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ABSTRACT

The purpose of .this paper is to identify how the theory and

techniques of research in cognitive development can be applied to the

study of learning and instruction in mathematics. Five basic research

paradigms are characterized; and major directions of research on

number, measurement, geometry, and adolescent reasoning are identified.

Most of this resi.!arch was built upon the work of Piaget and his

associates. However, recently translated Soviet research and infor-

mation processing techniques offer promising alternatives.

If cognitive development research is going to have a significant

impact on education, its theories have to'be recast into an educational

context and principles of cognitive development have to be applied

directly to educationally significant questions.. The rOle of mathe-

matics educators should not be to validate or develop aspects of

differenr theories of cognitive development but to determine how

useful these theories are in explaining childrens' learning of

mathematics concepts. Specifically it. is important to focus on

content that is central to the mathematics curriculum. Furthermore,

it is necessary to empiriCally establish how the descriptive information

from research on childrens' thinking can be applied to prescribe

instruction. One of the most, promising directions for such research

is to attempt to determine how content can be designed and sequenced

to reflect pr build upon childrens' informal mathematical concepts

and strategies. A\second potentially productive line of research is

attempting to identify how instruction may be individualized to match

childrens' level of development.

vii



V

Cognitive Development Research and Mathematics Education

The basic concern of research and theory in cognitive development

is to describe the growth of basic concepts of children over time and

explain the processes by which these concepts are acquired and applied.

Cognitive development can be characterized in a number of different ways.

A useful distinction between two different conceptions of cognitive develop-

ment has been proposed by Reese and Overton (1970). One is based on an

organismic model and is represented by the works of Piaget and his

followers. This model takes as its analog the biological organism and

is concerned with the development of complex cognitive systems. The other

conception of cognitive development is based on a mechanistic model and

is essentially an extension of behavioristic theories to explain develop-.

ment. The theories of Gagne (1968, 1977) regarding development are repre-
.

sentative of this orieiltation. The mechanistic model is based on the machine

and is coicerned with the development of discrete chainlike associations.

From the mechanistic perspective the only distinction between learning and

development is the duration of time involved. Developm6nt deals with

change kn behavior over weeks, months, or 'years whereas learning theory

deals with'changes in behavior over much shorter periods of time.

Even within the organismic framework cognition is an elusive concept.
4'qv

However, although any attempt to characterize cognition in detail remains '

open to argument, certain fundamental premises of the organismic model

can be identified. The basic premise is that any intelligent behavior

must be explained by reference to internal psychological mechanisms of
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some kind (e.g., groupings, transitive inference, logical grammars, etc.),

There is far from universal agreeMent as to what internal mechanisms are

most approprlate,for explaining intelligent behavior, but the general

organismic View is that these internal mechanisms areorganized into well

integrated structural systems rather than consisting of a series'of inde-

pendent associations. Furthermore, it is generally recognized that these

sy!;tems are not restricted to higher order conscious behavior but operate

on a wide range of mental functions, includlng st..1; functions as perception

and memory.

From the organismic perspective, the study of cognitive development

i3 the study of the development of these cognifive systems. Whereas

learning involves the application of intellectual structures to ne, events,

developme,nt entails transformations in the cognitive structures themselves.

The piimary focus of developmental research is not to identify what

!;pecific knowledge a child possesses at a given point in time but to study

how tle child processes or operates on information. There is relatively
f

111.tle concern with find ng out which addit on facts are known by most-

second graders or identifying the age at which most'children,master udition

of two-digit addends; the focus is on concepts like conservation, transi-

tivity, and seriation that involve the application of logical inference

and seem to be closely linked to underlying cognitive structures. The

interest in a concept like conservation is not simply that it is an

important bit of factual knowledge, that is, that quantities remain

invariant under certain transformat ons. kather performance on conservaLion

tasks is v ed as a measure of underlying cognitive structures that the

child can apply to a wide variety of problems. In other words a child's
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performance on a conservation task does not simply demonstrate a knowledge

of an isolated fact about the physical world. 'It is indicative of the

way that child processes information in a variety of problem situations.

This is a central issue it cognitive development. Those who atta,ch

relatively little significance to concepts like conservation generally

regard them as no more than bits of factual knowledge, whereas those who

attribute a central role to such concepts regard them as measures of bade

cognitive processes.

Mechanistic models do not recognize the integrated cognitive systems

that are the essence of cognition within organismic models. Although

internal mediating responses are acceptable, these are organized into

chainlike associations rather than integrated into complex systems.

Mechanistic models also are more concerned with product than with process.

As with cognition, the two types of models p:.7ovide radically different

conceptions of the nature of development. In organismic models the individual

actively participates in the construction of knowledge. New information

is not received passively. The subject actively assimilates it into and

interprets it in light of the existing cognitive structures. The mechanistic

position is that knowledge is a copy of reality and that people are

essentially reactive rather than active in acquiring knowledge.

Experience plays a key role in development in both types of models,

but experience is characterized in different terms in each type of model.

Within organismic models experience traditionally has been regarded as

a function of the sum of all an individual's experiences. The environment

is considered to be something of a black box within which specific cause

and effect factors are undifferentiable. Research based on organismic
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models traditionally has been observational and correlational rather than

experimental, and until recently there has been little attempt to manipulate

experimental variables. Note that this holistic view of experience is

an integral part of a theory that hypothesizes the existence of an inte-

grated cognitive system in which individual elements cannot be significantly

altered without changing the structure of the entire system.

Mechanistic models, on the other hand, fdcus more on the specific

effects of training. In the last 10 to 15 years there have been

an increasing number cf training studies that have been based upon tra-

ditional organismiC variables. Indeed, even from an organismic perspective

it is becoming accepted to attempt to identify spec fic mechanisms of

development. Even Piaget and his associates have been conducting training

studies in the past few years (Inhelder, Sinclair & Bovet, 1974) . Thus,

erg nismic ma6dels do not preelude the aaalyzing development or studying

part processes. However, the parts must ultimately he interpreted in

context c)f the whole of which they are a part.

The ultimate source of cognitive mechanisms is another point of

disparity. Most mechanistic models hypothesize that behavior can be

explained strictly on the basis of environmental determinants, and it is

assumed that all internal mechanisms originate solely from experience.

However, organismic models allow that some structure exists at birth and

that others develop through maturation and the interaction of present

structures and the environment.

Organismic models generally view development as proceeding through

an irreversible, fixed sequence of qualitatively different stages; and

the mechanistic model views development as essentially continuous,

reducible to quantitative change. Thus, for organismic models development
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results from change in the organism itself; and for mechanistic models

development reduces to quantitative increments.

Organismic models tend to be teleological in that they are goal

oriented in their characterization of cognitive development. For .example,

a child is inexorably developing toward a stage of formal operations.

Mechanistic models, on the other hand, do not rely on teleological causes

to explain development. Organismic models also tend to be more species

specific. Their proponents maintain that to understand human behavior

it is necessary to study cognitive development of people, where proponents

of mechanistic models are more likely to generalize from research with

simpler organisms.

Many of the significant issues in cognitive development reduce tu

differences over which type of model of cognitive development is more

appropriate. Issues involving the stage concept, the etfact of training,

and the significance of conservation all revolve around the question ot

which type of model of cognitive development has been adopted. Experimental

paradigms have been proposed (Watson, 1968) and a wide,range of studies

(Beilin, 1971) have been conducted that attempt to resolve the conflicting

theories that result from adopting one or the other of these two models.

In general, these studies have done little to resolve the basic 13stles

or establish the validity of either model.

Reese and Overton (1970) propose that these models represent two

independent world views that are based on different sets of assumptions

and are essentially irreconcilable. In essence, this means that it is

futile to attempt to cynthesize an organismic approach like Piaget's with

a behavioristic, mechanistic approach. In fact, the central question

Vr
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not which model is valid or accurate. It is 'not being asserted that the

model describes the way.that cognition actually develops, only that the

model accurately describes behavipr. To quote Reese and Overton (1970),

"It is not being asserted [in a model] isi4ik thp real world is thus and so,

only that the real world behaves as if it were thus and so" (p. 120).

Thus, the relevant question is pragmatic. Which model is more'frUltful

for adequately explaining and predicting behavior? Since any model

limits the domatn of problems that are susceptible to investigation, lthe

choice of a model essentially involves a value judgment as to which problems

are most significant to solve.

Since neither model appears to be sufficient to account for the whole

range of human behavior, several eclectic theories have emergesl. For

example, White (1965) maintains that at about the age of 5 to 7 years

qualitative change occurs in children's behavior. A mechanistic, asSociative

model best accounts for 71y behavior while a cognitive model isrost

appropriate after this transition. Kohlberg (1968) and Uznadze (1966)

also attempt to integrate the two models to explain simple and more

complex behavior.

Many of the lower level skills in mathematics, like learning addition'

facts, are readily reduced to associations and lend themselves to analysis

in terms of mechanistic models. However, most of the more interesting

complex cognitive processes are more adaptive to cognitive, organismic

models. Although it is not always clear what sort of model a particular

researcher has adopted, most of the cognitive development research that

is of particular interest for the lcarning and teaching of mathematics

s baSed on organismic models, and they will be dealt with most completely,
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in this chapter.. For a more complete discussion of the mechanistic

position with respect to cognitive development, see Baer (1970) or Bijou

and Baer (1961).
0

Cognitive development is an extensive field that is impossible to

characterize adequately here. Consequently it is necessary t70 assume that

the reader has some-familiarity with.the work in this area. Most of the

research that has the greatest potential significance for the teaching

and learning of mathematics has been based on the work of Piaget. Several

excellent summaries of his voluminous works exist elsewhere, and no attempt

has been made to duplicate or summarize these efforts. Piaget's basic

positions have not changed significantly in recent years and early studies

on number, space, ai.ld geometry still provide the basis for much of the

research on the teaching and learning of mathematics. Consequently; Flavell's

(1963) summary is still one of the best statements of. Piaget's basic theories

and research available. For more recent and somewhat more general

discussions of theories and research in cognitive development, see Flavell

(1970, 1977), Gelman (1978), and Ginsburg and Koslowski (1976).

Major Paradigms of Cognitive Development Research

Wohlwill (1973) has outlined a hierarchical model for the study of

development problems which with certain tIpdifications provides a useful

framework for.charac.terizing cognit:ive development research in mathematics

education. Wohlwill places certain restrictions on the criteria for

suitable behavioral dimensions that would disallow many of the problems

of central interest in mathematics education. tIn research that is

primarily concerned with explaining the general caue of cognitive
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development,, variaLles that develop independently\of specific experiences

or specific school curriculum are generally most appropriate. Although

the foundations of malty mathematibal concepts maY _fit-these criteria, most

mathematical concepts are acquired under the influence of instruction.

It can be argued that concepts'that are influenced by instruction are not

truly developmental, but tpis distinction:does not-seem very productive.

If certain mathematical concepts show the same stagelike characteristics

as pure developmental concepts, the.paradigms.'and techdlques of research

in cognitive development can prove useful in their study and should be

applied. Experience plays a role in the development of most concepts.

When instruction is a factor, there is simply a greater potyltial for

variability in the development of the given concepts. The important Point

is that at each level of W-O41will's model, it is necessary to identify

the specific effects of instruction when appropriate. If this attention

to the effects of instruction is built into the model, Wohlwill's general

model provides a useful framework to describe the major paradigms of basic

research in the development of mathematical concepts.

Wohlwill identifies filte basic phases in reSearch on development:

(a) the discovery and synthesis of developmental dimensions; (b) the,

descriptive study of change, (c) the correlational study of age change,

(d) the study of the determinants of developmental change, and e) tke

study of individual differences in development. Although there is an

implied hierarchy, research has generally been conducted at each of the

levels simultaneously. Ideally, the results at lower levels provide a

foundation for research at higher levels, and conclusions reached at

lower levels are consolidated and possibly revised on the basis of work

at advanced levels.



The Discovery and SyntileSis of DeveloEmental Di'mensions

The first task in investigating the'development of mathematical

concepts is to identify the dimensions to be used to describe development.

In the study of the developmerit of mathematical cOncepts, the specific

variables to be investigated have been derived from two primary sourcesc

(a) the mathematical axioms,andtheorems underlying the conCepts under

investigation and (b) the general study of cognitive development.

The study by Wagman (1975) is an example of an investigation employing

variables derived from the mathematical structure of area measure.

Although the study is similar to those based on psychological considerat ons,

Wagman maintains that most studies in the general cognitive development

tradition have not investigated some of the significant aspects of area

measure The implication is that by beginning with the mathematical

foundations of a subject one is more likely to provide a complete picture

of the development of a mathematical Concept. The studies reported by

Loviill (1971a, 1971c) on the growth of the concept of a function and the

deVelopment of the concept of mathematicalproof provid additional

examples of mathematically derived dimensions.

Most of the research on the development of mathematical concepts that

has evolved from the general study of cognitive development has been based

on the work of Piaget and his associates. For Piaget,,certain logico-

mathematical structures (e.g., groupings) provide excellent models of actual

cognitive processes used by older children and adults. (For a more

s!omplete discussion of groupings, group-lattice structures, etc., see Flavell,

1963.) Accordlng to this theory the major elements of cognitive development

can ultimately be described in terms of the-development of these logico-
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mathematical structures. Thus, for Piaget these structures provide the
#

major dimensions for the study of cognitive develqpment. However, although
0

such structures are appealing for their mathematical elegance, to

hypothesize the existence of these structures requires a high degree of

inference, and their usefulness far explaining the development of basic

mathematical concepts is open to guestion(Steffe, 1973).

Most research in the development of mathematical concepts has focused

directly on principles like conservation, transitivity, seriation, and

class inclusion, that are more ceadily observable.than grouping structures.

However, although these principles are less obscure than grouping

struetures, researchers are still plaTied by the problem of constructing

criteria\chat are necessary and sufficient to establish whether or not

a child has attained an operational level in applying them.

Developmental dimensions should be sufficiently situation independent

to generate valid, reliable measures of development. Researchers are

faced, however, with the well documented problem of horizontal de-calages.

Although it seems that operations with the same logical structure would

readily transfer from one problem situation to another, this is not the

case. For example, conserVation of mass is attained as young as 7 years,

while conservation of weight is not attained,until at least 9 years, and

volume is not conserved until 11 or 12 (Piaget & Inhelder, 1941; E)kind,

1961). Thus, although it is desirable to define developmental dimensions

in terms as general as possible, some specification of the domain of

application seems unavoidable. It is not sufficient to identify children

conservers; it is necessary to specify Whether they conserve one-to-one

correspondence, continuous quantity, weight, or volume.

4
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Unfortunately, the probilk does not disappear with the specification

of the, doma,in in which the operation is applied. Methodological variations

account for significant differences,in children's performanceon tasks

te,?ting logical operations. Differences in the criteria for success, the

use'of verbal or nonverbal procedures, the presence or absence of conflict,

and variations in materials or protocols all significantly affect children's

level of performance (cf. Geoi-ge, 1970; King, 1971; Sawada & Nelson, 1967;

Shantz & Smock, 1966; Stone, 1972; Uzgiris, 1964). Furthermore, these

differences are not trivial. Methodological variations account for a

four-year age differential in the acquisition of transitivity (Bailey, 1971;

Smedslund, 1963). This has led.to sustained debate.over appropriate re-

search methodology (cf. Sraine, 1959, 1964; Smedslund, 1963, 1965).

methodological issues frequently involve basic philosophic differences

that seem to go back to fundamental mechanistic-organismic distinctions.

This makes any empirical resolution virtually impgssible.

One proposal for dealing with experimental variability and the clicalage

-issue has been put forth by Flavell and Wohlwill (1969). The wbole problem

centers on what performance is necessary to demonstrate competence for

a given logical operation. Flavell and Wohlwill p*ose that an ana;ysis
-

of cognitive development should incorporate a Competence-performance
fr-

distinction 'similar to ChOmsky's model for language acquisition. The

competence component of the model is the logito-mathematical structure

0 of the domain, and the performance component represents the psychological

processes by which the structures in the competence component are accessed

and applied to specific tasks. The competence camponent is an idealized

abstract representation of what is known or understood, whereas the

performance component must account for the reality of stimulus variations,
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conflicting information, and memory limitations.

In Flavell and Wohllaill's model, a child's performance for a given

operation should be specified in terms of three parameters: Pa, the

probability that the operation will be function'al in a given child; Ph,

the probability of the operation being applied to a given task; and k,

the weight to be attached to Ph in a given ,child at a given age. The

equation for the probability Of a given child solving some particular

task is:

P (+) = P
a b

Any description of development must account for P
b
as well as P.

In other words, developmental dimensions cannot be based completely on

logical operations. They must also be defined in terms of attributes of

potential problem situations that affect performance.
0

The Descriptive Study of Change

Once developmental dimensions have be,:m selected, the task is to

describe the course of developmennalong these dimensions. This is

the descriptive phase of the research proglam that characterizes the

initial efforts in almost any field of scientific endeavor. Educational

reocarch in general has been marked by a disdain for this phase of the

scientific process. Major curriculum projects and elaborate theories of

instruction have been grounded on extremely limited empirical foundations.

Rather than beginning With a careful observation of children learning

mathematics, research has too'often been initiated with narrowly defined

hypotheses tested in carefully controlled se.ttings using standardized,

objective instrumentation. Standardization and experimental control

certainly haVe their place.in research. But if controlled experimentation
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is preceded by careful observation, the experimenter has a much better

basis for expllining specific results. In addition, the experimenter

Should gain a clearer idea of what e1ements are pot being tapped with

the standardized instruments and should be able to design items- that get

at the most significant variables.

In many scientific fields carefully controlled research is not

initiated until the experimenters have a sufficient empirical basis to /

be virtually certain of their results. That this paradigm has seldom

been'applied in educational research may in part account for the iyndrome

of no significant:difference and the ceneral lack of real progress in

identifying significant educational variables.

Research in cognitive development has been somewhat less guilty in

this regard than educational research in general. In fact, demnstrating

the usefulness of clinical interview techniques and the wealth of infor-

mation that is contained in incorrect responses may be one of the most

significant contributions of Piaget to research in the learning of

mathematics.

GinSburg (1976) has made one of the strongest cases for the use of

clinical-observational techniques in studying the learning of mathematics.

He maintains that standard tests often misrepresent chAldren's competence.

Consequently a greater emphasis on the flexible observation of children's

mathematical thinking'is required. This point is aptly illustrated by

.Erlwanger's (1973, 1975) evaluation of IPI using flexible interview

techniques. Although standardized tests generally indicated that certain

children were successfully progressing through the IPI program, clinical

interviews uncovered a number of serious misconceptions that Erlwanger

attributed to the program's specific nature.
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Although the potential richness of clinical cbservation and inter-

active intetview techniques is gLterally acknowledged, serious questions

concerning their validity and reliability have been raised. To overcome

these objections, most of the replication studies based on Piaget's

original research have attempted to standardize protocols 'and procedures.

krequeptly the standardized proccdures imspse less stringent

conditions for assuming a child has attained a given operation which

results in identifying erlier ages of emergence of-the operation.

Piaget and his associates require that in order for a child to be judged

operational for a given concept 'the following criteria must be met:

(a) they muSt make the correct judgment with respect to the given operation,
c

(b) they must justify their response, (c) they must resist verbal counter

suggestion, and (d) their performance must transfer to related tasks

(Inhelder & Sinclair, 1969).

Brainerd (1973a, 1977) contends that these criteria are tuo restrictive

and result in too many false negatives. He proposes that children be

required only to give correct judgments and not to justify their answers.

Otrers have proposed using nonverbal techniques that minimize verbalization

of both the experimenter and the child (Braine, 1959; King, 1971; Miller,

197(,; Sawada & Nelson, l967).

Although standardized techniques are definitely-needed at some point

in the research process, much of the richness uncovered using more sUbjective

techniques is lost. Standardized protocols seldom uncover the transitional

stages of performance on a given task that are identified by Piaget and

others using interactive methods. .he proponents of standar,zation

could respond that these transitional stages are simplY illusory anyway,
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I.

Aereas those favoring interactive procedures would maintain that the

standardized techniques do not tap genuine operational competence.

V.

This division tends to split along philosophical lines. Those

favoring a mechanistic model believe that important cognitive outcomes

should be specifiable in terms of-overt behavior. Therefore they take

a hard line on standardized teChniques;. those favoring interactive

methods tend to fall in the organismic camp. To some degree these

methodological issues present a false dichotomy. It is not a question

of either-or. Both paradigms have their strengthsand weaknesses. Some

standardization is necessary in studies comparing instructional treatments

and in studies comparing the relative difficulty of two or more tasks.

In these kinds of studies, objectivity is of central concern. Standardi-

zation is also ultimately needed to test hypotheses and determis* the

prevalence of specific responses. On the other hand interactive methods

also have their place, and clinical case study research should be recog-

nized as legitimate research endeavcr. Something is lost and something

is gained with each paradigm, and both clinical and controlled studies

are needed. .

Up to now, researchers favoring one type of study or the other have

tended to rely exclusively on the design of their choice. Because of the

variability introduced by differences in materials and procedures, it has

been difficult to equate the two bodies of research. Researchers would

be well advised to incorporate both types of design in their programs.

In either case the goal of
.f
this phase in the research program is to

describe the course Of development along the dimensions that were laid

Ilil

out in the first phase discussed above. For the most art, the develop-

mental dimensions that have been of greatest interest i describing learning
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in mathematics have been qualitat vc rather than quantitative. As a

consequence, development cannot be described in terms of a mathematical

function like one might generate from a test of word recognition. .Instead,

the problem becomes one of describing invariant sequential patterns of

qualitatively different responses. The main task reduces to specifying

the sequence in which behaviors appear during the course of'development

along with determining how invariant this sequ2nce is for a.given sample

of children.

Some attempt has-been made to establish age norms for the emergence

of specific responses. However, in addition to the variance introduced

through experimental variation, cultural and,socioeconomic factors create

an almost overwhelming obstacle in this regard. Although estimates of

such age norms are useful as benchmarks and they do provide some measure

of the duration of different stages of development, caution should be

exercised in their application.

The Correlational Study of Development

The development of most mathematical concepts of real interest, like

nuMber or measurement, are not readily described along a single dimension.

These concepts involve the synthesis of a number of logical operations,

and therefore multiple measures are required. Furthermore, it is impossible

to understand the development of a concept by considering it in terms of
-N

isolated, independent dimensions.

One of the major aims of cognitive-developmental study

is to identify and interpret the temporal relations that

may hold among conceptual acquisitions. For any pair of

acquisitions A and B, the most interesting of suCh relations
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are invariant concurrence (A and B develop synchronously

in "all children) and invariant sequence (e.g., A develops

earlier than B in all children). (Flavell, 1970, p. 1034)

Developmental sequences. By analyzing the structure of various

problems, one can hypothesize that certain concepts must be learned before

others because the development of the first mediates or, in some way

contributes to the development of, the second. The difficulty is that

by analyzing tasks in different ways different sequences can be identified.

For example, one can construct a reasonable argument for conservation

preceding transitivity or for transitivity preceding conservation (cf.

Brainerd, 1973d). For this reason logically derived sequences must be

pompared with the actual sequences of development, so that hypotheses can

be tested regarding factors that contribute to the development,of a concept

and the processes that a child is using to salvo a given problem.

Although developmental sequences are an integral'part of Piaget's

theory, his method of comparing mean ages of development for different

samples of children is inadequate for verifying the existence of such

sequences. Repeated measures on the same subjects are required, the

most effective of which would look for sequence reversals. If the

development of B depends on the development of A, there should be an in-

variant A - B sequence; and B should precede A only in cases of measurement

error. Where more than two tasks have been involved, scalogram analysis

techniques have' frequently been applied (Kofsky, 1966; Wohlwill, 1960, 1973).

Dongitudinal design provides certain information that is inaccessible using

cross-sectional methods; and invariant sequences identified in cross-

sectional studies should be confirmed with longitudinal study, where the
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sequence of development can be observed directly withih individual subjects.

However, because of the practical problems involved, relatively few

longitudinal studies relating to the development of mathematical concepts

have been conducted (cf. Almy, Chittenden & Miller, 1966; Almy,

Dimitrovsky, Hardeman, Gordis, Chittenden & Elliot,'1970; Carr, 1971;

Dudek & Dyer, 1972; Little, 1972; Niemark & Lewis, 1968; Hooper &

Klausmeier, Note 1.)

The objective of the study of developmental sequences is to establish

some functional relationship between tasks that accounts for observed

invariant sfAquences. A key problem in this endeavor is the sensitivity

of the tasks used to measure the individual concepts. An observed A -

sequence may simply result from the fact that the task measuring B is less

k;ensitive than the task measuring A and consequently yields a greater

number of false negatives. If there is sufficient time lag between the

development of different concepts as with conservation of mass, weight,

and volume, there may be no serious problem. But most sequences of

greatest interest occur over shorter periods of time.

For example, the sequence of development of conservation and transi-

t.ivity is of some potential significance for understanding the development

of number concepts because it may reflect the ordinal-cardinal controversy

;see Brainerd, 1976). Piaget and Inhelder (1941) ir tially proposed that

the two concepts develop synchronously, but with the exception of a study

by Lovell and Ogilvie. (1961), most of the initial replications found that

conservation develops before transitivity (Kooistra, 1964; McManis, 1969;

smedslund, 1961, 1963, 1964; Steffe & Carey, 1972). TheSe studies,

however, have been criticized by Brainerd (1973a) for failing to equate

the relative sensitivities of the assesment tasks. Each of the studied

a
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employed perceptual illusion in the transitivity tasks. Using tatks'

that did not involve perceptual illusion, Brainerd (1973d) found that the

development of transitivity precedes the development of conservation.

It is not clear that Brainerd's procedures are any more equitable than
N%

the others, since the conservati tasks involved perceptual illusion and

the transitivity tasks dicLnot At this point, the most reasonable

conclusion seems to be that the sequence of develepment appears to

depend an what evidence one requires for the respective operations. If

one compares the standard conservation tasks to the weaker definition of

transitivity, then it appears that transitivity develops earlier. If one

insists on stronger criteria for transitivity, then it appears that

conservation develops earlier. Unfortunately there are no valid empirical

procedures to,,resolve this issue. No task has any special claim to be

the measure for a given operafi .1. The competence-performance distinction is

involved again, and it appears necessary to account for the performance

dimension in the characterization and explanation of developmental sequences.

Developmental concurrences. Piaget's theory hypothesizes that new

cognitive structures that can be applied to a wide range of problems emerge

within a given stage of development. Furthermore, these operations are

inteqrated into unified structural systems. This would seem to imply

that development would be marked by the synchronous development of a

variety of abilities, whch should be mainfested by consistent failure

or success across a number of different tasks. Not only should tasks

with the same inherent structure be mastered concurrently, but because

of the hypothesized interconnectedness of logical operations, similar

concurrences should be found for related operations.
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The stage concept is potentially useful because it proposes to predict

behavior over a wide range of tasks. Thus, performance on a small set

of tasks should be sufficient to predict performance on a large domain

of related tasks. Unless this sort of generalization is possible, the

stage concept has little practical value for education. Unfortunately,

very few consistent concurrences have been found. Although certain

logical operations may ultimately be integrated into a structure d'ensemble,

they appear to emerge asynchronously and initially generalize to.a

restricted number of problem situations.

In spite of the almost insurmountabl2 obstacles in terms of horizontal

d6calages and methodological variability, the correlational study of

development is central to the applying research in cognitive development

to education. Decisions involving the sequencing of content and matching

instruction to appropriate levels of children's development both rest on

such study. For a more complete discussion of this topic the reader is

referred to the articles by Flavell (1970, 1971, 1972), Pinard and

Laurendeau (1969), and Wohlwill (1973).

The Study of Developmental Change

The most widely used approach to investigate the factors affecting

developmental change is the training udi. Extensive reviews of

Piagetian training studies can be found in articles by Beilin (1971),

Brainerd (1973), Brainerd and Allen (1971), Hatano (1971), Glaser and

Resnick (1972), Strauss (1972), and Wohlwill (1970). The typical

training study has employed a relatively short period of training. Most

treatments have consisted of a single short training session, and few

have involved more than 10 half-hour sessions. Typically, the treatments
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and pretest and posttests have been administered individually or in small

groups; and training has involved a single logical operation like conser-

vatiten, seriatibm, or transitivity.

Benin (1971) identifies three generations of training research.

In the first generation; studies were designed to substantiate basic

elements of Piaget's theory of cognitive development. One group of

studies has attempted to induce logical operations by creating a state

of disequilibrium with respect to the given operation. Other studies of

this genre have focused on mental operations such as addition-subtraction

or reversibility, that are presumed to be+involved in the natural develop-

ment of the concept to be trained.

The second generation of training studies were based on the hypothesis

that Piaget's stage theory is overly rigid in the limitations it places

on cognitive development. A number of these investigators believe that

the acquisition of logical structures can be accelerated and reject the

equilibration model as the sole explanation for their acquisition. They

do not accept, for example, that reversibility and compensation are the

essential mechanisms leading to conservation. Some studies have trained

children to attend to relevant attributes and disregard or ignore misleading

perceptual cues. Another group of studies has relied on verbal rules or

feedback in training. Others have employed technique of conformity

training, pairing nonconservers with conservers or exposing nonconservers

to expert models.

Studies of this second type continue to be a major force in Piagetian

researcl.. However, there is a third generation of studies whose objectives

are different from the other two. The aim of these studies, which are
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conducted by the Genevans themselves, is to inveStigate the psychological

mechanisms.that underlie the transitions between stages. These studies

attend more closely to the stage of developnent of §ubjects before

training and spe:..ify in much greater detail than the earlier stadies the

specific effects of training. The perspective of these studies.is that

training only extends the domain of application of operational structures.

It does not initiate the development of new operations. According to this

view, "The development of operatimity is malleable only within the limits

imposed by the,nature of development" (Beilin, 1971, p. 101). Evidence

of the development of an early emerging operation like the conservation

of number is prerequisite for successful training of more advanced

concepts. In terms of the Flavell and Wohlwill (1969) model, training

operates on the performance component rather than the competence component.

of the model.

Although many individual studies failed to demonstrate significant

training effects, almost every type of training procedure has been able

to accelerate the acquisition of logical operations. However, they have

failed to identify the specific mechanisms that lead to the development

of the operatibh One difficulty is that researchers ofterifail to agree

on the specific mechanism that is operating in a given training procedure.

One researcher may attribute the effect of training to learning to ,attend

to relevant dimensions, and another may identify latent reversibility

training as the significant variable (cf. Brainerd & Aklen, 1971).

There has also been a failure to distinguish between necessary and

sufficient conditions for the development of a given operation. A basic

assumption underlying many training studies is that if training accelerates
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the acquisition of a given operation then the conditions of the training

must be crucial for the natural development of the opexa4on. Just

becaus a traiming condition has been sufficient to accelerate the

acquisition of an operation does not mean that condition is necessary for

the development-of the operation. With regard to this point Wohlwill

(1973) concludes:

Thus, we have had a parade of training conditions which

to varying extents and degrees'of consistency have shown

themselves to be sufficient to induce conServation, at

least given a child within a particular age range. But

.the relationship between these conditions and the process

of conservation as it takes place naturallythat is the

question of the pldusibility that these conditions could '

in fact have been operating in the child's extra laboratory .

experience--has rarely been examined. If it had been, it

would quickly have become apparent that most of them, from

rule learning to revefsibility training, from cognitive

conflict to reinforced practice, arô of dubious relevance

to that experience. (p. 323)

Virtually all training studies have found that training transfers to

novel materials not used in the training procedure. This specific trans-

fer applies to sittiations in ,which the tasks are similar to those used

in the training and only the specific materials are changed. For example,

toy cars may be used in conservation training and poker chips in the

specific transfer task. Nonspecific transfer applies to situations in

which the traired logical operation extends to a new domain of application
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(e.g., transfer of training on length to area). This type of transfer

has been more difficult to achieve, although several studies have reported

considerable success (e.g., Bearison, 1969; Gelmanf 1969). The difficulty

in finding nonspecific transfer is not especially surprising given the

prominence of observed decalages in the natural development of operations.

Transfer between logical operations (e.g., conservation to transitivity)

has been even more difficult to achieve.

Wohlwill (1970) proposes that cognitive development can be thought

of as a combination of horizontal and vertical transfe.k. *The larger the

number of vertical steps the learner must climb to reach his goal, the

narrower the span of generalization or horizontal transfer. Wohlwill al:So

observes that the amount of transfer appears to be a function of the

breadth and intensity of training.

Several studies have tested for retention over periods ranging from

one to seven months. Almost universally they have fou0 that the trained

concepts have been retained. The picture is somewhat different when a

specific effort is made to extinguish a.given concept. According to the

stage theory of development, once an operation is fully attained it should

be extremely resistant to extinction. An early study by Smedslund (1961)

found that trained conservers readily abandoned conservation judgments

when they were deceived with an example in which it appeared that weight

was not conserved. Natural conservers were much more resistant to such

extinction. This seemed to imply that the trained ponservers were giving

only super Lcial responses and had not attained a genuine operational.,level.

Recent studies have'failed to confirm these results. They have found no

appreciable differences between trained and natural conservers in their
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ideveloping concepts like number have proved to be quite resistant to

extinoXion for both groups, whereas later developing,concepts like

weight are quite easy to.extinguish for both natural and trained conservers

(Brainerd, 1973c).

Although the goal of much of the training research has been to

understand the specific mechanisms of development, not to accelerate

development per se, a number of studies have been conducted whose only

apparent goal is to demons, ate that training of a specific operation is

possible. Many studies cond ted by researchers interested in problems

dealing with the learning of mathematics have been of this type. The

assumption underlying these studies seems to be that a specific operation

like conservation or seriation is apparently iptportant for learning basic

mathematical ooncepts, Therefoie, it these operations can be successfully

trained, the subsequent learning of basic mathematics will be facilitated.

Although these studies have frequently been successful in training the s.

specific operations, none have demonstrated that any significant savings

transfer occurs in the learning of sUbsequent mathematical topics. In

fact, in a follow up to one of

L
e more successful conservation training

studies, Bearison (1975) conclu 0 that the training had no effect on the

//
subsOquent learning of number 6kills.

Acceleration development has been a major issue in cognitive develop-

ment. Piaget has questioned why Americans are so interested in accelerating

development when the basic operations develop naturally anyway. This

concern has been echoed by Glaser and Resnick (1972) who have questioned

whether'early stimulation will lead to richer growth or just faster growth.
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Elkind (1971) and Wohlwill (1970) have hypothesized that the longer

formal instruction is delayed; up to reasonable limits, the longer the

period of plasticity resulting in a richer ultimate level of achievement

with greater flexibility and creativity. Elkind (1976) has also proposed

that development is a whole-organism plaenomenon and that acCelerating any

single part of it may encourage maladaptation. Both hypotheses remain

P

to be proven, but at this point there is scant empirical evidence that

any attempts to accelerate development result in any desirable educational

outcomes.

It has been amply demonstrated that training using a variety of

different training pecedures is possible. Future training studies need

to be designed 'so that they provide a greater understilnding of the specific

mechAnisms of development. Such studies should provide answers to the

following questions: (a) What are the prerequisites for attaining a given

level of cognitive development? (b) What are the specific experiences

that contribute to the development of a given concept? .6(c) Once a concept

has been learned, to what extent does it generalize? This involves (a)

measuring subjects' entering knowledge and level of development; (b) carer

fully designing training that is based upon a reasoned theoretical rationale;

and (c) measuring specific outcomes, including transfer and retention.

Results should not be reported using global measures of group success,or

failure. Instead, some attempt should be made to account for the differential

effects of instruction on individual subjects. Future training s'..:udies

will contribute to our knowledge only in so far as they can help us to

understand how development proceeds in individual children.

An example of a study that incorporates many of the recommendations
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listed above is the teaching "experiment" of Steffe, Spikes, and Hirstein

(Note 2). The purpose of their study was to investigate whether two

clusters of Piagetian variables, class inclusion and conservation, are

prerequisites for 5irst-grade'children's learning certain number concepts.

Twenty-nine individual measures were clustered into the two readiness

vailables and seven achievement variables. Subjects were divided into

tWo groups. For one groupObinstruction wes carefully designed and

monitored. The other group received regular classroom instruction.

The treatment consisted of approximately 40 hours of instruction over a

three-month period. The results are complex and difficult to summarize,

but evidence indicated that conservation was not a prerequisite for,

learning some number skills, the-4'rearning of conservers was qualitatively

different from the learning of nonconservers. Specifically, the conservers

could transfer their learning to an unfamiliar task, whereas the non-

conservers generally could not. This conclusion was possible only because

of the completstess of the dependent and independent variables and the

duration of the instructional treatment.

Individual Differences in Development

For the most part, individual differences have been virtually ignored

in the study of cognitive development. Wohlwill (1973) observes that

"the real problem aipears to be the failure of psychologists at either

end to cone to grips with the question, how developmental and differential

foci may effectively be integrated into a coheient whole" (p. 333). Such

an integration may take several forms. One involves the study of individual

differences in development. A second involves the study of the development
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of individual differences. In the first case the Variables of interest

are those that have traditionally been 9f interest in the study of cogni-

tive development. There is overwhelming evidence that iiidividuals differ

significantly in their cognitive development. This Is attested to by

ae,

the difficulty researchers have encountered in attempting to identify
4r.

reliable stages of cognitive development. -Any complete theory of cognitive

development must include ways to account for and describe these individual

differences. In the second case the emphasis is on individbal differences.

Here the question is what is the oiigin of individual differences? How

do they develop, and how consistent are they over the course of develop-

ment? For a more complete discussion of individual differences in cogni-

tive development see Kagan and Kogan (1970) and Wohlwill (1973).

The Development of Mathematical Concepts

One of the unique features of research in cognitive development that

has made it especially relevant for mathematics education is the fact

that much of the research deals with the development of specific concepts,

many of the% mathematical in nature. Although developmental psychologists

are concerned with the development'of cognitive structures that transcend

the formation of any specific concept, these experiements are designed

at least in part to describe the development of specific concepts. The

development of number, measurement, space and geometry, and adolescent

reasoning are areas that have received particular attention. What follows

by way of summary is highly selective. For more complete accounts, see

Brainerd (1973b, 1976), Bryant (1974), Churchill (1961) , Flavell (1963,

1970), and Ginsburg (1975, 1977a) on number; Carpenter (1976) and

,1
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Carpenter and Osborne (1976) on measurement; Lesh and Mierkiewicz (1977),

and Martin (1976) on space and geometry; Flavell-(1963, 1977) andrbleimark

(1975) on adolescent logical reasoning; alid the general discussions by

Beilin (J969) and Wallach (1969) on conservation.

Number'

Much A'the early research on number assessed children's ability to

perform conventional arithmetical operations (counting, adding, subtracting,

etc., cf. Brownell, 1941). Current research is no longer concerned simply

with identifying which problems are most difficult or how many chilaren

at a given age can solve a certain type of problem. The focus has shifted

to an attempt to explain the development of basic number Concepts and to

characterize how children'solve problems, not simply whether they can

solve them.

Current research on the development of early number concepts can be

categorized into two major lines of investigation. The first attempts

.-.c) explain the development of primary number concepts in terms,of the develop-

ment of underlying logical bpqrations. The second is based on the hypo-
,

thesis that the development of number results from the integration and/or

increasingly efficient application of certain number skills like counting,

estimating, supitizing, comparing, and matching. Although there are

prominent exceptions and some of the research is difficult to categorize,

much of this research tends to be Mechanistic in charactr, whereas number

research based on primitive logic is almost exclusively organismic.

Logical foundation's of number. Although McLellen and Dewey (1896)

called attention to underlying mathematical assumptions over 80 years ago,
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it is the work of Piaget (1052) Olat provides the focus for current attempts

to explain Children's concept of number in terms of the development of

logical reasoning abilities. Piaget's influence has been SID great that

it has led Flavell (1970) to observe, "Virtually,everything of interest

that we know about the early growth of number concepts grows out of Piaget's

pioneer work in the area" (p. 1001).

For Piaget number is a synthesj.s of class and asymmetrical..relat on.

In assigning a cardinal number to a set, one disregards the differences

between elements and treats all the elements of the set as though they

were members of a common class, ergo the class or cardinal component of

number. However, in counting the set to arrive at its cardinal valAie,

it is necessary to order the set:--count one element first, another second,

and so on. This ordering represents an asymmetrical relation. As a

consequence of this analysis, a principle focus of Piaget's research on

thr development of iiumber has been the study of seriation and class

inclusion and the coordination 9,f cardinal and ordinal concepts. The

segment of Piaget's investigation of the development of number concepts

that has had the greatest impact on subsequent research involves the

principle of conservation. Piaget contends that some form of conservation

is necessary for any mathematical understanding, and almost a third of

his book, Number, is devoted to studies of

conservation of one kind or another.

Piaget describes a stagewise development of number concepts in which

conservation, seriation, and class concepts develop in close synchrony.

In the first stage children are dominated by immediate perceptual qualities

of an event and give little evidence of logical reasoning. Consequently
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they do not conserve, are incapable of seriation, and do not understand

simple class-inclusion relationships. At this stage only gross quantita-

tive judgments, based on dominant perceptual attributes, are possible.

e/

The second stage is a transitional stage. Some progress is-

7

made n all

fronts, so that children can construct series and correspondenc s. But

they still have difficul y when either is transformed. Cardinal and

ordinal concepts have developed to a great extent, but, since they have

not been integrated, children cannot relate them to each other. Finally,

in the third stage, the development of conservation, class inclusion, and

seriation is calmplete; and the child achieves an operational concept of

number.

Most of the Keplications of Piaget's research on number have concen-

trated on a single task, most frequently conservation. On the whole, these

studies have confirmed Piaget's accour.t of the progression of behaviors

exhibited for each of the individual tasks. Furthermore, these replications

have demonstrated that the errors exhibited by Ibung children are not .

experimental artifacts and do not resullt simply from children's failure

to understand the questions asked. On the other hand, studies that have

included a variety of Piaget's number tasks have found a great deal less

synchronytthan datcribed by Pidget (cf. Dodwell, 1960, 1962; Wohlwill, 1960);

A different organization of the logical operations that underlie

number is proposed by Brainerd (1973b, 1973e, 1976) who takes issue with

Piaget's contention that an operational understanding of natural number

results from the concurrent development of cardinal and ordinal concepts.

He contends that such a theory is inadequate from a logical perspeT.tive

and is contrary to the results of a number of empirical studies that he
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has conducted. Brainerd proposes that the coneept of ordinal number is

psychologically more basic than that of cardinal number, and that the

former plays a more important role in 'the early growth of arithmetic con-

cepts and skills than the latter. In fact, Brainera proposes that much

basic arithmetic is learned before cardinal concepts are acquired; and

he concludes that the developmental sequence is ordinal number, natural

number, and finally cardinal nuMber.

These conclusions are based on a series of different studies. In

one set of studies Brainerd found that children perceive ordinal.sequences

by 3 years of age, but cardinal nuMber does not begin to emerge until

about t In another set of studieS, first-graders were significantly

more successful

number concepts

on ordinal tasks than on cardinal tasks, and ordinal

(but not cardinal concepts) were almost uniformly mastered

by students who were proficient with basic addition and subtraction facts.

Finally, in another set of studies it was found that training was signifi--,

cantly more successful for ordinal number than for cardinal nuraber concepts

and that there was significantly greater transfer to, basic arithmetic

achievement.

Brainerd's results have uniformly supported his position. However,

in spite of the range of experimental paradigms he has employed, he has

tended to use the same basic items to characterize cardination and

ordination. The ordination problems have generally involved some form-

of transitivity task; the cardination problems are a sort of pseudo-

conservation task in which subjects are asked to coMpare the nuMber of

elements in two sets arranged in what can best be characterized the

final state of a typical conservation task. It is questionable whether
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these tasks validly represent:either cardinal'or ordinal numbers.

Another basic question is whether the observed ordinal-cardinal

sequence is a function of bi.1.7...Lc competence or simply reflects differences

in difficulty of the selected tasks. Brainerd (1976) cites the results

of a study by Gonchar (Note 3) as essentially supporting his position.

However, although Gonchar found the same developmental sequence for

Brainerd's tasks, the sequence was reversed when more difficult ordinal

tasks were used. This led Gonchar to conclude that Brainerd's ordinal-

cardinal sequence is primarily a performance distinction between the tasks

used to measure each concept.

Research based on number skills. In counterpoint to the logically

based theories of Piaget and Brainerd, there is a growing body of research

based on the assumption that the development of number concepts can best

be explained in terms of the development of specific number skills. This

may involve the hierarchical integration of a number of different skills

as illustrated by the work of Klahr and Wallace (1976) and Schaeffer,

Eggleston, and Scott (1974); or it may involve the increasingly efficient

application of a single skill or a small number of skills. This approach,

which usually focuses on counting strategies, is illustrated by the work

of Davydov (1975) , Gelman (1972a, 1972b, 1977), and Ginsburg (1977a, 1977b).

The sequence of development of different number skills has not been

clearly established. For example, Klahr and Wallace (1976) cite evidence

to suggest that children subitize (directly perceive) the number of

elements in small sets before they count. Gelman (1972a, 1972b, 1977),

however, asserts that counting precedes sUbitizing.

Although there is no consensus on which skills are most productive
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to study or how differer.t skills are hierarchically integrated, there is

some agreement that the growth'of the ability to count is a central factor

in the acquisition of number concepts. Children first learn to count by

memorizing a rote sequence dtf nmnerals (D'Mello & Willemsen, 1969; Wang,

Resnick, & Boozer, 1971). They initially have a great deal of difficulty

counting the number of elements in a set and make a variety of errors like

counting an element more than once, ski,pping an element, or counting on

after all the elements in the set have been exhausted (Potter & Levy, 1968).

Younger children also do not recognize that the number of elements in a

set is unaffected by the order in which the set is counted (Ginsburg, 1975).

children first learn to assign numbers to small sets and gradually extend

their range (Gelman, 1972a, 1972b, 1977; D'Mello & Willemsen, 1969; Wang

et al., 1971). Once they can accurately assign numbers to sets of a

given size, number becomes a salient feature of those sets; and they have

some understanding of the effect of different transformations on those

,;ets but not on larger ones. However, younger children still have some

lifficul*.y attending to relevant attributes in more complex situations',

and counting does not insure correct responses in typical conservation

problems (Carpenter, Note 4).

Although this line ,f research does not accept that the .development

of basic number concepts depends on underlying logical operations, the

existence of such constructs as conservation is generally acknowledged.

In fact the:7e theories often try to explain the development of concepts

like conservation in terms of the application of number skills. For

example, Gelman (1969, 1972a, 1972b, 1977) hypothesizes that conservation

failures do not reflect an immature conception of number, but that they
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occur because children center on different attributes of the array and

do not attend to numerousness. Conservation emerges as the child learns

to attend to the appropriate attribute. Gelman denies that conservation

is a prerequisite for underwtanding basic number concepts. Instead she

proposes that conservation develops through a growing sophistication to

apply counting and estimating strategies. Unlike the very ephemeral

conception of number that Piaget attributes to young children, Gelman

contends that number is a stable and salient property of a set, provided

that the nuMber of elements is within a range that a child can reliably

count.

Gelman contends that children first learn to deal effectively with

small numbers. Provided that they apply counting or estimating strategies,

they will conserve and recognize the effect of adding or subtracting an

element for sets with a small number of elements. They will fail,

however, to generalize these operations to larger sets. In other words,

these responses are restricted to a domain that the child can count. As

the ability to count is extended to larger numbers, there is a commensurate

increase in the domain of understanding the effect of different transfer-
,

mations. When children finally realize that numbers are infinitely con-

structible by the continued addition of units, they can generalize the

basic operations and conserve number in all situations.

Gelman (1972b) makes a critical distinction between "estimators" and

"operators".

The cognitive processes by which people determine some

quality, such as the numerosity of a set of objects, are termed

estimators. The cognitive processes by which people determine

4
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the cOnsequences of transforming a quantity in various ways are

termed operators. (p. 116)

A similar distinction is made by Ginsburg (1975), who identifies three

cognitive systems that children possess. System 1 includes conservation

and other processes that are used to make quantitative judgments without

counting. System 2 involves the various countin9 strategies that chidren

develop independently of formal instruction. System 3 involves the

formal krowledge transmitted through instruction. Ginsburg proposes

that in individual children the three systems may be relatively independent

of one another or may show some degree of integration. He suggests,

however, that even though the study of System 2 and System 3 concepts

will help explain children's learning of mathematics, the study,of System

1 concept,- is rot productive in explaining children's learning of

mathematics concepts.

The Development of Arithmetic Operations. It is not immediately

clear how the research of Piaget on the development of early number

concepts might be extended to study children's acquisition of arithmetical

operations. One attempt has involved the correlation of performance on

a test of Piagetian tasks with some measure of mathematics achievement

(cf. Cathcart, 1971; Dimitrovsky & Almy, 1975; Kaminsky, 1971; Kaufman &

Kaufman, 1972; Nelson, 1970; Rohr, 1973; Smith, 1974; Steffe, 1970;

LeBlanc, Note 5). These studies have uniformly found high positive

correlations, even when IQ is held constant (Kaminsky, 1971; Steffe, 1970;

LeBlanc, Note 5). Furthermore performance on Piagetian batteries

administered in kindergarten appear to be excellent predictors Of

mathematics achievement as much as two years later (Bearison, 1975;
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Dimitrovsky & Almy, 1975).

One limitation of correlational studies that is often overlooked

in the rush td'identify educational implications of research is that they

do not specify cause and effect relationships. High positive correlations

between performance on Piagetian tasks and arithmetic achievement does

not imply that mastery of these tasks is a prerequisite for learning

arithmetic skills. In fact Mpiangu and Gentile (1975) found that training

on arithmetic skills did not have a differential effect on the learning

of conservers and nonconservers. In othr.,r words, although conservation

was correlated with overall arithmetic achievement, nonconservers benefited

as much from Mpiangu and Gentile's instruction as conservers. Thus,

conservation was not necessary to benefit from instruction. However,

to conclude on the basis of this study that the lack of conservation does

not limit children's ability to learn computational concepts would be

inappropriate. As did most of the correlational studies, Mpiangu and

Gentile's studies relied on superficial measures of arithmetic achievement.

Even Piaget would not deny that nonconservers can be taught a variety

of arithmetical calculations. From a Piagetian perspective, the important

question is, What meaning.do the operations have for children? This

requires that the concepts have a certain degree of generalizability,

transfer, and resistance to extinction.

The significance of the kind of learning measured is demonstrated

by the teaching experiment by Steffe et al. (Note 2). Their results

indicate that although nonconservers learned many of the same counting

strategies as conservers, they learned them in a much narrower sense and

could not transfer them to related problems. It is not clear what



f,

38

implications ehese results hold for instruction. There was no evidence

that the nonconservers were harmed by instruction or would have benefited

from having instraction deferred. A great deal more research is needed

before we undeistand how the development of conservaLion affects the
de

learning of other mathematical concepts and operations.

The link between the development of cbunting strategies and the

learning of arithmetic operations is easier to establish. Children's

earliest notions of addition and subtraction ate built on counting; and

even before they receive formal instruction in addition and subtradtion,

they can solve simple problems using a variety of counting.strategies.

Even after several years o4nItruction on Addition and subtraction

algorithms, children continue to employ a variety of counting and'heuristic

strategies. Different strategies involve varyiee deg&es of sophistication

and efficiency. For example, younger or less capable children tend to

count all the elements in sets representing addition or subtraction

problems, whereas older or more capable children may use appropriate

counting on or counting back strategies.

Several techniques have been used to study the processes that children

use to solve problems involving the application of arithmetic operations.

Perhaps the most productive involves the use of clinical interview

techniques (Davydov, 1975; Ginsburg, 1976, 1977a) . A second approach

has been to usI response latencies to iiiter what sort of strategies

lildren apply to the solution of different problems (cf. Groen & Parkman,

19'72; Groen & Poll, 1973; Rosenthal & Resnick, 1974; Suppes, 1967; Suppes

& Morningstar, 1972; Woods, Resnick & Groen, 1975). This approach involves

breaking-operations down into a series of discrete steps (e.g., counting
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by ones). It is assumed that the time required to solve A given problem

using a particular strategy is a linear function of the number of st4s

needed to reach the solution. By finding the best fit between response

latencies for subjects solving a variety of problems and the regression

equations of possible solution strategies, the most 131;ropriate model

can be inferred. For example, to solve 9 - 6 children might count down

6 units from 9, or they might count up from 6 until they reach 9 and

keep track of the number of units. For this particular prob3em this

latter stkategy would require fewer steps; the counting down strategy

would be more-fficient\or 8 - 2. The evidence to date suggests that

there is a developmental trend for children to move from using a single

model exclusively to a more heuristic strategy by which they-attempt to

choose the most efficient strategy.

Most of the research on number has concentrated on the early develop-

ment of number concepts. There have been only a few clinial studies

of the processes that children use to solve more advanced problems,

(cf. Erlwanger, 1975; Lankford, 1974, Note 6). Developmental psychologists

tend to be primarily interested in concepts that develop somewhat

independently of the school curriculum. Presumably this accounts for

their singular lack of interest in all but the primary number concepts.

This is one of the ways that the focus of cognitive development research

in mathematics education should be different from that in plychology.

We are primarily interested in school*learning; and the limits that children's

levels of cognitive development place on their ability to apply and

understand algorithms for whole numbers, fractions, and decimals should

t fl
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be a central focus for such research.

Measurement

Although the development of measurement it_ frequently subsumed under

the development of geometry, in many ways recent measurement research

seems more closely aligned with research on basic number concepts than

with research on space and geometry. The work of Piaget (Piaget, Inhelder,

& szeminska, 1960) provides the focus for much of the recent re3earch

on the development of measurement concepts. He and his colleagues found

that the general stages of development of number concepts also characterize

major phases in the development of measurement. However, for measurement

the second and third stages are each divided into two substages and a

fourth stage is added.

As with nuMber, conservation is the central idea underlying all

measurement. The attainment of conservation and the corresponding

notion of transitivity is the hallmark of the first leVel of the

achievement of measurement 'concepts (Stage MA). Measurement further

depends on the synthesis of change of position and subdivision so that

unit iteration is possible (Stage TIM). Finally, the develotiMent of

formal measurement operatils is complete with the onset of the ability

to coordinate the measures of several linear dimensions\so that areas

and volumes can be calculated directly from their respective linear

dimensions (Stage IV).

Piaget et al. (1960) assessed the development of measurement

concepts with a great variety of measurement and premeasurement tasks,

In the earliest stages children do 'not conserve and are unable to apply
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any sort of measurement operations correctly. In later stages they

begin to apply some rudimentary forms of measurement, but they will use

unreliable measures like the span of their arms and still rely exten-

sively on visual comparisons. By trial and error they gradualli discover

that if it takes more units to cover A than S, then A is greater than B:

.But initially they fail to understand the importance of the size of the

units and often count a fraction of a unit as a whole or equate two

quantities that measure the same number of units with different sized

units of measure.

Conservation and transitivity are attained at about 7 to 8 years.

Although this marks a significant stage in the development of.measurement

concepts, operational measurement is still not achieved. Children in

this L,..age can use a moving middle term transitively but only if it is

as long as or longer than the original. Children at this ,tage can

conserve and therefore can compare units. Similarly, they recognize that

quantity is the sum of its unit covering. However, these ideas have

not been fused. Children in this stage continue tO ignore the size and

completeness of units of measure, and consequently unit iteration is not

possible. It is also interesting that although children at this sta9e

Q

conserve included area and volume they fail to conserve comPlementary

area or occupied volume. In other words, they recognize the equality

of areas and vcqumes contained within certain boundaries hut do not re-

cognize that the amount of space occupied 'by the object in relation to

other objects around it must also be equal. The eventual coordination

of change of perion and subdivision makes unit iteration possible, but

it is not until the onset of formal operations at the age of about 11 to
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12 that development is complete and the calculation of areas and volumes

is possible. As th the number research Piaget and his colleague's

(1960) deucription of the range of children's responses to individual

tasks involving conservation and transitivity has been confirmed, but

the relationship between tasks and their place in the developMent

of measurement has been questioned.

Some of the most interesting iesearch on measurement has revolved

around the use of different units pf measure. A unique feature of the

measUrement process that distinguishes it from simply countinglis the

unit of measure. In assigning a number to a set, the units are the

individual elements of the set. However, in the measurement process the

individual units that are counted may not be distinguishable, and different

units may be used to measure the same quantity. This second feature of

units of measure has been the subject of a variety of studies.

One study employed a series of conservation and measurement tasks

in which children were provided both measurement and visual cues regard-

ing the relationship between two liquid quantities (Carpenter, 1975).

In some tasks children had to focus on the visual cues; the liquid was

in identical contaiers and was measured with different units. In others

the same unit was used; so children had to focus on the numerical cues

since the visual cues were misleading. This stuSy found that, contrary

to earlier hypotheses, virtually all first- and second-grade children

respond to nutherical measurement cues at least as readily as to-perceptual

cues. However, the majority still center on a single dominant dimension,

. numerical or perceptual, depending on the problem situation. This leads to

both correct and incorrect judgments. But the errors appear to result
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from an inability to attend to the relevant cues, not misconceptions

regarding the relevance-of meAsurement operations. Almost all errors

resulted from children resp9nding to the Fost recent cues, whether they

were numerical or perceptual. In fact, there was a greater,tendency to

focus on numerical-cues than visual cues, and virtually all children

correctly responded on the basis of number in the simplest measurement

situations. These results are consistent with Gelmap's (1972a) hypothesis

that number is a.-salient property in arriving at quantitative judgments.

Furthermore, just as counting and estimating operations formed a

basis for the development of conservation with 'discrete sets in Gelman's

studies, there is evidence that measurement operations may extend this

domain to include continuous quantity. Three of the most successful

conservation training studies have used measurement activities to train

conservation (Bearison, 1969; Fusaro, 1969; lnhelder et al., 1974). A

longitudinal study by Wohlwill, Devoe, and Fusaro (Note 7) found a signi-

ficant correlation between performance on a set of measurement tasks and

performance on a conservation test administered approximately nine months

later. Although the data are somewhat tenuous, they support the hypothesis

that measuring activities actually contribute to the natural development

of conservation and are not limited to laboratory training sessions.

All in all, a fairly consistent, if somewhat illogical, sequence emerges

in the development of number and measurement concepts. It is clear that

children's logic is not congruent with adult logic. Children who do not

conserve length are also incapable of reasoning that this conservation

failure should have any consequences for their measurement activities.

If children are not asked specific"Conservation questions, the questions
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do not occur to them and they blissfully count the units just as any
%

adult would do. As a consequence conservation is not a prerequisite for'

successfully perfgrming certain measurement tasks.

Children come to school with a well'established notion of counting. -

Number is a salient cue that children readily attend to. However, they

still have difficulty controlling their attention and tend to center on

a single dominant dimension, sometimes numerical and sometimes perceptual.

This leads to a number of correct and a number of incorrect judgments.

Although measurement with a single unit is possible for quite young

children, difficulties are encountered relating measures using different

units. Here one of the incongruities in the development of measurement

concepts is found. It seems.logical that children would learn to identify

the effect of measuring with different units by observing the results

of actual measurement with different units. However, children'know that

an inverse relationship exists between the size of the unit and the number

of units measured long before they are able to apply this knOwledge to

measurement problems involving several different units (Carpenter & Lewis,

1976). This may account in part for the equally incongruous finding of

Inhelder et al. (1974) and Montgomery (1971) that measurement training

involving comparisons of measuxes made with different units of measure

are successful with relatively young children.

Space and Geometry

The work of Piaget and his colleagues (Piaget & Inhelder, 1956) also

provides a central focus for much of the recent research on young children's

spatial and geometric concepts. A central feature of Piaget's characteri-

zation of the development of spatial concept is his distinstion between

pelceptual and concepLual space. "Spatial concepts are internalized
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actions and not merely mentak images of external things or events"

(Piaget & Inhelder, 1956, p. 454). A young child might be able to

' perceive the differences between a circle and a tkiangle but be unable

to deal with these differences conceptually. For example, the child

may be unable to represent these differences in a drawing or to distin-

guiSh between the figures tactically.

Piaget and Inhelder describe three main series of spatial studies-:-

one dealing with topological concepts, one dealing with projective con-

cepts, and one dealing with Euclidean concepts. They propose that certain

topologi:al properties like proximity, s6paration, order, enclosure, and

continuity are primitive spatial concepts from which projective and

Euclidean concepts emerge. These properties are unaffected by a variety

of transformations and, hence, do not require conservation. In projective

space, objects are no longer considered in isolation but rather from

particular points of view. Thus, the studies in this series characterize

children's growing ability to describe objects viewed from a perspective

other than their own. Since straight lines are preserved in a projective

spAce, children's ability to construct lJtraight lines is considered to

be another measure of their knowledge of projective space.

From a Euclidean perspective, space is viewed as a common medium

containing objects with well-defined spatial relationships between them.

At an operational level, distance, area, and volume are conserved and

measurement is possible. In addition to concepts of distance, relations

between objects depend upon a reference systam of horizontal and vertical

lines. Thus, for Piaget, the ability to conserve and measure and an

understanding of the properties of horizontal and vertical lines arc the
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hallmarks of the emergence of an operational view of Euclidean space.

Smock (1976b) characterizes the differences between the three spatial

domains as follows: "In short, topological space deals ..th the internal

relations of the isolated object. Projective space deals with the rela-
1.

tions of objects to subjects. Euclidean space deals with the relations

of objects to objects" (p. 48).

Because of the great variety of tasks Piaget used to assess children's

concept of space and the concurrent development across three related

spatial domains, it is even more difficult to characterize briefly Piaget's

work in this area than in the areas of number and measurement. For a

more complete account see Smock 1197Gb).

Certain parallels exist between Piaget's research on number and

measurement and his studies of spatial concepts. Whereas number concepts

were grounded in basic logical class and relational concepts, Euclidean

space was built on the logically more basic concepts of topology. The

course of development also follows parallel paths starting with a

stage of gross global judgments and proceeding through an intuitive trial

and error stage to a final operational stage. In fact, some of the same

underlying factors seem o account for errors in all three realms.

A primary feature of development that seems to affect children's

concepts in all areas is the growing ability to control attention, to

attend to relevant attributes. Whereas difficulty in controlling

attention leads to conservation errors in number and measurement problems,

it also appears to contribute to children's difficulty constructing

straight lines and their failures on tasks testing their ability to

construct horizontal and vertical lines. Failures in both areas tended
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to result fram children's inability to ignore the irrelevant character-

istics of the surrounding medium. Children tended to construct straight

lines following the edge of the table on which they were constructing

them, even when the table was round; and they represented the level of

water in a jar as being parallel to the bottom of the jar, even when the

jar was tilted at an angle.

As with number and measurement, replications of the Piagetian tasks

have found the same range of responses identified by Piaget. The tendency

for replications to findsa great deal less order and symmetry than

described by Piaget holds true for spatial investigation (cf. Dodwell,

1963).

Several comprehensive attempts to expand Piaget's investigations

of space have been reported. Laurendeau and Pinard (1970) describe a

detailed experimental analysis of five tasks derived from Piaget's work

in an attempt to construct a scale of spatial development. A second line

of research has been conducted by the Genevans themselves. Laurendeau

and Pinard's research has been directed at critically analyzing and vali-

dating the earlier work of Piaget and Inhelder (1956), whereas the recent

work of the Genevans has attempted to expand the damain of the research

to new tasks that deal with new concepts. These include the study of

children's abiity to deal with reflection and rotation transformations,

several studies of children's understanding of the relationship between

changes in area and perimeter, and a study dealing with children's

ability to describe the characteristics of a Moebius ring. Although the

complete report of these studies is not available in English translation,

a summary has been reported by Montangero (1976).

4
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Another characterization of the development of geometry concepts

has been proposed by the van Hieles (Freudenthal, 1973; Wirszup, 1976).

They pick up where Piaget leaves off and describe a development sequence

culminating in abstract geometric systems. They propose that the

development of geometry proceeds through five levels. In Level 1 children

perceive geometric fiyures in global terms. Altnough they recognize and

can reproduce squares, rectangles, and parallelograms, they cannot isolate

specific attributes of'the figures. They also are unable to identify

relatlonships between different figures and do not recognize that all ,

squares are rectangles, all rectangles are parallelograms, and so on.

This is similar to Piaget's observation that young children have

difficUlty constructing class hierarchies in general.

At Level II children can isolate individual attributes of figures.

But these are established empirically, and the child does not see that

certain properties imply that other properties must also be present.

In other words children at Level II may recognize that the opposite sides

of a parallelogram are both parallel and congruent but these properties

are simply considered to occur concurrently. The child does not

recognize that any quadrilateral with opposite sides congruent must be

a parallelogram. Children at this level can identify the common attri-

hute:-1 of different figures but still do not discern the class hierarchy

b, ween figures like squares, rectangles, and parallelograms.

Level III is a transitional level between the essentially empirical

qe.mnetry of the first two levels and the formal systems of the next two.

Deduction must be supplemented with empirical demonstration. Students

at this stage see that certain properties must follow from others and

0.1
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understand the multiple classificat,ibn of geometric figures. But the

student's ability to use deduction is still limiced and requires the

support from the teacher or textbolk.
e-

At Level IV a deductive system at the level of Euclid's Elements

lif
is complete. But it is not until Level V that an understanding of

abstract systems divorced from concrete representations is acquired.

The van Hieles propose that there are distinct discontinuities

between levels and that the levels cannot be skipped. nlike Piaget they

).1propose that the levels develop primarily under the i fluence of school

instruction. Therefore, instruction should be geared to lead students

deliberately from one level to the next. Wirszup (1976) reports on the

efforts of two Soviet researchers who have based a program of geometry

instruction on the work of the van Hieles with striking sucess.

If the van Hieles' analysis is correct, it would have serious impli-

cations for instruction in geometry. Formal instruction in lOth grade

geometry begins at Level IV and is preceded in earlier grades by

relatively feeble efforts that certainly would be insufficient to lead

students through Levels II and III. However, although there is an

almost a priori logic to the sequence of development described b}: the

van Hieles, it is not yet clear that the course of development is as

rigid as they propose. At this point, relatively little research has

been conducted to validate their conclusions. Although Wirszup (1976)

reports that the Soviets have Conducted extensive pedagogical investiga-

tions based on the van Hieles' work, it has yet to attract the attention

of American researchers; and the implications for American curriculum

are still unclear. It is clear, however, that many, if not most,
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students fail to master even the basic elements of formal geometry; and

the van Hieles' work provides a beginning framework for research in this

area.

Adolescent Reasoning

Although the study of cognitive development in children is currently

a major focus of research in both psychology and education, the parallel

study of adolescence has not fared so well. In general the study of

adolescent reasoning is characterized by "the paucity of systematic

evidence, by the limited generality of what evidence there is, and by

the almost complete failure to relate intellectual development to other

concomitant developmental changes which mark this period" (Neimark, 1975,

p. 541).

T)le scarcity of available research makes it impossible to specify

with anir confidence the precise nature of adolescent thinking. However,

on the basis of a comprehensive review of current research, Neimark (1975)

concluded that there is a stage of cognitive development beyond, and

different from, the concrete operational stage of middle and late child-

hood. Although Piaget initially proposed that this stage emerges between

the ages of 12 and 15, it appears to develop later in many children.

in fact, it is not attained at all by some individuals. Furthermore,

there is a great deal more variability in the application of the formal

reasoning structures of this period than is the case for the concrete

operations of earlier stages. Even adults operate at a formal operational

level on some tasks but fail to do so on others. Piaget (1972) himself

concedes that at this stage individual aptitude, interest, and experience



51

appear to play a significant role in determining which tasks an individual

can complete successfully. Although it is conceded that training should

be a significant factor at this stage, the specific effects of training

are largely unexplored.

The most fundamental property of formal thought is the ability to
r

consider the possible rather than being restricted to concrete reality

(Inhelder & Piaget, 1958). At this stage adolescents can identify all

possible relations that can exist within, a given situation and systematically

generate and test hypotheses about these relations. They are also capable

of evaluating the logical structure of propositions independent of any

concrete referents, and,they are able to reflect upon their own thought

processes. Formal operations are also.characterized by an ability to

use more complex classification.strategies and to shift the basis of

classification more readily. In this stage adolescents are increasingly

aware of the demands that tasks place on memory and use more efficient

strategies for dealing with them. They also have much greater compre-

hension of key logical connectives and quantifiers.

In general, thcapabilities of formal operatioal thought appear

to be necessary for success in most mathematics beyond basic arithmetic.

The construction of formal proofs and the learning of general heuristic

strategies certainly appear to depend on formal reasoning processes.

These are both areas in which many high school students experience little

success. To what degree this failure results from these students' iriability

to operate at a formal operational level 45e'1arge1y a matter of conjecture,

since there is little empirical evidence one way or another.

In many ways, the potential significance of cognitive development
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research for education may be greater at adolescence than at-the earlier

stages, where it has been cencentrated. Although concepts like conser-

vation and transitivity are logical prerequisites for most of number and

measurement, they are not an integral part of what chil4en actually do

when generating addition facts, learning algorithms, or making, simple

measurements. As a result, in spit of'an merwhelming number of stuaies

involving these concepvs, their consequence for the learning of elementary

mathematical concepts remains aMbiguous. However, the abstract reasoning

skills of the formal operational stage are precisely those that are

needed for any real success in high schaol mathematics. Furthermore,

the development of these skills in any given area appears to be much more

a function of specific experience than in earlier stages. Consequently

it is likely that specific, relatively short term training should have

a more profound effect than has-been demonstrated by the myriad of

conservation training studies. ',ince many adults fail to attain formal

reasoning levels in many areas, it would also be easier to argue that

such instruction has some educational value in its own right. While it

is generally conceded that experience and training should be a significant

.factor in the development of formal reasoning, the specific effects of

training are largely unexplored at this level.

The study of the development of formal reasoning is a potentially

rich area that has not seen the concentration of studies that there

have been on conservation and early number concepts. A number of

individual studies have dealt with the development of various mathematical

concepts at a formal operational level. For example, see the studies

on proportionality by Ginsburg and Rapaport (1967), Lovell and Butterworth (1966),

9
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Lunzer and (Putsfrey (1966), and Pumfrey (1968); the studies on probability

by Lovell (1971d); the study of limits by Taback (1975); and the studies

on the concept of a function by Lovell (1971c) and Thomas (1975). These

studies have just begun to unravel the basic question of how the

development of formal reasoning skills affect the learning of mathe-

matics, and the study of formal operations should be a prime area for

research in mathematics education in the future. One of the major

problems in this regard is the construction of good measures of formal

operational thought.

New Directions

Recent research in cognitive development has been dominated byt the

research and theories orPiaget. In the areas of number, measurement,

geometry, and formal reasoning almost all the research pf major interest

has been conducted either on the basis of or in reaction to his theories

(Flavell, 1970) . His influence has been so extensive that it has lead

Neimark (1975) to observe: "There is only one comprehensive theory of

cognitive development, Piaget's. All other contenders are so deeply

influenced by and derived from the work of Piaget as to be better

classified as shifts in focus or extensions" (p. 575).

Receptly, however, several alternative approaches to the study of

cognitive development have emerged. Klausmeier, Ghatala, and Frayer (1974)

suggest that the general principles of concept learning outlined in

their Concept Learning and Development model might be useful in studying

the development of basic concepts; and Scandura (1977) has proppsed that

structural learning theory may provide a productive framework for the
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-analysis of developmental phepomena. Another interesting Ain. of research

is proposed by Wheatley, Mitchell, Frankland, and Kraft.(1978) who have

been examining the implications of hemispheric specialization for cogni-

tive development. Recently.translated Soviet research provides an

especially rich source of ideas for cognitive development research in

mathematics education. Of special note are the recently available

works of Vygotsky (1978) and Krutetski (1976) and the fourteen volumes

of the Soviet Studies in the Psychology of Learnin9_and Teaching Maths-

matics. Another potentially productive approach involves the application

of information-processing theories to the study of cognitive development.

Soviet Studies

Like Piaget's research much of the Soviet research has relied on

qualitative methods and has focused on mental operations and other pro-

cesses that children use to solve problems. However, whereas Piaget

and most Western psychologists have focused on concepts that presumably

develop independently of the school curriculum, the Soviets maintain

that cognitive development and school learning are inexorab3y linked.

"In the final analysis, a pupil's mental development is determined by

the content of what he is learning. Existing intellectual caPabilities

must therefore be studied primarily by making certain changes in what

children learn at school" (El'Konin 4 Davydov, 1975, p. 2). Thus,

stages of development are not viewed as absolute; and it is believed

that changes in the ':urriculum can result in significant changes in the

nature of the developmental stages through which a child passes. The

types of misconceptions that Piaget identifies in early stages of

development are attributed to shortcomings in the curriculum, and much
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of the Soviet research is directed at identifying such misconceptions

and reconstructing the curriculum so that they do not develop. The

view is also held that the various logical reasoning processes used in

mathematics are not strictly a function of maturation and general

real world experiences but can be learned through appropriate instruction.

The instructional treatments that are used in Soviet research are not

the short clinical studies trpical of most Western research. Much of

the instruction occurs in school settings over extended periods of time,

sometimes as long as an entire academic year.

The Soviet studies do not provide the unified theory found in the

work of Piaget. Although 6 of the 14 volumes deal with issues involving

cognitive development, the studies reported represent the work of many

different authors attacking a variety of differeht problems. Only the

works of Krutetskii (Krutetskii, 1976; Kilpatrick & Wirszup, 1969b),

Vygotsky (1q62, 1978) and possibly El'Konin and Davydov (Steffe, 1975)

are presented in sufficient 'detail to provide ,inything approaching a

unified theory.

Several examples that illustrate the general crientation and

techniques of Soviet research follow. The first example reports the

results of a study by Gal'perin and Georgiev (1969) dealing with the

learning of measurement concepts by young children. The second involves

a discussion of several theoretical constructs of Vygotsky's that have

potential implications for research in mathematics education. A brief

summary of Soviet research in instructional psychology can be found in

Volume I of the Soviet Studies series (Menchinskaya, 1969).

The study reported by Gal'perin and Georgiev clearly illustrates

ti 2
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the difference between-the Soviet and Piagetian points of view. Galr'perin

and Georgterlidentified many of the same types of oonserVation and

measurement errors found by Piaget. But rether than accepting these

errors as developmental phenomena, they attributed them to the traditional

emphasis in school mathematics programs on number concepts, which

incorrectly characterized units as discrete entities.

To test their hypothesis, they administered a series of measurement'

problems to the "upper group" of a Soviet kindergarten. They concluded

that Young children who are,taught by traditional methods lack a basic

understanding of a unit of measure. They do not recognize that each

unit may not be directly identifiable as an entity and that the unit

itself may consist of parts. They are indifferent to the size.and

fullness of a unit of measure and have more faith in direct visuil

comparison of quantities than in measurement by a given unit.

On the basis of this study, Gal'perin and Georgiev dev sed a program

of 68 lessons that focused on measurement concepts and systematically

differentiated between units of measure and separate entities. The

lessons were divided into three parts. The first part dealt with forming

a mathematical approach to the study of quantities. This section

focused on replacing the habit of direct visual comparison with systematic

application of measuring units. Appropriate units for measuring

different quantities were identified, and measuring skills were studied

directly with special attention being directed to the deficiencies iden-

tified in the pretest. A variety of units was used, including units

consisting of several parts (two or three matches, spoons, etc.) or some

fractions of a larger object (half a mug or stick). All these concepts
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were presented without assigning numbers to the quantities.

Not until the second part was the concept of number introduced.

Thus, Gal'perin and Georgiev introduced most of the basic measuring

skills and spatial concepts before they introduced numbers. In the

third part, the inverse relationship between the size of the unit and

the number of-units was introduced.

Although the investigation was not conducted with strict experi-

mental controls, the students who participated in this program showed

striking gains over the performance of the previous year's students.

Whereas fewer than half the students in the previous year could answer

most of the items on the measurement test, performance was close to

100% for the exrimental group.

Another example cf Soviet research that providL a counterpäint to

Piaget is found in the work of Vygotky (1962, 1978). In a recent paper

Fuson (Note W has discussed at some length how Vygotskian theory might

be applied to the study of number concepts. Several of Vygotsky's

constructs may also provide'a useful framework for cognitive develop-

ment research in other areas of mathematics education.

One potentially useful construct involves the distinction between

spontaneous and scientific concepts. Spontaneous concepts are generated

by each child on the basis of concrete experience and the child's own

mental effort. Scientific concepts, on the other hand, are the product

of direct instruction or interaction with adults. Vygotsky proposes

that it is the interplay between spontaneous and scientic concepts

that leads to development. The formal structure of the,scientific

concepts helps to organize thecchild's s?ontaneous concepts into a

041
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coherent sydtam, and the experiential basis of the spontaneous concepts

provides meaning to the scientific c9ncepts at a more elementary concrete

level. The significant role attributed to instruction in this theoretical

development is characteristic of Soviet psychology and offers a distinct

alternative to Piagetian theory.

Another Vygotskian construct that has potential significance for

cognitive development research in mathematics education is the zone of

proximal development. This is defined by VygotSky (1962) as "the

discrepancy between a child's actual mental age and the level he reaches

in solving problems with assistance" (p. 103). This measure, which

Vygotsky suggests is an excellent predictor of children's ability to

learn from instruction, provides an alternative method of measuring and

characterizing development that may be especially appropriate for

educational applications.

A variety of other interesting studies deserve the attention of

Western researchers. The work of El'Konin and Davydov (DavydoV1 1975;

Steffe, 1975) on children's early number concepts is especially

noteworthy. Although the focus of Krutetskii's work is on individual

differences, many of his techniques and results are of interest from

the perspective of cognitive development (Krutetskii, 1976; Kilpatrick

& Wirszup, 1969b) . Volume III of the Soviet Studies Series (Kilpatrick

& Wirszup, 1969a) contains four papers discussing the thinking processes

children use in drithmetic and algebra, ar7d Volume V (Kilpatrick &

Wirszup, 1971) is devoted to the development of spatial abilities.

Information Processin9

Whereas Soviet cognitive development research has operated from an
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entirely different perspective than Piaget. information-processing

approaches have generally attempted to build upon Piagetian research.

The nature of this contribution is best understood in terms of Plavell

and Wohlwill's (1969) performance-competence model.. Whereas Piaget has

been primarily concerned with questions of competence, information-

processing approaches have attempted to incorporate the performance

component of the model into their accounts of cognitive development.

Instead of analyzing behavior in terms of the logical and'algebraic .

properties of the problem, tasks are analyzed in tents of their infor-

mation-processing requirements.

Tasks must be analyzed in much more detail than is

provided by a description of their conventional logical

structure. The general problem is to determine exactly

how the input is encoded by the subject and what transfor-

mations occur between encoding and decoding. The objective

task structure alone does not yield a valid description

f the solution performance, and it is necessary to

diagnose the actual psychological processes in great

detail to obtain minute descriptions or well supported

inferences about the actual sequences and content of the

thinking process. (Klahr & Wallace, 1976, pp. 3-4)

A wide range of information-processing theories exist. Although

they are all based on an analogy with the computer and are therefore

essentially mechanistic, some carry this analogy farther than others.

At 'Ult most taslk specific level, the goal is to construct a running

computer program that models some segment of behavior. At the other
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end of the continuum, the computer acts as a sort of metaphor to describe

general processing mechanisms. The most extensive attempt to generate

computer simulations of developmental phenomena is provided by the

work of Klahr and Wallace (1970, 1972, 1973, 1976). Their general

modus operandi can be described as follows:

Faced with a segment of behavior of a child performing a

task, we pose the question: "What would an information-

processing systm require in order to exhibit the same be-

havior as the child?" The answer takes the form of a set of

rules for processing information: a computer c Iram. The

program constitutes a model of the child peri y the

task. It contains explicit statements about the capacity

of the system, the complexity of the processes and the

representation of information--the data structure--with

which the child must deal. (Klahr & Wallace, 1976, p. 5)

The prominent features of the general architecture of such a system

include a short-term memory, which is extremely limited in capacity,

and a long-term memory, which is potentially unlimited in capacity.

The information-processing system also has access to the external

environment and .some sort of mechanism for controlling attention that

determines which sensory information is selected for processing. The

long-term me;3ory contains conditions or rules for processing information.

All processing occurs in the short-term memory, and information from

the external environment or long-term memory must enter the short-term

memory before it can be acted upon.

The strategy is to produce programs that fit the general architecture
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of the processing system described above and accurately model the

general patterns of success and failure at different stages in the

development of a given task. Then the question becomes what sort of

transition mechanisms are nccessary to transform one model into the

next. Klahr and Wallace have been relatively successful in modeling

different performance levels, but a number of questions regarding

transition proceses remain.

At the metaphorical level, one of the most viable information-

processing models has been proposed by Pascual-Leone (1970, 1976). The

principle focus of this theory regards the capa,:ity of the central

processor. Pascual-Leone (1970) hypothesizes that the basic intellectual

limitation of children is the number of schemes, rules, or ideas they

can handle simultaneously--a capacity that increases regularly with age.

The maximum number of discrete chunks of information that a child can

integrate is assumed to grow linearly in an all-or-none manner as a

function of age. From the early preoperational stage (3 to 4 years),

a child's informat n-processing capacity, or M-power, grows at the rate

of one chunk every two years until the late formal operational stage

(about 15 to 16 years).

Children frequently do not operate at full capacity and it is

proposed that some children L.-re a tendency to operate well below

capacity. The ability to operate near capacity is hypothesized to be

linked to individual differences in field dependence-independence.

Studies by Case (1972a, 1972b, 1974) and Scardamalia (1977) have pro-

vided substantial aupport for the predictive value of Paseual-Leone's

model.
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Information processing provides a fresh approach to the sttidy of

cognitive development that may help resolve some of the paradoxes that

have plagued Piagetian theory. For example, by holCing constanc the

information-processing requirements of the tasks, Baylor, Gascon, Lemoyne,

and Pothier (1973) were able to eliminate the well documented decalagL

between seriation of length and seriation of weight. On the other hand

Scardamalia (7.977) was able to produce c4calages in logically isomorphic

tasks by varyin:7 the information-processing demands of the tasks.

Information-processing approaches may also help account for the

rather illogical sequence of development of certain number and measure-

ment concepts and children's ability to complete successfully certain

instructional sequences for which they lack the logical prerequisites.

It might be hypothesized that the effectiveness of instruction is

non. a function of the information-processing demands of the specific

than of the development of logical preregu.isite operations. In

wk)rds, children may benefit from instruction as long as the infor-

matic)11-prssing demands of the tasks do not exceed their limits, in

f of th(, fact that they do not possess the prerequisite logical

oF,erations. Children's logic is not the same as adult logic. Given

.11);)rorrl,ite i ritruction, they mi be able to attend to certain relevant

Aimensions of a stimulus situation and ignore the fact that their judg-

ment,-; depend on certain prerequisite knowledge that they lack. For a

fuitl-r discussion of how the demoinds of instruction might be geared

to the information-processing capacities of the learner, see Case (1975).

from an information processing perspective of cognitive

._Iwielopment, training studies potentially take on a different interpretation.
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Although a variety of training procedures have been successful in

accelerating the acquisition of various Piagetian operations, there is

no evidence that similar trainieg can increase information-processing

capacity. One might speculate that the traditional training studies

have simply shifted the domain in which established information-processing

levels can be applied. For example, one might hypothesize that

a lack of sufficient information-processing capacity is the primary

cause of conservation failures. Children fail to conserve because they

are unable to focus on several dimensions simultaneously. As a conse-

quence they center on a single dominant dimension and fail to conserve.

From this perspective it might be hypothesized that the successful

training studies have simply taught children to f.icus on the appropriate

attribute but have not accelerated cognitive development in the L:ense

of actually changing basic cognitive structure.

An analysis of cognitive development in terms of information-pro-

cf2ssing variables seems especially well suited for dealing with educa-

tional problems. The emphasis on the existence of internal logical

structures .ALo the debate over what evidence is neces-ary to demonstrate

the existence of these structures has never seemed especially germane

to the problems in education. We are primarily interested in perfor-

mnce and can leave the question of underlying competence to the

1-.:chologists. Our primary concern is whether a child can attend to

And learn from a particular instructional sequence. An analysis of both

the mathematical skills and the instructional sequence in terms of

their information-processing demands provides a potentially productive

method for relating the mathematics curriculum to one measure of
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cognitive development.

Two information-procesFing variables that show clear developmental

trends are children's memory and their ability to control attention

(Flavell, 1977; Hagen, Jongeward & Kail, 1975; Peck, Frankel, & Hess,

1975). Many errors in traditional concept development tasks result from

children attending to inappropriate dimensions of the problem. Indivi-

duals are faced with an overwhelming quantity of information from the

environment that must be routed through the central processor in order

to be acted upon. This can create a tremendous bottleneck, and the

mechanisms of attention which determine which information will be

selected for processing are exceedingly important in characterizing

information-processing capacity. To plan instruction, it is essential

to know what stimuli children can, and naturally do, attend to and how

capable they are of shifting their attention from one dimension to

another.

memory is also an important information-processing variable. '-,As

children m'iture, they usc increasinq1y efficient coding, storage, and

retrieval strategies and are increasingly aware of the demands that

specific tasks place on memory and their own abilities to handle these

demands. Mathematical problems place significant demands on memory,

and an inefficient use of memory may clog the central processor when

its full capacity may be needed to solve the given problem. For

example, it is quite difficult for most adults to multiply in base 8,

even when they are given preliminary instruction in different number

bases and are provided with a multiplication table. To some degree this

simulates an inefficient memory rateqy.
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focused

of mathe-

matics. However, since the study of cognitive development involves the

study of basic intellectual functioning in children and since the specific

content under investigation frequently has involved fundamental mathe-

matical concepts, potential applications for the teaching and learning

of mathemitics naturally come to mind. There are numerous general dis-

cussions of the relevance of this body of research for educational

practice (e.g., Athey & Rubadean, 1970; Beard, 1969; Brearly & Hutchfield,

1969; Bruner, 1960; Furth, 1970; Ginsburg & Opper, 1969; Hooper, 19

Kohlberg,

Sullivan,

968; Schwebel & Raph, 1973; Sigel, 1969; Stendler, 1965;

8;

1967; Hooper & DeFrain, Note 9; Klausmeiet & Hooper, 1974).

Others haye specifically addressed the relevance of cognitive develop-

ment research for the teaching and learning of mathematics (e.g., Copeland,

1974; Huntington, 1970; Inskeep, 1972; ve11, 1971b, 1972; and Steffe,

1971).
\

Some authors have attempted ,.(3 draw specific inferences for educa-

tional practice directly from the general research (e.g., Copeland, 1974;

Huntington, 1970) . Sullivan (1967) and Weaver (1972) have made a strong

case that such extrapolation from pure research based exclusively on

psychological considerations is inappropriate. What iz needed is what

Glaser (1976a, 1976b) calls a "linking science" to establish the rela-

tionship between the descriptive science of cognitive development and

the prescriptive 7,;cience of instructional design. In other words,
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fundamental instructional issues cannot be resolved directly on the basis

of pure research. Research on oognitivo tioviolopoont. La dotivalptivv,

not prescriptive. It does, howevv, provide a basis for initiating

certain lines of instructional research that could address three basic

curricular issues: (a) What content shpuld be taught, (b) when

particular content should be taught, and (c) how should it best be pre-

sented to the student?

The Content and Sequencing of Mathematical ToRics

The first question involves two distinct issues. One involves the

question of what content is most important to teach. Kohlberg and

Mayer (1972), for example, argue that the aim of education should be

to foster development and, in so far as possible, insure that students

progress through the basic stages of development identified by Piaget,

Kohlberg, and others. A similar argument is found in the van Hieles'

proposals regarding the learning of geometric reasoning skills. Although
.

certain elements of the assumptions upon which these proposals are based

are potentially subject to empirical validation, the basic issue of what

content is most important to teach seems to be based primarily on

value Lonsiderations. Consequently the implicat.ins of this issue for

research are minimal.

The second issue involving what to teach is more pedagogical and

is potentially of greater consequence for research in mathematics

education. Once a specific objective has been identified, there is

still the problem of choosing the most effective way to develop the

topic mathematically. This involves choosing the mathematical approach,

definitions, or models to be used and deciding how to sequence topics.
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During the late 1950's and early 1960's this choice was based almost

exclusively on the logical structure of the subject. There is a growing

awareness, however, that one must also account for the psychology of

the child learning the subject.

The basic paradigm involves attempting to trace the natural develop-

ment of a concept in children and to reflect this natural development

in constructing the curriculum, The assumption is that the foundations

of many basic mathematical concepts develop naturally, independent of

any specific instruction. Through careful investigation, one can iden-

tify this sequence and design a curriculum that builds this basic

foundation and t,-ikef.:, advantage of what a child already knows. In other

words it is proposed that certain approaches for developing mathematical

topics will be more congruent with children's cognitive development.

The task for research is to id ntify the a proaches that ?re potentially

t.,;e most productive.

Caution must be exercised in applying this paradigm. There is some

question of whether one can identify natural foundation concepts that

are independent of current schoel practice. If children's conceptio s

diverge significantly from the development in the school curriculum,

a reasonable case can be made that this pattern of development is

generally independent of the specific curriculum. But if the develop-

ment of children's understanding of a mathematical concept parallels

its development in the school curriculum, it is difficult to separate

out the effects of the current curriculum. This might not be as great

a problem as it appears. If children's development follows the curri-

culum, it may not be possible to isolate the specific contribution of.

"%a
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the curriculum; but one can have soma confidence that the curriculum

is not in opposition to the natural sequence of development. Thus,

curriculum changes would be needed only if children's pattern of

learning differed significantly from the curriculum. However, any

attempt to identify the "natural" development of a given ooncept should

include a careful analysis.of the potential contribution of the current

school curriculum.

A line of investigation that illu_trates the application of this

paradigm is the work of Brainerd (1973b, 1973e, 1976, 1979) discussed

above. He proposes that basic natural number concepts can be developed

logically either from an ordinal perspective as evidenced by the work

of 10,&lekind and Peano or from

of Russell and Whitehead. On

a cardinal perspective in the tradition

the basis of his research with young

children, Brainerd contends that ordinal number concepts develop before

cardinal number concepts, aad ordinal number concepts are more closely

cormected with the initial emergence of arithmetic. He recommends, there-

fore, that serious consideration be given to abandoning the traditlenal

cardnal development of natural number in favor of ordinal definitions.

Even if Brainerd's conclusions regarding the sequence of emergence

of ,,rdinal and cardinal concepts were valid, his recommendArions would

represent unwarranted extrapolation. No attempt was made in his studies

to design and test instruction based on the ordinal definition of

number. Furthermore, the examples of ordinal and cardinal concepts

included in his studies represent only a very narrow sampling of the

concepts involved in the development of either ordinal or cardinal numbers.

It might be more productive to design curriculum to take into
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accoun the explicit concepts, processes, and skills that children ex-

hibit throughout their acquisition of a topic rather than attempt to

completely redesign it to be consistent with the development of certain

underlying logical concepts as proposed by Brainerd. One set of explicit

strategies that might be incorporated in the mathematics curriculum

involves children's use of various counting strategies to solve simple

addition and sUbtraction problems. Traditionally instruction has failed

to take into account the richness and growing sophistication of these

strategies. As illustrated by the teaching experiment of Steffe et al.

(Note 2), curricula could be developed to build on these strategies rather

than portray operations exclusively in terms of set operations.

An alternative to focusing on children's naturally developed con-

cepts and successful strategies is to analyze their errors. By identi-

fying serious misconceptions or significant prerequisite concepts or

skills that children are failing to mar,ter, instruction can be designed

to compensate for these deficiencies. The ser!es of studies by Gal'perin

and Georgiev (1969) discussed above is an excellent example of this type

of research. Another example is provided by a study of Zykova,(1969),

in which children were found to lack certain geometric processing skills

and instruction was designed specifically tu teach these skills.

Matching Instruction to AFpropriate Levels of Develotment

A second potentially significant contribution of cognitive develop-

ment research for the teaching and learning o` mathematics deals with

the issue of readiness. The basic problem is to provide instruction

that is appropriate for an individual student's level et cognitive development.

The question is not a matter of constructing the sequence of instruction,
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but rather of identifying the specific place in the instructional sequence

that is appropriate for an individual student at a given stage of develop-

ment.

From a mechanistic perspective, this becomes a problem of identi-

fying a hierarchy of prerequisite skills, whether they involve a knowledge

of addition facts or an understanding of the principle of conservation,

and insuring that students have mastered all essential prerequisites.

From the organismic point of view, stages of development are a function

of integrated cognitive structures that are not readily altered by in-

struction. Therefore, it is not sufficient simply to identify a se-

quence of prerequisite skills or knowledge and insure that a child has

mastered it. One must also account for.the child's ability to process

information. The problem is to match instruction to a child's level

of cognitive development rather than simply fit theChild into the

appropriate step in a sequence of instruction.

A critical difference between.the two approaches is that mechanists

believe that mental processesoperate essentially unchanged throughut

development, whereas the organisma.c view is that there are qualitative

differences ip the processes available to children at different stages

of development. In the mechanistic approach all learning and develop-

ment is reducible to its component parts and is susceptible to instruction.

In the organismic approach certain fundamental processes like conserva-

tion or transitivity are representative of basic levels of cognitive

functioning that are not reducible to isolated pieces or susceptible

to instruction. The level of development puts certain limits on a child'f_;

ability to learn from particular instructional situations. These basic
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limitations cannot readily be removed by specific instruction. There-

fore, the problem for cognitive development research is to identify the

specific limits for each stage of development and to describe how in-

struction that is consistent with these limits can be designed.

There are three central problems involved in this endeavox. ,First,

it is necessary to specify the basic dimensions of the individual stages

of development. Second, the cognitive developmental requiresents of

each mathematical topic must be identified so that individual topics

can be matched with appropriate levels of cognitive develpment. Third,

it is to devise some means to insure that individual students

are orpided with instruction appropriate for theL level of cognitive

development.

It is possible to insure that instruction is appropriate for an

individual student's level of cognitive development in several ways.

One is to identify age norms for the attainment of given levels of develop-

ment and then sequence the curriculum so that a topic is taught at the

appropriate grade. This appro,tch is illustrated in the article by'

Huntington (1970) criticizing the grade placement of geometry topics

in the SMSG curriculum on the basis of Piaget, Inhelder, Sz2minska's

(l960) description of children's development of measurement concepts.

A second approach deals with levels of development on an individual

basis. since it is generally rec'Dgnized that there are wide individual

differences in the rate of cognitive development, this approach should

provide a much better match between an individual child's level of de-

velopment and the child's mathematics instruction. The critical problem

for this approach is to develop a valid, Tellable measure of cognit ve

development.
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A classic series of studies that addresses the problem of readiness

is reported by Washburne (1939). Although these studies are dated and

the methods and variables under investigation would not be considered

the most appropriate today, this series of studies is noteworthy for

its comprehensive attack on the problem. Over 30,000 students partici-

pated in the studies over a period of more than 10 years. The purpose

was to identify the appropriate placement of arithmetic topics in terms

of individual children's levels of development. Development was defined

in terms of mental age, and recommendations were based on the initial

mental age at which 75 to 80% of the students successfully learned a

controlled teaching unit on a specific topic.

The measure of mental age used by Washburne (1939) was, to some

degree, a primitive measure of cognitive development. However, tasks

used in instruments measuring mental age are chosen for their psychometric

properties and may be based on a hodgepodge of different reasoning

processes; so it i not possible to characterize different levels of

deVelopment in terms of specific cognitive skills. Therefore, Washburne

was able to establish only an empirical relationship, not a logical one,

between mental age and the ability to perform different mathematical

tasks.

Current attempts to construct scales of development are based on

theories of cognitive development (usually Piaget's) rather than on

normative procedures. Piaget hypothesizes that intellectual development

proceeds through an invariant sequence of stages. The stages are

characterized by the emergence of integrated systems of new cognitive

structures that can be applied to a wide range of problem situations.
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The hypothesized invariant sequence of development should allow the con-

struction of a series of tasks that characterize sequential levels of

development and form a good Guttman scale.

This means that the tasks can be sequenced in an ordinal scale so

that it is possible to identify specific tasks an individual can and

cannot do successfully by locating the -tudent at a point on this scale.

The student should be Able to do all of the tasks scaled below that

point and none above it. Because individual tasks are representative

of levels of development, these results should generalize to other

problems that are characteristic of a given level of development. By

analyzing school mathematics topics in terms of their cognitive develop-

ment requirements, it should be possible to specify which ones are

appropriate for an individual student's level of cognitive development.

Washburne's argument was somewhat circular and devoid of any cause

and effect justification. Chronological age or height or weight could

lust as well have served as measures of development. The argument was

simply th, becau:::e a givt 1 topic was not mastered by most students

until a given age using standard teaching practices, this was the appro-

priate age to teach the topic. On the other hand ordinal scales could

p)tentially identify the presence or absence of specific logical reasoning

processes that are necessary for learning a given topic.

That's the theory. In practice it has proved a great deal more

d fficult to construct an ordinal scale of development than Weis

originally supposed. A number of researchers have been working on the

problem for the last 10 to 15 years with only mixed success (Green,

Ford, & Flamer, 1971; Pinard & Laurendeau, 1904; Pinard & Sharp, 1972).
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Standardized tests using Piagetian tasks have been constructed (e.g.,

Goldschmid & Bentler, 1968). But these only substitute Piagetian tasks

for traditional psychometric items. They are not true GuttMan scales,

since the number correct is not reproducible from the ordinal position

of the most difficult item passed.

There are two major problems. First, factor analytic research

indicates that logical reasoning is hot 'a one-dimensional domain (Kaufman,

1971; Stephens, McLaughlin, Miller & Glass, 1972; WOhlwill, 1973).

Therefore it is unlikely that the major dimensions of cognitive development

could be incorporated into a single . HoWever, this problem could

be resolved by profiling developme terms of several scales measuring

different factors of cognitive development. Pinard and Sharp .(1972)

report an effort to coordinate five ordinal scales--space; causality;

classification, seriation, and number; conservation; and time, movement,

and speed--into an overall test of cognitive development.

The second problem is more severe. It has simply proved extremely

difficult to scale any set of relevant tasks into an invariant sequence.

The problems of horizontal decalage and the variability introduced by

methodological variations have created almost overwhelming difficulties.

The evidence thus far obtained has alY,ut extinguished what-

ever hope we might once have held that we could place

each child on a single developmental ,2ontinuum equivalent

tu mental aye, and rim his score predict his performance

on content ef whatever kind. (Tuddenham, 1971, p. 75)

This may be overly pessimistic. To date, all efforts to construct ordilal

scales have been based on a purely Piagetian rationale. By iucluding
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information processing variablcs or some measure of task difficulty in

the equation, some of these problems may be at least partially resolved.

Furthermore, it is not clear that task variability poses the same

stumbling block for education that it does for psychology. The reason

rests in a construct validity-predictive validity distinction. Psycholo-

gists have been intent on constructing a scale that locates a child

at a given point in Piaget's sequence of developmental stages. They

have felt constrain d to develop an instrument that clearly identifies

a given operation and have become enmeshed in competence-performance

issues. In order to identify what mathematics a child is capable of

attending to, competence measures are unnecessary. All that is required

is to identify a level of performance that generalizes to a range of

mathematical tasks. Performance distinctions should be included in such

a measure because they are also a part of the mathematical problems and

the manner in which they are presented.

In addition, the variability that .las been introduced thr.ough

differences in experience and familiarity with different stimuli mly

lose less of a problem in constructing an ordinal scale for curriculum

purposes. Psychologists have attempted to construct a scale that is

rca3onably pure in that it is minimally affected by variations in schutll

curriculum. As a consequence they hi've used stimulus situations that

are maximally independent of the eonteit of the school curriculum.

Children have a wide range of experiences outside of school, and this

creates a great deal of variability in stimulus familiarity. By sticking

closer to the curriculum and using terminology and stimulus mater als

that are part of it, one gains at least some control over one seyment
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of experience, and perhaps can eliminate some of the extraneous error.

If ordinal scales could be constructed, they might provide a

relatively efficient measure of cognitive development, which.would

explicitly characterize individual children's ability to operate with

a wide range of intellectual tasks. This characteristic makes them

extremely attractive fur application to school practice. Hui. although

the problems involved in constructing ordinal scales m4y not be in-

surmountable, they certainly are substantial; and little progress has

lwen made in constructing ordinal scales that have potential for classroom

Although ordinal scales provide an appealing elegance and ease of

)htt'rI'rtat1on , their construction is not the central problem. What is

is the construction of good measures of children's thinking and

identification of specific relationships between performance on those

rvasures and the learning of particular mathematical concepts. Whether

-0-- measures fal! 1:o an ordinal scale is not critical. It is

imimrtant, however, that the measures of children's thinking predict

with :;ome accurac-y cri ldif-n's ability to learn specific mathematical

CoIIC and skills.

f;.,veral ilternat ve directions for duviol such measures are

is,ssilJle. They might be based on fundamen.-1 d(vt-lopmental variables

lie conservation, class inclusion, and transitivity that are presumed

t 4.4 volop outside of f.ormal instruction. .7V; noted above, several of these

measures have been shown to correlate highly witn mathematical achievement.

However, with the ex,-.7eption of the study hy Steffe et al. (Note 2),

ttle pzogress has been made in relating these measures to children's
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ability to learn specific mathematical concepts and skills. In other

words, it is not sufficient to demonstrate that there is a differenOe in

overall achievement between conservers and noneonservers. It is necessary

to document exactly how they differ and what instruction is'appropriate

for each group.

A second alternative would be to focus more explicitly on the concepts

and processes that children apply directly to the mathematics they are

learning. This analysis shogld go beyond standardized aptitude or

achievement tests. Even tents specifically constructed to measure whether

children have mastered specific prerequisite skills are inadequate. What

is needed are measures of the specific concepts and processes that

children apply to the content of instruction and the specific errors

they may make. It i.i very difficult to get this type of information from

papet-and-pencil t(!sts. An application of clinical interview techniques

llscusr.d by 6irEiburq (1q74) seems to be the most promising approach .

wevelo I 0 ordt-r for this roocli to have any impact on educational

practice, efficient procedures for appling it in edu::ational settings

need , be developed.

A third potential measure is Vygotsky's (1962, 1978) zone of proximal.

develop nt. Since this measure actually involves adult ihteraction which

represents a form of instruction, it should provide an excellent measure

of children's ability to benefit from instruction.

A closely related technique is the anplication of teach-test procedures

to ascertain children's dbility to deal with certain types of instzuctlon.

)Teach-test procedures have.frequently been used with mentally reta,ded

children to measure their susceptability to traditional forms of /
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children. The basic format involves a short, controlled training session

over certain novel and presumably unfamiliar tasks followed by a test on

the instructed material. Unlike other measures the initial knowledge

or ability to do the task is not the primary concern. What is of

interest is the degree to which subjects are able to profit from the

instructional sequence. By manipulating the form of the short training

session, one potentially can generate a measure of children's ability

to attend to, and learn from, different instructional sequences.

A study that illustrates the application of this technique is re-

ported by Montgomery (1973) . This study was an aptitude-treatment inter-

action study that examined the interaction of second- and third-graders'

ability to learn unit of length concepts with two treatments based on

area and unit of arua concepts. Aptitude was measured using a teach-

test procedure that partitioned subjects on their ability to learn to

compare two lengths measured with different units. Subjects weie randomly

assigned to one of two nine-day instructional treatments on measuring and

comparing areas. The difference between the treatments was the emphasis

placed on the unit of measure. In one treatment, subjects always measured

with congruent units and compared regi()ns covered with congruent anits.

In the other treatment, subjects measured with noncongruent units and

compared regions covered with different units. On both a posttest arm

a retention test, the treatment that used different units was significantly

more successful in teaching children to assign a number to a region

(measure) and to compare two regions using their measures. However,

there was no significant difference between the two treatments on a
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transfer test that included problems involving measurement with different

units, and no significant interactions were found between aptitude levels

and treatments. The failure to find significant results may, in part,

reflect certain anomalies in the development of measurement concepts

that were not taken into account (see the discussion on measurement above).

But it does illustrate the difficulties and pitfalls in attempting to

construct good measures in order to match children to appropriate

instruction.

Given the difficulty in characterizing stages of development and

constructing good measures of development, it is not surprising that little

has been accomplished in analyzing specific mathematical topics in terms

of their cognitive development requirements. A very rough first approxi-

mation of this task is provided by the Nuffield Check ng Up booklets

(Nuffield Mathemat ics Prcject,

Choosing Instructior.al Strategics

The third potential application of c( ritive development theo y to

problems of education involves tie choice of instructionil strategies.

Cognitive development theory, that of Piaget in particular, has been used

to justify a wide range of instructional programs that are based on open

classr(,)m, discovery, or activity learning app aches. Two of the most

reasoned attempts to formulate general principles for instruction on the

basis of cognitive development can be found in Elkind (1976) and Smock

(l976a). Hooper and DeFrain (Note 9) report on a number of attempts to

apply Piagetian theory to the dc;sign of preschool programs.

In general relatively little is known about the specific mechaiisms

that contribute to cognitive development or how they operate; and in spite
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of the fact that there exists an abundance of training studies even less

is known about howinstruction can be designed to take advantage of basic

developmental mechanisms. Much more basic research is needed before spe-

cific application of the theory to identify optimal instructional strate-

gies is appropriate. On the whole, this does not appear to be one of the

more productive avenues for cognitive development research. Although in-

struction should be consistent with established theories, basic research

in cognitive development cannot specify exactly what types of instructional

strategies are most appropriate.

Conclusions

It was observed earlier that most cognitive development research is

only incidentally concerned with the learning of mathematics. Variables

have been -;elected for their potential value in explaining the general

course of cognitive development; and although mathematical topics have

frequently been studied, their inclusion has not been motivated by a desire

to improve instruction in mathematics. In fact, specific content has been

cnosen for investigation because it is presumed to develop vofy much

independently of the school curriculum; and much of the content of school

mathematics has been virtually ignored.

Rohwer (1970) has argued that if cognitive development research is

going to have a significant Lmpat;L on education, its theories will have

to be recast in an educational context and principles of cOgnitive

development will have to be applied directly to educationally significant

questions. Thus, the objective for mathematics educators should not be

1
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to verify some aspect of a general theory of cognitive develoilment.

Rather we should attempt tt identify how the theories and techniques of

cognitive development can be applied to deal with issues that are signi-

ficant for the teaching and learning of mathematics. Instead of selecting

variables for investigation because of their independence of school

experience, we should be primarily concerned with problems that arc

significant from the perspective of the sk-Alool mathcmaticc; curriculum.

This refocusing of cognitive development research in mathematics

should be aimed at the construction of what Shulman (1974) has called

midd.e-range thcries. Such theories fall between the task-specific

working hypotheses that ire generated to expl.iri individual behaviors,

errors, and the like and comIxehensive theories, such a those of Piaget

that attempt to encompass all of cognitive development. It is not clear

that general cognitive structures like Piaget's groupings are k.specially

useful in understanding children's learvin,, of mathematics, and it is a

profligate expendi tur of limited resources for those of us in mathematics

education to expend our energi-s identifying or validating the existence

of such all-encompassing structures. if we can generate middle-range

theories that can adequately explain aspects of children's mathematical

behavior over limited periods of t1L we shall have accomplished a great

deal indeed.

For example, it should not be the role of mathematics educators to

resolve the conflict between the theories of Brainerd and Piaget regarding

the development of the logical foundations of early number c,Incepts. A

more important question for education is how useful are the theories in

explaining children's learning of concepts that are part of the mathematics
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curriculum. Thus, the question is not whether conservation is a valid

construct but whether it tells us anything about children's ability to

learn and apply number and measurement skills.

TWo general applications of cognitive development research have

been identified that seem to hold the greatest promise for influencing

educational practice. The first involves selecting and sequencing of con-

tent. The second concerns individualizing instruction on the basis of

each student's level of development of appropriate concepts and processes.

Both applications require a good cognitive map of the development of key

mathematical concepts and processes. This map must take into account both

individual differences and the effects of instruction. Thus, a major

objective for research in ma_nematics education should be to characterize

the processes And concepts that children acAuire at significant points

in the learning of important mathematical topics. Furthermore, it should

describe how these concepts and processes evolve over the course of in-

L:truetirm. This involves describing the different processes and errors

that inclvidual children exhibit on key tasks at each stage of instructi

It also should include an analysis of performance on related tasks.

Although significant individual diffcrences should be anticipated, it

should be possible to identify clusters of children who exhibit similar

profiles of performance over a range (,f tasks. If so, then key problems

can be used to identify how individual children will perform over the

corTlete raTiqe of tasks.

Finally it is necessary to describe the change in concepts, processes,

and errors over the course of instruction. Piaget assumes that all

children go through essentially the same stages of development. '1 ,erefore,
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it is necessary only to characterize each stage to describe development.

The evidence suggests, however, that there is a great deal of variation

in the pattern of acquisition of most mathematical concepts. Consequently

to characterize development of these concepts it is nvessary to describe

how change takes place within individual children, or at least groups of

children, over the course of instruction. This means analyzing how

certain processes, concepts, or errors at a given stage have evolved from

the processes, concepts, or misconceptions of earlier stages. For example,

if a child makes certain errors at a given stage, will they be resolved

as the child acquires more mature concepts and skills, or will these errors

be magnified as new concepts are built on these earlier misconceptions?

To assess change effectively within individual children, it is necessary

to follow them over the relevant instructional periods. This does not

mean that the only appropriate studies arc longitudinal ones that continue

\
over the entire coafse of the development of a given coricepL. But any

study that purports.to me sure intraindividual change mu:A at least havt

repeated measures on the same subjects over the time that change is being

measured.

Individual children master concepts at different points in an

instructidnal sequence. An important question is whether all children

go through essentially the same basic sequence of development in learning

certain concepts even though they may pass through a given s.,.age at

d'fferent points in the instructional sequence. In other words are there

certain key prerequisite concepts or processes that all ch,.ldren achieve

before they master a given concept? Research should be especially

sensitive to identifying such key prerequisites.
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Teaching experiments seeM especially appropriate for the research

program outlined above. They may involve a few children or many. But

they should systematically monitor children's progress through a carefully

designed instructional sequence so that the children's specific experiences

can be identified. In addition the concepts that children have learned,

the processes they are applying, and the systematic errors they are

making should be regularly assessed. Clinical interview techniques seem

most appropriate for this purpose. Finally, this research should not only

describe children's knowledge or performance at a given point in time but

should also attempt to characterize their ability to attend to, and benefit

rom, instruction.

Assuming that it is possible to characterize the development of a

given mathematical topic, it is not at all obvious how this information

should be appl t.e design of instruction. Consider the problem of

selecting anci ,Jencing appropriate content. Several alternatives are

possible. One is to identify a minimum set of concepts and skills that

all children exhibit at one point or another in the acquisition of a

given topic and to build instruction around this basic set. This approach

is not e,Tecially elegant and seems to reduce instruction to the least

common denominator. However, one might assume that if one teaches the

minimal set of skills that is logically complete and that can be understood

by all students, the better students will continue to generate their own

more complex strategies. A study by Groen and Resnick (1977) offers some

support for this hypothesis.

An alternative approach would be to identify the most efficient

processes that children use and/..., the processes that are used by the

i
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most capable students and teach those specific processes. Although this

approach has the appeal of attempting to make the most-efficient strategies

available to all the students, there are potential drawbacks. The slower

students may not have the cognitive capacity to understand or apply the

complex processes of.the better students, and the complex processes may

be very difficult to teach explicitly.

Clearly these extremes do not represent the only choices, and there

is a great deal of middle ground. Furthermore, as Resnick (1976) proposes,

appropriate instruction should not necessarily copy the natural develop-

ment of the concepts in children. Instead, it should put learners in

the best pcsition to invent or discover appropriate strategies themselves.

There is no simple answer to the question of how to sel6ct and sequence

content, and it is unlikely that a :;ingle approach wi.11 be effective with

all content or for all learners.

Similar problems exist with respect to problems of individualization.

should instruction be congruent with a chi Id s level of development, so

that the instructor can be sure the child can attend to the appropriate

aspects of instruction? Or should instruction led devet ment, as

suggested by Vygotsky (1962) and others?

Research in mathematics education cannot stop with the description

of the development mathematical concepts. We muse initiate Glaser's

(1976a, 1976b) linking research to establish how the descriptive informa-

tion from research iritL, children's thinking can be applied to prescribe

instruction. Furthermore, this program of linking research cannot wa t

until a complete description of the development of a given concept is

available. If viable programs of basic and applied research existed,
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they could interact to the mutual bonafit of both. Rem:Jan-7h into

children's thinking could provide the framework for initiating instructional

research, and instructional research could identify the types of infor-

mation about children's thinking that are most useful for making

educational decisions.

Like most of the significant problems in education, the problems of

characterizing children's thinking and applying this information to the

design of instruction are not simple problems that can be answered by a

collection of isolated studies. If any real progress is to be made toward

resolving these problems, there is a critical need for coordinating the

erfIorts of researchers sharing ideas, identifying and attacking critical

problems, and standardizing research techniques.

Four working groups that are dealing with problems relevant to the

application of cognitive development to the learning of mathematics are

currently operating under the general direction of the Georgia Center

for the Study of Learning and Teaching Mathematics at the University of

Georgia. They include a working group on number and measurement, one on

rational numbers, one on space and geometry, and one on models for

learning mathematics. These working groups, which constitute a somewhat

loose consortium of individuals at different institutions, offer one of

the best mechanisms currently available for unifyiny our attack on

educational problems.

Papers from a series of research workshops at which these working

groups were established have been published (Lesh, 1976; Martin, 1976;

Osborne, 197b) and several monographs reporting tne efforts of different

working groups are in preparation.
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Cognitive development research in mathematics education must not

only unify its efforts to attack significant educational problems; an

effort must be made to insure that the results of this research have

some impact on school practice. Rohwer (1970) has observed: "The

relevance of cognitive development for education is easier to establish

than the assertion that a substantial contribution to education will be

made from its study" (p. 1380). Although we must avoid premature conclu-

sions and clearly establish the links between cognitive development

research and classroom practice, we must not bury our resutls in research

journals. Part of the consortium orientation should be directed at in-

cluding curriculum developers and developing curriculum materials.

Unless we can convince teachers and curriculum developers to begin to see

some of the problems of education in cognitive development terms,

research in cognitive development will have little practical value for

the teaching of mathematics.



a

89

Reference Notes

1. Hooper, F. H., & Klausmeier, H. J. Description and rationale for

longitudinal assessment of children's coopitive development and

concept learning (Working Paper No. 113). Madison: Wisconsin

Research and Development Center for Cognitive Learning, 1973.

2. Steffe, L. P., Spikes, W. C., & Hirstein, J. J. Summary of quanti-

tative comparisons and class inclusion as readiness variables for

learning first grade arithmetical content. Athens, Georgia: The

r;eorgia Center for the Study of Learning and Teaching Mathematics,

1976.

3. Gonchar, A. J. Latureance_onentofthenatu_ralAstudir

number conci!pt: Initial and suiTlementary a:.alyses (Technical Report

No. 340). Madison: Wisconsin Research and Development Center for

Cognitive Learning, 1975.

4. Carpenter, T. P. The role of equivalence and order relations in the
I.

development and coordination of the concepts f unit size and number

units in selected conservation tsTe measurement IToblems (Technical

Report No. 178). Madison: Wisconsin Research and Development Center

for Cognitive beaming, 1971.

5. LeBlanc, J. F. The erformance of ade chi dren in four levelsirst-

of conservation cf numerousness and three 19 5rouks wnen solving

subtraction problems (Technical Report No. 171). Madison: wis-_7onsin

Research and Development Center for Cognitive Learning, 1971.

6. Lankford, F. G. Some computational strategies of seventh gradeitTil:,

(U.S.O.E. Projef.7t No. 2-c-013). 1972.



90

7. Wohlwill, 3. F., Devoe, S., & Fusaro, L. Research on the development

of concepts in early childhood (Final Report for NSF Grant G-5855)-

1971.

8. Fuson, K. C. Vygotskiian theoretical constructs related to research

in the development of early number concsIts. Paper presented at the

meeting of the Number and Measurement WOrking Group, Indianapolis,

November 1977.

q. Hooper, F. H., & DeFrain, J. D. The search for a distinctly Piaaetian

contribution to education (Theoretical Paper No. 50). Madison:

Wisconsin Research and Development Center for Cognitire Learning,

1974.



91

References

Chittenden, E., & Miller, P. Young children's thinking.

New York: Teachers College Press, 1966.

Almy, M., Dimitrovsky, L., Hardeman, M., Gordis, F., Chittenden, E., &

Elliot, D. Logical thinking in second 3rade. ,New York: Teachers

College Press, 1970.

Athey, I-. J., & Rubadeau D. 0. (Eds.). Educational implications of

Piaget:s theory: A book of readings. Waltham, Mass.: Blaisdell,

1970.

Baer, D. M. An age-irrelevant concept of development. Merrill-Palmer

quarterly, 1970, It, 238-245.

Bailey, J. H. The concept,of transitivity in children (Doctoral disser-

tation, University of California, Los Angeles, 1970). Dissertation

Abstracts International, 1971, 31, 7618B. (University Microfilms No.

71-13, 983).

Baylor, G. W., Gascon, J., LeMoyne, G., & Pothier, N. An information

processing model of some seriation tasks. Canadian Psycho1o4j.st,

1973, 14, 167-196.

'Beard, R. M. An outline of psychology

and teachers. New York: Basic Books, 1969.

Bearison, D. J. Role of measurement operations in the acquisition of

conservation. bevelopmental Psychology, 1969, 1, 653-660.

Bearis7,1D. J. Induced versus spontaneous attainment of concrete

operations and the relationship to school achievement. Journal of

Educational Psychology, 1975, 67, 576-580.



92

Beilin, H. Stimulus and cognitiiie transformation in conservation. In

D. Elkind & J. Flavell 4Eds.), Studies in cognitive development:

Essays in honor of Jean Piaget. New York: Oxford University Press,

190.

Beilin, H. The training and acquisition of logical operations. In

M. F: Rosskopf, L. P. Steffe, & S. Taback.CEas.), Piagetian cognitive

development research and mathematical education. Washington, b. C.:

National Council of Teachers of Mathematics, 1971.

Bijou, S. W., & Baer, D. M. Child development (Vol. 1). New York:

Appletdat,Century-Crofts, 1961.

Braine, M. D. S. The ontogeny of certain logical operations: Piaget's

formulation examined by nonverbal methods. Ps5cholo.lica1 Monographs,

1959, 73(5, Wiple No. 475).

Braine, M. D. S. Development of a grasp of transitivity of length: A

reply to Smedslund. Child Development, 1964, 35, ;99-810.

Bra,inerd, C. J. Judgments and explanations as criteti'a for the presence

of cognitive structures. Psychological Bulletin, 1973, 79, 172-179.

(a)

Brainerd, C. J. Mathematical and behavioral foundations of number.

Journal of General Psycholoiy, 1973, 88, 221-281. (b)

Brainerd, C. J. Neo-Piagetian training experiments revisited: Is there

any support for the cognitive-developmental stage hypothesis? Cognition,

1973, 2, 349-370. (c)

Brainerd, C. J. Order of acquisition of transitivity, conserVation, -and

class inclusion of length and weight. _s_DIT2.22121_22y2L21.2111, 1973,

, 105-116, (d)



Brainerd, C. J. The origins of number concepts. Scientific American,

1973, 228, 101-109. (e)

Brainerd, C. J. Analysis and synthesis of research on children's ordinal

and cardinal number concepts. In R. A.,Lesh (Ed.), Number and

measurement. Columbus, Ohio; ERIC, 1976..

Brainerd, C. J: Responge criteria in concept development research.

Child Development, 1977,,48,. 360-366.

Brainerd, C. J. The origins of th9 nuMber concept. New Yotk: Praeger,

1979.

Brainerd, C. J., &. Allen, T. W. Experiment-1 inductions of "first order"

quantitative invariants. Psychological Bulletin, 1971, 7. 128-144.

'Brearly, M., & Hitchfield, E. A guide to reading Piaget. New York:

Schocken Books, 1969.

Brownell, W. A. Atithmetic in grade:5 I and A critical summary of

new and previously reported research. Durham, N.C.: Duke University

Press, 1941.
41101r.'

Bruner, J. S. The process of education. Cambridge, Mass.: Harvard

University Press, 1960.

Bryant, P. E. Percution and understandinv in_young children. London:
_

Methuen, 1974.

Budoff, M. Learning potential as a lementary strategy to psycho-

metric diagnosis. 1.g,1En.1.1.1.9_2112,Esip_Ef_, 1967, 3, 35.

Carpenter, T. P. Measurement-concepts of first- and second-grre students.

Journal for Research in Mathematics Education, 1975, 6, 371

Carpenter, T. P. Analysis and synthesis of existing research on measurement.

In R. A. Lesh (Ed.), Number and measurement. Columbus, Ohio: ERIC,

1976.

r,



94

Carpenter, T. P. & Lewis, R. The development of the coneept of a

standard unit of measure in Young children. Journn. for Research

in Mathematics Education, 1976, 7, 53-58.-

Carpenter, T. P., & Osborne, A. R. -Needed research on teaching and

learning of measure. In R. A. Lesh (Ed.), Number and measurement,

Columbus, Ohio: ERIC, 1976;

Carr D. H. The development of number.concept as defined by Piaget in

advantaged children exposed to the Bereiter-Engelmann preschool

materials and training (Doctoral dissertation, University of Utah,

1970). Dissertation Abstracts International, 1971, 31, 3947A-3948A.

(University Microfilms No. 71-3005)

Case, R. Learning and development: A neo-Piagetian interpretation.

Human Development, 1972, 15, 339-358. (a)

Case, R. Validation of a neo-Piagetian capacity construct. Journal uf

F.xperimental Child Psychology, 1972, 14, 287-302. (1))

case, R. Structures and strictures: Some functional limitations on the

course of cognitive growth. Co3nitive Psychology, 1974, 6, 544-573.

Case, R. Gearing instruction to capacity. Review of Educational Research,

1975, 45, 59-87.

Cathcart, G. W. The relationship between primary students' rationaliza-

tion of conservation and their mathematical achievement. Child

Development, 1971, 42, 755-765.

Churchill, E. M. Counting and measuring. Toronto: University of

Toronto Press, 1961.

c
Copeland, R. W. How children learn mathematics. New York: MacMillan,

1974.



95

Davydov, y. V. On the formation of an elementary concept of number by

the child. In J W. Wilson (Ed. ), AriajxEe_s52!g_glinrocesses.

Soviet studies in the_ psychology of learning and teaching mathematics

(Vol. XIII). Palo Alto, Calif.: School Mathematics Study Group, 1975.

Dimitrovsky, L., & Almy, M. Early conservation as a predictor of

arithmetic achievement. Journal of Psycholo4y, 1975, 91, 65-70.

D'Mello, S., & Willemsen, E. 'rile development of the number concept. Child

Development, 1969, 40, 681-688.

Dodwell, P. C. Children's understanding of number and related concepts.

Canadian JoUrnal of Psychology, ,.960,, 14, 191-205.

Dodwell, P. C. Relations between the understapding of the logic of

classes and of cardinal number in children. Canadian Journal of

Psycholou, 1962, 16, 152-160.

Dodwell, P. C. Children's understanding of .spatial concepts. Ca.adian

Journal of Psychology, 1963, 17, 141-161.

Dudek, S. Z., & Dyer, G. B. A longitudinal study of Piaget's develop-

mental stages and the concept of regression. Journal of Personality

Assessment, 1972,36, 380-389.

Elkind, D. Children's discovery of the conservation of mass, weight,

and volUme: Piaget replication study II. Journal of Genetic PSychology,

1961, 98, 219-227.

Elkind, D. Two approaches to inLelligenoe: Piagetian and psychometric.

In D. R. Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and
0

Piaget. New York: McGraw-Hill, 1971.

Elkind, D. Child development and education: A Piagetian perspective.

New York: Oxford University Press,,1976.



96.

El!Konin, D. B., & Davydov, V. V. Learning capacity and age level:

-

Introduction. In L. P. Steffo (Ea.), OhilardsOm rol 1$04111i1W.

mathematics. Soviet Studies in the psychology of learning and

teachin5 of mathematics (Vol. VII). Palo Alto, Calif.: School

Mathematics Study Group, 1975.

Erlwanger, S. H-_ Benny's conception of rules and answers in IPI mathematics.

3"ournal of Children's Mathematical Behavior, 1973, 1(2), 7e26:

Erlwanger-, S. H. Case studies of children's conceptions of mathemaitcs-

Part I. Journal of Children's Mathematical Behavi r, 1975, 1(3);

157-283.

Fischbein, E., Pampu,.I., & Manzat, I. Comparison of ratios and the

chance concept in children. 'Child Development, 1970, 41, 377-389.
I.

Flavell, J. H. Phe developmental psychology of Jean Piaget. Princeton,

N.J.: Van Nostrand, 1963. /

Flavell, J. H. Concept developlitent. In P. H. Mussen (Ed.), Carmichael's

manual of child_psychology (Vol. I). New York: Wile-, 1970.

Flavell, J. H. Stage'-related properties of cognitive development.

Cognitive Psychology, 1971, 2,, 421-453.

Flavell, J. H. -An analysis of cognitive-developmental sequences. Genetic

Psychology Monographs, 1972, 86, 279-350.

Flavell, J. H. Cognitive development. Englewood Cliffs, N.J.: Prentice-

Hall, 1977.

Flavell, J. H., & Wohlwill, J. F. Formal and functional aspects of

cognitive development. In D. Elkind & J. H. Flavell (Eds.) Studies

laconitisinfJeanPiaet. New York:.
Ihk.Oxford University Press, 969.



.-- 97

Freudenthal, H. Mathematics as an educational _task. Dordrecht, Holland:

D. Reidel, 1973.

Furth, H. G. Piaget for teachers. Englewood Cliffs, N.J.:

1970.

Fusaro, L. A. An experimental analysis of thexoles of measurement and

compensatory operations in the acquisition Llf conservation. Unpublished

master's thesis,' Clark University, 1969.

Gagne R. M. Contributions of learning to human developMent. Psycholoaical

Review, 1968, 75, 177-191.

Gagne, R. M. The conditions of learning (3rd ed.). New York: Holt,

Rinehart, & Winston, 1977.

Gal'perin, P.'Ya., & Georgiev, L. S. The formation of eldmentary mathe-
,

matical notions. In J. Kilpatrick & I. Wirszup (E'ds.), Soviot studies

in the psychology of learning and teaching mathema cs (Vol. 1).

Palo Alto, Calif: School Mathematics Study Group, 1969.

Gelman, R. Conservation acquisition: A problem of learning to attend

to relevant attributes. Journal of Experimental Child Psychology, 1969,

7, 167-187.

Gelman, R. Logical cap city of very young children: Number invariance

rules. Child Development, 1972,, 43, 75-90. (a)

Gelman, R. The nature and development of early nuMber concepts.

H. Reese (Ed.), Advances in child development and behavior (Vol. 7).

New York: Academic Press, 1972. (b)
4

Gelman, R. How young dhildren reason &Do ug. small numbers, In N. j. Castellan,

D. P. Pisoni, & G. R. Potts (Eds.), Cognitive theory (Vol. 2).

Hillsdale, N.J.: Lawrence Erlbaum Associates, 1977.

1



913

Gelman, R.' Cognitive development. @Annual Review of Psychology, 1978,

29, 297-332.

George, L. 0. Selected factors Which affect young children's concepts

of conservation of length (Doctoral dissertation, Indiana University,

1970). Dissertation Abstracts International, 1970, 31, 2735A.

(University Microfilms No. 70-23, 358),

Ginsburg, H. Young children's informal knowledge of mathematics.

Journal of Children's Mathematical Behavior, 1975, 1(3), 63-156.
_

Ginsburg, H. Learning difficulties in children's arithmetic: A clinical

cognitive approach. In A. O. Osborne (Ed.), Models for learning

mathematics. Columbus, Ohio: ERIC, 1976.

Ginsburg, H. Children's arithmetic: The learnin92procesa. New York:

Van Nostrand, 1977. (a)

Ginsburg, H. The psychology àf arithmetic thinking. Journal of apildren's

Mathematical Behavior, 1977, 1(4), 1-89. (b)

Ginsburg, H., & Koslowski,,B. cognitive development. In M. R. Rosenzweig

& L. W. Porter (Eds.), Annual Review of Pycho1oy, 1976, 27, 29-62.

Ginsburg, H., & Opper, S. Piaget's theory of intellectual development.

Englewood Cliffs, N.J.: Prentice-Hall, 1969.

Ginsburg, H., & Rapaport, A. Children's estim4te of proportions. Child

Development, 1967, 38, 205-212.

Glaser, R. Cognitive psychology and instructidnal desi4n. In D.'Klahr

S-
(Ed.), Cognition and instruction. Hillsdale, N.J.: Lawrence Erlbaum

Associates, 1976. (a)

Glaser, R. Components of a_peychology of instruction: Toward a science

of design. Review of Educational Research, 1976, 46, 1-24. (b)



99

Glaser, R. & Resnick, L. B. Instructional psychology. In P. Mussen &

M. Rosenzweig (Eds.), Annual Review of Psychology, 1972, 23, 207-277.

Goldschmid, M. L., & Bentler, P. M. Concept assesskent kit-conservation.

San Diego: Educational and Industrial Testing Service, 1968.

Green, D. R., Ford, M. P., & Flamer, G. B. (Eds.). Measurement and

Piaget. New York: McGraw-Hill, 1971:

Groen, G. J., & Parkman, J. M. A chronometric analysis of simple

addition. .Psychological_ Review, 1972, 79, 329-343.

Groen, G. J., & Poll, M. Subtraction' and the solution of open sentence

problems. Journal of Experimental Child Psychology, 1973, 16, 292-302.

Groen, G., & Resnick, L. B. Can preschool children invent addition

algorithms? Journal of Educational Psychology, 1977, 69, 645-652.

Hagen, J. W., Jongeward, R. H., & Kail, R. V. Cognitive perspective on

the development of memory. In H. W. Reese & L. P. Lipsit (Eds.),

Advances in child development and behavior (Vol. 10). New York:

Academic Press, 1975.

Hatano, G. A. A developmental approach to concept formation: A review

of neo-Piagetian learning experiments. Dikkyo University Bulletin of

Liberal Arts Education, 1971, 5, 59-76.

Hooper F. H. Piagetian research and education. In I. E. Sigel & F. H.

Hooper (Eds.), LoalEal_t_hindren:19ionPiaet'bas

theory. New York: Holt, Rinehart & Winston, 1969.

Huntington, J. R. Linear'measurement in the primary grades: A comparison

of Piaget's uescription of tne child's spontaneous conceptual develoir

ment and SMSG sequence of instruction. Journal for Research in

Mathematics Education, 1970, 1, 219-232.



200

Inhelder, B., & Piaget, J. The growth of logical thinking from childhdod

to adolescence. New York:

Inhelder, B., & Sinclair, H.

Basic Books, 1958.

Learning cognitive structures. In P. Mussen,

J. Langer, & M. Covington (Eds.), Trends and issues in deyelopman

psychology. New York: Holt, Rinehart & Winston, 1969.

Inhelder, B., Sinclair, H., & Hovet, M. Learning, and the development of

cognition. London: Routledge & Kegan Paul, 1974.

Inskeep,, J. E. Building a case for the application of Piaget's theory

and research in the classroom. Arithmetic Teacher, 1972, 19, 255-260.;

Kagan, J., & Kogan, N. Individual variation in cognitive process. In

P. H. Mussen (Ed.), Carmichael's manual of child psychology (Vol. 1).

New York: Wiley, 1970.

Kaminsky, M. A study of the status of conservation ability in relationship

to arithmetic achievement (Doctoral,dissertation, Wayne State University,

1970) . Dissertation Abstracts International 1971, 31, 3341A.

(University Microfilms No. 71-00, 425)

Kaufman, A. S. Piaget and Gesell: A psychometric analysis of tests built

from their tasks. Child Development, 1971, 42, 1341-1360.

Kaufman A. S., & Kaufman, N. L. Tests built from Piaget's and Gesell's

tasks as predictors of first grade achievement. Child Development,

1972, 43, 521-535.

Kilpatrick, J., & Wirszup, I. (Eds.). Problem solving in arithmetic and

algebra. Sovieiloflearrtstudiesintheck)andteachin

mathematics (Vol. III). Palo Alto, Calif.: School Mathematics Study

'Group, 1969. (a)



3.01

Kilpatrick, J., & Wirszup, I. (Eds.). The structure of mathematical

mathematics (Vol. II). Palo Alto, Calif: School Mathematics Study

Group, 1969. (b)

Kilpatrick, 3., & Wirszup, I. (Eds.). The development of spatial abilities.

Soviet studies in the psychology of leaining and teachini mathematics

(Vol. V). Palo Alto, Calif.: School Mathematics Study Group, 1971.

King, W. L. Nonarbitrary behavioral criterion for conservation of

illusion distorted length in five-year-olds. Journal of Experimental

Child Psychology, 1971, 11, 171-181.

Klahr, D., & Wallace, J. G. An information processing analysis of some

PLgetian experimental tasks. Cognitive Psychology, 1970, 1, 358-387,

Klahr, D., & Wallace, J. C. Class inclusion processes. In . Farnham-

Diggory (Ed.), Information processing in children. New York: Acade

Press, 1972.

Klahr, D., & Wallace, J. G. The role of quant:Lfication operator!:; in the

development of conservation of quantity. Cognitive Psychology,

1973, 4, 301-327.

Klahr, D., & Wallace, J. G. Co2nitive deCrelopment: An information-

Lrocessing view. Hillsdale, N.J.: Lawrence ErlDaum Associates, 1976.

Klausmeier, H. J., Ghatala, E. S., & Frayer, D. A. Conceptual learning

and development:_ A cognitive view. New York: Academic Press, 1974.

Klausmeier, H. 3. & Hooper, F. H. Conceptual development and instruction.

In F. Kerlinger & J. B. Carroll (Eds.), Review of research in education

(Vol. II). Itasca, Peacock, 3974.

Aofsky, E. A soalogram study of classificatory development. Child

Development, 1966 37, 191-204.



102

Kohlberg, L. Early education: A cognitive-developmental view. Child

Development, 1968 39, 1013-1062.

Kohlberg, L., & Mayer, R. Development as the aim of education. Harvard

Educational Review, 1972, 42, 449-496.

Kooistra, W. H. Developmental trends in the zttainment of conservation,

transitivity, and relativism in the thinking 0- lhildren: A replication

and extension of Piaget's ontogenetic formulations (Doctoral dissertation,

Wayne State University, 1963). Dissertation Abstracts International,

1964, 25, 2032. (University Microfilms No. 64-9538)

Krutetskii, V. A. The psychololy of mathematical abilities in school

children. Chicago: University of Chicago Press, 1976.

Lankford, F. G. What can a teacher learn about a pupil's thinking through

oral interviews? Arithmetic Teacher, 1974, 21, 26-32.

Laurendeau, M.,.& Pinard, A. The development of the concept oispage in

the child. New York: International Universities Press, 1970.

Lesh, R. A. (Ed.). Number and measurement. Columbus, Ohio: ERIC, 1976.

Lesh, R., & Mierkiewicz, D. (Eds.) . Recent researchthe

.ialdevelomntofsatIdeometricconcets. Columbus, Ohio: ERIC,

1977.

Little, A. A longitudinal study of cognitive development in young ch,ildren.

Child Development, 1972, 43, 1024-1034.

Lovell, K. The development of the concept of proof in abler pupi4s. In

M. F. Rosskopf, L. P. Steffe, & S. Taback (Eds.), Piagetian cognitive

develo.merit research and mathematical education. Washington, D. C.:

National Council of Teachers of Mathematics, 1971. (a)

io
0



103

Lovell, K. Intellectual growth and understanding in mathematics:

Kindergarten through grade three. New York: Holt, Rinehart &

Winston, 1971. (b)

Lovell, K. Some aspects of the growth of cconcept of a function.

In M. F. Rosskopf, L. P. Steffe, ahd S. Taback (Eds.), Piagetian

cognitive development research and mathematical educatj,on. Washington,

D. C.: National Council.of Teachers of Mathematics, 1971. (c)

Lovell, K. Propoitionality and probability. In M. F. Rosskopf, L. P.
41,

Steffe, & S. Taback (Eds.), Piagetian cognitivedevelopment research

and mathematical education. Washington, D.,C.: National Council of

Teachers of Mathematics, 1971. (d) .

Lovell, K. Intellectual growth and understanding mathematics: ?implications

for teaching. Arithmetic Teacher, 1972, 19, 277-282.

Lovell, K., & Butterworth, I. B. Abilities underlying the understanding

of proportionality. Mathatics Teachirlg, 1966, 374 5-9.

Lovell, K., & Ogilvie, E. A study of the conservation of weight in the

'unior school child. British Journal of Educational Psychology, 1961,

31, 1387144.

Lunzer, E. A., & Pumfrey, P. D. Understanding proportionality. Mathematics

Teachin9, 1966, 34, 7-12.

Martin, L. (Ed.). Space and geometry. Columbus, Ohio: ER/C, 1976.

McLellan, 3. A., & Dewey, J. D. The psychology of nunber and its appli-

cation to methods of teaching arithmetic. New York: Appleton, 1896.

McManis, D. L. Conservation and transitivity of weight and length by

normals and retardates. Developmental Psychology, 1969, 1 373-382.



104

Menchinskaya, N. A. Fifty years of Soviet instructional psychology. In

J. Kilpatrick & I. WirsFup (Eds.) Soviet studies in th'e psychology

of learnirig and teaching matheMatics (/ol. I). Palo Alto, Calif.:

School Mathematics Study Group, 1969.

Miller, S. A. Ronverbal assessment of Piagetian concepts. Psychological

. Bulletin, 1976, 83, 405-430.

Montangero, J. Needed research in space and geometry based on recent

results in Geneva, In L. Martin (Ed.), Space and geometry, ColuMbus,

Ohio: ERIC, 1976.

Montgomery M. E. The interaction of three levels of aptitude determined

by a teach-test procedure with two treatments related to area.

Journal for Research in Mathematics Education, 1973% 4, 271-278.

Mpiangu, B. D., & Gentile, R. J. Is conservation of number a necessary

condition for mathematical understandiag?. Journal for-Research It

Mathematics Education, 1975, 6, 179-192.

Neimark, E. D. Intellectual development during adolescence. In F. D.

Horowitz (Ed.), Review of child development research (Vol. ,1). Chicago:

University of Chicago Press, 1975.

Neimark, E. D., & Lewis, N. Development of logical problem solvireg: A

one year retest. Child DeveloPment,'1968, 39, 527-536.

Nelson, R. J. An investigation of a group --trt based on Piaget's contepts

of number and length conservation and its, ability to predict first

grade arithmetic achievement (Doctoral dissertation, Purdue University,

1969). Dissertation Abstracts International, 1970, 30, 3644A:

(University Microfilms No. 70-3948)



OP

105

Nuffie'd Mathematics Project. Checking up I. New York: Wiley, 1970.

Nuffield Mathematics Project. Checking tip II. New York: Wiley, 1972.

Osborne, A. R. (Ed.). Mbdels for learnin9 mathematios. Columbus, Ohio:

ERIC, 1976.-

Pascual-Ieone, J. A mathematical model for the transition rule in Piaget'S

developmental stages. A.cta Psychologica 1970, 63 301-345.

Pascual-Leone, J. A view of cognieibn from a.formalist's perspective.

In. K. F. Riegel & J. Meacham (Eds.), The develozing individual in the

changing world. The Hague: Mouton, 1976.

Peck, A. D., Frankel, D. G., & Hess, U. L. Children's attention: The

development of selectivity. In E. M. Hetherington (Ed.), Review of

child developme'nt research (Vol. 5). Chicago: University of Chicago

Press, 1975.

Piaget, J. The child's conception of-number. New York: Humanities

Press, 1952.

Piaget, J. Intellectual evolution from adolescence to adulthood. Human

Development, 1972, 15, 1-12.

Piaget, J & Inhelder, B. Le development des quantites cher.04'enfan

Neuchatel: Delachaux et Niestlj, 1941.

Piaget, J., & Inhelder, B. The child's conception of space. London:

Roaledge & Kegan Paul, 1956.

Piaget, J., Inhelder, B., & Szeminska, A. The child's conception of

geometry. New York: Basic Books, 1960.

.Pinard, A., & Laurendeau, M. A scale of mental development based on the

theory of Piaget: Description of a Project. Journal of Research in.

Science Teaching, 1964, 2, 253-260.



106

Pinard, A., & Laurendeau, M. "Stage" in Piaget cognitive-developmental

theory: Exegesis of a concept. In D. Elkind & J. H. navel). (Eds.)

New York: Oxford University Press, 1969.

Pinard, A., & Sharp, E. IQ and point of view. Psycholow Today, June

1972, pp. 65-68, 90.

Potter, M. C., & Levy, E. L. gpatial enumeration without counting.

Child Development, 1968, 39, 265-273.

Pumfrey, Pa- The growth of the scheme of prorortionality. British Journal

of Educational Psychology, 1968, 38, 202 k204 .

Reese,(H. W., & Overton, W. F. 'Models of evelopment and theories of

development. In L. R. Goulet & P. B. Baltes (Eds.), 1.4f94maart1227

mental psychology: Research and theory. New York: Academic Press,

1970.

Resnick, L. B. Task analysis in instructional design.: Some cases from

Pe

mathematics. In D. Klahr (Ed.), Cognition and instruction. Hillsdale,

N.J.: Lawrence Erlbaum Associates,1976.

Rohr,,J. A. G. The relationship of the ability to conserve on Piagetian

tasks to achievement in mathematics (Doctoral dissertation, University

of Tennessee, 1973). ,1Dissertation Abstracts International, 1973, 34

2398A. , (University Microfilms No. 73-27, 743)

Rohwer, W. Cognitiye development and education. In P. H. Mussen (Ed.),

Carnaiclap_12i_x_LE_yamaualofchildscholo (Vol. 1). New York: Wiley,

1970.



1

4

107

Rosenthal, D. J. A., & Resnick, L. B. Children's solution processes in

arithmetic word problems. Journal of Edbcational Psychology?. 1974,

* 6, 817-825.

Sawada, D., & Nelson, L. D. Conservation of length and the teaching-of

linear measurement: A methodological critique. Arithmetic Teaoher,

1967, 14, 345-348.

Scandura, J. M. Structural approach to instructional problems. American

Pvchologist, 1977, 32, 33-53,

Scardamalia, M. 'Information processing capacity and the problem of hori-
;

1

zontal d4calage: A demonstration using coMbinational reasoning tasks.

Child Development, 1977, 48, 28-37.

Schaeffer, B., Eggleston, V., & Scott, J. L. Number development in young

children. Cognitive Psychology, 1974, 6, 357-379.

Schwebel, M., & Raph, J. (Eds.). Piaget in the classroom. New York:

Basic Books, 1973.

Shantz, C., & Smock, C. Development of distance conservation and the spatial

coordinate system. Child Development, 1966, 37, 943-948.

'Shulman, L. S. The psychology of school subjects: A premature .4,tuary?

Journal of Research in Science Teaching, 1974, 4, 319-339.

Sigel, I. E. The Piagetian system and the world of education. In D. Elkind

& J. H. Plavell (Eds.) Studies in'cognitive development: Essays in
-

honor of Jean Piaget. New York: Oxford University Press, 1969.

Smedslund, J. The acquisition of sUbstance and weight in children':

External reinforcement of conservation,of wel.ght and the opdrations

of addition and subtraction. Scandinavian Journal of Psychology, 1961,

2 71-84.
4.



108

Smedslund, J. Development of concrete transitivity of length in children.

Child Development 1963, 34, 389-405.

Smedslund, J. Concrete reasoning: A study of intellectual development_

Mqnographsroof'the Sobiety for Research in Child Develqpment 1964,

29, 2 Serial No. 93)

Smedslund, J. The development of transitivity of length: A comment on

Braine's reply. Child Development, 1965, 36, 577-580.

Smith, G. J. The development of a survey instrument for first grade

mathematics based on selectedPiagetian tasks (Doctoial dissertation,
,

University of Mentana, 1973). Dissertation Abstracts Intern-ational,

1974, 34, 7056A. (University Microfilms>e. 74-11, 637)

Smock, C. D. A constructivist model for instruction. In A. R. Osborne

(Ed.), Models for learning mathematics. Columbus, Ohio: ERIC, 1976.

(a)

Smock, C. D. Piaget's thinking about concepts and geometry. In L. Martin

(Ed.), Space and geometry. Columbus, Ohio: ERIC, 1976. (b)

Steffe, L. P. Differential performance of first-grade children when

solving arithmetic addition problems. Journal for Research in

Mathematics Education, 1970, 1, 144-161.

Steffe, L.,P. Thinking about measurement. Arithmetic TeacheiF4 1971, 18,

332-338.

Steffe, L. P. An application of Piaget-cognitive development research in

mathematical education research. In R. Lesh (Ed.), Cognitive

psychology and the mathematics laboratory. Columbus, Ohio: ERIC,

1973.



109

Steffe, L. P. (Ec:.). Children's"capacqy for learning mathematics.

Soviet studies in the EArchology of learning and teaching mathematics.

(Vol. VII). - Palo'-Alto, Calif.: School Mathematics Study Group, 1975.

Steffe, L. P., & Carey, R. L. Equivalence and order relations as inter-
%

related by four- and five-year-old children. Journal for-Research in

Mathematics Education 1972, 3, 77-88.

Stendler, C. B. Aspects of Piaget's theory that have implications for

teacher education. Journal of Teacher Education, 1965, 16, 329-335.

Stephens, B., McLaughlin, A., Miller, C. K., & Glass, G. Factorial

structure of selected psycho-eduEational measures and Piagetian reasoning

assessments. Developmental Psychology, 1972, 6, 343-348.

Stone, G. E. G. Three approaches to assessing the conservation of weight

concept (Doctoral dissertation, Iowa State University, 1972).r

Dissertation Abstracts International, 1972, 33, 199A. (University

Microfilms No. 72-19, 528)

Strauss, S. Inducing cognitive development and learning: A review of

short-termtraining experiments. cogntion, 1972, 1, 329-357.

Sullivan, E. Piaget and the school curriculum--A critical appraisal.

Toronto: Ontario Institute for Studies in Education, 1967.

Suppes, P. .Needed research in the learning of mathematics. Journal of
00-

Research and Deve19pment in Education, 1967, le 1-47.
a

Suppes, P., & Morningstar, M. Cemputqi assisted instruction at Stanford,
_

1966-68. New York: Academic'Press, 1972.

Taback, S. The child's concept of lim4. In M. F. 'Rosskopf (Ed.), Children's

mathematical conce t : Six Pia e studies in mathematics education.

New York: Teachers College Press; 1975



110 .

Thomas, H. L. The concept of function. In M. F. Rosskopf (Ed.), Children's

mathematical concepts: Six Piagetian studios in mathematicr %education.

New York: Teachers College Press, 1975.

Tuddenham, R. D. Theoretical regularities and individual idiosyncricies.

In D. R. Green, M. P. Ford, & G. B. Flamer (Eds.), Measurement and

Piaget. New York: McGraw-Hill, 1971.

Uzgiris, I. C. Situational generality of conservation. Child Development,

1964, 35, 831-841.

Uznadze, D. N. The psychology of set.

Vygotsky, L. S. Thought and language.

New York: Plenum Press, 1966.

Cambridge, Mass.: M.I.T. Press,

1962.

Vygotsky, L. S. Mind in society: The development of higher psychological

proceso. Cole, M., John-Steiner, V., Scribner, S. & Souberman, E.

(Eds.). Cambridge, Mass Harvard dniversity Press; 1978.

Wagman, H. G. The child's co eption of area measure. In M. F. Rosskopf

(Ed.), Children's mathematical concepts: Six Piagetian studies in

mathematics education. New York: Teachers college Press, 1.915.

Wallach, L. On the basis of conservation. In D. Elkina & J. H. Flavell

(Eds,),

Piaget. New York: Oxford University Press, 1969.

Wang, M. C., Resnick, L. B., & Boozer, R. F. The sequence of development

of some early mathematics behavior. Child Development, 1971, 42,

1767-1778.

Washburne, C. The work of the Committee of Seven on grade placement in

arithmetic. In G. M. Whipple (Ed.), Thirty-eighth yearbook of the

National Society for the Study of Education (p. 1). Bloomington, Ill.:

Public School Publishing Co., 1939.



111

.

Watson, J. S. Conservation: An S-R anayiM. Tn T. F. Sigel P. H.

Hooper (Eds.), LogiFal thinking in children: Research based on

Piajet's theory. New York: Holt, Rinehart & Winston, 1968.

Weaver, J. F. Some concerns about the application of Piaget's theory and

research to mathematical learning and im,truction. Arithmetic Teacher,

1972, 19, 263-270.

Wheatley, G. H., Mitcftell Frankland, R. L., & Kraft R. Hemispheric

specialization and cognitive development:, Implications for mathematics

education. Journal for Research in Mathematics Education, 1978, 9,

20-32.

White, S. H. Evidence for hierarchical arrangement of learning processes.

In L. P. Lipsett & C. C. Spiker (Eds.), Advances.in child development

and behavior (Vol. 2). New York: Academic Preps, 1965.

Wirszup, I. Breakthroughs in the psychology of learning and teaching of

geometry. In L. Martin (Ed.), Space and geometry. Columbus, OhiO:

ER2C, 1976.

Wohlwill, J. F. A study of the development o'f the number concepts by

scalogram analysis. Journal of Genetic Psxchology, 1960, 97, 345-377.

Wohlwill, J. F. The place of structured expernce in early cognitive

development. Interchan9e, 1970, 1, 13-27.4

Wohlwill, J. F. The study of behavioral development. New Yoik: Academic

Press, 1973.

Woods, S. S., Resnick, L. B., & Groen, G. J. An experimental test of

five piocess models for subtraction. Journal of Educational Psychology,

1975, 1 17-21.



.112
.16

Zykova, V. I. Operating with concepts ivhen solving geometry problemi.

In a. Kilpatrick & leWirszup (Eds.), Sovie studies _in the psycholoa

of learnin5 and teachini mathematics (Vol. 1). Palo Alto, Calif.:

School Mathematics Study.Group, 1969.

;



3

Center Planning and Policy Committee

Richard A. RossMiller
Wayne Otto
Center Co-Directors

Dale D. Johnson
Area Chairperson
Studies in Language:
Reading 4nd Communicat on

Marvin J. Pruth
Area Chairper4,on
Studies in Implementation
of Individualized Schooling

Vernon L. Allen
Professox
Psycholoqy

Psnelope L. Peterson
Area Chairperson
Studies of Instructional Programmang
for the Individual Student

James M. Lipham
Area Chairperson
Studies of nistration and
Organizatio for Instruction

Thomas A. rg
Area Chairperso
Studies in Mathematics and Evaluation
of Practices in Individualized Schooling

Associated Faculty

B. Dean Bc.,wles

Professor
Educational Administration

Thomas P. Carpenter
Associate Professor
Curriculum dud Instruction

W. Patrick Dickson
Assistantr Professor
Child and Family Studies

Lloyd E. Frohreich
Associate Professor
EducAional Administration

Marvin J. Fruth
Professor
Educational Administration

Dale D. Johnson
Professor
Curriculum and Instruction

Herbert.J. Klausmeier
V.A.C. HenmoriProfessor
Educational Psychology

Joel R. Levin
Professor
Educational Psychology

James M. Lipham
Professor
Educational Administration,

Dominic W. Massaro
Professor
Psychology

Donald M. McIsaac
Professor
Edutationfl Administration

Wayne Otto
Professor
Curriculum and Instruction

Penelope L. Peterson
Assistant Professor
Educational Psychology

Thomas S. Popkewitz
Associate Professor
Curriculum and Instruction

Gary G. Price
Assistant Professor
Curriculum and Instruction

W. Charles Read,
Associate Professor
English and Linguistics

Thomas A. Romberg
Professor
Curriculum and Iwitruction

Richard A. Rossmiller
Professor
Educational Administration

Peter A. Schreiber
Associate Professor
English and Linguistics

B. RobePtrTabachnick
Professor
Curriculum and Instruction

Gary G. Wehlage
AsSociate ProfesSor
Curriculum and Instruction

Louise Cherry Wilki:.sim
Assistant Professor
Educational Psychology

Steven R. Yussen
Associate Professor
Eftcational Psychology

3/79


