Hathway, James A., Ed.

Individualized Testing System: Performance Checks, ISCS Level III, WYY-LV Form C.

Florida State Univ., Tallahassee. Curriculum Study Center.

National Science Foundation, Washington, D.C.

73

37p.; For related documents, see SE 028 460-488

MF01/PC02 Plus Postage.

Academic Achievement; Course Evaluation; Elementary Secondary Education; *Evaluation; *Individualized Programs; Junior High Schools; *Performance Tests; *Science Course Improvement Project; Science Education; Science Materials; Science Tests; *Student Evaluation

*Intermediate Science Curriculum Study; *National Science Foundation

This is one form of three performance checks booklets (A, B, and C) for two texts of Level III of the Intermediate Science Curriculum Study (ISCS). These two texts are Why You're You (WYY) and Investigating Variation (IV). The 12 performance checks booklets for Level III are considered one of four major subdivisions of a set of individualized evaluation materials for Level III of the ISCS.

This booklet (form C), developed to assess the students' achievement of the objectives of the WYY and IV texts of Level III, contains a set of performance checks which are equivalent to the performance checks of the other two forms (A and B). Each performance check has its own code number which indicates the unit number and identifies whether it is based on core materials or excursions. Directions for students' use of performance checks are also included. (HM)
Performance Checks
ISCS LEVEL III
WYY-IV
FORM C
INDIVIDUALIZED TESTING SYSTEM

ALL LEVELS

Individualizing Objective Testing (an ITP module)
Evaluating and Reporting Progress (an ITP module)

LEVEL I

Performance Objectives, ISCS Level I
Performance Checks, ISCS Level I, Forms A, B, and C
Performance Assessment Resources, ISCS Level I, Parts 1 and 2

LEVEL II

Performance Objectives, ISCS Level II
Performance Checks, ISCS Level II, Forms A, B, and C
Performance Assessment Resources, ISCS Level II, Parts 1 and 2

LEVEL III

Performance Objectives, ISCS Level III
Performance Checks, ISCS Level III, ES-WB, Forms A, B, and C
WYY-IV, Forms A, B, and C
10-WU, Forms A, B, and C
WW-CP, Forms A, B, and C
Performance Assessment Resources, ISCS Level III, ES-WB
WYY-IV
10-WU
WW-CP

ACKNOWLEDGMENTS

The work presented or reported herein was supported by funds provided by the National Science Foundation. However, the opinions expressed herein do not necessarily reflect the position or policy of the National Science Foundation, and no official endorsement by the agency should be inferred.

©1973 THE FLORIDA STATE UNIVERSITY

All rights reserved. Printed in the United States of America. Published simultaneously in Canada. Copyright is claimed until 1978. Except for the rights to materials reserved by others, the Publishers and the copyright owner hereby grant permission to domestic persons of the United States and Canada for use of this work without charge in the English language in the United States and Canada after 1978 provided that the publications incorporating materials covered by the copyrights contain an acknowledgment of them and a statement that the publication is not endorsed by the copyright owner. For conditions of use and permission to use materials contained herein for foreign publications in other than the English language, apply to the copyright owner. This publication, or parts thereof, may not be reproduced in any form by photographic, electrostatic, mechanical, or any other method, for any use, including information storage and retrieval, without written permission from the publisher.

ILLUSTRATIONS: ©1973 GENERAL LEARNING CORPORATION
ALL RIGHTS RESERVED.
ISCS STAFF

David D. Redfield, Co-Director
William R. Snyder, Co-Director
Ernest Burkman, Steering Committee Chairman

Gary Carroll, Artist
Robert L. Cocanougher, Art Director
Stewart P. Darrow, Teacher Education
George O. Dawson, Teacher Education
Cheval Fagan, Artist
Ronald N. Giese, Evaluation
James A. Hathway, Editor
Adrian D. Lovell, Administration and Field Trial Coordinator
Janet Mauney, Artist
Lynn H. Rogers, Artist
Millicent Shargel, Grammarian
Stephen C. Smith, Associate Art Director
Lois S. Wilson, Assistant Editor

MATERIALS DEVELOPMENT CONTRIBUTORS

Betsy Conlon Balzano, State University of New York at Brockport
Allan D. Dawson, F.S.U.
Linda Dubaldi, F.S.U.
Gregory Eckles, Hatboro, Pa.
William H. Fletcher, F.S.U.
John Hassard, Georgia State University
John Hockett, Governors State University
Linda MacGregor, Warminster, Pa.
Luis A. Martinez-Perez, F.S.U.
Gerald G. Neufeld, F.S.U.
Lawrence E. Oliver, F.S.U.
Barney Parker, F.S.U.
John Selgrath, Warminster, Pa.
Everett S. Stallings, F.S.U.
To implement an educational approach successfully, one must match the philosophy of evaluation with that of instruction. This is particularly true when individualization is the key element in the educational approach. Yet, as important as it is to achieve this match, the task is by no means simple for the teacher. In fact, without specific resource materials to help him, he is apt to find the task overwhelming. For this reason, ISCS has developed a set of individualized evaluation materials as part of its Individualized Teacher Preparation (ITP) program. These materials are designed to assist teachers in their transition to individualized instruction and to help them tailor their assessment of students' progress to the needs of all their students.

The two modules concerned with evaluation, Individualizing Objective Testing and Evaluating and Reporting Progress, can be used by small groups of teachers in inservice settings or by individual teachers in a local school environment. Hopefully, they will do more than give each teacher an overview of individualized evaluation. These ITP modules suggest key strategies for achieving both subjective and objective evaluation of each student’s progress. And to make it easier for teachers to put such strategies into practice, ISCS has produced the associated booklets entitled Performance Objectives, Performance Assessment Resources, and Performance Checks. Using these materials, the teacher can objectively assess the student's mastery of the processes, skills, and subject matter of the ISCS program. And the teacher can obtain, at the moment when they are needed, specific suggestions for remediying the student’s identified deficiencies.

If you are an ISCS teacher, selective use of these materials will guide you in developing an individualized evaluation program best suited to your own settings and thus further enhance the individualized character of your ISCS program.

The Co-Directors
Intermediate Science Curriculum Study
Rm 415, W.H. Johnston Building
415 North Monroe Street
Tallahassee, Florida 32301
NOTES TO THE STUDENT

Now that you have completed several chapters, excursions, and self-evaluations, you are ready to help your teacher determine how well you are doing. The performance checks in this book will provide your teacher with this information. Then your teacher can help you with things you may not understand and can keep a record of your progress.

Read the next section carefully. It explains some important things about the performance checks in this book; and it gives you specific suggestions for using them.

What You Need To Know about Performance Checks

1. You do performance checks when you are ready. Performance checks are somewhat like the questions in the self-evaluations — you do them when you are ready, not when the whole class is ready.
2. Your teacher or both of you decide how many you do. Your teacher or you and your teacher together will decide which ones you should do. You are not expected to do all of the performance checks.

3. There are three forms for each performance check. Every performance check is written in three forms — A, B, and C. (The title of this booklet tells you whether it is Form A, B, or C.) Usually the answers for each form are different. When you do a check, you will use only one form. The A, B, and C forms are always in different booklets. Within each booklet all the performance objectives for the same unit are listed together. A unit contains two or three chapters and their related excursions. These units are in numerical order. Each unit has performance checks based on core material and performance checks based on excursions.
4. Each performance check has its own number. The number is in the outside margin of the page and will look like this: IV-03-Core-17A or WYY-02-Exc 4-2-2A. These numbers mean

IV - 03 - Core - 17 A

and

WYY - 02 - Exc 4-2-2A

A
5. Each performance check is separated from the other. There is a line before each performance check and one after it. Some performance checks have several parts, so do everything called for between the lines. If there is no line at the bottom of a page, the check is continued onto the next page.

6. Sometimes you will need to use equipment. If special materials are needed, they will be in boxes labeled with the same number and sometimes the same letter too as the performance check for which you need them.

7. Some performance checks have two or more answers. If more than one answer is correct, you must select all the correct choices. In such cases, selecting just one answer is not enough.

8. Some performance checks have no answers. Occasionally, you may be asked to do something that is impossible and to explain your answer. If so, say that the task is impossible and explain why.

9. You share books of performance checks and YOU DO NOT WRITE IN THEM. Write your answers on other paper. Give the number and form of the performance check for each answer you write. If you are to draw a graph, a chart, or a map, your teacher may provide you with grid paper or a copy of the map or chart.

10. Your teacher or his assistant will collect and mark your checks. And sometimes you must ask him to watch or assist you as you do a check.

11. Sometimes a review procedure will be suggested. If you can't do a performance check, you may be asked to review a part of the text or a self-evaluation question. You may then be checked on the same material, so be sure you understand the material you review. Get help if you need it.
WYY

Why You're You
1. Where in plants and animals do sperm come from?
2. What does a sperm do?

Many organisms produce offspring by means of eggs and sperm.
1. What is the source of an egg?
2. What is the function of an egg?

When animals are mating, what happens to sperm?

Get vial WYY-01-Core-4, some ether, and an etherizer from the supply area. Etherize the fruit flies in the vial. Have your teacher check the etherized flies.

Get vial WYY-01-Core-5, two empty capped vials, an etherizer, and some ether from the supply area. Do not remove any flies from the vial at this point. Etherize all the flies in the vial. Shake the vial gently. Remove the fruit flies from the vial. Put the dead flies and the etherized flies into separate vials. Cap the vials, and label each as containing dead or etherized flies. Have your teacher check your work. Return all the flies to the vial you got them from.

Get vial WYY-01-Core-6, some ether, two empty vials with caps, and an etherizer from the supply area. Etherize the fruit flies. Separate the male flies from the females. Put the males into one of the empty vials and the females into the other. Cap the vials, and label each as containing male or female flies. Have your teacher check your work. Return all the flies to the original vials.

State the steps that you would follow to get virgin female fruit flies from a vial containing nonadult and adult fruit flies.

Operationally define the term pure strain.

The life cycle of a fruit fly consists of several stages. List these stages.

Get jar WYY-01-Core-10 and a hand lens from the supply area. Point out to your teacher the egg, the larva, the pupa, and the adult stages in the jar.

Clarence crossed some fruit flies that are pure strain for short wings with others that are pure strain for long wings. What appearance is possible for the first-generation offspring of such a cross?
Plants have many different features that show variation. In one experiment, George studied only one feature; seed smoothness, even though plants inherit many features at one time. Why would George study the inheritance of only one feature at a time?

Eric crossed pure-strain beans that had yellow flowers with pure-strain beans that had purple flowers. Then he crossed the first-generation offspring to get the second-generation offspring. Predict the color of the flowers in the first- and second-generation offspring by choosing the correct descriptions below.

1. Among the first-generation offspring
 a. all plants had the same color flowers.
 b. some plants had yellow flowers and some plants had purple flowers.

2. Among the second-generation offspring
 a. all plants had the same color flowers.
 b. some plants had yellow flowers and some plants had purple flowers.

Pedro crossed two pure-strain plants. One had yellow seeds, and the other had brown seeds. He crossed the first-generation offspring with each other. Predict the most likely ratio of variations of seed color he will get in the second-generation offspring.

Tell your teacher that you are about to do this check.

Get the box of beans labeled WYY-01-Core-15 from the supply area. Quickly and accurately, estimate the ratio of brown beans to white beans in the box.

Get vial C from box WYY-01-Core-16 in the supply area. Look carefully at the beans. Are they pure-strain beans?

The table below refers to the offspring produced by mating two dwarf corn plants.

<table>
<thead>
<tr>
<th>GENERATION</th>
<th>PLANT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>dwarf</td>
</tr>
<tr>
<td>1st-generation</td>
<td>dwarf</td>
</tr>
<tr>
<td>offspring</td>
<td></td>
</tr>
<tr>
<td>2nd-generation</td>
<td>dwarf</td>
</tr>
<tr>
<td>offspring</td>
<td></td>
</tr>
</tbody>
</table>

1. According to the ISCS two-bit model, is this variety of corn pure strain for size?
2. Explain your answer.
Suppose you crossed a sweet pea plant that was pure strain for white flowers with a
sweet pea that was pure strain for red flowers. Which statement best describes the
first-generation offspring of this cross?
 a. There will be a 3-to-1 ratio of plants with red flowers to those with white
 flowers.
 b. Half the plants will have white flowers, and half the plants will have red
 flowers.
 c. Either all the plants will have red flowers, or all the plants will have white
 flowers.
 d. All the plants will have red- and white-spotted flowers.
 e. There will be a 3-to-1 ratio of plants with white flowers to those with red
 flowers.

Suppose you were to cross zinnias that were pure strain for yellow flowers with:
zinnias. that were pure strain for red flowers. Select the statement that best describes
the appearance of the second-generation offspring of this cross.
 a. All of the plants will have half red flowers and half yellow flowers.
 b. All of the plants will have one-color flowers, but I cannot tell if they will
 be yellow or red.
 c. Some plants will have all yellow flowers, and the others will have all red
 flowers. There will be a 3-to-1 ratio of the colors.
 d. Half of the plants will have all red flowers, and the other half will have all
 yellow flowers.
 e. All of the flowers will be orange.

Two pure strains of potatoes were crossed. In the second-generation offspring of
this cross, there were 62 plants that produced tan potatoes and 201 plants that
produced red potatoes.
 1. What did the potatoes produced by the first-generation offspring look
 like?
 2. What did the potatoes produced by the parent plants look like?

Your teacher will observe you for this check when he can.
Your teacher will observe you for this check when he can.

In reporting inheritance experiments, the word *cross* is often used. Define the word *cross* as it is used in such reports.

Below are two definitions of ways in which people differ. Study these definitions, and answer the questions that follow.

Definition **a**: A woman's *beauty index* is her ability to wear makeup well.

Definition **b**: A person's *swim index* is a measure of how fast she can swim short distances. It is measured by timing how long it takes her to swim 100 meters, using any stroke.

1. Which of the above is an operational definition?
2. Explain the reason for your answer.

List the two questions that should, whenever possible, be answered by an operational definition.

Jennifer was using a jar with a piece of ripe banana in it to trap wild fruit flies to investigate their feature variations. During the winter, she found that she trapped very few flies each day. Explain why so few flies develop during the winter.

What is the total number of bits of information that all of Perry's great-grandparents had for the feature dimples?

Lucas has brown eyes. His great-great-grandmother Ethel had brown eyes, his great-great-grandmother Carol had blue eyes, and his great-great-grandfather Jonas had brown eyes.

1. Can you determine which of his three great-great-grandparents contributed the bits for Lucas's brown eyes?
2. Explain your answer.

In English class, the teacher found that 25 students had read a novel and 8 students had not. What is the rough ratio of students who had read the novel to those who had not? Express the ratio to the nearest tenth, or 1 decimal place.

Linda calculated the rough ratios shown below. Convert these to rounded-off ratios.

1. 4.9 to 1
2. 3.2 to 1
3. 8.8 to 1
4. 13.3 to 1
Peter noticed that some of his second-generation fruit flies from a cross between the pure-strain parent flies had cross veins on their wings, but others did not. He counted 64 flies with cross veins and 21 flies with no cross veins. Since he had gotten rid of the original parents and the first-generation offspring, he could not examine their appearance.

1. What were the wings of the original parent flies like?
2. What were the wings of the first-generation offspring like?

When you cross pure-strain fruit flies having long body bristles with fruit flies that are pure strain for short bristles, all of the first-generation offspring have long body bristles. Suppose you cross these first-generation offspring. Predict the ratio of long-bristled to short-bristled offspring that would result from this crossing.

Choose the statement below that best describes the pattern by which features are passed from parent to offspring.

a. The offspring show the same features as their female parent.
b. The offspring generally show some features in common with each of their parents.
c. The male offspring show the same features as their male parent, and the female offspring have the same features as their female parent.
d. None of the offspring show the same features as their parents.

What do you call the science which deals with patterns of inheritance?

The figures below show a possible way to explain a cross between brown beans and white beans, using the one-bit model of inheritance. What are the assumptions of the one-bit model of inheritance?
Why is the one-bit model of inheritance not a satisfactory model for most features?

Heat can be described by either a particle model or an energy model. Select the most important reason for accepting one model rather than the other.

a. The scientist who developed one of the models won a Nobel Prize.
b. Your teacher told you that one model was better.
c. One model involves less math and is easier to understand.
d. One model agrees more closely with the experimental evidence.
e. A book states that one model is correct.

In developing the two-bit model of inheritance, some assumptions were made. What were these assumptions?

The inheritance of flower color in snapdragons follows the two-bit model. Yellow color masks white color. Suppose you crossed pure-strain white snapdragons with pure-strain yellow snapdragons.

1. Predict the color of the flowers of the first-generation offspring of this cross.
2. Predict the color of the flowers of the second-generation offspring of this cross. Include a ratio in your answer.

A test-cross plant is usually pure strain for the masked (recessive) variation of a feature. Why is it used rather than a plant that is pure strain for the masking variation?

Gladys crossed two pure strains of beans. One was pure strain for brown seeds (BB), and the other was pure strain for white seeds (bb). Her data are shown below.

<table>
<thead>
<tr>
<th>GENERATION</th>
<th>PLANTS WITH WHITE SEEDS</th>
<th>PLANTS WITH BROWN SEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1st-generation</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>offspring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd-generation</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>offspring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Can you explain these data, using the two-bit model of inheritance?
2. Explain your answer.
Suppose a scientist did a crossing experiment and his results were not explained by the two-bit model. He repeated his experiment several times to check his results but always got those results. Select the answer that best describes what he should do.

a. Try to change the two-bit model so that it can explain both the old data and his new data.
b. Discard the two-bit model and devise a new model that explains only his new results.
c. Ignore the results of his experiment.
d. Change his data to agree with the two-bit model.
e. Publish a paper that gives his data and states that the two-bit model is wrong and must be thrown out.

Henry wanted to find out if the red-flowering lilies he had were pure strain for flower color. He knew that in lilies, the bit for red flowers would mask the bit for white flowers. He crossed his unknown lilies with some that he knew were pure strain for red flower color. All the first-generation offspring of this cross had red flowers.

1. Was the unknown plant pure strain for red flowers?
2. Explain your answer.

A student wants to determine if a red poppy plant is pure strain for flower color. He knows that the bit for red flowers will mask the bit for white flowers. He test-crosses the unknown red-flowering poppy plant with a pure strain white-flowering poppy plant. Half of the first-generation offspring of this cross have red flowers and half have white flowers.

1. Is the unknown red-flowering poppy plant pure strain for flower color?
2. Explain your answer. You may wish to include a diagram with your explanation.

Scott wanted to find out if a purple-flowering bean plant was pure strain. He knew that the bit for purple flowers masks the bit for yellow flowers. He test-crossed his unknown bean plant with a pure-strain yellow-flowering bean plant. All the first-generation offspring of this cross had purple flowers.

1. Is the unknown purple-flowering bean plant pure strain for flower color?
2. Explain your answer.

A pure-strain dwarf plant is crossed with a pure-strain tall plant. All the first-generation offspring of this cross are tall. Explain why there are no dwarf plants among the first-generation offspring.

As it is used in the two-bit model, what is the meaning of the term recessive bit?

State the meaning of the term dominant bit as it is used in the two-bit model.
Suppose you read a report of a study of the feature variations shown below. The symbols used in the report are shown in the right-hand column of the table. After the number of each variation, indicate whether it is dominant or recessive.

<table>
<thead>
<tr>
<th>FEATURE VARIATION</th>
<th>SYMBOLS FOR THE BIT OF INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Red leaves</td>
<td>b</td>
</tr>
<tr>
<td>2. Brown hair</td>
<td>M</td>
</tr>
<tr>
<td>3. Smooth seeds</td>
<td>k</td>
</tr>
<tr>
<td>4. Yellow pods</td>
<td>t</td>
</tr>
</tbody>
</table>

Write the numbers of the feature variations listed below. After each number, write a symbol to represent each feature variation.

1. Brown eyes (dominant)
2. Droopy ears (recessive)
3. Thin body (recessive)
4. Yellow flowers (dominant)

George's parents and grandparents all had blue eyes. Betty's parents and grandparents all had brown eyes.

1. In the George Gill family which variation - brown eyes or blue eyes - is dominant?
2. Which variation is recessive?
3. State the reason for your answers to questions 1 and 2.
A large family was surveyed to determine the pattern of inheritance of sickle-cell anemia, a disease which causes abnormal red blood cells. Sickle-cell anemia was found to be recessive to normal red blood cells.

Ask your teacher for a copy of the chart below or paper to trace it. Determine the possible bits of information that each person shown in the chart could carry. On your chart write the bit symbols in the small circles below each large symbol. Use R to represent the bit for normal red blood cells and r to represent the bit for the abnormal red blood cells involved in sickle-cell anemia.

The bit for red flowers in a certain type of plant is dominant over the bit for white flowers. Suppose you decide to cross a plant with red flowers with a plant with white flowers.

1. Will the flowers on the first offspring plant be red?
2. Explain your answer.

Construct an inheritance chart for the inheritance of attached earlobes for the families described below. Use squares and circles and shading and nonshading. Near each square or circle, write the person’s name and a possible pair of bits which that person may have. Use L for unattached earlobes and T for attached earlobes.

Grandfather Al Wilson has unattached earlobes, but Grandmother Pat Wilson has attached earlobes. Their children, Harry and Gail, have unattached earlobes.

Grandfather Sam Wells has attached earlobes, but Grandmother Sue Wells has unattached earlobes. Their boy, George, has unattached earlobes. Their other child, Maria, has attached earlobes.

Gail Wilson marries George Wells. Their girl, Grace, has unattached earlobes. Their boy, Peter, has attached earlobes.
The bit for red flowers (R) is dominant over the bit for yellow flowers (r) in snapdragons. Suppose you crossed a red-flowering snapdragon (Rr) with a yellow-flowering snapdragon (rr).

1. Use a chart like that shown below to determine the possible combinations of bits that the offspring could have.
2. What is the ratio of red-flowering offspring to yellow-flowering offspring?
Guinea pigs have five features that show variation. They are length of hair, roughness of coat, color of coat, spottedness of coat, and eye color. According to the two-bit model, what is the total number of bits that a guinea pig receives for all of these five features?

A type of moth receives information for wing size, body color, eye color, antenna shape, and wing color. The possible variations of these features are shown below:

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>BIT</th>
<th>VARIATION</th>
<th>BIT</th>
<th>VARIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing size</td>
<td>L</td>
<td>large</td>
<td>I</td>
<td>small</td>
</tr>
<tr>
<td>Body color</td>
<td>T</td>
<td>tan</td>
<td>T</td>
<td>grey</td>
</tr>
<tr>
<td>Antenna shape</td>
<td>C</td>
<td>straight</td>
<td>C</td>
<td>curved</td>
</tr>
<tr>
<td>Eye color</td>
<td>B</td>
<td>black</td>
<td>b</td>
<td>brown</td>
</tr>
<tr>
<td>Wing color</td>
<td>d</td>
<td>light</td>
<td>D</td>
<td>dark</td>
</tr>
</tbody>
</table>

Use the key above and the two-bit model to determine the appearance of a moth that inherited the bits shown in the table below. List the feature numbers, and after each number state the variation of the feature that the moth will show. (Example: 1. small)

<table>
<thead>
<tr>
<th>FEATURE NUMBER</th>
<th>FEATURE</th>
<th>BIT 1</th>
<th>BIT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>wing size</td>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>body color</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>antenna shape</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>eye color</td>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>wing color</td>
<td>d</td>
<td>D</td>
</tr>
</tbody>
</table>

Suppose that the results you obtained from a fruit-fly cross did not agree with the predictions of the two-bit model:

1. What should you do to establish the value of your results?
2. How can your results affect the model?

State two reasons why Mendel was successful in understanding inheritance patterns although others before him failed.

Mendel was successful in understanding the patterns of inheritance. In his investigation, he used the systems approach, a model, and mathematics. Explain why each of these are important for solving a scientific problem.
In fruit flies, the bit for long wings (L) is dominant over the bit for short wings (l).

The bit for red eyes (R) is dominant over the bit for brown eyes (r). Suppose you had a fruit fly that was pure strain for red eyes (RR) and for short wings (ll). You crossed it with another fruit fly that was pure strain for brown eyes (rr) and long wings (LL). Predict the appearance of the first-generation offspring of this cross.

You may refer to Excursion 6-2 to help you answer this check. In fruit flies, the bit for long wings (L) is dominant over the bit for short wings (l). The bit for red eyes (R) is dominant over the bit for brown eyes (r). Suppose you had a fruit fly that was pure strain for red eyes (RR) and for short wings (ll). You crossed it with another that is pure strain for brown eyes (rr) and long wings (LL). Predict the ratio of the feature variations that you would find in the second-generation offspring of this cross.

When a red-flowering zinnia (RR) is crossed with a yellow-flowering zinnia (YY), the offspring are a mixed red and yellow, an orange color (RY). The genetic bits for the flower color do not seem to mask each other completely. Copy the charts below. Then predict the appearance of the offspring of the two separate crosses.

Chart 1.

```
Orange  Orange

?       ?
```

Chart 2.

```
Yellow  Orange

?       ?
```

?
Get from your teacher a copy of the chart below or paper to trace it.

The inheritance of an extra toe in some cats is related to the cat's sex. In the males, the bit for an extra toe is dominant over the bit for no extra toe. In the females, the bit for no extra toe is dominant over the bit for an extra toe. Indicate on your chart a possible pair of bits carried by each of the cats. Use T to represent the bit for an extra toe and t for the bit for no extra toe.

![Family Pedigree Diagram]

KEY

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Male with extra toe</td>
</tr>
<tr>
<td>[]</td>
<td>Male with no extra toe</td>
</tr>
<tr>
<td>[]</td>
<td>Female with extra toe</td>
</tr>
<tr>
<td>[]</td>
<td>Female with no extra toe</td>
</tr>
<tr>
<td>[]</td>
<td>Places for bit symbols</td>
</tr>
</tbody>
</table>

A next-door neighbor complains that his wife could produce only daughters, not sons.

1. Is his reasoning logical when he blames his wife for the fact that all their children are girls?
2. Explain your answer.
Get a copy of the chart labeled WYY-03-Exc 7-4-1 from your teacher. You may use Excursion 7-A to help you do this check. In fruit flies, the X chromosome carries the bit for the recessive variation white eye color \((X^W)\). The Y chromosome does not carry any information about this feature. The appearance of and bits for the parents are given in the chart below. You are to predict the appearance of and the bits \((X^W, X^n, \text{and } Y)\) that will be carried by the first-generation and second-generation offspring of the cross by filling in the blanks on your copy of the chart. Remember that \(X^n\) represents the normal trait.

WYY 03-Exc 7-4-1C

Mia and Dee are identical twins. Identical twins receive identical sets of genetic materials from their parents. However, as adults, Mia and Dee do not look exactly alike. What might cause such differences?

WYY 03-Exc 7-5-1C

Suppose that a year ago you released one hundred gray mice and one hundred black mice on a rocky island. The island is composed of a gray rock, and there is very little vegetation. There is, however, an old lady living there who keeps a large cat.

1. Do you predict that there are more of one kind of mice than of the other now living on the island?
2. Explain your answer.

WYY 03-Exc 7-6-1C

At one time, the Chinese thought that women were more attractive if they had tiny feet. Mothers would wrap up their baby daughters' feet very tightly so they would not grow very much. Suppose this were done for many generations.

1. Would their girls be born with bits of information so that their feet would never grow very large?
2. Explain your answer.
Below are two definitions of ways in which people differ. Study these definitions, and answer the questions that follow.

Definition a: A woman's beauty index is her ability to wear makeup well.
Definition b: A person's swim index is a measure of how fast she can swim short distances. It is measured by timing how long it takes her to swim 100 meters, using any stroke.

1. Which of the above is an operational definition?
2. Explain the reason for your answer.

Whenever possible, an operational definition should answer two questions. What are those two questions?

Perhaps you have heard people make statements such as "All teenagers act alike."
1. Can a statement like this ever be true?
2. Explain the reasons for your answer.

Many scientists spend a great deal of time looking for patterns in the way things change. Why?

High school athletes differ in their ability to lift barbells of different weights above their heads. This ability is the strength index. Write an operational definition of strength index.

Suppose you wanted to compare the ability of different students in your class to play the piano. From the choices below, select the best way of measuring piano-playing ability.

a. Ask each person how many times he has been paid for playing the piano in public.
b. Ask each person to play the same unfamiliar songs, and count the number of mistakes each makes.
c. Ask each person how many piano lessons he has had.
d. Ask each person to play the piano, and judge how well each does.
e. Ask someone who knows all of the piano players well to tell you who is the best player.

State an advantage of using a measuring device, such as a ruler or test, rather than just relying on your senses, when you want to compare different things.
Steve was measuring reaction time, using the dropping-meterstick method. He found that Candy had a much shorter reaction time than anyone else. He also noticed that she watched his hand release the meterstick. All the other students had watched their own fingers with which they caught the meterstick. Steve concluded that a student's reaction time, as measured by the dropping-meterstick method, is shorter when he watches the release of the meterstick than when he watches the catch point. Describe an activity that you could perform to test this idea.

Suppose you read that a feature shows continuous variation. What does that mean?

Suppose you read that a feature shows either-or variation. What does that mean?

Identify each of the variables below either as a continuous variable or as an either-or variable.
1. How fast a secretary can type
2. Whether a girl is a nurse
3. The length of a man's beard
4. If a man is a lawyer or not
5. A person's weight

Alex measured the number of times the students in his homeroom could jump rope. His measurements are shown below.

<table>
<thead>
<tr>
<th>Student</th>
<th>Number of Rope Jumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce</td>
<td>143</td>
</tr>
<tr>
<td>Wendy</td>
<td>152</td>
</tr>
<tr>
<td>Greg</td>
<td>150</td>
</tr>
<tr>
<td>Betty</td>
<td>170</td>
</tr>
<tr>
<td>Hank</td>
<td>153</td>
</tr>
<tr>
<td>Charles</td>
<td>158</td>
</tr>
<tr>
<td>Myna</td>
<td>165</td>
</tr>
<tr>
<td>Isabel</td>
<td>140</td>
</tr>
<tr>
<td>Fred</td>
<td>145</td>
</tr>
<tr>
<td>Susan</td>
<td>167</td>
</tr>
<tr>
<td>Wayne</td>
<td>162</td>
</tr>
<tr>
<td>Janice</td>
<td>167</td>
</tr>
<tr>
<td>Tom</td>
<td>147</td>
</tr>
<tr>
<td>Stephanie</td>
<td>180</td>
</tr>
<tr>
<td>Louise</td>
<td>162</td>
</tr>
<tr>
<td>Jim</td>
<td>178</td>
</tr>
<tr>
<td>Brian</td>
<td>153</td>
</tr>
<tr>
<td>Mary</td>
<td>173</td>
</tr>
</tbody>
</table>

Copy the table shown below, and complete it, using Alex's measurements.

<table>
<thead>
<tr>
<th>NUMBER OF ROPE JUMPS</th>
<th>TALLY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>139-146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147-154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155-162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163-170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171-178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179-186</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Give two reasons that scientists usually arrange their data in charts, tables, or graphs.

Barney wanted to determine how many students in his class took part in sports and how many did not. Construct a table for collecting and analyzing his measurements.

Esther wanted to measure how many sit-ups her classmates could do in two minutes. At a given signal, all the students began counting to themselves as they did sit-ups. At the end of two minutes she stopped them and asked them how many sit-ups they had done. Her data are shown in the table below. Construct another table of all her sit-up measurements from which Esther will be able to construct a histogram. (Note: You need only to construct the table, not to enter the data in the table.)

Freda wants to determine if there is any relationship between whether a student is right-eyed or left-eyed and whether he sits in the front or back of the classroom. Construct a table for collecting and analyzing measurements to find out if these variables are related.

Jim wants to find out whether a relationship exists between the sex of a student and his or her grades in-school. Construct a table for collecting these measurements.

Your teacher will observe you for this check when he can.
Your teacher will observe you for this check when he can.

IV
01-Core-21C

Your teacher will observe you for this check when he can.

IV
01-Core-22C

IV
01-Exc 1-1-1C

1. Suppose you measured the thickness of your ISCS textbook in metric units. Which of the measurements given below would be closest to your measurement?
 a. 70 mm
 b. 7 mm
 c. 700 m
 d. 7 m
 e. 0.7 mm
 f. 7 cm

2. Suppose you measured the length of a 25-yard swimming pool in metric units. Which of the measurements given below would be closest to your measurement?
 a. 2.3 m
 b. 23 m
 c. 230 mm
 d. 230 m
 e. 230 cm
 f. 23 cm

IV
01-Exc 1-1-2C

1. What is the distance between A and C in centimeters?
2. What is the distance between B and C in millimeters?

[Diagram]

IV
01-Exc 1-1-3C

Denise measured the length of a board as 91.83 cm. Debbie measured the length of the same board as 91.86 cm. What is the most likely reason for the difference in their measurements?

IV
01-Exc 2-1-1C

Calculate the average of the following measurements to one decimal place.

6.1 cm
8.4 cm
2.9 cm
1.8 cm
Round off the following measurements to the nearest whole number:

1. 114.2 mm
2. 648.6 mm
3. 199.2 mm
4. 955.5 mm
5. 276.0 mm

Claudia measured the handedness of each of her classmates. She separated the results for the boys and girls. Her data are shown below.

<table>
<thead>
<tr>
<th>HANDLEDNESS</th>
<th>Lh</th>
<th>Rh</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE Boys</td>
<td>3</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>SE Girls</td>
<td>4</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>

Suppose someone made the statement that girls are more likely to be left-handed than boys.

1. Could you use Claudia's data to tell if the statement is correct?
2. Explain your answer.

Suppose someone else said that boys are more likely to be right-footed than girls.

3. Could you use Claudia's data to tell if this statement is correct?
4. Explain your answer.
State whether each of the pairs of words below represents a continuous or an either-or variable.

1. Cat or mouse
2. Tall or short
3. Top or bottom
4. Male or female

Pam’s data had a wide range. Give an operational definition for the term range as it is used in that sentence.

Brian measured the number of chin-ups the boys in his class could do. His data are shown below.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>NUMBER OF CHIN-UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>23</td>
</tr>
<tr>
<td>Charlie</td>
<td>18</td>
</tr>
<tr>
<td>Doug</td>
<td>17</td>
</tr>
<tr>
<td>Henry</td>
<td>27</td>
</tr>
<tr>
<td>Tim</td>
<td>13</td>
</tr>
<tr>
<td>Bill</td>
<td>6</td>
</tr>
<tr>
<td>Tom</td>
<td>15</td>
</tr>
<tr>
<td>Roger</td>
<td>32</td>
</tr>
<tr>
<td>Jim</td>
<td>18</td>
</tr>
<tr>
<td>Carl</td>
<td>12</td>
</tr>
</tbody>
</table>

What is the range of his measurements?

Write an operational definition for the mean of a set of measurements.

Sally measured how long it took each of the girls in her class to run 100 meters. Her data are shown below.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>TIME (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steph</td>
<td>22</td>
</tr>
<tr>
<td>Kay</td>
<td>20</td>
</tr>
<tr>
<td>Denise</td>
<td>25</td>
</tr>
<tr>
<td>Debbie</td>
<td>23</td>
</tr>
<tr>
<td>Candy</td>
<td>17</td>
</tr>
<tr>
<td>Dorothy</td>
<td>23</td>
</tr>
<tr>
<td>Theresa</td>
<td>14</td>
</tr>
<tr>
<td>Linda</td>
<td>19</td>
</tr>
</tbody>
</table>

Calculate the mean of her measurements to the nearest whole number.
Define the mode of a set of measurements.

Glenda asked her classmates to keep track of the number of hours of homework they did in a week. Her data are shown below.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>TIME (in hours)</th>
<th>STUDENT</th>
<th>TIME (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathy</td>
<td>3</td>
<td>Janice</td>
<td>6</td>
</tr>
<tr>
<td>Bruce</td>
<td>15</td>
<td>Henry</td>
<td>12</td>
</tr>
<tr>
<td>Mike</td>
<td>18</td>
<td>Bob</td>
<td>15</td>
</tr>
<tr>
<td>Sheila</td>
<td>27</td>
<td>Joyce</td>
<td>13</td>
</tr>
<tr>
<td>Doug</td>
<td>10</td>
<td>Wendy</td>
<td>29</td>
</tr>
<tr>
<td>Barbara</td>
<td>7</td>
<td>Nick</td>
<td>5</td>
</tr>
</tbody>
</table>

What is the mode of this set of measurements?

Horace measured the number of times each student in his gym class could chin himself. His table of data is shown below.

<table>
<thead>
<tr>
<th>NUMBER OF CHIN-UPS</th>
<th>NUMBER OF STUDENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>3</td>
</tr>
<tr>
<td>6-10</td>
<td>4</td>
</tr>
<tr>
<td>11-15</td>
<td>7</td>
</tr>
<tr>
<td>16-20</td>
<td>10</td>
</tr>
<tr>
<td>21-25</td>
<td>5</td>
</tr>
<tr>
<td>26-30</td>
<td>2</td>
</tr>
<tr>
<td>31-35</td>
<td>1</td>
</tr>
<tr>
<td>36-40</td>
<td>1</td>
</tr>
</tbody>
</table>

Get a piece of graph paper from your teacher. On it, construct a histogram of Horace's data.

State why data are often arranged in histograms or in other kinds of graphs.
Steve participates in a citywide gymnastics team. He measured how many times each

team member could chin himself. His data are shown below.

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Number of Chins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harold</td>
<td>7</td>
</tr>
<tr>
<td>Jim</td>
<td>9</td>
</tr>
<tr>
<td>Cindy</td>
<td>15</td>
</tr>
<tr>
<td>Karen</td>
<td>7</td>
</tr>
<tr>
<td>Laura</td>
<td>24</td>
</tr>
<tr>
<td>Hank</td>
<td>9</td>
</tr>
<tr>
<td>Elaine</td>
<td>18</td>
</tr>
<tr>
<td>Pat</td>
<td>5</td>
</tr>
<tr>
<td>Ted</td>
<td>22</td>
</tr>
<tr>
<td>Rick</td>
<td>0</td>
</tr>
</tbody>
</table>

The students of Lawrence Junior High School were selling cakes to raise money for

the music club. Lloyd was in charge of keeping the records for his class. The number

of cakes each student sold is shown below.

1. Is the number of cakes Jim sold above or below the mean for the whole class?
2. How far above or below the mean is it?
Pete had a bag full of wooden pieces for a puzzle. He wanted to practice the use of the metric ruler and decided to measure the length of each piece. The table below shows his results.

<table>
<thead>
<tr>
<th>PIECE NUMBER</th>
<th>LENGTH (in cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total length</td>
<td>30</td>
</tr>
<tr>
<td>Mean length</td>
<td>5</td>
</tr>
</tbody>
</table>

How is it possible for the mean length to be 5 cm although none of the pieces were 5 cm in length?

Her science teacher asked Helen to give him a definition of an average person. Helen read from the text that "Perhaps the best example of an average [normal] person is someone whose characteristics are not average." Explain this statement.

Jason was assigned to measure the width of the index finger of a Rhesus monkey. It measured 4 cm from the joint.

1. Based only on the data above, is it possible to determine if the finger is a large, medium, or small index finger?
2. Explain the reason for your answer.

Suppose you are a subject for a test of touch sensitivity and for a test of the ability to locate objects by hearing. You are told to keep your eyes closed during the tests.

1. Is it necessary for you to keep your eyes closed during the tests?
2. Explain your answer.
Joe put 80 beans into a glass jar. He asked ten different people to estimate how many beans were in the jar. Their estimates are shown below.

<table>
<thead>
<tr>
<th>NAME</th>
<th>ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sue</td>
<td>85</td>
</tr>
<tr>
<td>Bob</td>
<td>90</td>
</tr>
<tr>
<td>Debby</td>
<td>60</td>
</tr>
<tr>
<td>John</td>
<td>70</td>
</tr>
<tr>
<td>Del</td>
<td>76</td>
</tr>
<tr>
<td>Burt</td>
<td>65</td>
</tr>
<tr>
<td>Helen</td>
<td>45</td>
</tr>
<tr>
<td>Harry</td>
<td>69</td>
</tr>
<tr>
<td>Kate</td>
<td>46</td>
</tr>
<tr>
<td>Bill</td>
<td>78</td>
</tr>
</tbody>
</table>

What is the mean error of these estimates? Show your calculations.

Suppose you had several people estimate the length of time that passed as a circus performer walked from one end of a tightrope to another. You then calculated the mean error of their estimates. Why is the mean error of measurements calculated?

Joe tested several students to see how accurately they could estimate when 13 seconds had passed. His data are shown below.

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>ESTIMATED TIME (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim</td>
<td>9</td>
</tr>
<tr>
<td>Susan</td>
<td>12</td>
</tr>
<tr>
<td>Nancy</td>
<td>7</td>
</tr>
<tr>
<td>Frank</td>
<td>19</td>
</tr>
<tr>
<td>Carol</td>
<td>11</td>
</tr>
<tr>
<td>John</td>
<td>13</td>
</tr>
<tr>
<td>Sally</td>
<td>16</td>
</tr>
<tr>
<td>Mary</td>
<td>19</td>
</tr>
<tr>
<td>Wes</td>
<td>10</td>
</tr>
<tr>
<td>George</td>
<td>14</td>
</tr>
</tbody>
</table>

What is the mode error for the time sense of these students? Show your calculations.
When Dr. Salmon and Dr. Levi review data collected from groups of people, they look for patterns and similarities within each group. Many researchers are concerned only about such patterns and similarities. Why are the researchers more concerned about similarities than about individual differences?

In a recent study of the characteristics of adult male Kile Islanders, it was found that their mean weight was 63 kg. Tale-ki is one of the adult males weighed.

1. Using only the above information, can you determine Tale-ki's weight to the nearest kilogram?
2. Explain your answer.

Mr. Murphy tested his students' reading speed. He plotted a histogram of the data collected.

1. List the letters of the points on the histogram that he should use to change the histogram into a graph.
2. What are these points called?

Use a protractor to measure the size of the two angles below. Record your answers on a separate paper.
11. Use your protractor to construct angles of 45° and 128° on your answer sheet, and label each of them.

Animals with different characteristics often live in different areas, eat different food, and have different enemies. The chart below shows some of the differences between two kinds of animals.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>ANIMAL A</th>
<th>ANIMAL B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of animal</td>
<td>large bird</td>
<td>large, hooved animal</td>
</tr>
<tr>
<td>Living area</td>
<td>nests on mountain ledges</td>
<td>open, flat plains</td>
</tr>
<tr>
<td>Main food</td>
<td>small animals</td>
<td>grasses</td>
</tr>
<tr>
<td>Method of feeding</td>
<td>swoops down from the sky at high speed</td>
<td>grazes grass</td>
</tr>
<tr>
<td>Enemies</td>
<td>man</td>
<td>large members of the cat family</td>
</tr>
</tbody>
</table>

1. Would it be advantageous for animal A to have its eyes in the sides of its head or in the front of its head?
2. Explain the reason for your answer.
3. Would it be advantageous for animal B to have its eyes in the sides of its head or in the front of its head?
4. Explain the reason for your answer.

A standard set of fingerprints is shown below. If you studied your fingerprints, you would find they are not exactly like any of these. Why?
Most of the time, researchers measure the characteristics of a population by measuring only a sample of that population. Why do they use a sample rather than measuring the entire population?

Which one of the curves below is a normal curve?

Suppose you were going to measure the continuous human variable height. You would select a random sample of people, measure their heights, and draw a graph of the results. Which of the graphs below would you expect your graph to look like?
State what is mean by the term *random sample*.

Researchers are very careful to try to get a random sample. What is the purpose of a random sample?

Mary Jean wanted to determine how many novels the people in her neighborhood read each month. She didn’t have time to ask everybody in the neighborhood, so she stood next to the bookmobile in the neighborhood shopping center and asked the first 25 people who went into the bookmobile how many novels they had read during the last month.

1. Was her sample a random sample?
2. Explain your answer.