studied by Lord Rutherford was the bombardment of nitrogen nuclei by alpha-particles. The reaction can be represented as

$^4\text{N} + \alpha^+ \rightarrow ^1\text{C} + ^7\text{H} + X$

The particle X is,

A an electron.
B a proton.
C an alpha-particle.
D a deuterium nucleus.

7-2 As a result of the nuclear fusion process occurring in the sun,

A the average mass of the nuclei in the sun is increasing.
B the sun is becoming heavier.
C the number of nuclei in the sun is increasing.
D the number of ^1H nuclei in the sun is increasing.

7-3 The hydrogen bomb makes use of the following reaction

$4\text{H} \rightarrow ^1\text{He} + 2e^+$

1 mol of H atoms has mass 1.007825×10^{-3} kg.
1 mol of ^1He atoms has mass 4.002604×10^{-3} kg.
1 mol of e^+ particles has mass 0.0005486×10^{-3} kg.

c represents the velocity of light, in appropriate units.

When 4 mol of H atoms react in this manner, the energy released is

A $10^{-3}(4 \times 0.002604 + 4 \times 0.0005486 - 1 \times 0.007825)c$ Joule.
B $10^{-3}(4 \times 0.002604 + 2 \times 0.0005486 - 1 \times 0.007825)c^2$ Joule.
C $10^{-3}(4 \times 0.002604 + 2 \times 0.0005486 - 4 \times 0.002604)c^2$ Joule.
D $10^{-3}(4 \times 0.002604 + 0 \times 0.0005486 - 4 \times 1.007825)c$ Joule.

7-4 The element vanadium has the following electronic configuration:

$1s^22s^22p^63s^23p^63d^34s^2$

A feature of this element is that it

A contradicts the Pauli principle, as the d-orbital contains 3 electrons.
B has electrons in only four different sub-shells.
C has a full outer shell of electrons.
D has two partially filled electron shells.

7-5 An element has an atomic number of 33. The element will be located in the periodic table in

A group III; period 3.
B group IV; period 5.
C group V; period 4.
D the first transition series.

7-6 The mass of nitrogen gas ($M_r = 28.0$) which must be mixed with 12 g of oxygen gas ($M_r = 32.0$) so that 5.6 dm3 of the resulting gas mixture will contain equal numbers of molecules of each gas is

A $5.6 \times 12 \times 28.0 \div 22.4 \times 32.0$ g.
B $22.4 \times 12 \times 28.0 \div 5.6 \times 32.0$ g.

C $12 \times 28.0 \div 32.0$ g.
D $12 \times 32.0 \div 28.0$ g.
The following statements refer to equal masses of gaseous dinitrogen pentoxide, \(\text{N}_2\text{O}_5 \), and gaseous dinitrogen tetroxide, \(\text{N}_2\text{O}_4 \), confined to equal volumes at the same temperature. Assume that neither gas decomposes appreciably at this temperature. \((A, N ~ 14; O ~ 16) \)

Select which one of the statements is correct.

A The two gases will exert the same pressure.
B \(\text{N}_2\text{O}_5 \) will exert the higher pressure.
C \(\text{N}_2\text{O}_4 \) will exert the higher pressure.
D There is insufficient data to allow the calculation of the relative pressures.

The equation for the following reaction, which occurs in acidic solution, has been left unbalanced.

\[
\text{MnO}_4^- + \text{SO}_4^{2-} + \text{H}_2\text{O}^+ \rightarrow \text{Mn}^{2+} + \text{H}_2\text{O} + \text{SO}_4^{2-}
\]

Coefficients for \(\text{MnO}_4^- \) and \(\text{SO}_4^{2-} \) which balance the equation are, respectively,
A 1 and 6
B 2 and 5
C 3 and 4
D 4 and 3
E 5 and 2

Assuming precipitation is complete, the mass of \(\text{Fe(OH)}_3 \) \((M, = 107) \) obtained when 9.0 cm\(^3\) of 0.10 M NaOH solution is added to 500 cm\(^3\) of 1.00 M \(\text{FeCl}_3 \) solution is

A \[
\frac{9 \times 0.1 \times 107}{1000} \text{ g}
\]
B \[
\frac{9 \times 0.1 \times 107}{1000 	imes 3} \text{ g}
\]
C \[
\frac{3 \times 9 \times 0.1 \times 107}{100} \text{ g}
\]
D \[
\frac{3 \times 0.1 \times 107}{1000 	imes 9} \text{ g}
\]

Student A standardized a sodium hydroxide solution by titrating a hydrochloric acid solution of accurately known molarity against it, with phenolphthalein as the indicator. He obtained an average titre of 18.90 cm\(^3\) for his HCl solution.

Student B, using the same solutions, obtained an average titre of 19.35 cm\(^3\).

A possible cause of this difference could be
A Student A's failure to dry the flask into which the solution was titrated.
B Student A's failure to remove traces of water from the burette by first rinsing it with the acid solution.
C Student B's failure to dry the flask into which the solution was titrated.
D Student B's failure to remove traces of water from the burette by first rinsing it with the acid solution.

6.834 g of hydrated iron (II) sulfate \(\text{FeSO}_4 \cdot 7\text{H}_2\text{O} \) was weighed out, transferred to a standard flask, acidified with sulfuric acid and made up to 250 cm\(^3\). A 25 cm\(^3\) aliquot of this solution was transferred by pipette to a conical flask and titrated against some previously standardized potassium permanganate solution. On the basis of the mass of salt taken and the known value of the molarity of the permanganate, a titre of 23.10 cm\(^3\) was expected. In fact the titre was 22.13 cm\(^3\).

Which is the best explanation for this difference between observed and expected values?
A The iron (II) sulfate was partially dehydrated before weighing.
B The iron (II) sulfate was partially oxidized.
C Between the time of standardization and its use in the titration, the potassium permanganate had become partially reduced to manganese dioxide, which precipitated from solution.
D The potassium permanganate had become diluted, possibly due to water in the burette.
E Too much sulfuric acid had been added to the iron (II) sulfate.
7-12 When Cr(NO₃)₃ is added to water the Cr³⁺ ions react according to the equation

\[\text{Cr}^{3+} + 6\text{H₂O} \rightarrow \text{Cr(H₂O)}₆^{3+} \]

The hydrated Cr³⁺ ions then react with water according to the equation

\[\text{Cr(H₂O)}₆^{3+} + 6\text{H₂O} \rightarrow [\text{Cr(H₂O)}₆\text{OH}]^{2+} + \text{H₃O}⁺ \]

The pH of a 0.1 M solution of Cr(NO₃)₃ is 3.

Assuming that the H₃O⁺ ion in the solution is obtained only from this reaction, then the percentage of the Cr(H₂O)₆³⁺ ion that has reacted with the water is

A 1% C 30%
B 10% D impossible to determine from the information given.

7-13 Equilibrium is established rapidly at 500 °C for the exothermic reaction

\[\text{X(s)} + \text{Y(g)} \rightleftharpoons \text{Z(s)} \]

However, the yield of Z is low.

In order to increase the yield of Z, which one of the following modifications should not be used?

A raising the temperature to 700 °C C raising the pressure
B using a suitable catalyst D using a more finely powdered form of X

The following information refers to the next three items.

At room temperature, nitrogen dioxide, NO₂, exists in an equilibrium with dinitrogen tetroxide, N₂O₄. NO₂ is brown, N₂O₄ is colourless.

An estimate of the relative amounts of NO₂ and N₂O₄ present in two samples can be obtained by comparison of the intensities of the brown colour in each sample. In a particular experiment, equal samples of the above equilibrium mixture were placed into two glass capsules, fitted with taps, at room temperature and atmospheric pressure.

\[2\text{NO}_2(g) \rightarrow \text{N}_2\text{O}_4(g) \quad \Delta H = -58.2 \text{ kJ mol}^{-1} \]

7-14 When one of the capsules is immersed in cold water, the intensity of the brown colour in this sample

A increases. C remains the same.
B decreases. D cannot be predicted.

7-15 The tap of this cooled capsule is opened to the air for a fraction of a second, allowing a small amount of air to enter.

The intensity of the brown colour in this capsule, relative to the other sample which is still at room temperature is now

A greater than in the second capsule. C the same as in the second capsule.
B less than in the second capsule. D unable to be predicted.

7-16 The cooled mixture is now returned to room temperature without opening the tap again.

The intensity of the brown colour in this capsule compared to the unaltered sample is

A much greater. C approximately the same.
B much less. D unable to be predicted.

7-17 How much heat is evolved when 13 g of acetylene (C₂H₂) is burnt in air according to the equation

\[2\text{C}_2\text{H}_2(g) + 5\text{O}_2(g) \rightarrow 4\text{CO}_2(g) + 2\text{H}_2\text{O}(l) \quad \Delta H = -2610 \text{ kJ} \quad (A, C = 12, H = 1)? \]

A 652.5 kJ C 2610 kJ
B 1305 kJ D 5220 kJ
3.2 0.5 mol of CO and 0.4 mol of O₂ were placed in a sealed vessel and the temperature was held constant until equilibrium was attained according to the equation

\[2\text{CO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g) \quad \Delta H = -564 \text{ kJ mol}^{-1} \]

If 0.3 mol of O₂ remains at equilibrium, the thermal energy released would be

A 0.3 \times 564 \text{ kJ}
B 0.2 \times 564 \text{ kJ}
C 0.3 \times 564 \text{ kJ}
D 0.4 \times 564 \text{ kJ}

7.19 When solid sodium nitrate is dissolved in pure water, the reaction may be represented by the equation

\[\text{NaNO}_3(s) + \text{aq} \rightarrow \text{Na}^+(\text{aq}) + \text{NO}_3^-(\text{aq}) \quad \Delta H = +21 \text{ kJ mol}^{-1} \]

0.01 mole of solid NaNO₃ is dissolved in 100 cm³ of pure water. The quantity of heat that would need to be absorbed from the surroundings, in order to return the solution to the original temperature, is

A 2.1 \times 10^{-2} \text{ kJ}
B 2.1 \times 10^{-1} \text{ kJ}
C 2.1 \times 10^{1} \text{ kJ}
D 2.1 \times 10^{-2} \text{ kJ}

7.20 The overall reaction for a lead-acid accumulator is

\[\text{Pb(s)} + \text{PbO}_2(s) + 4\text{H}^+(\text{aq}) + 2\text{SO}_4^2-(\text{aq}) \rightarrow 2\text{PbSO}_4(s) + 2\text{H}_2\text{O}(l) \]

Given the following data:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(E^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{PbO}_2(s) + 4\text{H}^+(\text{aq}) + 2e^- \rightarrow \text{Pb}^{2+}(\text{aq}) + 2\text{H}_2\text{O}(l)</td>
<td>1.46 \text{ V}</td>
</tr>
<tr>
<td>\text{PbO}_2(s) + \text{SO}_4^2-(\text{aq}) + 4\text{H}^+(\text{aq}) + 2e^- \rightarrow \text{PbSO}_4(s) + 2\text{H}_2\text{O}(l)</td>
<td>1.69 \text{ V}</td>
</tr>
<tr>
<td>\text{PbSO}_4(s) + 2e^- \rightarrow \text{Pb}^{2+}(\text{aq}) + \text{SO}_4^2-(\text{aq})</td>
<td>-0.36 \text{ V}</td>
</tr>
<tr>
<td>\text{Pb}^{2+}(\text{aq}) + 2e^- \rightarrow \text{Pb}(s)</td>
<td>-0.13 \text{ V}</td>
</tr>
</tbody>
</table>

then the approximate potential that could be expected from the cell is

A 1.33 \text{ V}
B 1.59 \text{ V}
C 1.82 \text{ V}
D 2.05 \text{ V}

7.21 Which of the following statements best describes the processes occurring in the two cells?

A Cell 1 behaves as an electrochemical cell, and electrolysis occurs in cell 2.
B Cell 2 behaves as an electrochemical cell, and electrolysis occurs in cell 1.
C Both cells 1 and 2 behave as electrochemical cells.
D Electrolysis occurs in both cells 1 and 2.
E No reaction will occur in either cell.
7-22 If a voltmeter is added to the circuit, the resultant potential of the two cells as connected in the diagram above is

A 1.03 V
B 0.75 V
C 1.78 V
D 0.28 V

7-23 The diagram at right is a representation of Volta's first practical battery. It consisted of columns of alternating zinc and copper plates separated by layers of blotting paper soaked in salt solution.

\[E^{\circ}_{\text{zn}^{2+}/\text{zn}} = 0.76 \text{ V} \]
\[E^{\circ}_{\text{sn}^{2+}/\text{sn}} = -0.14 \text{ V} \]
\[E^{\circ}_{\text{zn}^{2+}/\text{zn}} = 0.34 \text{ V} \]

In such a battery
A the zinc plates would be consumed in the reaction.
B if tin was substituted for zinc, there would be little change in the power of the battery.
C the blotting paper acts as a salt bridge allowing charge to flow from one plate to another.
D the copper plates would increase in mass during the reaction.

7-24 In the electrolysis of a very dilute solution of lithium chloride, using a potential difference of 5 V,

A hydrogen is produced at the cathode, and oxygen is produced at the anode.
B hydrogen is produced at the cathode, and chlorine is produced at the anode.
C lithium is produced at the cathode, and chlorine is produced at the anode.
D chlorine is produced at the cathode, and hydrogen is produced at the anode.
E oxygen is produced at the cathode, and hydrogen is produced at the anode.

7-25 Which one of the following groups of formulae would represent members of a homologous series?

4.2(ii)
A \(\text{CH}_3\text{Cl}; \text{CH}_2\text{Cl}_2; \text{CHCl}_3; \text{CCl}_4 \)
B \(\text{CH}_2\text{CH}_2; \text{CH}_2\text{CH}_2\text{CH}_2; \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3; \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \)
C \(\text{CH}_4; \text{CH}_3\text{CH}_3; \text{CH}_3\text{CH}_2\text{CH}_3; \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \)
D \(\text{CH}_4; \text{CH}_3\text{Cl}; \text{CH}_3\text{OH}; \text{HCHO} \)

7-26 Which one of the following displays a structure markedly different from the other four?

4.2(iii)
A diamond
B graphite
C silicon
D silicon carbide

7-27 250 cm\(^3\) of gaseous benzene is to be completely hydrogenated to cyclohexane (C\(_6\)H\(_{12}\)).

4.2(iv)

(2.3) If the volume of hydrogen required is measured under the same conditions of temperature and pressure, it will be

A 125 cm\(^3\)
B 250 cm\(^3\)
C 500 cm\(^3\)
D 750 cm\(^3\)
4.2(iv) Crude oil contains a high proportion of hydrocarbons with a molecular mass of over 150, and yet most products of the petroleum industry have a molecular mass which is less than this. The formation of these low relative molecular mass compounds is best achieved by:
A heating the crude oil slowly, and collecting the various liquids as they evaporate.
B heating the crude oil, in the presence of a catalyst, to 500 °C for 10 minutes to shorten the average chain length.
C heating the crude oil, in the presence of a catalyst and hydrogen gas, to 140 °C, to saturate all double bonds present.
D burning the crude oil in an oxygen rich environment, and collecting and liquefying the evolved gases.

4.2(v) ‘Fluon’ is the trade name given to a high molecular mass chemical, used as a non-stick coating on kitchenware. It is formed by the reaction, in the presence of a catalyst, of tetrafluoroethylene molecules.
In this process
A an addition reaction takes place, with the elimination of water molecules.
B an addition reaction takes place, producing only the polymer and no other products.
C a condensation reaction takes place, with the elimination of water molecules.
D a condensation reaction takes place, producing only the polymer and no other products.

7-28 Which one of the following statements does not describe a reaction of glucose?
A Glucose reacts with oxygen exothermically to produce carbon dioxide and water.
B Glucose molecules react exothermically to produce cellulose and water.
C Glucose reacts exothermically to produce carbon dioxide and ethanol.
D Glucose molecules react endothermically to produce starch and water.

7-29 The amino acid glycine may exist in aqueous solution in several forms.
Which of the following would be the major component in strongly basic solution?
A NH₂CH₂COOH
B NH₃⁺CH₂COOH
C NH₃⁻CH₂COO⁻
D NH₃⁺CH₂COO⁻

7-30 When oxygen is given to patients suffering from carbon monoxide poisoning, it
A has a greater affinity for haemoglobin than does CO, and hence CO is removed from the bloodstream.
B oxidizes CO in the blood to CO₂.
C shifts the equilibrium in the reaction O₂ + haemoglobin/COhaemoglobin/O₂ + CO to the right.
D increases the concentration of O₂ dissolved in the blood, and hence lowers the concentration of CO in the blood.

7-31 Marble statues in the open air often show signs of chemical weathering after a number of years. The most likely explanation for this is that:
A the calcium hydrogen carbonate in the marble reacts with dissolved CO₂ in rain water.
B H₃O⁺ ions present in rain water react with the CO₃²⁻ ions present in the marble.
C the HCO₃⁻ ion undergoes both acid and base hydrolysis in the presence of water.
D the insoluble CO₃²⁻ ions are oxidized by dissolved O₂ to soluble HCO₃⁻ ions.
7-34 Which one (or more) of the following properties is (are) important in the use of clays for the manufacture of ceramics?

A When heated strongly, the particles fuse together, forming a hard non-plastic product.
B Strong heating results in a molecular rearrangement within the particles, resulting in a shiny appearance.
C When moist, clays have plastic properties.
D When dried, clays become rigid.

4.2(vii)

7-35 The allotropes of phosphorus, from most reactive to least reactive are

A red, black, white.
B red, white, black.
C white, red, black.
D white, black, red.
E black, red, white.
F black, white, red.

4.3(i)

7-36 Silver chloride reacts with an aqueous ammonia solution.

The equation which best describes this reaction is

A AgCl(s) + 2NH₃(aq) → NH₄Cl(aq) + AgNH₂(s)
B AgCl(s) + NH₃(aq) → HCl(aq) + AgNH₂(s)
C AgCl(s) + 2NH₃(aq) → [Ag(NH₃)₂]⁺(aq) + Cl⁻(aq)
D AgCl(s) + 2NH₃(aq) + 2H₂O(l) → Ag(NH₃)₂⁺(aq) + Cl⁻(aq) + 2OH⁻(aq)

4.3(ii)

7-37 The preparation of ammonia from its elements is an exothermic process. Conditions to obtain a favourable equilibrium yield in this reaction would be

A high temperatures and high pressures.
B low temperatures and high pressures.
C low temperatures and low pressures.
D high temperatures and low pressures.

4.3(iii)

7-38 Some chemicals produced by the internal combustion engine are a major source of pollution. These chemicals include

A NO₂ produced by the reaction of atmospheric nitrogen with oxygen at high temperatures.
B NO produced by the reaction of atmospheric nitrogen with oxygen at high temperatures.
C NO₂ produced by the reaction of nitrogen impurities in the fuel with oxygen at high temperatures.
D NO produced by the reaction of nitrogen impurities in the fuel with oxygen at high temperatures.

4.3(iii)

7-39 Nitric acid production from ammonia is a multi-step operation, in which the reaction conditions are carefully chosen.

A condition which would not lead to a high yield of nitric acid involves

A the use of a catalyst to favour the production of NO, and not N₂ from the combustion of NH₃.
B a temperature sufficiently high to result in a high yield of NO, but not high enough to cause breakdown of NO to N₂ and O₂.
C a temperature sufficiently high to prevent N₂O₅ production from the oxidation of NO.
D the decomposition of any HNO₂ produced to NO and NO₂ which can be re-oxidised.

4.3(iii)

7-40 The stages in the industrial production of copper are, in order

A flotation; roasting; electrolysis.
B roasting; electrolysis; flotation.
C electrolysis; roasting; flotation.
D roasting; flotation; electrolysis.

4.4(i)

7-41 Transition metals can be distinguished from main group metals by the fact that

A main group metals, but not transition metals, must have a valency of +1 or +2.
B main group metals have lower relative atomic masses than transition metals.
C transition metals, but not main group metals, can form complex ions.
D transition metals have a greater tendency to form coloured salts than main group metals.

4.4(ii)
7-42 Zinc blocks buried in the soil are often attached at regular intervals to steel pipe lines. The purpose of the zinc blocks is to
A reduce the Fe$^{2+}$ ions formed to Fe.
B be oxidized preferentially before the Fe.
C promote formation of a protective film of Fe$_2$O$_3$ on the pipe line.
D preferentially react with any reducing agent near the pipe line.

7-43 Steel will corrode in the presence of oxygen and water, unless precautionary measures are taken. Which one of the following does not occur in the formation of rust in a damp environment?
A the oxidation of Fe to Fe$^{2+}$ with the corresponding reduction of oxygen to OH.
B the oxidation of Fe$^{2+}$ to Fe$^{3+}$ by reaction with water and oxygen.
C the formation of Fe(OH)$_3$.
D the dehydration of Fe(OH)$_3$ to Fe$_2$O$_3$.

7-44 Water and hydrogen sulfide differ in that
A the H$_2$S molecule is linear, whereas the H$_2$O molecule is V-shaped.
B H$_2$S shows acidic properties whereas H$_2$O does not.
C H$_2$O molecules can be linked by hydrogen bonds, whereas H$_2$S molecules cannot be linked in this manner.
D H$_2$S can be oxidized to S whereas H$_2$O cannot be oxidized to O$_2$.

7-45 Which one of the following statements best describes the behaviour of H$_2$O$_2$?
It can be
A oxidized to H$_2$O or reduced to O$_2$.
B oxidized to O$_2$ or reduced to H$_2$O.
C oxidized to H$_2$O but does not undergo reduction.
D oxidized to O$_2$ or reduced to H$_2$.