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, o ABSTRACT
fo

The purpose of this paper is to identify how the theory and
technique; of reséarch in cognitive development can be applied to the
study of learning and instruction in mathematics. Five basic research
paradigms are characterized; and major directions of researchvon
number, measurement, gecmetry, and adélescent reasoning ;ré identified.
Most of this reséarch was built upon the work of Piaget égd his
associates. However, recently translated Soviet resea;ch and iﬁfar~
mation processing techniques offer promising alternatives.

If cognitive development research is going to have a significant
impact on educatioﬁ, its theories have to'be recast into an educational
context and principles of cognitive development haQe to be applied
directly to educétionally significant questions.- The role of mathe~
matics educators ;hould not be to validate or develop aépects of
different theories of cognitive development but to determine how
useful thesextﬂeeries are in explaining childrens' learning of
mathemaﬁics concepts. Specifically itqis important to focus on
content thgt is central to the mathematics curriculum. Furthermore,
it is necessary to empiriéally establiish how the descriptive information
from research on childrens' tﬁinking can be applied to prescribe
* instruction., One of the most promising directions for such reseagch
is to attempt go determine how content can be designed and sequenced

to reflect or build upon childrens' informal mathematical concepts

and strategies. A“second potentially productive line of research is

"~

attempting to identify how instruction may be individualized to match

childrens' level of development. ' *

vii
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Cognitive Development Research and Mathematics Education
The basic concern of research and theory in cognitive development
is to describe the growth of basic concepté of children ovér time and
explain the processes by which these concepts are acquired and applied.
Cognitive development can be charactgrized in a number of différent ways.
A useful distinction between two different conceptions of cognitive develop-~
.
ment has been proposed by Reese and Overton (1970). One is based on an
organismic model and is represented by the works of Piaget and his
- followers. This model takes as its analog the biological organism and
is concerned with the development of compléx cognitive systems. The other
conception of cognitive development is based on a mechanistic model and
is essentially an extension of behavioristic theories to explain develop-
ment. The theories of Gagne (1968, 1977)‘regarding development are repre-
scntative of this orient”atiun. The mechanistic model is based on the machine

and is concerned with the development of discrete chainlike associations.

k]

From the mechanistic perspective the only distinction betweén learning and
development is the duration of time involved. Development deals with
change in behavior over weeks, months, ag'years whereas learning theory
deals with changes in behavior over much shorter periods of time.

Even within the orgaq&gmic framework cogniticg is an elusive concept.
However, although any attempt to characterize cognition in detail remains
'Spen to argqument, certain fundamental premises of the organismic model -

can be identified. The basic premise is that any intelligent behavior

must be explained by reference to internal psychological mechanisms of

b
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some kind (e.g., groupings, transitive inference, logical grammars, etc.).
There 1s far from universal ag{eehent as to wsat internal mechanisms are
most appropriate.for explaining intelligent behavior, but the general
organismic View is that these internal mechanisms arelorganized into well
integrated st;uctbral systems rather than consisting of a seriesfof inde-
pendent associations. Furthermore, it is generally recognized that these

v systems are not restricted to higher order conscious behavior but operate
on a wide range of mental functions, including suthh functions as perception
and memory. |

From the organismic perspeqtive, the study of cognitive development
i3 the study of the development of these cognitive systems. Whéreas
levarning involves the app:lication of ;ntellectual structures to new events,
development entaills transformations in the cognitive structures themselves.
-

The primary focus of developmental research is not to identify what
specific knowledge a child possesses at a given point in time but to study
how the child processes or operates on information. There is relatiVG%y
11ttle concern with finding out which addition facts are known by most
second graders or 1dentifying the age at which most'child:ehpmastet addition
of two-digit éddends; the focus is on concepts like conservation, transi-
tivity, and seriation that involve the application of 1ggical inference
and seem to be closely linked to underlying cognitive structures. The
interest in a cnncept like conservation is not simply that 1t 1s an
important bit of factual knowledge, that is, that quantities remain
invariant under certain transformations. Rather performance on conservauvion

tasks is viewed ds a measure of underlying cognitive structures that the

child can apply to a wide variety of problems. In other words a child's

O
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performénce on a conservation task does not simply demonstrate a knowledge
of an isolated fact about the physical world. *It is indicative of the
way that child processes information in a var;ety of problem situat}ons.
This is a central issue in cognitive development. Thoséﬂwho ;ttq;h
relatively little significance to concepts like conservation generally
regard them as no more than bits of factual knowledge, whereas those who
attribute a central role to such concepts regard them as measures of basic
cognitive processes.

Mechanistic models do not recognize the integrated cognitive systems

that are the essence of cognition within organismic models. Aithough

internal mediating respornses are acceptable, these are organized into

chainlike associatione rather than integrated into complex systems.
Mechanistic models also are more concerned with product than with process.

As with cognition, the two types of models pirovide radically different
conceptions of the nature of development. In organismic models the individual
actively participates in the construction of knowledge. New information
is not received passively. The subject actively assimilates it into and
interprets it in light of the existing cognitive structures. The mechanisﬁic
posifion is that knowledge is a copy of reality and that people are
essentially reactive rather than active in acquiring knowledge.

Experience plays a key role in development in both types of models,
buc experience is characterized in different terms in each type of model.
‘Within organismic models ekperience traditionally has béen regarded as
a function of the sum of all an individual's experiences. The environment
is considered to be something of a black box within which specific cause

and effect factors are undifferentiable. Research based on organismic

*
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models traditionally has been cbservational and correlational rather than
experimental, and until recently there has been little attempt to manipulate
experimental variables. Note that this helistic view of experience is

an integral part of a theory that hypothesizes the existence of an inte-

: grated cognitive system in which individual c¢lements cannot be significantly

: )
altered without changing the structure of the entire system.

Mechanistic models, on the other hand, focus more on the specific
cffects of training. 1In the last 10 to 15 years there have been
an increasing number of training studies that have been based upon tra-
ditional drganismid variables. Indecd, even from an organismic perspective
it 1s becoming accepted to éttempt to identify specific mechanisms of
development. Even Piaget and his associates have teen cconducting training
studies in the past few years (Inhelder, Sinclair & Bovet, 1974). Thus:
organismic madels do not preclude the asalyzing development or studying
part processes. However, the parts must ultimately be interpreted in
context of the whole of which they are a part.

The ultimate source of cognitive mechanisms is another point of
disparity. Most mechanistic nodels hygothesize that behavior can be
explained strictly on the basis of environmental determinants, and it is
assumed that all internal mechanisms originate solely from experience.
However, organismic models allow that some structure exists at birth and
that others develop through maturation and the interaction of present
structures and the environment.

Organismic models generally view development as proceeding through
an irreversible, fixed.sequence of qualitatively different stages; and
the mechanistic model views development as essentially continuous,

reducible to quantitative change. Thus, for organismic models development

¢ J



results from change in the organism itself; and for mechanistic models
development reduces to quantitative increments.

Organismic models tend to be teleological in that they are goal
oriented in their characterization of cognitive development. For example,
a child is %nexorably developing toward a stage of formal operations.
Mechanistic models, on the other hand, do not rely on teleoiogical causes
to explain development. Organismic models also tend to be more species
specific. Their proponents maintain that to understand human behavior
it is necessary to study cognitive development of people, whereas proponents
of mechanistic models are more likely to generalize from research with
simpler organisms.

Many of the significant issues in cognitive development reduce tu
differences over which type of model of cognitive development 1is more
apprapriatol Issues involving the stage concept, the crfaect of training,
and the significance of conservation all revolve around the question of
which type of model of cognitive development has been adopted. Experimental
paradigms have been proposed (Watson, 1968} and a wide range of studies
(Beilin, 1971) have been conducted that attempt to resolve the conflicting

N
theories that result from adopting one or the other of these two models.
In general, these studies have done little to resolve the basic 135sues
or establish the validity of either model.

Reese and Overton (1970) propose that these models‘repreéent two
independent world views that are based on different sets of assumptions
and are essentially irreconcilable. In ecsence, this means that it is
futile to attempt to zynthesize an organismic approach like Piaget's with

-
a behavioristic, mechanistic approach. In fact, the central gquestion 1s

ba'
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not which model is valid or accurate. It is not being assertedwfﬁat the
model describes thé Qay.that cognition actually develops, only that the
model accurately describes behavior. To quote Reese and Ovefton (1970),
“It is not being asserted lin a modell th& the real world is thus and so,
only that the real world behaves as if it were thus and so" (p. 120).
Thus; the relevant question is pragmatic. Which model is more fruitful
for adequately explaining and predicting behavior? Siéce.any moacl
limits the domajn of problems that are susceptible to investigation, "the
choice of a model essentially involves a value judgment as to which problems
are most significant to solve. ‘ |

Since neither model appears to be sufficient to account for the whoie
range of human behavior, several eclectic £héaries have emergéﬁ. For
example, White (1965) maintains that at about the age of S to 7 years
qualitative change occurs in children's behavior. A mechanistic, associative
model best accounts for early behavior while a cognitive model isanSt
appropriate after this traﬁsition. Kohlberg (1968) and Uznadze (1966)
also attempt to integrate the two models to explain simple and more
complex behavior.

Manv of the lower level skills in mathematics, like learning addition’
facts, are readily reduced to associations and lend themselves to analysis
in terﬁs of mechanistic models. However, most of the more interesting
complex cognitive processes are more adaptive to cognitive, organismic
models. Although it ié not always clear what sort of model a particular
researcher has adopted, most of the cognitive development research that

is of particular interest for the lcarning and teaching of mathematics

is based on organismic models, and they will be dealt with most completely



in this chapter.. For a more complete discussion gffthe mechanistic
. . position with respect to cognitive development, see Baer (1970) or Bijou N
and Baer '(1961).
Cognittive development ic an extensive field that is impossible to

characterize adequately here. Consequently it is necessary to assume that

the reader has some -familiarity with .the work in this area. Most of the
research that has the greatest potential significance for the teaching

and learning of mathematics has been based on the work of Piaget. Several
[y “
excellent summaries of his voluminous works exist elsewhere, and no attempt
N
has been made to duplicate or summarize these efforts. Piaget's basic
~

positions have not changed significantly in recent years and early stuydies
on number, space, agd geometry still provide the basis for much of the

research on the teaching and learning of mathematics. Consequently, Flavell's

(1963) summary is still one of the best statements of. Piaget's basic theories

and research available. For more recent and somewhat more general

discussions of theories and research in cognitive development, see Flavell

{1870, 1977), Gelman (1978), and Ginsburg and Koslowski (1976).

#

Major Paradigms of Cognitive Development Research

Wohlwill (1973) has outlined a hierarchical model for the study of
‘ development problems which with certain‘ﬂadifications provides a useful

“,

framework for characterizing cognitive dévelopment research in mathematics
education. Wohlwill places certain restrictions on the criteria for
suitable behavioral dimensions that would disallow many of the problems

of central interest in mathematics education. fln research that is

primarily concerred with eXplainiﬁg the general cause of cognitive

.‘j . p




development, varial les that develop independently\of cpecific experiences
or specific scheol curriculum are generally most appropriate. Although

-

the foundations of many mathematital concepts ma&_fit’these criteria, most

-
-

L]

mathematical concepfs are acquired under the influence of instruction.
It can be argued that concepts that are influenceé by instruction are net
truly developmental, but.§p§§ distinctionﬁdoe§ not seem véry productive.
If certain mathematical concepts show the same stégelike characteristiés
as pure developmentai coﬁcepts, the' paradigms™dnd techrfiques of research
in-cognitive development can pfove uaseful in their study and should be
applied. Experience plays a role in the development of most copcepts.
When instruction is atfactor, there is simply a greater potintial for
variability in the development Qf the given coneepts. The important point
is that at ecach level of WShlwill’s model, it is necessary to identify
the specific effects of instruction when appropriate. If this attention
to the effects of instruction is built into the model, Wohlwill's general
model provides a useful framework to describe the major paradigms of basic
research in the developmeng of mathematical concepts.

Wohlwill identifies five basic phases in research on developrent:
(a) the discovery and synthesis of deveclopmental dimensions, (b) the
descriptive study of change, (c) the correlational study of age change,
(d) the study of the determinants of developmental chénge, and (e} the
study af individual differences in development. AltlLough there is an
implied hierarchy, research has génerally been conducted at each og the
levels simultanecusly. Ideally, the results at lower levels provide a
foundation for research at higher levels, and conclusions reached at
lower levels are consclidated and possibly revised on the basis of chk

at advanced levels.

(W5
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The Discovery and Syntﬁeéis of Developmental Dimensions

-

The firstttask in investigating the ‘development of mathematical
concepts is to ideﬁtify the dimensions to be used to describe development.
In the study of the development of mathematical céncepés,.the specific
var%ables to be investigate§ have been derived from two primary sources:
(a) the mathematical axiomssangjtheorems underlying the concepts under
investigation and (b) the general st&dy of cognitive development.

The study by Wagman (1975) is an example of an inwestigation employing
s

variables derived from the mathematical structure of area measure.

Although the study is similar to those based on psychological considerations,

Wagman maintains that most studies in the general cognitive development

-

tradition have not investigated some of the significant aspects of area

measure. The implication is that by beginning with the mathematical
;

foundations of a subject one is more likely to provide a complete picture

of the development of a mathematical concept. The studies reported by

-

LQGQll {1671a, 1971¢}) on the qrcw&h of the concept of a function'and the
ded;;opment of the concept of mathematical\proof pravid? additional
examples of mathematically derived dimensions.

Most of the research on the development of mathematical concepts that
has evolved from the general study of cognitive dévelopment has been based

-

on the work of Piaget and his associates. For Piaget,,ce;tain‘logico— '
A
maZﬁematical structures (e.g., groupings) provide excellent models of actual
cognitive processes used by older chiidrén and adults. (For a more
complete discussion of groupiﬁgs,-graup—lattice structures, Etc., see Flavell,

1963.) According to this theory the major elements of cognitive development

can ultimately be described in terms of theﬁdevelopmen;‘of these logico-

-

-ty
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mathematiqgl structures. Thus, for Piaget these structures provide the

major‘dimensions for the study of cognit%vé develgpment. However, although
such structures are appealing for their mathematical elegan?e. to
hypothesize the existence of these structures requires a higﬁ degree of
inference, énd their usefulnes§ for explaining the development cof basic
mathemafical concepts is open to questioni(Steffe, 1973).
Most research in the development of mathematical concepts has focused
. directly on principles ligé conservation, transitivity, seriation, and
class inclusion, that are more readily observable than grouping‘structures.
However, although these principles are less obscure than grouping
strugtures, researchers are still plagued by the §roble@ of constructing
crf;éria‘kpat are necessary and sufficient to establish whether or not

a child has attained an operational level in applying them.

Developmental dimensions should be sufficiently situation independent

pl
£

'3

to generate valid, reliable measures of development. Researchers are
faced, however,.with the well documented pro%lem of horizontal débalages.
Although it seems that operations with the same logical structure would
readily transfer from one problem situation to another, this is not the
case. For example, conservation of mass is attained as young as 7 years,
while conservation of weight is not attained until at least 9 years, and
volume is not conserved until 11 or 12 (Piaget & Inhelder, 1941; Elkind,
1961). Thus, although it is desirable to define developmeﬁtél dimensions
in terms as gencral as possible, same.specification of the domain of
application seems unavcidaﬁlé. It is not sufficient to identify children

as conservers; it is necessary to specify whether they conserve one-to-one

correspondence, continuous quantity, weight, or volume.
, ) y

Q = 7
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Unfortunately, the probl¥h does not disappear with the specification
¢f the domain in which the operation is applied. Methodological variations
account for significant differences in children's performance -on tasks

te;ting logical operations. Differences in the criteria for success, the
L . '
use of verbal or nonverbal procedures, the presence or absente of conflict,

and variations in materials or protocols all significantly affect children's
level of performance (cf. Geofge, 1970; King, 1971; Sawada & Nelson, 1967;
Shantz & Smock, 1966; Stone, 1972; Uzgiris, 1964). Furthermore, these

differences are not trivial. Methodological variations account for a

. [

four~year age differential in the acquisition of transitivity (Bailey, 1971;

. : s
Smedslund, 1963). This has led to sustained debate.over appropriate re-

search mgthodology (cf. Braine, 1959, 1964; Smedslund, 1963, 1965).
Methcdoléqical_issues frequently involve basic philosophic differences
that seem to go back to fundamental mechanistic-organismic distinctions.
This makes any empirical resolution virtually impgssible.

One proéosal for dealing with experimental variability and the décalage

-issue has been put forth by Flavell and Wohlwill (1969). The whole problem
[y *

centers on what performance is necessary to demonstrate competence for

a given lcqical operation. Flavell and Wohlwill pn‘.ase that an ana%?sis
-9

%
%

of cognitive development should incorporate a competence-performance
- - .
distinction ‘similar to Chomsky's model for language acquisition. The

competence component. of the model is the logico-mathematical structure

L

of the domain, and the performance cSmponent represents the psychological

r
processes by which the structures in the competence component are accessed
N .

and applied to specific tasks. The competence component is an idealized
abstract representation of what is known or understood, whereas the

performance component must account for the reality of stimulus variations,

-~

N )
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conflicting information, and memory limitatiens.

In Flavell and Wohlyill's_madel, a child's performance for a given

operation should be specified in terms of three parameters: Pa' the

probability that the operatieﬁ will be functional in a given child; Pb'

¢

the probability of the operation being applied to a given task; and k,

!
the weight to be attached to P, in a given chila at a given age. The

b
equation for the probability of a given child solviné some particular
task is:

1 -k

P (+) =P P -
(+) 3 x b

Any description of development must account for Pb as well as Pa.
In other words, developmental dimensions cannot be based completely on
logical operations. They must also be defined in terms of attributes of
[

potential problem situations that affect performance.
@

The Descriptive Study of Change

Once developmental dimensions have been selected, the task is to
describe the course of development* along these dimensions. This is C .
the descriptive phase of‘the research program that characterizes the
initial efforts in almost any %ielé of scientifig endeavor . Educational

PN
research in general has been marked by a disdain for this phase of the
scientific process. Major curriculum projects“and elaborate theoriés of
instruction have Qeen grounded on extremely limited empirical foundations.
Rather than beginning with a carefui‘observaticn of children learning
mathematics, research has too often been initiateé with narrowly defined
hypotheses tested in carefuily contrélled settings gsing standardized,

objective instrumentation. Standardization and experimental control

certainly have their place.in research. But if controlled experimentation




is

1.

13

is préceéed by careful observation, the experimenter has a much better

’

basis for explaining specific results. In addition; the experimenter
should gain a clearer idea of what elements are not being ;apped with
the standardized instruments and should be able to design items that get

at the most significant variables.

In many scientific fields carefully con;rélled research is not

”

initiated until the experimenters have a sufficient empirical basis to /
¢ )

be virtually ceriain of their resulte. That this paradigm has seldom
N

been applied in educational(researéh may in part account for the éyndrome

of no significant:difference and the qeneralyféck‘of real progress in
identifying significant educational variablesf

Research in cognitive development has been somewhat less guilty in
this regard than educational research in general. In fact, demonstrating
the usefulness of clinical interview techniques and the wealth of infor-
mation that is contained 1in ;ncorrect responscs may be one of the most

significant contributions of Piaget to research in the learning of

.
-

mathematics. .

Ginsburg (1976) has made one of the strongest cases for the use of

clinical-observational techniques in studying the learning of mathematics.

He maintains that standard tests often misrepresent chiMdren's competence.

Consequently a greater emphasis on the flexible observation of children's

£

mathematical thinking'is requifed. This point is aptly illustrated by

Erlwanger’'s (1973, 1975) evaluation of IPI using flexible interview

technigques. Although standardized tests generally indicated that certain
children were successfully progressing through the IPI program, clinical
interviews uncovered a number of serious miscenceptions that Exliwanger

-~

attributed to the program's specific nature.

i 0
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Althcugh'the potential richness of clinical cbservation and inter-

- < -
active intetview technigues is qénerally acknowledged, serious questions

—

concerning their validity and reliahility have been raised. To overcome

-

these objections, most of the replication studies based on Piaget's

-*

. original research have attempted to standardize protocols and procedures.

Frequently the'stagdardized.praccdures impese less stringent
conditions for assuming a child has attained a given operation which
results in identifying earlier ages of emergence of -the operation.

Piaget and his associates require thdt in order for a child to be judged

opcrational for a given concept the following criteria must be met:

-

(a) they must make the correct judgment with respect to the given operation,
s

(b} they must jugtify their response, (c) they mus§ resist verbal counter
suggestion, a;d (d) their performance must transfer to related tasks
({Inhelder & Sinclair, 1969).

Brainerd (1973a, 1977} contends that these criteria are too restrictive
and result in too many false negatives. He proposes that children be
required only to give correct judgments and not to justify the;r answers.
Qtrers have proposed using nonverbal techniques that minimizelverbalization
of both the experimenter and the child (Braine, 1959; King, 1971; Miller,
1976; Sawada & Nelson, 1967). |

Although standardized techniques are definitely needed at some point
in the ;esearch process, much of the richness uncovered using more subjective
techniques is lost. Standardized protocols seldom uncover the transitional
stages of performance on a given tasX that are identified by Piaget and

others using interactive methods. The proponents of standardization

could respond that these transitional stages are simply illusory anyway,
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;whereas.those favotinq interactive procedures would maintain that the
standardized techniques do not tap genuine operational competence.

This division tends to split along philosoéhical lines. Those
favoring a mechanistic model heliéve.that important cognitive outcomes
should be specifiable in tefms of overt behavior. Therefore they take

-

a hard line on standardized techniques; those favoring interactive

-
- *

méthods tend to fali in the organ&smic camp. To some degréé these
methodological issues present a false dicﬁptomy. It is not a question.
of either-or..‘Bath paradigms have their strengths, and weaknesses. Some
’ st;ndardization is necessary in studies comparing instructional treatments
and in studies comparing thé relative difficulty of two or more tasks.
In these kinds of studies, objectivity is of central concern. Standardi-
zation is also ultimately needed to test hypotheses and determing the
prevalence of specific responses. On the other hand interactive methods
also have their élace, and clinical c#se study research should be recog-
nized as legitimate research endcavcr. Something is lost and something
is gained with each paradigm, and both clinical and controlled studies

. &
are needed. .

Up to now, researchers favoring one typc of ctudy or the other have
tended to rely exclusively un the design of their choice. Because of the
variability introduceé by differences in materials and procedures, it has
been difficult to equate the two bodies of research. Researchers would
be well adyised to incorporate botﬁ types of design in their programs.

In either case the goal ef’%his phase in the research prcgrameis to
describe the course of develoﬁhent along the dimensions that weré laid
out in the first phase discussed above. For the most jirt, the develop-

mental dimensions that have been of greatest interest n describing learning

. - ‘;'2' hd
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in mathematics have been qualitativé rather than quantitative. As a
consequence, deVelopmeht cannot be described in term; of a_m;thematical
function like one might generate from a test of word recognition. .Instead,
the problem becémeslnge of describing invariant sequential patterns of
qualitatively different responses. The main task reduces to specifying
the sequence in which behaviors appeérﬁduring the course of development
alogé with determining how invariant this sequznce is for a given sample
of‘children.

Some attempt has- been made ;o establish age norms for the emergence
of specific responses. However, in addition to the variance introduced
through experimental variation, culfural andlsocioeconomic factors create
an almost overwhelming obstacle in this regard. Although estimatés of
such age norms are useful as benchmérks and they do provide some measure
of the duration of differcnt stages of development, caution should ke

exercised in their application.

The Correlational Study ~f Development

The dévelopment of most mathematical concepﬁs of real interest, like
number or measuremant, aré not readily described along a single dimension.
These concepts involve the synthesis of a number of logical operations,
and therefore multip¥Fe measures are required. Furthermore, it is impossible

to understand the development of a concept by considering it in terms of

N t

isolated, independent dimensions.
One of the major aims of cognitive-developmental study
is to identify and interpret the temporal relations that
may hold among conceptual acquisitions. For any pair of

acquisitions A and B, the most interesting of such relations

-
.'/ '
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are invariant concurrence (A and B develop synchronously
in all children) and invariant sequence (e.g., A develops

earlier than B in all children). (Flavell, 1970, p. 1034)

Developmental sequences. By analyzing the structure of various

problems, one can hypothesizenthat certain concepts must be learned before
others because the developméntvof éhe first mediates or, in some way
contributes ¢o the develoﬁment of, the second. The difficulty is that

by analyzing tasks in different ways different sequences can be identified.
For example, one can construct a reasonable argument for conservation
preceding transitivity or for transitivity preceding éSnservaticn {cf.
Brainerd, 1973d). For this reason logically derived seqguences TuSt be
compared with the actual sequencec of developmcont, so that hypotheses can
be tested regarding factors that contribute to tﬁe development of a concept
and the processes that a child is using to solve a given problem.

e Althoughvdevelopmental sequences are an integral ‘part of Piaget's
theory, his method of comparing mean ages of development for different
samples of children is inadequate for verifying the existence of such
seé;ences. Repeated measures on the same subjects are required, the
most effective of which would look for sequence reversals. If the
development of B depends on the development of A, there should be an in-

- variant A - B sequence; and B should precede A only in cases of measurement

error. Where more than two tasks have been involved, scalogram analysis

techniques have frequent.ly béen applied (Kofsky, 1966; Wohlwill, 1960, 1973).

tongitudinal design provides certain information that 1is inaccessible using

cross~sectional methods; and invariant sequences identified in cross-

sectional studies should be confirmed with longitudinal study, where the

A
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sequence of development can be observed directly within individual subjects.
However, because of the practical problems involved, relatively feﬁ |
longitudinal studies relating to the developmen§ of mathematical concepts
have been conducted {(cf. Almy, Chittenden & Milier. 1966; Almy,
Dimitrovsky, Hardeman, Gordis, Chittenden & Elliot, 1970; Carr, 1971;
Dudek & Dyer, 1972; Little, 1972; Niemark & Lewis, 1968; Hooper &
Klausmeier, Note 1.)

The objective of the study of developmental sequences is to establish v
some functional relationship between tasks that accounts for ébserved
invariant sgguences. A key problem iA this endeavor is the sensitivity
of the tasks used to measure the individual concepts. An observed A - B

sequence may simply result from the fact that the task measuring B is less

sensitive than the task measuring A and consequently yields a greater

-~
-

number of false negatives. If there is sufficient time lag between the
development of differcont concepts as with conservation of mass, weight,
and volhmv, there may be no serious problem. But most sequences of
greatest interest occur over shorter periods of time.

For example, thce sequence of development of conservation and transi-
tivity is of some potential significance for understanding the development'
of number concepts because it may reflect tﬁe ordinal-cardinal controversy
isee¢ Brainerd, 1976). Piaget and Inhelder (1941) ir tially proposed that
the two concepts develop synchronously, but with the exception of a study
by Lovell aﬁd Ogilvie (196l), most of the initial replications found that
conservation develops before transitivity (Kooistra, 1964; McManis, 1969;
Smedslund, 1961, 1963, 1964; Steffe & Carey, 1972). These studies,
however, have been criticized by Brainerd (19738& fo; failing to eguate

) . «

the relative sensitivities of the assesament tasks. Each of the studies

|
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employed perceptual illusion in tuhe transitivity tasks. Using tasks-

that did not involve perceptual illusion, Brainerd (1973d) found that the
development of transitivity precedes the development of ccgservation.

It is not cleér that Brainerd's procedures are any more edquitable than

the others, since the conservai};n tasks involved éerceptual illusion and
the transitivityltasks did,not§ At this point, the mcst reasonable
conclusion seems to be that the sequcnce of develcpment appears to

depend an what evidence one requires for the respec;ive operations. If
‘one compares tge standard conservation tasks to the weaker definition of
t:ansitivity, then it appears that transitivity develops earlier. If one
insists on stronger criteria for transitivity, then it appears ﬁhat
conservation develops earlicer. Unfortunately there are no valid empirical
procedures towresolve this issue. No task has any special claim to be

the measure for a given operati 2. The competence-performance distinction 1s
involved again, and it appears necessary to account for the performance

dimension in the characterization and explanation of developmental sequences.

Developmental concurrences. PFiaget's theory hypothesizes that new

cognitive structures that can be applied to a wide range of problems emerge
within a given stage of development.. Furthermore, these operations are
inteyrated into unified structural systems. This would seem to imply

that devélopment would be marked by the synchronous development of a
variety of abilities, which should be mainfested by consistent failure

or success across a number of different tasks. Not only should tasks

with the same inherent structure be mastered concurrently, but because

of the hypothesized interconnectedness of logical operations, similar

concurrences should be found for related operations.

La
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The stage concept is potentiaily useful because it proposes to predict
behavior over a wide range of tasks. Thus, performance on a small set
of tasks should be sufficient to predict performance on a large"dnmain
of related tasks. Unless this sort of generalization is possible, the
stage concept has little practical value for education. Unfortunately,
very few conéistent concurrences have been found. Although certain

logical operations may ultimately be integrated into a structure d'ensemble,

they appear to emerge asynchronously and initially generalize to a
restricted number of problem situations.

In spite of the almost insurmountable obstacles in terms of horizontal
décalages and methodological variability, the correlational study of
development is central to the applying research in cognitive development
to education. Decisions involving the sequencing of content and matching
instruction to appropriate levels of children's development both rest on
such study. For a more complete discussion of this topic the reader is
referred to the articles by Flavell (1970, 1971, 1972), Pinard and

Laurendeau (1269}, and Wohlwill (1973}.

The Study of Developmental Change

The most widely used approach to investigate the fgctors affecting
developmental change is the training udy. Extensive reviews of
Piagetian training studies can be found in articles by Beilin-(197l),
Brainerd (1973), Brainerd and Allen (1971), Hatano (1971), Glaser and
Resnick (1972), Strauss (1972), and Wohlwill (1970). The typical
training study has employed a relatively short period of training. Most
treatments have consisted of a single short training session, and few

have involved more than 10 half-hour sessions. Typically, the treatments

.
-
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and pretest and posttests have been édministered individually or in smal;
groups; and training has involved a s?ngle logical operaticn‘like consexr-
vation, seriation, or transitivity. !

Beilin (1971) identifies three generations of training research.
In the firstvgeneration} studies were designed to substantiate basic
elements of Piaget's theory of cagnitiye-deQelopment. One group of
st;dies has attempted to induce logical operations by creating a state
of disequilibrium with respect to the given operation. Other studies of
this genre have focused on mental operations such as addition-subtraction
or reversibility, that are presumed to he‘involved in the natural develop-
ment of the concept to be trained. |

The second generation of training studies were based on the hypothesis
that Piaget's stage theory is overly rigid in the limitations it places
on cognitive development. A number of these investigators believe that
the acquisition of logical structures can be accelgrated and reject the
equilibration model as the sole explanation for their acquisition. They
do not accept, for example, that reversibility and compensation are the
essential mechanisms leading to conservation. Some studies have trained
children to attend to relevant attributes and disregard or ignore misleading
perceptual cues. Another group of studies has relied on verbal rules or
feedback in training. Others have employed techniques of copformity
training, pairing nonconservers with conservers or exXposing nonconservers
to expert models.

Studies of this second type continue to be a major force in Piagetian

researck. However, there is a third generation of studies whose objectives

are different from the other two. The aim of these studies, which are
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conducted by the Genevans themselves, is to investigate the psychological

mechanisms that underlie the transitions between stages. These studies

attend more closely to the stage of development of subjects before |
training anQ'spe:ify in much grgater detail than the earlier stﬁ&ies’the
specific effects of training. ' The perépective of these studies is that
training only extends the domain of application of operatiénal structures.
It does not initiatg the development of new operations. According to this
view, "The development of operativity is malleable only within the limi;s
imposed by the, nature of development” (Beilin, 1971, p. 10l1). Evidence
of the development of an early emerging operation like the conservation
of number is prerequisite for successful training of more advanced
concepts. In terms of the Flavell and Wohlwill (1269) model, training
operates on the performance component rather than the competence component .
of the model.

Although many individual studies failed to demonstrate significant
training effects, almost every type of training procedure has been able
to accelerate the acquisition of logical operations. Howevér, they have
failed to identify the specific mechénisms that lead to thé development
of the operatith Cne difficulty is that researchers often fail to agree
on the specific mechanism that is operating in a given training procedure.
One researcher may attribute the effect of training to learning to attend
to relevant dimensions, and another may identify latent reversibility
training as the significant variable (cf.’Brainerd & Allen, 19715.

‘There has also been a failure to distinguish between necessary and
sufficient conditions for the development of a given operation. A basic

assumption underlying many training studies is that if training accelerates

-9
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the acquisition of a given opegiffcn theﬁ the conditions of the training
must be crucialkfor the natural dévélcément of the opexatjon. Jugt_
becausk a training conditiog has been sufficient to accelerate the
acquisition of an operation does not mean that condition is necessary<for{
the development of the operation. With reéard‘to this point Wohlwill
(1973) concludes: .
Thug, we have had a parade of training cdndition§ which
to varying extents and degrees ‘'of consistency have shown
themselves to be sufficient to induce conservation, at
least given a child within a pérticular age rangé. But
.the relationship between these conditions and the process
of conservation as it takes place naturally-*tﬁq; is the
question_of the plausibility that these conditions could °‘
in fact have been operating in the child's extra laboratory
experience--has rarely been examined. If it‘had been, it

would quickly have become apparent that most of them, from

rule learning to reversibility training, from cognitive

Py

conflict to reinforced practice, aré of dubious relevance

to that experience. (p. 323)

Virtually all training studies have found that training transfers to
novel materials not used in the training procedure. This specific trans-
fer applies to sittations in which the tasks are similar to those used
in the training and only the specific materials are changed. For example,
toy cars may be used in conservation training and poker chips in the

'

specific transfer task. Nonspecific transfer applies to situations in

which the traired logical operation extends toc a new domain of applicatien
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(e.g., transfer of training on length to area). This type of transfér
has been more{ﬁifficult to achieve, although severai studies have repcréed
considerable success (e;g., Bearison, 1969; Gelman, 1969). .The difficulty
in finding nonspecific transfer is not especially surprising given £he ;
prominence of observed décalages in the natural development of operations.
Transfer between logical operations (e.g., conservation to transitivity)
has been even more difficult to achieve.'

Wohlwill (1970) proposes that'cognitive development can be thought
of as a combination of horizontal and vertical transfe¥. 'The larger the

number of vertical steps the learner must climb to reach his goeal, the

narrower the span of generalization or horizontal transfer. Wohlwill also

-

P

observes that the amount of transfer appears to be a function of the
breadth and intensity of training.

Several studies have tested for retention over periods ranging from
one to seven months. Almost universally they have foupd that the trained
conéepts have been retained. The picture is somewhat different when a
specific effort is made to extinguish a.given concept. According to the
stage theory of development, once an operation is fully attained it should
be extremely resistant to extinction. An early study by Smedslund (1961)
found that tréined conservers readily abandoned conservation judgments
when they wefe deceived with an example in which it appeared that weight
was not conserved. Natural conéervers were much more resistant to such
extinction. This seemed to imply that the trained gonservers were giving
only super .cial responses and had not attained a genuine operationaixleggl.

Recent studies have failed to confirm these results. They have found no

appreciable differences between trained and natural conservers in their

e 3



resistance to extinction or countersuggestion. 1In general, earlier
<developing concepts like number have proved to be quite resistant to
exting$ion for bothlgroups, whereas later developing-concepts like

weight are quite easy to extinguish for both natural and trained conservers

-
N

{Brainerd, 1973c).

Although the goal of much of the training research has been to
understand the specific mechanisms of development, not to accelerate
development per se, a number of studies have been conducted whose only

¥ /

apparent goal is to demansliée that training of a specific operation is
. . £ v
possible. Many studies conditted by researchers interested in problems

dealing with the-learning of mathematics have been of this type. The
assumption underlying these studies seems to be that a specific operatidn
like conservation or seriation is apparently important for learning ba§ic
fmathematical concepts. Therefore, i% these operations can be successfully
trained, the subsequent learning of basic mathematics will be facilitated.
Although these studies have frequently'been successful in training the
specific operations, none have demonstrated that any significant savings
transfer $ccurs in the learning of s;bsequent mathematical topics. 1In

fact, in a follow up to one of g:emore successful conservation training

d that the training had no effect on the

’

studies, Bearison (1975) conclu
subsé&quent learning of number ﬁkills.

Acceleration development has been a major issue in cognitive develop-
ment. Piaget has questioned why Americans are sO interested in accelerating
development when the.basic operations develop naturally anyway. This
concern has been echoed by Glasgr and Ragnick (1972), who have questioned

whether ‘early stimulation will lead to richer growth or just faster growth.




26 : ‘ _ {

Elkind (1971) and Wohlwill (IQTOfIhave hypothesized that the longer
formalﬁinstructicn is delayed, up to reasonable limits, the longer the
period of plasticity resulting in a {icher ultimate level of achievement
with greatexr flexibility and creativity. Elkind (1976) has also proposed
that development is a wholeforganism phenomenon and that accelerating any
single part of it may encou{age maladaptation. Both hypotheses remain |
to be proven, but at tgis point there is scant empirical evidence that
;any attempts to acceleragg development result in any desirable educational
outcones. .

Tt has been amply demonstrated that training using a variety of

different training pyocedures is possible. Future training studies need

A
*

to be designed so that they provide a greater understénding of the specific
mechanisms of'development. Such studics should provide answers to the
following questions: (a) What are the prerequisites for attaining a given
level of cognitive development? (b) What are thé specific experiences

that contribute to the development of a given concept? * (o) Onée a concept
has been learned, to what extent does it generalize? This involves (a) . ,
measuring subjects' entering knowledge and level of development; (b) carec
fully designing training that is based upon a reasoned theoretical rationale;
and {c) measuring specific outcomes, including transfer and retention.
Results should not be reported using glébal measures of group success: ox
failure. 1Instead, some attempt should be made to account for the differeﬁtial
effects of instruction on individuai subjects. Future training studies

will contribute to our knowledge only in so far as they can help us to
understand how development proceeds in individual children.

An example of a study that incorporates many of the recommendations

.AF: és
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listed above is the teaching "experiment" of Steffe, Spikes, and Hirstein
(Note 2). The purpose of their study was to investigate whether two
clusters of Piagetian variables, class inclusion and conservation, are

prerequisites for first-grade’ children's learning certain number concepts.

%

" Twenty-nine individual measures were clustered into the two readiness
vaii;bles and seven achievement variables. Subjects wereﬁdivided into
two groups. For One.;roupf‘instruction wes carefully déSigned and
monitored. The other group received regular classroom instruction.
fhe treatment consisted of appro#imately 40 hours of instruction over a
three-month period. The results are compfex and difficult to summarize,
but evidence indicated that conservation was not a prerequisite for,
learning some number skills, the*Téarning of conservers gas qualitatively
different from the learning of nonconservers. Specifically, the conservers
could transfer their learning to an unfamiliar task, whereas the non-
conservers generally could not. This conclusion was possible only because

of the completgnhess of the dependent and'independent variables and the

duration of the instructional treatment.

4

Individual Differences in Development .

For the most part, individual differences have been virtually ignored
in the study of cognitive development. Wohlwill (1973) obserﬁes that
- R
. “thg real problem appears to be the failure of psychologists at either
end to come to‘grips with the question, how developmental and differential
foci may effectively be integrated into a cohe?ent whole"” (p. 333). Such

an integration may take several forms. One involves the study of individual

differenges in development. A second involves the study of the development

Py
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of indivi&ual differences. In the first case the Variables of interest

aré those that have traditionally been ¢f interest in the study of cogni-
tive development. There is overwhelming evidence that individuals differ
significantly in their cognitive development. This is attesﬁed to ﬁy

the difficulty researchers have encountered in attempting to identify @
reliable stages of ccgnitive develogﬁent. ‘Any complete theory of cognitive
development must include ways to account for and describe these individual
differences. In the second case the emphasis is on individual differences:
Here the question is what is tﬁe origin of individual differences? How

do they develop, and how consistent are they over the course of develop-

ment? For a more complete discussion of individual differences in cogni-

tive development see Kagan and Kogan (1970) and Wthwill (1973).

The Development of Mathematical Concepts

One of the unique features of research in ccénitive developmentlthat
has made it especially relevant for mathematics education is the fact
that much of the research deals with the development of specific concepts,
many of theqrmathematical in nature. Although developmental psychologists
are concerned with the development of cognitiwve structures that transcend
the formation of any specific concept, these experiements are designed
at least'in part to degcribe the development of specific concepts. The
development of‘number} measurement, space and geometry, and adolescent ~
reasoning are areas that have received particular attention. What follows
vby way of summary is highly selective. For more complete accounts, see
Brainerd (1973b, 1976), Bryant (1974), Churchill (1961), Flavell (1963,

1970), and Ginsburg (1975, 1977a) on number; Carpenter (1976} and
-} F)e
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Carpenter and Osborne (1976) on measurement; Lesh and Mierkiewicz (1977),
. X

and Martin (1976) on space and geometry; Flavell- (1963, 1977) and Neimark

{1975) on adolescent logical reasoning; and the general discussions by

Beilin (1969) and wWallach (%969) ocn conservation.

s
W A

. W .
Number

Much of the early research on number assessed children's ability to
perform conventional arithmetical operations (coﬂ?ting, addiﬁg, subtracting,
etc., cf. Brownell, 1941). Current research is no longer concerned simply
with identifyigg which problems are most difficult of how many children
at a given agé can solve.a certain type of problem. The focus has shifted
to an attempt to explain the development of basic number concepts and to
characéerize how children" solve problems, not simply whether they can
;olve them.

| Current research on the develcpment of early number concepts can be
categorized into two major lines of investigation. The first attempts

~0 explain the development of primary number concepts in terms.of the develop-
ment of underlying logical operations. The second is based on the hypo-
thesis that the development of number results from the integration and/or
increasingly efficient application of certain number skills like counting,
estimating, sq?itizing, comparing, and matchiﬁg. Although there are

prominent exceptions and some of the research is difficult to cgtegorize,

much of this research tends to be mechanistic in charactér, whereas number

research based on primitive logic is almost exclusively organismic. T

Logical foundations of number. Although McLellen and Dewey (1896)

-~

called attention to underlying mathematical assumptions over 80 years ago,
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"it is the work of Piaget (19852) that provides the focus for current attempts

to explain cbildren's concept of number in terms of the development of
logical reasoning abilities. Piaget‘é influence has been so great that
it has led Flavell (1970) to observe, “V%rtually‘everything of interest
that we know about the early growth of number concepts grows out of Piaget's
pioneer work in the area" (p. 1001).

Farféiaget nunber is a synthes;s'of cldss énd asymmetrica£ rslétién.
In assigning a cardinal number to a set, one disregards the differences
between élements and treats\all the elements of the set as though they
were members of a common class, ergeo thé class or cardinal component of
number. However, in counting the s;t to arrive at its cardinal v;lge,
it is necessary to order the set--count one element first, another second,
and so on. %his ordering represents an asymmetrical relation. As a
consequence of this analysis, a principle focus of Piaget's research on
the development c¢f aumber has been the study of seriation and ciass
inclusion and the coordination of cardinal and ordinal concepts. The
segment of Pilaget's investigation of the development of number concepts
that has had the greatest impact on subsequent research involves the
principle of conservation. Piaget countends that some form of conservation

is necessary for any mathematical understanding, and almost a third of

his book, The Child's Conception of Number, is devoted to studies of

conservation of one kind or another.

Piaget describes a stagewise development of number concepts in which
conservation, seriation, and class concepts develop in close synchrony.
In the first stage children are dominated by immediate perceptual qualities

of an event and give little evidence of logical reasoning. Conseguently

)
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_ they do not conserve, are incapable of seriation, and do not understand
fl : simple class-inclusion relationships. At this stage only gross quantita-

- tive judgments, based on dominant perceptual attributes, are possible.
The second stage is a transitional stage. Some progress is'mad:/yn all
fronts, so that children can construct series and correspondences. But

- .

they still have difficul v when either is transfqrmed. Cardinal and

.
ordinal concepts have developed to a great extent, but since they have
not been integrated, children cannot relate them to each other. Finally,
in Lhe‘third stage, the de#elopment of conservation, cléss inclusion, and
seriation is:x?@ﬂetc; and the child achieves an operational concept of
number.

Most of the replications of Piaget's research on number have concen-
trated on a singi; task, most frequently cénservation. On the whole, these
studies have confirmed Piaqet'é accourt of the progression of behaviors
exhibited for each of the individual tasks. Furthe;more, these replications
have demonstrated that the errors exhibited by young children are not .
experimental artifacts and do not result simply from children's failure
to understand the ques;icns asked. On the other hand,-studies that have
included a variety of Piaget's number tasks have found a great deal less
= synchrony, than daggcribed by Pidget (cf. Dod;ell, 1960, 1962; Wohlwill, 1960).

A different organization of the logical operations that un&erlie
number is proposed by érainerd {(1973b, 1973e, 1976) who takes issue with
Piaget's contention that an operat;onal understanding of natural number
results.fgom theAconcurrent development of cardinai and ordinal concepts.

He contends that such a theory is inadequate from a logical perspective

and is contrary to the results of a number of empirical studies that he
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has conducted. Brainerd proposes that the concept of ordinal number is
psychologically more basic than that of cardinal number, ;nd that the
former ﬁiays a more important role in the early growth of arithmetic con-
cepts and skills than the latter. In fact, Brainerd proposes that much
hasic afiéhmetic is learned before cardinal concepts are acquired; and
he concludes that the developmental sequence is ordinal number, natural
number, and finally cardinal number.

These conclusions are based on a series of different studies. In ~
one set of studies Brainerd found that children perceive ordinél.sequences
by 3 ;earé of age, but cardinal number does not begin to emerge until
about . In another set of studies, first-graders were significantly

more successful on ordinal tasks than on cardinal tasks, and ordinal
1]
number concepts (but not cardinal concepts) were almost uniformly mastered

by students who were proficient with basic addition and subktraction facts.

Finélly. in another set of studies it was found that training was signifi-

-~ &y

~ - )
cantly more successful for ordinal number than for cardinal nuuber concepts

and that there was significantly greater transfer to. basic arithmetic
achievement.

Brainerd's results have uniformly supported his position. However,
in spite of phe range of experimental paradigms he has employed, he has
tended to use the same basic items to characterize cardination and
ordination. The ordination problems have generally involved some form
of transitivity task; the cardination‘problems are a sort of pseudo-
conservation task in which subjects are ésked to compare the number of

elements in two sets arranged in what can best be characterized the

~final state of a typical conservation task. It is questicnable whether

7
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éhese tasks validly représent'either cardinal or ordinal numbers.
Another basic question is whether the observed ordinal-cardinal
sequence is a function of baosic competence or simply reflects differences
in difficulty of the selected tasks. Brainerd (1976) cites the results
af a study by Gonchar (Note 3) as essentially supporting his position.
However, although Gonchar found t:?xe same developmental sequence for
Brainerd's tasks, the sequence was reversed when more difficult ordinal
tasks were used. This led Gonchar to conclude that Brainerd's ordinal-
cardinal sequence is primarily a perfﬁrmance distinction betwcen the tasks .

used to measure each concept.

Research based on number skills. In counterpoint to the logically
based theories of Piaget and Brainerd, there is a growing body of research

based on the assumption that the development of number concepts can best

be explained in terms of the development of specific number skills. This

may involve the hierarchical integration of a number of different skills
as illustrated by the work of Klahr and Wallace (1976) and Schaeffer,
Eggleston, and Scott (1974); or it may invcoclve the increasingly effirient
application of a single skill or a small number of skills. This approach,
which usually focuses on counting strategies, is illustrated by the work
of Davydov (1975), Gelman (1972a, 1972b, 1977), and Ginsburg (1%77a, 1977b).

The sequence of development of different number skills has not been
clearly established. For example, Klahr and Wallace (1976) cite evidence
to suggest that children subitize (directly perceive) the number of
elements in small sets before they count. Gelman (1972a, 1972b, 1977},
however, asserts that counting precedes subitizing.

Although there is no consensus on which skills are most productive

0
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to study or how differernt skills are'hierarchically iﬂtegrated, there is

. .
some agreement that the growth of the ability to count is a cehtxal factor
in the acquisition of number concepts. Children first lqérn to count by
memorizing a rote sequegce ¢f numerals {(D'Mello & Willemsen, 1969; Wang,
Resnick, & Boozer, 1971). They initially have a great deal of difficulty
counting the number of elements in a set and make a variety of errors like
counting an element more than once, skipping an element, or counting on
after all the elements in the set have been exhausted (Potter & Levy, 1968).
Younqger children also do not recognize that the number of elements in a
set 1s unaffected by the order in which the set is counted (Ginsburg, 1975).
Children first learn to assign numbers to small sets and gradﬁally extend
their range (Gelman, 1972a, 1972b, 1977; D'Mello & Willemsen, 1969; wang
vt al., 1971). Once they can accurately assign numbers to sets of a
given size, number becomes‘a salient feature of those sets; an& they have
some understanding of the effect of different trapsformations on those
sets but not on larger ones. However, younger children still héve some -
fnifficul*y attending to relevant attributes in more complex situations'
and counting does not insure correct respoﬁses in typical conservation
problems (Carpenter, Note 4).

Although this line Lf research does not accept that the developmeng

-

)
of basic number concepts depends on underlying logical operationg, the

existence of such constructs as conservation is generally acknowledged.
In fact thesze theories often try to explain the development of concepts
like conservation in terms of the application of number skills. For

example, Gelman (1969, 1972a, 1972b, 1977 hypothesizes that conservation

failures do not reflect an immature conception of number, but that they

o
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occur because children center on different attributes of the array and
do not attend to numerousness. Conservation emerges as the child learns
to attend to the appropriate attribute. Gelman denies that conservation
is a prerequisite for understanding basic number concepts. Instead she
proposes that conservation develops through a growing sophistication to
apply counting and estimating strategies. Unlike the very ephemeral
conception'of number that Piaget attributeé to young children, Gelman
contends that number is a stable and salient property of a set, provided
that the number of elements is within a range that a child can reliably
count.

Gelman contends that children first learn to deal effectively with
small numbers. Provided that they apply counting or estimating stratégies,
they will conserve and recognize the effect of adding or subtracting an
element for sets with a small number of elements. They will fail,
however, to generalize these operations to larger sets. In other words,
thesce responses are restricted to a4 domain that the child can count. As
ﬁhe ability to count is extended to larger numbers, there is a commensurate
increase in the domain of understanding the effect of different transfor-
mations. When children finally realize that numbers are infinitely con-
- structible by the continued addition of units, they can generalize the

basic operations and conserve number in all situations.

Gelman (1972b) makes a critical distinction between "estimators" and
"operators".

The cognitive processes by which people determine some

guality, such as the numerosity of a set of objects, are termed

estimators. The cognitive processes by which people determine
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the cénsequeﬁces of transforming a quantity in various ways are
terﬁed operators. (p. 116)
A similar distinction is made by Ginsburg (1975), who identifies three
cognitive systems that children possess. System 1 includes consergation
and other processes that are used to make quantitative judgments without
counting. System 2 involves the various coqnting strategies that chiL?ren

dgvelop independently of formal instruction. System 3 involves the
formal krewlegge transmitted through instruction. Ginsgurg proposes
that in individual chiléren the three systems may be relatively independent
of one another or may show some degree of integration. He suggests,
however, that even though.the study of System 2 and System 3 concepts

will help explain children's learning of mathematics, the study of System

1 concepts is r.ot procductive in explaining children's learning of

mathematics concepts.

The Development of Arithmetic Operations. It is not immediately

clear how the research of Piaget on the development of early number
concepts might be extended to study children's acquisition of arithmetical
operations. One attempt has involved the ccrrelation of performance on

a test of Piagetian tasks with some measure of mathematics achievement
(cf. Cathcart, 1971; Dimitrovsky & Almy, 1975; Kaminské, 1971; Kaufﬁan &
haufman, 1972; Nelson, 1970; Rohr, 1973; Smith, 1974; Steffe, 1970;
LeBlanc, Note 5). These studies have uniformly found high positive
correlations, even when IQ is held constant (Kaminsky, 1971; Steffe, 1970;

¥ -

LeBlanc, Note 5). Furthermore performance on Piagetian batteries
i

!
administered in kindergarten appear to be excellent predictors of

mathematics achievement as much as two years later (Bearison, 1975;
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Dimitrovsky & Almy, 1975).
"One limitation of correlational studies that is often overlooked
~
in the rush téfidentify educational implications of research is that they

do not specify cause and effect relationships. High positive correlations

- between performance on Piagetian tasks and arithmetic achievement does

not imply that mastery of these tasks is a prereguisite for learning

. arithmetic skills. In fact Mpiangu aﬁd Gentile (1975) found that training
on arithmetic skills did not have a differential effect on the learning
of conservers and nonconservers. In other words, although ccns;rvation
was correlated with overall arithmetic aéhievement, nonconservers benefited
as much from Mpiangu and Gentile's instruction as conservers. Thus,
conservation was not necessary to benefit from instruction. However,

L to conclude on the basis of this study that the lack of conservation does
not limit children's ability to learn computational concepts would be
inappropriate. As did most of the correlational studies, Mpiangu and
Gentile's studies relied on superficial measures of arithmetic achievement.
Even Piaget would not deny that nonconservers can be taught a varie;§
of arithmetical calculations. From a Piagetian perspective, the important
question is, What meaning do the operations have for children? This
reguires that the concepts have a certain degree of generalizability,
transfer, and resistance to extinction.

The significance of the kind of learning measured is demonstrated
by the teaching experiment by Steffe et al. (Note 2). Their results
indicate that\althcugh nonconservers learned many of the same counting

strategies as conservers, they learned them in a much narrower sense and

could not transfer them to related problems. It is not clear what
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implications these results hold for instruction. There was no evidence

that the nonconservers were harmed by instruction or would have benefited
from having instxuctionfaeferred. A great deal more research is needed
before we uﬂderstand how the development of conservalion affects the
learning of other mathematical concepts and operations.

‘The link between the development of cbuntin§ strategies and the
learning of arithmetic operation§ if easier to establish. Children's
earliest notions of addition and subtraction ate built on counting; and
even before they receive for%al instruction in addition and subtradtion."‘
they can solve simple problems usi? ‘a variety of counting strategies.

Even after several years g%iiﬁziructicn on addition and subtraction
algorithms, children continue to employ a variety of‘counting and- heuristic
strategies. Different strategies involve varyiny degfees of sophistication

-
and efficiency. For example, younger or less capable children tend to r

count all the elements in sets representing addition or subtraction

problems, whereas older or more capable children may use appropriate

\

counting on or counting back strategies.

Several techniques have been used to study the processes that children
use to solve problems involving the application of arithmetic operations.
Perhaps the most preoductive involves the use of clinical interview
techniques (Davydov, 1975; Ginsburg, 1976, 1977a). A second approach
has been to us? response latencies to inter what sort of strategies

.‘cFildren apply to the solution of different problems {(cf. Groen & Parkman,
;
l§72; Groen & Poll, 1973; Rosenthal & Resnick, 1974; Suppes, 1967; Suppes

& Morningstar, 1972; Woods, Resnick & Groen, 1975). This approach involves

breaking -operations down into a series of discrete steps (e.g., counting
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by ones). It is assumed that the time required to solve a given problem
using a particular strategy is a linear function of the number of stéps
needed to reach the solution. By finding the best fit bgtween response
latencies for subjects solving a variety of problems and thé regression Cﬁ
equations of possible solution strategies, the moél Sppropriate model
can be inferred. For example, to solve 9 - 6, children might count down
6 units from §, or they might count up from 6 until they reach 9 and
keep track of the number of units. For this particular problem this
latter ;Eiategy would require ﬁewer steps; the counting down strategy
would be more-efficient‘¥or 8 - 2. The evidence to date suggests that
there is a developmental trend for children to move from using a single
model exclusively to a more heuristic strategy by which they-attempt to b
choose the most efficient strategy. )
Most of the research on number has concentrated on the early develop-
ment of number concepts. There have been only a few clinical studies
of the processes that chiléren use to solve more advanced problems,
{(cf. Erlwanger, 1975; Lankford, 1974, Noté ). Developmental psyche&ogigts
tend to be primarily interested in concepts tgat develop somewhat
independently of the school curriculum. Présumably this accounts for

their singular lack of interest in all but the primary number cdncepts.
-

This is one of the ways that the focus of cognitive development research
in mathematics education should be different from that in p-ychology.
We are primarily interested in school learning; and the limits that children's

levels of cognitive development place on their ability to apply and

understand algorithms for whole numbers, fractions, and decimals should

1 6
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be a central focus for such research.

Measurement

Although the develoément of measurement i. frequently subsumed under
the development of geometry, in many ways recent measurement research ¢
seems more closely aligned with research on basic number concepts than
with research on space and geometry. The work of Piaget (Piaget, Inheldér.
& Szeminska, 1960) provides the focus for much of the rgéent r;;e?rch
on the development of measurement concepts. He and his colleagues found
that the general stages of development of number cancepté also characterize
major phases in th; development of measurement. However, for measurement
the second and third stagqes are each divided into two'suystages and a
fourth stagg\is added.

As with number, conservation is.the central idea underxlying all
measurement. The attainment of conservation and the corresponding
notion of transitivity is the hallmark of the first level of the - T

achievement of measurement woncepts (Stage IIIA}. Measurement further
.3

-

depends on the synthesis of change of position and subdivision so that
unit iteration is possible (Stage ITIB). Finally, the development of
formal measurement operatiiis is complete with the onset of the ability
to coordinate the measures of several linear dimensions\Fo that areas
and volumes can be calculated directly from their respective linear
dimensions (Stage 1V).

Piaget et al. (1960) assessed the development of measurement

concepts with a great variety of measurement and premeasurement tasks.

In the earliest stages children do not conserve and are unable to apply

s
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any sort of measurement operations correctly. In later stages they
ﬁegin to apply some rudimentary forms of measurement, but they will use
unreliable measures like the span of their arms and still rely exten-

sively on visual comparisons. By trial and error they gradually discover

that if it takes more units to cover A than B, thep A is greater than B.

But initially they fail to understand the importance of the size of the

units and often count a fraction of a unit as a whole or eguate two
quantities that measure the same number of units with different sized
units of measure.

Conservation and transitivity are_attained at about 7 to 8 years.
Although this marks a significant stage in the development of 'measurement
concepts, operational measurement is still not achieved. Cﬁildren in
this ©.age can use a moving middle term transitively but only if it is
as long as or longer than the original. Children at this ~tage can
conserve and therefore can compare units. Similarly, they recognize that
a quantity is the sum of its unit covering. However, these ideas have
not been fused. Children in this stage continue to ignore the size and
completeness of units of measure, and consequently unit iteration is not
possible. It is also interesting that although children at this stage
conserve included area and volume they fail to conserve comple;entary
area or occupied volume. In other words, they recognize the equality
of areas and volumes ccntained@within certain boundaries but do not re-

!
cognize that the amount of space occupied By the object in relation to
other objects around it must also be equal. The eventual ccordination

of change of p?7‘;icn and subdivision makes unit iteration possible, but

it is not until the onset of formal operations at the age of about 11 to

4 ¢
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* 12 that develoﬁmept is complete and the calculgtion of areas and volumes
\és possible. As v th the number research Piaget and his colleague's
(1960) déscription of the range of children's responses to individual
"tasks involving conservation and transitivity has been confirmed, but
the relationship between tasks and their place in the development
of measurement has been questioned. (

Some of the most interesting research on measurement_hés revolved ©
around the usé of different units of measure. A unique feature of the
measurement process that distinguishes it from simply counting'is the
unit of measure. In assigning a number to a set, the units are\the
individual elements of the set. However, in the méasurement process the
individual units that are counted may not be distinguishable, and differens
units may be used to measure the same quantity. This second feature of |
units of measure has been the subject cf'a variety of studies.

One study employed a series of conservation and measurement tasks
in which chiidren were provided both measurement and visual cues regard-
ing the relationship between two liquid qpantities (Carpenter, 1975}.

In some tasks chiidren had to focus on the visual cues; the liquid was

\
in identical contailers and was measured with different units. In otg;;s
the same unit was used; so children had to focus on the numerical cues
since the visual cues were misleading. This stully found that, contrary
to earlier hypotheses, virtually all first- and second-grade children
respond to nunierical measurement cues at least as readily as to perceptual
cues. However, the majority still center on a single domigant dimension,

. numerical or perceptual, depending on the problem situation. This leads to

both correct and incorrect judgments. But the errors apéear to result
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from an inability to atténd to the relevant cues, not misconception§
regarding the relevanée-of measurement operations; Almost all errors
resulted from childrgp re5pquing to the most recent cues, ghether they
were munmerical or perceptual. In fact, there was a greater'tendency‘to
focus on numerical cues than visﬁai cues, and virtually all children
correctly responded on the basis oé nu&ber in the simpiest measurement
situations. These results are cansiségnt with Gelman's (1972a) hypothesis
that number is a-salient property in ar;iving at quantitative'judgments.

Furthermore, just as counting and estkmating operations formed a
basis for the development of conservation wiﬁh discrete sets in Gelman's
studies, there is evidence that measurement operations may extend this
domain to include cohtinuous quantity. Three of the most successful
conservation traini;q studies have used measurement activities to train
conservation {(Bearison, 1969; Fusaro, 1969;‘Inhelder et al., 1974). a

A longitudinal study by Wohlwill, Devoe, and Fusaro (Note 7) found a signi-
- » ficant correlation between performance on a set of measurement tasks and
performance on a conservation test administe&ed approximately nine months
later. Although the data are somewhat tenuous, they support the hypothesis
thé£ measuring activities actually contribute to the natural development
- of consérvation and are not limited to laboratory training sessions.

All in all, a fairly consistent, if somewhat illogical, sequence emerges
in the development of number and measurement concepts. It is c¢lear that
children's logic is not congruent with adult logic.( Children who do not
conserve leggth are also incapable of reasoning that this conservation'
failure should have any consequences for their measurement activities.

If children are not asked specific"Eonservation questions, the questions

-
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do not occur to them and they blissfully count the units jus? as any
adult would do. As a consegquence conservation is not a prerquisite for
successfully'perf?rming certain measurement tasks.

Children come to school with a well established notion of counting. :
Number is a salient cue that children readily attend to. However, ¥hey
still have difficulty cogtrolling their attention and tend to center on
a single dominant dimension, sometimes numerical and sometimes perceptual.

‘4 This leads to a number of correct and a number of incorrect judgments.

Although measurement with a single unit is possible for quite young
children, difficulties are encountered relating measures using different
units. Here one of the incongruities in the developmgnt of measurement
concepts is found. It seems logical that children would learn to identify
ﬁhe effect of measuring with different units by observing the results
of actual measurement with different units. However, ch?ldxen‘know that

" an inverse relationship egists between the size of the unit and the number
of units measurcd long before they are able to apply this knéwledge to
measurement préblems involving several different units (Carpenter & Lewis,
1976) . This ma§ account in part for the equally incongruous finding of
Inhelder et al. (1974} and Montgomery (1973) that measurement training
involving comparisons of measuxes made with different units of measure

-

are successful with relatively young children.

Space and Geometry

The work of Piagat and his colleagues (Piaget & Inhelder, 1%56) also
provides a central focus for much of the recent research on young children's
spatial and geometric concepts. A central featuré of Piaget's éharactefi—
zation of the development of spatial ronceptg is his distiﬁetion between

pexceptual and concep.ual space. "Spatial concepts are internalized
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actions and not merely mental images of external things or events"
(Piaget & Inhelder, 1956, p. 454). A young child might be able to
perceive the differences between a circle and a triangle but be unable
to deal with these differences conceptually. For example, the child
may be unable to represent these differences in a drawing or to distin-
guish between the figures.taétically.

Piaget and Inheléer describe three main series of spatial studies--
one dealing with toéological concepts, one dealing with projective con-
cepts, and one dealing with Euclidean concepts. They propose that certgin
topologi :al properties like préximity, s¢éparation, order, enclosure, and
continuity are primitive spatial concepts from which projective and
Euclidean concepts emerge. These properties are unaffected by a variety
of transformations and, hence, do not require conservation. In projective
space, objects are no longer considered in isalat;on'but rather from
particular points of view. Thus, the studies in this series characterize
children's growing ability to describe objects viewed from a perspective
other than their own. Since straight lines are preserved in a projective
space, children's ability to construct straight lines is considered to
be another measure of their knowledge of projective space.

From a Euclidean perspective, space is viewed as a common medium
containing objects with well-defined spatial relationships between them.
At an operational level, distance, areé, and volume are conserved and
measurement is possible. In addition to concepts of distance, relations
between objects depend upon a reference system of horizontal and vertical

lines. Thus, for Piaget, the ability to conserve and measure and an

understanding of the properties of horizontal and vertical lines arc the

02 | | .
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hallmarks of the emergénce of an 6perational‘view of Euclidean space.

Smock (1976b) characterigzes the differences between the three spatial
domains as follows: "In shcrt; topological space deals v.oth the internal
relations of the isolated object. Projective‘space deals with the rela-
tions of objects to subjects. Euclidean space 32315 with the relations
of objects to objegts“ (p. 48).

Because of the great variety of tasks Piaget used to assess children's
concept of space and the concurrent development across three related
spatial domains, it is even more difficu;ﬁ to characterize briefly Piaget's
work in this area than in the areas of number and measu:ément. For a
more complete account see Smock {1976b).

Certain parallels exist betwcen Piaget's research on number and

-~
measurement and his studies of spatial concepts. Whereas number concepts
were grounded in basic logical class and relgtional concepts, Euclidean
space was built on the logically more basic concepts of topology. The
course of development also follows parallel paths starting with a
stage of gross global judgments and proceeding through an intuitive trial
and error stage to a final operaticnal stage. In fact, some of the same
underlying factors seem to account for errors in all three realms.

A primary feature of development that seems toc affect children's
concepts in all.areas is the growing ability to control attention, to
attend to relevant attributes. Whereas difficulty in controlling
a;tention leads to conservation errors in number and measurement problems,
it alsou appears to contribute to children's difficulty constructing

straight lines and their failures on tasks testing their ability to

construct horizontal and vertical lines. Failures in both areas tended

!
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to result from children's inability to ignore the irrelevant character-
istics of the surrounding medium. Children tended to construct straight
lines following the edge of the table on which they were constructing
them, even when the table was round; and they represented the level of
water in a jar as being parallel to the bottom of the jar, even when the
jar was tilted at an angle.

As with number and measurement, rep}ications of the Piagetian tasks
have found the same range of responses identifigd by Piaget. The tendency
for replications to find'a great deal less order and symmetry than
described by Piaget holds true for spatial investigation (cf. Dodwell,
1963).

Several comprehensive attempts to expand Piéget‘s investigatioﬁs
of space have been reported. Laurendeau and Pinard (1970) describe a
detailed experimental analysis of five tasks derived from Piaget's woxk
in an attempt to construct a scale of spatial development. A second line
of research has been conducted by the Genevans themselves. Laurendeau
and Pinard's research has been directed at critically analyzing and vali-
dating the earlier work of Piaget and Inhelder (1956), whereas the recentg
work of tﬁe Genevans has attempted to expand the domain of the research
to new tasks that deal with new concepts. These include the study of
children's abil.ity to deal with reflection and rotation transformations,
several studies of children's understanding of the relationship between
changes in area and perimeter, and a study dealing with children's
ability to describe the characteristics of a Moebius ring. Although the
complete report of these studies is not available in Engli;h translation,

a summary has been reported by Montangero (1976}.

T
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Another charactgrization af the development of geom&t:y concepts‘ .
has been proposed éy:the van Hieles (Freudenthal, 1973; Wirszup, 197¢).
They pick up where Piaget leaves off and describe a development Sequence
culminating in abstract geometric systems. They propose that the
development of geometry proceeds tihrough five levels. In Level I children
perceive geometric fiyures in global terms. Altnough they recognize and
can reproduce squares, rectangles, and parallelograms, they cannot isolate
specific attributes of the fiqures. They élsc are unéble to identify
relationships between different figures and do not recognize that all .
squares are rectangles, all rectangles are parallélogrgms, and so on.
This is similar to Piaget's observation that young children have
difficulty constructing class hierarchies in general.

At Level II children can isolate individual attributes of figures.
But these are established empirically, and the child does not see that
certain properties imply that other properties must also be present.

In other words children at Level II may recognize that the opposite sides
of a parallelogram are both parallel and congruent but these properties
are simply considered to occur concurrently. The child does not
recognize that any quadrilateral with opposite sides congruent must be

a parallelogram. Children at this level can identify the common attri-
butes of different figures but still do not discern the class hierarchy
between figqures like squares, rectanqies, and parallelograms.

Level III is a transitional level between the essentially empirical
geometry of the first two levels and the formal systems of the next two.
Deduction must be supplemented with empirical demonstration. Students

at this stage see that certain properties must follow from others and
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understand the multiple classification of geometric figures. But the
student's ability to use deduction is still limiced and requires the
support from the teacher or textbo-ok.

At Level IV a deductive}system at the level of Euclid's Elements

- is complete. But it is not until Level V that an understanding of
abstract systems divorced from concrete representations is acquired.

. The van Hieles propose that there are distfnct discontinuities
between levels and that the levels cannot be skipped. nlike Piaget they
propose that the levels develop primarily under the influence of school
instruction. Therefore, instruction should be geared to lead students
deliberately from one level to the next. Wirszup (1976) reports on the
efforts of two Soviet researchors who have based a program of geometry
instructicn on the work of the van Hieles with striking suctess.

If the van Hieles' analysis is correct, it would have serious impli-
cations for instruction in geometry. Formal instruction in 10th grade
geometry begins at level IV and is preceded in earlier grades by
relatively feeble e¢fforts that certainly would be insufficient to lead
students through Levels II and I1I1. However, although there is an
almost a priori logic to the sequence of development described by the
van Hieles, it is not yet clear that the course of development is as
rigid as they propose. At this point, relatively little research has
been conducted to validate their conclusions. Although Wirszup (1976)
reports that the Soviets have éonducted extensive pedagogical investiga-
tions based on the van Hieles' work, it has yet to attract the attention
of American researchers; and the implications for American curriculum

are still unclear. It is clear, however, that many, if not most,
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students fail to master even the basic elements of formal geometry; and

the van Hieles' work provides a beginning framework for research in this

area.

Adolescent Reasoning

Although the study of cognitive development in children is currenti;
a major focus of research in both psychology and education, the parallel
study of adolescence has not fared so well. 1In general the study of
adolesceq; reasoning is characterized by "the paucity of systematic
evidence, by the Iimited generality of what evidence there is, and by
the almost complete failure to relate intellectual development to other
concomitant developmental changes which mark this period" (Neimark, 1975, )
p- 541).

TRe scarcity of available rxesearch makes it impossible to specify
with an} confidence the precise nature of adolescent thinking. However,
on the basis of a comprehensive review of current research, Neimark (1975)
concluded that there is a stage of cognitive development beyond, and
different from, the concrete operational stage of middle and late child- - -
hcod. Although Piaget initially proposed that this stage emerges between
the ages of 12 and 15, it appears to develop later in many children.
In fact, it is not attained at all by some individuals. Furthermore,
there is a great deal more variability in the application of the formal
reasoning structures of this period than is the case for the concrete
operations of earlier stages. FPEven adults operate at a formal operational

level on some tasks but fail to do so on others. Piaget (1972) himself

concedes that at this stage individual aptitude, interest, and experience
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appear to play a significanﬁ role in determining which tasks an individ;al
can complete successfully. Although it is conceded that training should
be a significant factor at this étage, the specific effects of training
are lafqely unexgplored.

The most fundamental property of formal thought is the ability to

P

consider the possible rather than being restricted to concrete reality
(Inhelder & Piaget, 1958). At this stage adolescents can identify all
possible relations that can exist within a given situation and systematically
generate and test hypotheses about these relations. They are also capable
of evaluating the logical stfucture of propositions independent of any
concrete referents, and,they are able to reflect upon their own thought
processes. Formal operations are also.characterized by an ability to
use more complex classification .strategies and to shift the basis of
classification more readily. In this stage adolescents are increasingly
aware of the demands that tasks place on memory and use more efficient
strategies for dealing with them. They also have much greater compre-
hension of key logical connectives and quantifiers.

In general, tgé\capabilities of formal operationd) thought appear
to be necessary for success in most mathematics beyond basic arithmetic.
The construction of formal proofs and the learning of general heuristic
strategies certainly appear to depend on formal reasoning processes.
These are both arcas in which many high school students experience little
success. To what degree this failure results from these students®' irfability
to operate at a formal operégional level ésfiargely a matter of conjecture,

since there is little empirical evidence one way or another.

In many ways, the potential significance of cognitive development

~
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research for education may be greater at adalescence-tﬁan at’ the earlier
stages, where it has been cpncentrated. Although concepts like conser-
vation and transitivity are logical prerequisites for ﬁést of numhér and‘
measurement, they are not an integral part of what childien actually do
when generxating addition facts, learning algorithms, or making simple
measurements. As a result, in spitq of an overwhelming number of sﬁuaies
involving these concepvs, their consequence for the learning of e;eméntary
mathematicai concepts remains.aﬁbigucus. Kéhéver, the abstract reasoning
skills of the formal operational stage are precisely those that are
needed for any real success in high gschool mathematics. Furthermore,
the development nf these skills in any given area appears to be much more
a function of specific experience than in earlier stages. Consequently
it is likely that Specifici rglafively short term training should have
a more profound effect than has been demonstrated by the myriad of
conservation training studies. “ince many adults fail to attain formal
reasoning levels in many areaé, i1t would also Se easier to argue that
such instruction has some educational value in its own right. While it
is generally conceded that experience and training should be a éignificant
.factor in the development of formal reasoning, the specific effects of
training are largely unexplored at this level.

The study of the development of formal reasoning is a potentially
rich area that has not seen the concentration of studies that there
have been on cohéervation and early number concepts. A number of

individual studies have dealt with the development of various mathematical

concepts at a formal operational level. For example, see the studies

on proportionality by Ginsburg and Rapaport (1967), Lovell and Butterworth (1966),
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Lunzer and Pubfrey (1966), and Pumfrey (1968); the studies on probability
by Lovell (1971d); the study of Limits by Taback (1975); and the studies-
on the concept of a function b{ Lovell (1971c) and Thomas (1975). These
studies have just begun to unravel the basic question of how the
development of formal reasoning skills affecé the learning of matﬁe-
matics, and the study of formal operations shoulé be a primé‘area for
research in mathematics education in the future. One of the major

problems in this regard is the construction of good measures of formal

operational thought.

New Directions . .

Recent research in cognitive development has been dominated by the
research and theories of'Piaget. In the areas of number, measurement,
geometry, and formal reasoning almost all the research of major interest
has been conducted either on the basis of or in reaction to his theories
(Flavell, 1970). His inffﬁéﬁée has been so extensive that it has lead
Neimark {(1975) to observe: "There is only one comprehensive theory of
cognitive development, Piaget's. All other contenders are so deeply
infi&enced by and derived from t?e work of Piaget as to be better
classified as shifts in focus or extensions” {(p. 575).

Receptly, however, several alternative approaches to the study of
cognitive development have emerged. Klausmeier, Ghatala, and Frayer {(1974)
suggest that the general principles of concept learning outlined in
their Concept Learning and Develgpment model might be useful in studying

the development of basic concepts; and Scandura (1977} has propqsed that

structural learning theory may provide a productive framework for the

A (3()

ey



54 _ o

sanalysis of developmental phenpomesna. Another interesting iine of research

~ is proposed by Wheatley, Mitchell, Frankland, and Kraft (1978) who have

been exémining the implications of hemispheric specialization for cogni-
tive development. Recently.translated Soviet research provides an
especially rich source of ideas for cognitiQ; development research in
mathematics education. Of special note are the recently available
wofks of Vygotsky (1378) aﬁd Krutetski (1976) and the fourteen volumes

of the Soviet Studies in the Psychology of Learning and Teaching Mathe-~

matics. Another potehtially productive approach involves the application

of information-processing theories to the study of cognitive development.

Soviet Studies

Like Piaget's research much of the Soviet research has relied on
qualitative methods and has focused on mental operations and other pro-
cesses that children use to solve problems. However, whereas Piaget
and most Western psychologists have focused on concepts that presumably
develop independently of the school curriculum, the Soviets maintain
that cognitive development and school learning are inexerahiy linked.
"In the final analysis, a pupil's mental development is determined by
the content of what he is learning. Existing intellectual capabilities
must therefore be studied primarily by making certain changes in what
children learn at school" (El'Konin & Davydov, 1975, p. 2). Thus,
stages of development are not viewed as absolute; and it is believed
that changes in the curriculum can result in significant changes in the
nature of the degelopmental stages through which a child passes. The

types of misconceptions that Piaget identifies in early stages of

development are attributed to shortcomings in the curriculum, and much
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of the Soviet research is directed at identifying such misconceptions

and reconstructing the curricylum s¢ that they do not develop. The

view is alsc held that the various logical reasoning‘processes used in
mathemagics are not strictly a function of maturation and general

real world exper;ences but can be learned through appropriate instruction.
The instructional treatments that are used in Soviet research are not
the short clinical studies typical of most Western research. Much of
the instruction occurs in school settings over extended periods of time,
sometimes as long as an entire academic year.

The Soviet studies do not provide the un;fied theory found in the
work of Piaget. Although 6 of the 14 volumes deal with 1ssuces involving
cognitive development, the studies reported represent the work of many
diffcrent authors attacking a variety of differenht problems. énly the
works of Krutetskii (Krutetskii, 1976; Kilpatrick & Wirszup, 1969b),
Vygotsky (1962, 1978) and possibly El'Konin and Davydov (Steffe, 1975)
are presented in sufficient detail to provide anything approaching a
unified theory.

Several examples-that illustrate the general crientation and
techniqueé‘of Soviet research'follow. The first example reports the
results of a study by Gal'perin and Georgiev (1969) dealing with the
learning of measurement concepts by young children. The éecond involves
a discussion of several theoretical constructs of Vygotsky's that have
potential implications for research in mathematics education. A brief
summary of Soviet research in instructional psychology can be found in

Volume I of the Soviet Studies series (Menchinskaya, 1969).

The study reported by Gal'perin and Georgiev clearly illustrates

v
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the differaence hetweeg‘the Sov;et and Piagetian points of view. Gal'perin
and Gecrgtégxidentified many of the same types of conservation and
measurement errors found by Piaget. But rather than accepting these
errors as developmental phenomena, they attributed them to the traditional .
emphasis in school méthematics programs on number concepts, which
incorrectly characterized units as discrete entities.

To test their hypothesis, they administered a series of measurement
problems to the “upper group" of a Soviet kinderqa;;en. They concluded
that Qbung children who are . taught by traditional methods lack a hasic.

understanding of a unit of measure. They do not recognize that each

unit may not be directly identifiable as an entity and that the unit

F"’*
itself may consist of parts. They are indifferent to the size and
fullness of a unit of measure and have more faith in direct visual
comparison of quantities than in measurement by a given unit. e~

On the basis of this study, Gal'perin and Georgiev digised & program
of 68 lessons that focused on measurement concepts and s;smematically
differentiated between units of measure and separate entities. The
lessons were divided into three parts. The first part dealt with forming
a mathematical approach to the study of quantities. This section
focused oﬁ replacing éhe habit of direct visual comparison with systematic
application of measuring units. Appropriate units for measuring

-different quantities were identified, and measuring skills were studied
directly with special attention being directed to the deficiencies iden-
tified in the pretest. A yariety of units was used, including units
consisting of several parts (two or three matches, spoons, etc.} or some

fractions of a larger object {(half a mug or stick). All these concepts

U oS
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were presented without assigning numbers to the quantities.
Not until the second part was the concept of number introduced.
Thus, Gal'pe{in and Georgiev introduced most of the basic measuring
skills and spatial concepts before qpey introduced numbers. in the
third part, the inverse relationship between the size of the unit and
. the number of -units was introduced. ’

Although the investigation was not conducted with strict experi-
mental controls, the students who participated in this program éhowed
striking gains over the performance of the previous year's students.
Whereas fewer than half the students in the previous year could énswer
most of the items on the measurement test, pe:formance was clése to
100% for tﬁe ex§§rimental group.

Another example cf Soviet research that providés a counterpoint to ’
Piaget is found in the work of Vygot;ky {1962, 1978). In a recent paper
ruson (Note 8) has discussed at some length how Vygotskian theory might
be applied to the study of number concepts. Several of Vygotsky's
constructs may also provide'a useful framework for cognitive develop-
ment research in otqgr arecas of mathematics education.

One potentially #seful construct involves the distinction between
spontaneous and scientific concepts. Spontaneous concepts are generated

: t
by each child on the basis of concrete experience and the child's own
mental effort. Scientific concepts, on the other hand, are the product
of direct instruction or interaétion with adults. Vygotsky proposes
that it is the interplay between spontaneous and scientific concepts

~ -

that leads to development. The formal structure of the scientific

F]

concepts helps to organize the .child's spontaneous concepts into a

’:“ :!




58

coherent sgé&sﬁ, and the experiential E&sis of the spontaneocus concepts
provides mean;ng to the scientific c?ncepts!at a more elementary concrete
level. The significant recle attribﬁted to instruction in(Phis theoretical
development is characteristic of Soviet psychology and offers a distinct
alternative to Piagetian theory. )

Another Vygotskiaﬁ construct that has potential significance for
cognitive development research in mathematics education is the zone of
proximal development. This is defined by Vygotsky (1962) as "the =
discreéancy between a child's actual mental age én& the level he reaches
in solving problems with assistance" (Q. 103). This measure, which
Vygotsky suggests is an excellent predictor of children's ability to
learn from instruction, provides an alternative method of measuring and
characterizing development that may be especially appropriate for
educational applications.

A variety of other interesting studies deserve the attention of
Western rescarchers. The work of El'Konin and Davydov (Davyéo@\\}Q?S;
Steffe, 1975) on children's early number concepts is especially
noteworthy. Although the focus of Krutetskii's work is on individual
differences, many of his techniques and results are of interest from
the perspective of cognitive development (Krutetskii, 1976; Kilpatrick
& Wirszup, 1969b). Volume III of the Soviet Studies Series {(Kilpatrick
& Wirszup, 1969a) contains four papers discussing the thinking processes
children use in arithmetic and algebra, agé Volume V (Kilpatrick &

Wirszup, 1971) is devoted to the development of spatial abilities.

S

Information Processing

Whereas Soviet cognitive development research has operated from an

'}



entirely different gﬁerspective than Piaget, information-processing
approaches have generally attempted to build upon Piagetian r;search.
The nature of this contribution is best understood in terms of Flavell
and Wohlwill's (1969) performance-competence model. Whereas Piaget has'
been primarily concerned with questions of competénce: information-
processing approaches have attempted to incorporate the performance
component of the model into their accounts of cognitive deveiopmen%;
Instead of analyzing behavior in terms of the logical and algebraic -
properties of the problem, tasks are analyzed in tenus of their infor-
mation-processing requirements. |

Tasks must be analyzed in much more detail than is

provided by a description of their conventional logical

structure. The general prablem is to determine exactly

how the input is encoded by the subject and what transfor-

mations occur bhetween encoding and decoding. The objective

task structure anne does not yield a valid description

of the solution performance, and it 1s necessary to

diagnose the actual psychological processes in great

detail to obtain minute descriptions or well supported

inferences about the actual seguences and content of the

thinking process. (Klahr & Wallace, 1976, pp. 3-4)

A wide range of information-processing theories exist. Although
they are all based on an analogy with the computer and are therefore
essentially mechanistic, some carry this analogy farther than others.
At %h¢ most task specific level, the goal is to construct a running

computer program that models some segment of behavior. At the other

L
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- end of the continuum, the computer acts as a sort of metaphor to describe
‘general processing mechanisms. The most extensive attempt to generaée
computer simu;ations of developmental phenomena is provided by the
work of Klahr and Wallace (1970, 1972, 1973, 1976). Their general
modus operandi can be described as follows:

Faced with a segment of behavior of a child performing a

task, we pose the question: "what would an information-

processing system require in order to exhibit the same be-

havior as the child?" The answer takes the form of a set of

rules for processing information: a computer r sram. The

program constitutes a model of the child peri -y the

task. It contains explicit statements about the capacity

of the system, the complexity of the processes, and the

representation of information--the data structure—;with

which the child must deal. (Klahr & Wallace, 1976, p. 5)

The prominent features of the general architecture of such a system
include a short-term memory, which is extremely limited in capacity.
and a long-term memory, which is potentially unlimited in capacity.
The information-processing system also has access to the external
environment and 'some sort of mechanism for controlling attention that
determines which sensory information is selected for processing. The
long-term memory contains canditioﬁs or rules for processing information.
All processing occurs in the short-term memory, ané‘information from
the external environment or long~term memory must enter the short-term
memory before it can be acted upon.

The strategy is to produce programs that fit the general architecture
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of the processing system deséribed above and accurately model the
general patterns of success and failure at different stages in the
development of a given task. Then the question becomes what sort 5}
transition mechanisms are rccessary to transform one model into the
next. Klahr and Wallace have been relatively successful in modeling
different performance levels, but a number of questions regarding
transition'prcceses remain. .

At the metaphorical level, one of the most viable information-
processing models has been progosed by Pascual-Leone (1970, 1976). The
principle focus of this theory regards the capa:ity of the central
processor. Pascual-Leone (1970) hypothesizes that the basic intellectual
limitation of children is the number of schemes, rules, or ideas they
can handle simultancously--a capacity that increases regularly with aqge.
The maximum number of discrete chunks of information that a child can
integrate is assumed to grow linearly in an all-or-none manner as a
function of age. From the early preoperaticnal stage (3 to 4 years),

a child's information-processing capacity, or M-power, grows at the rate
of one chunk every two years until the late formal operational stage

{(about 15 to 16 years}. '

Children frequently do not operate at full capacity and it is
proposed that some children I -7e a tendency to operate well below
capacity. The ability to operate near capacity is hypothesized to be

S~
linked to individual differences in field dependence-independence.
Studies by Case (1972a, 1972b, 1974) and Scardamalia (1977) have pro-

vided substantial support for the predictive value of Pascual-Leone's

model .

e
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Information processing provides a fresh épproach to the study of
cognitive development that may heip resolve some of the paradoxes that
have plagued Piagetian theory. For example, by holding constanc the
information-processing requirements of the tasks, Baylor, Gascon, Lemoyne,
and Pothier (1973) were able to eliminate the well documented décalage

.t
between seriation of length and seriation of weight. On the other hand
Scardamalia (’977) was able to prgduce décalages in logically isomorphic
tasks by varying the information-processing demands of the tasks.

Information~-processing approaches may also help account for the
rather illogical sequence of development of certain number and measure-
ment concepts and children's ability to complete successfully certain
instructional sequences for which they lack the logical prerequisites.

It might be hypothesized that the effectiveness of instruction is
more a function of the information-processing demands of the specific
tacka than of the development of logical preregu.site operations. In
Sther words, children may benefit from instruction as long as the infor-
Mat ron-processing demands of the tasks do not exceed their iinmits, ain
spite 0of the fact that they do not possess the prerequisite logical

3

operations. Children's logic is not the same as adult logic. Given
appropriate instruction, they m¢ - be able to attend to certain relevant
dimensions of 3 stimulus situation and 1gnore the fact that their judg-
ments depend on certain prereguisite knowledge that they lack. tor a
further discussion of how the demands of instruction might be geared
to the information-processing capacities of the learner, see Case (1975).

Finelly., from an informatic:. processing pers@ective of cognative

development, training studies potentially take on a different interpretation.
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Although a variety of training proceqeres have been successful in
accelerating the acquisition of various Piagetian operations, tﬁere is
no evidence that similar trainigg can increase information-processing
capacity. One might speculate that the traditional training studies
have simply shifted the domain in which established information-processing
levels can be applied. For example, one might hypothesize that

a lack of sufficient inforﬁation—processing capacity is the primary
cause of conservation failureé. Children fail to conserve because they
are unable to focus on several dimensions simultaneously. As a conse-
guence they center on a2 single dominant dimension and fail to conserve.
From this perspective it might be hypothesized that the successful
training studies have simply taught children to fucus on the appropriate
attribute but have not accelerated cognitive development in the conse

of actually changing basic cognitive structure.

An analysis of cognitive development in terms of information-pro-
cessing variables seems especially well suited for dealing with educa-
tional problems. The emphasis on the existence of internal logical
structures .na the debate over what evidence is necessary to demonstrate
the existence of these structures has never seemed especially germane
to the problems in education. We are primarily interested in perfor-
mence and can leave the guestion of underlying competence to the
. “wchologists. Our primary concern is whether a child can attend to
and learn from a particular instructional sequence. An analysis of both
the mathematical skills and the instructional sequence in terms of
their information-processing demands provides a potentially p;oductive

method for relating the mathematics curriculum to one measure of

70
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cognitive development.

Two information-processing variables that show clear developmental
trends are childreg's memory and their ability to control attentidn
(Flavell, 1977; Hagen, Jongeward & Kail, 1975; Peck, Frankel, & Hess,
1975). Many errors in traditioéal concept development tasks result from
children attending to inappropriate diménsions of the problem. Indivi-
duals are faced with an overwhelming quantity of information from the
environment that must be routed through the central processor in order
to be acted upon. This cag create a tremendous bbttleneck. and the
mechanisms of attention which determine which information will be
selected for processing are exceedingly important in characterizing
information-processing capacity. To plan instruction, it is essential
to know what stimali children can, and naturally do, attend to and how
capable they are of %hifting their attention from one dimension to
ancther.

Memory 1s also an important information-processing variable. -As
children mature, they use increasing'y efficient coding, storage, and
retricval strategies and are increasingly aware of the demands that
specific tasks place on memory and their own abilities to handle these
demands. Mathematical p}oblems place significant demands on memory,
and an inefficient use of memory may clog the central processor when
its full capacity may be needed to soulve the given proklem. For
example, it is quite difficult for most adults to multiply in base 8,
even when they are given preliminary instruction in different number

bases and are provided with a multiplication table. To some degree this

simulates an inefficient memory strategy.

by



Potential Educational Applications
¢

Basic resgarch and theory on cognitive development is not focused
primarily on e&heational practice or the teﬁching and learning of mathe-
matics. However, since the study of cognitive development involves the
study of basic intellectual functioning in children and since the specific
content under inveséiqation frequently has involved fundamental mathe-
matical concepts, potential applications for the teaching and learning
of mathemitics naturally come té mind. There are numerous general dis-
cussions of the relevance of this body of research for educational
practice {e.g., Athey & Rubadean, 1970; Be;rd. 1969; Brearly & Hutchfield,
1969; Bruner, 1960; Furth, 1970; Ginsburg & Opper, 1969; Hooper, 1968;
Kohlberg, 1968; Schwebel & Raph, 1973; Sigel, 1969; Stendler, 1965;
Sullivan, [1967; Hooper & DeFrain, Note 9; Klausmeier & Hooper, 1974).
Others haye specifically addressed the relevance of cognitive develop-
ment reseérch for the teaching and learning of mathematics (e.g., Copeland,
1974; Huntington, 1970; Inskeep, 1972; ‘tovell, 197lb, 1972; and Steffe,
1971). .

3

Some authors have attempted to draw specific inferences for edu;d-
tional practice directly from the general research {e.g., Copeland, 1974;
Huntington, 1970). Sullivan (1967) and Weaver (1972) have made a strong
case that such extrapolation from pure research based exclusively on
psychological considerations is inappropriate. What ic needed 1s what
Glaser (1976a, 1976b) calls a "linking science" to establish the rela-

tionship between the descriptive science of cognitive development and

the prescriptive science of instructional design. In other words,

-
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fundamental instructional issues cannot be resolved directly on the basis

of pure research. Research on cognitive dovelopment is Jdosviiptive,
not prescriptive. It does, howerF, provide a basis for initiating
certain lines of instructional research that could address three basic
curricular issues: {(a) What content should be taught, (b} when
particular content should be taught, andk(c) how should it best be pre-

sented to the student?

\ ¢
The Content and Sequencing of Mathematical Topics

The first guestion involves two distinct issues. One involves the
question of what content is most important to teach. Kohlberg and
Mayer (1972), for example, argue that the aim of education should be
to foster development and, in so far as possible, insure that students
progress through the basic stages of development identif;ed by Piaget,
Kohlberg, and others. A similar argument is found in the van Hieles'
proposals regarding the learning of geometric reasoning skills. Althpuqh
certain elements of the assumptions upon which these proposals are based
are potentially subject to empirical validation, the basic issue of what
content is most important to teach seems to be based primarily on
value considerations. Consequently the implicatisns of this issue for
research are minimal.

The second issue involving what to teach is more pedagogical and
is potentially of greater consequence for research in mathematics
education. Once a specific objective has been identified, there is
still the problem of choosing the most effective way to develop the
topic mathematically. This involves choosing the mathematical approach,

definitions, or models to be used and deciding how to sequence topics.



T v

67

?
During the ‘late 1950's and early 1960's this choice was based almost
exclusively on the logical structuré of the subject. There is a growing
awareness, however, that one must also account for the psychology of
the child lea;ning the subject. ‘

The basic paradigm involves attempting to trace the natural develop-
ment of a concept in children and to reflect thi; natural development
in constructing the curriculum, The assumption is that the foundations
of many basic mathematical concepts develop naturally, independent og
any specific instructicn. Through careful investigation, one can iden-
tify this sequence and design a curriculum that builds this basic
foundation and takec advantage of what a child already knows. 1In other
words it is proposed that certain approaches for developing mathematical
topics will be more congruent with children's cognitive development.

The task for research is to identify thé approaches that 2re potentially
tue most productive.

Caution must be exercised in applying this paradigm. There is some
gquestion of whether one can identify natural foundation concepts that
are independent of current school practice. If children's conceptions
diverge significantly from the development in the school curriculum,

a reasonable case can be made that this pattern of development is
generally independent of the specific curriculum. But if the develop-

ment of children's understanding of a mathematical concept parallels

its development in the school curriculum, it is difficult to separatc
' v

.

out the effects of the current curriculum. This might not be as great
a problem as it appears. If children's development follows the curri-

culum, it may not be possible to isolate the specific contribution of

-
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the curriculum; but one can have some confidence that the curriculum

is not in opposition to the natural sequence of development. Thus,
éurriculum changes would be needed only if children's pattern of
learning differed significantly from the curriculum. However, any
attempt to identify the "natural' development of a given concept should
include a careful analysis of the potenélal contribution of the current
?chool curriculum.

A line of investigation that illu.trates the application of this
peradigm is the work of Brainerd (1973b, 1973e, 1976, 1979) discussed
above. He proposes that basic natural number concepts can be developed
logically either from an ordinal perspective as evidenced by the work

H
of Dedekind and Peanc or from a cardinal perspective in the tradition

of Russell and Whitehead. On the basis of his research with §éun;
children, Brainerd contends that ordinal number concepts develop before
cardinal number concepts, and ordinal number concepts are more closely
”

connected with the initial emergence of arithmetic. He recommends, there-
fore, that serious consideratinn be given to abandoning the traditicnal
card.nal development of natural number in favor of ordinal definitions.

Even if Brainerd's conclusions regarding the sequence of emergence
of ordinal and cardinal concepts were valid, his recommendaﬁéons would

represent unwarranted extrapolation. No attempt was made in his studies

to design and test instruction based on the ordinal definition of

~a

number . Furthermore, the examples of ordinal and cardinal concepts
included in his studies represent only a very narrow sampling of the
cencepts involved in the development of either cordinal or cardinal numbers.

It might be more productive to design curriculum to take into
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account, the explicit concepts, processes, and skills that children ex-
hibit throughout their acquisitién of a topic rather than attempt to
conpletely redesign it to be consistent with the development of certain
underlying logical concepts as proposed by Brainerd. One set of explicit
strategies that might be incorporated in the mathematics curriculum
involves children's use of various counting strategies to solve simple
addition and subtraction problems. Traditionally instruction has failed
to take into account the richness and growing sophistication of these
strategies. As illustrated by the teaching experiment of Steffe et al.
(Note 2), curricula could be developed to build on these strategies rather
than portray operations exclusively in terms of set operations.

An alternative to focusing on children's naturally developed con-
cepts and successful strategies 1s to analyze their errors. By identi-
fying seriocus misconceptions or significant prerequisite concepts or
skills that children are failing to master, instruction can be designed
to compensate fcr these deficiencics., The serres of studies by Gal'perin
and Georgiev (1969) discussed above 1s an excellent example of this type
of research. Another example is provided by a study of Zykova (1969),
in which children were found to lack certéin geometric processing skills

and instruction was designed specifically te teach these skills.

Matching Instruction to Appropriate Levels of Development

A second potentially significant contribution of cognitive develop-
7
ment research for the teaching and learning of mathematics deals with
the issue of readiness. The basic problem is to provide instruction

that is appropriate for an individual student's level ¢f cognitive development.

The question is not a matter of constructing the sequence of instruction,

i
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but rather of identifying the spécific place in the instsuctional seguence
/

that is appropriate for an individual student at a given stage of develop-
A
ment.
From a mechanistic perspective, this becomes a problem of identi-

fying a hierarchy of prerequisite skills, whether they involve a knowledge

of addition facts or an understanding of the principle of conservation,

N

and insuring that students have mastered all essential prerequisites.
From the organismic point of view, stages of development are a function
of integrated cognitive structures that are not readily altered by in-
struction. Therefore, it is not sufficient simpiy to identify a se-~
quence of prerequisite ski}ls or knowledge and insure that a child has
mastered it. One must also account for the child's ability’to process
information. The problem is to match instruction to a child's level

of cognitive development rather than simply fit the child into the
appropriate step in a sequence of instruction.

A critical difference between the two approaches is that mechanists
believe that mental processes;operatc essentially unchanged throughout
development, whereas the orqgnisﬁic view 1s that there are qualitative
ditferences ip the processes available to children at different stages
of development. In the mechanistic approach all learning and develop- .
ment 1s reducible to its compcnen£ parts and is susceptible to instruction.

In the organismic approach certain fundamental processes like conserva-
tion or transitivity are representative of basic levels of cognitive
functioning that are not reducible to isolated pieces or susceptible

to instruction. The level of development puts certain limits on a child's

ability to learn from particular instructional situations. These basic
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iimitations cannot readily be removed by specific instruction. There-
fore, the probleﬁ for cognitive development research is tc‘identify the
specific limits for each stage of development anﬁ to describe 50& in-
struction that is consistent with these limits can be designed.

There are three central problems invclvéd in this endeavox. . First,
it is necessary to specify the basic dimensions of the individual stages
- of development. Second, the cognitive developmental requirements of
each mathematical topic must be identified so that individual topics
can be matched with appropriate levels of cognitive devel?pment. Third.~
it is ngfessary to devise some means to insure that individual students
are vrovided with instruction appropriate for thei: level of cognitive
development.

It is possible to insure that instruction is appropriate for an
individual student's level of cognitive development in several ways.

One is to identify age norms for the attainment of given levels of develop-

I3

ment and then sequence the curriculum so that a topic is taught at the
appropriate grade. This approach is illustrated in the ;rticle by’
Huntington (1970) criticizing the grade placement of geometry topics

in the SMSG curriculum on the basis of Piaget, Inhelder, «nd Szominska's
(1960) description of children's development of measurement concepts.

A second approach deals with levels of development on an individual
basis. Since it is generally recognized that therc are wide individual
differences in the rate of coynitive development, this approach should
provide a much better matcﬁ between an individual child's level of de-
velopment and the child's mathematics instruction. The critical problem

for this approach is to develop a valid, reliable measure of cognitive

development.
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A classic sefies of studies that addresses the probiem of readiness
is reported by wWashburne (1939). Although these studies are dated and
the methods and variables under investigation would not be considered
the most appropriate today, this series of studies is noteworthy for
its comprehensive attack on the problem. Over 30,000 students partici-
pated in the studies over a period of more than 10 years. The purpose
was to identify the appropriate placement of arithmetic topics in terms
of individual children's levels of development. Development was defined
in terms of mental age, and recommendations were based on the initial
mental age at which 75 to 80% of the students successfully learned a
controlled teaching unit on a specific topic.

The measure of mental age used by Washburne (1939) was, to some
degree, a primitive measure of cognitive development. However, tasks
used in instruments measuring mental age are chosen for their psychometric
preperties and may be based on a hodgepodge of different reascning
processes; so it is not possible to characterize different levels of
development in terms of specific cognitive skills. Therefore, Washburne
was akle to establish only an empirical relationship, not a logical one,
between mental age and the ability to perform different mathematical
tasks.

Current attempts to construct scales of development are based on
theories of cognitive development (usually Piaget's) rather than on
nomative procedures. Piaget hypothesizes that intellectual development
proceeds through an invariant sequence of stages. The stages are
characterized by the emergence of integrated systems of new cognitive

structures that can be applied to a wide range of problem situations.

[ % 4



The hypothesized invariant sequence of development should allow the con-
struction of a series of tasks that characterize sequential levels of

development and form a good Guttman scale.

‘el

This means that the tasks can be sequenced in an ordinal scale so
that it is possible to identify specific tasks an individual can and
cannot do successfully by locating the _tudent at a point on this scale.
The student should be able to do all of the tasks scaled below that
peint and none above it. Because iﬁdi&idual tasks are fepresentative
of levels of development, these results should generalize to other
problems that are characteristic of a given level of development. By
Ahalyzing school mathematics topics in terms of their cognitive develop-
ment requirements, it should be possible to specify which ones are
appropriate for an individual student's level of cognitive development.

Washburne's argument was somewhat circular and devoid of any cause
and effect justification. Chronological age or height or weight could
just as well have served as measures of development. The argument was
simply th.  becauce a give 1 topic was not mastered by most students
until a given age using standard teaching practices, this was the appro-
priate age to teach the topic. On the other hand ordinal scales could
potentially identify the presence or absence of specific logical reasoning
processes that are necessary for learning a given topic.

That's the theory. 1In practice it has proved a great deal moru
difficult to construct an ordinal scale of deveicpment thﬁ“ was
originally supposed. A number of researchers have been working on the
problem for the last 10 to 15 years with only mixed success (Green,

Ford, & Flamer, 1971; Pinard & Laurendeau, 1904; Pinard & Sharp, 1972).
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Standardized tests using Piagetian tasks have been constructed (e.gq.,
Goldschmid & Bentler, 1968). But these only substitute Piagetian tasks
for traditional psychometric items. They are not true Guttman scales,
since the number correct is not reproducible from the ordinal position
of the most difficult item passed.

Tﬁere are two major problems. First, factor analytic research
indicates thaé logical reasoning is riot a one-dimensional domain (Kaufman,
1971; Stephens, McLaughlin, Miller & Glass, 1972; wWohlwill, 1973).
Therefore it 1s unlikely that the major dimensions of cognitive development

-

could be incorporated into a single 2. However, this problem could

be resolved by profiling developme terms of several scales measuring
different factors of cognitive development. Pinard and Sharp (1972)
report an effort to coordinate five ordinal scales--space; causality;
classification, seriation, and number; conservation; and time, movement,
and speed--into an overall test of cognitive development.

The second problem is more severe. It has simply proved extremely
difficult to scale any set of relevant tasks into an invariant sequence.
The problems of horizontal decalage and the variability introduced by
methodological variations have created almost overwhelming difficulties.

The evidence thus far obtained has ab ut extinguished what-

ever hope we might once have held that we could place

each child on a single developmental continuum eguivalent

to mental age, and from his score predict his performance

on content of whatever kind. (Tuddenham, 1471, p. 75%;

This may be overly pessimistic. To date, all efforts to construct orxrdinal

scales have been based on a purely Piagetian rationale. By iocluding
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information processing variablces or some measﬁre of t;sk difficulty in
the equation, some of these problems may be at least partially resolved.

Furthermore, it is not clear that task variability poses the same
stumbling block for education that it does for psychology. The reason
rests in a construct validity-predictive validity distinction. Psycholo-

-
gists have been intent on constructing a scale that locates a chald
at a given point in Piaget's sequence of developmental stages. They
have felt constrained to develop an instrument that clearly identifies
a given operation and have become enmeshed in competence-performance
issues. In order to identify what mathematics a child is capable of
attending to, competence measures are unnecessary. All that is required
is to identify a level of performance that generalizes to a range of
mathematical tasks. DPerformance distinctions should be included in such
a measure because they are also a part of the mathematical problems and
the manner in which they are presented.

In addition, the variability that .aas been introduced through
differences in experience and familiarity with different stimuli may
pose less of a problem in constructing an ordinal scale for curriculum
purposes. Psychologists have attempted to construct a scale that is
reasonably pure in that it is minimally affected by variations in school
curriculum. As a consequence they hove used stimulus situations that
are maximally independent of the contert of the school curriculum.
Children have a wide range of experiences outside of school, and this
creates a great deal of variability in stimulus familiarity. By sticking

closer to the curriculum and using terminology and stimulus materials

that are part of it, one gains at least some control over one segment

'y
¥
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of experience, and perhaps can eliminate ;ﬁme of the extraneous error.

If ordinal scales could be canstructéd, they might provide a
relatively efficient measure of cognitive development, which. would
explicitly characterize individual children's ability to operate with
a4 wide range of intellectual tasks. This characteristic makes them
extremely attractive for application to school practice. Bui although
the problems involved in constructing ordinal scales may not be in-
surmountable, they certainly are substaﬁtial; and little progress has
veen made in constructing ordinal scales that have potential for classroom
use. @

Although ordinal scales provide an appealing elegance and ease of

mmterpretation, their construction is not the central problem. What is

e adentification of specific relationships between performance on those
measures and the learning of particular mathematical concepts. Whether
Preose measures fall 1r o an ordinal scale is not critical. It is
important, however, that the measures of children's thinking predict
with some accuracy children's ability to learn specific mathematical
concents and skills,

Severai alternative directions for develop @0 such measures are
ixss1ble.  They might be based on fundamen-..l de ve-lopmental variables
like co;servation, class inclusion, and transitivity that are presumed
to develop outside of formal instruction. A noted above, several of these
measurces have been shown to correlate highly witn mathematical achievement.
However, with the cxception of the study by Steffe et al. (Note 2),

13ttle progress has heen made in relating these measures to children's
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ability to learn specific mathematical concepts and skills. In other
words, it is not sufficient to demonstrate that there is a difference in
overall achievement between conservers and nonconservers. It is necessary
to document exactly how they differ and what instruction is approvriate
for each group. .

A second alternative wculd be to focus more explicitly on the concepts
and processes that children apply directly to the mathematics they are
learning. This analysis shoild go beyond standardized aptitude or
achievement tests. Even tects specifically constructed to measure whether
¢hildren have mastered specific prerequisite skills are inadequate. What
15 needed are measures of the specific concepts and processes that
children apply to the content of instruction and the specific errors
they may make. It is very difficult to get this type of information from
paper—and-pencil tests.  An application of clinical interview techniques
Aiscusced by Ginsburg (1476) seems tou be the most promising approach.
Powever, inoorder for this approach to have any impact on educational
practice, efficient procecures for applying it in educational settings
need o be developed.

A third potential measure is Vygotsky's (1962, 1978) zone of proximal
development.  Since this measure actually involves adult interaction which
represents a form of instruction, it should provide an excellent measure
of children's ability to benefit from instruction.

A closely reiated technique is the application of teach-test procedures
to ascertain children's ability to deal with certain types of insgruction.
Teach-test procedures have frequently been used with mentally retagded

4
children to measure their susceptability to traditional forms of /

Cd
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instruction (cf. Budoff, 1967) but have seldom been used with normal
children. The basic format invelves a short, controlled training session
over certain novel and presumably unfamiliar tasks followed by a test on
the instructeé material. Unlike other measures the initial knowledge

or ability to do the task is not the primary concern. What is of
interest is the degree to which subjects are able to prefit from the
instructional sequence. By manipulating the form of the short training
session, one potentially can generate a measure of children's ability

to attend to, and learn from, different instructional sequences.

A study that illustfates the application of this technique is re-
ported by Montgomery (1973). This study was an aptitude-treatment inter-
action study that examined the interaction of second- and third-graders'
ability to learn unit of length concepts with two treatments based on
area and unit of arca concepts. Aptitude was measured using a teach-
test procedure that partitioned subjects on their ability to learn to
compare two lengths measured with different units. Subjects were randomly
assigned to one of two nine-day instructional treatments on measuring and
comparing areas. The difference between the treatments was the emphasis
placed on the unit of measure. In one treatment, subjects always measured
with congruent units and compared regions covered with congruent units.

In the other treatment, subjects measured with noncongruent units and
compared regions covered with different units. On both a posttest ana

a retention test, the treatment that used different units was significantly
more successful in teaching children to assign a number to a region
(measure) and to compare two regions using their measures. However,

there was no significant difference between the two treatments on a
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transfer test that included problems involving measurement with different
units, and no significant interactions were found between aptitude levels
and treatments. The failure to find significant results may, in part,
reflect certain anomalies in the development of measurement concepts

that were not taken into account (see the discussion on measurement above).
But it does illustrate the difficulties and pitfalls in attempting to
construct good measures in order to match children to appropriate
instruction.

Given the difficulty in characterizing stages of development and
constructing gcod measures of development, it is not surprising that little
has been accomplished in analyzing specific mathematical topilces 1n terms
of their cognitive development requirements. A very rough first approxi-

mation of this task is provided by the Nuffield Checking Up booklets

(Nuffield Mathematics Project, 1970, 1970y,

Choosing Instructional Strategies

The third potential application of cognitive development theory to
problems of education involves the cheice of instructional strateugies.
Cognitive development theory, that of Piaget in particular, has bren used
to justify a wide range of instructional programs that are based on opuen
classroom, discovery, or activity learning approaches. Two of the most
reasoned attempts tc formulate general principles for instruction on the 7
basis of cognitive development can be found in Elkind {(1976) and Smock
{1976a), Hooper and DeFrain {(Note 9) report on a number of attempts to

i (_. T "A\
apply Piagetian theory to the de%Sign of preschool programs.

In general relatively little is known about the specific mechanisms

-

that contribute to cognitive development or how they operate; and in spite
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of the fact that there exists an abundance of training studies even less
is‘known about how instruction can be designed to take advantage of basic
developmental mechanisms. Much more basic research is needed before spe-
cific application of the theory to identify optimal instructional strate-
gies is appropriate. On the whole, this does not appear to be one of the
more productive avenues for cognitive development research. Although in-
struction should be consistent with established theories, basic research

in cognitive development cannot specify exactly what types of instructiomal

strateqgies are most appropriate.

Conclusions

It was observed earlier that most cognitive development research 1is
only incidentally concerned with the learning of mathematics. Variables
have been selected for their potential value in explaining the general
course of cognitive development; and although mathematical topics have
frequently been studied, their inclusion has not been motivated by a desire
to improve instruction in mathematics. In fact, specific content has been
chosen for investigation because it is presumed to develop vefy much
independently of the school curriculum; and much of the content of school
mathematics hag been virtually ignored.

Rohwer (1970) has argued that if cognitive development research is
going to have a sgignificant impact on education, its theories will have
to be recast in an educational context and principles of cognitive
development will have to be applied directly to educationally significant

questions. Thus, the objective for mathematics educators should not be
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to verify some aspect of a general theory of cognitive develoément.
Rather we should attempt t& identify how the theories apd techniques of ‘ V'
cognitive development can be applied to deal with issues that are signi—’//
ficant for the teaching and learning of mathematics. Instead of selecting
variables for investigation because of their independence of school
experience, we should be primarily concerned w}th problems that are ——
significant from the perspective of the sch"ol‘mathematic: curriculum.

This refocusing'of cognitive development research in mathematics
should be aimed at the construction of what Shulman (1974) has called

-

mi1dd e-range theories. Such theories fall betwecn the task-specific
working hypotheses that ire qaneraﬁedrto explrin individual behaviors,
errors, and the like and comprehensive theories, such ac those of Piaget,
that attempt to cncompass all of cognitive development. It is not clear
that general cognitive structures lihe Piaget's groupings are -specially
useful in understanding children's lear:ing of mathemat.ics, and it 18 a
profligate expenditure of limited resources for those of us in mgthemdtxcs
education to expend our energi-s identifying or validating the existence
of such all-encompassing structures. 1f we can generate middle-rangc
theories that can adequately explain aspects of children's mathematical
behavior over limited periods of tine we shall have accomplished a great
deal indeed.

For example, it should not be the role of mathematics educators to
resolve the conflict between the theories of Brainerd and Piaget regarding
the development of the logical foundations of carly number concepts. A

more impoxtant question for education is how useful are the theories in

explaining children's learning of concepts that are part of the mat.hematics

.
o
.~
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curriculum. Thus, the question is not whether conservation is a valid
construct but whether it tells us anything about children's ability to
learn and apply number and measurement skills.

Two general applications of cognitive development research have
been identified that seem to hold the greatest promise for influencing
educational practice. The first involves selecting and sequencing of con-
tentf The second concerns individualizing instruction on the basis of
each student's level of develapmeﬁt of appropriate concepts and processes.
Both applications reguire a good cognitive map of the development of key
mathematical concepts and processes. This map must take into account both
individual differences and the effects of instruction. Thus, a major
objective for research in ma._nematics education should be to characterize
the processes and concepts that children aciguire at significant points
in the learning of important mathematical topics. Furthermore, it should
describe how these concepts and processes evolve over the course of in-
ctruction. This involves describing the different processes and errors
that ind:vidual children exhibit on key tasks at each stage of instruction.
It also should include an analysis of performance on relaied tasks.
Although significant individual differences should be anticipated, it
should be possible to identify clus;ers of children who exhibit similar
profiles of performance over a range of tasks. If so, then key problems
can be used to identlfy how individual children will perform over the
complete raﬂié of tasks,

Finally it is necessary ¢to describe the change in concepts, processes,
and errors over the course of instruction. Piaget assumes that all

children go through essentially the same stages of development. 1 .erefore,
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it is necessary only to characterize each stage to describe development.
The evidence suggests, however, that there is a great deal of varia;ion
in the pattern of acquisition of most mathematical concepts. Consequently
to characterize development of these concepts it is niﬁessary to describe
how change takes place within individual children, or at least groups of
children, over the course of instruction. This means analyzing how
certain processes, concepts, or errors at a given stage have evolved from
the processes, concepts, or misconceptions of earlier stages. For example,
if a child makes certain errors at a given stage, will they be resolved
as the child acquires more mature concepts and skills, or will these errors
bé magnified as new concepts are built on these earlier misconceptions?
To assess change effectively within individual children, it is necessary
to follow them over the relevant instructional periods. This does not
mean that the only appropriate studies arc longitudinal ones that continue
4

over the entire cohfsc of the development of a given concept. But any
study that purports}to meisure intraindividual change must at least have
repeated measures on the same subjects over the time that change 1is being
measured.

Individual children master concepts at different points in an
instructional sequence. An impoctant question is whether all children
go through essentially the same basic sequence of developmenit in liearning
certain concepts even though they may pass through a given stage at
d: fferent points in the instructional sequence. In otherx words are there
certain key prerequisite concepts or processes that all chrldren achicve
before they master a given concept? Research should be especially

sensitive to identifying such kev prerequisites.

0 ,
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Teaching experiments seefhn especially appropriate for the research
program outlined above. They may invcive a few children or many. But
they should systematically monitor children's progress through a carefully

\’“\
designed instructional sequence so that the children's specific experiences
can be identified. 1In addition the concepts that children have learned,
the processes they are applying, and the systematic errors thgy are
making should be regqularly assessed. Clinical interview techniques seem
most appropriate for this purpose. Finally, this research should not only
describe children's knowledge or performance at a given point in time but
should also attempt to characterize their ability to attend to, and benefit
from, instruction.

Assuming that it is possible to characterize the development of a
given mathematical topic, 1t is not at all obvious how this infcrmation
should be appl the design of instruction. Consider the problem of
selecting ami . ,0encing appropriate content. Several alternatives are
possibie. One 1s to identify a minimum set of concepts and skills that
all\children exhibit at one point or another in the acquisition of a
given topic and to build instruction aréund this basic set. This approach
s not especially elegant and seems to reduce instruction to the least
common denominator. However, one might assume that if one teaches the
minimal set of skills that is logically complete and that can be understood
by all students, the better students will continue to generaste their own
more complex strategies. A study by Groen and Resnick (1977) offers some
suppert for this hypothesis.

An alternative approach would be to identify the most efficient

processes that children use and’/ur the processes that are used by the

by

———
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most capable students and teach those specific processes. Although this
approach has the appeal of attempting to make the most efficient strategies
available to all the students, there are potential drawbacks. The slpwer
students may not have the cognitive capacity to understand or apply the
complex processes of the better students, and the complex processes may

be very difficult to teéch explicitly.

Clearly these extremes do not represent the only choices, and there
is a great deal of middle ground. Furthermore, as Resnick {1976} proposes,
appropriate instruction should not necessarily copy the natural develop-
ment of the con;epts in children. 1Instead, it should put learners in
the best pesition to invent or discover appropriate strategies themselves.
There is no simple answer to the questicn of how to select and sequence
content, and it is unlikely that a single approach will be cffuctive with
all content or for all learners.

Similar problems exist with respect to problems of individualization.
Should instruction be congruent with a c¢hild's level of develoupment, so
that the instructor can be sure the child can attend to the appropriate
aspects of instruction? Or should instruction lead development, as
suggested by Vygotsky (1262} and others?

Researcli in mathematics education cannot stop with the description
of the development ¢ mathematical concepts. We musc initiate Glaser's
(1976a, 1976b) linking research to establish how the descriptive informa-
tion from research intc children's thinking can be applied to prescribe
instruction. Furthermore, this program of linking research cannot wait
until a complete description of the development of a given concept 1is

available. If viable programs of basic and applied research existed,

15
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they could interact to the mutual benoefit of both. Research into
children's thinking could provide the framework for initiating instructional
research, and instructional research could identify the types of infor-

. s
mation about children's thinking that are most useful for making
educational decisions. -

Like most of the significant problems in education, the problems of
characterizing children's thinking and applying this information to the
design of instruction are not simple problems that can be answered by a
collection of isolated studies. If any real progress is to be made toward
resolving these problems, there is a critical need for coordinating the
efforts of researchers sharing ideas, identifying and attacking critical
prob;ems, and standardizing research techniques.

Four working groups that are dealing with problems relevant to-the
application of cognitive development to the learning of mathematics are
currently operating under the general direction of the Georgia Center
for the Study of Learning and Teaching Mathematics at the University of
Georgia. They include a working group on number and measurement, one on
rational numbers, one on space and geometry, and one on models for
learning mathematics. These working groups, which constitute a somewhat
lnose consortium of individuals at different institutions, offer one of
the best mechanisms currently available for unifying our attack on
educational problems.

Papers from a series of research workshops at which these working
groups were established have been published (Lesh, 1976; Martin, 1976;

Osborne, 1976) and several monographs reporting tne efforts of different

working groups are in preparation.
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Cognitive development research in mathematics education must not
only unify its efforts to attack significant educational problems; an
effort must be made to insure that the results of this research have
some impact on school practice. Rohwer (1970) has observed: "The
relevance of cognitive developmeqt for education is ecasier to establish
than the assertion that a substantial contribution to education will be
made from its study" (p. 1380). Although we must avoid premature conclu-
sions and clearly establish the links between cognitive development
research and classroom practice, we must not bury our resutls in research
journals. Part of the consortium orientation should be directed at in-
cluding curriculum developers and developing curriculum materials.

Unless we can convince teachers and curriculum developers to begin to see
some of the problems of education in cognitive development terms,
research in cognitive development will have little practical value for

the teaching of mathematics.

‘4
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