

[^0]
PROJECTING STUDENT ENROLLMENTS:
 A Basic Step In
 Comprehensive School Uistrict Planning
 For Declining Enrollment

Prepared by:
Victoria L. Sernhardt
Planning Department
Research, Development and Evaluation Division Eugene Pubtic School District $4 J$
Eugene, Oregon

NIE-G-78-0078
U.S. Department of Health, Education and Weifare Patricia Roberts Harris, Secretary

National Institute of Education
Michael Timpane, Acting Director
Program on Educational Policy and Organfzation Mark Tucker, Associate Director

- :

This document is the result of a cooperative and supportive effort of school district research and planning offices in Seattie, Washington, Philadelphia, Pennsylvania, Austin, Texas, and Eugene, Oregon. Preparation of this manual was based on information and research supplied by the following experts: Ms. Susan B. Franklin, Dr. Gary Beanblossom, and Ms. Margery Erickson from thé Seattle Public School District; Dr. Thomas W. Pullum and Mr. Stephen N. Graham from the Center for Studies in Demography and Ecology, University of Washington; Dr. Michael H. Kean, Dr. William Herron, Ms. Francis Frank and Ms. Silvia Dicter from the School District of Philadelphia; Dr. Terry Bishop, Mr. Hugh Eckols, and Dr. Freida Hollcy from the Austin Independent School District; Mr. Robert Swank and Mr. James Cárlson from the Lane County Council of Governments, Eugene; Dr. Larry Barber. Dr. Charles Stephens, Dr. Rose Hesse, and Ms. Audrey Wilhelm from the Eugene Public School District.

Contents

Acknowledgments iji
Tables ix
Figures xiv
i. Introduction 1
National Enrollment Trends 1
Planning Around Decline 1
Local Implications 2
Purpose and Goals 2
Participants 3
Overview 3
II. Utilization of Enrollment Projection Methodologies in School Districts with Declining Enrollment 5
Enrollment Projection Methodologies 5
Uses for Enrollment Projections 6
Importance of the Accuracy of Enrollment Projections 7
III. A Model for the Inclusion of Land Use Variables in Short-Term Enrollment Projections 9
Collepction of Land Use Variables. 9
Trends in Eugene, Oregon 10
Identification of Trends 11
Identification of Relevant Variables 12
Collection of Data 13
Inclusion of Land Use Variables in Short Te.m Enrollment Projections 17
Discussion 32
Selecting a Methodology for Projecting Individual School Enrollments 32
Relative Efficiency of Three Enrollment Projection Methodologies in Eugene 34
Conclusions of the Testing of Three Enrollment Projection Methodologies in Eugene. 39
Conclusions 43
IV. The Eugene Public School District Enrollment Projection Methodology 45
Eugene Scnool District $4 J$ 45
Eugene Student Enrollment Projection Metrodology. 45
Grade-level Projections 46
Step 1. Collection of Past Enrollment 46
Step 2. Fomation of Cohort Survival Ratios for Grades Two tirrough Twelve. 48
Step 3. Calculation of Average Survival Ratios 48
Step.4. Calculation and Selection of 1978-1983 Enrollments 49
Step 5. Formation and Calculation of First Grade Enrollment 51
Stef 6. Formation and ealculation of Kindergárten Enrollment 53
Step 2. Collation of Projections. 54
Step 8. Estimation of Special Education Program Enrollment 55
Step 9. Individual School Projections 55
Elementary School Projections 56
Junior High School Projections 62
Senior High School Projections 65
Calculation Time and Approval Process 65
Summary 67
V. The School District of Philadelphia Enrollment Projection Methodology 69
The School District or Philadel phia. 69
Phifadelphia Student Enrollment Projection Methodology. 69
Grade-Level Projections 70
Step 1. Collection of Past Enrollment 70
Step 2. Calculation of Grade Progression Ratios
for Grades Two througr Twelve 70
Step 3. Ca?culation of Average Grade Progression Ratios 72
Step 4. Calculation and Selection of Enrollments for Grades Two through Twelve 72
Step 5. Formation of Kindergarten and First, Grade Ratios 72
Step 6. Calculation and Selection of Enrol?ments for Kindergarten and First Grade 74
Step 7. Projection of the Totai-Number of Siudents for the District 74
Step 8. Calculation and Selection of Special
Program Enroliments 75
Step 9. Adjustments to the Projections 77
Step 10. Prajections by Sub-District 78
Step 11. Projections by Individual School. 82
Calculation Time and Approval Process 84
Summary 87
VI. The Austin independent School District Enroliment Projection, Methodology 89
The Austin independent School District. 89
Austin Student Enrollmeni Projection Methodology 89
Grade-Level Projections 96
Step 1. Colléction of Past Enrollment 93
Step 2. Formation of Cohort Survival Ratios for Grades One through Twelve 93
Step 3. Calculation and Selection of START Enroliments for Grades One through Twelve 95
Siep 4. Calculation of Kindergarten Enrol mment 95
Step 5. Calculation of Special Education Enroliments 96
Step 6. Incorporation of Projected Group Enrollment 96
Step 7. Projections by Individual School 97
Elementary School Enrollment Projections 97
Junior High School Enrollment Projections 99
Senior High School Enrollment. Projections 100
Calculation Time and Approval Process 101
Summary 103
VII. The Seattle Public School District Enrollment Projection Methodology. 105
Seattle Schooi District. 105
Seattle "Desegrgation Plan 105
Seattle Student Eniollment Projection Methodology 106
Grade'Level Projections. 107
Step 1. Collection of Past Enrollment 107
Stép 2. Formation of Survival Ratios for Grades One through Twelve. 107
Step 3. Calculation of Average Survival Ratios 109
Step 4. Calculation and Selection of 1978-79 Enrollments 110
Step 5. Fommation and Calculation of Kindergarten Enríliments 111
Step 6. Estimation of Special Education Enrollment. 111
Step 7. Estimation of Alternative Program Enrollments 113
Step 8. Collation of Projections and District Totals 113
Step 9. Projections by Individual Schools. 115
Elementary Schooi Projections 115
Regular Elementary Schools 115
Paired and Traided Elementary Schools 117
Middle School Projections. 120
Junior High. School Projections 121
Senior High School Projections 122
Calculation Time and Approval Process 123
Sumnary 125
YIII. Proposed Modification for the Seattle Public School District Enrollment Projection Methodology 127
The Final Produce 128
The Logic of the Procedure 129
System Design 131
Summary 135
Appendix A 137
References 147
TABLE 1. Detailed Description of Variables'Related to Urban Growth and Single Family Dwetlings 14
TABLE 2. Detailed Description of Varíables. Relaţed to Value of Homes 15
TABLE 3. Detailed Description of Variables Related to Number of Students Living in Attendance Area 16
TABLE 4. Sample of 1970 to 1977 Summary Enrollment Data by Grade Level for Adams Elementary School 19
TABLE 5. Number of Building Permits Applied for by Structure Type and Attendance Area for 1976, 1977 and. 1978 20
TABLE 6. Average Number of Students by Structure Type and Attendance Area 21
TABLE 7. District Cohort Survival Estimates, Actual Enrollment and Percent of Accuracy for 1976, 1977 and 1978 22
TABLE 8. . 1976, 1977 and 1978 Individuai School Enrollment Projections for Grades 1 to 6 Estjmated by Regression Procedures 23
TABLE 9. 1976, 1977 and 1978 Individual School Enrollment Projections for Grades 1 to 6, Estimated by the Cohort- Survival Methodojogy. 24
TABLE 10. 1976, 1977 and 1978 Individual School Enrollment Projections for Grades 1 to 6, Estimated by the Ratio. Methodology. 25
TABLE 11. Number of Building Pemits Applied for by Stracture-Type, Average Number of Students per 100 Dwelling Units by. Structure Type, and the Estimated Number of New Students for Each Year. 26
TABLE 12. Estimated Number of New Students to be Added by Land ل5se and the Projected Enrollment With or Without Land Use for .Regression, Cohort Şurvival and Ratio 27
TABLE 13. Estimated District Totals for Regression, Cohort Survival and Ratio Methodologies With and Without Land Use Infomation 28
TABLE 14. 1976, 1977 and 1978 Individual School Enrollment Projections for Grades. 1-6. Estimated by Regression with Land Use 3030
TABLE 15. 1976, 1977 and 1978 Individual School Enrollment Projections 1 , for Grades 1-6. Estimated by Cohort Survival with Land.Use. 30
TABLE 16. 1976, 1977 and 1978 Individual School Enrollment Projections for Grades 1-6, Estimated. by Ratio with Land Use. 31
TABLE 17. The Percent Accuracy of Prediction for all Three Methodologies With and Without Land Use Information for 1976, 1977 and 1978 - 36
TABLE 18. The Difference Between Actual Enrollment and Projected Enrollments for all Three Methodologies'With and Without Land Use Information for 1976, 1977 and 1978. 38
TABLE 19. 1973-19.77 Student Enrollments by. Grade Levef for. Eugene School District 47
: TA8LE 20. Survival Ratios for Each Year by G̈rade Level 48
TABLE 21. Ạverage Survival Ratios 49
TABLE 22. Grade Level Enrollments Projected for 1978-83 8ased -On Five Ratio Averages 50
TABLE 23. Datä Used to Estimate First Grade Enrollment for the 1978-82 School Years 52
TABLE 24. Data Used to Prỏject 1978 to 1982 Kindergarten Enrollments 53
TA8LE 25. Projected Enrollments for the 1978-79 to 1982-83 School Year 54
TABLE 26. W973-1977 Enroliments and Projected Enrollments for Elementary, Junior High and Senior High Special Education Programs. 55
TABLE 27. Fourth, Fifth and Sixth Grade Past Enrollments and 197-79 Projections for Eugene Elementary Schools 57
TABLE 28. First Grade to Kindergarten Ratios and Apportionment Ratios Used to Project 1978-79 First Grade Enrollments for Eugene El ementary Schools* 59
TABLE 29. P.pportionment and Kindergarten to First Grade Ratios Used to Project 1978-79 Kindergarten. Enrollments for Eugene Elementary Schools 61
TABLE 30. Student Enrollments and 1978 EnroTlment Projections for Eugene Junior High Schools 63
 Projections for Eugene Senior High Schools 64
TABLE 32. Noverbér Enrollments fór 1974 to 1977 ?" 71
TABLE 33. Grade Progression Ratios for 1974 to 1977 and Two and Three Yeár Averages 71
TABLE 34. Enrollment Projections by Grade Level Based on Three Grade Progression Ratios $\cdot 73$
TABLE 35. Data end Ratios Used in Projectin'g 1978-79 Kindergarten and First. Grade Enrollments 73
TABLE 36. 1978-79 Enrollment Projections for Kindergarten and First Grade 74
TABLE 37. Past Enrollment Dała, Ratios, and 1978-79 Projections for the District 75
TABLE 38. Enrollments, Ratios and Projections for 1978 Special Program Enrollments 76
TABLE 39. Preliminary and Adjusted Projections by Grade Level for 1978-79 77
TABLE 40. 1974 Student Enrollment for;Süb-District 1977 78
TABLE 41. Sub-District 1 Proportional Ratios for 1974 to 1977 and Two and Three Year Average Ratios 79
TABLE 42. Projected and Adjusted Enrollments for Sub-District 1 Based on One Year, Two Year, and Three Year Average Proportional Ratios. 81
TABLE 43. 1975 to 1978 School Enrollments and Ratios Used to Project 1978-79 School Enrollments for Sub-District 1. 83

- TABLE 44. 1978-79 School Enrollment Projections by School for Sub-District 1 85
TABLE 45. September and January Enrollments for 1975 to 1978 93
TABLE 46. Survival Ratios and Standard Deviations for Each Grade Progression for the START Enrollment Projections 94
TABLE 47. High, Low and Mean Enroilment Projections by Grade Level for 1978-79 START Time Feriod 95
TABLE 48. Past Enrollment and 1978-79 Projected Enrollment for Special Education Pre ?ams 96
TABLE 49. 1978-79 Enrollment Prci. ections for Elementary Schöol; Junior High School, Senior High School and Special Education 96
TABLE 50. 1974-78 Enroilments, Survival Ratios and 1978 Projections for Elementary Schools b; Grade Level for the START Time Period and the Projected School Total for the PEAK Time Period. 98
TABLE 5i. 1974-78 Enrollments, Survival Ratios and 1978 Projections for Junior High Schools by Grade Level for the START Time Period and the Projjected Total for the PEAK Time Period 99
TABLE 52. 1974-78 Enrollments. Survival Ratios and 1978 Projêctions for Senior High Schools by Grade Level for the STARF Time Period and the Projected School Total for* the PEAK Time Period 100
TABLE 53. Enrollment Data by Grade Level used a Projecting October 1978 and January 1979 Grade Level Enrollments. 108
TABLE 54. Survival fatios for Each Year by Grade Level for October Projections and January Projections. 109
TABLE 55. Enrollments and Ratios for Projecting October 1978 and January 1979 Enrollments 110
TABLE 56. Actual Special Education Enrollments; Survival Ratios: and Projected Enrollments for October 1978 and January 1979 112
TABLE 57. Actual Alternative Program Enrollments; Survival Ratios and Projected Enrollments for October 1978 and January 1979. 113
TABLEE 58. District Level Projections, by Grade Level for Octóber 1978 and January 1979. 114
TABLE 59. January 1978 Enrpllments, Survival Ratios and October 1978 and Januâry 1979 Projected Student Enrollments for Adams and Alki Elemericary Schools 116
TABLE 60. January Student Enrollment, Survival Ratios, and October 1978 and January 1979 Projected Enrol Pment by Grade Level for Graham Hill and Northgate Elementary Schools 118
TABLE 61. January 1978 'Student Enroliment, Survival Ratios and October. 1978 and January 1979 Projected Enrollment for Brighton, Hay and West Queen Anne Elementary Schools 119
TABLE-62. Januäry 1978 Student Enroliment; Survivat Ratios and October 1978 and January 1979 Projected Enrollment by. Grade Level for Boren ađd Eckstein Middle Schools. 120
TABLE 63. January 1978 Student Enrollment. Survival Ratios and October 1978 and January 1379 Projected Enrollment by Grade Level for Adams and Madison Junior High Scnools. 121
TABLE 64. January 1978 Student Enrollment Survival Ratio and October 1978 and January 1979 Projected Enrollment by Grade Level for. Ballard and Cieveland Senior High 'Schools 122

TABLE A-1. Cohort Survivar Methodology 137
TABLE A-2. Regresșion Analysis Methodology.
TABLE A-3. Ratio Methodology".
TABLE A-4. Markov Methodology.
TABLE A-5. Combination of Methodologies

Figures

FIGURE 1. Process for Collecting Land Use Infomation 10
FIGURE: 2. Steps Used for Incorporating Land Use Variables in Projectint School Enrollment One to Three Years into the Future 18
FIGURE 3. Formula for Calculating the Balancing Ratio 29
FIGORE 4. Gener:l Flow Chart for the School Resource Allocation Model 91
FIGURE 5. Classification of Variables for Enrollment Allocation Model 92
FIGURE 6. Smal Areas forecasting System Flow Chart 133

Chapter 1

$$
\underset{\sim}{2}
$$

Introduction

a
\uparrow

For the past decade, student enrollments have declined steadily in school districts throughout the United States. By the fall of 1980 the national enrollment of entering students will likely be the smallest inten years. This loss of students in expansion-oriented American public education has become one of the most compelling problems facing school district administrators today.

National Enrollment Trends

Between 1950 and 1970 etementary school enrollments grew from 22 million to 37 million students while secondary school enrollments more than doubled, from 6.5 million to nearly 15 million students. Public elementary and seconfary school expenditures rose accordingly from \$6 billion in 1950 to over $\$ 40$ billion in 1970. By 1970, however, two decades of educational growth ended as elementary school enrollments beian to decline. District budgets and federal funds for education grew strained as school tax rates and teacher salaries continued to escalate. Between 1970 and 1974, the nation experienced a 1055^{\prime} of 2.4 million students enrolled in its public schools. A total decrease in enrollments of 3.4 million is expected between: 1975. and 1982. Projections from the U.S. Bureau of Census. indicate that enrollments will continue to decline through 1981-82. First grade enrollments will in-". crease in 1981, as will enrollments in the higher grades in the succeeding years. As lower grade enrollments begin to increase, however, secondary-enrollment will continue "to decline through 1990.

Pdanning Around Decline

In a society unaccustomed to contraction, declining enrollments have seriously chalienged many public school administrators who have enjoyed enrollment growth during thetr professtomatcareers.- Dectiningenrollments, however, coupled with diminishing resources, budget defeats : reductions in. force, program closures, and restricted curriculums, have increasingly denanded that leadership be measured by. the ability of administrators to cope with the long and short-range effects of this decline.

Plannigg around a declining enrollment requires much more resourceful school district management than that during an expanding enrollment. Decline cannot be construed as the reverse. of expansion; the most recent program and staff additions, for instance, may not be the most expendable or.least important. Yet a declining
enrollment need not imply a corresponding drop in the quality of educational services. Enterprising and creative school administrators can develop better programs through necessary consoiidation and can find effective uses for existing facilities. Enroliment decline can prove to. be a crisis or an opportunity depending on the management's response.

The key to successful decision-making during declining enrollments is a comprehensive plęnning process by which facts and opinions are gathered, alternatives proposed, and decisions made that best perpetuate community and staff support. Comprehensive and effective -planning implies long-term and system-wide planning as opposed to a short-range "crisis management" style. Comprehensive planning provides the opportunity to evaluate personnel and policy in times of rapid change and to ensure quality education despite decreasing resources and enrollments.

Successful school district planning for declining enrollment depends upon an accurate procedure for monitoring and predicting enrollment changes. Enrollment projections are the prime indicators of future demand for educational services, programs, staff, and facilities. The credibility of all planaing decisions, of course, is directly linked to the accuracy of the projections.

Lócal Implications

The loss of over five million students within a ten year period clearly has severely affected school districts throughout the nation. Knowledge of this national trend is helpful, but does not. provide'adequate yuidance for local planning.

Local declining enrollment patterns must be studied to develop appropriate strategies and procedure's to respond to individual trends. Each school district, because of unique commity needs, must develop its own strategies, determined by its educational goals and programs, community'needs, financial resources, enrollment projections, and planning capability.

Purpose and Goals

This study is designed to disseminate valuable information about various enrollment projection methodologies used by school districts faced with declining enrollment and population shifts.
lmplementing an enrollment projection methodology and a comprehensive planning methodology in a school district is often a complex problem because many possibilities exist. Many of the possible methods, however, may not be appropriate for an individual school district. The most useful approach to complex problems where several solutions are possible and one "right" method is not readily apparent," is the case" study approach. Case studies presented in this study describe enrollment projection methodologies presently used in four metropolitan areas. All areas are experiencing declining enrollments and drastic population shifts. These four descriptions describe ways in which selected school districts around the country. facing drastic population shifts and policy alterations carried out comprehensive planning. The case studies also describe methodologies for projecting individual school enróllment, a process often neglected in school enrollment-planning literature, but crucial for the
appropriate allocation of school district resources.
Case studies also describe two enroilment projection methodologies that incorporate variables other than past enroliment trends. 80th of these methodologies were designed to improve the accuracy of the enrollment projection methodelogy currently used by the districts. The modification attempt failed at one site and is currently being implemented at the other site. An outline of each methodology's development illustrates the steps and problems involved in setting up an enrollment projection methodology in two urban centers with specific problems.

This study hopes to stimulate planning for declining enrollment and population shifts- and to emphasize the importance of.accurate en.rollment projection methodologies.

This study demonstrates that successful research techniques employed by various school districts can instruct other districts of methods and aims to pursue or avoid in enrollment projection efforts.

Participants

Four school districts from three distinct national regions were selected as field sites for the case studies. The sites - Eugene, Oregon, Seattle, Washington, Philadelphia, Pemsylvaniá, and Austin, Texas were selected for their unique enrollment shifts, and their cooperative participation. The sites vary in size and represent school districts that are actively planning for declining enrollments. Medium-to-large school districts were used because of established planning staff and procedures.within each district's administration.

Overview

For the past decade, declining student enrollment has forced school district administrators throughout the ration to adjust to the frustrations of managing diminishing resources. In a society geared to expansion, planning around budget defeats, program closures, reductions in force, increasing \$oss of community support for public schools; and fewer course offerings has placed enormous psychological, financial and social/emotional pressures on school district administrators.

Planning for declining enroliment can be accomplished only when a school district can accurately monitor end predict enrollment changes. Earollment projections are essential for staffing, budgeting, and facilities planning. Accurate enrollment projections provide reliable estimates for short-range and long-range planning. to ensure quality educational program facilities, and personnel needs.

Very few documents have directly addressed the development of accurate individual school enrollment projection: methodologies: Because the use of very small numbers invites random error, individual school projections are difficult to project with extreme accuracy. Chapters 4, 5, 6 and 7 describe how four large ichool districts responded to this difficulty of projecting small units (individual schools): These documentations are intended to advise and instruct other school districts around the country experiencing ihe same difficulties. Enrollment projection methodologies were investigated and documented in four
urban centers in various geographic regions in the United States. The four districts, the Eugene Public Scheol District, the School District of Philadelphia, the Austin Independent School District, and the Seattle Public School District are all experiencing declining enroilments and are activeiy planr.in's for declining enrollment \ldots...t;

The methodologies utilized at each of the four districts consisted of two majer phases: District-wide grade-level projections and individual school projections. The grade-level projections, acquired through the cohort survival methodology or a modification of it, are used to monitor the individual school projections.

In Eugene, the individual school enrollments are projected by grade level, for non-initial grades, by advancing the previous years' enrollment as the enrollment for the projected year. Initial grade enrollments (kindergarten; first grade, seventh grade and ninth grade) a're projected by utilizing birth-to-kindergarten ratios for kindergarten and by soliciting verbal estimates from junior and senior high schocls to approximate the number of students expected to enroll the next year. The individual school projections are subjectively adjusted so that they cumulatively produce the projected district total.

In Philadelphia, eight sub-district enrollments; as well as the total district enrollment, are projected and used to monitor individual school enrollment projections. Individual school enrollments are projected by using a school-to-sub-district proportional ratio and adjusting the projections to the sub-district and district totals.

Seattle school district is currently implementing a desegregation mandate: With no historical data to identify trends or the impact of desegregation, projections of individual school encollment are based on studerit assignment data.

A computerized system known as the Student Resoúrce Allocation Model (SRAM) has been developed and implemented in Austin to project district and individual school enrollments. SRAM utilizes the cohort survival methodology and displays projections for low, medium and high cohort sur-. vival ratios for the past ten years. It allows an option to include - ratios that may better reflect outside variances affecting the district's. student enrollment.

Two districts, Eugene and Seattle, have recently attempted to modify their existing enrollment projection methodologies. The Eugene modification tested three commonly used enrollment projection methodologies cohort survival, regression and ratio - utilizing land use, variables. A general model grew out of the field testing. The Seattle modification has been developed and is presently ready to be tested. This modification assigns a ratio value to the smallest indivisible unit (a student) that represents the probability that the student will stay in the district. This is based on residential, past enrollment, and issignment variables. Projections for individual schools are then made when the modification's simulation sub-program places the student in an attendance area. The technique utilizes the Markov Chain theory and represents an innovation in individual school enrollment projection metiodologies.

The ohapter that follows discusses the role of enrollment projection methodologies in school district decision-making and the importance of their accuracy.

Chapter 2

0

Utilization of Enrollment Projection Methodologies inschool Districts with Declining Enrollment

'Utilization of
Enrollment Projection Methodologies
in School Districts with
Declining Enrollment

Comprehensive planning can often make the difference between taisisoriented and effective school district maragement, especially in times of declining enrollment and drastic school population shifts. The first and most essential element of comprehensive district planning is an accurate means of predicting future enrollment. The projections are the basis for administrative planning decisions, and must achieve extreme accuracy to ensure that the most economical and appropriate decisions are made.

Enrollment Projection Methodologies

School district planners most often make enrollment projections for one to five years into the future. In school districts where long-range planning is utilized, district-wide grade-level enrollments are projected as far as 10 to 25 years into the future. Individual school enrollments are usually made annually since the small numbers involyed are prone to random error in the enrollment projection procedures.. In addition, the farther away from the actual enrollment data, the more inaccurate the projections become. The random erros increase for each projected year in an exponential fashion.

The most commonly used methods for projecting schaol district enrollment have utilized past trends to preaict future trends. These methods have gererally produced quite accurate predictions of enrollment for the district. At the individual school fevel, however, projections based on past trends musti de adjusted either subjectively or through use of other methods to accommediate the small numbers that are subject to random error. In cities where enrollments are shifting drastically within'the school district, past trends will probably not be helpful in projecting individuai school enrollments.

The enrollment projection methodology most commonly used is cohort survival. Cohort survival as'sumes that a relatively consistent number of students pass from one grade to the next from year to year and that.a percentage of such advancements can.be calculated. On the basis of the preceding three to five years' "percentage of survival," the next year's enrollment can be projected.

Other methocologies commonly used arquind the country are the regression, ratio, and Markov methodologies, and a combination of two or more methodologies. An analysis of each of the methodologies can be found in TABLES A-I through $A-5$ in Appendix:A. Along with description of the methodology;... each table includes an explanation of how the methodology is calculated, its statistical model, deta requirements, as well as a list of its advantages and disadvantages. Four methodologies are further explored, as actually used by school districts, in the following chapters.

Because enrollment projections can accurateiy predict the number of students expected to enroll in the school district one to ten years into the future, school district administrators can continue to make more effective and advantageous management decisions desnite-enrollment decline. The four major areas that can be directly managed on the bas is of enrollment projections are sta:fing, budgeting, facilities planning, and program offerings. Enrollment projections provide valuable information for decisions regarding the following:

1) The number of staff to hire, retain or dismiss. This
a) Enables reassignment of staff to ensure retention of prẹsently employed teachers whose clasges are dwindling.
b) Provides a basis to revise retirement pians and staff development activities.
c) Permits accurate staff allocations to grade levels and individual schools to help regulate class size and provides information on which to base changes in student to staff ratios.
d) Warns administrators and teachers of impending staff reductions.
e) Enables the restructuring of administrative services and the number of adninistrators to retain or reassign.
f) Aids in determining the number of non-certificated staff to hire (teacher aides, clerks, custodians, etc.).
2). Planning for funding.
a) Since state aid and federal funding formulas are based primarily on the number of students enrolled in the district, knowledge of future enrollments allows administrators to estimate and budget for monies to be received from state and federal sources.
b) Predictions can be made concerning the impact of declining enrollment: on local educational support. Decisions cann be made based on knowledge of community support and assumptions that declining enrollment may negatively affect a district's ability to pass tax and boind referenda.
c) Enrollment projections anticipate fiscal crises and provide time to help legislate school funding independent of enrol lment numbers.
2) Forecasting need for facilities:
a) Enrollment projections help predict the need for the building, alteration, or closure of schools in the district.
b) Enroliment projections help administrators decide whether to-sell,
rent, lease, or "mothball" buildings" when immediate closure is necessary; as well as to detemine which schools to close.
c) Knowledge of the number of students in each schaol attendance area enabies planners to detemine the most cost-effective busing routes. "In" ierms of desegregation mandates, enrollment projections provide the number of minority/non-minority students in each attendance aresa to aid desegregation planning and busing proposals.
3) Planning for program offerings.
a) Knowledge of the number of students expected to enroll in schools in the next year. can assist administrators in prioritizing different pragram offorings for elimination or cut-backs, such as extracurricular programs, athletic programs, counseling, library services, foreign language, and low demand curricular courses.
b) Curriculum development and consultation needs can bé planined for by knowing the number of students expected to enroll in schools in the next year. The number of enrollees can be an indicator of the need for curriculum changes.
c) On the basis of the number of students expected to enroll in schools in a district. the need for reorganization of grade structure can be realized and met.
d) New programs such as magnet programs, can be-developed to encourage utilization of extra space in low enrollment areas.

Importance of the Accuracy of Enrollment Projections
The need for accuracy in projected stucent enrollments for allocation of state and federal funding is self-evident. Inaccuracy can not only cut a district short of funds but may cause the district to lose credibility with the funding agencies.

Mechanically speaking, extreme accuracy is particularly required in. - the initial grades of the first year's projections with almost-every enrollment projection methodology. The initial grades and the first projected year provide the building block for projecting the next year's succeeding grade attendance and so on. By the time ten year projections have been-... accomplished, ten of the twelve grades of the last projected year will have been affected by the initial grades of the ffrst year's projections.

Accurate enrollment projections are extremely important and most desirable to avoid over/under budgeting, staffing-and purchastrig.

Because projections deal with the unknown - the future conditions accuracy cannot be realized until after most plańning decision-making, and hiring for the successive school year has been completed. It is not until the actual enrollment counts have been collected in the fall that the school district admiristrator can judge the accuracy of the projections.

One method to "cushion". the blow of imprecision in enrollment projections is to create a "confidence interval". This "confidence intrerval" could be achieved by supplying high and low projections to surround the derived projections. Staffing, purchasing, etd., can be-done according to the Tow projections to avoid cver-staffing and over-purchasing; funding can be appiied for on the basis of the medium and high projections.

Another method of protection against extreme inaccuracy is to compute ' all' staff and facilities contracting for the district or the basis of a percentage of the projected enrollments". For example, in. Eugene, Oregon, staffs, are hired and facilities purchased for the upcoming year on the basis of 95 percent of the projected enrollment, allowing à 5 percent margin of error. If in the fall the earollment count is the same or greater than the projected enrollment, additional teachers and facilities can be secured. District-level enroliment projections are seldom inaccurate by a 5 percent margin, so over-staffing should never be a problem utilizing this technique.
a

Chapter 3

A Model for the Inclusion of Land Use Variables in Short-term Enrollment Projections

A Model for the Inclusion of Land Use Variables in

 Shor.t-Term Enrollment ProjectionsSchool districts have traditionally traced the decline of enrollment on a year-by-year basis. Few have systematically collected data on the variables in the commynity, referred to as land use variables, that correspond to enrollment decline. Even when this information was noted, the source was often simply building administrators explaining trends in their schools.

In the past few years, however, declining enrollment and the failure to predict it accurately have led to a reexamination of the traditional projection methodologies. Concomitant improvements in the accessibility of information from planning departments and census data have made the incorporation of land use information possible.

The methodology explained in this chapter explores these variables' relevance and attempts to utilize them in improwing the traditional cohort survival, ratio; and regression techniques for projecting, enrollment. The methodology adjusts the enrollment projections accomplished by traditional techniques on the basis of land use factors that describe en-collment-related differences within the school district. The experiment was conducted in Eugene, Oregon, based on methodology developed by James Carlson and Robert Swank from the Lane County Council of Governments, Eugene, oregon. It is described here as a possible tool, to be employed by simitar school districts throughout the country.

Utilizing the enrollment projection technique described in Chapter. 4 , Eugene School District enrollment projections have in the past, consistently shown accuracy at the 99.5 per cent level, for both district and individual school projections. The individual school level projections, however, incorporate a high degree of subjective adjustment to allow the sum of the individual school projections to correspond to the district-level projections. Those subjective adjustments are usually made according to district administrators' insight into the expected changes in the attendance areas. The initial impetus of the work. done in this chapter was to make an attempt to quantify the subjective adjustments and to described technique to systematically adjust the individualo school projections to correspond to the district level projections. The former was attempted through exploration of land use, variables that best explain attendance area changes and the latter by developing an equation known as a balancing. factor-

Collection of Land Use Variables

Changes in neighborhopds are difficult for school district planners. to trace. Infomation such as zone changes, bufliding permits, and subdivisions is ordinarily not systematically received and compiled.

Information from the U.S. Census, which often gives information on changes in socio-economic status, racial cömposition, types of dwelling occupied, ages of housing; etc., is slightly more acqessible.: Most of this information is available through sources outside the school district,
such/as city.planning departments, governmentail statistics and research uni.ts, and assessors' offices. Most of the data in the reports. produced by these agencies, however, are not broken down into units small enough to be applied directly'to the school district's areas of interest. This difficulty in obtaining useable information on land use variables has discouraged most school districts from seeking this:information.

For the communities in which reliable information is accessible, however, perhaps the most important tool in utilizing: the methodology developed here is a good knowledge of the social, economic, and/or land use trends in the community. I't is the first step toward incorporating land use variabies into a projection methodology. Fígure 1 illustrates a.threestep process for the collection of land use information. The situation in Eugene illustrates this process, and the usie of these variables in the of projection methodology.

FIGURE 1
Process for Collecting
Land Use Information

COLLECT DATA

Trends in Eugene, Oregon

Eugene, Oregon is located in the Willamette Valley, 110 miles south of Portland. Eugene is Oregon's second largest metropolitan area with a population of just under 100,000. The population is predominamtly whtte and middle class. The population is less than five percent minority. Eugene grew most rapidly in the 1950 s and 1960 s $^{\circ}$ due mostly to migration from outside the state. This trend continued in the 1970s and the' issue of growth continues to be central to local political campaigns and city and county govemment concems:

Eugene has a strong neighborhood tradition. Neighborhoods are de-. fined more by geography afld periods of development than by-ethnicity. In newer housing areas the population is distributed according to age and economic characteristics. Eugene may well illustrate the concept of neighborhood maturation, whieh postuitaternat a geographt c"area-reflects the life-cycle of its occupants: Once a neffighorhood is developed,
families move in and produce children, and tend to. remain in the same neighborhood. As time passes, however, the children progress through the local schools until the families in the neighborhood have fewer children living at home. A counter-trend to the neighborhood maturation concept is the "upward mobility"。trend; in which a city. is seen as a series of concentric circles of development. The outer fringes are the. most desirable places in which to live and contain homes with higher land values. Families initially occupy less valuable homes near the center of the city, but move up and outward from the center ass the life cycle progresses and they become more affluent.

Eugeneans seem to. prefer single-family, detached homes. Statistics show that this type of home is preferred by families with children and that significantly fewer children live in apartments or other multiplefamily dwellings.

Urban growth in the Eugene area has occurred mostly in concentric circles, pushing outward from the central city core. Considerable vacant land remains within the city limits around the outer fringes of the city. City and county governments have established an "urban growth boundary" that separates the residential zones outside the current city limits from agricultural and other. lands in the county. This boundary has been rather. rigorously enforced by both local governments.

In spite of this growth, declining fertility rates and differing rates of development within the metropolitan area have led to a declining enrollment in the Eugene School District since the late 1960's. A pattern of declining enrollments in schools located near the central city core and overcrowded schools nearer the outer fringes has emerged: The decline has been gradual and the schools with declining emolument have encouraged diverse alternative programs to utilize their excess space. The strong neighborhood traditions in the cent: al city have also enhanced and supported these uses of the school butidings. This combination of factors has prevented the necessity of attendance boundary adjustments; although students have been bused occasionally from overcrowded schools to less crowded schools.

In sum, urban development is still occurring on the vacant land on the outer fringes of Eugene. Little or no urban redevelopment is dcicurt ring in the central city area. Central. city schools have declined in enrollment and schools on the fringes are often overcrowded. The homes on the fringes of the city frequently tend to be'higher value homes.
 of children, however, so some fringe schools are overcrowded and some. are... not.

Identification of Trends

In Eugene, four population trends seemed most significant.
\therefore. Urban growth is still occurring at the fringes of the city.
2. Most families with children clearly prefer single-family detached dwellings.
3. Overcrowding in the fringe schoopsis not uniformly
distributed and some fringe areas contain homes with higher ecanomic values.
4. Some neighborhoods deciining enrollment reflects "neighborhood maturation."
To identify trends in urbian areas, several areas may be explored. Eugene; for example, has net ih-migration. This is typical in most medium-sized cities, especially in the south and west. Other urban are.ss may have out-migration ("urban flight"). Neighborhood racial composition may be a strong factor in some caties, as might the caliber of housing available in the area, and the proximity of large low-income housing projects. A trend toward renovation of deteriorated neighborhoods might also be significant. Concepts such as neighborhood maturations, the "concentric circle" model of housing choice, and the economic value of homes and patterns of enrollment dẹcline in individual schools should also be explored and examined. -

Identification of Relevant Variables

Once poteńtially relevant trends have been identified, one can begin to locate relevant variables and data that reflect those trends. Relevant land use jariables may be squght in measures which most directly reflect the trends. The most useable data should be easily related to attendance areas (or similar small geographic areas). This will require searching for sources of data that may be compiled by agencies other than the school district. Assessor's offices, planning departments, U.S. Census ín.formation, and local governmental research and/or statistics units are several © ikely sources of this data. A description of the potential sources of datà identified for Eugene's four trends i.llustrates this process :"'....

Eugene's in-migration ańd pattern of urban growth can te measured by several kinds of data. Variables reflecting the rate of general popuia-. tion growth would be one way to measure urban growth. Census data and surveys conducted by local governments eouTd provide this datas one might also seek measures that could directly gauge the urban growth, including data related to the specific areas and types of growth occuring, such as public records of subdivisions, housing developments, zoning, and vacant land.

The preference of families for single family dwellings can be easily measured by noting the proportion of the housing stock that is single,
 This, data could be obtained from zoning records, census data, and surveys.

The value of homes in specific areas can be measured by census data, housing surveys, assessed valuations, etc. Such data can also often be broken down into housing type, single-family, multi-family, ette. . . : =i; ;
"Neighborhood maturation" is apparently mare difficult to measure. The age of a building, however, can usually be learned from assessment records of census'summaries, as can the ages of heads of household from census data.

Collection of Data

After potential variables (and data) are identified and located, the ment data to conform to census tract data. The remainder of this secion will briefly describe the relevance of the land use variables selected for Eugene. Tables 1,2 and 3 provide a detailed description of each land use variable collected.

Six of the variables used in Eugene relate to its identified trends toward urban growth and preference for single-family dwellings. Each attendance area in the Eugene School District exhibitis distinctly different potential for growth. Some attendance areas have very little vacant land and very few subdivisions, building permits, or similar indicators of future growth, while other attendance areas include large amounts of vacant land thet demonstrate a certain growth potential. The necessary circumstances for arowth in the Eugene area are closely related to two factors: 1) a re: : ti .ial designation in the comprehensive metropolitan plan for that area; and 2) appropriate zoning for that area, Since Eugeneans prefer single-family dwellings and single-family dwellings tend to house more children than do other dwelling types, one would select variables. that reflect the amount- of vacant land that could be developed into single-family dwellings. ' Table I describes in detail each variable's relevance and source of data. The following six variables were selected for Eugene:

1. Percent of total fand area which is zoned for residential building.
2. Percent of total vacant land area.
3. Percent of all. residential units which are singie-family.
4. Net residential density (dwelling units per acre).
5. Number of vacant, residentially zoned acres.
6. Number of vocant," How density-zoned 10ts:-

Variables were tested for relevance to the projection problem and three were selected for Eugene that best explain variance in attendence areas. These variables relate to the identified trend in which the value of homes influences the number-of-schoolwagerchituren: in that areat: This trend is also reflected by the amount of vacant land. Some areas in Eugene are experiencing considerable growth but produce iower than expected numbers of children. The homes in these areas are generally of higher value than the norm for the Eugene area. The "concentric circle" model predicts that homes at the fringes would have higher values and

tagle I

Detailed Description of Variables Related to Urasa Growen and Single fanily owellings

1) Percent of Tota! Land Area which is Residential.

This percentage pertain; so the zoning of the land in each attendance area, It gives an indication of the charactar of the attendance area (i.e., whether or not the area is predominantly residential). This figure also serves as a base for predicting what proportion of the vacant land in the ares is likely to be residentially developed. In the Eugene area, this percentage was obtained from the Lane County Geographic data Systen. which is a computerized data system used by local aunicipal planning departments.

2) Percent of Total land which is Vacant.

This percentage provides an indieation of the proportion of the land in each attendance area which has not been developed. It indicates the relative status of the area in terms of potential for further growth. An undeveloped area would be more likely to be in transition during the 15 -year projection period. This data combired with the previous variable gives an indication of the residential development potential ir each attendance area. in Eugene, this pertentage was obtained from the Lane County Geoyraphic Data Systen.
3) Percent of all Residential Units which are Singlefamily.

Thts percentage ts a refinement of the first variable. This variable indieates the relative density of the restdential untts in each area (i.e... low density, or single-family vs. high density, or multi-family). Singlefamily units tend to have more students per bousehold. When used to preatct. it aeds information about the potential for growth of single f family units in the area and to can provide a basis for esttmating the number of school-age enildren.

4). Net Residential Density (Owelling Units per Acre).

This figure describes the average mumber of dwelling units whtch currently eaist. If ane can assume that this will rematn fairly constant, it can also represent an expected number of cwelling units on vacant land. This figure further contributes to the estimation of the potential for housing growth. The net residantial density varies according to the zontng of the vacant. iand and can mike single-family units more or less likely. The source of this data is the Lane Gounty Geographtc Data System.
5) Number fof Vacant, Residantially Zoned Acras.

This figure represents the amount of vacant land which is also restcentially coned. Inis figurd, in combtnat ion with net residential density and percent of rasidences which are sinyle-famtly can give an indication of the potential for having growth. The source of this data is the bane County Geographic Data Systam.

6) Mumber of Vacant, Low-density Lots

This figure refterates soup of the above variables and represents the actual number of vacant lots that are zoned for low-density (single-family or duplex) use.
that faimilies strive to live in these areas by gradually moving outward as they progress upward on the income scale. Thus, the phenomenon of slightly lower numbers of children, but not significantly fewer children: may be explained by this modei. Table II describes in detail each variable's relevance and the source of this data. The following three variables relating to this trend were selected in Eugene:

1. Average value of single family units.
2. Percent of single-family assessed under $\$ 20,000$.
3. Percent of single-family assessed over $\$ 40,000$.

Five variables were selected to reflect the neighbortiood maturation trend. In Eugene, variables related to the age of buildings were found to measure this possible trend. The school enrolliment-records were-incomplete, and the census tract data on age levels of residents and head. of household was probably too old to reflect more immediate trends since most of Eugene's growth has occurred since the 1940s. Intervals of ten years were selected because 1950s and 1960s were major growth periods due to in-migration. The five variables were:

1. Percent of single-family unitsobuilt prior to 1940.
2. Percent of single-family units built 1940-50.
3. Percent of single-family units built 1950-60.
4. Percent of single-family units built 1960-70.
5. Percent of single-family units built after 1970.

The final three selected variables sought to represent the number. of children who will live in the attendance areas. To successfully employ land use information in enrolment projections, one must be able to determine a variable that would associate a number of schoolage children to the number of homes :in the attendance area. In an area Tike Eugene, the housing structure type influences the number of students living in the home. Thus, it is important to collect this information of housing structure types so that the preference for single-family dwellings can be incorporated. In other cities, an average number of students per home could possibly be utilized without this detailed analysis of the structure type. Information about the number of building permits was combined with the number of students per household to estimate future growth to be incorporated with the student data. Table, III describes each variable's relevance in detail and mentions the source of data. The three variables are:
. 1. Average number of students per househoïd.
2. Number of students by household by structure type.
3. Number of building permits by structure type by year.

table 3

Detallad Destription of Vartables Related to Number of Students Living in Attendance Area

1) Average Nurber of Students per Househotd

This information gives a generalized average of the cotal number of- -students in the attendance area divided by the tocal number of homes in the attendance area. The mumber of studenes was obtained from school district enroilment records and the number of homes was obtalned from the Lane County Gaographic Data System.
-
2) Number of Students by Housencld by Structure Type

This information is a reftnement of the average number of "stodgoez per household. This information was generated by matching student addresse) to individual parcel land use data to dotermfne structure type of the didress. Eaeh structure eype is assigned an average number of students per household.
 addresses. The Lane County Geographic Data Systen was the source of the Individual. parcel land use data.
3) Number of Suliding Permits by Structure Type by Year

This information is an indication of actual growth within each atcendance area. when combined with the average number of students per household. it gives in indication of how many scudents ailght be expected to enter new homes in the ares. This cata was collected on a yoar-by-year basts. Actual occupancy of structures occurs somewiat after the building permit is issued. In Eugene. this happens approxtmately stx months after che building permit is issued. The data was collected yearly to allow flexibility in detarmining whether to use an averaçe over years or to use the nope recent building perait figures. This information was obtained from the Eugene Butlding permit file.

In summary, a three-s tep procedure can incorporate land use variables into an enrollment projection methodology. The first step identifies social:, economic, and/or land use trends within the metropolitan area. The second step identifies relevan't variables that seem to reflect those trends directly. The third step collects data on the identified variables for fixed geographic (attendance) areas. These variables were tested in Eugene for their value in generating short term enrollment projèctions. The next section outlines this methodology developed in Eugene for incorporating land use variables into enrollment projections.

Inclusion of Land Use Variables in Short Term Enrollment Projections

This section presents' a model for incorporating land use variables in short-term enrollment projections. The model is described in both general terms for adaptability to school districts around the country and specific terms to describe the actual testing of the model in Eugene, Oregon.

The model is based on a traditional enrollment projection technique adjusted by land use variable variations in attendance areas.

The general model used in this example of incorporating land use variables projects individual attendance areas on a year-by-year basis for three years.

Several decisions based on a knowledge of the trends in a specific urban area must first be made. The first decision must identify the. traditional enrollment.prediction methodology used to project districtwide enrollment. This existing district-wide projection is used as a monitoring device by which the individual attendance area projections are evaluated and adjusted. The second decision must choose an accurate projection technique for individual schools. The lortat decision must select a land use variable that is an immediate indtator of urban growth or declining populations. This variable must be convertible to an estimate of the number of new students projected for a year. The converted land use variable is summed with the individual school enrollment projections, and the total is "balanced to" the district-wide projection. The concept of balancing is a systematic means of adjusting each individual school's inflated projection to correspond to the more accurate district level projection. The balancing factor is calculated by dividing the district enrollment projection by the sum of the individual school enrollments which reflects the amount of inflation produced by the individual school projections. The balancing factor multiplied times the projected individual school enrollments provides individual school projections which sum to the district projection.

The remainder of this section contains a step-by-step explanation of the general model and a description of the testing of the methodology in Eugene. figure II displays the steps used to incorporate land use variables in projecting school enroliment one to three years into the future.

Figure 2

Steps Used for Incorporating Land Use

 Variables in Projecting School Enrollment One to Three Years into the Future

An explanation of the steps illustrated in Figure 2 (left hand
column), and the application of the procedure to Eugene elementary schools (right hand column), are provided below.

General Model

Step 1. Gather Data
1a. At the district level collect data for each grade.
Sumary enrollment data should be collected for the total number of students by grade in the district. For the most accurate predictions; the time period should be no less than three years. Decisions aust be made to include or exclude groups (such as special education) which may inordinately skew the data.

1b. At the individual school level, collect enrollment data.
Sumary enrollment data should be collertad for the total number of students by grade for each sčhool for a period of no less than three years.

Eugene Example

1a. Áctual enrollments were gathered for grades 1 to 6' for the 1970 to 1978 school years for the.school district.
In this example 1970-1975 enroliment data was used to project 1976, 1977 and 1978 : enrollments.

1b: Actual enrollments were gathered for grades 1 to 6 for the 1970 to 1978 school years by individual school. In this example 1970-1975 enrollment "data was used to project 1976, 1977 and 1978° enrollments.

Table 4 shows the format used for steps la and lb.

TABLE 4
Sample of 1970 to 1977 Sumnary Enrollment Data Dy Grade Level for Adams Elementary School

General Model

1c. For the individual school attendance area, collect land use data for the time period.

Land use variables should represent the most immediate indicators of urban growth or declining population which can then be transiated into the number of new students: projected for a year.

Eugene Example

1c. For each of Eugene's 23 schoot geographic areas, land use data for 1976, 1977 and 1.978 were gathered and tested. The variables with the niost explanatory. power were chosen. They are the number of building permit applications broken down by

* structure type li;e., singlefamily dwelling, multipiefamily dwelling, and duplex) and the average. number of students per structure type. The number of building permit applications was obtained from the Lane County geographic Data System. Table 5 shows this data for the years 1976, 1977 and 1978.

TABLE 5
Number of Butiding Permits Applied for by Structure Type and Attendance Area for 1976, 1977 and 1978

Eugene Example: (con't)
1c. The average number of students per structure type was computed for each geographic area (shown on Tabie 6). These numbers were based on enrollment data and on information provided through the property tax assessment records collected on September 30, 1977. The student enrollment data was geocoded by home address and matched with individual parceel file data to determine housing structure type. An average number of students for each structure type was computed for each attendance area. In this study, it, was assumed that the average number of students per structure type for each attendance area was constant and would vary little over the years.

TABLE 6
Average Number of Students
by Structure Type and Attendance Area

Step 2. Computations

2a. Use the district enrollment data gathered in Step la in an enrollment projection procedure to estiquate short-tern enrollaent for the district.

Use the enrollment projection procedure known to be the most accurate. It is important to strive for accuracy in this projection since' the individual school projections will-be bal-. anced to this total.

TABLE 7

2a. The, cohort survival methodology based on 1970 to 1975° enrol .-" $^{-*}$ ment data was used to estimate the school district enrollment for the 1976, 1977 and 1978 school years. This methodology has been the most accurate dis-trict-wide enrollment projection technique for Eugene in the past. Accuracy levels have varied from .46 to 1.48% for one year projec-4 tions. Table 7 shows the actual enrollment, district-wide projections for 1976, 1977, and 1978 and percent accuracy. It is apparent from Table 7 that the farther out one makes predictions, the less adcurate the predictions become.

- Oistrict Cohurt Survival Estimates, Aetual Enrollment and Percent of accuracy for 1976. 1977 and 4978

2b. Dse the school level enrollment P data (gathered ini Step 1b) to estimate individual school enrollment using an enrollment projection equation.
Choose an accurate projection technique for individual schools. Three techniques for projecting individual school enrollments are explored in this chapter. and described in Apnendix A. They are the cohort survival, re-' gression, and ratio methodologies.

2b. For each school attendance area, 197.6,: 1977 and 1978 enrollments were "projected by three different methods in order to assess .the best means: of estimatton. Forty. - ... nately in this example we are able to compare the projected enrollments with the actual enrollments to obtain a more vivid picture of each projection's' accurtacy. The three approaches are discussed below:
Regression - A línear regression was used to predict each school's 1976, 1977 and 1978 enrollment".
using the past five years enrollment data. Table 8 presents the enrollments estimated by the.regression methodology as well as the actual enrollments for each school for the 1976; 1977 and 1978-5chool years. Differences in actual and predicted enrollments', the percent of prediction, and the standard error of estimate for each year also appear in Table 8 . The farther out the projection, the less. -the percent of accuracy. However, Wh the individual school basis; the first year provided three schools 'with a percento of accuracy between 95 to 100\%, The next two years, 5 and 6 schools, respectively, felfo into the 95 to 100\% accuracy range.

table 8

- 1976. 1977 and 1978 Indtvidual School Enrollment Projections for Grades 1 to 6. Estimated by Reyression Procedures

$\begin{array}{\|l} \text { fienent ary } \\ \text { Scnool } \end{array}$	RCtual Enrollment			Projucted Enrollment			Differsnce between Actual \& Projected				$\begin{aligned} & \text { Percent of } \\ & \text { prod } \end{aligned}$		
	1970	1971	1978	1976	1977	1978		1976	1977	1978	1976	1977	1978
Madiss	329 \%	329	396	217	191	158		2	-131	-238	66	58	40
Shiley Hill ${ }^{\text {a }}$	362	398	461	375	432	488		43	34	- 37	- 96	92	95
gondon	241	245	239	220	243	263		-21	-2	24	91	-99	91
Srust Drive	21.	235	242	252	275	294		41	40.	52	84	85	82
buna	227	195	199	208	208	202		-19	13	3	92	94	98
Edyewood	424	421	414	383	402	414		-41	-19	0	. 90	- 95	100
Edison	293	296	351	230	235	237		-63	- 51	-114	- 78	82	68
Fox hollow	171	139	155	216	236	254		45	47	- 99	79.	80	61
Gilham	296	281	$281{ }^{\text {c }}$	331	358	380		35	17	99	89	78	74
Harris	229	234	236	179	166	146		. 50	-68	-90.	- 78	71	62
Laurel* ${ }^{\text {Hill }}$	123	98	111	99	85	65		-24	. 13.	-46	- 80	87	58
Lincoln	161	170	191	146	146.	140		-15	-24	. 51	91	86	13
Mciornack	345	338	368	407	473	540		62^{\prime}	135	207	85	72	62
Mayladry	158	162	157	148	163	176		-10	1	19	94	99	89
Mesdow Lart.	365	381	333	411	425.	431.		46	44	. 63	89	90.	85
Parter	249	240	232	234	235	230		-15	-5	- 2	- 94	\%	99
Pattersan	214	262	255	232	244	253		18	-180	-3	92	93	99
Washington	404	403	432	393	$405{ }^{\circ}$	409		-11	2	-23	97	99.5	95
Westmoreland	368	318	273	360	376	385		- 8	58	- 112	98		71
Whiteaker	192	224	193	158	149	137		-34	. 75	- 56	- 82	65	71
Wtllagillespte	302	318	342	283	294	299		-19	-24	-43	94	92	87
Wllaktinzte	251	218 :	225	274	283	289		23	65	63 -	92	71	78.
utiliged	269	234	210	321	337	347		52	103	137	84	69	60°
OISIRICT TOTAL	6184	6178	6297	6077	6361	6536	0	$\begin{aligned} & 04.7 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 60.9 \\ \hline \end{array}$	$\begin{array}{r} 10.4 \\ 93.3 \\ \hline \end{array}$	98	97	96

Cohort Survival - Five years of enrollment data were used in predicting 1976, 1977 and 1978 short-term enrollments-for individual schools in. the Eugene school distirict by means of the cohort-survivalmethod-* ology. Cohort survival projections (1976, 1977 and 1978) for each school appear in Table 9 along with each school's actual enroldments for the three years. Differences between the predicted and actual enrollment, the percent accuracy of prediction and the standard error of estimates for each year also appear in Table 9. For the three years of projections, 10,7 and 4 schools. fell into an accuracy range of $95-100 \%$.

TABLE 9

1975; 1977 and 1978 Individual School Enrollment Pro, ections for Grades 1 to 6, Estimated by the Cohort. Survival Methodology

Ratio - 1975 enrollment data for each school was used to obtain 1976 , 1977 and 1978 individual school enrollment projections. With the ratio methodology, the proportion of district enrollment each school possessed was calculated.by divi= ding the 1975 individuel school enrollmeñts by the 1975 district total. The resulting proportion was then multiplied by the 1976, 1977, and 1978 district-wide projections to estimate each year's individual school projections. Individual school enrollment projections and actual enrollments for 1976, 1977 and 1978 by means of the ratio methodology are displayed in Table 10 along with the percent of prediction and the standard error of estimates for each year. The ratio methodology. provided 10, 7 and 6 schools with 95-100\% accuracy predictions aneyear, two years, and. three years into the future.
tasle 10
1976. I977 and 1979 Individual Sehool Enrollment Projections for Grades 1 to 6 . Estimated by cha Ratio Methodology

Elamentary Screal	Hacto of 1975 Disterice Earollinene		Actual Enrollment			Projected Enrolliment			Differmact Betwey Accual 8 Proiectud			Percent of Prudiction			
	Enrolt	of District	1976	1917	378	1476	177	1978	1976	1971	1978	197	197\%	1978	
Than's	25	3.83	329	32	316	236	47	43	- ${ }^{3}$	- 11	142	72	5	64	
Caildy Mill	342	5.63	362	398	451	342	358	368	-20	40	-93	94	90	80	
Condan .	134	3.95	241	245	239	234	245	252	-1	0	13	47	109	95	
Cruse Teqve	231	3.30	211	235	242	231	242	248	20	7	6	91	97	98	
Dunn	225	3.70	227	195	199	225	235	242	-2	40	43	99	83	82	
Edgrwood*	401	8.60	424	421	414	401	420	431	-23	-1	17	94	99	96	
- ${ }^{\text {disen }}$	297	4.39	293	296	, 35:	297	311	320	4	25	-31	99	92	91	
2 NHOllom	196	3.22	171	189	155	196	20.	210	25	16	55	87	92	74	
that	312	5.13 ,	296	281	231	312	326 :	335	16	45	54	95	96	84	
4ist	205	3.37	229	234	236	205	214	220	-24	-20	-15	90	91	93	
rel Will	114	1.38	123	98	115	114	120	123	-9	22	12	93	82	90	
oln.	164	2.70	161	170	191	164	172	176	3	2	-15	98	99.	-92	
mexts	341	5.61	345	338	333	341	357	367	4	19	34	99	95	91	
Ary	137	2.25	158	162	157	137	143 *	147	-21	,-19	-10	87	88	94	
- Latik	370	6.09	365	381	398	370	387	398	5	6	30	99	98	92	
	248	4.08	249	240	332	-248	259	267	-10	19	35	99	93	87	
as	232	3.82	214	262	236	232	243	250	18	-19	- 5	92	93	98	
:98	403	6.53	404	403	432	403	422	43	-1	19	1	99	96	99	
tand	- 395	6.50	368	318	273	395	413	435	27	95	152	93	77	54	
-	178	2.93	192	224	193	178	186	191	-14	-38	-2	93	83	99	,
tspts	272.	4.47	$302{ }^{\circ}$	313	342	272	284	392	- 30	- 24	. 50	90	89	85	
\cdots	252	4.15	251	218	225	252	364	271	1	46	46	99	82	83	
	294	4.94	269.	234	210	294	308	316	25	74	106	92	76	66	
\cdots	6079	100.1	6184	6178	6797	6079	6361	6536	$\begin{aligned} & 108.0 \\ & 0 \times 25.6 \end{aligned}$	$\begin{array}{r} 8.0 \\ 39.9 \\ \hline \end{array}$	$\begin{aligned} & 10 .{ }^{10} \\ & 59.8 \end{aligned}$	98	97	出	

2c. Compute an estimate of the number of rew students projected in each attendance area by use of land use variables co:lected in Step 1c.
After obtaining the land use variable which is the best predictor of urban growth or decline, establish a factor which will translate the urban growth indicațor into the number of new students expected for the projected year.
table 11
Number of guilding permits Applied for by Structure Type.
Average Number of Students per 100 Dueilitg Units by Structure iypt. and the Estimated Humber of yew Students for Eaen Year

Elthentary Seneol	Tumer of suilding Permits Applicd for by Sericture type and Year									Avarage Number of Students per Owelltag Unt?			Estanted Nunbur or Students Added by Land Use				
	1976			\% 71			- 1978										
	5	0 P	WF	35	${ }^{19}$	5	57	DP	M ${ }^{5}$	5 F	DP	MF	2976	1971	1976-77	1976	1976978
\% x90.as	5	4	0	2	5	0	9	0	0	. 538	.1124	-	1	0	$\cdots 1$	1	- 2
8utisy Hali	15	0	4	198	5	82	63	4	0	. 5107	. 0909	. 3636	40	131	171	33	204
Gondon	5	4	30	*	2	0	5	0	0	. 1797	. 0227	. 0044	1	1	2	1	3
Crest Ortue	15	1	0	11	0	0	- 9	2	0	. 2354	. 0833	--	4	3	7	2	9
Ouan	6	4	0	11	0	6	11	2	6	. 2040	. 0462	. 0556	1	3	4	3	7
Eldmmod	5	0	5	32	0	5	49	0	0	. 3912	. 2381	. 0345	2	- 13	15 ;	19	34
Edisan	10	0	$\therefore 0$	11	1	0	0	3	0	. 1589	. 4778	. 1351	2	2	- 4	2	6
for Mallam	3	0	2	13	0	0	14	0	0	. 4026	. 1341	. 1481	- 2	5	7	6	13
Stinma	22	2	2	38	12	0	54	20	0	:2990	. 1667	. 2500	7	13	20	19	- 39,
tarets	18	0	0	29	0	0	19	2	0	. 1931	. 1351	. 1250	3.	6	9	4	13
Laurel Hill	50	0	0	14	2	0	6	0	0	. 1830	. 0588	. 0526	1	3	4	1	5
tincolat	0	0	51	0	0	71	2	2	356	. 0958	.0443	. 0119	1	1	2	5	7
Micfornact	15	d	40	7	0	14	0	0	0	. 3344	. 0938	. .5529	. 20	. 7	37	-	$\therefore 27$
SHagladry	38	2	0	20	2	0	22	2	0	. 2702	. 2353	. 2619	9	6	15	6	2!
Staydowlark	20	0	20	25	7	16	37	2	20	. 2635	. 1587	. 1677	9	10	19	13	32.
Parker	26	0	20	39	4	0	33	2	0	. 22.30	. 1290	. 0153	0	12	20	10	30°
Pat: ${ }^{\text {crsan }}$	2	0	86	4	2	13	- 8	0	5	. 1485	. 1489	. 0320	3	1	4	1	5
Hash! nyian	23	4	2	30	11	0	62	0	0	. 2619	. 2250		,	10	17	16	-33
Uestanorsiand	22.	0	0	64	2	215	85	6	0	. 2090	. 1579	. 1503	5	46	51	19	70
whttenker	0	0	4	4	2	4	1	2	119	. 1393	. 1467	. 0908	3	1	4	11	15
הtloyllasicte	23	0		75	28	211	63	8	65	. 2360	. 1974	. 0625		$\$ 1$	49	21	70
dillatumas	3	0	12	6	0	12	11	0	0	. 2365	. 2500	. 0463	1	2	3	3	6
Lil Part	13	0	3	4	2	4	2	0	0	. 1540	. 0556	. 0633	2	1	3	-	1

[^1]of = Ouplex
-. Muist-Fanlly

Step 3. Combine Projected Individual School Enrollment and Land Use Infornation

3a. Add each individual school's enrollment projection (Step 2b) to the estimated number of new students in each school's attendance area (2c).

This is a simple sumning procedure (i.e., add individual school projections to estimated number of new students.)

3a. For all three enrollment projection methodologies the estimated number of new students was simply added to each school projection. Table 12 displays the estimated number of new students to be added by land use and the projected enroll-ment with and without land use for the regression, cohort survival and ratio methodologies. These figures systematically overestimate the district-wide projection totals.

TABLE 12
Estimated Number of sew Stucents to pe added by Land Use. and the projected Enroliment with ind without Land Use for Regression. Cohort Survival and Ratio

3b. Add the individual schools estimated projections from Step 3.
This sum results in a new estimated district total enroliment which needs to be balanced to the district level projection.

3b. For each method of projecting enrollment, a sum was obtained to represent a new district total which needs to be balanced to the more accurate district level projection. Table 13 shows the estimated distyect totals for each projectfon methodology with and without land use variables as well as. the projected districit total that was used as the control total.
table 13
Estimated District Tatals for
.Regression, Cohort Survtwal. and Ratio Mathodologies With and Without land Use information

	$\begin{gathered} \text { REGRESSION } \\ 1976 \quad 1977 \quad 1978 \\ \hline \end{gathered}$			CORORT SURVIVAL$1976 \quad 1977 \quad 1978$			1976	$\begin{array}{r} \text { RAT10 } \\ 1977 \\ \hline \end{array}$	1978
District fotal w/o Land Use	5663	5416	5165	6149	. 6286	6419	6074	6357	6536
Qistrict Total $w /$ Land Use	5803	5874	. 5819	6289	6744	7073	. 6219	6819	7190.
District-wide. Prajection	6075	6359	6835	6075	6359	6835	6075	6359.	6835

Step 4. Obtain à Balancing Factor
4a. Divide the school district. enrollment projection estimated in Step 2a by the sum of the individual school enrollment projections from Step 3b to obtain the balancing. ratio.
This ratio represents the proportion by which the individual schools' estimated total:overf.. $==$ under estlimated the district tots1. Figure 3 displays the formula for obtaining the balancing ratio:

4a. For the ratio; cohort survival and regression methodology, the sum of the 1976, 1977 and 1978 individual school projections. with land use was divided by ${ }^{\circ}$ each year's district enrollment projection to obtain the ratio which represented the proportion by which each ischool's. projection overiestimated the district total for that year. The balancing ratio for each methodology incorporating land use appear: on the boctom line...t of Tables 14, 15, and 16.

Figure 3
Fomula for Calculating the Balancing Ratio
b
where
$i=$ incividual areas
$j=$ structure type
$P_{c}=$ enrolment projection for the school disirict
$\Sigma P_{i}=\begin{aligned} & \text { sum of the individual area enroliment } \\ & \text { estimates }\end{aligned}$
$P_{i}=\begin{gathered}\text { enrollment estimate for the individual } \\ \text { sehool }\end{gathered}$
$8 P_{i j}=$ building pemit activity in attentance area i over the projected period of time by structure type j
ASij = avepage numbę̈r of students per dwelling unit in attendance area i by structure type j
$P_{i}+\left(B P_{i j} * A S_{i j}\right)=\begin{aligned} & \text { enrollment projection estimate } \\ & \text { for each individual school }\end{aligned}$

TABLE 14

: 376,1977 and 1978 indivioual School Enrollment profections for Gradas 1-6. Estimated by Reyression weth hathe idse

table 15
1976. 1977 and 197e Individual School Enrolliment Projections
for Grases 1-6. Estimeted by Gohort Survivil with Land Use

TABLE 16
1276. 1777 and 197e Individual School Enrollment Projections
for arades $1-6$. Estimated Dy Ratio with Land Use

Elamentary	Actud Enrolluant			$\begin{aligned} & \text { Projecteit } \\ & \text { Enpolliment } \end{aligned}$			drffrence betwnin Actual $\{$ Profected			Fracent xacurdgy of Prediction		
sencol	1976	1977	1978	1510	1977	176	1976	197\%	1971	19%	197%	1978
Acaus	329	JK	3%	232	231	233	- 97	- 97	-105	T	70	59
3altey Hill	$3 \leqslant 2$	398	$46!$	313	493	529	11	95	59	97	80	89
Condon	24	235	239	230	230	232	- 11	- 15	- 7	95	94	97
Crest Orfu*	211	235	242	230	232	238	19	- 3	- 8	92	99	97
Dust	327	195	199	221	223	226	- 6	28	27	97	87	88
Ecytwood	424	421	415	394	406	423	- 30	- 15	9	93	96	98
Edison	293	296	351	292	294	296	- 1	8	- 55	99	98	e4
Fox Hollow	171	189	155	193	198	203	22	9	48	89	95	76
Gilnam	296	281	281	312	323	340	16	42	59	95	97	83
harris	229	234	236	203	208	212	- 26	- 26	- 24	87	89	90
Leurel Hill	123	98	111	112	116	116	- 11	18	5	91	84	96
lincoln	161	170	191	161	162	166	0	- 8	- 25	100	95	87
McCornack	345	- 388	333	353	358	358	8	20	25	98	94	93
Magladry	153	162	157	143	147	153	- 15.	- 15	- 4	91	90	97
Meadow Lapt	365	$3{ }^{3} 1$	368	370	379	391	5	- 2	23	99	99	94
? Parker	249	240	232	- 250^{-}	260	270	1	20	38	99	92	85
Patierson	214	262	456	230	230	232	. 16	- 32	- 24	93	88	91
Hastingtan	404	403	432	401	409	424	- 3	6	- 8	99	99	98
destsoryland	368	318	273	391	433	450	23	115	177	-94	73	61
dhtersker	$\therefore 192$	224	193	177	171	187	- 15	- 47	- 6	92	- 79	97
WIllagtllaspte	302	318	342	274.	311	329	- 28	- 7	- 13	90	98	96
Hillakente	251	218	225	247	269	252	- 4	31	27	98	88	89
Hellara	269	234	210	289	290	290	20	56	$80 \cdot$	93	80	12
$\begin{aligned} & \text { DTSMICT } \\ & \text { TORAL } \end{aligned}$	cida	6178	6297	-6078	6359	6517	$\begin{aligned} & 7=7.6 \\ & 0.25 .7 \end{aligned}$	17	$\begin{aligned} & 10.4 \\ & 60.5 \\ & \hline \end{aligned}$	98	97	96
CALSAGE FAETOR	.976a	. 9325	.9089									

Step 5. Adjust each School's Projection by the Balancing Ratio
50. Multiply each school's projected enrollment obtained in Step 3a by the balancing factor obtained in Step 4 to obtain an adjusted enrollment projection for each individual school.
When multiplied by the balancing ratio, the individual school enrollments can be'made to balance to the district level projections obtained in Step 2a.

5a. The balancing ratio obtained for each of the methodo'logies was multiplied by each methodology's individual school's estimated enrollments for 1976, 1977 and 1978. The adjusted predictions appear in Tables 14, 15, and 16 along with the balancing ratios. As occurred in each methodology with land use included, each me thodology without land use included, once balanced, decreased in accuracy the farther out the projection. In the regression methodology 4; 4, and 4, schools fell into a 95-100\% accuracy range for each of the three years. In the cohort survival methodology 9,10 , and 6 , schools fell into this range, and in the ratio methodology, $11,8^{\circ}$ and 8 schools fell into this range for each of the three years, respectively.

The previous sections have outlined the general steps in developing a model incorporating. land use variables for projecting individual school enrollments and explained how the methodology was applited in Eugene, Oregon. The following sections.will discuss how to select a methodology for projecting individual school enrollments and the relative effectiveness of this particular methodology in Eugene.

Selecting a Methodology for Projecting Individual School Enrollments

Individual school enrollments are difficult to project with extreme accuracy using only a statistical enrollment projection methodology due to l) the ;mall numbers which make then statistically vulnerable to random errur, and 2) the multitude of factors that alter individual school encollments, such as new housing, rezoning of land, open enrollment and alternative schools. District-level enrollment projections, on the other hand, are easily projected with accuracy using past enrollment trends.

On the basis of the statistical enrollment projection methodology, individual school enrollments, totalled, will exceed the accurate districtlevel projection. The sources of inflation are most often compensated for by subjective adjustments to the projected numbers: - in order to know which school to subtract from or add to, school district administrators take into account variables in the attendance areas that cause enrollment alterations.

Incorporating land use variables into the, enrollment projection methodology is one method for attempting to quantify the subjective adjustments. To most accurately project individual sćhool enrollment using the model developed in this chapter, one must first start with an accurate enrollment projection methodology.

When seiecting a methodology for individual school level student enrollment projections, the best way to judge a methodology's applicability to a particular district for a future year is to apply the methodology to actual enrollment data to predict one or two past years' enrollment. One can then, see how well the methodology would have projected the past years' enrollment and if-unacceptable, another methodology can be tested: "This technique also allows for the creation of statistics for comparing two or more methodologies.

- There are four types of information (not mutualily exclusive) to take into account when judging the relative efficiency of a projection methodology. Thase four pieces of information are outlined below:

1) Percent of accuracy of the prediction

The percent of accuracy of the prediction, calculated fur each school, represerits the percentáge of enrollment the particular
enrollment projection methodology actually projected in each school por a given year or years. This figure is found by dividing ihe projected student enrollment by the actual enrollment for a school.

To evaluate the methodology on the basis of this data, a standard of acceptable accuracy for individual school projections must be selected. One may decide that an enrollment projection methodology must be able to predict 95\% of the total population of any school 95\% then becomes the standard for acceptance.
2) Difference Between Actual and Projected

The difference betwisen the actual and projected enrollment is found by subtracting ${ }_{\text {p }}$ the projected enrol lment for each school from the actsal enroliment of each school for the past year or years. The resulting number refers to the number of students over op under-estimated by the methodology for each school.

Again, a criterion must be established in order to evaluate this data. One suggested criterion, 20 to 30 stưdents per school, is . equal to the pupil-teacher ratio. This is a good criterion to use since an over or under-estimation by, 20 to 30 students would require staffing al terations.
3) Standard Error of Estimate

The standard error of estimate ($\hat{\sigma}$), when used in the context of school enrollment projections, is the average amount: of deviatione between the actual and projected enrollments. The shows the margin of error to be expected in the individual school's projected enrollment, as a resuit of the imperfect validity of the methodology.. The z is calculated by multiplying the stahdard deviation of the criterion scores times the square root of one minus the square of the validity coefficient. The'smaller the standard error, the more accurate the projection methodology. This provides an indication of the technique's, aveiage estimated accuracy for projecting enrollment of all schools in the district. The smaller the standard error, the more accurate the projection methodology.
4) Estimated Mean of the Population Error

When balancing to a projected district total (not the actual enrollment total) blasing will result. This bias is systematic and is found by sumafing the difference between the actual and projected individual school enrollments and djyiding by the numberof schools in the district. The bias is considered the estimated population mean, for the projections.

When assessing the four types of information, with different enrollment projection methodologies, it soon will become clear that no cone. technique will provide the best prediction for all
individual schools. On the bas is of the four pieces of statistical information, one can select a methodology that meets the needs of the school district or one can design a methodology that incorporates more than one methodology (See Appendix A, Table A-5) known as a combination methodology. The combination methodology allows for the selection of a methodology for homogeneous areas (schools) in the district.

The following section will illustrate how the relative efficiency of three enrollment projection methodologies was judged in Eugene.

Relative Efficiency of Three Enrol lment. Projection Methodologies in Eugene oregon

Researchers from the Eugene School district made an attempt to discover an enrallment projection methodology that would accurately project individual school enrollments in Eugene one to three years into the future. A major coricern, in addition to a valid projection methodology, was to be able to -quantify the subjective adjustments that have to be made for individúal school projections to sum to the district level projection, found to be accurate within a . 5% error. range. In the past, individual sehool enrollments in Eugene have been estimated by projecting the present year's grade enrollments for each school as the grade enroliment for the next grade and year and by making telephone checks with each school principal to validate the grade projections. Kindergarten and first grade enrollments were then projected on the basis of birth rates five and six years prior to the years being projected. With this technique, only one year could be projected with accuracy.

The exploration commenced by taking three commonly used enrollment s projection methodologies - cohort survival, ratio and regression - and.. examining their usefulness in the school district. A procedure was developed (based on research accomplished in conjunction with Lane County Council of Goyernment researchers) that enabled a numerical means of balancing the individual school projections to sum to the district-levet projection. This procedure has become known as the balancing procedure. The balancing procedure produces a ratio-factor that, when -multiplied by the individuat. s:hool enrollments, allows the sum of the school enrol lments to equal the district-level projection. (The balancing factor is calculated by .dividing the district-level enrollment projection by the sum of the individual
 developed to enable adjustments to the individual school projections on the basis of those land-use variables known to cause alterations in the year-to-year efirollments of individual schools in Eugene.

The methodologtes and landeuse factors were tested by using actual data. 1970 to 1975 elementiary school enrollments were used to project 1976, 1977 and 1978 sichool years. Actual enrollments for the projected. years were then compared to each year's projected enrollments to judge each methodolog'y's relative efficiency for use. In Eugene. The three techniques were evaluated with and without the land use variable adjust-. ments in terms of the four pieces of statistical information described in the preceeding section. It was discovered the t no one methodology

Withoiti or with land use variables was able to provide the best prediction for all schools in the district: It was also discovered that the land use variable adjustment improved the prediction accuracy of some schools and not of others. That which follows is a discussion of the three methodologies relative efficiency in terms of 1) the percent accuracy., 2) differences between actual and projected enrollment, 3) the standard error of estimate and 4) the mean of the population error.

1) The Percent Accuracy of the Prediction

T\&ite 17 shows the percent of prediction accuracy for the regression cohert survival, and ratio methodologies with and without land use variables. An examination of this table reveals that several possible sources of variation were still unaccounted for. The effects of the open enrollment policy and alternative schools which serve as magnets for enrollment were uncontrolled. The results of the methodologies' application to Eugene schools should, therefore, be evaluated in the context of these potential sources of error. As might be expected, the accuracy of prediction is lower in the second and third year projections. The three methodologies are relatively close in terms of percent accuracy of predictions, both with and without land use information. The. accuracy of individual school projections was the focus in eyaluating the methodologies., To evaluate the individual school projections, a range of 95 to 100% accuracy was selected and the number of schools within this range was determined for each technique.

Regression - The regression methodology was the least accurate of the three methodologies in cerms of the percent of prediction accuracy." The addition of land use information decreased the accuracy of the regression methodology. Without the land use variables included, 3, 5 and 6 -schools fell within the $95-100 \%$ range for each of the three years of projections. With the land use variables included, 4 schools fell into-this range in each of the three years of projections.

Cohort Survival. - Land use variables increased the accuracy of the cohort survival in the second and third years of projection. Without the land use'fnformation included, 10, 7 : and 4 schools were accurate within the 95 to 100% prediction range for the three projection years. With land use information included 9, 11 , and 6 schools fell into this'linit: - -.

Ratio - The ratio methodology found 10, 6 and 5 schools falling within the 95 to 100\% prediction range without the inclusion of land use, and 11,8 and 8 schools with land use.

The Parcuat Aceuracy of Predtetion for all threw Mathodologitas Ifth and ythout Lam Use Jaforeation for 2976 ． 1911 and 157 A

	IT	cosar senyiun		accaessiom	conobs suavivas	
	Percent hicioracy	Percent hecuracy	Percount iccurday	Parcent liccursey	Fricimit racuracy	Weotz hecruicy
$\begin{aligned} & \text { Eismanary } \\ & \text { Sethapl } \end{aligned}$	－1976 tratiction 1978	$\begin{aligned} & \text { of 9rudiction } \\ & 19975 \\ & \hline \end{aligned}$	1276 Prusiction 19818	of Prediction	of prodetion 1978	of frudetion
7ochs	W 50	－62－56－91	$12-15$－	85－54－35	81803	70.70
maslidy wht	\％ 929		$94 \quad 90$	8969	98008	$9)^{-60}$
Concion	$91 \quad 0.99$ 91	91865	$91100 \quad 95$	90.929	99818	95.9
Crest Drive	848502	94.99 991	91 ， 91 9	85 90． 89	89 91 95	92 －9 91
Sume	$92 \quad 9498$	969	$99 \quad 0302$	9999	$93 \quad 999$	918
C4ymond	$90 . \% 630$	99 93 85	94.159	29 92 9\％	91 91 88	$93 \quad 96$
ctisoe	18 92 08	85 74，， 79	99.92	11.116	$86 \quad 79$ 96	99
fax theliom	79806	91 95 75	91.92	90 84 65	92 99 38	99.95
clicmen	8978	$99 \quad 90 \quad 90$	9566	8960	300915	95.31
Merris	18116	868188	90.91 －93	78 69 61	85.85	$8)$
Lewrel Hill	40 al 58	88． 968	93 82－90	7984	86.9985	918
Lincoln．	91.90	96919	9899	89.60		100
Mocuraick	85×1263	9317	99 95，91	431365	90823	96
Magtaction	$\begin{array}{lll}94 & 99 & 89\end{array}$	8509094	97.89 － 94	9191	89.9291	$91 \quad 90$
Mounw Lark	$\begin{array}{lll}89 & 90 & 88 \\ 98 & 94 & 99\end{array}$	$\begin{array}{lll}94 & 94 & 92 \\ 906\end{array}$	99 ¢ 99080	${ }_{95} 98929898$	981009	99.99
gelerson	92 93 93	9159	9298	93 － 93	${ }_{92}{ }^{100} 8989$	93.8
Heshinyton	$91 \quad 99.5{ }_{2} 95$	94 96． 98	99．96 99	91.97	$90 \quad 99$	99 99
Westmorslam	98 85 11	92.76° 62	93115	9139.65	92.73	94.73
\％treaker	$88.66^{\circ} 11$	92 18－ 91	9383	4263	91350	9279
yillayllespla	94.9818	89 031 85	90 ， 6985	9479	$89.91 \quad 96$	90
Willaksant willerd．	$\begin{array}{rrr} 92 & 71 & 78 \\ 80 & .69 . & 60 \\ \hline \end{array}$	$\begin{array}{rrrr}96 & 91 & 93 \\ 98 & 86\end{array}$	99 42 83 92 16 66	93 83 85 86 15	94.46100	9
楽淂	84	$92 \text { 植 } 05 \text { : }$	4 m 89 86	818211	$92.90 \quad 4$	9889

52

2) Difference Between Actual and Project. Enrollment

Table 18 displays the difference between the actual and projected enrollment in terms, of the number of students over or under-estimated at each school by. the three methodologiss; witheut and with the land use factor.

As in the :ase of the percent of prediction accuracy, more schools' enroflments were over or under-estimated the farther out the projection. Ar.criterion of 30 students was used since the student-teacher ratio. in Eugene elementary schools generally varies from 20 to 30 students per pupil. Thus, if an individual projection is over or under-estimated by more than 30 students, the school would need to adjust staff positions accordingly. The number of schools projected within a plus or minus 30 student-range is tall fed below for each methodology.

Regression - Again, the regression methodology provided the fewest number of schools within the chosen criterion range. Without land use infomation, 12, 10 and 8 schools were projected within 30 students for the three projected years. Land use inforfation decreased the accuracy of the projections to 11,8 and 8 schools being projected within a 30 student ${ }_{\beta}$ range for each of the three projected years.
Cohort'survival - Land use variables were able to add schools within the 30 student range in the second and third projection years for the cohort survival methodology. Without land use, 18,13 and 12 schools were projec ted within 30 students for thie three years. With land use. 18,15 and 13 schools were projected within 30 students for the three projected years.

Ratio - The ratio methodology projected all but one school within 30 students for the first projected year. For the second and third projected years, 14 and 11 schools were projected within 30 students without land use and 15 and. 15 schools were projected within 30 students with land use.

3. Standard Error of Estimate

The average estimated accuracy of each of the metthodologies was determined by reans of the standard error of estimater(on the bottom of Table 18.

Regression - The äverage amount of deviation between the actual and projected enrollment ($\left(\frac{1}{}\right)$ for the regression methodology was 41.8 , $60: 9$ and 93.3 for the three prosected years without tand itse and $44.3,72.7$ and 101.2 with land use.

Cohort Survival - Without land use, the cohort survival methodology provided a standard error of estimate of 33.2 for the first year, 51.2 for the second year, and 75.4 for the third year. No significant

ThRE is

difference resalted in the standard error of estimate when land use information was added. For the first projected year, the standard error of estimate was 33.6. For the next two years, respectively, the ṣtandard error of estimate was 55.2 and $\% 4.7$.
 Ratio - The ratio methodology yielded the smallest standard error of estimate for the three projected years with and without land use variables. Without land use, the standard error of estimate for each of the three years was 25.6, 38.9 and 59.8. With land use; the standard error of estimate was 25.7 for the first projected year, 44.2 for the second year, and 60.5 for the third year.

4. Mean of the Population Errors

The amount of bias inherent in the methodologies was judged by estimating the mean of the population error. The amount of bias was almost identical for the three methodologies.

Regression - Without land use information, the mean of the population errors for the regression methodology was estimated at -4.7 for the first projected year, 8.0 for the second year and 10.4 for the third year. With land use, the mean of the population errors for the respective three years was 4.7, 7.8 and 10.5.

Cohort survival - The mean of the population error for the third projected year was 10.4 with and without land use information, for the cohort Survival fifthodology. For the first projected year, the average -amount of bias was -4.7 without Yand use and 4.8 with land use, and for the second projected year, the bias was 7.8 without land. use and 7.9 with land use.

Ratio - The first and third.projected years yielded an identical estimated population mean with and without land use information, -4.6. and 10.4 , respectively for the ratio methodology. The estimated population mean for the second projected year improved only slightly with the inclusion of land use. The mean went from 8.0 to 7.9. *

Conclusions of the Testing of Three Enrollment Projection Methodologies in Eugene.

Three enrollment projection methodologies - cohort survival, regression and ratio - were tested for application to elementary school enrollment projections in the Eugene School District. Past enrollments were projected to enable comparisons of actual versus projected enrollments. During the testing of the methodologies' utility to 23 Eugene elementary schools, four major findings resuited; 1) no one methodology provided the best prediction for all schools, 2) adding a land use variable adjustment improved the overall accuracy of one methodology - the ratio methodology, 3) the land use variable adjustment improved the prediction accuracy of some schools and decreased the prediction accuracy of other schools, and
4) until all variations within an attendance area can be controlled for; no methodology will be able to accurately project enrollments in Eugene without subjective adjustments. Those uncontrolled variables greatly affecting Eugene elementary school enrolládents are open enrollment, alternative schools, and transfers.

A major development of the exploration, which has application for school districts throughout the country, is the balancing procedure. The balancing procedure allows quantitative adjustments to be made to the projected individual schcol enrollments on the basis of a ratio representing the sum of the school projections to the district level projections. This ratio enables the individual school projections to add to the projected district-level projection, known to be accurate.

In Eugene, new housing was determined as the most influential land use factor that has caused enrollment. changes for individual schools in the past. This factor was quantified into the number of new students to be expected in any attendance area by using the number of building permits applied for times the expected number of school age children for each type of dwelling unit. The influence of the land use adjustment factor was predicted to affect four schools; Bailey Hill, Gilham, Westmoreland, and Willagillespie schools. Each had 35 or more additional students projected due to additional home-building in their attendance areas. The regression predictions for each of these schools were not improved by the addition. of land use factors. Three of the four schools, Bailey Hill, Gilham and Willagillespie, did show improved predictions when land use finformation was included in the cohort survival and ratio methodologies. The improvement is progressively evident as the projections are carried out into the third year. Westmoreland school showed markedly reduced prediction accuracy in the second and third years of prediction. Westmoreland school, not an alternative or magret school, however, does have a fairly high. transfer rate for the district.

None of the three methodologies with or without land use variables was able to predict 95 to 100% of the enrollments of half of Eugene's 23 elementary schools. With the land use adjustment, the ratio methodology was able to project 95 to 100% of the enrollments in 11,8 and 8 schools for the three years of projections making it the best predictor in this exploration. The regression methodology, by far provided the worst predictions. The regression methodology; however, showed improved prediction accurary without land use and stable prediction accuracy with land use in the second and third year projections. This might indicate that the regression methodology would be a strong candidate for use with long-range projections.
\therefore The ratio methodology yielded the most schools projected within a 30 student criterion. All but one school was projected within 30 students, with and without the land use factor adjustment,for the first year's projection using the ratio method.

The testing of the three methodologies showed that the methodologies, with and without land. use, were equally biased in terms of the population
error distribution. The average amount of deviation between the predicted and actual enrollments was smallest for the ratio methodology and second smallest for the cohort survival methodology.

Both Tables 17 and 18 identify a school whose enrollment is not well predicted by any df the methods used. Adams school, an alternative school which functions as a strong magnet school for all portions of the district, is predicted most accurately by the ratio methodology without land use (72\%, 75\% and 64\%, respectively) and least accurately by the cohort survival technique ($62 \%, 56 \%$, and 41% respectively). The methodologies under-estimated Adams enrollment for 1976 by 93 students (ratio, without land use) to 127 students (cohort survival, with land use).

Because of the paor results of methodologies' application to the 1976, 1977, and 1978 school years in Eugene, no new methodology was adopted. The procedure for testing the relative efficiency of the methodologies is considered valid and quite informative. Without, the control of all sources of variation, however, particularly open enrollment, transfers, and alternative schools, no methodology will be able to project individual sctiool enrollments with 95\% accuracy or greater, partially due to the very small enroliments at each of these schools.

The results of this study suggest that a mixed model methodology-design may be most feasible in Eugene. Schools with known factors that can be related to a particular methodology could be grouped accordingly. Those schools that are most affected by new building activity could form one group. Another group may include those schools most affected by open enrollment and alternative programs. The most appropriate enrollment projection methodology could then be applied to each of the homogeneous subgroups for the best predictions.

Conclusions

Three procedures which were developed to improve the prediction accuracy in individual school enrollment projections have been identified and developed in this chapter:- They are 17 , the land use adjustment procedure 2) the balancing factor procedure, and 3) procedures for selecting an enrollment projection methodology. The procedures have been explained and illustrated through the Eugene example. General conclusions and recommendations for testing the procedures in areas other than Eugene have resulted in this exploration.

Two of the three procedures, 1 and 2 above, were developed to enable a quantification of subjective adjustments made to individual school enrollment projections. The first, the land-use. adjustment procedure was designed to enable an adjustment to projections based on residential area changes. The procedure, however, can not effectively work in a school district until all major land-use sources causing enrollment variations have been identified and converted into a number of new students to be expected in each attendance area. The same variable may not be most appropriate for all schools. Several variables should be tested before a few are selected and applied to an enrollment projection methodology. The best way to test the variables is to apply the land use factors to past enrollment data and visualize how the factors were able to project past years.

The balancing factor procedure is one that could cut down, on the hassles of adjusting projected individual school enroliments.so they sum. to the projected district total: The balancing factor provides a uniform procedure for smoothing the projected enrollments, inflated, due to small numbers and rounding errors. The closer the balancing factor is to one, the better the indication that an accurate enrollment projection methodology has been utilized. The balancing factor should be used after all other adjustments have been made.

The procedure for selecting an enrollment projection methodology, described "earlier, is a comprehensive and valid procedure for enabling a thorough view of a methodology's predictive power for a school district. ft also allows for a comparative analysis of two or more methodologies: It is important to apply the methodologies to past data to see how they would have projected past years.' enrollments; and not just apply them to future years. The actual enrollinents of the past years provide concrete evidence of the methodology's credibility. Again, before an enrolment projection methodology can be utilized with 95% or better accuracy, all sources of variation must be identified and controlled for. . Most common. . enrollment projection methodologies do not have the capability to project new student enrollments beyond that of past trends.

Chapter 4

The Eugene Public School District Enrollment Projection Methodology

The Eugene Oregon Pubiic School District Enrollment Projection Methodology

Eugene．School District 4j

The city of Eugene comprises the largest sector of what is known as School District 4J．The district covers 155 square miles and includes portions of nearby towns of Springfield and Coburg，Oregon． Within its boundariés，are four high schools，eight junior hight schools， and thirty－one elementary schools．The high school locations determine the administrative regions established by the school district．Within these individual regions are several attendance areas enclosing each elementary school．In addition to a traditional public school system， 4J＇s jurisdiction includes an alternative education program at all grade levels．Ap，roximately 20,000 students are enrolled．in the dis－ trictt．The approximate breakdown for each school level is as follows： Kindergarten－6th，10，000；7th－9th，5，000；and 10th－12th，5，000．

The Eugene School District employs about $1 ; 250$ full time equiva－ lent（FTE）professsional staff．They include school administrators， board of education officers，teachers，social workers，and health
\because Staff．．The total number of teachers in both traditional and alterna－ tive schools is $1,032.5$ FTE．Each teacher serves an average of 18.4 pupils．The Board intends to maintain this student－teacher ratio， and has recommended that the budget for the school year be adjusted accordingly．Teacher salaries range from $\$ 11,400$ to $\$ 22,600$ per annum． Over 65 per cent of the teachers hold graduate degrees．

The Division of Research，Development and Evaluation（RD\＆E）in the Eugene school system is annually responsible for providing enroll－ ment projections on the basis of which administrators must make decisions concerning utilization of district facilities，personnel， programs，and educational services．Each year，RD\＆＇s five－year projections are also updated．

The following study describes the enrollment projection motho－ dology currently used in Eugene School District 4J．

Eugene Student Enrollment Projection Methodology ．

Enrollment projections in Eugene Public School District 4J are based on a combination of the cohort survival，regression，and apportion－ ment methodologies．Grade－level projections using the cohort survival methodolagy are made for five years into the future and have long been accurate at the 99．5\％level for the first projected year．The regres－ sion methodology is used to project district first grade enrollments on the basis of births in the city six years prior to the year being projected．District kindergarten enrollments are projected by dividing past kindergarten to past first grade enrollments for five previous years，and multiplying the average of these ratios times the projected first grade enrollment．Individual school enrollment projections are made on a yearly basis，by grade level，by advancing the past year＇s
grade earollment for each school as the projected year's projected enrollment for the next grade. In the cases of entering grades (i.e:, seventh and tenth grades), enrollments are projected via telephone checks with linking-school administrators to verify the number of students registered to attend the respective schools. While this methodology provides quite accurate results, it is very time-consuming and requires a great deal of subjective manipulation. Chapter 3° reveals the attempt to adopt a new methodology for Eugene individual school projections. None of the comnon enrollment projection methodologies - cohort survival, regression, and ratio - were able to project individual schools more accurately than the existing method. The method described in this chapter, therefore, is still operational.

The following describes, in detail, the steps taken to attain gradelevel enrollment projections for the 1978 to 1983 school years, and school level enrollment projections for the 1978-79 school year. . Actual data have been used to illustrate the process.

Grade-Level Projections

Eugene grade-level enrollments were projected for the 1978 to 1983 school years using the cohort survival methodology. The eight steps taken in making projections are explained and illustrated below.

Step 1. Collection of Past Enrollment

Totai enrollment by grade leveĺ was gathered for five years prior to 1978. One common date for each school year was used. In this example, as Table 19 displays, 1973-74, 1974-75, 1975-76, 1976-77 and 1977-78 enrollments were gathered by grade level for september 30 of each year.

* TABLE 19

> 1973-1977 Student Enrollments By" Grade Level
> For Eugene School District
> (Based On September 30 Data)

| Grade | - | $1973-74$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- K	-		1,295	1,456	1,381	1,258
-1		1,592	1,457	1,599	1,657	1,549
2		1,540	1,512	1,467	1,623	1,636
3		1,527	1,515	1;530	1,479	1,581
4		1,588	1,454	1,538	1,496	1,446
5		1,673	1,574	- 1,491	1,465	1,456
6	,	1,885	1,644	1,571	1,473	${ }^{x} 1,442$
7	,	1,870	1,902	1,643	1,587	1,487
8		1,901	1;895	- 1.859	1,635	1,546.5
9		1,706	1,860	1,826	1,839	1,579
10		1,754	1,676	1,803	1,884	1,833
11		1,683	1,673	1,597	1,694	1,714
12		1,387	1,494	1,485	1,470	'1,560

Special Programs
Elementary
Junior High
Seniar High

Step 2. Fommation of Cohort Survival Ratios for Grades Two through Twelve
A cohort survival ratio matrix, based on the past five years enrollment cata, was established by dividing the number of students in a given grade on a given year by the number of s tudents enrolled in the next lower grade for the preceding year. For example, the cohort survival ratio for grade progession 7-8 for the school year, 1975-76 was created by dividing grade 8 enrollment for the 1976-77 school year by grade 7 enrollment for the 1975.76 school year (i.e., $1635 \div 1643=.9951$). The resulting value indicated that 99.51% of - the total number of seventh graders in f975-76 advanced to eighth grade in 1976-77. Table 20 incorporates the cohort survival ratios calculated for the years 1973 to. 1978. '(The cohort survival ratio indicates growth, decline, or stability on a year-to-year basis. A value of 1 indicates no change in enrollment from one year to the next, while a value less than reflects a deciline and a value. greater than reflecis an increase in enroilment.

TABLE 20
Survival Ratios for Each Year by Grade Level

Grade Progression	1973-74	1974-75	1975-76	1976-77	1977-78
		-			
- $\mathrm{K} \cdot \mathrm{-}$ ' 1					
- 1-2	. 9497	1.0069	1.0150	. 9873	. 9761
2-3	. 9837	1.0120	1.0082	. 9741	. 9976
3-4	. 9521	1.0501	. 9778	. 9777	. 1.0082
4-5	. 9911	1.0254	. 9525	. 9733	. 9779
5-6	. 9826	. 9981.	. 9879	. 9843	1.0082
6-7	1.0090	. 9994	1.0102	1.0095	1.0049
7-8	1.0133	. 9774	. 9951	. 9754	. 9926.7
8-9	. 9784	. 9636	. $9892{ }^{\text { }}$. 9670	. 9858
9-10	. 9824	. 9693	1.0318	. 9967	1.0431
10.11	. 9332	. 9529	. 9395	. 9103	. 9111
11-12	. 8877	. 9071	. 9205	. 9221	. 8681

Sten 3. Calculation of Average Survival Ratios

After the five years of cohort survival ratios were created, five averages were formed for each grade level. Those five values represent the average survival ratios for: - 1) the five-year period,

- 2) the last four years, 3) the last three years, 4) the four years with the largest survival ratio values, and. 5). the threeryears with the largest survival ratio values.

Table 21 displays Eugene's survival ratios as averaged in these five weys. The five year averages were created by adding the survival ratios for the 1973-74, 1974-75, 1975-76, 1976-77, and 1977478 school years across each given grade level and by dividing
the sum by 5.' For the four-year and the three-year averages, summing began with the 1974-75 and 1975-76 enrollments, respectively. To obtain the highest four-year average for the same grade interval, the highest four values were summed (i.e, $1.0069+1.0159+.9873+$ $.97610=3.9853$) and divided by 4 (i.e., $3.9853 \div 4$) to produce the average ratio value of .9963 . The highest three-year average was created similarly to obtain the three year average of 1.0031.
rasle 21.
duerage Survival satios

Givade Pregression	Last Year Average	Lour Year Average

Step 4. Calculation and Selection of 1978-1983 Enrollments

After the ratio averages were calculated, the best projection was:determined by which ratio provided the best prediction for the previous years, by grade level. By computing an average, three-tofive year trends were distinguiṣhed. Table 22 displays the actual enrollments for the 1977-78 school year by grade level, and five colums of projected enrollments for each grade level obtained by multiplying each of the survival ratio averages (appearing in parentheses) by the 1977-78 actual enrollments. The ratios that yielded. the most accurate predictions for 1978-79 'school. year enrollments for each grade are indicated by an asterisk... The multiplication was done diagonally. For example, the first-tosecond grade five-year average ratio (9870) was multiplied by the 1977-78 first grade enrollment to arrive at the second gr its....... projection of 1,529 . The 1978-79 projections were then $\pi .:$.:? ied by the best survival ratios to produce the 1979-80 projectiwe and so pn until the 1983 projections were calculated.

TABLE 22

- Grade Level Enrollments Projected for 1978-83 Based an Five Ratio Averages

- Indicates survival ratio that best predicts grade enrollments for 1979.79.

Step 5. Formation and Calculation of First Grade Enrollment

The number of first grade students expected to enroll in the school district in 1978, 1979, 1980, 1981, and 1982 was calculated with.a regression equation, using the actual number of first graders enrolled in the district for the previous five years, and the number of births in Lane County six years prior to each year of actual enrollments. The equation used for the projections was $\gamma=b_{0}+b_{y} \cdot x(x-x)$. Prepresents the value being predicted (i.e., 1978 first grade enrollment), by.x represents an index of the relationship between birth rate and actual enrollment, b_{0} represents the overall mean of the actual enrollments, X represents , the number of births six years prior to the year of the projected enrollment and \bar{X} represents. the average number of births over the six years.

The by.x variable was calculated' by multiplying the correlation between birth rate and actual enrollment by the ratio of the standard deviation of the actual enrollments to the standard deviation of the birth rate data

$$
\text { (i.e., by by } \left.=\cdot r x y .5 y / 5 x=-.7187\left[\begin{array}{c}
74.3317 \\
183 \\
\hline 19925
\end{array}\right]=-.2913\right) \text {. }
$$

The resulting by $\cdot x$ in this case was -.2913 , indicating a slight. negative relationship between the two variables. The by. x, as a multiplier of $(X-X)$'s(number of births for six previous years minus the average number of births for the preceding five years), adjusted the influence of the number of births by the amount to which the. birth rate variation was accounted for in the variance of the actual enrollments (or Y 's). The birth rate six years prior to the projected year and the average first grade enrollment for the last five years were placed in the regression equation to predict an enrollment for each year. In this example, the ayerage first grade enrollment for the past five years was $1,570.80$. That number added to the dev. ion number of births in Lane County six years earlier was multi . \quad by the regression coefficient to obtain the number of fi, \cdots graders the district could expect in $1978\left(Y^{\prime}=1,570.80+(-.2913)(3738-3783.60)=1584\right)$.

- Table 23 shows the data used to project first grade enrollments for 1978 to 1982 as well. as the actual projections:

Step 6. Formation and Calculation of Kindergarten Enrollment

Kindergarten enrollment is the most difficult grade level to predict accurately in Eugene. Kindergarten was not added to the Eugene public school system until the 1974-75 school year, and many private kindergartens remain available in the city.

Kindergarten enrollments are best estimated on the basis of first grade enrollments--projected and actual. Once first grad: enrollments have been projected, an average cohort survival ratio can be uséd in a reverse direction to estimate each year's kindergarten enrollment. Table 24 illustrates the process.

To establish an inverted cohort survival ratio for a given year, one must divide the previous year's kindergarten enrollment by the given year's actual (or projected) first grade enrollment. For example, the ratio of .8787 for 1976-77 was obtained by dividing the 1975-76 kindergarten enrollment (1456) by the 1976-77 first grade enrollment (1657). To compute the 1978-79 ratio, the projected first grade enrollment was divided into the 1977-78 actual kindergarten enrollment ($1,258 / 1,584 \times .7942$). To project the 1978-79 kindergarten enrollment, an average of the four previous year's cohort ratios was computed (average $=$ $(.8099+.8787+.9015+.7942) \div 4=.8436)$ and multiplied by the projected 19/8-79 first grade enrollment. This average incorporates the first four year's data as well as the existing year's' projected first grade enrollment. In the past, the most accurate kindergarten projections two to five years into the future have resulted when an average ratio based on four years of actual data is used rather than when a new average is established based on estimates.

TABLE 24
Eata Used to Project 1978 to 1982 Kincargar::an Enrollcents

	Actual ${ }^{\text {En }}$ Erollatent				Proiected Erroliment					
Grade	$\begin{gathered} 1974 \\ t 0 \\ 1975 \end{gathered}$	$\begin{gathered} 1975 \\ \text { to } \\ 1976 \end{gathered}$	$\begin{gathered} 1976 \\ t 0 \\ 1977 \end{gathered}$	$\begin{gathered} 1977 \\ 10 \\ 1978 \end{gathered}$	$\begin{gathered} 1978 \\ t 0 \\ 1979 \end{gathered}$	$\begin{gathered} 1979 \\ \vdots \\ 1930 \\ \hline \end{gathered}$	$\begin{array}{r} 1980 \\ 50 \\ 1981 \end{array}$	$\begin{gathered} 1981 \\ t 0:: \\ 1982 \\ \hline \end{gathered}$	$\begin{aligned} & 1982 \\ & \text { to: } \\ & 1983 \\ & \hline \end{aligned}$	
K	1.295	1.656	1.387	1.258	1.336	1,437	1.429	1,376	1.362	*
First	1.457	1,599	i. 657	1,549	1.584	1.704	1.594	1,631	1.814	
Ratio	-	. 8099	. 8787	. 2915	. 7942	. 3436				

Step 1. Collation of Projecti: ns
With the information calculated in the previous steps, a completed projection matrix was created and enrollment projections obtained for the 1978-79, 1979-80, 1980-81, 1981-82 and 1982-83 school years. For each grade levei and year, an enrollment was projected by multiplying the most accurate survival ratio (see Step 4 and Table 22) by the corresponding grade level enrollment for the previous year. Thus, enrollments are calculated diagonally.

Table 25 shows the actual enrollment by grade for the 1977-78 school year and the survival ratio selected in Step 4. For grades 2-12, each year's enrollment was projected by multiplying the previous year's previous grade enrollment by the survival ratio for the previous year. For example, the projected 1978-79 third grade enrollment was derived by multiplying the 1977-78 second grade enrollment by the second to third grade/survival ratio ($1636 \times .9980=1633$). The same procedure was used to compute projections for all grades between 2 and 12.

To complete the grade level enrollment projections, a sum of grade level projections produces a disitrict sum for the year.

TABLE 25

Step 8. Estimation of Special Education Program Enrollments

- Projections of special education program enrollments, made in Eonjunction with the Eugene School District Director of Special Education, were estimated for only a year or two into the future because funding for special education programs varies annually. Special education enrollment poojectipns depend largely on a reliable procedure for identrfying spesial education students.

TABLE 26
1973-1977 Enrollments and Projected Enrollments for Elementary, Junior High and Senior High Special Education Programs

Special Programs	?						
	Past Enrollment				Projected Enrollment		
	1973-74.	1974-75	1975-76	- 1976-77	1977-78	1978-79	1979-80
\cdot							
Elementary	55	75	65	90	94.5	111	137
Junior High	42	45	40.	79	56.5	51	59
Senior High	41	45	40	${ }_{35}$	50	35	36
TOTALS	138	165	145	204	201	197	232

Step 9. Individual School Projections

Individual school enrollments in Eugene are projected one year at a time by grade level. Projections of more than one year into the -" future have proven quite inaccurate, due to the very. small numbers which lend themselves to random error. 1978-79 grade enrollments (with the exception of kindergarten and first grade) for each school were projected by advancing the 1977-78 enrollments for each grade as the projected enrollment for the 'next "grade. Projected" seventh grade and tenth grade enrollments were adjusted on the basis of a telephone interview with school building administrators to verify the number of students registered to attend each grade. The following sections describe the steps involved in projecting enrollments for elementary, junior high, and senior high schools.

Elementary School Projections

Elementary School enrollment projections for 1978-79 used actual enrollment data from the 1977-78 school year adjusted by enrollment trends from the previous two years and the $1978-79$ projected grade. totals obtained in the grade-level projections. The elementary enrollment projections also incorporated two apportionment techniques to estimate kindergarten and first grade enrollments.

The procedure of projecting elementary enrollments is okitined below. Tables 27, 28 and 29 illustrate the process. Throughout this section, 1975-76, 1976-77 and 1977-78 enrollments have been used to project 1978-79 elementary school enrollments.

Second through sixth grade enrollments were calculated by projecting 1977-78 first through fifth grade enrollments at each school as 1978-79 second through sixth grade projections. These raw projections were then adjusted on the basis of the 1978-79 projected district grade level enrollments and enrollment trends for each school. Table 27 displays the past three years enrollment data for fourth grade through sixth grade, the projected enrollments, and the adjusted projections for each school. A total for the projected enrollments also appears as does the recommended adjustment factor for grade-level projections, which is the difference between the projected and the previously calculated district grade level projections: from those in Table 25 because of special education students included in the individual school projections.

As previously explained, kindergarten and first grade student enrollments are the most difficult to project for the Eugene Public Schools. First grade enrollments are projected first and kindergarten is projected on the basis of the first grade projections. Two methods are used to make these initial first grade projections. The projected first grade enrollments are compromised and adjusted according to the distaict-level first grade enrollment projections on the basis of the past year's trend for first grade. Table 28 displays the ratios used in this method of projecting 1978-79 first grade enrollments for the individual schools.

The first set of ratios in Table 28 the past first grade to kindergarten ratios, arescalculated by dividing the 1976 and 1977 first grade enrollments by the 1975 and 1976 kindergarten enrollments, respectively, and multiplying the average of the two ratios times the 1977 kindergarten enrollment for each school.

The second set of ratios in Table 28 the district apportionment ratios, were calculated by dividing the 1975, 1976, and 1977 first grade enrollments for each school by the 1975, 1976, and 1977 district ${ }^{-}$ wide first grade enrollments. the average of the resulting three ratios was then multiplied by the projected 1978-79 district first grade enrollments.

The adjusted projections best reflect past trends and the expected future enrollments for first grade in the district. The necessary adjustment factor appears at the bottom of the table.

-	SCi100L	$\begin{array}{r} \text { Pest Firs } \\ 1976(1 s t) \\ \text { to } 1275(x) \\ \hline \end{array}$	$\frac{t-\text { xindergat }}{1977(151}$	$\begin{aligned} & \text { it En Enallen } \\ & L \text { Averane } \end{aligned}$	$\begin{aligned} & \text { It Ratyos } \\ & \text { Projected } \\ & \text { 1978 } \end{aligned}$	1975	0istrict 1976	Apportio 1977		Average	Projected 1978 First Grade		Adjusted Projections		
	Adams	1.1471	1.1000	1.1236	103	. 0169	. 0236	. 0355		. 0253	41		53		
	Aulurey Park	2.2553	3.8636	3.0595	141	. 0725	. 0640	. 0549		. 0638	101		83		
	Sufley Hill	. 6883	2.4194	1.5589	70	. 0319	. 0489	. 0484		. 0431	68		13		
	Coburg	1.2400	2.4444	1.8422	31	. 0169	. 0187	. 9142		. 0166	26		20		
	Cundon	. 6250	. 9474	. 7862	32	. 0113	. 0151	. 0116		. 0127	20		16		
	Crest Orive	.8085	1.5652	1.1869	57	. 0206	. 0229	. 0232		. 0222	35		34		
	Dunn	1.0256	2.1250	1.5753	39	. 0206	. 0242	. 0219		. 0222	35		30		
	Ldgewood	1.4186	2.0095	2.1141	89	. 0457	. 0368	. 0381		. 0462	. 64		$5)$,
	Edison	. 9167	1.9231	1.4199	45	. 0219	. 0199	. 0161		. 0193	31		23		
	for hiallow	1.2083	2.5385	1.8734	28	. 0213	. 0175	. 0213		. 0200	32		31		
	Gilhan	--	--	--	38	. 0313	. 0344	. $0297{ }^{\circ}$. 6318	50		44		
	llarris	1.1282	2.2667	1.6975	44	. 0244	. 0266	. 0219		. 0243	38		32		
	Howard	1.111.	2.1579	1.6345	106	. 0544	. 0483	. 0529	-	. 0519	82		19		
	Lauryl Hill	1.8000	2.8750	2.3375	33	. 0138	. 0163	. 0148		. 0150	24		20		
\bigcirc	Lincaln	1.0909	1.8889	1.4899	40	. 0244	. 0217	. 0219		. 0227	36		32		
,	McCornack	--	--	--	--	-. 0319	. 0314	. 0368		.033*	53		55		
	Majladry	--	--	. --	-*	. 0113	. 0163^{*}	. 0168		. 0148	$\because 3$		24		
-	Mesduw Lark	1.4288	2.0333	1.7310	107	. 0394	. 0362	. 0394		. 0383	61		59		
	Parkur	1.1963	2.1765.	. 1.6614	52	. 0263	.0289	. 0239		. 2262	42		35		
	Pottersan	1.0400	3. 3684	2.2042	88	. 0306	. 0314	.0413		. 1344	54		62		
	River Road	. 6308	1.2400	. 9354	93	: 0388	. 0495	. 0400		. 0428	68		59		
	Sants Clara	1.4222	2.7273	2.0748	106	. 0450	. 0306	. 0387		. 0408	65		58	.	
	Silver Led	. 8391	1.5500	1.1996	47	. 0425	. 0441	. 0400		. 0422	67		- 60		
	Spring Creek	. 9667	2.2121	1.5894	91	. 0469	. 0350	. 0471		. 0430	68		70		
	Iwin Ouks	. 9737	2.2308	1.6023	48	.0219	. 0223	. 0187		-. 0210	33.		24		
	Wastiington	. 9014	1.7353	1.3184	64	. 0438	. 0386	. 0381		. 0402	64		57		
	Westuwretand	. 9394	2.0294	1.4844	76	. 0525	. 0374	. 0445		. 0448	71		65		
	Whitesker	1.0769	2.0526	1.5648	66	" . 0250	. 0254	. 0252		. 0252	40		37		
	willagillespie	. 6300	. 9808	. 8054	40	.0313	8.0380	. 0329		. 0341	54		49		
- .	Whllakenze	. 7561	2. 1304	1.4433	58	. 0244	. 0187	. 0316		. 0249	39		47		
	Wlllard	1.0833	2.4615	1.7724	51.	. 0244	. 02336	. 0207		. 0229	36	:	- 30		
	Eastsidu	--	--	-	--	. 0175	. 0127	. 0136		. 0146	23		21		
	Magheel Arts	--	-*	-	-*	.0188	. 0199	. 0155		.0181	29	-	25	.	
	Trad. Alt.	--	--	*-	--		. . 0133	. 0089		. 0109	17	-	17		
	in TAL	1.1374	1.2313	1.1844	1,883						1.584		84		$7:$
ERIC	Adjustements		-		-399				-		-100		,		

Table 29 displays two sets of ratios used to project 1973 kindergarten enrollments for the individual schools, along with the adjusted projections.

The first set of ratios are the apportionment ratios, calculated by dividing the 1975, 1976 and 1977 schnol kindergarten enrollments by the 1975, 1976 and 1977 district-wic. kindergarten enrollments, respectively. The average of the three ratios was then multiplied by the projected 1977 district-wide kindergarten enrollment to project each school's 1978 enrollment.

The second set of ratios in Table 29 are the kindergarten to first grade ratios, calculated hy dividing each school's 1975, 1976 and 1977 kindergarien enrollments by its 1975,1976 and 1977 first grade enrollments, respectively, and calculating an average. The average ratios were multiplied by the 1978 projected first grade enrollments for each school to obtain the 1978 projected kindergarten enrollments.

The last column of Table 29 shows the 1978 projections adjusted to reflect past trends and to balance to the projected district kinderyarten enrollments. The adjustment needed for each rat:o technique appears at the bottom of Table 29.
$\stackrel{\infty}{\infty}$

Junior High School projections

- During the 1978-79 school year, nine junior high school's served grades seven, eight, and nine in Eugene School District 4 J .

1978 projections for grades eight and nine followed the' procedures used in projecting grades two through six, whereby 1977 enrollments for the preceeding grade level became the initial. 1978 projections. Those projections were adjusted to the district-wide eighth and ninth grade 1978 projected enrollments on the basis of the past two years' enrollment trends. Projections for seventh grade required more subjective judgnent to accurately apportion sixth graders from 31 elementary schools into the nine seventh grade schools that allow for open enrollment.

The first.step in projecting 1978 seventh grade enrollment for each school was to inquire at the 31 elementary Schools how many sixth grade students were planning to attend each junior high school. Adjustments were made to the "telephone projections" to correspond to the projected 1978 district seventh grade enrollment.

Table 30 incorporates 1976 and 1977 enrollments for grades seven, eight and nine, the projected 1978 enrollmenti, and the adjusted projections for each school.

TABLE 30

	Student Earoliaents and 1978 Enrollment Projections for Eugene Junior High Schools												$\|$Total Junior High Enrollment Projected 1976 1977 1978		
	SCHOOL	Seven 1976	Grade	$\begin{gathered} \text { Enrollment } \\ \text { Ppojected } \\ 1978 \end{gathered}$	1976	Eighth 1977	ade Enroll Projected 1978	mentAdjusted Projections	1976	1977	rade Enro Projected 1938	llment Adjusted Projectioas			
	Jefferson -	195	197	161	204	183	197	193	216	196	183	174	615	576	528
	kelly	209	190	205.	200	191	190	185	231	213	191	183	640	524	573
	Kennedy	192	. 04	178	185	200	204	210^{\prime}	238	201	200	199	615	605	585
	Kadison	239	213	255	245	231	213	202	260	221	231	219	745	665	676
	Monroe	148	127°	101	157	148	127	125	166	133	148	141	472	408	367
-	Opportunity center	-*	-*	--	15	7	10	23	21	22	7	27	- 36	29	50
	Roosevelt	260	247	246	256	251	247	235	274	231	251	240	790	729	124
	Spencer Butte.	159	164	146	186	147	164	155	213	174	147	139	558	485	440
.	Cal Young .	187	145	162	187	190	145	- 142	206	186	190	182	580	521	485
	Horizans	--	--	--	--	-*	--	--	16	4	4	5	16	4	5
-	Juntor High Jotal Adjusturent	1589	1487	1452	1637	1548	$\begin{array}{r} 1497 \\ -24 \end{array}$	1473	1891	1501	1548	1509	5067	4616	4434

TABLE 31
Student Enrollments, Apportionment Ratios and 1978 Enroliment Projections for" Eugene Senior High Schools

SEH00	$\|$Tenth Grade Enrollent \cdots 1916 1977			Eleventh Grade Enrallmant					Iwelfth Grade Enrollmeat.					Sentor Highal Enmpliment		
				1976	1971	Average litio	$\begin{gathered} \text { Pro- } \\ \text { fected } \\ 1978 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Adjusted } \\ & \text { Project - } \\ & \text { t fons } \end{aligned}$	1976	1972	$\begin{gathered} \text { Average } \\ \text { Ratio } \\ \hline \end{gathered}$	$\begin{gathered} \text { Poo- } \\ \text { jected } \\ 1978 \\ \hline \end{gathered}$	Adjusted Project tions	1976	1971	$\begin{gathered} \text { Pro- } \\ \text { jected } \\ 1978 \end{gathered}$
cmerchill ${ }^{\text {' }}$	443	476	386	421 (.0833)	424 (.0830)	. 0832	403	451.	362 (.0711)	391 (.0765)	. 0741	359 *	390	1226	1291	1227
Morth Eugene	492	470	430	443 (.0971)	. 447 (.0875)	. 0876	424	443	348 (.0689)	399 (.0781)	. 0735	356	408	1296	1316	1281
Sheidion	373	365	316	361 (.0715)	346 (.0677)	.0696	337	346	330 (.0653)	311 (.0620)	. 0637	309	318	1065	1028	- 90
Sputh tugene	504	455	375	419 (.0829)	445 (.0871)	. 0850	412	436	380 (.0768)	407 (.0796)	. 0782	379	408	. 1311	1307	- 1219
Opportunlty Center	26	20	30	--	--	--	--	--	-	-*	\because	--	--	26	20	30
action	- 29	37	27	28 (.0055)	46 (.0090)	. 0073	35	30	25 (.0049)	37 '.0072)	. 0061	29	20	82	120	83
Hort tans	125	10	9	22 (.0044)	1(.0019)	. 0029	14	6	17 (.0034)	11 (.6022)	. 0029	. 14	10.	56	28	25°
Potal Sentor High	1884	1833	1573	1694	1715		1625	1712	1470	1562		1445	1560	5052	$\$ 110$	4845
Adjustment							487		\because	-		+115				

${ }^{\circ}$
T

Senior High School Projections
" Five senior high schools served Eugene during the 1978-79 school year.

Using a procedure similiar to that of the seventh grade projections, 1978 tenth grade enrollment was projected.by inquiring at the nine junior high schools which of the five senior high schools its ninth graders planned to attend.

Eleventh and .twelfth grade enrollments for 1978-79 were projected by . using a school-to-district apportionment ratio. Tabie 31 dispiays the 1976 and 1977 enrollments, the apportionment 'ratios (shown in parentheses, calculated by dividing each school's 1976 and 1977 eleventh and twelfth grade enrollments by the district-wide senior high sshool 1976 and 1977 enroll-ments), the average apportionment ratios, the 1978 projected enroliments for each school (calculated by multiplying the average apportionment ratio by the projected 1978 senior high school erírollment), and the adjusted projections for each grade level by school.

Calculation Time and Approval Process

The Eugene School. District enrollment projection methodology, described in this chapter, requires approximately two weeks of the District Research Specialist's time to perform the actual calculations and make adjustments to individual school projections so that they sum to the projected"district:.... total.

The three-step approval process takes one to two months. Once the cal- culations have been made, individual school projections are sent to principals. in Eugene's 43 schóols for review. - Because the distrtet total profection is known to be extremely accurate, if principals.decide they shoutd have more students than what the projections estimate, they must be able to identify a school to take students away from. No principal likes declining enrollments. Even though a principal is willing to say his/her school should have more students, when forced to negotiate with another principal for is few more students, the principal witl usually stay with the initial projections.

Upon approval by the individual school principals, the projections.are. sent to the four regionaf superintendents where the same process is used. If a regional superintendent feels that region will have more students thanprojected, he/she must be able to identify a region to subtract from and must negotiate with that regional superintendent directly. When closure is accomplished with the regional superintendents; . Whe. projeetions are premat? sented to the District Superintendent and School Board at the same time." With Board approval, the projections become an official document of the Eugene School District.

Sumairy

Enrollment projections in Sugene School District'4J are based on a combination of methodologies f / r the two level process.

On the district-wide ie' it, second through twelfth grade enroliments are projec ed using the coho t survival methodology based on at least five years of past enrollment dat :. First grade enroliments are projected using births six years prior to th: year being projected in a regression methodology. Kindergarten enrollment, the most cifficult grade level to project in Eugene, is calculatf : on the basis of the first grade projections. A kindergarten to first, rade ratio is calculated for past years and averaged. The average ratio is then multiplied by the projected first grade enrollment to achieve the projected kindergarten enrollment. All grade level projections are adjusted to add to the district total projection.

- On the individual school level, projections are more manual. Erades 2 through ${ }_{\text {c }}$ 12, for each'school, are projected by advancing the previous year's enrollment as the projected enroliment for the next grade of the projected year. Projected seventh grade and tenth grade enrollments are adjusted once school building administrators verify the number of students, from these grades, registered to attend their respective school. One method used for projecting kindergarten and first grade enrollments for the individual schools is the apportionment method. With the apportionment methout; the numbers of past first’graders and kindergart ners for each school are divided by the number of first graders and kindergarteners in the district for past years:- The average of past ratios is multiplied hy the projected district first grade and kindergarten enroliments to acquire the first ind kindergarten enrollments for each school.

The total amount of time needed to perform projection calculations and to gain approval by the school board and superintendent is approximately two and a half months.

Eugene's district total enrollment projectinns.have been faund to be up to 99.5 percent accurate. With this common .nowledge; when regional superintendents and/or individual schcol principals disagiee with the projections for their attendance areas, they must be able to identify another
 altered. This procedure has worked very effectively for Eugene in the past. With School Board and Superintendent approval, the enrollment projections are adopted as an Eugene School District 4J official document.

Chapter 5

The School District of Philadelphia
Enrollment Projection Methodology .

School District of Philadelphia

The School District of Philadelphia, the fourth largest public school system in the nation, series almost one-quarter-million students, approximately two-thirds of which are minorities. The School District serves all pupils within the city of Philadelphia. No other public school districts exist within the municipality, although a large parochial school system, serving almost 100,000 students, and numerous other private and independent religiuus schools also serve the city.

The School District employs almost 30,000 full and part-time personnel, including over 12,500 teachers, more than 55 percent of whom possess graduate degrees. Teachers's salaries range from \$12,000 to almost \$30,000 per annum. Over 37 percent of the teaching staff are minorities. The average elementary school class contains 29.5 students.

School attendance has remained relatively steady at about the 85 percent mark. Yet while enrollment has declined, additional numbers of prekindergarten pupils are being served in various supplemental programs.

The Office of Research and Evaluation (ORE) services the research, evaluation, testing, and measurement requirements of the Scheol District. ORE is responsible for determining the Disitrict's short and long range student enrollment projections.

The Philadelphia School District's enrollment projections are used for planning by many Distretct offices, including the Oivision of Subsidies (to determine reimbursement), the District's Planning Office (to develop the State-mandated School District long range plan), the Offices of Budget and Finance (to develop the following year's budget proposal), and business divisions such as Purchasing and Personnel (to determine resource arlo- a cations), as well as many major non-School District agencies.

The School District of Philadelphia's enrollment projection methodology is described below.

Philadelphia Student Enrollment Projection Methodology

Enrollment projections for the School District of Philadelphia are calculated annually, based upon a combination of a modified grade progression ratio technique and a district proportion technique.

Similar to Eugene, Philadelphia'school district level enrollment projections, based on a modified grade progression ratio-technique, are extremely accurate. With this insight, district-level enrol lments are proz jecteo annually with confidence, and the smaller units of projection (district grade level, sub-district, and schoci) are adjusted to this total. Subdistrict (the District is divided into eight administrative sub-districts) and district grade-level enrollments are projected, and adjusted to sum to. the district total. Individual school enrollments are then projected and
adjusted to sum to the sub-district totals.
The School District of Philadelphia uses four yearso of past enrollment data to capture enro?lment trends for the grade progression ratios which are used in projecting the district enroifent, and the district grade-level student enrollments. A kindergarten to births five years prior to the projected year ratio, and a first grade to births six years prior to the projected year ratio are used to project kindergarten and first grade enrollments, respectively on the district level. Sub-district and individual scfiool student enrollments are projected on the basis of proportional ratios. Sub-district grade-level to district grade-level proportional ratios are utilized in calculating the sub-district enrollments, by grade, while an individual school to sub-district proportional ratio is used to project individual school enrollments within each of the sub-districts.

That which follows is a description of the process used to project enrollments for the district by grade, sub-district, and individual school.

Grade-Level Projections

District grade-level enrollment projections for the School District of Philadeiphia are obtained through a modified grade progression ratio technique for all grade levels except kindergarten and first grade, for which a birth rate ratio is used.

Philadelphia used an eleven-step: process to project grade level enrollments for the 1978-79 school year. i fescription of the process follows, using actual data to illustrate each step.

Step 1. Collection of Past Enrollment

The modified grad: progression methodology incorporates up to four years of past enrollment data. In addition to student enrollments for kindergarten through grade twelve, student enrollments for the three special progiams are shown in Table 32 or the following page.

Step 2. Formation of Grade Progression Ratios for Grades. Two :hrough Tweive

To determine the 1978.enrollment projections, grade progression ratios were formed by grade level for three year progressions: 1974 to 1975, 1975 to 1976, and 1976 to 1977. Each ratio was established by dividing one grade's enrollment for a particular year by the previous grade's enrollment . . . - - for the prior year. For example; the sixth-to-seventh grade progression ratio for 1976 to 1977 was formed by dividing the November 1976 sixth grade enrollment into the November 1977 seventh grade enrollment (18,980/18,290 $=$ 1.038). The fir: $:$ three columns of Table 33 show the grade progression ratios for the years 1974 to 1976, 1975 to 1976, and•1976: to 1977:

Grade	Rovenoer 1974		Noverber 1975	-	November 1976	'	November 197?
K	22.479.		22,493		21.572		18.123
1	19.258	-	18.330		19.205		18.076
2	18.592		17.564		17.313		17.738
3	18.981		18.161		17.068		16.955
4	19,171		18.509		17,686		16.554
5	19.687		18.626		18.038		17.412
- 6	19.593		19,399		18,290		17.869
7	20.165		19.532		19,431		18.980
8	19.885		19.359		18.826		18.799
9	20,961		21.426		21.527		22,174
10	24.188		24.543		24.673		24.202
11	16.956		16,869		17.049	-	17.257
12	13.797		13.452		13,175		$13.46!$
Post Graduate	71		65		70		41
Ungraded	1.946		2.139		2.463		2.854
Special	11.765		11.979		11,617		11.727
TOTAL	267.525		263,046		258,003		253,222

TABLE 33

Grade Progression Rateios for 1074 to 1977 and Two $\%$ Three Year Averages

Grades	$\begin{gathered} 1974 \\ \text { to } \\ 1975 \end{gathered}$	$\begin{gathered} 1975 \\ \text { to } \\ 1976 \end{gathered}$	-	$\begin{gathered} 976 \\ t 0 \\ 1977 \end{gathered}$	Three Year Average	Two Year Average

1-2 ${ }^{\prime \prime}$. 911		. 915	$\bigcirc .924$. 917	. 920
2-3	. 977		. 972	. 979		. 976	. 976
3-4	. 975		. 974	. 970		. 973	. 972
4-5	. 972		. 975	. 985		. 977	. 980
5-6	. 982		. 982	. 997		. 985	. 986
6-7	. 997		1.002	1.038		1.012	1.020
78	. 960		. 954	. 967		. 964	. 966
8-9	1.077	\%	1.112	1.178		i. 122	1.145
9-10	1.171		1.152	1.124	${ }^{\circ}$	1.149	1.138
10-11	. 697		. 695	. 714		. 703	. 704
11-12	. 793		${ }_{3} 781$. 780		. 788	. 786

Step 3. Calculation of Average Grade Progiession Ratios.

After the three successive years of grade proghession ratios were established, three-year and tivo-year average grade progression ratios were calculated, Columns 4 and 5 of Table 33 show the averages calculated for the 1978-1979 projections.

Step 4.: Calculation and Selection of Enrollments for Grade Two Ehrough Twelve

Enrollment projections must be flexible. Beçause populations fiuctüate within numerous neighborhoods in Philadelphia, a strictly statistical model could not be used effectively. Instead, a mized ratio model with subjective adjustments has provided Philădelphia's most accurate projections. The mixed ratio model allows for the selection of grade progression ratios that best accommodated changes occurring at each particular grade level in. - the school district.

Table 34 shows'estimated enrollments for ratios based en two, three, and four years of past data (i.e., the 1976-77 ratios, the two-year, and the three-year average ratios).

The 1978 projected enrollments for a particular grade level were calculated by multiplying the grade progression ratios by the previous grade,'s 1977 enrollment, as illustrated in Table 34 . The ratios used to obtain each projection are shown in parentheses. These ratios were multiplied by the 1977 enrollments (found on the same line) to obtain the estimate appearing on the line directly beneath. For example, one of the grade six enrollment projections for 1978 was determined by multiplying the three-year average grade ratio by the 1977 fi fth grade enrollment (sixth grade projected enrollment for $1978=.986(17,412)=17,168)$. After the enrollments for each grade were multiclied by the three ratios, the resulting projections were investigated as to the ir feasibility for projecting 1978-79 enrollments in terms of recent district policy changes, grade reorgani= zation, and new information regarding drop-outs/ins. The projections based on the 1976-77 grade progression ratios most accurately forecasted enrollment for the district for the 1978-79 school year:

Step 5. Fommation of Kindergarten and First Grade Ratios

tionally been projected by computing a ratio of the actual number of kindergartners ind first graders in recent years to the number of births in the city five and six years prior. Ratios and averages, were determined for three years prior to the year being projected, and multiplied by the number of births five and six years prior to the year 'beifitg projected- The 19781979 projections used ratios based on 1974, 1975, and 1976 enrollments and their averages. Table 34 displays the number of enrollments and births for the four years and the ratios formed on the bas is of those numbers as well as the two, three, and four year averages.

Enrollment Projections by Grade Level
gased on Three Grade Progression Ratios

$\begin{aligned} & 1976-77 \\ & \text { Encol Iment } \end{aligned}$		1976-77 Ratios and Projections		Two-Year Average Ratios and Projections		Three-Year Averago Ratios and Projections	
1	18,076	(.924)		(.920)		(.917)	
2	17.738	(.979)	16.702	(.976)	16,630	(.975)	16,576
3	16.355	(.970)	17.366	(.972)	17,312	(.973)	17,3.12
4	16,554	(.985)	16:446	(.980)	16,480	(.977)	15.497
5	17,412	(.991)	i6,306	(.996)	16,223	(.985)	16,173
6	17,869	(1.038)	17.255.	(1.020)	17,168	(1.012)	17,151
7	18,980	(.967)	18,548	(.966)	18.226	(.964)	19,083
8	18,799	-(1.179)	18.354	(1.145)	18.335	(1.122)	${ }_{4} 18.297$
9	22,174	(1.12\$)	22,145	(1.138)	21:525	. (1.149)	21,092
10	24,202	(.714)	24.924	(.704)	25.234	(.703)	25.478
11	17,257	(.790)	17,280	(.786)	17.038	(.788)	17.014
12	13.461		13,633		13,564		13,598

TABLE 35

Data and Ratios Used in Projecting
1978-79 Kindergarten and First Grade Enroliments

K	.671	K	.673			
1	.560	1	.563		.684	

Step 6.

Calculation and Selection of Enrollments for Kindergarten and First Grade

On the basis of the ratios fommed in Step 5, and the number of births in 1973 and 1972, enroliments for kindergarten and first grade were projected for the 1978-79 school year. Table 36 displays the projections calculated by using the ratios and the number of births. The first four ratios were multiplied by the number of births in 1973 for the. kindergarten projections, and the second four by the number of births in 1972 for the first grade projections. The kindergarten and first grade ratios and projections seemed to best represent changes taking place in the district.

TABLE 36

1978-79 Enroilment Projections for Kindergarten and First Grade

Step 7. Projection of the Total Number of Students for the District

A total district enrollment was also projected independently of the grade-level projections. The total district enrot fment was projected by using an average ratio pf the past district enrollments divided by the previous year's enrollment. (see Table 37) The ratios were calcalated and multiplied by the. 1977 district enroliment to aprive at three projected district enrollments for 1978-79. Table 37 shows past enrollment data, the calculated ratios, and the projections for 1978-79!

In collaboration with the two other agencies that also compute enroll-. ment projections for the district- The Philadelphia. City Planning Conmission and the Pennsylvania Economy League--the School District of Philadelphia adjusted the lowest projection of 248,461 to a figure of 246,850 . The three agencies made the: adjustment to accurately reflect the enrollment trend in the district, hew policy changes, the trend in birth rate, and the sum of the grade level enrollment projections. - This approach has resulted:in very accurate district level enrollment projections in the past.

Step 8. Calculation and Selection of Special Program Enrollments
Three types of special programs within the School. District of Phila-. delphiá require independent.enrollmient projections. Those programs art the ungraded classiccoms, post graduate, programs, and special education programs. Since each of these programs is ungraded, only the total enrollment is. projested. Table. 38 shows four recent year's enrollments and two types of. proportional ratios, established by 1) dividing the program enral.Iments by the district total enrollment, and 2) dividing a year's enrollment by the precious year's enrollment,

The 1978-79 special program enrollments were calculated by multiplying, the proportional ratios by the projected district total established in Step 7. On the basis of the ratios and calculated projections enrollment estimates were established.

The projections tent reflected the upper bounds for the Special Education Program and the lower bounds for the Ungraded Program were -selected because. of facility limitations and financial formulas related to each program. \therefore

ENROLLMENTS

PROGRAM TO DISTRICT RATIOS

YEAR PROGRESSION RATIOS

PROJECTIONS - PROGRAM TO DISTRICT RATIOS

PROJECTIONS - YEAR PROGRESSION RATIOS

Step 9. Adjustments to the projections

Upon completion of preliminary Steps. 1 through 8, the 1978-79 grade level projections were adjusted to reflect the?district total enrollment projection determined in Step 7.

Table 39 reflects the preliminary projections for each grade level and its necessary adjustments. As shown in the Table, a difference of 37 students separated the projected district enrollment total and the sum of the grade-level projections. Because the district level projection has always resulted in extremely accurate projections in the past, the grade level projections were adjusted to add to the district level projection, and appear in the adjusted-projections column of Table 39.

TABLE 39

Preliminary and Adjusted Projections by Grade Level for 1978-79

Step 10. Projections by Sub-District
Enrollment projectiuns were also prepared for the eight administrative sub-districts of the School District of Philadelphia. The 1978-79 sub-district frojections were ca:culated by a proportional technique whereby each past grade level enrollment for a sub-district is divided by the past grade level enrollment for the district. The resulting proportional ratio. is then multiplied by the projected district grade level enrollment to arijue at the projected grade level enrollment for each sub-district.

The steps taken to compute the 1978-79 sub-district enrollment projections are described below, displayed as a continuation of Steps 1 through 9.

Table 40 incorporates past enrollment data used to project 1978 student enrollments by grade level for Sub-District 1.
table 40

1974 to 1977 Student Enrollments for Sub-District I

For each sub-district, proportional grade ratios were formed based on enroliments for the years 1974. to 1977. Each ratio was e ablished by dividing sub-district grade level enrollments by the disi etenrollment for that grade level. For example, the ratio needed to p. fect Sub-District 1 third grade enrollment for a particular year was calcl sted by dividing - third grade enrollment for Sub-District I by the third ide enroriment for the district for that same year.. (e.g., 1974 third ade Sub-District 1 proportional ratio - 197: sub-district third grade enro ent/i974 district third grade enrol(ment $-3118 / 18,981=.164)$.

Average ratios were also established for the most recent two and three years: For Sub-District l, the ratios and average ratios are shown in Table 41.
table $41 \quad \therefore$
Sub-District I Proportional katfos
for 1974 to 1977 and Two and Three Year Average Ratios

Grace	1975	1976	1977		Two Year Average	Three Year Average
K *	. 150	. 151	.755		. 153	. 152
1	. 169 -	. 169	. 160	-	. 168	. 168
2	. 167	. 170	. 167		. 169	. 163
3	. 160	. 167	. 166		. 167	.164
48.	. 164	. 162	. 168		. 165	. 364
5	. 163	. 364	. 160		. 162	. 162
6 *	. 168	.i63	. 163		. 163	. 165
7	. 151	. 10 ล	. 163		. 165	. 163
3	. 155	. 157	. 158		. 153	. 157
9	. 154	. 144	. 144		.144	. 147
10	. 149	. 152	. 139		. 146	. 147
11 a	. 148	. 145	. 152		. 149	. 148
12	. 127	. 138	. 131		i^{135}	. 132
Special Educa:tion	. 144	. 147	. 136		. 142	. 142
Post Graduate	0	0	0		0	$\bigcirc 0$
Ungraded	. 064 -	. 027	. 034		. 031	. 042
Sub-District	. 155	. 156	. 154		. 155	. 155

1978 enrollment projections for the sub-districts were calculated by multiplying the proportional ratios by the projected 1978-79 district grade level.enrollments. For example, Sub-District 1 third grade enrollment was projected by multiplying the projected 1978 District third grade enroliment by the 1977 ratio established in Table 41, $(2,312 / 16,955) \times 17365=.165 \times$ $17365=2880$).

Three sets of projections were made for each sub-district grade level for 1978 on the basis of three ratios similar to those appearing in T.ble 41 for sub-District 1. A compromise of projections was made for each parti- : cular graue ievel to reflect policy changes, grade alterations in the subdistricts, and so the grade projec*ions would sum to the sub-district total. The three sets of projections and the adjusted projections appear in Table 42.

TABLE 42
P ojected and Adjusted Enmollments for Sub-0istrict 1 aased on One Year. Two Year, and Three Year Average Proportional Ratios

Projected Enrollment

- Student enrollment projections for each school wre prepared by using a school to sub-district proportional ratio technique. The following describes the technique with actual data for Sub-District 1 (Tabie 43) to illustrate - the process.

The proportional ratios were formed by dividing each school's enroliment by the sub-district total enrollment for the past three years. For example, in Sub-District 1, the 1977-78 proportional ratio for Drew was calculated by dividing Drew's 1977-78 enrollment by the 1977-78 Sub-District 1 total enrolliment ($390 \div 37847=.010$). Two-year and three-yeair average ratios were also computed. Table 43 displays the 1975-78 enrollments for each school of Sub-District 1 , the proportional ratios formed for each year by school (shown in parenthesis), and the two and three-year average ratios.

1975 To 1978 School Enrol Iments and Ratios
Ussd to Projec: 1978-78 School Enrollments for Sub-District i.

Table 44 incorporates the 1978-79 enrollment projections calculated for each school of Sub-District 1 using the 1977-78 ratios, the two wid three year average ratioss and the adjusted projected enrollments. The•projections were established by multiplying each ratio times the projected sub-district enrollment for 1978-79.

The projections were compromised and adjusted to sum to the sub-district projection and to reflect population and residential trends in the sub-district.

Calculation Time and Approval Process
The School District of Philadelphia's enrollment projections are calculated annually during the months of December and January. The actual calculations require approximately one and a half weeks - one week for a statistical clerk to make the straight methodological calculations, and three or fo ir days for ithe District Demographer to make adjustments to the calculations. The adjustments are made in terms of the "reasonableness" of the projections. Based on his comprehensive knowledge of past district, subdistrict, and individual school enrollments, district grade-level enrollment/ organization, policy alterations, and residential and popilation trends, the District Demographer is able to adjust the numbers if the estimates appear to be dramatically different than the information he inas for a particular school or grade level:

After the calculations have been adjusted, the resulting ppojections are reviewed and approved by the Executive Director of the Office of Research and evaluation. The approved projections are then sent directly to the Managing Director in the Budget Office to develop the following year's budget proposal. Sub-district and school administration receive a coppy of the projections in late spring and begin planning for fall enrollments at that time.

1978-79 Student Enroi]ment Projections by School for Sub-District 1

PROJECTEO ENROLLMENTS

1
\vdots

The Schgol District of Philadelphia calculates enrollment projections for three levels - district, sub-district and indipidual school. The district and sub-district projected enrollment totals act as control totals in making the individual school and grade-level projections.

A modified grade progression ratio methodology is used tin.ca'culating the district grade-level. projections. The grade level projections*are adjusted to add to the district projected totals which have ,been extremely accurate in the past. Kindergarten and first grade enrollment projections utilize a ratio of the actual numbers of kindergartners and first graders in recent years, to number of births in the city five and six years prior. This ratio, averaged over four years of past data, is multiplied by the number of births five. and six years prior to the year being projected to arrive at the projected enrollments for the two grade levels.

Sub-district enrollments are projected by grade level using a propori \therefore tional technique whereby a ratio is calculated that incorporates past grade level enrollment for a sub-district divided by the past grade level enrollment for the district. The rdtio is multiplied times the projectew district grade level enrollment to arrive at the projected grade level énrollment for each sub-district.

Student enrollments for individual schools are projected using a school -o sub-district proportional ratifo techntque: The proportional ratios are formed by dividing each school's enrollment by the sub-district'total enrollment for the past-three years. An 3 verage ratio for each school is computed and multiplied by the projegted sob-dtstrict enrollment to achieve the school projections. The individual school projections are adjusted so as to sum to thesub-district total projection and to reflect population and residential trends in the sub-district.

- The actual calculations take approximately one week to complete. Up to another week is spent reviewing and adjusting the projections to reflect-*: new developments in the school attendance areas, the sub-districts, and the over-all district.

After being approved by the Executive Director of the Office of Research and Evaluation, the projections are sent to the Budget Office where the following year's budget proposal is developed on the basis of the projections.

Chapter 6

The Austin Independent School District Enrollment Projection Methodology

t

0

The Austin Independent School District
Enrollment. Projection Methodology

Austin Independent School. District

* The Austin Independent School District, the sixth largest in Texas, serves over 57,000 students. Like the Austin metropolitan area, the school age population has rapidly expanded geographically, leaving some schools without enough students to justify their continued operation.

The school district serves most of the city of Austin and some outlying areas. Six other districts exist in the area.

The school district employs over 3,000 teachers, more than 31 percent of whom possess graduate degrees. Teacher salaries range from $\$ 9,624$ to $\$ 18,075$ per annum. The teaching staff is 11.5 percent Mexican-American and 12.75 percent Black. They serve over 57,912 students, approximately 42 percent of whom are minorities. The average elementary class size is 24. The district's. student/teacher ratio is 22 to 1.

School attendance has remained relatively steady the 92.93 percent level: Although student enrollment has been onty slightly decreasing, the distribution of students in the district has shifted dramatically and some schools have been closed.

An area of major focus for the Austin Independent School District is planning for the implementation of a desegregation plan for utilization on January 21, 1980.

The Department of Planning and Programing in the Austin School District provides annual and long-rang, enrollment projections for use iro manage: ment 'planning for demands for facilities; personnel; and educational services and programs.

A description of the enrollment projection methodolog presently in use in the Austin Independent School District.iollows.

Austin Student Enrollment Projection Methodohogy

Austin Independent School District student enrojlments are projected for one to ten years into the future on the basis of a computerized system known as the School Resource Allocation Model. The model was developed and implemented by Dr. Terry-Bishop, director of Planning and Programming for - Austin Independent School District

The School Resource Allocation Model (SRAM), programmed in FORTRAN IV, projects and analyzes enroliment, personnel, and facilities for the district and individual school levels, and has the capability to simulate school boundary changes and integration procedures.. Figure 4 displays. the flowchart. of SRAM. Only the enro:lment portion of the model, however, will be discussed
in this chapter 2, and will follow the outline used in chapters 4,5 and 7.
Projections of student enrollments for the district, by grade level, are updated annualiy using the cohort survival ratio methodology. Based on ten years of past enrollments and several environmental and policy variables; projections are made for two time periods of the school year, kncwn as the START (beginning) and PEAK (middle). Tha input variables used in the projetctions are listed and appear in Figure 5. Low, high;, and ayerage cohord survival ratios for the ten years are analyzed for use in projecting grades 1 through 12. Kindergarten enrollments are estimated by a birth to lotstkindergarten enrollment ratio, except during the years fhat policy alterations have been made. in' 1977, for instance, 'the Texas legisiature implemented a new policy for Texas schools th.xt provided for themeligibility of all five year olds for kindergarten enrollment. With the new policy just being implemented, and without historical data for kindergarten enrollment within the context of the new policy, 1978-79 kindergarten enroliment was projected to be the same as that projected for first grade for 1978-79.

Individual school student enro' lments are projected by grade level - for the START time period using the cohort survival ratio methodology and ten years of past enrollment data. For initial grades when school buildingi changes are necessary (i.e., middle school, junior high and senior high), the past proportion of the initial grade enrolment from feeder schocis to the school enrollment is used for 'projecting enrollments. Total school enrollments, are estimated for the PEAK time period using past enro!lment trends.

- The following sections sumarize Austin's enrollment projection techniqueland illustrate the process used to project•1978-79 enroilments."

Grade-Level Project fons-

Austin used a seven step process to project 1978-1988 grade-lexel enrollments "by, means of the cohort survival ratio methodology. Projections: are calculated for two annual periods of the school year known as the START (beginning) and REAK. (middle). The projection techntique. has-been truncated to shaw only a one year projection for use in this chapter. An .abbreviated description of the process used to project 1978-79 START and peak enrollments is presented here,

2
Specific information on the personnel, facilities and boundary. simulation portions of the model', as well as the enrollment
 "Development and Evaluation of a School Simulation Planning Model" (University of Texas at Austin, January 1975).

FIGURE 4

General flow Chart for the School Resource Aliocation Model

$10 s$

FIGURE 5
Classification of Variables for Enrollment Allocation iodel

EMOT

Eadoseneous Variublas Prediced by Syutem.
gutput
c

Step 1. Collection of Past Enrollment

A data base of up to ten years of past enirollments by grade level is used in the ten-year grade-level projections that are updated annually in Austin. Three years of past data for the Start and Peak periods are shown in Table 45 to illustrate the 1978-79 enrollment projections.

TABLE 45
September and January Enrollments for 1975 to 1978

Grade	1975-76	September $1976-77$	1977-78	1975-76	January $1976-77$	1977-78
K	3155	3379	3368	3210	3477	3412
1	4429	4743	4972	4463	4753	4986
2	4263	4447	4711	4270	4491	4701
3	4159	4118	4332	4135	4135	4313.
4	4291	4140	4011	4291	4170	4053
5	4631	4142	4035	4651	4128	4025
6	4888	4540	4086	4900	4537	4088
7	4892	4900 -	4657	4914	4859	4622
8	4970	4834	4822	- 4919	-. 4810	4765
9	5142	5046	5058	4944	- 4859	4881
10	4573	4845	4936	. . 4395	- 4592°	4672
11	4259	4451	4341	3905	4114	4055
12	3519	3392	3517	3294	3178	3328
TOTAL	57171	56977	56846	56291	56103	55901

Step 2. Formation of Cohort Survival Ratios for Grades One through Twelve
To compute the 1978-79 district enrollment projections, by grade level, the School Resource-Allocation Model ffrst calcutated the Tohort' survival ratios and standard devjations.for each grade-to-grade category for the START time period. Ratios were computèd for each gradectomgrade progrêssion 'by dividing the enrollment for a specific grade for a specific year by, the next lower grade's enrollment of the preceding year. A mean survival ratio ${ }^{3}$ for each grade-to-grade category, as well a's high and low survival ratios, were developed from standard deviations and were then used to estimate enrollments for 1978-79. A read-in option was also provided. The'read-in option allowed for the introduction of a survival ratio that represented outside variances not considered by the high, low, or mean survival ratios, such as school closures ore district poitey aftenations:. :...:

3 The ratios in this section are based on ten years of historical data.

Table 46 displays the high, low and mean survival ratios and standard deviations for each grade progression used for the 1978-79 START enrollment projections.

TABLE 46

Survival Ratios and Standard Deviations for Each Grade Progression for the START Enrollment Projections.

Survival ratios

Grades		High	。	Low	Mean		Standard Deviation
1-2		1.022		0.991	1.006		. 015.
2-3		0.999		- 0.970	0.985		: 014
3-4		1.022		0.978	1.000		. 022
4-5		1.003		0.972	0.988		. 015
5-6		1.013		0.983	- 0.998	*	. 015
6-7	,	1.052		. 1.015	1.033		. 018
7-3		2.003		0.980	- 0.992	\cdots	. 012
8-9		1.075		1.028	1.052		. 023
9-10		1.003		0.937	- 0.970	-	. 033
10-11	\cdots	0.984		0.925	${ }^{\circ} 0.954$. 030
11-12		0.820		0.785	0.803		. 017

Step 3. Calculation and Selection of START Enrollments for Grades One through iwelve

After survival ratizs were calculated for ten years of past data, and high, low, and mean survival ratios were recognized, six projection variations were calculated. Table 47 displays the high, low, and mean projections for the 1978-79 START period alorig with projected enrollment figures that reflect the changes occurring at each grade level.

TABLE 47

High, Low and Mean Enrollment Projections by Grade Level for 1978-79 START Time Period

Step 4. Calculation of Kindergarten Enrollment

In 1977, the Texas legislature made all five year olds eligible for kindergarten enrollment. Without historical data for kindergarten classes, SRAM projected kindergarten enrollment for 1978-79 to be the same as that for first grade for 1978-79. The projected kindergarten enrollment for 1978-79, therefore, was 4,981 for the START of the year and 4,983 for the PEAK of the year.

Step 5. Calculation of Syecial Education Enrollments

Special Education ênrollments were projected on a group basis using the cohort survival methodology described in Step 2. Table 48 displays the past thres years of Special Education enrollment and the projectied 1978-79 enrollment for START and PEAK times.

TABLE 48
Past Enrollment and 1978-79 Projected Enrollment for Special Education Programs

START Enrollment
PEAK Enrollment

1975-76	1976-77	1977-78	Projected	-1975-76	1976-77	1977-78	Projected 1978-79
1399	1526	1709	1880	1392	1521	1732	2004

r-

Step 6. Incorporation of Projected Group Earollment
In addition to grade level projections, the School Resource Allocation Model (STRAM) provided high, low, and mean enrollment projections for groups of grades (grades $1-12,1-6,7-8$ and $9-12$) to ensure the selection of the best projection estimate. (The larger the number to be estimated, the more accurate the projection. The projected smaller numbers (i.e., individual schools) are chosen to sum to the larger group totals for the most accurate results): The elementary, junior high, senior high and special education enrollment projection totals are shown in Table 49.

TABLE 49
1978-79 Enrollment Projections
for Elementary School, Junior High School, Senior High School and Special Education

		*	$\begin{aligned} & \text { Projected Enrollment } \\ & \text { 1978-79 } \end{aligned}$
El ementary School	*		31,893
Juniór High School			8,840.
Senior High School			18,163
Regular Total			58,896
Specíal Education			1,880
District Total			60,776

Step 7. Projections by Individual School

Projected student enrollments for the START time period for each school in the Austin Independent School Disrict were calculated by the cohort survival ratiómethod utilizing ten years of past enrollment data. For each grade-to-grade progression within each schobl, survival ratios were calculated for each year. Low, high, and mean ratios were then identified and new ratios introduced when outside, variances were not considered in the basic survival ratios.

These introduced ratios were established by looking at the past year's projected enrollment and the survival ratio used in the projection for each school by grade level. A comparison was then made with the actual past year's enrollment and survival ratio for each school by grade level. The past year's survival ratio was adjusted to reflect any new grawth or school closures in attendance areas. Projections were then calculated for each grade level usilizing one of the four survival ratios. Initial grades at each school were projected on a proportional basis, whereby the past proportion of feeder school enrollment to each school was used as the survival ratio.

The following sections describe the steps used to project elementary, junior high and senior high scchool enrollments, using the past tiree, years of actual enrollments.

Elementary School Enrollment Projections

During the 1978-79 schoof year; there were-61 elementary schools in the Austin independent Schoof District. Table 50 displays, by grade level for two elementary schools - Allison and Andrews - the past three years of enrollment and the survival ratio used to project the START period non-initial grade enrollments: Projected enroltments in inftial grades of \cdots.... the elementary schools (kindergarten) were calculated by multiplying a proportion of the number of births five years prior to the kindergarten year to the kindergarten enrollment, by the number of births five years prior to 1978-79. Enrollment projections for the START time period were calculated by grade level, and school earollment totals were calculated for the PEAK time period.

On Table 50, the 1977-78 enrollment for each grade.level was... multiplied by the survival ratic appearing next to it in parentheses, to project the next grade enrollment: For example, the 1977=78 first grade enrollment (121) was multiplied by . 930 to acquire the projected 1978-79 second grade enrollment.(113).

Tacte So
1974-78 Enrollments. Survival Ratios and 1978 Projections for Elestantary Schools by Grade Level for the STaRT Time Period and the Projected School Total for the PEAK Time Period

Past Enroliment

	start			${ }^{2}$		PEAK			
				(Survival	Projected start	-			Projected PEAK
Allisan	1975-76	1476-77	1977-78	Ratio).	1978-79	1974-75	1975-76	1975-77	1978-79
K	103	113	108		111	90	111	106	
1	102	118	121.	(.930)	121	128	103	111	
2	111	101	128	(1.000)	113	131	113	105	
3	123	103	104	(1.000)	123	146	126	103	
4	131	131	96	(1.000)	104	138	- 130	129	
. 5	131	108	113		96 。	151	130	116	
Total	701	674	670		673	781	713	670	674

Andrews

K	65	58	61		97	60	59	59	\because
1	81	90	105	(1.000)	105	77	84	90	\cdots
2	84	83	85	(1.000)	105	69	84	86	
3	78	86	78	(1.000)	- 85	98	82	84	
4	96	i4	186	(1.000)	78	96	97	80	
5	93	90	79		86	116	90	96	
Total	497	481	494		\$56	516	496	495	560

Junior High School Enrollment Projections

Eleven junior high schools served the Austin Independent School District during the 1978-79 school year. Table 5.1 illustrates three years of past junior high school énrollment, non-initial grade survival ratios, the projections used for each school by grade level for the START time period, and the projected school total enrollment for the PEAK time period for two schools - Allen and Bedichek. The initial grade enrollments were projected by multiplying the past proportion of elementary feeder school attendance to each junior high school, by the projected enrollment at the feeder elementary schools.

TABLE 51

1974-1978 Enrollments. Surviva] Ratios and 1978 Projections
for Juntor High Schools by Grade Level for the START Time Periad and the Projected School Total for the PEAK Time Period

-Senior High School Enrollment Projections

Table 52 disnlays, for two senior high schools - Reagan and travis - tiree years of past enrollment data, non-initial grade survival ratios, 1978-79 enrollment projections for grades 9, 10, 11 , and 12 -for the START time period, and senior high school total projections for the PEAK time period. Similar to the junior high school enrollment projection process, initial grades were calculated by multiplyinq a proportion of junior high feeder school enrollment to senior high school enrollment, by the projected enrollments for the junior high feeder schools.

TABLE 52

1974-1978 Enrollments. Survival Ratios and 1978 projections fon Sentor High Schools by Grade Level for the START fime Period and the Projected School fotal for the pEAK Time Period

Past Enrollment

Reagan	1975-76	\$976-77	1987	$\begin{gathered} \text { (Survival } \\ \text { Ratio) } \end{gathered}$	$\begin{gathered} \text { Projected } \\ \text { START } \\ 1978-79 \end{gathered}$	1974-75	1975-76	AX 1976-77	$\begin{aligned} & \text { Projected } \\ & \text { PEAK } \\ & \text { 19i8-79 } \end{aligned}$
9.	485	499	574	(.950)	546.	502	485	489	
10°	\$67.	445	456	(.900)	360	- 463	429	429	-
11	395	517	359	(.700)	410°.	374	372°	473	
12	309	299	340		248	301	303	284	
Total	i657.	1750	1725	-	1749	1537	1623	1975	1659
9	. 550	528	573	(.950)	578	496	$509{ }^{\circ}$	515	
10	501	498	518	(1.100)	544	441	451	476	
-11	495	530	560	(.750)	570	437	447	488	
12	330	340	361		420	233	311	293	.
\cdots Total	1885 -	1896	2012	.	2112	1607	1728	1772°	2048

Calculation Time and Approval Process

The annual calculation process for projecting enrollments in the Austinindependent School District comnences in November and is completed in early March. The actual calculations begin in November. with the updating of the School Resources Allocation Model incorporating enrollment information from the previous year. The updating which utilizes the same parameters as used in the previous year takes approximately two weeks. These projections are sent to the district demographer who takes two to three days to review the projections on a school by school basis against the last year's actual enroliment. The demographer researches each school attendance area to identify changing trends, and circumstances. - He then decides if a significant alteration in the previous year's enrollment was due. to a new trend that will continue (such as a closing of a private school in the area), or if the enrollment alteration was just happenstance for the given year. The demographer makes recomendations for a new cohort survival ratio to reflect his decision for'each school. Changes to the updated program ace usually made in a half day's time and another half day is used for the. Director of Planning and Programing and the demographer to review the new results. If changes are necessary, the program is rerun.

Around the middle of January the projections are sent to the Finance Office for staffing allocations. The projections and staff allocations are sent to the individual schools. The principals are allowed approximately one month to express concern over the projected enroliment and staffing numbers. They must present their concerns along with a justification in writing. The revised projections are usually distributed in early March and any individual school disagreementwbeyond that time is made on an individual. school basis.

Presently no adoption by the Executive Cabinet is necessary since enrollment projections are merely considered to be an administrative process that needs to be done. After the implementation of the new desegregation mandate, however, the enirollment projections which will for the first time project declining enrollment, will be considered a political process and cabinet approval will become necessary.

Austin Independent \$chool District enrollments are projecred qne to ten years into the future utilizing the cohort survival methodology in an automated system known as the School Resource Allocation Model (SRAM). Projection's are made by grade level for the district and for the beginning of the school year for individual schools. School totals are prọjected' for the middle of the year.

The SRAM provides high, low, and mean survival ratios developed from standard deviations to estimate grade level enrol?ments. A read-in option is also provided to allow for the introduction of survival ratios that are considered to better reflect outside variances not considered by the other three ratios.

Kindergarten projections are normally calculated on a basis of a ratio of kindergarten to number of births in the city five years prior to the year being projected. .A 1977 Texas legislative mandate, however, altered the eligibility requirement for kindergarteners. With no historical data on which to base new projections, 1978-79 kindergarten enrollments were projected to be identical to the first grade projections.

The calculation and approval process requires about four and a half months. Individual school principals are givenan opportunity to agree, or disagree with the projections and when adequately justified, adjustments are.made to the projections. The approval process is predicted to change slightly in future years due to the new. desegregation mandate: With the projection of enrollment decline, the enrollment projection process will be considered political and cabinet approval will be necessary.

Chapter 7

The Seattle Public School District

Enrollment Projection Methodology

The Seattle Public School
 District Enrollment Projection Methodology

Seattle School District

The Seattle School District, contiguous with the city boundaries, covers an area of 81.72 . square miles. In December 1978, 53,885 students were enrolled in the district. As of the same date, the district employed approximately 3,000 professional personnel. Over the past ten years, the student/teacher ratio has decreased; in 1967, there were 21.1 pupils per teacher and in 1977 only- 16.2 pupils per teacher. Teachers earn an average yearly salary of $\$ 18,948$.

In recent years, Seattle has faced a deciline in the public school enrollment. . By October 1979 Seattle Public Schools had dropped to almost 50,000 students, the lowest number of enrollees since 1924. In the past five years (1974-79) enrollment has declined 27 percent; since 1969 district enrollment has declined 44 percent The Seattle district also has implemented recertly a desegregation busing plan to reduce the racial imbalance ampng the attendance areas within the district:. This new plan makes 'it difficult to predict future enrollment by previous methods.

Seattle Desegregation. Plan

Seattle is a city with a large and diverse population.. As in most big cities, ethnic groups tend to live in neighborhoods with others of their race and nationality, creating segregated schools when students simply attend their neighborhood schools. In 1977, the Seattle District School Board first deterained the need for busing as a meane to achieve racial balance in the schools. The Seattle Plan, as the des gregation plan was called, was fully implemented into the Seattle School system during the fall of 1978.

The Seattle pian has four basic components. They are listed below:

1) Zone Organization: For administrative purposes, the District is divided into three zones. These zones were designed to assist in student.movement and to structure pro-. gram development.
2) Paired or Triad Elementary Schools: Desegregation is accomplished by the pairing or triading of schools within each of the three zones, A school is considered: ractatly..... imbalanced if the enrollment exceeds the total minority enrollment of thie district by 20\%. Predominantly minority school's are paired or triaded with prediminantly white schools. Pairing is done by a re-configuration of grade
\cdot levels of affected schools. One leg of the pair has kmdergarten and grades 1 through 3; the other leg of the pair - has kindergarten and grades 4 through 6. There are paired schools with a kindergarten through grade 5, schools which 'have K, Tperough 3 and-K; 4 and. 5 grade levels.
3) Assignment Patterns^for Secondary Schools: Racial imbalance fri reduced through the use of school assignment paitterys. Students residing in el ementary school attendance areas are assigned to middle and junior high schools and high schools within the zone according to patterns which would best achiove a racial balance.
4) EEducational Options: This is an important feature of the Seattie Plan. It provides the students with the option of transferring to different schools within their zone, but only if that transfer does not-upset the racial balance of the receiving-school. Four types of transfers are available for educafional options: They are:
a. The option program transfer
b: The alternative program transfer
c: The individual program opportunity transfer.
c. The voluntary racial transfer program

The board refused to disrupt the high school students' school years by forcing juniors and seniors tor complete their education in a different school. Thus, mandatory busing takes place only in the entering grades of the secondary school years?: The Office of Student Placement holds the authority and the responsibility for the assignment or transfer, of stu- dents in compliance with the Seattle Desegregation. Plan.

The Seattle School District provided transportation for the students" in those areas included in the desegregation program. Students who choose options onust arrange their own transportation. A student is eligib for transportation, however, if he/she lives beyond two miles of his/her.? school attendance area.

The Seattle School District's Department of Planning, Research and Evaluation monitors the population patterns of the district's individual attendance areas. As the trend toward lower school enrollments increases, the school district relies on accurate predictions, both on a long and short-term projection range. The Department of Planning, Research, and Eyaluation is responsible for these projections. As the city continues to -change, the gepartment of Planning, Research and Evaluation also updates its information and expands its program as the city expands.

A description gf the student enrollment projection methodology pre- sently used by Seattie Public Skhools follows.

Seattle Student Enrollment Projection Methodology

Seattle School district utilizes the cohort survival enrollment projection methodorogy in arri.ving at district level and individual school level enrollment projections for the future year:

Enrollment projections on the district-level are calculated by grade level using. an average of three years' cohort survival ratios, weighted to allow the year closest to the projected year to have the most
explanatory power. When tested with past data, the three year average cohort survival ratio provided more accurate projections for Seattle than usiang the previous year's cohort survival ratio, or an average of the past two or four years. This technique utilizes the same principle of average ratios as chat used in Austin. Austin, however, bases its unwéighted average cohort survival ratios on ten years of past. enrollment. data.

Because the Seattle desegregation plan's "first year of operation was the 1978-79 school year, no trends reflecting the impact of the plan were available, so the average district grade-level cohort survival ratio's were used to project individual school enrollments by grade level, as had been done in the past.

Grade-Level Projections

Seattle school district grade level enrollments are projected on a yearly basis at two intervals--January and October--using the cohort survival methodology for grades one through twelve and for October kindergarten, while the vanuary kindergarten projection. utilizes a number of live births to kindergarten ratio.

The nine steps used to project district student enrollments for October 1978 and January 1979, with actual data"illustrations, are described below.

Step 1. . Collection of Past Enrollment

Total enrollment by $; \cdots a \in$ level for the four previous Octobers and Januarys were used for projecting October 1978 and January 1979 enrollments. Table 53 displays the past enrollments used for projecting thosetwo enrollment figures.
 . past years rand the enrollment trends within the school year. Between 1974.. and 1977, October total district enrollment dropped oy 10,395 students, an average of 3465 per year. October to January emfollments have decressed -a at an average yearly rate of 1762 . The rate of decline within-a given $-\cdots$. school year and between school years slowed down in 1977-78 even though enrollments continued to decline.

Step 2. 'Formation of Survival Ratios for Grades One through Twelve

Step 2 entails computing survival ratios on the basis of the past enrollment data found in Table 53. Table 54 shows the survival ratios for each year of data for the two projected time periods, as well as an average ratio computed in the next step.

Differing methodologies were used to compute ratios for projecting . October 1978 and January. 1979 enrollments. For October 1978 projections. survival ratios were formed for each grade level by dividing October 197477 enrollments for grades 1-12 by January 1974-77 enrollments for the pre: ceeding grade level.-- For-example, then second"to third grate survival ratio for 1977 was formed by dividing October 1977 third grade enrollment by January 1977 second grade enrollment [e.9., $\frac{\text { October (77) (third grade) }}{\text { January (77) (second grade) }}=$
$\left.\frac{4170}{4499}=.9269\right]$ to obtain a second to third grade survival ratio of .9269 :
Similar. calculations were done for each year.
January 1979 survival ratios were calculated in a siightly different manner. The January ratio does not represent a grade-to-grade survival las does the October ratio. Instead, the January ratio represents the survival within each grade from October to January. The ratios were formed by dividing January enrollments for a given year and grade level (K through 12) by October's enroilments for the same school year for the same grade level. For instance, the 1977 second "grade survival ratio used for January projections was calculated by dividing January 1977 second grade enrollment by October 1976 second grade enrollment to obtain a ratio of .9910 [e.g., $\frac{\text { January (77) (second grade) }}{\text { October (76) (second grade) }}=4259=$.9910]. Similar calculations were done for each year and grade.
table 53

Enrollment Data by Grade Level Used in Projecting October 1978 and January 1979 Grade Level Enrollments

Suritual Ratios for Each Year by Grade Level for October Projections and January Projections

Grade	Survival Ratios Used In Oetoper Projections				Grade	Survival Ratios Used In danuary Projections			Average Ratio
	January to October.			Average Ratio		October to January			
	1975	1976	1977			1975-76	1976-77	1977 -78	
K-1	. 9551	. 9635	. 9956	. . 9782	K	. 9929	1.0035	. 9965	. 9983
1.2	.949!	. 9340	. 9480	. 9436	1	. 9941	. 9969 \%	. 9914	¢ . 9937
$2 \cdot 3$. 9526	. 9387	. 9269	. 9352	2	. 9855	. 9910	. 9860	. 9876
3-4	. 9780	. 9475	. 9381	. 9479	3	. 9955	1.0012	. 9900	. 9987
4.5	. 9736	. 9407	. 9524	. 9521	4	. 9968	. 9924	. 9875	. 9907
5.6	. 9632	. 9331	. 9532	. 9492	5	. 9896	. 9817	. 9815	. 9830
. 6.7	1.0142	. 9625	. 9795	. 9797	6	. 9975	. 9900	\$0.9805	. 9865
78	. 9801	. 9500	. 9774	. 9721	7	. 9863	. 9792	. 9917	. 9867
9-10	1.0241	1.0131	1.0036	1.0102	- 9	. 9490	. 9426	. 9934	- . 9697
10.11	1.0039	1.0059	. 9877	. . 9965	10	. 9356	. 9483	. 9290 -	. 9366
11-12	. 9765	1.0000	. 841	. 9832	11	. 9231	. 9370	. 9250	. 9287
			\wedge		12	. 9380	. 9337	. 9297	.932s

Step 3. .. Calculation of Average Survival Ratios "

As Table 54 shows, the survival ratios used in the October projections fluctuated for each grade progression between 1975 and 1977, as did the surviva? ratios for each grade level, used in the January projections. To capitalize on past trends to explain future enrollment, an average survival ratio was computed. The average-was weighted to allow the year closest to the year being projected to have the most explanatory power. The weights 3 , 2, and 1, were assigned to each year's October survival ratios according to their proximity to the data being projected. For instance, the ratiowof . 9436 used for second grade October projections was found by 1) multiplying the -1-2 survival ratios for 1975, 1976° and 1977 by 1, 2, and 3, respectively and 2) adding the weighted ratios, and 3) dividing by 6. (E.g., [(1975 1-2 grade survival ratio) +2 (1976 1-2 grade survival ratio) +3 (1977 1-2 grade survikat. ratio $)] \therefore 6 .=[1.6 .9491++2(.9340)+-3+(: 9480)] \div 6=$ $(.9491+1.8680+2.8440) \div 6=.9436$.

For the January 1979 projections, the 1975-76; 1976-77, and 1977-78 ratios were multiplifed by 1, 2, and 3, respectively, added, and divided by 6. [E.g., January 1979 second grade ratios $=[1$ (1975-76 second grade ratio) +2 (1976-7) second grade ratto $)+3$ (1977-78 second grade ratio) $]_{.} \div 6=$

$$
[1(.9855)+2(.9910)+3(.9860) \div 6=9876] .
$$

TABLE 55

Enrollments and Ratios for Projecting Octoter 1978 and January 1979 Enrollments

Grade	January 1978 Enrollments	Average January to October Ratio	Ortober 1978 Projections	Average October to January Ratio	January 1979 Projections
. K	3610	. 9782		. 9982	-
1	4255	- . 9436	3531	. 9937	3509
2	. 4493	$\rightarrow .9352$	4015	. 9876	3965
3	4128	. 9479	4202	$\rightarrow .9947$	$\Rightarrow 4180$
4	-3945	. 9521	3913	. 9907	3877.
$5{ }^{-}$	3965	. 9482	3756	. 9830	3692
6	3710	. 9797 .	3565	. 9865	3616
7	3926	. 9721	3635	. 9867	3587
8	4237	1.0043	3876	. 9787	3735
9	4457	1.0102	4255	. 9691	4124
10	4483	. 9965	4502	. 9366	4217
11	4435	. 9832	4467	. 9887	4149.
12	4216		4360	. 932 "	(4006
. TOTALS	53760 ,	- .	51584		50178

Step 4. Calculation and Selection of 1978-79 Enrol Tments

First through twelfth grade enrollments for October 1978 were estimated by multiplying the average weighted survival ratios obtainedminissep 2 m foreach grade - by the actual 1978 January enrollment for the previous grades. The calculations are shown in rable 55 fe:g:, Oetober 1978 fourth ${ }^{2}$ grade enrollment was projected by multiplying January 1978 third grade enrollment by the 3 to 4 ratio $-4128(.9479)=3913]$. January $19 / 9$ projections were obtained by multiplying the average ratios by the-projected.0ctober 1978 enrollments for each grade (e.g. ${ }^{7}$ January 1979 third grade enrollment was projected by multiplying the Dctober 1978 third grade projection by the third grade ratio - $4202(.9947)=4180)$. The multiplication of January enrollments by the January-to-Dctober survival ratio is done diagonally, not
horizontally as the table may-imply. The multiplication of the October to January ratio and the October projections is linear; however.

Table 55 displays the information needed to make the two projections; the average ratios and the January 1978 enrollment, as well as the projections for October 1978 and January 1979, excluding kindergarten.
Step 5. Formation and Calculation of Kindergarten Enrollments
Three kindergarten ratios that incorporated birth data and past kindergarten enrollment data were established and averaged to obtain a ratio for projecting October 1978 kindergarten enrollment.

Four steps were used to project October 1978 kindergarten enrollment. Those steps and calculations follow:

1) Three ratios were established using October 1975, 1976, 1977 kindergarten enrollments and dividing by the number of births in Seattle five years prior to each year. (E.g., $\frac{\text { nkindergartners in } 1975}{\text { \#Births in } 1970}=\frac{5041}{8482}=$
.5943; $\frac{\text { Findergartners in } 1976}{\text { FBirths in } 1971}=\frac{4296}{6854}=.6268 ; \frac{\text { \#Kindergartners in }}{\text { \#Births in } 1972}$ $\left.1977=\frac{3623}{5522}=.6561\right)$.
2) The ratios were then assigned weights of 3,2 , or 1 according to their proximity to October 1978. (E.g. . $\frac{\text { \#Kindergartners in } 1975}{\frac{\pi}{3} \text { irths in } 1970}$ was mul-
tiplied by $1=.5943 \times 1=.5943$; and Kindergartners in 1976 was \#Births"in 1971
multiplied by $2=.6268 \times 2=1.2536$; and. \#Kindergartners in 1977 was $\mathrm{mu} 1-$部Births in 1972
tiplied by $3=.6561 \times 3=1.9683$).
3) An average was established by adding the weighted ratios and dividing by 6.00 to obtain the ratio ased in the october 1978 kindérgarten projections $(.5943+1.2536+1.9683) \div 6.00=.6360)$.
4) Finally the above ratio was multiplied by the number of births in Seattle five years prior to October 1978 (. $6360 \times 5420=3467$).
January 1979.kindergarten-enrollments were estimated by-multiplying the October 1978 kindergarten enrollment projection by the kindergarten October-to-January survival ratio established in Step 2. [January 1979 projected
 \times October 1978 projected kindergarten enrollment $=.9983 \times 3467=3461$].

Step 6. Estimation of Special Education Program Enroilment

Special Education program enrollments for October 1978 and January 1979 were projected usiag the same, methodology-as regular grate tiever pror. jections, although enrollaents were not projected by grade level-sjnce special education programs do not incorporate a grade progression:

Table 56 skows the actual enrollments in special education programs from January 1975 to January 1978 that are used for calculating the ratios
used in the October 1978 and January 1979 projections. The second line of Table 56, the October to January cohort. survival ratios, was established by dividing January enrolliments by the previous October enroliments. The third line of the table, the January to October cohort survival ratios., was computed by dividing October enrollments by the previous January enro! Iments.

For Both the October to January and the January to October ratios, a weighted average ratio was establisned. The weights 3, 2, and 1 , were assigned to each ratio on the basis of the ratio's proximity to the date being projected. The average-weighted ratios of .8308 and 1.1547 were then multiplied by the actual January 1978 enrollment and the October 1978 projected enrollment; respectively, to arrive at the projections of 2022 and 2335 for "the two dates.

TABLE $56^{\text {: }}$

Actual Special Education Enrollaents. Survival Ratios, and Projected Enrollments for Detober 1978 and Januar. 1979

.	January 1975	$\begin{gathered} \text { Detober } \\ 1975 \end{gathered}$	A C January 1976	($\begin{gathered}\text { October } \\ 1976\end{gathered}$	$\begin{gathered} \text { January } \\ 1977 \end{gathered}$	$\begin{gathered} \text { October } \\ 1977 \end{gathered}$	January 1978	AVERAGE-WEIGHTED batios		PROJECTED	
								January .ta. October	October to. January	$\begin{gathered} \text { October } \\ \text { i978 } \end{gathered}$	$\begin{gathered} \text { January } \\ .1979 \end{gathered}$
Specia: Education Program Enrollutent	- 2714	2260	2513	. 2332	$\begin{aligned} & 12 \\ & 2782 \end{aligned}$	2129	2434	. 8308	1.1547	2022	2335
October to January Cohort Survival Ratios	, -	1.1	119	c 1.1	930	1.14			.	.	
January to actober Cohert Survival. Ratios	. \quad -	8327		9280	. 76		\cdots			.	

Step 7. Estimation of Alternative Program Enrollments

. Table 57 was designed to display the numbers used to project alternative program enrollments for October 1978 and January 1979. The ratios that appear below the actual enrollments represent October-to- January and January-to-October survival ratios, found by dividing January enrollments by the previous October enrollments and by dividing October enrollments by the previous. January enrollments. The average weighted ratic for January to Dctober was found by multiplying the Janyary $1977 /$ October 1977 ratio by 3, the January 1976/October 1976 ratio by 2; and adding both to the January 1975/October 1975 ratio, and dividing by 6. Enrollment for October 1978 was projected by multiplying the average January to October ratio by the January 1977 actual enrollment. 'January 1979 enrollment was estimated by multiplying the average Dctober to January ratio by the Dctober 1978 projected enroll: ment. The resulting projections were 1,608 for October 1978 and 2,080 for January 1979.
Step 8. Collation of Projections and District Totals
Table 58 shows the October 1978 and January 1979. projections for regular programs, special education, and alternative programs calculated in Steps 4 thro:gh 7.

TABLE 57
Actual Alternative Progran Enrollments, Survival Ratios, and Projected Enrollaents for October 1978 and January 1979

District Level Projections by Grade Level for October 1978 and January 1979

Step 9. Projections By Individual School

Individual school enrollments in Seattle are projected twice a year, in October and January, using a mixed model design. The' mixed model allows for special treatment of paired and triaded schools in the Seattle. desegregation plan.

Desegregation added considerably to the difficulty and complexity of projecting enrollments on. the individual school level in Seattle. Because the $1978-79$ school year represented the first year of desegregation im .. plementation in Seattle, historical trends were unavailable, to assist with the prediction of the lmpact of desegregation on individual school enrollment, Answers to the many questions that center around desegregation could not be predicted without the base of past trends. Examples of questions include: Will there be a race difference for retention rates at each school? How, much "white filight:" will occur? How many parents will not want their children involved with busing and will decide to transfer them to alternative programs or privàte schools? Because the questions above, and so many more, could not be addressed in projecting the first year of desegregation, the pastmethodology for projecting individual school enrollment was utilized.

Below is a description of Seattle's individual school enrollment projection methodology. This miethodology, which utilizes the same concept as grade-level projections, is illustrated by actual data used to project October 1978 and January 1979 enrollments. The projections are divided into, elementary, middle, junior high, and senior high school categories. The elementary tables include two sub-categories, "regular" schools and paired or triaded schools.

Eiementary School Projections

Elementary school projections are complicated by the desegregation.busing plan that pairs 16 . schools and involves 18 schools in triads. Projections for the 49 "regular" elementary schools, however, are explained and illustrated below.

Regular Elementary Schools.
Forty-nine regular elementary schools were in operation in Seattie during the 1978-79 school year. A regular elementary school is defined as one which students attend in their respective: agighborhood"metween . grades kindergarten through 5 or 6.

The steps used to project regular school enrollments for October 1978 and January 1979 were identical to those used to project districtwide enrollments by grade level. For each school, separate_ prajections by..... -. grade level were totaled to produce a school enrollment tótal. Grade-level enrollments for October 1978 were estimated by multiplying danuary 1978 enrollments for each grade level by the January-to-October cohort survival ratio obtained in Step 2. Grade-level enrollment estimates for January 1979 were computed by multiplying the projected October 1978 enrollment by the October-to-January cohort survival ratios a tso obtained tin-step 2: Table 59 displays, for two schools - Adams and Alki, thie information used to make individual school projections.

TABLE 59

January 1978 Enrollments, Survival Ratios and October 1978 and January 1979 projected student Enrollments for Adams and Alki Elementary Schools

School	Grade	Actual. January 1978	January to October Ratio	Projected Oct. 1978	January October Ratio	to Projected January. 1979
Adams	K	45		48	. 9982	48
	1	38 K : 1	. 9782	42	. 9937	42
	2	$57+1-2$. 9432	32	. 9876	32
	3	44 2-3	¢. 9352	52	. 9947	52
	4	60 3-4	. 9479	40	. 9907	40
	5	50 4-5	. 9521	58 …	. 9830	57
	6	46 5-6	. 9482	38	. 9865	38
Total		340		310		309

TABLE 60

January 1978 Student Enrollment, Survival patios, and October 1978 and January 1979 rojected Enrollment. by Grade Level for Graham Hill and Nörthgate Elementary Schools
 and October 1978 and January' 1979 rojected Eniroldment for Brighton, Hay and West Queen Anne

Elementary Schools

Middle School Projections

Six middie schools served grades five, six, seven and eight in the Seattle Public School District during the 1978-79 school year. Student enrollment projections for these schools were c.ilculated in the same manner as the regular elementary school projections. Table 62 shows the breakdown by grade level for January 1978 actual and October 1978 and January 1979 projected student enrollments for Boren.and Eckstein Middle Schopls. Once again, the January to October cohort survival ratios calculated in Step 3 were multiplied by the actual January 1 ¢78 enroilments for each grade within each middle school to obtain the October 1978 projected enroliments. The projected October 1978 values, in turn, were muryiplied by the Octobar to January cohort survival ratios to obtain the January 1979 projected enrollments.

TABLE 62

January 1978 Student Enrollment, Survival Ratios, and, October 1978 and January 1979 Projected Enrollment 8 y Grade Level for Boren and Eckstein Middle Schools

School	Grade	January 1978 Enrollment		Jan. to Oct. Survival Ratios		Projected October 1978			Projected January 1979
Boren	5		(5-6)	. 9482		176		9865	174
	7	196	(6-7)	. 9797		187		. 9857	185
	8	223	(7-8)	. 9721		200		. 9787	196
	9	188	(8-9)	1.0043				. 9691	
Total		607				563			555
Eckstein	6	250	(5-6)	. 9482		223		9865	220
	7	256	(6-7)	. 9797		327		. 9867	317
	8	352	(7-8)	. 9721	:	258		. 9787	253
Total		858				802			790

Junior High School Projections

During the 1978-79 school year, nine junior high schools served students in grades seven, eight, and nine and one junior high school served grades five through nine.

Student enrollments were projectad by grade level using the : cohort survival ratios computed in Step 2 , in the same manner as the middle schools, as described in the preceding section.

Student enrollménts for January 1978 and projected student enrollments for October 1978 and January 1979 for two of Seattle's ten jųnior high schools appear in Table 63.

TABLE 63
January 1978 Student Enrollment, Survival Ratios and October 1978 and January 1979 Projected Enrollment by Grade Level for Adams and Madison Junior High Schools

Senior High School Projections

Twelve senior high schools were in operation during the 1978-79 school year in the.Seattile Public School District. Five senior high schools served grades 10 through 12 while seven senior high schools served grades 9 through 12.

Student senior high enrollments for October 1978 were projected by grade level by multiplying the appropriate grade progression ratios obtained in Step 2 by the January 1978 enrollments. January. 1979 enrollments were projected by multiplying the appropriate. October to January ratios obtained in Step 2 by the projected October 1978 enrollments. Table 64 incorporates senior high student enrollments for January 1978 and the projected enrollments for October" 7978 and January 1979 for two of Seattle's twelve senior high schools, Ballard and Cleveland.

TABLE 64

January 1978 Student Enrollment, Survival Ratio and• October 1978 and January 1979 Projected Enrollment by Grade Level for 8allard and.Cleveland Senior High Schools

School Grade Enrallment...Ratios ... Oct. 1978 .

Total

Calculation Time and Approval Process

Grade-level student enrollment projections for the Seattle School district are calculated in January of every year for two time periods October and January. The actual calculations take approximately two days of the district projectionist's time. After review and approval by the Director of the Budgeting, Research and Evaluation Department, the projections are sent directly to the Budget office where the total number of staff to hire for the next year is calculated based on a staffing formula applied to the January projections. Projected January enrollments represent the average number of students enrolled in the district during the school year, so are used for calculating the number of staff to hire. October projections are used for planning for the opening of school.

Individual. school enrollments are projected by grade level and are presented annually to the District Budget Office before April 1. The individual. school projection calculations require a minimum of one week and a maximum of two weeks to complete. Personnel in the Budget office apply the state staffing formula to the projections and send to each of the schools in the district, the number of students to expect by grade level, and the number of staff assigned to the school for the projected year. The schools are allowed approximately one month to respond. to the Budget office if they disagree with the student enrollment prorjections and/or the number of staff they will be allowed.

Enrollment projections usually undergo approximately two or three revisions before the beginning of the school year. Each revision-requires approximately the same amount of time as the actual calculations: Revisions are made when knowledge of new district operations is gained (e.g., schog? closures, new busing routest and around the beginning of August when students requesting optional programs have been assigned.to a school:

Student enrollment projections in the Seattle Public School District are calculated annually for two time periods - October and January. 1978-79 grade level enrollments were projected for the district and for each of the 83 elementary schools, 6 middle schools, 9 junior high schools, and. 12 senior high schools.

An eight step process was used to calculate the 1978-79 grade-level enrollments for the district using the cohort survival methodology. An ${ }^{\text {a }}$ average of three years, January to October cohort survival ratios, (weighted to allow the year closest to the projected year to have the most explanatory power) was used to project October enrollments, while a three year weighted average October-to-January survival ratio was used in projecting January enrollments. Actual calculations require approximately two days of the district projectionist's time.

The 1978-79 school year represented the first orerational year for the new district desegregation mandate. Without his orical trends for which to project enrollments based on the effects of busing, the district cohort survival ratios were used to project indiyidual school enrollments by grade level. These projections took approximately two weeks to calculate and were revised when knowledge of school closures and the number of student transfers were gained.

The process for the district acceptance of the projected ennollments is straight forward. After review and approval by the Director of ${ }^{-}$ Budgeting, Research, and Evaluation, the projections are sent directly to the Budget Uffice where the number of staff to hire for the ensuing year is calculated. The number of'students expected to enroll along with the number of staff to be received is sent to each school for approval.

Chapter 8

Proposed Modification for the Seattle Public School District Enrollment Projection Methodology

> Proposed Modification for the Seattle Public School District Enrollment Projection Methodology

During the 1978-79 school year, Seattie Public School District implemented a desegregation plan to achieve racial balance in its schools, (as explained in detail in the previous chapter). Desegregation is accomplished by the pairing or triading of elementary-schools. Predominantly mioority schools are paired or triaded with predominantly non-minority schools. Pairing and triading is done by a re-configuration of grade levels of the involved schools. One schogl of a pair houses kindergarten and grades 1-3; the other school houses kindergarten and grades 4-5 or 6. Triaded schools present a more. complicated grade configuration. Each attendance areá houses its own kindergarten students. Each school of a trio, in addition to kindergarten, houses either grades $1-2,\{-3,3-5$, or 4-5. Beyond the elementary school grades, students are assigned to the middle school, junior high school and high school within their elementary school attendance area according to. patterns which would best achieve a racial balance.

In addition to the grade re-configuration and student assignments, the Seattle Desegregation Plan allows for option/alternative program transfers, provided the trans fer does not upset the racial balance of the receiving school. The Office of Student Placement holds the authority and the respon-. sibility for the assignment or trans fer of students in compliance with the Desegregation Plan.

With the implementation of a new desegregation -plan, which will undergo annual revisions, it is obvious that an enrollment projection methodology based on past enrollant trends can no jonger be effectively attztzedrin wan...... the Seattle School District. Seattle School Distefct.planners,need to byum able to rely of an extremely accurate enrollment projection methodology

 school; but in addition provides for the simulation of possible grade level re-configurations; pairing and triading of schools, busing route's, and student transfers.

The Seattle Public School District Research Department warked with.: researchers from the. Center for Studies in Demography and Ecology at the University of Washington to devise a modification to their present enrollment projection meithodology. A design has been déveloped and-is presently ready for field-testing and valldation. The proposed design is describedbelow.

Because past enrollment trends. were considered to be of less importance in projecting individual school earoliments.withia the cantext of ithe desege regation plan, a new fiethodology was adopted that projects enrollments on the basis of present enrollment and demographic trends, and incorporates variations of the present methodology based on past trends. It utilizes Markov chain theory which is described in Table A-4 of Appendix A.

The new enrollment projection methodology which will be a totally automated system, will enable Seattle School District (SSD) planners to perform routinely the following tasks:

1) To forecast future public school enrollment using all available individual and areal characteristics and a wide range of assumptions about future demographic changes;
2) To estimate future.schcol enrollments if schools are clased, new schools are built, or the poundaries of attendance areas are modi fied;
3) To estimate future school enrollments under alternative desegregation strategies.

This innovative procedure is possible in Seattle because. it has maintained unique and complete geo-coded student files for several years. The SSO also possesses software that can aggregate all students living in abritrarily specifiable sub-areas of the city. The.proposed procedure capitalizes upon these excellent resources.

The key ingredients of the procedure are the following:

1) The available geo-coded student files;
2) The existing software associated with the geo-coding system;
3) Variations of the cohort survival procedure which the SSD staff currently employs;
4) The notion of forecasting for micro-levet residential areas; and then aggegating these into attendance areas, rather than forecasting for the attendance areas'themselves; ?
5) Wew software to ifiplement (3) and (4).

The Final Product

When this procedure is completely programed, it will be implemented in two steps. First, a small area forecast file (SAFF), based on explicit assumptions about the future, will be prepared. The input data for a forecast will comprise a past small area file (PSAF), which sumnarizes the characteristics of SSD students for the past several (e.g. five) years, and the (estimated) characteristics of pre-school children and births.: The assumptions will be applied to the PSAF through control cards or job instructions. The instructions for a forecast will include specification of the number of years to be forecast, and the following:

1) For each individual-level variable (e.g. race),
a) the number of preceding years of experience to be used (if zero; the variable is to be ignored);
b) the weights to be attached to each of these years;
c) the degree of the Polynomial to be fitted through these years (e.g. 0 for a mean, 1 for a straight line, 2 for a parabola, etc.);
d) Whe level of aggregation to be used (e.g. 0 for all of Seattle, 1 for major areas, 2 for minor areas; 3 for census tract).
2) For each areal-level variaple (e.g. land use; at present no such variables are coded) $\%(a-d)$ as $\cdot 1$ ($a-d$) above.

Specifications of types (1) and (2) would apply to all grade levels. and aly pre-school levels.
3) For future births (only required if the number of years to be forecast exceeds five), the number to be forecast will automatically follow the specifications in (1) and (2) for available variables. An additional option, however, would impose a set of year-to-year inflation/deflation factors representing hypothesized trends in the birth rate.

Once a SAFF has been prepared, it can be used repeatedly to generate future school enrollment predictions for a virtually limitless range of modified attendance areas and assignment patterns. An allocation run (which identifies residential areas with specific schools) produces a large table 'and/or a graph. A table dispiays' the forecasted enrollment in each school. for each future year and for all combinations of grade and race (additional breakdowns would also be possible). A graph would include a,mapuofa Sentthe showing" school attendance area boundaries and two or three-dimensional representations of enrollments." (The output could be limited, if desired, to provide data for a specific school or.set of schools.)

For each allocation run, the user must supply instructions specifying the grade structure and the attendance areas for each school in the entire system. A precise format of these instructions has yet to be developed, but it is anticipated that after a basic allocation deck has been prepared, corresponding, for example,-to the current assignment pattern, a typical modification to that deck fe.g:; ciosing a school and re-allocating its former attendance area) would take about five minutes... Reference to a city map or atias will identify the current assignment pattern and tine reference numbers of all sub-areas:-Altematives couf dre coimpared easity, quicikiy." and cheaply.

Allocation runs could incorporate variation in either facilities utilization or businig assignments
The Logic of the Procedure
This procedure's high efficiency presumes that indivisible micro-level areas can be agreed upon. These areas will consist of five to six city blocks, each including about 30 to 50 . students. (aboik three or pour students
at each grade level). They would be indivisible in the sense that micro-lerel areas witt be allocated to schools as units. School attendance boundaries will allays coinciue with the boundaries of these micro-level areas.

When necessary these micro-level areas can also be aggregated into larger areas, for which data may be available on land use, ini-migration, out-migratic. etc. Using these indivisible sub-areas, the city can be divided into about 10 relatively homogeneous-areas called "major areas", into smaller "minor areas", or census tracts. These areas would be nested in one another. The major and minor areas would correspond as nearly as possible to planning areas already defined by the District and the City of Seattle to make maximum use of available data. (The first tested version of the system may be able to use areal data, but areal data must first be coliected and coded onto the PSAF.)

The PSAF (past small area file) will be a sumary of the geo-coded student ffles for the past several years (no more than 5 years' information is needed). There will be one record or set of records in the file for each of the (approximately) 1200 micro-level sub-areas of the city. Each file will include sumary data on the marginal and joint frequency distributions of the following variables for each year: "grade, race/ethnic group, some information on age (e.g., the numbers of students at, above, and below the modal age for their grade, some SES data (e.g., number of students in the free lunch program), and other data from the geo-coded files considered relevant for forecasting. Each sum-area file will also include summary meásures of turnover/persistence levels of individual students, and also. areal c.aracteristics of larger areas of the city in which the sub-area is nested. Some data would describe changes over the (five-year) period and other data would simply characterize the sub-area for the whole period.

The content and structure of this major sumary file are still tentan. tively outlined. Although the file requires a great deal of data collection and wilt tepexpensive to construct, it will have to .be updated only once each year to make future forecasts.

For each forecast file (SAFF) desired, the PSAF will be processed by the forecasting module. This will seldom be done more than five to ten times each year after a routine has been developed, although initially a wide range of forecasts will presumably be tried. The forecasting options, indicated earlier, will be implemented by a modification of the usual cohort survival procedure; - Although forecasts are to be made for small areas; the data from the PSAF will never be limited to these small areas or even-to -.census tracts. Obviously, too much random error, would occur if the fore-
 based on small area data, but the most valuable projections will 1 . come from aggregation at the city-wide or major area levels. Future, forecasted frequencies could be made at the micro-level using fractions of persons. When aggregated into attendance aréas, these frequencies would be statistically stable:

Residential areas will be allocated to specific schools (by grade level) by the same two methods used for both facilities utilization planning and desegregation planning. For the former, attendance areas will usually be close to the school. while for the lattor, they may:ter substan i.in:-v. - - tially distant. For either method, however, the researcher would simply
have to instruct the allocation module to add up the forecasted sturent populations of all micro-level areas assigned to each school. Alte lative allocations could easily be compared.

A more technical description of the proposed system follows.

System Design

The small area forecasting system is designed to quickly measure the effects of changing school attendance areas. Dnce the small area file is set up, the system can produce forecasts for a completely new districting strategy in one to two days, while minor changes in an existing strategy can be measured in a few minutes.

The small area forecasting system is divided into four modules, shown in figure 6. The first three lay the groundwork for the final projections, and are designed to be run only infrequently, perhaps once a year... The fourth, the allocation module, produces the projections by school for each redistricting scheme, and may be run as often as needed to produce the desired simulations.

In the geo-coding module, shown first in the figure, a series of polygons will be designed to subdivide the city into about 1200 Small Areas of 30 to 50 students each. A suggested procedure would begin with the census black group polygons. A map will pe drawn showing the location density of students in the Seattle City Schools. The Census Block Group boundaries will be marked on the map, and the student densities noted to divide the census block group into pajygons containing 30 to 50 children. Because census block groups contain varying numbers of children, the block groups must be examined individually: However, $6 T 4$ polygons-enclosing. relatively home jeneous àreas have been already drawn for the block group. approach, making it quite suitable for trending and forecasting populations. A minimum number-of additional- subdivisions of the city will minimize costs. Boundaries of census block groups may not correspond to............... current attendance areas, so some modifications may be needed.

The computer file containing the complete set of small-area polygons will assign small area codes to each student on the geo-coded student history file for the last five years: The geo-coding module will produce a set of five history tapes; with each student coded with his/her Small Area number. There will also be a file contajning identification information for each small area, including census tract, block group, major and minor;

The history data then will be fed into the analysis module, which . would first prepare a past Small Area File, describing. the student population in each Small Area over the last five years. This ftle will be used to analyze the' rocal treinds" in student population sy small area, major area, minor area, census'tract, otc. Other sources of data, such as estimated birth and migration rates, land use patterns, etc., could be used to refine the model analytically.
 data, and the forecasting coefficients, will be input to the forecasting

Module, which could prepare a complete tiree-year forecast for each Small Area. Each student from the historical file will be assigned a weight based on the ebtimated probability of returning from that area, and weights : could exceed 1.0 if trends indicate an increase in students of that type in tioe area.

The Small Arêa forecast file will form the primary input forathe allocation module. This module would combine the small area forecasts in various ways to produce forecasts at the school level. The different facilities management strategies will be developed and coded into Area Defi-- nition Files by drawing lines representing the Rroposed schobl attendance area boundaries. on a map of the small areas. The map will be used as an input document to code up the Area Definition File.

Working from the Area Definition File, and-a School Master File con-taining-feeder patterns, pairing and triading. patterns, etc.; the allocation module will prepare a School Forecast File, computing a three-year forecast for school populations. The School Forecast Fife will be built for each major rédistricting strategy that the SSD is considering. Once. the forecast files have been built, they can be easily modified or "fine-tuned", by the addition and deletion of small areas.

When a final well-clarified Area Definition File is selected, a complete. set of forecasts for all schools in the system will be produced. The Area Definition .files couldsalso produce maps showing the final boundaries of the proposed aftendance areas. Alternative strategies can be developed and.compared quickly using this system.

Once the system has been completed and tested, the yearly production cycle will be straightforward and require relatively $\$$ itt ide maintenarice. On a yearly basis, production woutd begin as soon as a reliable geo-codéd student file is available for the year. If new small areas need to bedrawn, this could be done at that time. The, new geo-coded student master file would be assigned its smatt area numbers and passed on to the analysis module, where a new PSAF will be created to show the five-year school enrollment history of each small area. The forecasting module will prepare new. forecasts-by small area.

At the same time, strategies and to be developed to remect ctianges in facilities management requirements. o A series of Area Definition files. will be generated. When the analysis and forecasting are completed, a
 realignment of small areas. At that time the computer could produce a clear-cut set of.aiternative strategies for consideration by Bistrict management staff.

Summa ry

With the recent implementation of the Seattle Desegreation Plan, a new enrollment projection methodology was deemed necessary for the Seattle Public School District. A new methodology has been designed and is presentlj ready for testing and validation.

The new methodology will utilize Markov chain théory to assign a ratio value to the smallest indivisible unit (3 or 4 students per grade level) that represents the probability that each student will stay in his/her attendance area. The ratio will be based on residential, landuse, and birth rate variables representing changes in the city, student grade, race/ethnic group, age, SES data, measures of student turnover/persistence, and student assignment data. Projections for the individual schools, upon incorporation of relevant past enrollment trends; will be accomplished when the methodology simulation subprogram aggregates students into an attendance area.

The new methodology represents the needed tool, with its simulation capabilities, for comprehensive school district planning for declining enrollment and desegregation. The simulation model enables Seattle Schooi District staff to project school enrollments under alternative desegregation strategies, alternative school chosures, and alternative. boundary changes. Decisions on policy and district structure can be made on this basis'with a good idea of the impact of the changes.

The technique which capitalizes on a complete geo-coded-student-file represents a new approach to individual school level enrol?ment projection methodologies.

Appendix A

TAELE A-1
COHORI SURVIVAL HETHODOLOEY

TABLE A-I (contd.)
COHDRT SURYIVAL NETHODOLOGY

154

TABLE A-2
REGRESSION AMAYSIS METHODOLOGY

descalption	tecmimique	MODEL	DATA MLQUIREMENTS	ADYANTAEES	di sadyantages
Regresstion analysis as an enmollent projection methodology is specififation of funcitonal relationship between exagenpus pexternal variables ind encolliment varibles. The methodjology seeks out ffactors to explatn chinges in-the district. grade and/or school enrel laents. lhe methodo logy transfers the probm lea of enrollment forecasting.to that of forecasting the exagenous varlables.	Degree of association between the exogenous external varlables "and en. poliment variables are calculated via coefficients: of correlation and multiple carrela-. tion to locate słga! Alcant relatlonstilps. The paramelters of the Punct tonal relatfonship are estiaited on the besis of historical date for the vatiues of the etral Tment and exogenous inckpen. dént variables: A statistical trend is Identified by the Independent varisbles and extrapolated to arrive at the projections for the coinling years.	the regress ton analysis encollment forecasting model is identical to that of the traditiond regression model. $Y=a * b_{1}, X_{1}$. where: in the entplliwent forecasting case. Y represents the predicted grade. school or district enrollment (criterion - is the historical enroliment base of the criterion.) $b_{y}=$ 'the relation ship ratio bea tween predictor and criterion. $x_{1}=$ predictor varible whare 1 can represent 1 to an infinite number of predictors.	Ju'st about any type of date can be used depenclent upon the relationship to enrollment trends. examples are: Births by city. Past district enrollment by grade. city occupled hossing units. Mumber of school age chlldren by type of dwelling.	Relatively easy to apply. (Mebseter, 1971) Can bring tin many varlables and many possible comblnations of variables to predict future earollment. (a.9.. tuition rates, unemployment rates. land use vari. ables, resident blrths and deaths. migration, ethnic group 1ag). Oice the key exogenous varlables and time lags. have been deter.mined. enrollment changes can be easily ex. plained. (Brown. 1973) Can be used equally (cont !̣ued)	Because of its casy applica. bllity to a given district. the estiaction problem may be over-simplified. (a few varlbles should be Included when fewer numbers could provide mare adequate project lans). (Webster, 1971) Cannot theoretically take a number of predictor varlbles and select from them the "best" reyression equation due to small degrees of freedon assoclated with projecting local school enrollment (no elimination) (Webster. 1971) (cont inued)

TABLE A-2 (contd.) REERESSION AMALYSIS METHDDOLOCY

15\%

CSSCIPTIOM	TEfhilque	HODEL	Data Requireneats	RDVANTACES	disapuantages
The ratio method is essentially a class of enrolliment forecasting methodologies whict taploys the ratio of a predictor to cri. terion in the past. to project 'for a future tite. Rat to methods make the assumption. that a cont fauing functional relationship exists between the predictor and criterion. Cohort survival is - grade level-to. grade level rat to method for projecting grade level enrolliment.	One of the easiest techniques to enploy, the ratio wethodology. produces a projected envoliment by multiplying a preJictor to criterion ratio represeating an esti. mated enroil lment rate. by a predictor (e.9.. school enrollment tordistrict eqrollment rat io bosed ga palt years' values' can produce a future enrolliment for the sctiool once multiplied by - base enrol liment figure for the district.)	The model varles depeadent on the variables utilfzed. but can be illustrated in the followiag . montaer: $y_{j}=b x_{j}+c x_{j+1} ;$ where Y is the enrollident beling projected. $x_{j} \cdot \frac{x_{j}+n}{}$ Is a predictor of the enroll. ment. Variables b. C_{0} etc.. nepresent the, rat to of prestctor ta critierion.	City school age papulption. Past enroll. ment, elther grade school or distelct level. Births by city. land use virlables.	Relatively easy to apply. (Webster. 1971) Easy to explatn to policy makers. (Lyell $\&$ Toole. 1974) Requires aninsman of data. Data requiraments can be adjusted :o what is ava!lable. Ratios can be different for each subgroup of the total group belng projected - based on sub-group individua! differences. Usually results in accurate projections on the subgroup basis. (Hesse $\&$ Bernhardt. 1979) Most direct way to project enrollments.	Because of its easy applicabllity to alven district. the estimation problem may be oyerstaplified. (a few variables should be tacliso ded when fewer' numbers could provide more adeguate projections) (Mebster. 1971) Factors causing a ratto to vary may be overlooked resulting in Anaccurate forecâsts. (lyell 8 Toole. 1974) Variabies meed to De empirically tested before being used for pre. jections. Research must be done to discuver the predictor variables to provide the best estimates of enrollient.

TAOLE A-9
MARKOV METIODOLOGY

Tagle A-4 (contd.) MAROY METHODOLOGY

table A.S
COMBIMATIOM OF ME THODOLOGIES

References

- References

Bailey, Jerry D. Declining Enrollments and School Closings. Lawrence, Kansas; Kansas University, 1977. (ERIC Document Reproduction Service No. ED 143 099)

German, Paul, and McLaughlin, Milbrey W. The Management of Decline: Problems, Opportunities', and Research Questions. The Rand Paper Series P-5984. Washington, D.C.: National Institute of Education (DHEW), Finance and Productivity Group, August 1977. (ERIC Document Reproduction Service No. ED 147 953)

Bowsian, James; Hyde, Keith; Pritchard, Joseph and Wetter, Donald
School Enrollment Projections, A Report. Dis Mọines, Iowa; Dis Mọines Public Schools, December 1975. (ERIC Document Reproduction Service No. ED $1 / 44$ 259)
-
Box, George E.T., and Jenkins, Gwilyn M. Time Series Analysis Forecasting and Control. San Francisco; Holden-Day, 1970.

Braden, Barbara and Others. Enrollment Forecasting Handbook Introducing Confidence Limit: Computations for a Cohort-Survival Technique. Newton, Massachusetts; New England School Oevelopment"Counctl, 1972. (ERIC Document Reproduction Service No. ED 066 781)

Britney, Robert R. Forecasting Educational Enrollments; Comparisońof. a Markov Chain and Circuitless Flow. Network Model. Socic-Economic Planning Sciences, April 1975, 9 (2), 53-90.

Brown, Daniel. A. Smoothing Solution to the School District Enrollment Projection Problem. Educational Planning; May 1975,? (1); 13-26:

Brown, R.G. Smoothing forecasting and Prediction of Discrete Tine: Series. Englewood Cliffs, N.J.; Prentice Hall, 1973.

Chang', Martha J. Demographic Trends Affecting State Educational Planning; A Florida Example., Educational Planning, October 1977, 4 (2), 48-63.

Charters, W.d., Jr. The Logic Behind Enrollment Forecasting. Notebook, April 1971, 19 (8), 1-4.

-

Davis, Russell G., and Lewis, Gary M. Coping With Deciining Enrollments. NASSP Bulletin, March 1977, 61 (407), $1-7$.

Davis, Russell G., and Lewis, Gary M. The Demographic Background to Changing Enrollments and School Needs. Cambridge, Massachusetts; Center for the Study of Pubiic Policy, 1976. (ERIC Document Reproduction Service No. ED 122 415)

Dęnham, Carolyn H. Probabilistic School Enrollment Predictions Using Monte Carlo Computer Simulation, Final Report. Chestnut Hill, Massachusetts; Boston College, 1971. (ERIC Document'Reproduction Service No. ED 062 729)

Eisenberger, Katherine E., and Keough, William F. Declining Enrollment: What To Do. A Guide for Schooi Administrators to Meet th. Challenge of Declining Enrollment and School Closings. AASA Executive Handbook Series, Arlington, Virginia: American Association of School Administrators, 1974. (ERIC Document Reproduction Service No. ED'1:1

Fascione, Danief R., and Herron, William P: Projecting School-Enrollments: A Research or Political Process? American-Educational ResearchAssociation annual meeting. New York, February 1971. (ERIC Document Reproduction Service No. EO 047 369)

Finch, Harold L., and Tatham, Elaine L. Declining Enrollment: Why? What are the Trends and Implications?: and Enrollment Forecasting Techniques. Meeting on Coping with Declining Enroliments. Hyannis, Massachusetts, September 1975. (ERIC Document Reproduction. Service No...ED.176.728.)

Florio, David H. Declining Enrollment. A National School Board Assaciation: Conference Report. (Colorado Springs, Colorado) Washington, D.C.; National Schoof Boards Association,-August 1976. (ERIC Document Reproduction Service No. ED 149 481)

Folk. Micnael. A Critique of Some Futures Prediction Techniques and their Implications for Educational Planner's. Educational Planning, 1975, -2 (3), 35-52.

Gilmore, William; Bay, Duane; Woollett, Morgan; and Cornish, Richard. ENSIM. A Users Manual for a Land Use Analysis-Based Enrollment Simulation. Research Report No. 11 of Project SimuSchool: Santa Clara County Component. San Jose, California: Santa Clara County

- Ōffice of Education, September 1974. (ERIC Document Reproduction Service No. ED 096 751)

Grace, Michael; and Bay, Kyung S. A Random Walk Simulation Model for Enroliment Projections. Journal of Educational Data Processing, 1975, 12 (2), 10-12.

Grace, MiChael; Hanson, John; and Trommeleu, Peter. Markov Chain Model for Enrollment Projections. Journal of Educational Data Processing, 1975. 12 (2), 1-9.

Hesse, Rose M., and Bernhardt. Victoria L. Handbook for Population Analysis for School Districts With Declining Enrpllment. Eugene, Oregon; Planning Department/Research, Development and Evaluation, Eugene Public School District. February 1979.

Hunt, Lestar B. Project SimuSchool: A Path Toward Better Planning. A Report on the Santa Clara County Component. Educational Planning, January 1976, 2 (3), 80-83.

Jaffe, A.J. Handbook of Statistical Procedures for Long-Range Projecticns... . .. of Public School Enrollme tit. Technical Monograph. Washington, D.C.: Office of Education (DHEW), 1969. (ERIC Document Reproduction Service No. ED 058 668)

Linebarger, Dean; Minana, Floyd;. Cornish, Richand; and Hunt, Lester. ENSIMI II; A Second Generation, Land-Use-Based Enrollment Simutation Model. User's Manual. Research Report of Project SimuSchool: Santa Clara County Component. San Jose, California: Santa Clara County Office of Education... (ERIC Document Reproduction Service Worve ED ir r... 128 928;

Lyel1, Edward H.: and Toole, Patrick. Student Flow Modeling and Enrollment Forscasting. Planning for Higher Education'; Deqember 9974,3 (5);7-10.

Mangelson. Wayne L.; Norris, Donald L.; Poulton, Nick L.; and Seeley, John A. National Enrollment Projection Studies. Education, December 1974, 3 (6), 1-6.

16.j

Minnesota Association of School Administrators; Minnesota State Department of Education; and Minnesota State Pianning Agency. Planning for Declining Enrollments. Planning Assistance Manual and Case Studies, St. Paul, MinneSota. July 1976. (ERIC Document Reproduction Service No. ED 128 919)

National Center for Education Statistics, Digest of Educational Statistics. Washington, D.C.; United States Government Printing Office, 1975.

National School Public Relations Association. Declining. Enrollment: Current Trends in School Policies and Programs. Arlington, Virginia, 1976. (ERIC Document Reproduction Service No. ED 130450)

Piele, hilip; and Wright, Darrell. Enrollment Forecasting. Educational Facilities Digest I. Columbus, Ohio; and Eugene, Oregon: Council of Educational Facility Planners, International; and ERIC Clearinghouse on Educational Management, University of Oregon, 1976 (ERIC Document Reproduction Service No. ED 117 782)

Sieradski. Karen. Imolications of Declining Enrollments for Schools. NAESP School Leadership Digest Second Series, Number 4. ERIC/DEM Research Analysis Series, Number 19, Arlington, Virginia: National Association of Elementary School Principals, 1975.- (ERTC Docimeent Reproduction Service No. ED 114 906)
.-
South Carolina State Department of Education. Declining Enrollment: Implications for South Carolina School Districts. Columbus, South Carolina: Office of Research, October 1977. (ERIC Document Reproduction Service No. ED 144 254)

United States Bureau of the Census. Current Population Reports, Series P-25 Na. 601, Projections of the Population of the United States. 1975 to 2050. Washington, D.C.: United States Government Printing Office, 1975.

Wasik, John D. A Review and Critical Analysis of Mathematical Models Used for Estimating Enrollment in Educational Systems. Raleigh, North Carolina: Center for Occupational Education. North Carolina State University 1971. (ERIC Document Reproduction Service No. 50. 059 545)

Watsor, Cicely. Projection Notes I. Educational Planning, May 1975, 2(1), 35-56.

Watson, Cicely. Projection Notes II. Educational Planning, 1976, 3(1), 22-37.

Weister. William J. An Empirical Comparison of Selected Enroilment Projection Formulas. The Journal of Educational Research, April 1971, 64 (8), 375-381.

[^0]:
 aeproductions supplied oy EDKS are the best that, can be made *
 from the originai document.

[^1]: Sf - Single-fimily

