This is part one of a two-part manual for teachers using SMSG high school text materials. A chapter-by-chapter commentary on the text and answers to all the exercises are given. Chapter topics include the idea of the derivative, limits and continuity, differentiation, and applications of the derivative.
CALCULUS

PART I

SCHOOL MATHEMATICS STUDY GROUP
Calculus

Part 1 Teacher's Commentary

REVISED EDITION

The following is a list of all those who participated in the preparation of this volume:

A. Beck
A. A. Blank
E. L. Elder
C. E. Kerr
M. S. Klaimkin
I. I. Kolodner
M. D. Kruskal
C. W. Leeds, III
M. A. Linton, Jr.
H. M. Marston
I. Marx
R. Pollack
T. L. Reynolds
R. L. Starkey
V. Twersky
H. Weitzner

New York University, New York, N.Y.
West Hempstead Jr., St. High School, N.Y.
Dickinson College, Carlisle, Pa.
Ford Scientific Laboratory, Dearborn, Mich.
Carnegie Institute of Technology, Pittsburgh, Pa.
Princeton University, Princeton, N.J.
Berkshire School, Sheffield, Mass.
Douglass College, New Brunswick, N.J.
Purdue University, Lafayette, Ind.
New York University, New York, N.Y.
College of William and Mary, Williamsburg, Va.
Cubberley High School, Palo Alto, Calif.
Sylvania Electronics Defense Labs., Mt. View, Calif.
New York University, New York, N.Y.

New Haven and London, Yale University Press, 1966
Financial support for the School Mathematics Study Group has been provided by the National Science Foundation.

Permission to make verbatim use of material in this book must be secured from the Director of SMSG.

Such permission will be granted except in unusual circumstances. Publications incorporating SMSG materials must include both an acknowledgment of the SMSG copyright (Yale University or Stanford University, as the case may be) and a disclaimer of SMSG endorsement. Exclusive license will not be granted even in exceptional circumstances, and then only by specific action of the Advisory Board of SMSG.

© 1965 by The Board of Trustees of the Leland Stanford Junior University.
All rights reserved.
Printed in the United States of America.
HISTORICALLY, CALCULUS HAS DEVELOPED OUT OF THE SEARCH FOR METHODS FOR SOLVING SPECIFIC PROBLEMS. AS WITH ALL BRANCHES OF MATHEMATICS IT IS DIFFICULT, IF NOT IMPOSSIBLE, TO FIX UPON A PARTICULAR PERIOD IN HISTORY AS THE MOMENT OF DISCOVERY OR INVENTION. IT IS ESPECIALLY HARD IN THE CASE OF CALCULUS SINCE THE PROBLEMS THAT STIMULATED THE CREATION OF THE SUBJECT HAD EXISTED FOR THOUSANDS OF YEARS. INITIALLY THE TECHNIQUES WERE VIEWED PRAGMATICALLY; IF THEY PRODUCED REASONABLE ANSWERS, THEY WERE CONSIDERED SOUND. SUBSEQUENTLY, OTHERS ANALYZED THE PROCEDURES IN DETAIL AND POINTED OUT INADEQUACIES. NEVERTHELESS, IT WAS THROUGH SUCH ANALYSIS THAT THE FULL POWER OF THE PIONEER'S METHODS WAS REALIZED.

THE SMSS CALCULUS DOES NOT ATTEMPT TO PARALLEL THE HISTORICAL DEVELOPMENT BUT IT IS ROOTED IN THE SEARCH FOR SOLUTIONS TO PROBLEMS. PROBLEMS ARE USED TO REVEAL THE IMPORTANT ISSUES. THESE ISSUES ARE THEN FORMULATED IN TERMS OF (SOMETIMES INCOMPLETE) MATHEMATICAL MODELS. THE MODELS, IN TURN, SUGGEST CONSIDERATIONS THAT MOTIVATE THE STUDY OF THE THEORETICAL STRUCTURE OF THE COURSE. THEN THESE IDEAS MUST BE EXPRESSED PRECISELY SO THAT WE MAY REASON ABOUT THEM LOGICALLY. FINALLY, THE COURSE RETURNS AGAIN TO PROBLEMS AND APPLIES THE THEORY WHICH HAS BEEN DEVELOPED.
The calculus unifies geometric and algebraic strands of earlier courses and offers the most general preparation for further study of mathematics and its applications. It is the natural capstone of the secondary school mathematics program.

Calculus is in transition from the colleges to the high schools. Now that increasingly many superior students complete the SMSG or a comparable curriculum by the end of the eleventh grade, the trend toward a calculus course offered in the twelfth grade is accelerating. Students taking such a course usually hope for advanced standing in college. On the other hand, colleges are intensifying demands upon these students. Higher institutions are reluctant to allow advanced standing for prior work in the calculus on the ground that it may not provide an adequate conceptual basis for further work in mathematics.

The immediate purpose of this text is to bridge the transition from high school to college by supplying a one-year calculus course which provides an adequate conceptual basis for advanced standing in the programs of leading institutions and, at the same time, is designed to meet the needs of high school students and teachers. The course has not been bound to the syllabus of the Advanced Placement Program of the College Entrance Examination Board since that syllabus can only reflect the curriculum of the moment. Even so, all the significant calculus topics are covered in depth; a student who masters our suggested minimal course should do well on the calculus questions of past Advanced Placement Examinations.

We expect that the student who takes calculus in high school is sufficiently prepared to undertake a course which encourages a mature attitude concerning analysis.

The authors hope to involve the student in the exciting enterprise of exploring a living subject. Throughout the text they address the student as a mature person, curious and vitally interested in relating to other disciplines the immediate knowledge to be acquired. His desire to order the world in a rational system needs to be satisfied; he must be concerned with the calculus as it was conceived and continues to grow. For that reason any traditional material of doubtful current utility is pruned or even omitted altogether in this book. On the other hand, novelty for its own sake is avoided; although many matters in this text are unconventional, none are included for that reason.
The course is a continuation of the SMSG series of texts and may be used as a sequel to Intermediate Mathematics. Appendices 1 and 2 include a recapitulation of essential ideas to strengthen real number and function concepts pertinent to the calculus.

We appeal to the student's intuition in the development of the text. The carefully selected range of problems, together with the analytical discussion of questions, simple and profound, in the appendices invite the most discriminating reader to explore and pursue according to his individual abilities, stamina, and interests.

No absolute time scale is suggested because the course does not correspond exactly to traditional syllabi. The total coverage in a year's course will vary greatly. A rich treatment pursuing depth rather than breadth might use the full year to cover the fundamental calculus of Chapters 1-8 together with some of the related appendices. Preliminary experience indicates that Chapters 1-11, which correspond approximately to the scope of the traditional one-year course, can and will be covered by a substantial fraction of classes using the texts and many will want to push on further into the later chapters.

We should like to know how the approach of this text works out in the classroom, to know your reactions and those of your students. We invite you to tell us of your errors, if any, and of your errors of omission and commission.
Table of Contents

Chapter 1. Introduction

1-1. "Best-Value" Problems. The Derivative

- Exercises 1-1
- Solutions Exercises 1-1
- 1-2. Solutions Exercises 1-2
- 1-3. Solutions Exercises 1-3

Chapter 2. The Idea of Derivative

- 2-2. Solutions Exercises 2-2
- 2-3. Solutions Exercises 2-3
- 2-4. Solutions Exercises 2-4
- 2-5. Solutions Exercises 2-5

Chapter 3. Limits and Continuity

- 3-1. Solutions Exercises 3-1
- 3-2. Definition of Limit of a Function
 - Solutions Exercises 3-2
- 3-3. Epsilon delta Technique
 - Solutions Exercises 3-3
- 3-4. Limit Theorems
 - Solutions Exercises 3-4
- 3-5. The Idea of Continuity
 - Solutions Exercises 3-5
- 3-6. Properties of Functions Continuous at a Point
 - Solutions Exercises 3-6a.
 - Solutions Exercises 3-6b.
- 3-7. Properties of Functions Continuous on an Interval
 - Solutions Exercises 3-7

Chapter 4. Differentiation

- 4-1. Introduction
- Solutions Exercises 4-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-2. Rational Operations</td>
<td>125</td>
</tr>
<tr>
<td>Solutions Exercises 4-2a</td>
<td>123</td>
</tr>
<tr>
<td>Solutions Exercises 4-2b</td>
<td>130</td>
</tr>
<tr>
<td>Solutions Exercises 4-2c</td>
<td>133</td>
</tr>
<tr>
<td>Solutions Exercises 4-2d</td>
<td>138</td>
</tr>
<tr>
<td>4-3. Inverse Functions, Fractional Powers</td>
<td>141</td>
</tr>
<tr>
<td>Solutions Exercises 4-3a</td>
<td>143</td>
</tr>
<tr>
<td>Solutions Exercises 4-3b</td>
<td>146</td>
</tr>
<tr>
<td>4-4. Circular Functions</td>
<td>149</td>
</tr>
<tr>
<td>Solutions Exercises 4-4</td>
<td>149</td>
</tr>
<tr>
<td>4-5. Inverse Circular Functions</td>
<td>159</td>
</tr>
<tr>
<td>Solutions Exercises 4-5</td>
<td>159</td>
</tr>
<tr>
<td>4-6. Compositions, Chain Rule</td>
<td>169</td>
</tr>
<tr>
<td>Solutions Exercises 4-6</td>
<td>167</td>
</tr>
<tr>
<td>4-7. Notation</td>
<td>177</td>
</tr>
<tr>
<td>Solutions Exercises 4-7</td>
<td>177</td>
</tr>
<tr>
<td>4-8. Implicitly Defined Functions</td>
<td>179</td>
</tr>
<tr>
<td>Solutions Exercises 4-8</td>
<td>179</td>
</tr>
<tr>
<td>Solutions Miscellaneous Exercises</td>
<td>189</td>
</tr>
<tr>
<td>Chapter 5. APPLICATIONS OF THE DERIVATIVE</td>
<td>195</td>
</tr>
<tr>
<td>5-1. Introduction</td>
<td>195</td>
</tr>
<tr>
<td>Solutions Exercises 5-1</td>
<td>196</td>
</tr>
<tr>
<td>5-2. The Derivative at an Extremum</td>
<td>206</td>
</tr>
<tr>
<td>Solutions Exercises 5-2a</td>
<td>206</td>
</tr>
<tr>
<td>Solutions Exercises 5-2b</td>
<td>212</td>
</tr>
<tr>
<td>5-3. The Law of the Mean</td>
<td>220</td>
</tr>
<tr>
<td>Solutions Exercises 5-3</td>
<td>222</td>
</tr>
<tr>
<td>5-4. Applications of the Law of the Mean</td>
<td>233</td>
</tr>
<tr>
<td>Solutions Exercises 5-4</td>
<td>233</td>
</tr>
<tr>
<td>5-5. Applications of the Second Derivative</td>
<td>248</td>
</tr>
<tr>
<td>Solutions Exercises 5-5</td>
<td>248</td>
</tr>
<tr>
<td>5-6. Constrained Extreme Value Problems</td>
<td>270</td>
</tr>
<tr>
<td>Solutions Exercises 5-6</td>
<td>271</td>
</tr>
<tr>
<td>5-7. Tangent and Normal Lines</td>
<td>278</td>
</tr>
<tr>
<td>Solutions Exercises 5-7</td>
<td>278</td>
</tr>
<tr>
<td>5-8. Sketching of Graphs</td>
<td>289</td>
</tr>
<tr>
<td>Solutions Exercises 5-8</td>
<td>290</td>
</tr>
<tr>
<td>Solutions Miscellaneous Exercises</td>
<td>308</td>
</tr>
</tbody>
</table>
Chapter 1 sets the tone for the course. The initial investigation is exploratory, tentative, and incomplete. The exploratory phase is the time of discovery, the time of development of intuitions and perceptions. Later we shall frame precise definitions and rigorous proofs. This is part of the general plan of the text. As the course progresses, the span between the initial exploratory phase and the ultimate phase of rigorous proof is shortened.

The chapter must not be overdone (see Suggested Time Schedule). The air will be full of questions which cannot be laid to rest before the course has been completed. The student is not expected to understand all of the calculus after reading the introduction; the idea is only to excite his interest and curiosity and stimulate his awareness of the fact that he is embarking on a new and interesting subject.

TC1-1. Best Value Problems. The Derivative.

In the "parcel post" example in the text which begins on page 2 we assume that a solution to the problem exists. Later we shall establish the existence of a solution.

We give here another procedure for showing that a square cross-section is best for a given girth. If we denote the length, width, and height of the carton by \(l, w, \) and \(h \), respectively, then the girth is \(2w + 2h \) and our problem is to maximize the volume

\[
V = lwh
\]

where \(l, w, h \) satisfy the conditions

\[
l + 2w + 2h = 72, \\
l \geq w \geq 0, \\
l \geq h \geq 0.
\]

We reduce this problem to one of maximizing a function of a single variable
by using a problem-solving technique known as "relaxation." Let us first assume that we know the correct value of \(f \) (for a maximum, say \(t \)). Our problem would then be to maximize \(g \), where \(w \) and \(h \) satisfy

\[
2w + 2h = 72 - f; \\
w > 0; \quad h > 0.
\]

It follows that \(v = h \). (See footnote, p. of this text or SMSG, Intermediate Mathematics, p. 214, Ex. 4, p. 216, Ex. 4).

Exercises 1-1

In Section 1-1 we emphasize the problem of locating the maximum, but in general, the most difficult part of maximum and minimum problems consists of finding the function to maximize or minimize. Since no general rule can be given for doing this, the student may find some of the problems in Exercise 1-1 quite challenging.

Essentially, the question involves the ability to translate an English statement to a mathematical equivalent (SMSG, First Course in Algebra, Chapter 4), familiarity with basic mensuration formulas of geometry, and a sound understanding of the concept of a function and related ideas (Appendix 2).

These problems are included at this time as a preliminary background for the solution of the same and similar problems in Chapter 5. It is not necessary (and certainly not suggested) that the student complete each problem in Exercise 1-1 before going on to the next section. Spiral assignments are recommended; mathematical maturity and an appreciation of functional relationships are factors in the student's success with problems of this sort. If used judiciously these problems will motivate the course; if used indiscriminately they may cause indigestion.

In Exercises 1-1 the student is asked to write an equation describing the function and is not required to solve the given problem. If he is curious about the solution he should be encouraged to use the procedures of Section 1-1 to approximate the answer. Although he runs into difficulties he will be led to appreciate the limitations of algebra and the need for more powerful methods.

Problems 12 and 13 are included at this time to give the student preliminary experience with graphs of polynomial functions. Hasty sketching, without examination of functional values, may lead to incorrect conclusions.
Solutions Exercises 1-1

1. Express the area of a semicircle as a function of its perimeter.

 For a semicircle, \(A = \frac{\pi r^2}{2} \), and \(P = \pi r + 2r \).

 \[A = \frac{\pi r^2}{2} \]
 \[P = \pi r + 2r \]

2. A rectangle is inscribed in a circle. Express the area of the rectangle as a function of the length of one side.

 Let the length of one side be \(2x \) and the width be \(y \).

 \[A = 2xy \]

3. Find the volume of a right circular cylinder as a function of its radius.

 \[V = \pi r^2 h \]
 \[r = \frac{V}{\pi h} \]
Then \(\sqrt{e^2 - R^2} = \frac{16}{3} \).

Therefore, \(R = \sqrt{3} \) or \(\frac{16}{3} \).

From the Pythagorean theorem, when

so

Let \(D \) be the distance from point \((1, e)\) to any point \((x, \frac{16}{2} x^2)\) on the curve.

Since we minimize

A rectangle is formed on the axis on the parabola, rectangle \(\text{[such a} \).
A rectangular sheet of metal of height 6 inches is to be bent into a trough with an open top. The metal is 1/4 inch thick. Determine the dimensions of the trough so that the area of the cross-sectional area of water is most water?

Let \(l \) be the length, \(w \) be the width, \(h \) be the height of the cross-sectional area of the trough. Then \(A = \pi r^2 \) and \(\pi r = 1/4 \). The volume of water is:

\[
V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot h = \frac{1}{48} h
\]

For the radius of the base of the cylinder, use the following formula:

\[
\pi r = 1/4 \Rightarrow r = \frac{1}{4\pi}
\]

The formula for the surface area of the cylinder is:

\[
SA = 2\pi rh + \pi r^2
\]

Find the rate of change of the volume with respect to the height.
9. Find the right circular cone of radius \(r \) and height \(h \) that can be inscribed in a right circular cone of radius \(R \) and height \(H \).

Let \(h \) be the height of the given cone, and \(r \) the radius of its circular base. Then \(AC = h \) and \(CB = r \). If the radius of the inscribed cone is \(x \), then \(DE \) is its circumference.

Since triangles \(ABC \) and \(ADE \) are similar, \(\frac{DE}{AC} = \frac{AD}{AB} \).

The volume \(V \) of a cone is given by

\[
V = \frac{\pi x^2 h}{3}
\]

The polynomial function can maximize

From the length around a corner it is 3 ft. wide.

The class might be interested in the drawing. Then look at the question should be

we want the minimum value of this function, it is

let \(L = \frac{3}{2} \) and \(a = \) then...
The lower right-hand corner of a page is folded over so as to reach the left edge in such a way that one endpoint of the crease is on the right edge of the page and the other endpoint is on the bottom of the page as in the figure.

Let l be the length of the crease. Since $\triangle PQR \sim \triangle RST$, we have $\frac{PR}{RT} = \frac{RT}{RS}$ and $\frac{PR}{RS} = \frac{\sqrt{2cx}}{\sqrt{2cx - r^2}}$.

From right $\triangle PRT$,

$$l^2 = \left(\frac{\sqrt{2cx}}{\sqrt{2cx - r^2}} \right)^2.$$

We have

$$l^2 = \frac{2cx}{2cx - r^2}.$$

Since l is a constant, and then $\frac{2cx}{2cx - r^2}$.

Let $f(x) = \frac{2cx}{2cx - r^2}$, the graph through the value $c = 1$.

\[
\begin{array}{c|c|c|c|c|c}
 x & \Delta & - & 0 & b & \Delta \\
 f(x) & \Delta & - & 0 & b & \Delta \\
\end{array}
\]
13. Approximate the maximum value of the function

\[f(x) = 39 - 640x^2 - 1280x^3 - 640x^4 \]

In Ex. 12, the maximum value of \(x \) could be estimated reasonably well from the crude plotting of points since coincidentally the graph of \(y = f(x) \) is smooth and relatively flat in the interval \([0,1]\) in which the maximum occurs. Without any further information, just the crude plotting of points of a graph is often misleading. Here is an illustration of this. If we plot points as before we obtain:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-2520</td>
<td>39</td>
<td>0</td>
<td>-2520</td>
</tr>
</tbody>
</table>

and sketching in a smooth curve symmetric with \(x = \frac{1}{2} \) could lead to an approximation of the maximum value which would be wildly wrong. Actually \(f(x) \) has a maximum at both \(f = -1 \) and \(0 \) and a relative minimum value of \(-39\) at \(x = -\frac{1}{2} \).

Subsequently, we will return to this problem after sufficient background has been developed in Chapter 2.
1. Sketch the graph of \(f(x) = \frac{1}{x^2} \) from \(x = 1 \) to \(x = e^2 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>0.32</td>
<td>0.14</td>
<td>0.1</td>
<td>0.04</td>
<td>0.001</td>
</tr>
</tbody>
</table>

(a) Estimate the integral that you wish.

(b) If you may use any calculator areas, what are the approximate bounds of the intervals?

The student's input is not clear.
(a) \(f(x_1)(x_1 - x_0) + f(x_2)(x_2 - x_1) + \ldots + f(x_n)(x_n - x_{n-1}) \leq A \)

and

\(A \leq f(x_0)(x_1 - x_0) + f(x_1)(x_2 - x_1) + \ldots + f(x_{n-1})(x_n - x_{n-1}) \)

or

\(\frac{1}{n} \left(f(x_1) + f(x_2) + \ldots + f(x_n) \right) \leq A \leq \frac{1}{n} \left(f(x_0) + f(x_1) + \ldots + f(x_{n-1}) \right) \)

Maximum error = \(E_n = \frac{1}{n} \left[f(x_0) - f(x_n) \right] \cdot \frac{e^{A}}{n} \)

(d) How can the maximum error \(E_n \) be brought below the error tolerance \(Q.03? \)

\(\frac{1}{n} < 0.03 \) for \(n \) a natural number

(e) How can the maximum error \(E_n \) be brought below any given error tolerance?

Choose \(n \) such that

\(\frac{1}{n} < \frac{Q.03}{\text{tolerance}} \)

2. A circle of unit radius has an area \(\pi \) square units. Consequently, we can approximate \(\pi \) by using the same method as in Ex. 1. Here, we shall use a quarter of a circle and obtain an approximation for \(\frac{\pi}{4} \). If we use five equal subintervals, the rectangles enclosed in the shaded region will have heights \(y_1, y_2, y_3, y_4, \) and \(y_5 \). The rectangles containing the region will have heights \(y_1, y_2, y_3, y_4, \) and \(y_5 \). By the ordinate \(y = \sqrt{1 - x^2} \),

\(y_1, y_2, y_3, y_4, y_5 \) be the ordinate at

\(x = 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \)

each rectangle.
The difference between these larger \((i)\) and smaller \((s)\) estimates is
\[
\frac{y_0 - y_2}{2} \text{ or } \frac{1}{5}
\]
Then the average of the larger and smaller estimates can only differ from
\(\bar{x}\) by less than half this difference, that is
\[
\left| \frac{y_0 - y_2}{2} \right| \leq \frac{1}{10}
\]
How many equal subdivisions can be made in 100 units of \(x\), correct to within \(0.1\%\) or \(1/1000\)
then \(r = \frac{1}{1000}\) and

We want

an improvement
or 0,00

sufficiently to write

or proposed in
of Section 1
sidered when
dimensional

determining properties.

A final comment

Rowan G, How To...
of this function, at which the slope is zero.

What are the related problems in (a) Ex. 1-1, number 5?
(b) Ex. 1-1, number 7?
(c) Ex. 1-1, number 9?
(d) Ex. 1-1, number 10.
(e) Ex. 1-1, number 12?

These are discussion problems for which there are no long, positive answers.
Discuss as many of these as time permits and students indicate which step in their judgment was the most critical in solving or answer and which ideas were new to them.
Chapter 2

THE IDEA OF DERIVATIVE

One of the two basic ideas of the derivative is the idea of the derivative. It is easy to appreciate this idea intuitively, and often it is useful before formulating it precisely.

This discussion begins at the point where the definition of the derivative of a function is developed. The derivative at a point is developed as a limit of slopes of the graph of the function. If we take a point (x, y) on the graph of the function $f(x)$ and change the slope of a chord joining the point (x, y) to another point $(x+h, y+h)$ on the graph, if $(x-a)^{2} + (y-b)^{2}$ is sufficiently close to zero, this slope is accepted as an approximation to the slope at (x, y). The question of what is meant by sufficiently close is clarified in the definition of limit as we discuss it later.

The point that is on the chord and has no meaning if we bypass the analysis and only look at the general idea.

The general question is: if there is an assumption that this function has a derivative, then Intermediate Mathematics is velocity (by definition) of the derivative. Think of instantaneous slope of the graph of $y = f(x)$. The concept of derivative is 3-7.
The phrase "as \(x \) approaches \(a \)" is to be understood in the sense "as \(x \) approximates \(a \)." We never permit \(x \) to assume the value \(a \) in the approximation process.

The word "approximation" is essential to an understanding of limit, which the student is encouraged to adopt. It is essential that there is a master \(L \), which is to be defined on the basis of a suitable class of approximations. If a margin of error or tolerance, \(E \), is given, then the existence of a means of control \(\varepsilon \rightarrow L \) is established and is a criterion for choosing approximations of \(f \) within \(E \) to \(L \).

The epsilon-delta language is such that the word "does not depend upon" the particular method of choosing \(\varepsilon \) and \(\delta \), it holds within this method of choosing \(\varepsilon \) and \(\delta \), but it is not defined in the same way.

Verify
2. For the function given by \(f(x) = x^2 - x + 1 \), tabulate the slopes of the chords joining \(\left(\frac{5}{7}, f\left(\frac{5}{7} \right) \right) \) to \(\left(x, f(x) \right) \) for \(x = \frac{5}{7}, \frac{6}{10}, \frac{70}{100}, \frac{1}{1000}, \frac{5}{7} - \frac{1}{1000}, \frac{5}{7} - \frac{1}{10000}, \text{ etc.} \), as far as your time, energies, and inclinations permit. Can you predict the limit of the approximations from an inspection of the table?

\[
\frac{f(x) - f(\frac{5}{7})}{x - \frac{5}{7}} = \frac{x^2 - x + 1 - \frac{5}{7}^2 + \frac{5}{7} - 1}{x - \frac{5}{7}}
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{5}{7})</th>
<th>(\frac{6}{10})</th>
<th>(\frac{70}{100})</th>
<th>(\frac{1}{1000})</th>
<th>(\frac{5}{7} - \frac{1}{1000})</th>
<th>(\frac{5}{7} - \frac{1}{10000})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(x))</td>
<td>(\frac{57}{70})</td>
<td>(\frac{52}{70})</td>
<td>(\frac{50}{70})</td>
<td>(\frac{50}{1000})</td>
<td>(\frac{50}{10000})</td>
<td>(\frac{50}{10000})</td>
</tr>
</tbody>
</table>

The limit of the approximations is 7.

3. Each of the following tables lists the slopes of the chords joining the origin and the other given points \(\left(a_i, f(a_i) \right) \). For most polynomials, the slopes are taken successively closer to zero (i.e., \(|x| < 0.1, |x| < 0.01 \)) as \(x \) approaches zero. What information can you infer about the slope of the curve at the origin? In your opinion, is it possible to define the slope of the graph at the origin? If so, what is the slope? Justify your answer.

\[
\begin{array}{|c|c|}
\hline
x & r(x) \\
\hline
-0.1 & \frac{0.9}{0.1} \\
0.1 & \frac{0.1}{0.1} \\
0.01 & \frac{0.01}{0.01} \\
\hline
\end{array}
\]
Consider points taken successively closer to the origin but remaining to the right of the origin; the slopes of chords through the origin and these points become larger with out bound.

For points which are closer to the origin, let's point the slope is negative and the absolute value of these slopes become small at bound.

The slopes of these chords are negative. For such a number would have a large absolute value and a positive and negative at the same time.

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & 1 & \frac{1}{8} & 0.001 & -0.001 & -0.000001 \\
\hline
\frac{1}{x} & 1 & 8 & 0.001 & 0.001 & 0.000001 \\
\hline
r(x) & 2 & -2 & 10 & -10 & 100 \\
\hline
\end{array}
\]
4. (a) At each of the points (1,7) and (2,16), find the slope of \(y = g(x) = 3x^2 + 4 \) by constructing a table of values; then verify that your answer is the limit of the slopes of chords.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 1.25 & 0.75 & 1.1 & 0.9 & 1.01 & 0.99 \\
\hline
r(x) & 6.75 & 5.25 & 6.5 & 6.3 & 6.03 & 5.97 \\
\hline
\end{array}
\]

The slope is 6 at the point (1,7).

Verification:

For any \(\varepsilon > 0 \) we must have \(|r(x) - 6| < \varepsilon \) for \(x \) sufficiently close to 1.

\[
r(x) = \frac{3x^2 + 4 - 7}{x - 1} = \frac{3x^2 - 3}{x - 1} = 3(x - 1)(x + 1)
\]

So \(r(x) = 3x + 3, x \neq 1 \).

Then \(|r(x) - 6| = |3x - 3| = 3|x - 1| \).

We see that taking the distance between \(x \) and 1 smaller than \(\frac{\varepsilon}{3} \), the inequality \(|r(x) - 6| < \varepsilon \) holds.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 2.1 & 1.9 & 1.99 & 2.001 & 1.999 \\
\hline
r(x) & 12.3 & 11.7 & 12.03 & 11.97 & 12.003 \\
\hline
\end{array}
\]

The slope is 12 at the point (2,16).

Verification:

For any \(\varepsilon > 0 \) we must have \(|r(x) - 12| < \varepsilon \) for \(x \) sufficiently close to 2.

\[
r(x) = \frac{3x^2 + 4 - 16}{x - 2} = \frac{3x^2 - 12}{x - 2} = \frac{(3x + 6)(x - 2)}{x - 2}
\]

So \(r(x) = 3x + 6, x \neq 2 \).

Then \(|r(x) - 12| = |3x - 6| = 3|x - 2| \). Taking \(|x - 2| < \frac{\varepsilon}{3} \) gives \(|r(x) - 12| < \varepsilon \).

(b) Find the slope of \(y = g(x) \) at the point \((a,b) \) on its graph, where \(b = g(a) \).

\[
y = g(x) = 3x^2 + 4 \quad \Rightarrow \quad b = g(a) = 3a^2 + 4
\]

\[
r(x) = \frac{3x^2 + 4 - b}{x - a} = \frac{3x^2 + 4 - (3a^2 + 4)}{x - a} = \frac{3(x^2 - a^2)}{x - a} = 3(x + a), x \neq a
\]

The slope of \(y = g(x) \) at the point \((a,g(a)) \) is 6a.
(c) Find the lowest point on the graph of \(g \) by methods of coordinate geometry.

The lowest point on the graph of \(g(x) = 3x^2 + 4 \) is at \((0,4)\), since any positive or negative values of \(x \) make \(3x^2 \) positive.

(d) Check your answer to (c) by using the result of (b). (If a hint is needed, one may be found in Section 1-1.)

From (c) the lowest point is \((0,4)\). From (b) the slope is zero if \(a = 0 \). This is at the point \((0,6)\) or \((0,4)\).

5. (a) Find the slope of \(y = x^3 \) at \((a,b)\) where \(b = a^3 \). (If a hint for the simplification of \(r(x) \) is needed, one may be found in Section 1-1.)

\[r(x) = \frac{x^3 - a^3}{x - a} = (x^2 + sx + a^2) \frac{x - a}{x - a} \]

The slope of \(y = x^3 \) at \(x = a \) is \(3a^2 \).

(b) Is there any lowest point on the graph of \(y = x^3 \)? Is there any highest point? Is there any point where the graph is horizontal?

There is no highest point or lowest point on the graph of \(y = x^3 \). The graph is horizontal if the slope \(3a^2 = 0 \), i.e., if \(a = 0 \).

6. What is the relationship between the slopes of the function in Number 5 corresponding to the points \(x = a \) and \(x = -a \)? Interpret this result graphically. Give examples of other functions having this property.

They are equal. The tangents have the same slope and are parallel. Other functions having this property are polynomial functions of the form

\[P(x) = a x^{2n+1} + b x^{2n-1} + \ldots + k x^3 + k x \], \(n \), an integer.

[Accept from students any specific examples, then ask them to check the sum of any two of these to generalize. Graphically, this curve exhibits symmetry with respect to the origin. The function \(y = f(x) = x^3 + 3 \) would have the same properties except that it is not symmetric with respect to the origin, but it is symmetric with respect.
to the point \((0,3)\). We say it is centrosymmetric with respect to this point. In the next section, there will be a problem about the centrosymmetric properties of a general cubic and a word now will make that easier.

The result also holds for curves whose equation is \(f(x,y) = 0\) where the equation remains the same if \(x\) is changed to \(-x\) and \(y\) to \(-y\), i.e., \(f(x,y) = f(-x,-y)\). Such a curve is said to be centrosymmetric about the origin \((0,0)\). For example: \(x^2 + y^2 = a^2\); \(xy = a\).

7. What is the relationship between the slopes of the function in Number 4 corresponding to the points, \(x = a\) and \(x = -a\)? Interpret this result graphically. Give examples of other functions having this property.

Here, \(r(a) = -r(-a)\). This means the angles of inclination of the graph at these points are supplementary. This also produces a form of symmetry (with respect to the \(y\)-axis). As in Number 6, functions would be generally described as polynomials, but here only even exponents for \(x\) would be found.

The result also holds for curves whose equation is \(f(x,y) = 0\) where the equation remains the same if \(x\) is changed to \(-x\), i.e., \(f(x,y) = f(-x,y)\) [symmetry with respect to the \(y\)-axis]. For example, \(x^2 + y^2 = 2\), \(\sin^2 x + \sin y = 1\).

6. (a) Find the slope of the graph of \(h : x \rightarrow 4x^3 - 3x^2\) at \((a,b)\), where \(b = h(a)\).

\[
r(x) = \frac{4x^3 - 3x^2 - (4a^3 - 3a^2)}{x - a} = 4(x^2 + ax + a^2) - 3(x + a), x \neq a
\]

The slope of the graph at the point \((a,h(a))\) is \(12a^2 - 6a\).
(b) Find all points where the graph of \(h \) is horizontal. Can you characterize these points as "highest" or "lowest," perhaps in a restricted sense?

The graph is horizontal if

\[12a^2 - 6a = 0, \text{ i.e., if } a = 0 \text{ or } a = \frac{1}{2}.\]

At the point \((0,0)\), the graph has a "local highest" point; at the point \((\frac{1}{2}, -\frac{1}{4})\), the graph has a "local lowest" point.

Solutions Exercises 2-3

1. Find the slope for \(x = a \) of the general linear function \(f: x \rightarrow Ax + B \) (where \(A \) and \(B \) are any constants except that \(A \neq 0 \)) and compare your result to that obtained from the standard slope-intercept form of the equation of a straight line in coordinate geometry.

\[f(x) = Ax + B, \quad A \neq 0 \]

The standard slope-intercept form of the equation of a straight line in coordinate geometry is \(y = mx + b \), where \(m \) is the slope. Then for \(y = Ax + B \), the slope-intercept form also gives \(m = A \).

2. For what values of \(k \) does the line \(y = k \) intersect the parabola \(y = Ax^2 + Bx + C \) \((A \neq 0)\) in

(a) no points?
(b) 1 point?
(c) 2 points?
(d) What is the lowest or highest point of the given parabola?
The number of points of intersection of \(y = k \), with \(y = Ax^2 + Bx + C \), will correspond to the number of real solutions of

\[
Ax^2 + Bx + C - k = 0.
\]

The discriminant of \(Ax^2 + Bx + C - k = 0 \) is \(B^2 - 4AC \) and this equals zero when:

\[k = C - \frac{B^2}{4A} \]

and the line intersects the parabola at one point.

For (a) and (c), the values for \(k \) depend upon the sign of \(A \). If \(A > 0 \), then:

(a) if \(k < C - \frac{B^2}{4A} \), the line does not intersect the parabola.

(b) if \(k = C - \frac{B^2}{4A} \), the line intersects the parabola at two distinct points.

Reverse the above inequalities if \(A < 0 \).

(d) The lowest \((A > 0) \) or highest \((A < 0) \) point of the parabola is \((- \frac{B}{2A} , C - \frac{B^2}{4A}) \).

3. (a) Find the highest point on the graph of \(g(x) = 9 - 6x - x^2 \) using Number 2.

The highest point is \((-3,14)\).

(b) Explain geometrically why the point in (a) can also be obtained by finding where the slope of \(g(x) \) is zero.

If the slope of \(g(x) \) is 0 at \(x = a \), the equation of the horizontal line described in Number 2 is \(y = g(a) = k \). This line intersects the curve at only one point, the highest point.
4. (a) What is the greatest possible number of points where the graph of a quadratic function $Ax^2 + Bx + C$ may be horizontal?

The graph of a quadratic function $x \mapsto Ax^2 + Bx + C$, $A \neq 0$, is horizontal at points where the slope m is zero.

$$m = 2Ax + B = 0$$

So $x = -\frac{B}{2A}$ is the only point where the graph of the quadratic is horizontal.

(b) Is it possible for the graph to be horizontal at less than the maximum number of points, or nowhere horizontal? If the answer to either question is affirmative, give an example (in the form of a specific function).

The graph of the quadratic function always has one horizontal point.

5. (a) Given $y = f(x) = 20x - 3x^2$. Find the slope of the curve at the point (a, b), where $b = f(a)$.

$$r(x) = 20x - 3x^2 - \frac{(20a - 3a^2)}{x - a} = 20 - 3(x + a), \quad x \neq a$$

At the point $(a, f(a))$, the slope is $20 - 6a$.

(b) Where is the slope zero? How can you use this information in plotting the graph of f?

The slope is zero where $20 - 6a = 0$, i.e., at $a = \frac{10}{3}$. The highest point on the graph is at $\left(\frac{10}{3}, f\left(\frac{10}{3}\right)\right)$.

6. (a) Find the slope of the curve with equation $y = h(x) = Ax^3 + Bx^2 + Cx + D$ (the graph of the general cubic function) at (a, b), where $b = h(a)$; here A, B, C, D are any constants, except that $A \neq 0$. (If you need a hint for the simplification of $r(x)$, it may be found in Section 1-1.)

$$r(x) = A\frac{(x^3 - a^3)}{x - a} + B\frac{(x^2 - a^2)}{x - a} + C(x - a)$$

$$= A\frac{(x^3 - a^3)}{x - a} + B(x + a) + C, \quad x \neq a$$

The slope of y at $(a, h(a))$ is $3Ax^2 + 2Ba + C$.

22
(b) What is the greatest possible number of points where the graph of a cubic function may be horizontal?

The greatest number of points where the graph of a cubic function may be horizontal is 2. The quadratic equation

\[3a^2 + 2b + c = 0 \]

has at most two real roots.

(c) Is it possible for a cubic function to have its graph horizontal at less than the maximum number of points? If the answer is "Yes," give an example of such a function.

A cubic may fail to have its graph horizontal at two points if the discriminant of the above quadratic in \(a \) is not positive. If \(4b^2 - 12ac < 0 \), then there are no points where the graph of the cubic has a horizontal slope. If \(4b^2 - 12ac = 0 \), or \(b^2 = 3ac \), then there is one point of the cubic having a horizontal slope.

(d) Is it possible for a cubic function to have its graph nowhere horizontal? If the answer is "Yes," give an example of such a function.

Yes, see (c) above. If \(b = 0 \) and \(a > 0 \) and \(c > 0 \), we can make many examples, such as

\[x^3 + 8x = 0 \]

A 7. Show that the curve of Exercise 6 is centrosymmetric about the point \(\left(-\frac{b}{3a}, -h(\frac{b}{3a}) \right) \).

Centrosymmetric means that given the above point as a center, a line segment starting at any other point on the curve going through the center and extended will intersect the curve again so that the center is the midpoint of this segment.

\[PC = QC \quad \text{and} \quad RC = CS \]
It is easily shown that if $PC = CQ$ and if PC is a straight line, then $QU = CT$ and $PT = CU$. So if we take values of x the same distance in each direction from $-\frac{B}{3A}$, we should get y values which differ from $h(-\frac{B}{3A})$ by the same amount.

Let us take: $x_1 = -\frac{B}{3A} - E$, $x_2 = -\frac{B}{3A}$, $x_3 = -\frac{B}{3A} + E$ and compute $h(x)$ in each case.

\[
h(x_3) = A(- \frac{B}{3A} - E)^3 + B(- \frac{B}{3A} + E)^2 + C(- \frac{B}{3A} + E) + D
\]
\[
h(x_2) = A(- \frac{B}{3A})^3 + B(- \frac{B}{3A})^2 + C(- \frac{B}{3A}) + D
\]
\[
h(x_1) = A(- \frac{B}{3A} + E)^3 + B(- \frac{B}{3A} - E)^2 + C(- \frac{B}{3A} - E) + D
\]

and then:

\[
h(x_3) - h(x_2) = A(- \frac{B}{3A} + E)^3 + B(- \frac{B}{3A} - E)^2 + CE = -\frac{B^2E}{3A} + AE^3 + CE
\]
\[
h(x_2) - h(x_1) = A(- \frac{B}{3A})^3 + B(- \frac{B}{3A} - E)^2 + CE = -\frac{B^2E}{3A} + AE^3 + CE
\]

So

\[
h(x_3) - h(x_2) = h(x_2) - h(x_1)
\]

Of course, if students have studied Analytic Geometry and have had translations (SMSC—Analytic Geometry, Chapter 10), translating the equation so that the center of symmetry becomes the origin gives:

\[
y = AX^3 + EX
\]

which is referred to in No. 6 of Exercises 2-2.

8. A function h is defined by the formulas

\[
h(x) = \begin{cases}
 x^3, & x < 1, \\
 -x^2 + 2x, & x \geq 1.
\end{cases}
\]

Find the slope of the graph of h for $x < 1$ and for $x > 1$. Is it possible in your opinion to define a slope for the graph at $(1,1)$? Give an argument to support your answer. (A sketch may be helpful in answering the question.)
For $x < 1$, $h(x) = x^3$ and $m = \frac{3}{2}$.

For $x \geq 1$, $h(x) = -x^2 + 2x$ and $m = 2a + 2$.

It is not possible to define a slope for the graph of h at $(1,1)$.

9. Until now our discussion of the idea of direction and slope for a curve has been generally at a theoretical level. Although we know from Section 1-1 that the concept of slope will ultimately be useful in "best value" problems, it is satisfying to have another more immediate application. You are probably familiar with the fact that large telescopes and automobile headlights use parabolic mirrors. A parabolic reflector can bring a bundle of parallel rays like those from a star to a sharp focus. You are now able to demonstrate the sharp focusing property of the parabola.

According to Heron's Law of reflection for a ray of light incident upon a smooth mirror, the incident ray and the reflected ray make equal angles with the mirror. Suppose the shape of the cross section through the axis of the mirror is given by the graph of $y = x^2$. Prove for all incident rays parallel to the y-axis that the reflected rays have a common point of intersection as in the figure. This common point is called the focus of the parabola. It can also be shown that this property characterizes the parabola; i.e., if the curve is such that all parallel rays pass through a common point after reflection, then the curve must be a parabola.

At stellar distances, the deviation from parallelism of all rays reaching the earth from a given star is utterly negligible.
This old chestnut appears here to enable the teacher to discuss equations of lines (focus and point of reflection determine line) and angle between two lines. Discuss reflection on a plane mirror and if physics class has not anticipated this, indicate that angle of incidence equals angle of reflection. Angles between lines require the theorem:

\[\theta = \arctan \left(\frac{m_2 - m_1}{1 + m_1 m_2} \right) \]

where \(m_1 \) is the slope of \(l_1 \) and \(m_2 \) is the slope of \(l_2 \).

Here, the plane is replaced by the tangent line, which has the slope of the curve at that point.

Do not lose time trying to have students complete the solution. It is here for motivation not exhaustion. The converse involves differential equations, and this idea may be reached this year by the class.

Solutions Exercises 2-4

1. [NOTE: Even though this problem consists of many parts, it doesn't take very long to do. Also, one does not have to assign all the parts. It is included because there are very few problems in which physical considerations are stressed.]

Let us assume that a pellet is projected straight up and after awhile comes straight down via the same vertical path to the place on the ground from which it was launched. After \(t \) seconds the pellet is \(s \) feet above the ground. Some of the ordered pairs \((t,s)\) are given in the following table.
We shall intentionally avoid certain physical considerations such as air resistance. Moreover, we shall deal with simple numbers rather than quantities measured to some prescribed degree of accuracy which might arise from the data of an actual projectile problem in engineering.

(a) Interpolate from the data given to determine the height of the projectile after eight and nine seconds respectively. (Guess, using symmetry as your guide.) Does extrapolation to find values of s for $t = -1$ or $t = 11$ make sense on physical grounds?

After how many seconds does the projectile appear to have reached its maximum height? What seems to be the maximum height?

For 8 seconds, $s = 256$ feet. For 9 seconds, $s = 144$ feet. At $t = -1$, or $t = 11$, s is negative and may be interpreted as below the surface of the ground. The maximum height seems to be 400 ft, reached after 5 seconds.

(b) Does s appear to be a function of t? If so, discuss the domain and range, taking physical considerations into account.

A table as shown where there is a unique number for s under each t represents a function. The domain is $0 \leq t \leq 10$ or the interval $[0, 10]$. The range is $0 \leq s \leq 400$ or the interval $[0, 400]$.

(c) If we were to plot a graph of $s = f(t)$,

(1) is it plausible on physical grounds to restrict our graph to the first quadrant? YES.

(2) Does the data suggest that the scale on the s-axis (vertical) should be the same as the scale on the t-axis (horizontal)? NO.

(d) Keeping in mind your responses to part (c), plot the ordered pairs (t,s) from the table. Connect the points with a smooth curve.

What is the name of the function suggested by the graph? (Parabola) On physical grounds is it feasible that there would be a real value of s for every real number assigned to t over the interval $0 \leq t \leq 10$? Were we probably justified in connecting the points?
Every real number for \(t \) over the interval \(0 \leq t \leq 10 \), would produce a value for \(s \), so we were justified in connecting the points.

(e) Assuming that the equation \(s = f(t) = At^2 + Bt + C \) was used to develop the entries in our table, find values for constants \(A \), \(B \), and \(C \).

\[
s = f(t) = At^2 + Bt + C
\]

For \(t = 0 \) \quad \(f(0) = C = 0 \)

\[
\begin{align*}
 \text{For } t & = 1 \\
 f(1) & = A + B = 144 \quad \text{(1) } A = -16 \\
 t & = 2 \\
 f(2) & = 4A + 2B = 256 \quad \text{(2) } B = 160 \\
 A & = -16 \quad B = 160 \quad \text{and } C = 0
\end{align*}
\]

(f) Sketch the graph given by the equation \(s = 160t - 16t^2 \) over the interval \(0 \leq t \leq 10 \). Using a more carefully plotted graph of the same set, connect the point where \(t = 1 \) with the point where \(t = 2 \). What is the slope of this chord? Estimate the slope of the curve at \(t = 1 \) and \(t = 2 \).

Slope of chord through points \((1, 144)\) and \((2, 256)\) = 112.

At \(t = 1 \), it would be a little larger (steeper) than 112; at \(t = 2 \), slightly smaller than 112.
(g) If the units of \(s \) are feet and the units of \(t \) are seconds, what are the units of slope? What word is commonly associated with this ratio of units? What would you guess are the physical interpretations of positive, zero, and negative values of this ratio?

Slope is measured in units of feet per second, Speed is the usual name. Positive values would indicate upward movement; zero, a resting position; while negative values would indicate a falling or downward movement.

(h) Draw the graph of \(v = 160 - 32t \) over the interval \(0 \leq t \leq 10 \). Compare the values of \(v \) for \(t = 1 \) and \(t = 2 \) respectively with your estimates for the slopes of the graph of \(s = 160t - 16t^2 \) in part (f).

At \(t = 1 \), \(v = 128 \) and \(v = 96 \) at \(t = 2 \).

(i) Average the values of \(v \) for \(t = 1 \) and \(t = 2 \) and compare this average with the slope of the chord connecting the points where \(t = 1 \) and \(t = 2 \) in part (f) 112 ft/sec.

(j) If the units of \(v \) are ft/sec and the units of \(t \) are seconds, what are the units of the slope of the line \(v = 160 - 32t \)? What word from physics is commonly associated with this ratio of units? Does the minus sign align with the particular numerical value of this slope have any special connotation from your experience?

The slope of the line \(v = 160 - 32t \) is in units of feet per second per second. The word in physics is acceleration, \(-32\) refers (in feet per second per second (ft./sec.\(^2\)) to the acceleration due to the force of gravity at sea level.
2. (a) Derive the velocity function for the motion as given in Example 2.4a.

\[s = \varphi(t) = 2t^3 - 39t^2 + 252t - 535 \]
\[v = \varphi'(t) = 6t^2 - 78t + 252 \]

(b) Sketch the graph of \(s = \varphi(t) \) (called the world line) and the \(v \) vs. \(t \) curve (i.e., the graph of the velocity as a function of time).

(c) Compare the time when \(s \) equals a maximum or a minimum and when velocity \(v = 0 \). Explain this physically.

The times are the same. Non-zero velocities indicate a change taking place in a definite direction. To shift directions "smoothly" it must come to rest, or go through a velocity of zero.

(d) Given only that \(\varphi(6) = 5 \) for the function \(\varphi \) that describes the motion, show that there is a second time \(t \) when \(\varphi(t) = 5 \), and find that value of \(t \). (This is not done by calculus.)

\[5 = 2t^3 - 39t^2 + 252t - 535 \]
Solving a cubic usually is difficult, but we know that 6 is a root which enables us to reduce the cubic to a quadratic.

\[2t^3 - 39t^2 + 252t - 530 = 0 \]
\[(t - 6)(2t^2 + 27t + 90) = 0 \]
which may be factored further to \((t - 6)^2(2t + 15) = 0 \), therefore \(t = 6 \) or \(t = -\frac{15}{2} \).
(e) Find the time of greatest speed between \(t = 6 \) and \(t = 7 \).

From the \(v \) vs. \(t \) graph, it appears that the absolute value of the velocity is greatest at \(t = 6\frac{1}{2} \) which is the time of greatest speed.

Find the velocity of an object whose location time is described by the equation \(s = 120t - 16t^2 \). Sketch the curves of \(s \) vs. \(t \) and \(v \) vs. \(t \) on the same set of axes.

(a) During what time interval or intervals is the object moving toward the location \(s = 0 \)?

\[4 < t < 8 \]

(b) What are the values of \(v \) and \(t \) when \(s \) is a maximum?

\[v = 0 \text{ at } t = 4 \]

A ball is thrown height \(h \) in 4 seconds,

\[h = 16t - 16t^2 \]

(a) What is the velocity when \(12 \) feet is \(h \)?

\[h = \frac{32}{3} \]

\[h = 16 - 32t + 16t^2 \]

\[0 = 16t^2 - 32t + 16 \]

\[0 = 4t^2 - 8t + 1 \]

\[t = (2\pm\sqrt{3})(\pm1) \]

which is true when \(t \) is \(2 \) or \(1 \) second.

When it reaches 12 feet is \(\frac{1}{2} \) second, its velocity at that time it reaches.
time is \(v = 32 - 32\left(\frac{1}{2}\right) = 16 \). The second time, \(t = \frac{3}{2} \), at which time \(v = 32 - 32\left(\frac{3}{2}\right) = -16 \).

(b) How high does it go, and at what time does the ball reach its highest position?

One second after being thrown it...

5. An object is projected up a smooth inclined plane in a straight line. Its distance \(s \) in ft. from the starting point after \(t \) seconds is described by the equation \(s = 64t - 16t^2 \). After the object reaches its highest point it slides back along its original path to the starting point according to the equation \(s = 64 - 64t + 16t^2 \). Here \(s \) is the distance of the object from the highest point at time \(t \). It took the object to reach the highest point.

(a) Determine how long it took the object to complete a round trip.

\[
\begin{align*}
s &= 64t - 16t^2 \\
\text{at } t = 4 \\
&= 64(4) - 16(4)^2 \\
&= 256 - 256 \\
&= 0
\end{align*}
\]

The up and down curve is the same as the curve.
6. The location of an object on a straight line is given by the formula
\[s = pt^2 + qt + r, \]
where \(p, q, \) and \(r \) are real constants. Find all instants of time when the object is at rest, and show how the number of such instants depends on the constants \(p, q, \) and \(r. \)

From \(s = s(t) = pt^2 + qt + r \)
we get
\[v = v(t) = 2pt + q. \]

The object is at rest when
\[v = 0 \]
so
\[t_0 = -\frac{q}{2p} \]
is dependent on \(q \) and \(p \). The sign of \(t_0 \) and \(p \) are real numbers.

7. For any but the very closest \(t \), it is unlikely to be able to describe the location at time \(t \) by a single formula for the entire duration of the motion. A more plausible description of a motion...
(b) It is claimed that $s = \phi(t)$ and $v = \psi(t)$ are functions. What has to be checked to verify this? Does it check? Show the graph of each of these functions on the same axes.

A function must have one value in its range for each number in its domain. The statement of the problem included the endpoint of each interval in both intervals. For each of these endpoints, we observe the same image in both intervals (for both $\phi(t)$ and $\psi(t)$). We can see this on the graph.

(c) During what time intervals is the path of the motion increasing? decreasing?

The velocity $v(t)$ and $\psi(t)$

(d) How does the motion change during the?...
Solutions Exercises 2-2

1. Find the derivative of f at a for $f : x \mapsto r(x)$, where $r(x)$ equals each of the following.

(a) $r(x) = \frac{1}{x^2 + 1}$

$$r(x) = \frac{1}{x^2 + 1} \frac{1}{x - a} \frac{1}{(x + 1)^2}$$

$$m = \frac{-1}{(a + 1)^2}$$

(b) $r(x) = \frac{A x + B}{x^2}$

$$r(x) = \frac{A x + B}{x^2} \frac{x}{x - a} \frac{1}{(A x + B)^2}$$

$$m = \frac{A}{(A x + B)^2}$$
(e) \(f(x) = \frac{1}{\sqrt{x}} \)

\[
(\text{where } a > 0) \\
X^a - a = \frac{-1}{\sqrt{a} (\sqrt{a} + \sqrt{a})} \quad x \neq a \\
X^a \\
m = \frac{-1}{2a \sqrt{a}}
\]

(f) \(f(x) = x^{3/2} \)

\[
(\text{where } a > 0) \\
X^a - a = \frac{3/2 - a^{3/2}}{x - a} \quad x \neq a \\
X^a \\
m = \frac{3}{2} a^{1/2}
\]

2. For each of the functions \(g(x) = \frac{1}{x} \) and \(h(x) = \sqrt{x} \) of the text list the following: the domain of the function; all points of inflection (if any); the highest point on the graph of the function (if any); the lowest point on the graph of the function (if any).
3. Use the definition of derivative to differentiate \(f \) at both \(a = -2 \) and \(a = 2 \) if \(f(x) \) equals

(a) \(f(x) = (x - 2)^2 \)

\[
m = \lim_{x \to a} \frac{(x - 2)^2 - (a - 2)^2}{x - a} = \lim_{h \to 0} \left[(x - c) - (a - c) \right] \left[\frac{(x - c) - (a - c)}{h} \right] = 2a - 4
\]

At \(a = -2 \), \(m = -6 \)

At \(a = 2 \), \(m = 0 \)

(b) \(f(x) = \frac{1 + x}{1 - x} \)

\[
m = \lim_{x \to a} \frac{1 + x - 1 - x}{1 - x} = \lim_{h \to 0} \left[(1 + a) \right] \left[\frac{0}{1 - a} \right] = \frac{1}{1 - a}
\]

At \(a = -2 \), \(m = \frac{1}{3} \)

At \(a = 2 \), \(m = \frac{1}{3} \)

(c) \(f(x) = \frac{1}{x} \)

\[
m = \lim_{x \to a} \frac{\frac{1}{x} - \frac{1}{a}}{x - a} = \lim_{h \to 0} \left[\frac{1}{a} \right] \left[\frac{-h}{x(a-h)} \right] = \frac{-1}{a^2}
\]

At \(a = -2 \), \(m = \frac{1}{4} \)

At \(a = 2 \), \(m = -\frac{1}{4} \)
4. For each of the functions f whose values $f(x)$ are described below, find the derivative at a, where a is in the domain of the function.

(a) $2x^2 - x^2$ \quad $m = 5 - 2a$

(b) $3 - x - x^2$ \quad $m = -1 - 2a$

(c) $x^3 - 2x$ \quad $m = 3a^2 - 2$

(d) $\frac{2x}{x + 1}$ \quad $m = \lim_{x \to a} \frac{x + 1 - x}{x - a} \cdot \frac{x + 1 - x}{x - a} = \frac{2}{(a + 1)^2}$

(e) $\frac{2}{x - 1}$ \quad $m = \left(\frac{1}{a - 1}\right)^2$

(f) $\frac{x^2 + x}{x^2 - 1}$ \quad $m = \lim_{x \to a} \frac{x^2 - 1 - x^2 + 1}{x - a} \cdot \frac{a^2 - 1}{(a - 1)^2}$

7. By the method of sections, sketch the graph of each of the following functions at point (t, t).

(a) $f: x \mapsto x^2$

$\frac{1}{4} = \frac{1}{4}$

(b) $g: x \mapsto \frac{1}{x - 1}$

$\frac{1}{3} = \frac{1}{3}$

$\frac{1}{3}$
What is the relationship between the two answers? Explain this relationship.

\[m_1 = \frac{1}{m_2}. \]

The graph of \(y = f(x) = x^3 \) is the reflection of the graph of \(y = f(x) = x^{1/3} \) in the line \(y = x \).

\[f: x \rightarrow x^3 \quad \text{and} \quad f: x \rightarrow x^{1/3} \quad \text{are inverts.} \]

6. Use a table of sines to obtain approximate values for \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \) as \(x \) approaches 0, and make a conjecture as to the value of this limit. What can you conclude about the slopes of the graph of \(y = \frac{\sin x}{x} \) at the origin?

As \(x \) approaches 0, \(\frac{\sin x}{x} \)

Note that \(\frac{\sin x}{x} \) at \(x = 0 \) is not defined at \(x = 0 \).

7. Write the \(\Delta \) notation for

\[a = \frac{b}{c} \]

alternative con.

8. In Chapter three, shall

to have at least number of familiar laws of exponent. Compute the ratio \(\Delta \) of \(x \) and \(y \) at \(x = a \) to the derivative of \(f \)
at \(x = a = 0 \), and show that limit exist. Let be some before we can differentiate the function

\[f(x) = 2^x, \quad r(x) = \frac{x^3}{x^2 - 1}. \]
9. Prove that the derivative at \(x = a \) of:

(a) \(g : x \rightarrow \frac{1}{x} \) is \(-\frac{1}{a^2} \).

(b) \(h : x \rightarrow \sqrt{x} \) is \(\frac{1}{2\sqrt{a}} \).

See Example 2-5a; for proof, see Example 2-5c.

(b) \(h : x \rightarrow x^2 \) is \(\frac{1}{2\sqrt{a}} \).

See Example 2-5b; for proof, see Example 3-3c.

10. Find the slopes (if any exist) of the following curves at points for which \(x = y \):

(a) \(x + y = a \)

\[y = -x + A \]

\[m = -1 \] for...

(b) \(x \cdot y = x \)

\[y = \frac{\sqrt{a}}{x^2} \]

\[r(x) = \frac{\sqrt{a}}{x^2} + \frac{\sqrt{a}}{x} \]

\[m = \frac{\sqrt{a}}{(a + 1)^{\frac{1}{2}}} \]

\[m = \frac{\sqrt{a}}{(a + 1)^{\frac{1}{2}}} \]

\((a, \sqrt{a}) \) for...

(c) \(x \cdot y = A \)

\[m = \frac{\sqrt{a}}{(a + 1)^{\frac{1}{2}}} \]

\((A, \sqrt{a}) \) for...
(d) \(|x + y| + |x - y| = 2A \)

The following four cases must be considered.

1. \(\begin{cases} x + y > 0 \\ x - y > 0 \end{cases} \)

\(x + y + x - y = 2A, \)
\(x = A \) and \(|y| \leq A \)

2. \(\begin{cases} x + y > 0 \\ x - y < 0 \end{cases} \)

\(-x + y + x - y = 0, \)
\(y = -A \) and \(|x| \geq A \)

3. \(\begin{cases} x + y < 0 \\ x - y > 0 \end{cases} \)

\(-x - y + x - y = 2A, \)
\(x = -A \) and \(|y| \leq A \)

4. \(\begin{cases} x + y < 0 \\ x - y < 0 \end{cases} \)

\(-x - y + x - y = 0, \)
\(x = -A \) and \(|y| \geq A \)

Of these 4 cases, slopes then are zero at point (A,A). At point (A,A) and (A,-A) it occurs.

At these points the "curve" stop.
(f) Generalize the results of parts a - d.

Since interchanging \(y \) with \(x \) in each of the original equations does not change the value of the equation, all of the relations are symmetric about the line \(y = x \). If the curve is smooth as in a - c, the line \(y = x \) intersects the curve at an angle of \(90^\circ \) and the slope is \(-1\). In d, one must see this generalization until we graph all parts of the relation which graphs as a square. From the figure, one may see that the line \(y = x \) bisects the angle made by the two parts of the graph at the point where \(y = x \). In general, for symmetric relations (with respect to \(y \) and \(x \)), if the curve is smooth at \(y = x \), it has a slope of \(-1\) at the point \((1, 1)\), if the curve is not smooth, each branch makes equal angles with the line \(y = x \).
Teachers' Commentary

Chapter 5

LIMITS AND CONTINUITY

The analytical definition of continuity helped to provide a sound mathematical basis for calculus. This definition may be best understood and explained in terms of the notion of limit of a function, a concept which is at the heart of differential and integral calculus and serves as a tool for considering functions throughout the course.

This chapter is important in that it introduces and explains the concept which is at the heart of differential and integral calculus. It includes an explanation of the idea of continuity and serves as a tool for expressing the ideas analytically.

In Chapters 1 and 2, students were introduced to the notion of the limit concept. In these chapters, the concept of the limit of a function was initially developed through the informal notion of the limit concept. Instead of using the ε-δ definition in this chapter, which may be a strange innovation, the student should be encouraged to understand the ideas previously encountered. The exercises in this chapter are designed to provide a basis for proof in precise terms. The exercises have been thoughtfully selected to facilitate understanding of the definition. Techniques involving the ε-δ definition are provided with some care. You should note that we do not try to immediately overcome severe difficulties even in the simplest cases. For example, for some x, which will work.

The ideas set forth in this chapter provide the initial exposure to these ideas, and the student is encouraged to reread the chapter in order to understand the ideas better. Exercises which result from repeated exposure.

Ideas about limits begin in Chapter 1 of the course.
1. Consider \(f : x \mapsto [x] + [-x] \). (See Section A2.1 for discussion of \([x]\).)

For \(x = n \), where \(n \) is an integer, \(f(n) = n + (-n) = 0 \). For \(x \) not an integer,
\[
0 < x < n + 1 \quad \text{and} \quad \frac{1}{n < x < n + 1} \quad \text{whence} \]
\[
[x] = n \quad \text{and} \quad \lfloor x \rfloor \leq n \quad \text{implies} \quad f(x) = \frac{1}{n < x < n + 1}.
\]
In this case, \(f(x) = n + (-n) = 0 \).

(a) What number, if any, do the values of \(f \) approximate when \(x \) is close to \(1 \) when \(x \) is close to \(2 \)?

\[
\lim_{x \to 1} f(x) = 1
\]
\[
\lim_{x \to 2} f(x) = 1
\]

(b) What can you say about \(f(n) \) when \(n \) is an integer?

\[
\lim_{x \to n} f(x) = n
\]

(c) Evaluate \(f(n) \).

\[
\ldots
\]

(1)
\[fx \]
\[
\ldots
\]
2. For each of the following functions sketch the graph and, if possible, find the limit as x approaches 0.

(a) $f : x \rightarrow \frac{x}{x}$
(b) $f : x \rightarrow \frac{1}{|x|}$
(c) $f : x \rightarrow \frac{x}{|x|}$
(d) $f : x \rightarrow \frac{|x|}{x}$
(e) $f : x \rightarrow \frac{x}{|x|}$

For (a):

$$f(x) = \frac{x}{x}$$

$$\lim_{x \to 0} \frac{x}{x} = 1$$

For (b):

$$f(x) = \frac{1}{|x|}$$

$$\lim_{x \to 0} \frac{1}{|x|} \text{ does not exist.}$$

For (c):

$$f(x) = \frac{x}{|x|}$$

$$\lim_{x \to 0} \frac{x}{|x|} \text{ does not exist.}$$
Observe that as x approaches 0 through negative values
$f(x) = \frac{1}{x} = \frac{1}{|x|}$ becomes large without bound; as x approaches
0 through positive values $f(x)$ approaches 0 (although
$f(x) \not= 0$ for $0 < x < 1$).

\[
\lim_{x \to 0} \frac{1}{x} \quad \text{does not exist.}
\]
Definition of Limit of a Function.

In some texts, the idea of limit often is expressed in words like these: "If, as \(x \) gets closer and closer to \(a \), the values of \(f(x) \) tend to the value \(L \), then we call \(L \) the limit of \(f(x) \) as \(x \) approaches \(a \)." The difficulty with this formulation, apart from the vagueness of the words, "gets closer and closer to," "tend to," is that it suggests the false notion that if \(x_2 \) is closer to \(a \) than is \(x_1 \), then \(f(x_2) \) is closer to \(L \) than is \(f(x_1) \).

Example TC3-2. Consider

\[
f(x) = \begin{cases}
\sin \frac{1}{x}, & x \neq 0 \\
0, & x = 0
\end{cases}
\]

We have \(\lim_{x \to 0} f(x) = 0 \). Let \(x_1 = \frac{1}{2n} \) and \(x_2 = \frac{2}{\pi(1 + 4n)} \) \((n \text{, a non-zero integer})\). Then \(|x_2| < |x_1| \) but \(|f(x_2)| > |f(x_1)| \) since \(f(x_2) = \frac{2}{\pi(1 + 4n)} \) and \(f(x_1) = 0 \). (See Figure TC3-5a for graph of \(f \).)

The above description of limit gives no clear idea of just how to verify that \(L \) is the limit of \(f \) as \(x \) approaches \(a \) in any particular case. We are compelled to give a definition which yields a clear-cut method of verification.

Quite early in our discussion we refer to Appendix 1-4 for an explanation of open and closed intervals. These ideas are essential to the material in this and succeeding sections. In the exercises, substantial use is made of ideas relating to the order properties of real numbers and absolute value: the student is expected to apply basic inequality theorems. The objective is to develop computational facility with absolute value as a background for proving facts about limits. As a lead into Section 3-3 we feel that it would be informative for the student to be given some numerical values for \(\epsilon \) and \(\delta \) required to determine a \(\delta \) sufficient to control the error (see, for example, Exercises 3-2, No. 11).
Solutions Exercises 3-2

The theorems of Sections A1-2 and A1-3 provide the basis for the following arguments. In the general application of the transitive property we use the strong inequality in the conclusion since a strong inequality appears at least once in the chain of reasoning (see Section A1-2). We also make extended use of the inequalities

\[|a| - |b| \leq |a + b| \leq |a| + |b| . \]

1. Show that if \(0 < |x - a| < 1 \); then \(|x + 2a| < 1 + 3|a| \).

If \(0 < |x - a| < 1 \), then

\[
|x + 2a| = |(x - a) + 3a| \\
\leq |x - a| + |3a| \\
\leq |x - a| + 3|a| \\
< 1 + 3|a| .
\]

2. Show that if \(0 < |x - a| < 1 \), then \(|x^3 - a^3| < (3|a^2| + 3|a| + 1)|x - a| \).

If \(0 < |x - a| < 1 \), then

\[
|x^3 - a^3| = |(x - a)(x^2 + ax + a^2)| \\
= |x - a| \cdot |(x^2 + ax + a^2)| \\
\leq |x - a| \cdot |(x - a)^2 + 3a(x - a) + 3a^2| \\
\leq |x - a| \cdot |(x - a)^2 + 3|a| \cdot |x - a| + 3a^2| \\
< 1 + 3|a| + 3a^2 .
\]

3. Show that if \(0 < |x - 2| < 1 \), then \(\frac{1}{|x - 4|} < 1 \). Hint: By Exercises A1-2, Number 10, if \(|x - 4| > 1 \), then \(\frac{1}{|x - 4|} < 1 \).

We have \(|x - 4| = |(x - 2) - 2| \) whence

\[
|2| - |x - 2| < |x - 4| < |x - 2| + |-2| .
\]
Thus, if \(0 < |x - 2| < 1\),
\[
2 - 1 < |x - 4| < 1 + 2
\]
or
\[
1 < |x - 4| < 3
\]
and
\[
\frac{1}{|x - 4|} < 1.
\]

4. Show that if \(|x - a| < \frac{|a|}{2}\), then \(\frac{1}{x^2} < \frac{4}{a^2}\).

We have \(|x| = |(x - a) + a|\), so that
\[
|a - a| - |x - a| \leq |x| \leq |x - a| + |a|.
\]

Thus, if \(|x - a| < \frac{|a|}{2}\),
\[
|a| - \frac{|a|}{2} < |x| < \frac{|a|}{2} + |a|
\]
or
\[
\frac{|a|}{2} < |x| < 3\frac{|a|}{2}
\]

whence
\[
\frac{a^2}{4} < x^2 < 9\frac{a^2}{4},
\]
from which the result follows.

5. Show that if \(0 < |x - 1| < 1\), then \(|4x + 1| < 9\) and \(\left|\frac{1}{x + 2}\right| < 1\).

If \(0 < |x - 1| < 1\), we have
\[
|4x + 1| = |4(x - 1) + 5|
\]
\[
\leq 4|x - 1| + 5
\]
\[
< 4 \cdot 1 + 5
\]
\[
< 9.
\]

Also, if \(0 < |x - 1| < 1\), we have
\[
|x + 2| = |(x - 1) + 3|
\]
\[
\geq 3 - |x - 1|
\]
\[
> 3 - 1
\]
\[
> 2
\]
whence
\[
\left|\frac{1}{x + 2}\right| < \frac{1}{2} < 1.
\]
6. Show that if \(0 < |x - 2| < 1 \), then \(|x + 1| < 4 \) and \(\frac{1}{x^2 + 2x + 4} < 1 \).

If \(|x - 2| < 1 \), then

\[
|x + 1| = |(x - 2) + 3| \\
\leq |x - 2| + 3 \\
< 4.
\]

Since \[x^2 + 2x + 4 = [(x - 2) + 2]^2 + 2[(x - 2) + 2] + 4 = (x - 2)^2 + 6(x - 2) + 12 \]

\[
|x^2 + 2x + 4| \geq 12 - |(x - 2)^2 + 6(x - 2)| \\
\geq 12 - [(x - 2)^2 + 6|x - 2|].
\]

Thus, if \(0 < |x - 2| < 1 \),

\[
|x^2 + 2x + 4| > 12 - (1 + 6) \\
\geq 5.
\]

Finally, if \(0 < |x - 2| < 1 \), we have

\[
\frac{1}{|x^2 + 2x + 4|} < \frac{1}{5} < 1.
\]

7. Estimate how large \(x^2 + 1 \) can become if \(x \) is restricted to the open interval -3 < \(x \) < 1.

If -3 < \(x \) < 1 then 3 > -\(x \) > -1 whence

\[
|x| < 3 \\
and \\
x^2 < 9,
\]

so that

\[
x^2 + 1 < 10.
\]

8. Use inequality properties to find a positive number \(M \) such that \(0 < |x - 1| < 3 \) for all \(x \) and

(a) \(|x^2 + 2x + 4| \leq M \)

(b) \(|3x^2 - 2x + 3| \leq M \)

We are required to submit any positive number \(M \) satisfying the given inequalities. It is not necessary to find the smallest possible number \(M \).
The problem is included here to give the student preparatory experiences for Section 3-3. Because of this, the strategy is more valuable to the student than the actual solution.

(a) \[|x^2 + 2x + 4| \leq M. \]

For \(0 < |x - 1| < 3\),
\[
|x^2 + 2x + 4| = |(x - 1 + 1)^2 + 2(x - 1 + 1) + 4| = |(x - 1)^2 + 4(x - 1) + 7|
\leq (x - 1)^2 + 4|x - 1| + 7
< 3^2 + 4 \cdot 3 + 7
< 28.
\]

We may take \(M\) as any number, \(M \geq 28\).

The graph \(y = |x^2 + 2x + 4|\) shows that any number \(M \geq 28\) will serve.

(b) \[|3x^2 - 2x + 3| \leq M. \]

If \(0 < |x - 1| < 3\), then
\[
|3x^2 - 2x + 3| = |3((x - 1) + 1)^2 - 2((x - 1) + 1) + 3|
= |3(x - 1)^2 + 4(x - 1) + 4|
\leq 3(x - 1)^2 + 4|x - 1| + 4
< 3 \cdot 3^2 + 4 \cdot 3 + 4
< 43.
\]

We take \(M \geq 43\).

The graph of \(y = |3x^2 - 2x + 3|\) shows that any number \(M \geq 43\) will do.
9. (a) Show that if \(0 < |x - 3| < 1 \) and \(0 < |x - 3| < \frac{\varepsilon}{7} \), then \(|x^2 - 9| < \varepsilon \).

\[
|x^2 - 9| = |(x - 3)(x + 6)| \\
\leq |x - 3| \cdot |x + 6|.
\]

Thus, if \(0 < |x - 3| < 1 \) and \(0 < |x - 3| < \frac{\varepsilon}{7} \),

\[
|x^2 - 9| < \frac{\varepsilon}{7} (1 + 6)
\]
or

\[
|x^2 - 9| < \varepsilon.
\]

(b) Show that the pair of inequalities \(0 \leq \frac{1}{7} \) and \(\delta \leq \frac{\varepsilon}{7} \) (or \(\delta \leq \min(1, \frac{\varepsilon}{7}) \)) is satisfied by \(\delta = \frac{\varepsilon}{7 + \varepsilon} \).

For \(\varepsilon > 0 \),

\[
\frac{\varepsilon}{7 + \varepsilon} = \frac{(7 + \varepsilon) - 7}{7 + \varepsilon} = \frac{7 + \varepsilon}{7 + \varepsilon} - \frac{7}{7 + \varepsilon} = 1 - \frac{7}{7 + \varepsilon} < 1 \text{ (since } \frac{7}{7 + \varepsilon} > 0 \text{)}.
\]

Also, for \(\varepsilon > 0 \),

\[
\frac{\varepsilon}{7 + \varepsilon} < \varepsilon \cdot \frac{1}{7} < \varepsilon \cdot \frac{1}{7} \text{ (since } \frac{1}{7 + \varepsilon} < \frac{1}{7} \text{)}.
\]

Since \(\frac{\varepsilon}{7 + \varepsilon} < \min(1, \frac{\varepsilon}{7}) \), the result follows.

10. Find a number \(M \geq 1 \) such that \(\frac{|x + 4|}{|x - 2|} < M \) for all \(x \) such that \(0 < |x - 2| < 1 \). (See No. 3 above.)

If \(0 < |x - 2| < 1 \), then \(\frac{1}{|x - 2|} < 1 \) from Number 3 and

\[
|x + 4| = |(x - 2) + 6| \\
\leq |x - 2| + 6 < 1 + 6 \leq 7.
\]

Thus, under these conditions,

\[
\frac{|x + 4|}{|x - 2|} = \frac{|x - 2| + 6}{|x - 2|} < 1 + \frac{6}{|x - 2|} < 7
\]

We take \(M = 7 \) as any number, \(M \geq 1 \).
11. For the given value of ε, find a number δ such that if $0 < |x - 3| < \delta$,

$|x^2 - 9| < \varepsilon$.

(a) $\varepsilon = 0.1$

(b) $\varepsilon = 0.01$

Is your choice of δ in (b) acceptable as an answer in (a)? Explain.

\[|x^2 - 9| = |x - 3| \cdot |(x - 3) + 6| \leq |x - 3| \cdot (|x - 3| + 6) < 8(5 + 6) \]

(At the last line we used $0 < |x - 3| < \delta$.) For convenience, we restrict δ so that $\delta \leq 1$. Then, under this condition, $|x^2 - 9| < 75$.

(a) To insure that $|x^2 - 9| < 0.1$ we may take $\delta = \frac{0.1}{7} = \frac{1}{70}$.

(b) To insure that $|x^2 - 9| < 0.01$ we take $\delta = \frac{0.01}{7} = \frac{1}{700}$.

The choice, $\delta = \frac{1}{700}$, is acceptable in (a), for if $0 < |x - 3| < \frac{1}{700}$, then

$|x^2 - 9| < 75 \leq 0.01 < 0.1$.

12. For the following functions, find the limit L as x approaches a.

For each value of ε, exhibit a number δ such that $|f(x) - L| < \varepsilon$ whenever $|x - a| < \delta$.

(a) $f(x) = 3x - 2$, $a = \frac{1}{2}$.

(b) $f(x) = mx + b$, $(m \neq 0)$.

(c) $f(x) = 1 + x^2$, $a = 0$.

(a) $\lim_{x \to \frac{1}{2}} (3x - 2) = \frac{1}{2}$.

We have

\[|(3x - 2) - \left(\frac{1}{2}\right)| = |3x - \frac{3}{2}| = 3|x - \frac{1}{2}| < \varepsilon \]

We wish to find a δ such that whenever $|x - \frac{1}{2}| < \delta$, then

\[|(3x - 2) - \left(\frac{1}{2}\right)| = \varepsilon \]

We take $\delta = \frac{\varepsilon}{3}$. Then if $|x - \frac{1}{2}| < \delta$,

\[|(3x - 2) - \left(\frac{1}{2}\right)| = 3|x - \frac{1}{2}| < \frac{3 \varepsilon}{3} = \varepsilon \]
(b) \(f(x) = mx + b \), \(m \neq 0 \).

\[
\lim_{x \to a} f(x) = ma + b
\]

\[
\left| (mx + b) - (ma + b) \right| = \left| m(x - a) \right|
\]

\[
= |m| \cdot |x - a|
\]

We wish to find a \(\delta \) such that whenever \(|x - a| < \delta \) then

\[
|m| \cdot |x - a| < \epsilon
\]

We take \(\delta = \frac{\epsilon}{|m|} \). For this choice of \(\delta \), whenever \(|x - a| < \delta \),

\[
\left| (mx + b) - (ma + b) \right| = |m| \cdot |x - a|
\]

\[
< |m| \cdot \delta
\]

\[
\leq \epsilon
\]

(c) \(f(x) = 1 + x^2 \), \(a = 0 \).

\[
\lim_{x \to 0} (1 + x^2) = 1
\]

\[
\left| (1 + x^2) - 1 \right| = x^2
\]

We wish to find a \(\delta > 0 \) such that \(\left| (1 + x^2) - 1 \right| < \epsilon \) whenever \(|x - 0| < \delta \). We take \(\delta = \sqrt{\epsilon} \). For this choice of \(\delta \), if \(|x - 0| < \delta \),

\[
\left| (1 + x^2) - 1 \right| = x^2
\]

\[
< \delta^2
\]

\[
\leq \epsilon
\]
The importance of technical mastery is lost on some students, usually among the brightest. It may be necessary to emphasize for them the connection between mechanical skills and a conceptual grasp of the subject. Just as an accomplished musician can perceive the essence of a composition without stumbling over individual notes, the accomplished user of mathematics must have enough mechanical facility to be above distraction by mechanical details. The same remarks apply to the technical sections of Chapters 4 to 10.

A great deal of pedagogical consideration has gone into the composition of Section 3-3. The student should develop an operationally satisfactory way of working with the idea of limit. Memorization of Definition 3-2 is (certainly) not sufficient. Nevertheless, definitions are like the fixed stars. They give the student a firm criterion for knowing where he is.

We wish to cultivate the attitude of inquiry in which the student asks himself the following questions:

1. Do I have suitable approximations for \(L \)? (The answer should be easy since the approximations are usually taken at endpoints or at interior points of a defined interval.)
2. Do I have a candidate for \(L \)? If so, what is it?
3. How shall I test the candidate to see if it is the limit? Can I keep the error within any given tolerance \(\varepsilon \) by confining the points \(x \) to a suitable \(\delta \)-neighborhood of \(a \)?

It is easy to show that if, for an arbitrary \(\varepsilon > 0 \), there exists an control, \(\delta > 0 \), then any smaller positive number \(\delta^* \) will certainly suffice for the same \(\varepsilon \). For, let there exist a \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - a| < \delta \). Further, let \(\delta^* \) be any number, \(0 < \delta^* < \delta \).

It follows at once that for \(aM \) \(x \) such that \(0 < |x - a| < \delta^* \) we have \(0 < |x - a| < \delta^* \), whence, for all these \(x \), \(|f(x) - L| < \varepsilon \).

We are not concerned with the tangent \(c \) that gives the desired degree of control over the error tolerance \(\varepsilon \); rather, we seek any number \(\delta \) which is sufficient. The task is often simplified if we agree to restrict \(\delta \) to numbers less than \(1 \). This restriction simply means that we are focusing our attention on the deleted interval \(\{x: 0 < |x - a| < \delta < 1\} \).

We noted in Section 3-3 (Simplification) that frequently we are able to find a simple function \(c x \), \(c \) a positive constant. This
3.3

is the case because we are dealing primarily with functions which have continuous derivatives on a full neighborhood of a. From the fact that f is continuous, we have

$$L = \lim_{x \to a} f(x) = f(a).$$

From the fact that f' is continuous on a neighborhood we know that $|f'(x)|$ is also continuous on any closed interval centered at a within the neighborhood (composition of continuous functions, Section 3-6). Consequently, $|f'(x)|$ has a maximum value on the interval. (Extreme Value Theorem, Section 3-7).

Let K be any value greater than the maximum, so that $|f'(x)| < K$ on the interval. Now assuming $0 < |x - a| < \delta$, where this deleted δ-neighborhood lies within the interval there exists a value δ within the δ-neighborhood (Law of the Mean, Chapter 5) such that

$$|f'(\xi)(x - a)| = |f'(\xi)||x - a| < K|x - a| < K \delta.$$

For a brief explanation of "upper bound" and "lower bound" we refer you to Exercises 14, No. 4.

The method of bounding the denominator in Example 3.3 is given because it is a routine procedure conforming to the letter of our general outline. A short cut is to anticipate the problem of bounding x away from 0 at line (1). We may recognize at once that, since $|x - a| < \delta$, the distance from x to a is no larger than δ; we may then keep x away from 0 by requiring δ to be less than the distance $|x - a|$ from 0. To achieve this we may take $\delta < \frac{|x - a|}{2}$.

For your reference we list the following generalities:

1. The definition of limit employs only values of x different from a.
2. Limit is a local property (sometimes called a property in the small) involving the behavior of a function within any (deleted) neighborhood of a point.
3. The existence of the limit of \(f \) at a point implies that \(f \) is defined for some values of \(x \) in every deleted neighborhood of \(a \); that is, \(f(x) \) exists for some values of \(x \) arbitrarily near \(a \).

4. The limit is independent of the choice of the deleted neighborhood of \(a \).

5. The assertion that the function \(f \) has the limit \(L \) as \(x \) approaches \(a \) is not the same as saying \(f(a) = L \), nor is it the same as saying that \(L \) is an upper (lower) bound of \(f(x) \).

6. The value of \(\delta \) depends upon the value of \(\varepsilon \) (exception: \(f(x) = c \), \(c \) constant).

A careful distinction should be made between the analysis of a problem and its exposition. This is particularly necessary in the case of limit proofs. Steps 1 and 2 show how the solution is found: in Step 1 we examine the problem and set up a simplified model; in Step 2 we outline our plan of attack or strategy. Step 3 is the actual proof where it is verified that the solution has been found. An attempt should be made to develop elegance of style in presenting proofs.

Solutions Exercises 3-3

In the following epsilonic arguments, the analysis (Steps 1 and 2 in the pattern of the text) precedes the proof. We make liberal use of the inequalities

\[
|a| - |b| \leq |a + b| \leq |a| + |b|
\]

(Section A1-3). In the selection of \(\delta \) (in Numbers 4b - 4g) it is expedient to restrict \(\delta \) by the auxiliary conditions that \(\delta \leq 1 \). The proof (verification) is simplified by an application of Exercises Al-3a, Number 5b.

1. Prove \(\lim_{x \to 4} (\frac{1}{2} x - 3) = 1 \): obtain an upper bound \(g(\delta) \) for the absolute error and find \(\delta \) in terms of \(\varepsilon \).

In this problem we write out the steps in detail.

To prove that \(\lim_{x \to 4} (\frac{1}{2} x - 3) = 1 \).

For each \(\varepsilon > 0 \) obtain an \(\delta \).

Show: if \(0 < |x - 4| < \delta \), then \(|(\frac{1}{2} x - 3) - 1| < \varepsilon \).

Step 1.

(a) \(|(\frac{1}{2} x - 3) - 1| = |\frac{1}{2} x - 2| \)

\[\delta = \frac{1}{2} |x - 4| \]
(b) If \(0 < |x - 4| < \delta\),
\[
\left|\left(\frac{1}{2} x - 3\right) - (-1)\right| = \frac{1}{2} |x - 4| < \frac{1}{2} \delta.
\]

(c) Take \(g(\delta) = \frac{1}{2} \delta\).

Step 2. To make \(g(\delta) \leq \epsilon\), set \(\delta = 2\epsilon\).

Step 3. If \(\delta = 2\epsilon\) and \(0 < |x - 4| < \delta\), then
\[
\left|\left(\frac{1}{2} x - 3\right) - (-1)\right| = \frac{1}{2} |x - 4| < \frac{1}{2} (2\epsilon) = \epsilon.
\]

2. Give arguments that prove:

(a) \(\lim_{x \to a} c = c\), \(c\) any constant.

(b) \(\lim_{x \to a} x = a\).

(c) \(\lim_{x \to a} kx = ka\), \(k\) any constant.

(Use the results of Example 3-3a of the text for parts b and c.)

(a) \(\lim_{x \to a} c = c\), \(c\) constant.

Statement of problem:

For each \(\epsilon > 0\) we obtain a \(\delta > 0\) such that if \(0 < |x - a| < \delta\),
then \(|c - c| < \epsilon\).

Since \(|c - c| = 0\) is less than \(\epsilon\) for all \(\delta\), we arbitrarily take any positive number for \(\delta\), say \(\delta = 1\).

Then for \(\delta = 1\), whenever \(0 < |x - a| < \delta\), we have \(|c - c| < \epsilon\).

(b) \(\lim_{x \to a} x = a\).

From Example 3-3a we have
\[
\lim_{x \to a} (mx + b) = ma + b, \quad m \neq 0,
\]
whence for \(m = 1, b = 0\),
\[
\lim_{x \to a} x = a,
\]
3. Invoke the definition directly to prove the existence of the limit to Problem 2.

(a) See answer to Number c(a)

(b) \(\lim_{x \to a} x = a \)

We follow the pattern of Example 1, take \(\epsilon > 0 \).

To make \(|g(x) - l| < \epsilon \) we take \(\delta = \epsilon \).

Thus, if \(|x - a| < \delta \) then \(|g(x) - l| < \epsilon \).

(c) \(\lim_{x \to a} kx = ka, \quad k \text{ constant} \)

If \(k \neq 0 \), the result is a direct consequence of Example 3. If \(k = 0 \), the result follows from part (a).
(a) \[\lim_{x \to 0} \frac{1}{1 + x^2} = 1^+ \]

\[
\frac{1}{1 + x^2} - 1 = \frac{1 - (1 + x^2)}{1 + x^2} = \frac{-x^2}{1 + x^2} < \frac{-x^2}{x^2} \quad (0 < x \leq 1) \]

Take \(g(x) = x^2 \) and \(\epsilon = \frac{1}{4} \).

\[\text{Verification:} \]

If \(0 < |x| < \frac{\epsilon}{4} \), then \(|\frac{1}{1 + x^2} - 1| < \frac{1}{2} \).

(b) \[\lim_{x \to 3^-} \frac{x^2(x - 3)}{x - 3} = 9 \]

\[\frac{x^2(x - 3)}{x - 3} = x^2 \quad (x \neq 3) \]

Form: \(\frac{0 \cdot (x - 3)}{x - 3} \) and \(\frac{x - 3}{x - 3} \) (Exercise 4.1, p. 6).

At the point 3.

For \(\delta > 0 \), if \(0 < |x - 3| < \delta \), then \(|f(x) - 9| < \epsilon \).

and \(\epsilon = \frac{1}{4} \) (Exercise 4.1, p. 6).
(c) \(\lim_{x \to a} \frac{x^3 - a^3}{x - a} = 3a^2 \). We have \(\frac{x^3 - a^3}{x - a} = x^2 + ax + a^2 \) for \(x \neq a \), whence:

\[
\begin{align*}
|x^3 - a^3| & \leq |x - a|(|x^2 + ax + a^2|) \\
& \leq 2a|x|(|x| + |a|).
\end{align*}
\]
(a) \[\lim_{x \to 1} \frac{x + 1}{x^2 + 1} = 1. \]

\[
\left| \frac{x + 1}{x^2 + 1} - 1 \right| = \left| \frac{x - 1}{x^2 + 1} \right| = \frac{|x - 1|}{x^2 + 1} \leq 1
\]

For convenience, we choose the condition if \(|x - 1| < \frac{\varepsilon}{2} \).

According to the same reason, we have:

\[|x - 1| < \frac{\varepsilon}{2} \]

Verification:

If \(|x - 1| < \frac{\varepsilon}{2} \),

\[|x + 1 - 1| = |x| < \frac{\varepsilon}{2} \]

\[|x^2 + 1| > 1 \]

\[\left| \frac{x - 1}{x^2 + 1} \right| < \frac{\varepsilon}{2} \left(\frac{1}{2} \right) = \frac{\varepsilon}{4} \]

\[\left| \frac{x + 1}{x^2 + 1} - 1 \right| < \varepsilon \]
For convenience we restrict δ by requiring $\delta \leq 1$. Under this condition, if $0 < |x - 2| < \delta$,

$$\left| \frac{x^2 - 4}{x^3 - 8} - \frac{1}{3} \right| < \frac{1}{3} |(x - \varepsilon)(x + 1)|$$

Hence, for x sufficiently close to 2,

$$\varepsilon > \frac{1}{3}$$

We wish to solve $0 < x - 2 < \delta$ and $\delta < \frac{3}{4} \varepsilon$, where ε is to be determined. To set

$$\varepsilon = \frac{\delta}{3}$$

Thus,

$$|x - 2| = \delta$$

And the resulting value of δ is

$$\delta = \frac{3}{4} \varepsilon$$

where ε is given by

$$0 < \varepsilon < 1$$
Thus if \(b \leq 1 \) and \(0 < |x| < b \), we have

\[
\left| \frac{x^3 - 3x - b}{x + b} - \left(-\frac{b}{2} \right) \right| = \left| \frac{ca^3}{2(x + b)} \right|
\]

To satisfy \(c \), we take, for

We list...

Set \(c = \frac{b}{4} \)

In the last...
We require that \(\delta \leq \min(1, \frac{\epsilon}{3}) \). This condition is satisfied if we take \(\delta = \frac{\epsilon}{3} + \epsilon \).

Verification:

If \(\delta = \frac{\epsilon}{3} + \epsilon \) and \(\epsilon > 0 \),

\[
\left| \frac{4\epsilon^2}{x} - \frac{2\epsilon}{3} \right| = 0
\]
THEOREM. If L and M are limits of f at a, then \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a} f(x) = M \) and \(L = M \).

Proof. Suppose \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} f(x) = M \).

Hence both inequalities hold for

Thus \(0 < L - M < \epsilon \).

Sometimes this is called
Theorem 1.1 for the reason given above,
that is, \(\epsilon > 0 \).

In practice, \(\epsilon \) - \(\delta \) and \(\epsilon \) - \(\delta \) proofs are
sufficient that these are
convenient, and the
control \(\epsilon \) - \(\delta \).

This is the
control \(\delta \).

Here \(\delta \) is
condition.
Since \(f(x)g(x) - LM = (f(x) - L)g(x) + L(g(x) - M) \), it follows \(|f(x) - L| < \varepsilon_1 \),
\(|g(x) - M| < \varepsilon_2 \), and \(|g(x)| < \frac{3}{2} |M| \) - then

\[
|f(x)g(x) - LM| \leq |f(x) - L| \cdot |g(x)| \cdot |L| \cdot \frac{3}{2} |M|
\]

In order to remain within the \(\varepsilon \) -

\[
\varepsilon \leq \frac{3}{2} |M| \cdot |L|
\]

Then to cover the table where \(\varepsilon \)

For the case where \(\varepsilon \) and \(\frac{3}{2} |M| \cdot |L| \)
Mathematical induction (Appendix 3) is required for the proof of the corollaries to Theorems 3-4c and 3-4d, respectively. As the student works through these proofs he will gain a deeper understanding of the fundamental results and an appreciation of the power of mathematical induction.

In Lemma 3-4 (and frequently in the text), the neighborhood of a wherein $g(x)$ is close to a and $h(x)$ is close to b, for all x in the neighborhood of a. Thus, $|h(x)|$ is close to b, and $|g(x)|$ is close to a. Hence, $h(x)$ tends to zero as x tends to zero.

Squeeze Theorem (p. 41)

For every x,

$$|h(x)| \leq |g(x)| + |b|$$

whenever $|x - a| < \delta$.

\[\sum\]
Proof. We use the First Principle of Mathematical Induction (Appendix, 5.1), and take for A_n the assertion

$$\lim_{x \to a} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} f_i(a)$$

For $n = 1$ we have as assertion

$$\sum_{i=1}^{1} f_i(x) = f_1(x)$$

which is true by Theorem 5.41.

We now assume A_n true for n.

From the induction hypothesis, we have

$$\sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} f_i(a)$$

Now

$$\lim_{x \to a} \sum_{i=1}^{n} f_i(x) = \lim_{x \to a} \left(\sum_{i=1}^{n} f_i(a) \right)$$

which is true by Theorem 5.41.
2. Prove the corollary to Theorem 3-4d. For any polynomial function p,
$$\lim_{x \to a} p(x) - p(a)$$

Proof. To establish the corollary, we use the First Principle of Mathematical Induction to prove first that

We take for A_0 the number.

For $n = 1$, assertion A_1 is

which is true.

We now assume A_n holds, and we prove hypothesis A_{n+1}.

Now
as was to be shown.

3. Prove the corollary.

(a) Corollary 1. If f is continuous in a neighborhood of g, then g is continuous in a neighborhood of f.

Proof. Let

$$\frac{M}{2} < \varepsilon$$

Then

$$|f(x) - f(y)| < \varepsilon$$

In case e is nonnegative.

Proof. Let

$M > 0$. To ... contradiction.
If $M < 0$, then $-M > 0$ and

$$\lim_{x \to a} g(x) = -M > 0$$

Therefore, \(e^{-x} > \frac{1}{M} \) (Lemma 3.4)

or

contradicting the \(\epsilon, \delta \) dis

4. Prove the corollary 1.

(a) Corollary 1: \(\lim_{x \to a} f(x) = M \) and \(M \neq 0 \), then \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{M}{M} = 1 \)

Proof:

From 1

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} \frac{1}{g(x)} = M \cdot \frac{1}{-M} = -1$$
5. Find the following limits, giving at each step the theorem or corollary which justifies it.

(a) \[\lim_{x \to -3} (2 + x) = \lim_{x \to -3} 2 + \lim_{x \to -3} x \]
\[= 2 + 3 \]
\[= 5 \]

(b) \[\lim_{x \to -1} (5x - 2) = \lim_{x \to -1} 5x + \lim_{x \to -1} (-2) \]
\[= -5 + (-2) \]
\[= -7 \]

(c) \[\lim_{x \to 0} \left(\frac{a}{1 + |x|} \right) = b/|x| \]
\[\lim_{x \to 0} \left(\frac{a}{1 + |x|} \right) = \lim_{x \to 0} \frac{a}{1 + x} + \lim_{x \to 0} \left(\frac{-b}{x} \right) \]
\[= a \cdot \lim_{x \to 0} \frac{1}{1 + x} - b \cdot \lim_{x \to 0} \frac{1}{x} \]
\[= a \cdot 1 - b \cdot 0 \]
\[= a \]

(d) \[\lim_{x \to a} (x^3 + ax^2 + a^2x + a^3) = a^3 + a \cdot a^2 + a^2 \cdot a + a^3 \]

6. Find the following limits, giving at each step the theorem which justifies it.

(a) \[\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} \]
\[= \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} \]
\[= 1 \cdot \frac{3}{2} \]
\[= \frac{3}{2} \]
(b) \[\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 27} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)(x^2 + 3x + 9)} \]
\[= \lim_{x \to 3} \frac{x + 3}{x^2 + 3x + 9} \]
\[= \lim_{x \to 3} \frac{x}{x^2 + 3x + 9} \]
\[= \frac{6}{27} \]
\[= \frac{2}{9} \]

Corollary 2 to Theorem 3-4e, Corollary to Theorem 3-4d.

7. Find \(\lim_{x \to 1} \frac{x^n - 1}{x - 1} \), for \(n \) a positive integer. Verify first that
\[\frac{x^n - 1}{x - 1} = x^{n-1} + x^{n-2} + \ldots + x + 1 \quad (x \neq 1). \]

The verification of the divisibility is done by simple algebraic methods.

Now let \(p(x) = x^{n-1} + x^{n-2} + \ldots + x + 1 \).

\[\lim_{x \to 1} \frac{p(x)}{x - 1} = \lim_{x \to 1} p(x) = n. \]

Corollary to Theorem 3-4d.

8. Determine whether the following limits exist and, if they do exist, find their values.

(a) \(\lim_{x \to 1} \frac{1 + \sqrt{x}}{x - 1} \) does not exist.

\[\lim_{x \to 1} \frac{1 + \sqrt{x}}{x - 1} = \lim_{x \to 1} \frac{1}{1 - \sqrt{x}} \]
which does not exist.

(b) \(\lim_{x \to a} (x^n - a^n) \), \(n \) a positive integer, \(a \) a constant.

Let \(p(x) = x^n - a^n \).

\[\lim_{x \to a} p(x) = p(a) \]
\[= a^n - a^n \]
\[= 0. \]
(c) \(\lim_{x \to 1} \frac{\sqrt{x} + x + 1}{x + 1} = 2 \quad \text{and} \quad \lim_{x \to 1} (x + 1) = 0 \), hence \(\lim_{x \to 1} \frac{\sqrt{x} + x + 1}{x + 1} \) does not exist.

(d) \(\lim_{x \to 1} \frac{(x - 2)(\sqrt{x} - 1)}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 2)(\sqrt{x} - 1)}{(x + 2)(x - 1)} \)

\[
= \lim_{x \to 1} \frac{(x - 2)(\sqrt{x} - 1)}{(x + 2)(\sqrt{x} + 1)(\sqrt{x} - 1)}
\]

\[
= \lim_{x \to 1} \frac{x - 2}{x + 2} = \frac{1}{6}.
\]

(e) \(\lim_{x \to 1} \frac{\sqrt{x}}{1 - x} = \lim_{x \to 1} \frac{1}{1 + \sqrt{x}} = \frac{1}{2} \).

9. Using the algebra of limits show that \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = L \) if and only if \(\lim_{x \to a} f(x) - f(a) - L(x - a) = 0 \).

First, we note that \(\lim_{x \to a} g(x) = 0 \) if and only if \(\lim_{x \to a} |g(x)| = 0 \), and also that \(|g(x)| = \| g(x) \| \).

Let \(a = \frac{f(x) - f(a)}{x - a} - L \),

and \(b = \frac{f(x) - f(a) - L(x - a)}{|x - a|} \).

Then, \(|a| = |b| \).

Part 1. Assume \(\lim_{x \to a} B = 0 \). This implies that \(\lim_{x \to a} |A| = 0 \) and, thus,

\[\lim_{x \to a} A = 0 \quad \text{or} \quad \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = L. \]

Part 2. Assume \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = L \). This implies that \(\lim_{x \to a} A = 0 \) and, thus

\[\lim_{x \to a} |B| = 0 \quad \text{and} \quad \lim_{x \to a} B = 0. \]
10. Assume \(\lim_{x \to 0} \sin x = 0 \) and \(\lim_{x \to 0} \cos x = 1 \). Find each of the following limits, if the limit exists, giving at each step the theorem on limits which justifies it.

(a) \(\lim_{x \to 0} \sin^3 x = \left(\lim_{x \to 0} \sin^2 x \right) \left(\lim_{x \to 0} \sin x \right) \) (Theorem 3-4d)
\[= \left(\lim_{x \to 0} \sin x \right) \left(\lim_{x \to 0} \sin x \right) \left(\lim_{x \to 0} \sin x \right) = 0 \]

(b) \(\lim_{x \to 0} \tan x = \lim_{x \to 0} \frac{\sin x}{\cos x} \)
\[= \lim_{x \to 0} \sin x \quad \lim_{x \to 0} \cos x = 0 \] (Corollary 1 to Theorem 3-4e)

(c) \(\lim_{x \to 0} \sin 2x = \lim_{x \to 0} (2 \sin x \cos x) \)
\[= 2 \left(\lim_{x \to 0} \sin x \right) \left(\lim_{x \to 0} \cos x \right) = 2 \cdot 0 \cdot 1 = 0 \] (Theorem 3-4b, Theorem 3-4d)

(d) \(\lim_{x \to 0} \frac{\sin x}{\tan x} = \lim_{x \to 0} \frac{\sin x}{\sin x} \cdot \lim_{x \to 0} \cos x \)
\[= \lim_{x \to 0} \frac{\sin x}{\sin x} \cdot 1 = 1 \] (Theorem 3-4d)

(e) \(\lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x} \cdot \frac{1}{\lim_{x \to 0} 1 + \cos x} \)
\[= \lim_{x \to 0} \frac{\sin^2 x}{\sin x} \cdot \lim_{x \to 0} \frac{1}{\sin x} = 0 \left(\lim_{x \to 0} \frac{\sin^2 x}{\sin x} \right) = 0 \] (Theorem 3-4d)
(f) \[\lim_{x \to 0} \frac{\cos 2x}{\cos x + \sin x} = \lim_{x \to 0} \cos^2 x \cdot \lim_{x \to 0} \frac{\sin x}{\cos x + \sin x} \]

\[= \lim_{x \to 0} (\cos x - \sin x) \cdot \lim_{x \to 0} \cos x + \sin x \]

\[= \left[\lim_{x \to 0} \cos x - \lim_{x \to 0} \sin x \right] \cdot 1 \]

\[= 1 \]

Theorem 3.4d

\[\lim_{x \to 0} \cos x = 1 \]

Theorem 3.4c

Prove the corollaries to Theorem 3.4f.

(a) Corollary 1 (Sandwich Theorem). If \(h(x) \leq f(x) \leq g(x) \) in some deleted neighborhood of \(a \), and if \(\lim_{x \to a} h(x) = K \) and \(\lim_{x \to a} g(x) = M \), then, if \(\lim_{x \to a} f(x) \) exists, \(K \leq \lim_{x \to a} f(x) \leq M \).

Proof. Since \(f(x) \leq g(x) \) in a deleted neighborhood of \(a \), we have, by Theorem 3.4f, that

\[\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \]

Again, since \(h(x) \leq f(x) \) in a deleted neighborhood of \(a \), we have, by Theorem 3.4f, that

\[\lim_{x \to a} h(x) \leq \lim_{x \to a} f(x) \]

Thus,

\[\lim_{x \to a} h(x) \leq \lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \]

or

\[K \leq \lim_{x \to a} f(x) \leq M \]

(b) Corollary 2 (Squeeze Theorem). (Hint: Prove \(\lim_{x \to a} f(x) \) exists.)

Because the proof of the Squeeze Theorem does not follow immediately from Theorem 3.4f it is given in Section TC3.4 immediately preceding Solutions Exercises 3.4.
A12. For what integral values of m and n does \(\lim_{x \to a} \frac{x^m + a^m}{x^n + a^n} \) exist? Find the limit for these cases.

Part 1. For $a = 0$:

(i) if $m > n$

\[
\lim_{x \to 0} \frac{x^m}{x^n} = \lim_{x \to 0} x^{m-n} = 0 ;
\]

if $m = n$,

\[
\lim_{x \to 0} \frac{x^m}{x^n} = 1.
\]

(ii) if $m < n$ does not exist.

Part 2. For $a
eq 0$

(1) Thus, for $a = 0$,

\[
\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \frac{a^m}{a^n} = a^{m-n} ;
\]

\[
\lim_{x \to a} \frac{x^n}{2a^n} = 0 ,
\]

\[
\lim_{x \to a} \frac{x^m}{2a^m} = 0 ,
\]

\[
\lim_{x \to a} \frac{x^n + a^n}{x^m + a^m} = 0 ;
\]

(11) For $a / 0$, odd, m even, \(\lim_{x \to a} \frac{x^m}{x^n + a^n} \) does not exist.
(iii) For \(a \neq 0 \), \(n \) odd,

\[
\lim_{x \to a} \frac{m}{n + x} = \lim_{x \to a} \frac{(x-1)^{m-1} - ax^{m-2} + \ldots + a^{m-1}}{x^n - ax^{n-2} + \ldots + a^{n-1}}.
\]

3. Prove that, if \(\lim f(x) = 0 \) and \(g(x) \) is bounded in a neighborhood of \(x = a \), then \(\lim g(x) = 0 \).

Proof: Since \(g(x) \) is bounded there exists a positive number \(N \) such that

\[
N < g(x) < N
\]

in a neighborhood of \(x = a \). Consequently

\[
|f(x)| \leq f(x)g(x) \leq N \cdot |f(x)|
\]

in a neighborhood of \(x = a \).

By the Squeeze Theorem,

\[
\lim_{x \to a} f(x)g(x) = 0.
\]

14. (a) Verify that if \(\lim g(x) \) exists and \(\lim g(x) = 0 \), then

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}
\]

or

\[
0 = \lim f(x).
\]

By Theorem 3-4d.
(b) Give examples of functions \(f \) and \(g \) for which \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \) yet the limit of their quotient does not exist.

If \(f(x) = x^m \) and \(g(x) = x^n \), \(m < n \), \(\frac{f(x)}{g(x)} \) does not have a limit at \(0 \). Of course, many other examples exist.

15. Prove that if \(\lim g(x) = 0 \) and \(\lim f(x) = 0 \) do not exist, then the limit of the quotient \(\frac{f(x)}{g(x)} \) does not exist.

If \(\lim_{x \to a} f(x) \) does exist and \(\lim_{x \to a} g(x) = 0 \), then \(\lim_{x \to a} f(x) = 0 \) by Number 14a. Contradiction.

16. The right-hand limit at a point \(P(p, f(p)) \) of a function is the limit of the function at the point \(P \) for a right-hand domain \((p, p + \delta) \). Similarly, for the left-hand limit, the domain is restricted to \((p - \delta, p) \). We denote them symbolically by \(\lim_{x \to P^+} f(x) \) and \(\lim_{x \to P^-} f(x) \) respectively.

In particular, \(\lim_{x \to 2^+} x = 2 \), \(\lim_{x \to 2^-} x = 2 \). Determine the indicated limits, if they exist, of the following:

(a) \(\lim_{x \to 2^+} \frac{[x]^2 - 4}{x^2 - 4} \)

For \(x \in (2, 2 + \delta) \), \(0 < \delta < 1 \),
\[[x]^2 - 4 = ([x] - 2)([x] + 2) = 0 \quad \Rightarrow \quad h = 0 \]

Thus
\[\lim_{x \to 2^+} \frac{[x]^2 - 4}{x^2 - 4} = \lim_{x \to 2^+} 0 = 0 \]

(b) \(\lim_{x \to 2^-} \frac{[x]^2 - 4}{x^2 - 4} \)

For \(x \in (2 - \delta, 2) \), \(0 < \delta < 1 \),
\[[x]^2 - 4 = (-1)(3) = -3 \]

Thus
\[\lim_{x \to 2^-} \frac{[x]^2 - 4}{x^2 - 4} = \lim_{x \to 2^-} \frac{-3}{x^2 - 4} \]

does not exist.
(c) \(\lim_{x \to 3^+} (x - 2 + [2 - x] - [x]) \).

For \(x \in (3, 3 + \delta), 0 < \delta < 1 \),
\[
[2 - x] = 2 \quad \text{and} \quad [x] = 3.
\]
Thus
\[
\lim_{x \to 3^+} (x - 2 + [2 - x] - [x]) = \lim_{x \to 3^+} (x - 2 - 2 - 3) = -4.
\]

(d) \(\lim_{x \to 3^-} (x - 2 + [2 - x] - [x]) \).

For \(x \in (3 - \delta, 3), 0 < \delta < 1 \),
\[
[2 - x] = -1 \quad \text{and} \quad [x] = 2.
\]
Thus,
\[
\lim_{x \to 3^-} (x - 2 + [2 - x] - [x]) = \lim_{x \to 3^-} (x - 2 - 1 - 2) = -2.
\]

(e) \(\lim_{x \to 0^+} \left(\frac{b}{x} - \frac{b}{a} \right), a > 0, b > 0 \).

Since \(b > 0 \), we can write \(\frac{b}{x} = n + r \), where \(n = \frac{b}{x} \) is a non-negative integer and \(0 < r < 1 \). Thus \(\left[\frac{b}{x} \right] = n \), \(x = \frac{b}{n + r} \), whence
\[
\frac{b}{x} = \frac{bn}{a(n + r)} = \frac{b}{a\left(1 + \frac{r}{n}\right)}.
\]
As \(x \to 0^+ \), \(n \) increases without bound and \(\frac{r}{n} \to 0 \). Since \(a > 0 \),
\[
\left[\frac{b}{x} \right] = 0 \quad \text{for} \quad 0 < x < a. \quad \text{Thus,}
\]
\[
\lim_{x \to 0^+} \left(\frac{b}{x} - \frac{b}{a} \right) = \lim_{x \to 0^+} \frac{b}{x} - \lim_{x \to 0^+} \frac{b}{a} = \frac{b}{a} - \lim_{x \to 0^+} 0 = \frac{b}{a}.
\]
(f) \(\lim_{x \to 0} \left(\frac{b}{x} - \frac{b}{x} \right) \), \(a > 0, b > 0 \).

The first term is similar to the first term in (e) except that \(n \) is a negative integer. Since \(a > 0 \), \(\frac{x}{a} = -1 \) for \(0 < |x| < a \); however, \(\frac{b}{x} \) increases without bound as \(x \to 0^{+} \). Thus

\[\lim_{x \to 0} \left(\frac{b}{x} - \frac{b}{x} \right) \] does not exist.

(g) \(\lim_{x \to 0} \frac{\sqrt{x}}{\sqrt{4 + \sqrt{x}}} \)

\[= \lim_{x \to 0} \frac{\sqrt{4 + \sqrt{x}}}{\sqrt{4 + \sqrt{x}}} + 2 \]

\[= \lim_{x \to 0} \sqrt{x} \cdot (\sqrt{4 + \sqrt{x}} + 2) \]

\[= 4. \]

TC3-5. The Idea of Continuity.

The idea of continuity seems to be intuitively clear. A function that can be represented graphically as an unbroken curve is, of course, continuous. On the other hand, there are continuous functions with such bizarre behavior that their graphs cannot be accurately described by a drawing.

Example TC3-5. Consider the function \(f \) given by

\[f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \]

(See Figure TC3-5a.)

Since \(\lim_{x \to 0} f(x) = f(0) = 0 \), \(f \) is continuous at 0; however, we cannot draw the graph of \(f \) in the vicinity of the origin because \(f \) oscillates infinitely often in any neighborhood of \(x = 0 \).
In this section, we are only concerned with local properties of a function.

The concept of continuity at a point involves the behavior of a function in a neighborhood of the given point; hence the function must be defined for some \(x \) within every \(\delta \)-neighborhood of the point. We can think of Definition 3-5 in another way: \(f \) is continuous at \(a \) if, corresponding to each \(\varepsilon \)-neighborhood of \(f(a) \), say \(N_\varepsilon \), there exists a \(\delta \)-neighborhood of \(a \) whose image is contained in \(N_\varepsilon \). (Note that \(a \) is not deleted from the \(\delta \)-neighborhood of \(a \).)

There are various kinds of discontinuities of a function. It is possible for a function to be discontinuous at all points. For example, the function given by

\[
f(x) = \begin{cases}
0 & \text{if } x \text{ rational} \\
1 & \text{if } x \text{ irrational}
\end{cases}
\]

is not continuous for any \(x \) (at \(x \) rational or at \(x \) irrational).

The function \(f : x \to \frac{1}{x} \) is discontinuous at \(x = 0 \). This discontinuity cannot be removed by assigning a value to \(f(x) \) at \(x = 0 \) because as \(x \) approaches 0 the value of \(f(x) = \frac{1}{x} \) increases without bound; i.e., \(\lim_{x \to 0} \frac{1}{x} \) does not exist. The function \(f : x \to \sin \frac{1}{x} \) is also discontinuous at \(x = 0 \). (See Figure TC3-5b.) The discontinuity is not removable because near \(x = 0 \) the function oscillates between 1 and -1, i.e., \(\lim_{x \to 0} \sin \frac{1}{x} \) does not exist.
If a function \(g \) is not continuous at \(a \) but is defined for all values of \(x \) in a neighborhood of \(a \) (including \(a \)) and if \(\lim_{x \to a} g(x) = L \), then it is possible to remove the discontinuity by reassigning a different functional value at \(a \), namely \(g(a) = L \).

Solutions Exercises 3-5

1. Use the formal definition of continuity to show that each of the following functions is continuous at \(x = 1 \). (See Exercises 3-3, Nos. 4d and 4g.)

 (a) \(f : x \mapsto \frac{x^4 - 1}{x^2 + 1} \)

 In Exercises 3-3, Number 4d, we proved
 \[
 \lim_{x \to 1} \frac{x^4 - 1}{x^2 + 1} = 1 \]
 whence, since \(f(1) = 1 \), \(f \) is continuous at 1.

(b) \(g : x \mapsto \frac{4x^2 - 3x - 1}{x + 2} \)

 In Exercises 3-3, Number 4g, we proved
 \[
 \lim_{x \to 1} \frac{4x^2 - 3x - 1}{x + 2} = 0 \]
 whence, since \(g(1) = 0 \), \(g \) is continuous at 1.
2. For what value(s) of \(x \) is each of the following functions discontinuous? Justify your answer.

(a) \(f : x \to \frac{x}{x} \)

Since \(f(x) \) is not defined here, \(f \) is discontinuous at 0.

(b) \(f : x \to \frac{2}{x^2 + 1} \)

The function \(f \) is discontinuous at \(-1\); \(f \) is not defined at \(x = -1 \) and, in addition, \(\lim_{x \to -1} f(x) \) does not exist.

3. Which of the following functions are discontinuous at \(x = -1 \)? Justify your answer.

(a) \(f : x \to \frac{x^3 - 1}{x^3 + 1} \) is discontinuous at \(-1\) since \(f(-1) \) is not defined.

(b) \(g : x \to \frac{1}{1 + x^2} \) is continuous at \(-1\) since \(\lim_{x \to -1} g(x) = g(-1) = \frac{1}{2} \).

(c) \(h : x \to \frac{1}{1 - x^2} \) is discontinuous at \(-1\) since \(h(-1) \) is not defined (and \(\lim_{x \to -1} h(x) \) does not exist).

4. Discuss the points of discontinuity of \(f : x \to [x] + [-x] \). (See Exercises 3-1, No. 1.)

For all integers \(n \), \(\lim_{x \to n} f(x) \) does not exist; hence \(f \) is discontinuous at all points \(x = n \).

5. Prove that \(f : x \to x - [x] \) is continuous for every \(x \), which is not an integer, and discontinuous for integral values of \(x \).

For any \(x \) such that \(n < x < n + 1 \) \((n \text{ an integer)} \),

\(f(x) = x - n \); thus \(f \) is continuous.

Since \(f(n + 1) = 0 \) and

\[\lim_{x \to n+1} (x - n) = 1, \]

\(f \) is discontinuous at integral values of \(x \).
6. For each of the following functions define a new function which agrees with the given one for \(x \neq a \) and is continuous at \(x = a \).

(a) \(f : x \to \frac{x^3 - 1}{x^2 - 1}, \ a = 1 \)
\[
f(x) = \frac{x^3 - 1}{x^2 - 1}
\]
\[
g(x) = \frac{x^2 + x + 1}{x + 1}
\]

(b) \(f : x \to \frac{x^2 - 4}{x^3 - 8}, \ a = 2 \)
\[
f(x) = \frac{x^2 - 4}{x^3 - 8}
\]
\[
g(x) = \frac{x + 2}{x^2 + 2x + 4}
\]

(c) \(f : x \to \frac{x^n - 1}{x - 1}, \ a = 1, \ n \) an integer.
\[
f(x) = \frac{x^n - 1}{x - 1}
\]
\[
g(x) = \frac{x^{n-1} + x^{n-2} + \ldots + x + 1}{x - 1}
\]

(d) \(f : x \to \frac{1 - \sqrt{x}}{1 - x}, \ a = 1 \)
\[
f(x) = \frac{1 - \sqrt{x}}{1 - x}
\]
\[
g(x) = \frac{1}{1 + \sqrt{x}}
\]

(e) \(f : x \to \frac{(x + 2)(\sqrt{x} - 1)}{x^2 + x - 2}, \ a = 1 \)
\[
f(x) = \frac{(x + 2)(\sqrt{x} - 1)}{x^2 + x - 2}
\]
\[
g(x) = \frac{x - \sqrt{x}}{(x + 2)(1 + \sqrt{x})}
\]

7. For each of the following functions, if possible, define a new function which agrees with the given one for \(x \neq 0 \) and is continuous at \(x = 0 \). If this is not possible, state why.

(a) \(f : x \to \frac{1}{x} \), \(a = 1 \)
\[
f(x) = \frac{1}{x}
\]
\[
g(x) = \frac{1}{1}
\]

(b) \(f : x \to \frac{x}{|x|}, \ a = 1 \)

Impossible, since \(\lim_{x \to 0} f(x) \) does not exist.

(c) \(f : x \to \frac{1}{|x|}, \ a = 1 \)

Impossible, since \(\lim_{x \to 0} f(x) \) does not exist.
8. For each of the following functions show that no function which agrees with the given one for \(x \neq a \) can be so defined as to be continuous at \(x = a \).

(a) \(f : x \rightarrow \frac{1 + \sqrt{x}}{1 - x} \), \(a = 1 \)

\[\lim_{x \to 1} f(x) \text{ does not exist (Exercises 3-4, No. 8a)}. \]

(b) \(g : x \rightarrow \frac{\sqrt{2 + x + 1}}{x + 1} \), \(\Delta = -1 \)

\[\lim_{x \to -1} g(x) \text{ does not exist (Exercises 3-4, No. 8c)}. \]

9. For \(x \neq 0 \), let \(f(x) = \frac{1}{x} \).

(a) Sketch the graph of \(f \) over the closed interval \([2, \frac{1}{6}]\) and \([\frac{2}{3}, 2]\).

(b) What happens to \(f(x) \) as \(x \) approximates 0 by positive values? by negative values?

\[|f(x)| \text{ increases without bound as } x \text{ approaches } 0. \quad (\text{For } x < 0, \quad f(x) < 0). \]
(c) Can you define a function which agrees with \(f \) for \(x \neq 0 \) and which is continuous at \(x = 0 \)?

No: \(\lim_{x \to 0} f(x) \) does not exist.

10. If \(f \) is an increasing function whose domain is the set of all real numbers, and if \(f \) is not continuous at \(a \), what can you say of

\[\lim_{x \to a} |f(x) - f(a)|? \]

If \(\lim_{x \to a} f(x) = L \) \((L \neq a)\), then \(\lim_{x \to a} |f(x) - f(a)| = |L - f(a)| \).

If \(\lim_{x \to a} f(x) \) does not exist, \(\lim_{x \to a} |f(x) - f(a)| \) generally does not exist. For an example where it does exist, consider the following. Let \(a = 0 \) and

\[f(x) = \begin{cases} \frac{1}{x} & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational and } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases} \]

Then \(\lim_{x \to 0} |f(x) - f(0)| = 1 \).

11. For every real \(x \), let \(N(x) \) denote the number of distinct real square roots of \(x \), i.e., the number of distinct real solutions of \(y^2 = x \).

Where does \(N \) have a limit? What is the limit? Where is \(N \) continuous?

Let \(P(x) = (N(x) - 1)^2 \). Where does \(P \) have a limit? What is the limit? Where is \(P \) continuous? How does \(P \) differ from the function \(f: x \rightarrow \frac{1}{x} \) from the function \(g: x \rightarrow x^2 \)?

First, let us describe \(N \).

For \(x < 0 \), \(y^2 = x \) has no real solution, so \(N(x) = 0 \);
for \(x = 0 \), \(y^2 = 0 \) has one real solution, so \(N(x) = 1 \);
for \(0 < x \), \(y^2 = x \) has two real solutions, so \(N(x) = 2 \).

\(N \) has a limit at every \(x_0 \neq 0 \). If \(x_0 < 0 \), \(\lim_{x \to x_0} N(x) = 0 = N(x_0) \).

If \(0 < x_0 \), \(\lim_{x \to x_0} N(x) = 2 = N(x_0) \). Thus \(N(x) \) is continuous for all \(x \neq 0 \). Since \(\lim_{x \to 0} N(x) \) does not exist, \(N(x) \) is not continuous at \(0 \).

\[P(x) = (N(x) - 1)^2 \]

Then

\[P(x) = \begin{cases} 1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ 1, & \text{if } 0 < x \end{cases} \]
Since \(\lim_{x \to x_0} P(x) = P(x_0) \), \(x_0 \neq 0 \), \(P \) is continuous at all \(x_0 \neq 0 \).

Since \(\lim_{x \to 0} P(x) = 1 \neq P(0) \), \(P \) is discontinuous at \(0 \).

\(P(0) \neq f(0) \). \(P \) is defined at \(x \neq 0 \) whereas \(g \) is not.

12. Each of the functions \(f \), \(g \), and \(h \) is defined for all real \(x \). Which of the functions are not continuous at \(0 \)?

\[
\begin{align*}
 f(x) & \begin{cases} 0, & x \text{ rational} \\ 1, & x \text{ irrational} \end{cases} \\
 g(x) & \begin{cases} 0, & x \text{ rational} \\ x, & x \text{ irrational} \end{cases} \\
 h(x) & \begin{cases} 1, & x \text{ rational} \\ -1, & x \text{ irrational} \end{cases}
\end{align*}
\]

The functions \(f \) and \(h \) are not continuous at \(0 \). Since \(\lim_{x \to 0} g(x) = g(0) \), \(g \) is continuous at \(0 \).

13. Give an example of a function which is not continuous at \(0 \) but whose absolute value is continuous at \(0 \).

Consider the function \(h \) in Number 12.

A14. (a) Show that the function \(f \) of Number 12 is periodic and determine all possible periods.

Any rational number \(x \) is a period. This follows since \(x + r \) is rational if \(x \) is rational and \(x + r \) is irrational if \(x \) is irrational. So

\[
\begin{align*}
 f(x + r) & = 0 = f(x), \text{ for } x \text{ rational}, \\
 f(x + r) & = 1 = f(x), \text{ for } x \text{ irrational}.
\end{align*}
\]

(b) Show that every nonconstant periodic function which is continuous, at least at one point, has a fundamental (smallest) period.

The proof here is indirect. We assume that there is not a smallest period and obtain a contradiction. Without loss of generality, we take the point of continuity at \(x = 0 \). Since the function is
nonconstant, it must take on a value other than \(f(0) \) somewhere, say at \(x = a \). Let \(p \) be an arbitrarily small period; then

\[
f(n) = f(a - np), \quad n = 1, 2, 3, \ldots
\]

Since \(p \) is arbitrarily small, \(a - np \) can be made arbitrarily close to \(0 \). This is impossible since the function is continuous at \(x = 0 \) (it must take on values close to \(f(0) \) in the neighborhood of \(x = 0 \)).

15. If \(f(x) = \begin{cases} \frac{1}{x}, & \text{x rational, } x = \frac{p}{q} \text{ (p, q relatively prime)} \\ 0, & \text{x irrational.} \end{cases} \)

Show that \(f \) is continuous for all irrational \(x \), and discontinuous for all rational \(x \).

The point of this exercise is to show that continuity at a point is not the concept appropriate to our geometrical sense. It is not continuity at a point which provides a base for the calculus, but continuity on an interval. This example shows that a function may have both points of continuity and discontinuity in every interval of its domain.

Solution. Since every interval contains both rational and irrational points (Section A1-5), it is easily verified that \(f \) is discontinuous at rational points \(x = \frac{p}{q} \). Namely, every neighborhood of \(\frac{p}{q} \) contains at least one irrational point \(r \); hence,

\[
|f(r) - f(\frac{p}{q})| = |0 - \frac{1}{r}| > \frac{1}{2q}
\]

Thus the condition for the continuity of \(f \) (Definition 3-5) is violated for \(e = \frac{1}{2q} \).

The proof of continuity at irrational points is subtler. In effect, we show that to approximate an irrational number closely by rational numbers, we cannot use rational numbers with small denominators. For the proof we observe for any real number \(r \) and fixed denominator \(m \), there is precisely one numerator \(n \) for which

\[
\left| n - \frac{r}{m} \right| \leq \frac{1}{m}
\]

(namely \(n = \lfloor mr \rfloor \)). For any numerator \(k \) other than, \(n \) and \(n + 1 \) we
must have

(1) \[\lim_{x \to \infty} \frac{f(x)}{x} = \frac{1}{m} \]

(see Figure). Furthermore, if \(q > m \), it follows from (1) that

\[\left| \frac{k}{m} - q \right| > \frac{1}{q} \]

Thus for each number \(m = 1, 2, 3, \ldots, q \), there are at most two rational numbers of the form \(\frac{k}{m} \) for which \(\left| \frac{k}{m} - q \right| < \frac{1}{q} \). At most \(2q \) such numbers in all. If \(r \) is irrational, then we let \(\delta_q \) be the closest distance of approach to \(r \) by rational number with denominator no larger than \(q \):

\[\delta_q = \min(\left| \frac{k}{m} - r \right|, \text{for any integer } 1 \leq m \leq q) \]

Since \(\frac{k}{m} \) can be restricted to the finite set for which \(\left| \frac{k}{m} - r \right| < \frac{1}{q} \), the minimum exists. Since \(r \) is irrational, it cannot be equal to any of the members of this finite set, so \(\delta_q > 0 \).

To prove continuity at \(x = r \), if \(r \) is irrational, let \(\varepsilon > 0 \) be any positive number and choose \(q > \frac{1}{\varepsilon} \). Then for any rational number \(\frac{k}{m} \) satisfying

\[\left| \frac{k}{m} - r \right| < \delta_q \]

we must have \(m > q \), hence

\[\left| f\left(\frac{k}{m} \right) - f(r) \right| = \left| \frac{k}{m} - r \right| = \frac{1}{q} \]

\[< \frac{1}{q} \]

\[< \varepsilon \]
TC3-6. Properties of Functions Continuous at a Point.

A geometric interpretation of composition of functions serves to clarify the idea for some students. This is particularly true if the student actually obtains a sketch of the graph of the composite function \(fg \) from the graphs of \(f \) and \(g \). The restrictions imposed upon the domain of \(fg \) become apparent.

We start with the graphs of \(f \) and \(g \) which are given. (Figure TC3-6a.)

The line \(y = x \) will be used to reflect points on the x-axis. Thus, for example, for any given point \((c,d)\), we may locate the point \((d,0)\) which is the projection of the point \((d,0)\) on the x-axis (Figure TC3-6b).
We select any point \(x_1 \) in the domain of \(g \) and locate the point \((x_1, g(x_1)) \) on the graph of \(g \). Then, using the line \(y = x \) as above, we locate the point \((g(x_1), 0) \) and, thereafter, the point \((g(x_1), f(g(x_1))) \) on the graph of \(f \). (Figure TC3-6c).

Finally, we locate the point of intersection of the lines \(x = x_1 \) and \(y = f(g(x_1)) \). This point, \((x_1, f(g(x_1))) \), is on the graph of \(fg \). (Figure TC3-6d).
We observe that the points \((x_1, g(x_1)), (x_1, f(x_1)), (g(x_1), f(x_1)), \) and \((x_1, f(g(x_1))) \) form a rectangle. The construction, then, can be described as a sliding rectangle (of changing dimensions) with one vertex on the graph of \(g \), one vertex on the line \(y = x \), one vertex on the graph of \(f \); and the fourth vertex on the graph of \(fg \). The construction is unique when the first three vertices are obtainable; in other words, \(x_1 \) must be in the domain of \(g \) and \(g(x_1) \) must be in the domain of \(f \). A sketch of the graph is shown in Figure TC3-6e. The domain of \(fg \) (indicated on the x-axis) is the closed interval \([a, b]\). Note that the interval \([a, b]\) is in the domain of \(g \) and the interval \([g(a), g(b)]\) is in the domain of \(f \).

Figure TC3-6e

In Section 3-4 we proved that the existence of the limit is preserved under the functional operations of addition, multiplication, and division (under certain restrictions). In this section we prove that composition of functions preserves continuity, and hence the existence of the limit. If we compare the statements in Theorem 3-6e and Exercises 3-6b, No. 5, we note that the theorem includes the additional hypothesis that \(g \) is defined at \(a \) and \(g(a) = b \). This distinction is shown in Figures 3-6f and 3-6g.
We observe that, in either case, the function \(fg \) is continuous at \(x = a \) under the hypothesis that \(\lim_{x \to a} g(x) = b \) and \(f \) is continuous at \(x = b \). It is immaterial whether \(g \) is defined at \(x = a \) or, if defined, what its value is at \(x = a \). In other words, we may delete the additional hypothesis of Theorem 3-6e (\(g \) is defined at \(a \) and \(g(a) = b \)) without disturbing the continuity of \(fg \).

The theorems of this section provide means of establishing continuity of functions constructed by rational operations and composition. Frequently, it is possible, and more convenient, to establish continuity by establishing differentiability.

At present, we are only concerned with local properties of a function.

Solutions Exercises 3-6e

1. Prove that \(f: x \mapsto x^2 \) is continuous at \(x = a \), where \(a \) is any real number.

 \(g: x \mapsto x \) is continuous at \(a \), for every real number \(a \) (since \(\lim_{x \to a} g(x) = g(a) \), for every real \(a \)). Thus, \(f(x) = g(x) \cdot g(x) \) is continuous at every real \(a \) by Theorem 3-6b.

2. **(a)** Prove Theorem 3-6b using the limit theorems as in the proof of Theorem 3-6a.

 Theorem 3-6b. If the functions \(f \) and \(g \) are continuous at \(x = a \), then so is the function \(h \) defined by \(h(x) = f(x) \cdot g(x) \). That is, the product of two functions continuous at \(x = a \) is also continuous there.

 \[
 \begin{align*}
 \lim_{x \to a} h(x) &= \lim_{x \to a} [f(x)g(x)] \\
 &= [\lim_{x \to a} f(x)][\lim_{x \to a} g(x)] \\
 &= [f(a)][g(a)] \\
 &= h(a).
 \end{align*}
 \]

 Hence, \(h \) is continuous at \(x = a \), by the definition of continuity.
(b) Prove Theorem 3-6c in the same way.

Theorem 3-6c. If the functions f and g are continuous at $x = a$, and if $g(a) \neq 0$, then the function h defined for $g(x) \neq 0$ by

$$h(x) = \frac{f(x)}{g(x)}$$

is continuous at $x = a$. In other words, the quotient of continuous functions is continuous if no division by zero is involved.

\[
\lim_{x \to a} h(x) = \lim_{x \to a} \frac{f(x)}{g(x)}
\]

Definition of h

\[
= \lim_{x \to a} \frac{f(x)}{g(x)}
\]

Corollary 1 to Theorem 3-6e

\[
= \frac{f(a)}{g(a)}
\]

Definition 3-5

Hence by Definition 3-5, h is continuous at a.

3. Prove Theorems 3-6b and 3-6c directly from Definition 3-5:

Theorem 3-6b. The proof is the same as that of Theorem 3-6d with L and M replaced by $f(a)$ and $g(a)$, respectively, and in the last step $f(x) \cdot g(x)$ and $f(a) \cdot g(a)$ replaced by $h(x)$ and $h(a)$, respectively.

Theorem 3-6c. The proof is the same as that of Corollary 1 to Theorem 3-6e with L and M replaced by $f(a)$ and $g(a)$, respectively, and in the last step, $\frac{f(x)}{g(x)}$ and $\frac{f(a)}{g(a)}$ replaced by $h(x)$ and $h(a)$, respectively. (See Exercises 3-4, No. 4.)

A 4. (a) If the function f is continuous at $x = a$ and the function g is not continuous at $x = a$, show that $f + g$ is not continuous at $x = a$.

Suppose the function $f + g$ were continuous at $x = a$. Since f is continuous at $x = a$, so is f (Theorem 3-6b). Hence, $(f + g) + (-f)$ is continuous at $x = a$, by Theorem 3-6a. But $(f + g) + (-f) = g$, so g is continuous at $x = a$, a contradiction.
(b) Can \(f + g \) be continuous at \(x = a \) if neither \(f \) nor \(g \) is continuous at \(x = a \)? Illustrate your answer by giving an example.

The given conditions do not determine whether \(f + g \) is continuous at \(a \). (In general, it would not be continuous). If \(f : x \rightarrow \text{sgn } x \) and \(g : x \rightarrow -\text{sgn } x \), then \(f + g : x \rightarrow 0 \) is continuous at \(a \). Number 5 is another example.

(c) Repeat the above using \(f \cdot g \) for \(f + g \).

We first consider the continuity of \(f \cdot g \) at \(a \), given that \(f \) is continuous at \(a \) and \(g \) is not continuous at \(a \).

Part 1. Consider the case, \(f(a) \neq 0 \). Suppose \(f \cdot g \) is continuous at \(a \), then the function \(\frac{f}{f} \cdot g \), defined for \(f(x) \neq 0 \), is continuous at \(a \) (Theorem 3-6c). But \(\frac{f}{f} \cdot g = g \), so \(g \) is continuous at \(a \); a contradiction.

Part 2. \(f(a) = 0 \). The given conditions do not determine whether \(f \cdot g \) is continuous at \(a \). For example, if \(f : x \rightarrow x \) and \(g : x \rightarrow \frac{1}{x} \), then \(f \cdot g : x \rightarrow \frac{1}{x} \) is not continuous at \(0 \). On the other hand, if \(f : x \rightarrow x^2 \) and \(g : x \rightarrow \frac{1}{x} \), then \(f \cdot g \) is continuous at \(0 \).

Next, we consider the continuity of \(f \cdot g \) at \(a \), given that neither \(f \) nor \(g \) is continuous at \(a \). The given conditions do not determine whether \(f \cdot g \) is continuous at \(a \). For example,

\[
\begin{align*}
\text{if } f & : x \rightarrow \begin{cases}
 1, & x \neq 0 \\
 k, & x = 0
\end{cases} \quad \text{and} \quad g : x \rightarrow \begin{cases}
 \frac{1}{x}, & x \neq 0 \\
 k, & x = 0
\end{cases}, \\
k > 1 \text{, then } f \cdot g : x \rightarrow 1 \text{ is continuous at } 0.
\end{align*}
\]

5. Determine where the function \(f : x \rightarrow \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} \) is continuous.

\(f \) is everywhere continuous.

The functions

\[
\begin{align*}
g : x & \rightarrow \lfloor x \rfloor & \text{Example 3-5b}
\end{align*}
\]
are continuous for all non-integrable values there, (Theorem 3-6).

To verify the continuity of

\[\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

Since \(f(x) = x \), the

1. Prove that

\[\lim_{x \to 0} \frac{x}{x} = 1 \]

And

\[(\lim_{x \to a} f(x)) = f(\lim_{x \to a} x) \]

Example: If

Corollary to Theorem

No. 20
(c) From the result of (b) deduce that
\[m = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = nx^{n-1}. \]

State which limit theorems you are using.

Since \(r(x) \) is a polynomial in \(h \), we have a corollary to Theorem 3.6 to deduce that
\[\lim_{h \to 0} \frac{r(h) - r(0)}{h} = r'(0). \]

(d) Use Theorem 3.6 of a is any real number.

Since \(f(x) \) is any real number.

Theorem 3.6:

3. Let \(r(x) \) be the function of the form:

(a) \(r_1(x) = \frac{1}{x - 1} \)

(b) \(r_2(x) = \frac{1}{x} \)

(c) \(r_3(x) = e^x \)

(d) \(r_4(x) = \sin x \)

(e) \(r_5(x) = x^2 \)

(f) \(r_6(x) = \cos x \)

(g) \(r_7(x) = \tan x \)

(h) \(r_8(x) = \ln x \)

4. Assume that the function is continuous for all \(x \). Find:

(a) \(f(\pi/2) = \sin(\pi/2) = 1 \)

(b) \(f(\pi/4) = \tan(\pi/4) = 1 \)
(c) \(f(x) = \frac{1}{4 - 3 \sin^2 x} \); no discontinuities \((4 - 3 \sin^2 x > 0 \text{ for all } x)\).

(d) \(f(x) = \sin \cos x \); no discontinuities.

(e) \(f(x) = \tan \frac{2}{x + 1} \); discontinuities \(x = \frac{2}{n} + 1\), \(n \in \mathbb{Z}\).

(f) \(f(x) = \tan \cos x \); discontinuities \(x = \frac{\pi}{2} + n\pi\), \(n \in \mathbb{Z}\).

5. Prove, if \(\lim_{x \to 0} f(x) \),

\[\lim_{x \to 0} g(x) = \lim_{x \to 0} f(x) \]

Set \(g(x) = f(x) \).

Then, since \(\lim_{x \to 0} g(x) = f(0) \),

for a continuous function \(g(x) \),

also, by the continuity of \(f(x) \),

there is a deleted neighborhood \(a \) of \(x \) small to control the tolerance \(\epsilon \).

So, \(|x - a| < \delta \), we have

\[|g(x) - f(a)| < \epsilon \]
Lemma 6. Prove that if \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M \), then

\[
\lim_{x \to a} \sqrt{(f(x))^2 + (g(x))^2} = \sqrt{L^2 + M^2}.
\]

By the corollary to Theorem 3-4d, \(f(a) \) and \(g(a) \) both exist, by Theorems 3-4d and 3-4c, so does

\[
\lim_{x \to a} \left(f(x)^2 + g(x)^2 \right)^{1/2}.
\]

By Theorem 3-4d, we have

\[
\lim_{x \to a} \left(f(x)^2 + g(x)^2 \right)^{1/2} = \sqrt{L^2 + M^2},
\]

provided \(L^2 + M^2 > 0 \).
TC3-7. Properties of Functions Continuous on an Interval.

Intuitively, we visualize the graph of a function \(f \), continuous over a closed interval \([a, b]\), as a curve. We assume that if \(x = t \) is any number between \(f(a) \) and \(f(b) \) then the line \(y = t \) intersects the graph of \(f \) at least once in the interval \([a, t] \). Formally, the conclusion (the Intermediate Value Theorem) is plausible because the point \((x, f(x))\) is clearly not obvious (see Appendix B).

The Intermediate Value Theorem is a fundamental property of continuous functions. For example, the function \(f(x) = \frac{1}{x} \) is defined in every closed interval \([a, b] \) with \(a, b \neq 0 \) and

\[\int_{a}^{b} f(t) \, dt \]

(or the \(y \)-axis) is the curve. The property is called the Intermediate Value Theorem (advantage of a theorem) because it occurs somewhere in the equation \(f(x) = t \). The conclusion (the fact that \(f(x) = t \) is a function) is not obvious. The proof of the Intermediate Value Theorem uses...

\[\int_{a}^{b} \]

\[x = b \]
In Section TC3-5 we considered the function \(f \) given by
\[
f(x) = \begin{cases}
 x \sin \frac{1}{x}, & x \neq 0 \\
 0, & x = 0
\end{cases}
\]
and noted that it is impossible to draw the graph in any interval containing the origin. Now we show that \(f \) is not differentiable at \(x = 0 \).

For \(\frac{1}{x} = \frac{\pi}{2} + \pi n, \) \(n \) is an integer, \(\sin \left(\frac{1}{x} + \pi n \right) = 1 \), \(f(x) \) is not defined at \(x = 0 \).

From this we observe that \(f(x) \) oscillates between \(-1 \) and \(1 \) as \(x \) approaches zero. Therefore, the function \(f \) is not differentiable at \(x = 0 \) since \(\lim_{x \to 0} f(x) \) does not exist.

1. Exhibit a discontinuous function \(f \) for which the range of the function is an interval.

(a) Let

\[
\begin{align*}
 f(x) &= \begin{cases}
 x^2, & x \leq 0 \\
 x, & x > 0
\end{cases} \\
 g(x) &= \begin{cases}
 0, & x \leq 0 \\
 1, & x > 0
\end{cases}
\end{align*}
\]
(b) Let g be defined by

$$g(x) = \sin \frac{1}{x}, \quad x \neq 0.$$

The range of g is the interval $[-1, 1]$.

(c) Let h be defined by

$$h(x) = \begin{cases} x, & \text{if } x \geq 0, \\ -x, & \text{if } x < 0. \end{cases}$$

The range is the interval $[0, +\infty)$.

2. On which intervals is h increasing? decreasing? Values if any.

(a) (b) (c)
Prove:

\[x^n > 1 \text{ for all } x > 1 \text{ and } n \text{ is a positive natural number.} \]

Note. The criterion stated in the text is not, nonetheless, after the proof. To prove the assertion, we use induction to prove the assertion for a rational number. Moreover, after the proof for a natural number, we proceed for a positive real.
4. (a) Prove that \(x \rightarrow f(x) \) is continuous and increasing whenever \(f \) is positive, continuous, and increasing.

This follows from the solution of Problem 1. We now prove that the composition of continuous, increasing functions is continuous and increasing. We already have the statement of a composition of continuous functions (Theorem (1)). The composition of increasing functions \(f \) and \(g \) is increasing because

\[
\frac{f(b) - f(a)}{b - a} = \frac{g(f(b)) - g(f(a))}{g(b) - g(a)}
\]

(b) Prove that \(\sqrt{f(x)} \) is also increasing.

This follows from...

5. Prove that \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \)

Rationalize the numerator...

\[
\begin{align*}
\frac{1 - \cos x}{x^2} &= \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} \\
&= \frac{\sin^2 x}{x^2(1 + \cos x)} \\
&= \frac{\sin x}{x(1 + \cos x)} \cdot \frac{\sin x}{1 + \cos x}
\end{align*}
\]

when...

D. (a) Prove that \(x \rightarrow f(x) \) is increasing.
(b) Show that the range of f is an interval. Show that the domain of the inverse of $f: x \rightarrow \sin x$ is an interval.

Since it is assumed that f is continuous, it follows by the Intermediate Value Theorem that its range is an interval. Since f is continuous so is its inverse, hence the range of the inverse is an interval.

7. Assume that the function $f(x)$ is continuous on the closed interval $\left\{ x: \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \right\}$ and show that there is some x where $\frac{\pi}{4} < x < \frac{\pi}{2}$ such that $f(x) = \frac{\pi}{4}$. Can there be more than one such number?

Since $\tan \left(\frac{\pi}{4} \right) = 1$, so is \tan of the inverse an interval.

So, by the Intermediate Value Theorem, there is some u, $\frac{\pi}{4} < u < \frac{\pi}{2}$, such that $f(u) = \frac{\pi}{4}$, hence there is such an u.

Prove that if $f(x)$ is continuous on the interval $[a, b]$ and $f(a) \neq f(b)$, then there exist values of x in (a, b) for which $f(x)$ has a minimum at which it is the result is the minimum value.
(b), (c), (d). The range of f is the closed interval $[0,1]$ since f has a maximum and a minimum in each of these intervals.

10. Show that the equation $x^4 + x - 10 = 0$ has at least one solution between $x = 2$ and $x = -1$ and obtain an approximation to the solution within a tolerance of $\frac{1}{2}$.

Let $f(x) = x^4 + x - 10$. Then $f(x)$
by the Intermediate Value Theorem that there is at least one value of x such that $f(x_0) = 0$. Since $f(2) = 27 > 0$ and $f(-\frac{1}{2}) = -\frac{105}{16} < 0$, we have a value x_0 such that -2 and $-\frac{1}{2}$.

11. Isolate each root in the intervals containing this root.

(a) $x^4 - x^2 + 1 = 0$

Let $f(x) = x^4 - x^2 + 1$.

Direct substitution

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>$f(-2)$</td>
</tr>
<tr>
<td>-1</td>
<td>$f(-1)$</td>
</tr>
<tr>
<td>0</td>
<td>$f(0)$</td>
</tr>
<tr>
<td>1</td>
<td>$f(1)$</td>
</tr>
<tr>
<td>2</td>
<td>$f(2)$</td>
</tr>
</tbody>
</table>

The equation $f(x) = 0$ and the

$\frac{1}{2}$.
12. (a) Show that the equation \(\cos^2 x = \sqrt{|x|} \) has at least one positive root \(x \), where \(x < \frac{\pi}{6} \).

Let \(f(x) = \cos^2 x - \sqrt{|x|} \). It is continuous on the interval \([0, \frac{\pi}{6}] \).

For the endpoints, \(f(0) = 0 \) and \(f\left(\frac{\pi}{6}\right) = \frac{1}{4} \sqrt{\frac{\pi}{6}} < 0 \). Hence, by the Intermediate Value Theorem, there is some value \(u \), \(0 < u < \frac{\pi}{6} \), such that \(f(u) = \cos^2 u - \sqrt{|u|} = 0 \).

(b) Find the maximum and the minimum of \(-\cos^2 x - \sqrt{|x|} \) on the closed interval \([0, \frac{\pi}{6}] \).

The function attains its maximum at \(u = \frac{\pi}{4} \) and also at \(x = \frac{\pi}{3} \).
For $|x| = k > \frac{A}{a_n}$ we have $|a_n| > e(x)$. For $x = k$, then, $p(x)$ assumes opposite signs. It follows by the Intermediate Value Theorem that p has a zero in $[k, k]$.

Alternatively:

$$p(a + ib) = u(a) + iv(a)$$

where u and v are real functions of a and b (using the Fundamental theorem). If $a + ib$ is a root, then

$$u(a, b) = 0, v(a, b) = 0.$$

Also, $p(a + ib) = p(a) + ib$ and all complex roots of a polynomial with real coefficients occur in pairs. Consequently, since there is an odd number of b's, there is at least one real root.

14. Prove that the equation

$$x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0$$

has at least one real root.

From Number 13 we know that any root must be an odd positive integer. Consequently, any root must be of the form k such that $k^n + a_{n-1}k^{n-1} + \ldots + a_1k + a_0 = 0$ and k is an odd positive integer.

The proof is trivial. We can see that k^n is odd, $a_{n-1}k^{n-1}$ is even, and so on. Thus, $k^n + a_{n-1}k^{n-1} + \ldots + a_1k + a_0 = 0$ if and only if k is odd.

Then if $a < 0$.

Case 2.
Case 3. $b < 0$. Then, $0 < |b| < |a|$, whence,

$$0 < |a|^n < |b|^n.$$

But, since n odd, $|a|^n - a^n$ and $|b|^n - b^n$, therefore,

Sketch the curves $y = a^n$ and $y = b^n$, using the same set of axes.

...
of the argument in Theorem 5.2, it is established that there exist two points \(c_1 \) and \(c_2 \) in \([a, b] \) such that \(f(c_1) = f(c_2) \). From \(f(c_1) = f(c_2) \), we see at once that the function \(f \) cannot be one-to-one.

We conclude that \(f' \) must be strongly monotone on every subinterval. It follows that \(f \) must be increasing everywhere, for if \(\alpha < \beta \) then \(f \) is strongly monotone on the interval \([A, B] \) where \(A = \min(a, \alpha) \), \(B = \max(b, \beta) \). Since \([A, B] \) contains \([a, b] \), where \(f \) is increasing, it follows that \(f \) is increasing on \([A, B] \). Since \([A, B] \) contains \([a, b] \) it follows that \(f(\alpha) < f(\beta) \).

17. The temperature at any point of a thin circular ring is a continuous function of the point’s position. Show that there is a pair of antipodes (points at opposite ends of a diameter) having the same temperature.

We have \(T : \theta \rightarrow T(\theta) \), \(0 \leq \theta \leq 2\pi \), \(T \) continuous. We are to show that \(T(\theta + \pi) = T(\theta) \) for some \(\theta \).

Define \(K \) by

\[
K(\theta) = T(\theta + \pi) - T(\theta), \quad 0 \leq \theta \leq \pi.
\]

We want to show that \(K(\theta) = 0 \) for some \(\theta \), \(0 < \theta < \pi \).

\[
\begin{align*}
K(0) &= T(\pi) - T(0) \\
K(\pi) &= T(2\pi) - T(\pi) \\
&= T(0) - T(\pi) \\
&= -K(0)
\end{align*}
\]

Since \(T \) is continuous, \(K \) is continuous, and by the Intermediate Value Theorem, \(T(\theta) = 0 \) for some \(\theta \), \(0 < \theta < \pi \).

18. Sketch the graphs and determine how many points of discontinuity there are in the interval \([0, 2\pi] \) of the following functions:

(a) \(f : x \rightarrow [\sin x] \)

(b) \(f : x \rightarrow [2 \sin x] \)

(c) \(f : x \rightarrow [a \sin x] \)
There are 3 points of discontinuity.

There are 7 points of discontinuity.

(c) If \(a \) is a positive integer, an increase of 1 in \(a \) increases the number of discontinuities by 4. Since reflection of the graph in the x-axis does not change the number of discontinuities, if \(a \) is an integer \(f \) has \(4|a| - 1 \) discontinuities in the interval \([0, 2\pi]\).

If \(a \) is not an integer, the number of discontinuities is decreased by 1 giving \(\frac{1}{2}|a| - 2 \) discontinuities.

The two cases are combined to give the following result: for any real number \(a \), \(f \) has \(\frac{1}{2}|a| - 1 \) discontinuities in \([0, 2\pi]\).
MM19. If \(f \) is periodic with periods 1 and \(\sqrt{2} \) (i.e., \(f(x) = f(x + 1) \) and \(f(x) = f(x + \sqrt{2}) \) for all \(x \)) and is continuous at least at one point, show that \(f \) must be constant.

Since 1 and \(\sqrt{2} \) are periods and any sum or difference of periods is also a period, it follows that every number of the form

\[
p = m + n \sqrt{2},
\]

where \(m \) and \(n \) are integers, is a period. Now let \(a \) be the assumed point of continuity of \(f \). We show for any positive \(\epsilon \) that there exists a period \(p \) of the form (a) such that \(x + p \) lies within a \(\epsilon \)-neighborhood of \(a \). Consequently, by the definition of continuity, given any positive \(\epsilon \) we can guarantee:

\[
|f(x) - f(a)| = |f(x + p) - f(a)| < \epsilon.
\]

Thus \(f(x) = f(a) \), for any \(x \), which proves the constancy of \(x \).

First we shall show that there exists a period \(\sigma = \mu + \nu \sqrt{2} \) such that

\[
0 < \sigma < \delta.
\]

For \(\lambda = \left[\frac{x - a}{\sigma} \right] \), we will then have

\[
\lambda \sigma < x - a < (\lambda + 1)\sigma,
\]

whence

\[
0 < (x - \lambda \sigma) - a < \sigma < \delta.
\]

Consequently, with \(p = \lambda \sigma \) in (b), the argument will be complete.

Now we prove the result of (c). First we give a proof specifically applicable to this problem. Observe, since \(0 < (\sqrt{2} - 1) < \frac{1}{2} \), that

\[
0 < (\sqrt{2} - 1)^n < \frac{1}{2^n}.
\]

But we can write

\[
(\sqrt{2} - 1)^n = q_n \sqrt{2} - P_n
\]

where \(q_n \) and \(P_n \) are integers (in fact, these are related to the natural numbers \(p_n \) and \(q_n \) of Exercises A3-1, No. 18 by \(p_n = |P_n| \), \(q_n = |q_n| \)). We choose \(n \) so large that \(\frac{1}{2^n} < \delta \); hence,

\[
\sigma = q_n \sqrt{2} - P_n < \delta.
\]

The following argument is general (given any two incommensurable periods \(\alpha \) and \(\beta \), we can find \(0 < \alpha \psi + \beta < \epsilon \)), but it relies on A1-5. Let
If \(\tau \) were not such a period, then the interval \((T, 2\tau)\) would have to contain a period \(\beta_1 \) of the form \((a)\), and likewise, the interval \((\tau, \beta_1)\) would have to contain a period \(\beta_2 \) of the form \((a)\). Thus \(0 < \beta_1 - \beta_2 < \tau \). But \(\beta_1 - \beta_2 \) must then be a positive period of the form \((a)\), but less than \(\tau \), contrary to the definition of \(\tau \) as a lower bound.

If \(\tau \) is a period, then any other period of the form \((a)\) must have the form \(k\tau \) where \(\alpha \) is an integer. For if \(\beta \) is any period we take

\[k = \left\lfloor \frac{\beta}{\tau} \right\rfloor, \]

from which

\[0 \leq \beta - k\tau < \tau. \]

Since \(\beta - k\tau \) is a period of the form \((a)\), it cannot be positive, for then \(\tau \) could not be a lower bound. It follows that \(\beta - k\tau = 0 \).

From the last result, it follows that \(1 = k_1\tau \) and \(\sqrt{2} = k_2\tau \) where \(k_1 \) and \(k_2 \) are positive integers. Consequently, \(\sqrt{2} = \frac{k_1}{k_2} \) contradicting our knowledge that \(\sqrt{2} \) is irrational.

We could conclude that the hypothesis \(\tau > 0 \) is not valid; we can only have \(\tau = 0 \). But \(0 \) is not a positive period of the form \((a)\). Since \(0 \) is the greatest lower bound of such periods, we conclude that there exists at least one such period in the interval \((0, \delta)\).

The greatest lower bound of the positive periods of a function is called the fundamental period. In the manner used to prove the result above, we can establish:

1. If the fundamental period is positive, then all periods are multiples of the fundamental period.

2. If the function has two incommensurable periods, then the fundamental period is zero.

3. If the fundamental period is zero and the function is continuous at any point, then the function is constant.
\[20. \text{ If } g \text{ is continuous with } g(0) = g(1) = 1 \text{ and, in the interval } [0,1], \]
\[g(x^n) = \left(g(x)\right)^n, \text{ show that } g(x) = 1 \text{ in } [0,1]. \]

Note: Although identified with \(\Lambda \), this problem is well within the reach of most students who have "survived" Chapter 3.

Iterate to obtain
\[
(a) \quad g(x^{2^n}) = g(x)^{2^n}.
\]

For \(x < 1 \), \(x^{2^n} \) approximates 0 within any given tolerance for \(n \) sufficiently large. By the continuity of \(g \) at 0 it follows that
\[
g(x^{2^n}) = g(x)^{2^n} \approx g(0)^{2^n}, \]

similarly. However, if \(g(x) > 1 \), then \(g(x)^{2^n} \) will be larger than any given number for \(n \) large enough, and if \(g(x) < 1 \) then \(g(x)^{2^n} \) will be within any given tolerance of 0 for \(n \) large enough; either condition contradicts the condition that \(g \) is continuous at 0 and \(g(0) = 1 \).

21. The real roots of the equation \(x^n + ax + b = 0 \) (n a positive integer) can be "determined" by finding the intersections of the curves
\[
y = x^n \quad \text{and} \quad y = -ax - b.
\]

Verify the following table for the number of real roots of \(x^n + ax + b = 0 \).

(a) If \(n \) is even, and \(b > 0 \), there are two or none,

(b) If \(n \) is odd, and \(a > 0 \), there is one,

\(a < 0 \), there are three or one.

Give numerical examples to illustrate each of the four cases.

Take \(f : x \rightarrow x^n + ax + b \). First determine the parts of the domain in which \(f \) is monotone. Suppose \(x < y \).

\[
f(y) - f(x) = y^n - x^n + a(y - x)
\]

\[
= (y - x)[(y^{n-1} + y^{n-2}x + \ldots + x^{n-1}) + a],
\]

Thus,

\[
(a) \quad \text{sgn}(f(y) - f(x)) = \text{sgn}(\phi(x, y) + a).
\]
If \(x \geq 0 \), then \(\phi(x,y) > nx^{n-1} \); hence

\[(b) \quad x^{n-1} \geq -\frac{a}{n} \Rightarrow f(y) > f(x), \quad (x \geq 0). \]

Case 1. \(n \) odd.

For \(n \) odd, the graph \(y = f(x) \) has a center of symmetry at \((0,b)\); i.e., the function \(x \mapsto f(x) - b = x^n + ax \) is odd. The properties of \(f \) everywhere are then determined by the properties for \(x > 0 \). Now, if \(a > 0 \), condition (b) always holds since \(n - 1 \) is even. Thus, \(f \) is increasing for \(x > 0 \), and by symmetry, also for \(x < 0 \). Since \(f \) takes on negative and positive values (for large negative and positive \(x \)) it follows that \(f \) has a root (Intermediate Value Theorem) and since \(f \) is increasing, therefore one-to-one, the root is unique. If \(a < 0 \), then condition (b) holds for \(x \geq \frac{n-1}{\sqrt{-\frac{a}{n}}} \). Furthermore,

\[(c) \quad y^{n-1} \leq -\frac{a}{n} \Rightarrow \phi(x,y) + a < 0, \quad (0 < x < y). \]

From (a) it follows that \(f \) is decreasing on \((0,\alpha)\) where \(\alpha = \frac{n-1}{\sqrt{-\frac{a}{n}}} \). Again by symmetry, \(f \) is increasing for \(x < -\alpha \) and \(x > \alpha \) and decreasing for \(-\alpha \leq x \leq \alpha \). Since the slope of the curve for every value of \(b \) is the same for a given \(a \), we can analyze the situation by referring to the graph of \(g : x \mapsto x^n + ax \) and count the roots by considering intersections with horizontal lines. Thus there are three roots or one depending on whether a horizontal line crosses the decreasing segment of the graph or not. (The special case of two roots occurs at the endpoints of the segment.)

\[
\begin{align*}
\text{one root} & \quad b < g(\alpha) \quad (\alpha, g(\alpha)) \\
3 \text{ roots} & \quad b < g(\alpha) \quad (\alpha, g(\alpha))
\end{align*}
\]
Case 2. \(n \) even.

For \(n \) even, \(n-1 \) odd, conditions (b) and (c) hold as before. Without symmetry, it is necessary to consider \(f \) on the negative part of its domain as well. For \(x < y \leq 0 \), set \(u = -x \), \(v = -y \). Then

\[
\varphi(x, y) = (-1)^{n-1} \varphi(u, v) = -\varphi(u, v) .
\]

From \(\varphi(u, v) > 0 \) it follows that \(ny^{n-1} \varphi(u, v) < ny^{n-1} \); hence,

\[
ny^{n-1} \varphi(x, y) < ny^{n-1}.
\]

and conditions (b) and (c) hold for the entire domain of \(f \). Thus \(f \) decreases for \(x \leq \alpha \) and increases for \(x \geq \alpha \). The situation is depicted below.

\[\text{Diagram showing two roots with labels:}\]

- \(b < -g(a) \)
- \(b > -g(a) \)

\(n \) even
The proofs of theorems for the derivatives of algebraic functions and circular functions are given in this chapter. Several manipulative exercises have been included in order to establish a need for more efficient methods. To accomplish this end, care should be taken to avoid premature application of theorems.

TC4-1. Introduction.

In this section we assert the equality of the numbers

$$\lim_{z \to x} f(z) - f(x)$$ and $$\lim_{h \to 0} f(x + h) - f(x)$$

where $z = x + h$. This equality can be established analytically by application of Theorem 3-6e. Let

$$r : z \to \begin{cases} \frac{f(z) - f(x)}{z - x}, & z \neq x \\ f'(x), & z = x \end{cases}$$

and $g : h \to x + h$; then

$$rg : h \to \begin{cases} \frac{f(x)}{g(h) - x}, & h \neq 0 \\ f'(x), & h = 0 \end{cases}$$

If both r and g are continuous then rg is continuous and

$$\lim_{h \to 0} rg(h) = f'(x).$$

Solutions Exercises 4-1.

1. Using the definition of the derivative, find $f'(x)$, where $f(x)$ equals:

 (a) $f(x) = 2x^2 - x + h$

 $$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{2(x + h)^2 - (x + h) + 4 - 2x^2 + x - h}{h}$$

 $$= \lim_{h \to 0} \frac{4xh + 2h^2 - h}{h} = \lim_{h \to 0} 4x + 2h - 1 = 4x - 1$$
(b) \(f(x) = x^3 \)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{1 - (x + h)^3 - (1 - x^3)}{h} \\
 &= \lim_{h \to 0} \frac{-3x^2 h - 3xh^2 - h^3}{h} \\
 &= \lim_{h \to 0} (-3x^2 - 3xh - h^2) \\
 &= -3x^2
\end{align*}
\]

(c) \(f(x) = \frac{1}{\sqrt{x}} \)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}} \right) \\
 &= \lim_{h \to 0} \frac{1}{h} \left(\frac{\sqrt{x} - \sqrt{x + h}}{\sqrt{x + h} \sqrt{x}} \right) \\
 &= \lim_{h \to 0} \frac{h}{h(x + h + (x + h)^{1/2})(\sqrt{x} \sqrt{x + h})} \\
 &= \lim_{h \to 0} \frac{-1}{2x \sqrt{x}} = \frac{-1}{2x^{3/2}}
\end{align*}
\]

(d) \(f(x) = \frac{1}{x^2} \)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{(x + h)^2} - \frac{1}{x^2} \right) \\
 &= \lim_{h \to 0} \frac{x^2 - (x + h)^2}{h(x + h)^2 x^2} \\
 &= \lim_{h \to 0} \frac{-2x - h^2}{h(x + h)^2 x^2} \\
 &= \frac{-2x}{x^4} = \frac{-2}{x^3}
\end{align*}
\]

(e) \(f(x) = x^3 - 3x + 4 \)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{(x + h)^3 - 3(x + h) + 4 - (x^3 - 3x + 4)}{h} \\
 &= \lim_{h \to 0} \frac{3x^2 h + 3xh^2 + h^3 - 3h}{h} \\
 &= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 3) \\
 &= 3x^2 - 3
\end{align*}
\]
(f) \(f(x) = \frac{1}{ax + b} \) \((a, b \text{ constant}, x \neq -\frac{b}{a}, a \neq 0) \)

\[
f'(x) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{ax + b + h} - \frac{1}{ax + b} \right)
= \frac{\lim_{h \to 0} \frac{(ax + b) - (ax + ah + b)}{h(ax + ah + b)(ax + b)}}{h}
= \frac{-a}{(ax + b)^2}
\]

(g) \(f(x) = ax^2 + bx + c \) \((a, b, c \text{ constants}) \)

\[
f'(x) = \lim_{h \to 0} \frac{a(x + h)^2 + b(x + h) + c - ax^2 - bx - c}{h}
= \lim_{h \to 0} \frac{2axh + ah^2 + bh}{h}
= \lim_{h \to 0} (2axh + ah + b) = 2ax + b
\]

(h) If \(x > 1 \), \(f(x) = x - 1 \)
and \(f'(x) = 1 \).

If \(x < 1 \), \(f(x) = 1 - x \)
and \(f'(x) = -1 \).

Thus, \(f'(x) = \frac{|x - 1|}{x - 1} = \text{sgn}(x - 1) \), \(x \neq 1 \).

(Derivative does not exist at \(x = 1 \).)

(i) \(f(x) = ax + \frac{b}{x} \)

\[
f'(x) = \lim_{h \to 0} \frac{1}{h} \left(a(x + h) + \frac{b}{x + h} - ax - \frac{b}{x} \right)
= \lim_{h \to 0} \frac{1}{h} \left(axh - \frac{bh}{(x + h)x} \right) = \lim_{h \to 0} \left(a - \frac{b}{(x + h)x} \right)
= a - \frac{b}{x^2}
\]
2. Given the line \(y = 3x + 2 \), find its slope at the points \((0,2)\), \((-2,-4)\), and \((2,8)\).

\[
\begin{align*}
\frac{d}{dx} (3x + 2) &= 3x - 0 = 3 \\
\frac{d}{dx} (-2x + 2) &= -2 \\
\frac{d}{dx} (2x - 4) &= 2 \\
\frac{d}{dx} (2x + 8) &= 2 \\
\end{align*}
\]

3. If \(f(x) = 1 + 2x - x^2 \), find the slope of the graph of \(f \) at points corresponding to

\[
\begin{align*}
\frac{d}{dx} (1 + 2x - x^2) &= 2 - 2x \\
\frac{d}{dx} (1 + 2x - x^2) &= 2 - 2x \\
\frac{d}{dx} (2 - x - a) &= 2 - 2a \\
\end{align*}
\]

\(a \)

If \(x = 0 \) \(f'(0) = 2 \).

\(b \)

If \(x = \frac{1}{2} \) \(f'(\frac{1}{2}) = 1 \).

\(c \)

If \(x = 1 \) \(f'(1) = 0 \).

\(d \)

If \(x = -10 \) \(f'(-10) = -16 \).

4. If \(f(x) = x^3 + 2x + 1 \), find all \(x \) such that

\(a \)

\(f'(x) = 0 \)

\(b \)

\(f'(x) = -1 \)

\(c \)

\(f'(x) = 4 \)

\(d \)

\(f'(x) = 20 \)

\[
\begin{align*}
\frac{d}{dx} (x^3 + 2x + 1) &= 3x^2 + 2 = n \\
\text{whence } x &= \pm \sqrt{\frac{n - 2}{3}} \\
\end{align*}
\]

Thus, \(n \) must be \(\geq 2 \).

\(a \), \(b \) there are no values.

\(c \)

\(x = \pm \sqrt{\frac{5}{3}} \)

\(d \)

\(x = \pm \sqrt{2} \).
In Section 3.4, we considered the class of linear combinations: here we prove the linearity of differentiation. Thereafter, the theorem on differentiation of products is extended to include integral powers of differentiable functions. This sequence has the advantage of providing theorems on differentiating polynomial and rational functions (of any functions whose derivatives we know) before the chain rule is established. The theorems of Section 4-2 enable us to differentiate a large class of functions. Derivatives of fractional powers and composite functions (in general) are considered in later sections.

Exercises have been freely interspersed throughout this section. These exercises have been designed to give the student immediate application of theorems as they are developed and, successively, to establish the need for the development of more expedient methods of differentiation. It should be noted that the placement of sets of exercises, in no way, is intended to indicate a time block of work; nor does the arrangement within a set indicate the difficulty of individual items. A sufficient number and variety have been included to provide for the needs of each student.

Solutions to exercises are not spelled out in detail except when an exercise has been designed to develop a particular skill; in such cases, solutions may be given in detail. Quite often a considerable amount of algebraic manipulation may be required to arrive at a simplified answer. A student's algebraic dexterity should improve as he attempts to submit answers in a form you consider suitable.

Solutions Exercices 4-2a

1. Evaluate

(a) \(D(4x| + 6x) = 4 + \frac{3}{x}, \quad x > 0 \)

(b) \(D(5x^2 + \frac{2}{x}) = 10x - \frac{2}{x^2} \)
Define $g(x)$ explicitly in terms of linear functions for all real x.

If $x < -2$, then $x + 2 < 0$ and $3 - x > 0$.
If $-2 \leq x < 3$, then $x + 2 > 0$ and $3 - x < 0$.
If $x \geq 3$, then $x + 2 > 0$ and $3 - x < 0$.

- $g(x) = (x + 2) - 3$, if $x < -2$
- $g(x) = (x + 2) - (3 - x) = 2x - 1$, if $-2 \leq x < 3$
- $g(x) = (x + 2) - (-3 + x) = 5$, if $x \geq 3$

(c) For what values of x is the derivative not defined?

$f'(x)$ is not defined at $x = -2$ and at $x = 3$.
3. Consider $f : x \mapsto [x]$ ([x] is the integer part of x, defined in A2)

 (a) Find $f'(x)$ if it exists, at each of the values $x = -2.8, x = 0.6, x = 2$.

 $f'(-2.8) = 0$, $f'(0.6) = 0$, but $f'(x)$ is not defined at $x = 2$.

 (b) Find the domain of the derivative f'.

 The domain of f' is the set of all non-integral real numbers, since f' is not defined at $x = n$, n an integer.

4. Consider $f : x \mapsto x - [x]$.

 (a) Draw the graph of f.

 (b) Find $f'(-1.5)$ and $f'(2.3)$ and describe the domain of the derivative.

 The domain of f' is the set of all non-integral real numbers.

 $f'(-1.5) = 1$, $f'(2.3) = 1$.
5. Extend Theorem 4-2a to a general linear combination of functions

\[\phi: x \rightarrow c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x). \]

The proof of the extension of Theorem 4-2a by mathematical induction is given. Theorem 4-2a serves as verification that the theorem holds for \(n = 2 \).

Assume that the theorem is true for \(n = k \).

Then

\[D_x \left[c_1 f_1(x) + c_2 f_2(x) + \cdots + c_k f_k(x) \right]. \]

If the theorem holds for all \(n \), then the theorem holds for all \(n \).

6. For each of the following functions, find the derivative and describe the domain of the derivative:

(a) \(f: x \rightarrow x^2 - 1 \)

\[f'(x) = \cdots \]

(b) \(g(x) = \cdots \)

(c) \(h(x) = \cdots \)

(d) \(f: x \rightarrow \{ \cdots \} \)

\[f'(x) = \cdots \]

(e) \(k(x) = \cdots \)

\[k'(x) = 0, \ \cdots \]
(f) \(f : x \rightarrow \max(x^3, 4|x|) \).

For \(x > 2 \), \(f'(x) = 3x^2 \),
for \(x < 2 \), \(f'(x) = 4 \sgn x \), \(x \neq 0 \).

(g) \(f : x \rightarrow \min([x], \max(x^3, e^x)) \).

\(f'(x) = 0 \), \(x \) not an integer.

(h) \(f : x \rightarrow \sgn(\min(x^3 - 1, 7)) \).

\(f'(x) = 0 \), \(x = 1 \).

7. Right-hand and left-hand limits (see Exercises 6, 7, 16) as follows:

Right-hand derivative: \(\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} \)
Left-hand derivative: \(\lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h} \)

In particular, \(D'(|x|) \), \(D'(|x|^2) \)

(a) Show that \(D'(|x|^3) \) is defined for \(x \neq 0 \).

For \(x > 0 \)
For \(x < 0 \)
For \(x = 0 \)

(b) For which \(x \) is

\(D'(|x|^3) \)
Show that a function is differentiable at a point if and only if it has equal right-hand and left-hand derivatives at the point.

A function is differentiable at a point if and only if the limit of the difference quotient exists at that point. Therefore

\[\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

must exist, that is

\[\lim_{h \to 0^+} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0^-} \frac{f(x + h) - f(x)}{h} \]

and conversely.

Solutions Exercises 4-49

1. Find the derivatives of the following functions:

(a) \(D_x(2x - 3) = 4x - 3 \)

(b) \(D_x(x^2 + 3x + 1) = 2x + 3 \)

(c) \(D_x(x + 1)^2 = 2(x + 1) \)

(d) \(D_x(\sqrt{x}) = \frac{1}{2\sqrt{x}} \)

(e) \(D_x(\frac{1}{x}) = -\frac{1}{x^2} \)

(f) \(D_x(x) = 1 \)

(g) \(D_x(x^{1/2}) = \frac{1}{2\sqrt{x}} \)

(h) \(D_x(x^{-1/2}) = -\frac{1}{2x^{3/2}} \)

(i) \(D_x(x^{1/4}) = \frac{1}{4x^{3/4}} \)

(j) \(D_x(x^{3/2}) = \frac{3}{2\sqrt{x}} \)
2. Evaluate

(a) \(D(3x^2 + 5x - 1)^c = \frac{\partial}{\partial x} (3x^2 + 5x - 1)^c = 6cx^{c-1} + 5c \)

(b) \(D(3 - 5x)^3 = -15(3 - 5x)^2 \)

(c) \(D(3 - 5x)^4 = -60(3 - 5x)^3 \)

(d) \(D(x^{4x}) = 4x^3 \ln x \)

(e) \(D(\frac{1}{x})^c = -c\frac{x^{c-1}}{x^2} \)

(f) \(D(-\sqrt{3}x^2) = -\frac{3}{2}\sqrt{3}x \)

(g) \(D(\sqrt[3]{x^3}) = \frac{1}{3}\sqrt[3]{x^2} \)

(h) \(D(\sqrt[4]{x^4}) = x \)

(i) \(D(\sqrt[5]{x^5}) = x \)

(j) \(D(3x^2(x^2 - 5)) = 12x^3 - 30x \)

(k) \(D(13x^2 - 36 - x^4) = (26x - 26x) \cdot \text{sgn}(x^4 - 13x^2 + 36), \ |x| \neq 2 \)

(l) \(D(x^4 + 5x^2 - 36) = (4x^3 + 10x) \cdot \text{sgn}(x^4 + 5x^2 - 36), \ |x| \neq 2 \)
3. Prove the corollary to Theorem 4-2b.

If \(f' \) exists and if \(F(x) = [f(x)]^2 \), then

\[
F'(x) = 2[f(x)] \cdot f'(x)
\]

Proof.

\[
D(f(x) \cdot f'(x)) = 2[f(x)] \cdot f'(x)
\]

4. Find the listed derivative by two methods: first, expand and then differentiate; second, use the product formula.

(a) \(D(x^2 + 1)^2 \)

(b) \(D x^2(x^2 + 1)^3 \)

(c) \(D(x + 1)(x^2 + 1)^3 \)

(d) \(D (a^4(x^4 + 1)^3) \)

5. Find the derivative as many ways as you can and describe the derivative.

(a) \(D(1 + p) \)

(b) \(D|x|^k \)

(c) \(D|x| \)

(d) \(D|x|^k \)

(e) \(D|x|/x \)

(f) \(D [x]^2 = \frac{x^2}{|x|} \)
(g) \(\text{Dx} \left[4 - x^2 \right] = [4 - x^2], \quad x \neq \pm \sqrt{4 - n}, \quad n \text{ an integer.} \)

(h) \(\text{Dx} \max(x, 2 - x^2) = \begin{cases} 2 - 3x^2 & \text{for } -2 < x < 1 \\ 2x & \text{for } x > 1 \text{ or } x < -2 \end{cases} \)

(i) \(\text{D}(x[x]|x|) = 2|x||x|, \quad x \text{ not an integer.} \)

(j) \(\text{D}[|x| \cdot |x|] = 0, \quad x \text{ an integer.} \)

\textbf{Solutions Exercise 4-21}

(a) Prove Theorem 4-20.

If \(f' \) exists and it is true that

\[f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]

for any positive integer \(h \).

\textbf{Proof:} \quad \text{If } \quad

Support...

\(u(x) = \frac{f(x)}{x} \)

\(u'(x) = \frac{f(x)1-x}{x^2} \)

By Theorem 4.
(c) Prove Corollaries 2 and 3 to Theorem 4-2c.

Corollary 2. A polynomial function \(p \), where \(p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \), has a derivative for each real \(x \) given by

\[
p'(x) = a_1 + 2a_2x + \ldots + na_nx^{n-1}.
\]

Proof.

\[
p'(x) = 0 \cdot \frac{D_{a_0}x^n}{x^n} + a_1 \frac{D_{a_1}x^n}{x^n} + \ldots + a_n \frac{D_{a_n}x^n}{x^n} = a_1 + 2a_2x + \ldots + na_nx^{n-1}.
\]

(Theorem 4-2a).

Corollary 3. If \(p \) is a polynomial and if \(f' \) exists then

\[
D_x p(f(x)) = p'(f(x)) f'(x).
\]

Proof.

\[
p(f(x)) = a_0, a_1 f'(x), \ldots, a_n(f(x))^n,
\]

\[
D_x p(f(x)) = a_1 \frac{D_{a_0}f(x)}{f(x)} + a_2 \frac{D_{a_1}f(x)}{f(x)} + \ldots + a_n \frac{D_{a_n}f(x)}{f(x)}
\]

\[
= a_1 f'(x) + 2a_2 f'(x) f'(x) + \ldots + n a_n(f(x))^{n-1} f'(x)
\]

But

\[
D_y p(y) = \left(\ldots \quad \left(\frac{D_{a_n}y}{y} \right) \right)
\]

where \(y = f(x) \), so

\[
D_x p(f(x)) = \left(\ldots \quad (f(x))^{n-1} f'(x) \right)
\]

2. **Evaluate:**

(a) \(u(x^2) \)

(b) \(D(2x^3) \)

(c) \(u(x^2) \)

(d) \(D(x^3) \)

(e) \(D\left((x-3)^2\right) \)

(f) \(D\left((3-5x)^2(1-x^2)\right) \)
(g) \(D(1 - \frac{1}{x^2})^3 = \frac{3}{x^2}(1 - \frac{1}{x})^2\).

(h) \(D(3x^{1/2} - 4x^{3/2})^6 = 6(3x^{1/2} - 4x^{3/2})^5(\frac{3}{2}x^{-1/2} - 6x^{1/2})\).

(i) \(D(1 - \sqrt{x})^{10} = -\frac{5}{\sqrt{x}}(1 - \sqrt{x})^9\).

(j) \(D((3 - 5x + x^2)^3(1 + x^2)^{10}) = (1 + x^2)^9(3 - 5x + x^2)^2(-15 + 66x - 26x^2)\).

3. Consider the curves \(y = ax^3 + 1\) and \(y = bx^2\).

(a) Find two numbers \(a\) and \(b\) such that the curves have the same slope at \(x = 1\) and that the sum of the slopes at \(x = 2\) is 30.

For \(y = ax^3 + 1\), the slope is \(3ax^2\), so at \(x = 1\), the slope is \(3a\).

For \(y = bx^2\), the slope is \(2bx\), so at \(x = 1\), the slope is \(2b\).

Therefore, \(3a = 2b\) and \(3a + 2b = 30\).

Thus, \(a = 2\) and \(b = 3\).

(b) Find the slope at \(x = 1\).

At points \(x = 1\),

For \(y = ax^3 + 1\),

the slope is \(3a\), so at \(x = 1\), the slope is \(3a\).

Since we have

we can assign

and \(a = \frac{3}{2}, b = 3\).

For \(x = 1\), \(a = \frac{3}{2}\).
(c) Sketch the curves in part (b) for some allowable values of \(a \) and \(b \).

(c) Sketch the curve \(y = \frac{4}{x} \) for \(|a| \geq 2 \).

(b) For \(h \) where

\[
g(x) = a - \frac{4}{x}
\]

\[
g'(x) = 3 \quad \text{and} \quad g'(x) = 0
\]
(c) Find the discontinuities of \(g \) and \(g' \).

- \(g \) is discontinuous at \(x = 0 \).
- \(g' \) is discontinuous at \(x = 0 \).

(d) Using the results of (a), sketch the graph of \(g \) for \(-2 < x < 2 \).

Let \(u = u(x) \).

(a) Prove that \(u \) is differentiable at \(x \), then

\[
D(u, u) = \begin{pmatrix}
\alpha & \beta \\
\beta & \gamma
\end{pmatrix}
\]

\[
D_x(u, u)(y) = \begin{pmatrix}
\alpha(y) & \beta(y) \\
\beta(y) & \gamma(y)
\end{pmatrix}
\]
(b) Can you suggest a way to generalize your result to obtain a
formula for the derivative of a product of \(n \) functions? Test
your conjecture with the case \(n = 4 \).

Let \(F = f_1 \cdot f_2 \cdot f_3 \cdots f_n \) then

\[
DF = f_1 \cdot f_2 \cdot f_3 \cdots f_n + f_1 \cdot f_2 \cdot f_3 \cdots f_n + \cdots + f_1 \cdot f_2 \cdot f_3 \cdots f_n \cdot f_1.
\]

For \(n = 4 \), let \(z = \bar{k}(x) \). Then

\[
D(\bar{k}(x)) = (uvw)D_x k(x) + z D_x (uvw) = (uvw)D_x k(x) + (uvw)D_x k(x) + (uvw)D_x k(x) + (uvw)D_x k(x).
\]

(c) Use the above result to evaluate:

1. \(D((5x - 2)(3 - 2x)(\lambda^2 + 1)) \)

\[
= 2x(5x - 2)(3 - 2x) \cdot \lambda^2 (5x - 2)(x^2 + 1) + 5(3 - 2x)(3x^2 + 1)
\]

11. \(D((2x^3 - 3x^2 + 1)(\sqrt{x} + 1)^2) \)

\[
= \frac{1}{x^{3/2}}(2x^3 - 3x^2 + 1) + \frac{1}{x}(\sqrt{x} + 1)^2 (6x^2 - 12x + 2)
\]

111. \(D((3x - 2x)(\lambda^2 + 1)) \)

\[
= (\lambda^2 + 1)(3x - 2x)(x^2 + 1) + (3x - 2x)(\lambda^2)(1 + x^2)
\]

1. Evaluate:

(a) \(D\left(\frac{-2}{x^2}\right) \)

(b) \(D\left(\frac{-2}{1 + x^2}\right) \)

(c) \(D(1 - \frac{1}{x}) \)
(d) \[D \left(\frac{3 + 2x^2}{2 - x^2} \right) = \frac{14x}{(2 - x^2)^2} \]

(e) \[D \left(\frac{1 + \frac{1}{x}}{1 - x} \right) = \frac{2x - 1}{x^2(1 - x)^2} \]

(f) \[D \left(\frac{\sqrt{x}}{1 + x^2} \right) = \frac{1 - 3x^2}{2\sqrt{x}(1 + x^2)^2} \]

(g) \[D \left(\frac{1}{1 + \sqrt{x}} \right) = \frac{1}{2\sqrt{x}(1 + \sqrt{x})^2} \]

(h) \[D \left(\frac{x^2 - 1}{x^2 + 1} \right)^{-1} = D \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right) = \frac{-\sqrt{x}}{2(x + 1)} \]

(i) \[D \left(\frac{1}{\sqrt{x}} \right) = 0 \quad \text{if} \quad x \neq 0, n \text{ an integer} \]

(ii) \[D \left(\frac{1}{\sqrt{x}} \right) \]

2. Prove Corollary 2.5.4

If \(a \) and \(b \) have the form of the quotient \(\frac{p(x)}{q(x)} \), where

Proof. \[\left(\frac{p(x)}{q(x)} \right) \]
3. Evaluate:

(a) \[D \left(\frac{x^2 + 3}{x^2 - 5} \right) = \frac{-20x}{(x^2 - 5)^2} \]

(b) \[D \left(\frac{x + \frac{1}{x} - x^2 + \frac{1}{x^2}}{x} \right) = \frac{x^2 + x + 1}{x^3} \]

(c) \[D \left(\frac{x - 1}{x^2 + x + 1} \right) = \frac{-x^2 + cx + \frac{2}{x}}{(x^2 + x + 1)^2} \]

(d) \[D \left(1 + \frac{1}{x} \right)(x + 1) = x + \frac{1}{x} - \frac{1}{x} \]

(e) \[D \left(\frac{1 - x + x^2}{1 + x + x^2} \right) = \frac{x(x - 1)}{(1 + x + x^2)^2} \]

(f) \[D \left(\frac{1 - x}{x^2+1} \right) = \frac{-x^2 - 1}{x^4 + 2x^2 + 1} \]

(g) \[D \left(\frac{x^2 - 1}{x - 1} \right) = \frac{x^2}{(x - 1)^2} \]

(h) \[D \left(\frac{ax^2 + bx}{x^2 + c} \right) = \frac{2ax + br}{(x^2 + c)^2} \]

(i) \[D \left(\frac{x^2 + ax + 1}{x^2 + x + 1} \right) = \frac{(x^2 + ax + 1)}{(x^2 + x + 1)} \]

(j) \[D \left(\frac{x^2 + ax + 1}{x^2 + x + 1} \right) = \frac{2x + a}{(x^2 + x + 1)^2} \]

1. Determine too.

Explain:

\[D \left(\frac{ax^2 + b}{cx + d} \right) \]

Since \(\frac{ax}{cx + d} = \frac{1}{c} \), then...
5. Find the derivative of each of the following functions in as many ways as you can and describe its domain. (Do not overlook definition of derivative.)

(a) \(f : x \rightarrow \frac{|x|}{x}, f'(x) = 0, x \neq 0 \).

(b) \(f : x \rightarrow \frac{x}{[x]}, f'(x) = \frac{1}{[x]}, \ x \text{ not an integer.} \)

(c) \(f : x \rightarrow \frac{x - [x]}{|x|}, f'(x) = \frac{[x]}{x^2}, \ x \text{ not an integer.} \)

(d) \(f : x \rightarrow \frac{(x - [x])^2}{|x|}, f'(x) = \frac{|x|(2x^2 - x^2 - [x]^2)}{x^*}, \ x \text{ not an integer.} \)

6. Prove Corollary 2 to Theorem 2.2.

If \(R \) is a rational function, if \(R(\alpha) \) and \(R(t(\alpha)) \) exist, then
\[
D_x R(x) = \lim_{t \to x} \frac{R(t(x)) - R(x)}{t(x) - x}
\]

Let \(R(x) = \frac{p(x)}{q(x)} \), where
\[
R(t(x)) = \frac{p(t(x))}{q(t(x))}
\]

\(D_x R(x) = \frac{q(x)p(x) - p(x)q(x)}{q(x)^2} \)

\(D_x R(t(x)) = \frac{q(t(x))p(t(x)) - p(t(x))q(t(x))}{q(t(x))^2} \)

\(D_x R(\alpha) = \frac{q(\alpha)p(\alpha) - p(\alpha)q(\alpha)}{q(\alpha)^2} \)

If \(\alpha \) is a critical point of \(R(x) \), then
\[
R(\alpha) = 0, \quad \frac{p(\alpha)}{q(\alpha)} = 0
\]

\(D_x R(\alpha) = 0 \)

\(\alpha \) is a critical point of \(R(x) \).
Consider the quotient \(q(x) = \frac{f(x)}{g(x)} \) where \(f \) and \(g \) have derivatives at \(x \) and where \(g(x) \neq 0 \). Obtain the formula for the derivative of a quotient by applying the product rule (Theorem 4-2b) to the expression \(q(x)g(x) = f(x) \).

\[
q'(x)g(x) + q(x)g'(x) = f'(x), \quad \text{by Theorem 4-2b}
\]

\[
q'(x) = \left(f'(x) - \frac{q(x)g'(x)}{g(x)} \right) \frac{g(x)}{[g(x)]^2}, \quad \text{solving for } q'(x)
\]

Why does this not constitute a proof of the quotient rule (Corollary 1 to Theorem 4-2d)?

This is not a proof because it assumes the existence of \(q'(x) \).
Section A2-3 includes a definition and brief discussion of inverse functions. More serious consideration of the idea is given in Section TC A2-3.

If f and g are inverses of each other, then f is the inverse of g and g is the inverse of f. The definition (Definition A2-3b) requires that the domain of the inverse of a function f be the range of f: for example, while $\sqrt{x^2}$ is x for all x in the domain of $f: x \rightarrow \sqrt{x}$, the function $g: x \rightarrow x^2$ is not the inverse of f (since the domain of g' is not the range of f).

For a discussion of fractional powers see Sections TC A2-1 (Example A2-1b) and TC A2-4.

Solution Exercises 4-3a

1. Show that $g : x \rightarrow \frac{1-x}{1+x}$, where $x > -1$, has an inverse. Find an equation that defines the inverse g and find the derivative of g.

 If $y = f(x) = \frac{1-x}{1+x}$ and $x > -1$, then $x = \frac{1-y}{y+1}$.

 The inverse function g is defined by $y = g(x) = \frac{1-x}{1+x}$, $x > -1$.

 Then

 $f(y) = \frac{1 - \frac{1-y}{y+1}}{1 + \frac{1-y}{y+1}} = \frac{2x}{2} = x$, $x > -1$.

 $D_x g(x) = D_x \left(\frac{1-x}{1+x}\right) = \frac{-2 \cdot 1}{(1+x)^2}$.

2. Verify that the inverse of $f : x \rightarrow x$ exists and then find the derivative of the inverse.

 $f(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x < 0 \end{cases}$

 f is strongly monotone; hence it has an inverse g, and

 $g(x) = \begin{cases} \sqrt{x}, & x \geq 0 \\ -\sqrt{x}, & x < 0 \end{cases}$

 and $D_x \sqrt{x} = \frac{1}{2\sqrt{x}}$, $x > 0$.

 $D_x \sqrt{x} = \frac{1}{2\sqrt{x}}$, $x < 0$.
1. Sketch the graph of \(f: x \rightarrow x^3 - 3x \) and tell why \(f \) does not have an inverse. Indicate how you can divide the domain of \(f \) into three parts and define three new functions each of which agrees with \(f \) on its domain and has an inverse. Justify your results. (See Exercises 2-3, No. 6)

If \(f \) has an inverse, no line parallel to the \(x \)-axis may meet the graph of \(f \) in more than one point.

\[f: x \rightarrow x^3 - 3x \]

Each of the following functions has an inverse.

\[f: x \rightarrow x^3 - 3x \quad x < -1 \]
\[f: x \rightarrow x^3 - 3x \quad -1 < x \leq 1 \]
\[f: x \rightarrow x^3 - 3x \quad x > 1 \]

4. Consider the function defined by

\[f(x) = \begin{cases} 2x & \text{for } x > 0 \text{ and irrational,} \\ x^2 + 1 & \text{for } x \geq 0 \text{ and rational.} \end{cases} \]

Show that \(f \) has a derivative at \(x = 1 \). Prove that the mapping \(f \) is one-to-one; i.e., that \(f \) has an inverse. Prove that the inverse of \(f \) is not differentiable at any point other than the point \(y = 2 \) of its domain.

(Note: The statement of the problem in the text is incomplete.)

1) Show that \(f \) has a derivative at \(x = 1 \).

\[f'(x) = \begin{cases} 0 & \text{for } x > 0 \text{ and irrational,} \\ x - 1 & \text{for } x > 0 \text{ and rational.} \end{cases} \]

Hence, for all \(x \),

\[\left| \frac{f(x) - 2}{x - 1} - 2 \right| \leq |x - 1| \quad \text{and therefore, given } \epsilon > 0 , \text{ if } 0 < |x - 1| < \epsilon , \text{ then } \left| \frac{f(x) - 2}{x - 1} - 2 \right| \leq \epsilon . \text{ Hence } f'(1) = 2 \]
(ii) Prove that f is one-to-one.

Since $2x_1 = x_2^2 + 1$, x_1 irrational, x_2 rational, is impossible because the left-hand side is irrational while the right-hand side is rational, it follows that $f(x_1) = f(x_2)$ implies that x_1 and x_2 are both rational or both irrational. Hence, either $2x_1 = 2x_2$, which implies $x_1 = x_2$, or $x_1^2 + 1 = x_2^2 + 1$ which, for $x > 0$, implies $x_1 = x_2$. Hence, $f(x_1) = f(x_2)$ implies $x_1 = x_2$, and f is one-to-one.

(iii) Prove that the inverse of f is differentiable only at the point $y = 2$ of its domain.

The inverse of f, is

$$g: y \rightarrow \begin{cases} \frac{1}{2} y & \text{for } y > 0 \text{ and irrational,} \\ \sqrt{y - 1} & \text{for } y \in \mathbb{A} = \{y : y \geq 1 \text{ and } y - 1 \text{ is the square of a rational number}\}. \end{cases}$$

Then

$$g(y) - \frac{1}{2} - \frac{1}{2} = \begin{cases} 0 & \text{for } y \text{ irrational,} \\ \frac{2 - y}{2(\sqrt{y - 1} + 1)^2} & y \in \mathbb{A} \text{ and } y \neq 2. \end{cases}$$

Hence, for all y in the domain of g other than 2,

$$|g(y) - \frac{1}{2} - \frac{1}{2}| \leq |y - 2|$$

and therefore, given $\epsilon > 0$, if $0 < |y - 2| < \epsilon$, then

$$|g(y) - \frac{1}{2} - \frac{1}{2}| < \epsilon.$$ Thus, $g'(2) = \frac{1}{2}$.

\[y = x^2 + 1 \quad y = 2x \]

\[(r, f(r)) \quad (1, f(1)) \]

\[y = \frac{1}{2} y^2 \]

\[x = \sqrt{y - 1} \]
Now let \(h : y \rightarrow \frac{1}{2}y - \sqrt{y - 1} \) for all \(y \geq 1 \). Since \(h(y) \) is increasing for \(y > 2 \) and decreasing for \(1 < y < 2 \) (see graph), it follows that if \(|y_1 - 2| > 5 \) and \(|y_2 - 2| > 5 \), then
\[
\frac{1}{2} y_1 - \sqrt{y_2 - 1} > k = \min(h(2 - 6), h(2 + 6)) .
\]
Furthermore, given any \(y_1 \) irrational (or \(y_1 \in A \) and \(y_1 \neq 2 \)), we can find \(y_2 \) in \(A \) (or \(y_2 \) irrational) as close as we wish to \(y_1 \). But so long as
\[
|y_1 - y_2| < \frac{1}{\sqrt{2}} = \delta, \quad |g(y_1) - g(y_2)| > k \quad \text{Hence } g \text{ is not}
\]
continuous at \(y_1 \) and therefore not differentiable at \(y_1 \).

Solutions Exercises 4-3b

1. Evaluate the following and express your answers using positive exponents only.

 (a) \(\frac{d}{dx} x^{2/3} = \frac{2}{3}x^{1/3} \)

 (b) \(\frac{d}{dx} x^{3/5} = \frac{3}{5x^{2/5}} \)

 (c) \(\frac{d}{dx} x^{-2/3} = -\frac{2}{3x^{5/3}} \)

 (d) \(\frac{d}{dx} x^{-3/5} = -\frac{3}{5x^{8/5}} \)

2. Find \(f'(2) \) if:

 (a) \(f(x) = (2x)^{\frac{1}{3}} \)

 \(f'(x) = \frac{\sqrt[3]{2}}{3}x^{-2/3} \)

 \(f'(2) = \frac{1}{3\sqrt[3]{2}} \)

 (b) \(f(x) = x^{-1/4}, \quad x > 0 \)

 \(f'(x) = -\frac{1}{4}x^{-5/4} \)

 \(f'(2) = -\frac{1}{8\sqrt[4]{2}} \)

 (c) \(f(x) = x^{-4/5} \)

 \(f'(x) = -\frac{4}{5}x^{-9/5} \)

 \(f'(2) = -\frac{2}{5\sqrt[5]{16}} \)
3. Evaluate:

(a) \[D(x^{1/3} - 3x^{-1/3}) = \frac{1}{3}x^{-2/3} + x^{-4/3} \]

(b) \[D\left(\frac{1 + x^{4/3}}{1 - x^{4/3}}\right) = \frac{8}{3}x^{1/3} \]

(c) \[D\left(\sqrt[3]{x} - \sqrt{x} + \frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}}\right) = \frac{3}{2}x^{1/2} - \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2} + \frac{3}{2}x^{-5/2} \]

4. Let \(f(x) = x^n \) for \(n \) an integer. For what points \(a \) in the domain of \(f \) do the hypotheses of Theorem 4-3 hold?

- If \(n = 0 \), \(f(x) = 1 \) and \(f'(x) = 0 \). Theorem does not apply.
- If \(n = 1 \), \(f(x) = x \) and \(f'(x) = 1 \). Theorem holds for all \(a \).
- If \(n > 0 \) and even, \(f \) is increasing for \(x > 0 \), decreasing for \(x < 0 \), and \(f'(0) = 0 \). If \(n > 0 \) and odd, \(f \) is increasing for all \(x \), but \(f'(0) = 0 \). For \(n < 0 \), \(x = 0 \) is not in the domain of \(f \) and \(f \) is decreasing for \(x > 0 \) and either increasing or decreasing for \(x < 0 \). The Theorem holds for all \(a \) except zero.

5. Consider the function \(f : x \rightarrow \sqrt[3]{x} \). We have \(f(x)^n = x \). Applying Theorem 4-2c, obtain

\[D\left(\sqrt[3]{x}\right) = \frac{1}{n}x^{n-1} \]

Why is this not a proof of the corollary to Theorem 4-3?

\[D_x f(x)^n = n^{-f(x)} n^{-1} f'(x) = D_x(x) = 1 \]

Thus,

\[f'(x) = \frac{1}{n} f(x)^{n-1} \]

\[= \frac{1}{n(\sqrt[3]{x})^{n-1}} \]

\[= \frac{1}{n} x^{n-1} \]

This does not constitute a proof of the Corollary since it was assumed that \(f'(x) \) exists in applying Theorem 4-2c.
6. Let \(r = \frac{p}{q} \) under the hypothesis of the corollary to Theorem 4-3 and let \(q \) be odd. Prove the corollary for \(x < 0 \). Why is the case \(x = 0 \) not included?

(Corollary: For every rational number \(r \), \(D^r_x = x^{r-1} \).

Let \(h(x) = x^{1/q} \). For \(x < 0 \), \(x^{1/q} = y < 0 \). \(f(y) = y^q \) is increasing, and \(f'(y) = qy^{q-1} \neq 0 \).

Thus, since \(h \) is the inverse of \(f \), \(h'(x) = \frac{1}{f'(y)} = \frac{1}{q}x^{q-1} \).

By Theorem 4-3.

Now, Theorem 4-2c applies, and

\[
D(x^{p/q}) = D(x^{1/q})^p
\]

\[= p(x^{1/q})^{p-1}\frac{1}{q}x^{q-1} = \frac{p}{q}x^{p-1} - \frac{p}{q}x^{p-1}\]

At \(x = 0 \), \(f'(0) = 0 \), so Theorem 4-3 does not apply, and

\[
\lim_{h \to 0} \frac{p/q}{h} \text{ does not exist if } p < q.
\]

7. Under the conditions of the preceding exercise, show that for \(g: x \to x^{p/q} \), where \(p > q \), the derivative of \(g \) at zero exists and \(g'(0) = 0 \).

\[
g(0 + h) - g(0) = \frac{p}{q} \frac{p-1}{h}.
\]

Since \(p \geq \left\lfloor \frac{p}{q} \right\rfloor + 1 \), so \(p \geq q \).

Thus, if \(\varepsilon > 0 \) is given, let \(\delta = \varepsilon^{p/q} \).

Then if \(0 < |h| < \delta \),

\[
\left| \frac{g(0 + h) - g(0)}{h} \right| \leq \frac{p}{q} |h|^{p-1} < \varepsilon.
\]

So,

\[
\lim_{h \to 0} \frac{g(0 + h) - g(0)}{h} = 0 = g'(0).
\]
TC4-4. Circular Functions.

In the discussion of circular functions, a student may wonder why we appeal to a geometric discussion to evaluate \(\lim_{h \to 0} \frac{\sin h}{h} \). In his study of trigonometry he employed a diagram to define circular functions and to obtain the basic relationships of Section A2-5. He might expect that we are now in a position to evaluate this limit by formal computation from the relationships of Section A2-5 with no further appeal to intuitive geometric discussion. The reason this cannot be done is that the trigonometric identities of Section A2-5 have the same form, no matter what unit is used for angle measure. The crucial inequality

\[
\cos x < \frac{\sin x}{x} < 1
\]

is the first place where angle measure appears both as an argument of a trigonometric function and independently. Thus the inequality depends on the unit of measure; it holds specifically for radian measure and does not hold for any other measure such as degree measure.

You may wish to refer to Section A2-5 and/or Section TC A2-5.

Solutions Exercises 4-4

1. Show that \(D \cos x = -\sin x \).

\[
D \cos x = \lim_{h \to 0} \frac{\cos(x + h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} = \cos x \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h} = -\sin x. \quad \text{(See text for proof of } \lim_{h \to 0} \frac{\cos h \ - \ 1}{h} = 0.\text{)}
\]

2. Evaluate \(\lim_{h \to 0} \frac{\tan h}{h} \). (Hint: Express \(\tan h \) in terms of \(\sin h \) and \(\cos h \).)

\[
\lim_{h \to 0} \frac{\tan h}{h} = \lim_{h \to 0} \frac{\sin h}{h} \cdot \frac{1}{\cos h} = 1.
\]
3. From the definition of the derivative as a limit and the result of Number 2 derive the formula

\[\frac{d}{dx} \tan x = \sec^2 x. \]

[HINT: \(\tan(x + h) = \frac{\tan x + \tan h}{1 - \tan x \tan h} \)]

\[\frac{d}{dx} \tan x = \lim_{h \to 0} \frac{\tan(x + h) - \tan x}{h} = \lim_{h \to 0} \frac{\tan h + \tan^2 x \tan h}{h(1 - \tan x \tan h)} \]

\[= \lim_{h \to 0} \frac{\tan h}{h} \cdot \lim_{h \to 0} \frac{1 + \tan^2 x}{1 - \tan x \tan h} \]

\[= \sec^2 x. \]

Compare this result with the result obtained by using the method of differentiating the quotient \(\frac{\sin x}{\cos x} \).

\[\frac{d}{dx} \tan x = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} = 1. \]

4. In the simplest way you can, evaluate the following and express your answers in several different equivalent forms.

(a) \(\frac{d}{dx} \cot x = \frac{d}{dx} \frac{1}{\tan x} = -\frac{\sec^2 x}{\tan^2 x} = -\frac{1}{\tan^2 x} = -\csc^2 x = -1 - \cot^2 x. \)

(b) \(\frac{d}{dx} \sec x = \frac{d}{dx} \frac{1}{\cos x} = -\frac{\sin x}{\cos^2 x} = \frac{\tan x}{\cos^2 x} = \tan x \sec x = \sin x \sec^2 x. \)

(c) \(\frac{d}{dx} \csc x = \frac{d}{dx} \frac{1}{\sin x} = -\frac{\cos x}{\sin^2 x} = -\csc x \cot x \csc x = \cos x \csc^2 x. \)

(d) \(\frac{d}{dx} \sin^2 x = 2 \sin x \cos x = \sin 2x. \)
(e) \[D \cos^2 x = 2 \cos x \cdot (-\sin x) = -2 \sin x \cos x = -\sin 2x, \]
or \[D \cos^2 x = D(1 - \sin^2 x) = -\sin 2x. \]

(f) \[D(4 \cos^3 x - 3 \cos x) = -12 \cos^2 x \sin x + 3 \sin x \]

\[= 3 \sin x(1 - 4 \cos^2 x) \]
\[= 3 \sin x(4 \sin^2 x - 3) \]

Check: \[D(\cos 3x) = -3 \sin 3x \]

(g) \[D(3 \sin x - 4 \sin^3 x) = 3 \cos x - 12 \sin^2 x \cos x \]

\[= 3 \cos x(4 \cos^2 x - 3) \]

Check: \[D(\sin 3x) = 3 \cos 3x \]

5. Evaluate the following limits:

(a) \[\lim_{h \to 0} \frac{\sin 2h}{h} = \lim_{h \to 0} \frac{2 \sin h \cos h}{h} \]

\[= \lim_{h \to 0} \frac{\sin h}{h} \cdot \lim_{h \to 0} (2 \cos h) \]
\[= 1 \cdot 2 = 2 \]

(b) \[\lim_{h \to 0} \frac{1 - \cos h}{h^2} = \lim_{h \to 0} \frac{1 - \cos^2 h}{h^2(1 + \cos h)} \]

\[= \lim_{h \to 0} \frac{\sin^2 h}{h^2} \cdot \frac{1}{1 + \cos h} \]
\[= 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \]

6. (a) Given that \[\lim_{x \to 0} \sin x = \sin 0 = 0. \]

Prove that \[\lim_{x \to 0} \frac{\sin x}{x + 1} = 0. \] (Hint: Show that \(\cos x \) is continuous at \(x = 0 \)).

Since \(\cos x = 1 - 2 \sin^2 \frac{x}{2} \),

\[\lim_{x \to 0} \cos x = \lim_{x \to 0} (1 - 2 \sin^2 \frac{x}{2}) \]
\[= 1 - 2 \lim_{x \to 0} \sin^2 \frac{x}{2} \]
\[= 1. \]

160
Thus, \(\cos x \) is continuous at \(x = 0 \).

\[
\lim_{x \to 0} \sin x = 0 = \lim_{x \to 0} \frac{\sin x}{1 + \cos x}
\]

(b) From the preceding result prove that \(\sin x \) and \(\cos x \) are continuous for all values of \(x \). Make explicit just what is being assumed in the proofs of (a) and (b).

To prove that \(\sin x \) and \(\cos x \) are continuous for all real values of \(x \), we use the formula,

\[
\sin(x + h) = \sin x \cos h + \cos x \sin h.
\]

Thus,

\[
\lim_{h \to 0} \sin(x + h) = \lim_{h \to 0} \sin x \cos h + \lim_{h \to 0} \cos x \sin h
\]

\[
= \sin x \cdot 1 + \cos x \cdot 0
\]

\[
= \sin x
\]

This proves that \(\sin x \) is continuous for all real \(x \).

Since \(\cos x = \sin(x + \frac{\pi}{2}) \), \(\cos x \) is also continuous for all \(x \).

Observe that in addition to \(\lim_{x \to 0} \sin x = 0 \), we needed no statement involving limits other than limit theorems. Thus we have assumed only this limit and conventional identities for circular functions.

7. Given that \(Df(x) = G(x) \), show that \(Df(ax + b) = aG(ax + b) \), provided \(f \) is differentiable at \(ax + b \).

Comment: At first glance this problem may appear to be a simple application of the chain rule but at this point the chain rule has not been established and the proof of the problem will require the definition of the derivative.

(1) \(Df(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = G(x) \)

(2) \(Df(ax + b) = \lim_{k \to 0} \frac{f(ax + b + k) - f(ax + b)}{k} \)

\[
= a \lim_{k \to 0} \frac{f(ax + b + ak) - f(ax + b)}{ak}
\]

where \(k = ak \) and \(a \neq 0 \).

By (1), the limit in (2) is \(aG(ax + b) \).
8. Evaluate the following:

(a) \(D \cos x \sin 2x = 2 \cos^3 x \sin x\)

Alternatively, using Number 7,
\[D \cos^2 x \sin 2x = \cos^2 x(2 \cos 2x) - \sin 2x(2 \cos x \sin x)\]

(b) \(D \sin^2 (ax + b) = 2 \sin (ax + b) D \sin (ax + b)\)

By Number 7, if \(D \sin x = \cos x\) then \(D \sin (ax + b) = a \cos (ax + b)\)

\[D \sin^2 (ax + b) = 2 \cos (ax + b) \cos (ax + b)\]

(c) \(D(\sin 7x)(\cos 2x) = \sin 7x D \cos 2x + \cos 2x D \sin 7x\)

By Number 7, \(D \cos 2x = -2 \sin 2x\)

and, \(D \sin 7x = 7 \cos 7x\)

\(D(\sin 7x)(\cos 2x) = -2 \sin 2x \sin 7x + 7 \cos 2x \cos 7x\)

9. Let \(g(x) = |\cos x|\). Discuss the domain of the derivative for \(x\) in the interval \(0 \leq x \leq \pi\).

\[g(x) = \begin{cases}
\cos x, & 0 \leq x < \frac{\pi}{2} \\
\cos x, & \frac{\pi}{2} < x \leq \pi
\end{cases}\]

\[g'(x) = \begin{cases}
-sin x, & 0 \leq x < \frac{\pi}{2} \\
\sin x, & \frac{\pi}{2} < x \leq \pi
\end{cases}\]

or \(g'(x) = -\sin x \frac{|\cos x|}{\cos x}\)

\(g'(x)\) is not defined at \(x = \frac{\pi}{2}\).

10. Find a point on the graph of \(y = \sin x\) at which the slope of the curve is equal to the slope of the line \(x + 2y + 2 = 0\). Is there only one such point? Justify your answer.

The slope of the graph of \(f\) at any point \((x, f(x))\) is \(f'(x) = \cos x\).

The line \(x + 2y + 2 = 0\) has slope \(-\frac{1}{2}\). If \(x = \frac{2}{3} \pi + 2\eta\), \(n\) an integer, then \(\cos x = -\frac{1}{2}\). Also, by periodicity, if there is one such point, there are an infinite number of such points.
11. Evaluate the following:

(a) \[D \left(\frac{1 - \sin x}{1 + \cos x} \right) = \frac{(1 + \cos^2 x)(-\cos x) + (1 - \sin x)(2 \cos x \sin x)}{(1 + \cos x)^2} = \sin 2x - 3 \cos x + \cos^3 x \]

(b) \[D \left(\frac{1 - \tan^2 x}{2 \tan x} \right) = \frac{2 \tan x(-2 \tan x \sec^2 x) - (1 - \tan^2 x)(2 \sec^2 x)}{4 \tan^2 x} = \frac{-1}{2 \cos x \sin x} \]

(c) \[D \left(\frac{\sin^4 x}{\cos^4 x} \right) = \frac{\cos^2 x \sin^3 x \cos x + \sin^4 x \cdot 2 \cos x \sin x}{\cos^4 x} = \frac{2 \sin^3 x (2 \cos^2 x + \sin^2 x)}{\cos^3 x} \]

(d) \[D \left(\frac{\cos x}{\cos^2 x} \right) = \frac{-3(2 \cos x(-\sin x))}{\cos^3 x} = \frac{6 \sin x}{\cos^3 x} \]

(e) \[D \left(\frac{1}{1 + \tan x} \right) = \frac{-\sec^2 x}{(1 + \tan x)^3} \]

(f) \[D(x \tan x) = x \sec^2 x + \tan x \]

(g) \[\frac{D((\sin x + \cos x)^2)}{\sin x - \cos x} = \frac{2(\sin x + \cos x) D(\sin x + \cos x)}{\sin x - \cos x} \]

\[= \frac{-4(\sin x + \cos x)}{(\sin x - \cos x)^3} \]

12. Show that there are no points of the graph of \(y = \sec x - \tan x \) at which the slope of the curve is zero.

\[f'(x) = \frac{\sin x - 1}{\cos^2 x} \]

\(\sin x = 1 \) if and only if \(\cos x = 0 \), hence \(f'(x) \) has no zeros.
13. Find all values of \(x \) for which the slope of the graph of \(f(x) = \sin x \tan x \) is zero.

\[
f'(x) = \sin x + \frac{\sin x}{\cos^2 x} = \sin x \left(1 + \frac{1}{\cos^2 x}\right) = 0
\]

Thus, \(x = k\pi \), \(k \) an integer.

14. (a) Sketch the graph of \(f(x) = \frac{x}{\sin x} \) for \(0 < x < \frac{\pi}{2} \).

(b) Examine \(f'(x) \) and show that there is no value of \(x \) in the interval \(0 < x < \frac{\pi}{2} \) for which \(f'(x) = 0 \).

\[
f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}
\]

If \(f'(x) = 0 \), then \(\sin x - x \cos x = 0 \), or \(\tan x = x \).

But for all \(x \), \(0 < x < \frac{\pi}{2} \); \(\tan x > x \); hence \(f'(x) > 0 \) for all \(x \) in the interval \(0 < x < \frac{\pi}{2} \).
(c) Explain how your results support the fact that \(f \) is increasing on the given interval.

At this time a geometric argument should be presented. The analytic proof is given in Theorem 5-1a. Since \(f' \) is positive at every point on the interval, it would seem plausible that the graph of the function must slope in a positive direction as we proceed to the right.

5. (a) Find the maximum and minimum values of \(f(x) = \cos x \).

Use the identity
\[
 k \sin (a + b)
\]
and set \(k \sin \).

\[
 f(x) = k \sin \quad = k \sin (a + b)
\]

Thus, the maximum and minimum values are
\[
 \sqrt{a^2 + b^2}
\]
16. Consider \(f: x \rightarrow \sin \frac{1}{x} \) in the domain \(0 < x \leq 1 \). Is it possible to define \(f \) at \(x = 0 \) such that the function is continuous in \([0,1]\)?

No. Within any neighborhood of the origin, \(\sin \frac{1}{x} \) takes all values between \(-1\) and \(1\). Thus, \(\sin \frac{1}{x} \) has no limit at \(x = 0 \).

17. Consider \(f: x \rightarrow x - \frac{1}{x} \).

(a) Sketch the graph of \(f \).
18. Does the function

\[f(x) = \begin{cases}
 x^2 \sin \frac{\pi}{x}, & x \neq 0, \\
 0, & x = 0
\end{cases} \]

have a derivative at \(x = 0 \)?

Yes. \(\frac{f(x + h) - f(x)}{h} \) \((\text{right derivative}) \)

and \(\lim_{h \to 0} \frac{h \sin \frac{\pi}{h}}{h} = 0 \) \((\text{product rule}) \)

Note that the product rule is

19. Given that the functions \(u(x) \) satisfy certain equations.

Show that \(L(u^2 \cdot v^2) \) \(u(0) \)

20. \(\text{Show that} \)

\(\text{\ldots} \)
TC4-5. **Inverse Circular Functions.**

For a discussion of inverse functions and related topics, see Sections A2-3 and TC A2-3.

Solution

1. Determine the domain and range.

(a) \(f : x \rightarrow \arcsin(x) \)

 Domain: the set of all \(x \) in \((-1, 1)\)

 Range: the set of all real numbers
(c) \(f(x) = \arcsin(\cos x) \)

Domain: set of all real numbers.

Range: all \(y = f(x) \) where \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\)

The graph is shown and completed.
(e) $f(x) = \arctan(\tan x)$

Domain: all real x except $x = (cn + 1)\frac{\pi}{2}$, n an integer.

Range: all $y = f(x)$ where $\frac{\pi}{2} < y < \frac{3\pi}{2}$.
3. Derive the formula
\[D \arctan x = \frac{1}{1 + x^2} \]

Let \(g : x \rightarrow \arctan x \) and \(y = \arctan x \) for all real \(x \) and
\[D \arctan x = g'(x) = \frac{1}{1 + y^2} \]
where \(y = \arctan x \) for all real \(x \), and
\[g'(x) = \frac{1}{1 + y^2} \]

Derive each of the following.

(a) \(D \arccot x = -\frac{1}{1 + x^2} \)

Let \(g : x \rightarrow \arccot x \) for all real \(x \) and
\[g'(x) = \frac{1}{y^2 - 1} \]

(b) \(D \sec x \)
(c) \[\text{D arccsc } x = \frac{-1}{|x|/x^2 - 1} \]

Let \(g(x) = \text{arccsc } x \) and \(r(y) = \text{arcsec } y \) where \(x \geq 1 \) and \(0 < |y| \leq \frac{\pi}{2} \).

Then \(g'(x) = \frac{1}{r'(y)} \)

\[= \frac{1}{\frac{1}{|x|/x^2 - 1}} \]

Note: \(g'(x) = \frac{1}{x} \)

For \(x = 1, |y| = \frac{\pi}{2} \)

(\(D \) \(\text{arccsc } x \) \(... \) ...
6. Find \(\lim_{h \to 0} \frac{\arcsin h}{h} \) (Hint: What is the derivative of \(\arcsin x \)?)

Let \(f(x) = \arcsin x \) at \(x = a \).

Then \(\frac{f(a + h) - f(a)}{h} \).

\[
\begin{align*}
\lim_{h \to 0} \frac{\arcsin h}{h} &= \frac{\arcsin h}{h} \\
&= \frac{\arcsin 0}{0} \\
&= 1
\end{align*}
\]

7. (a) \(\frac{d}{dx} \left(\frac{1}{\arccos x} \right) \)
TC4-6. Compositions. Chain Rule.

In Section TC3-6 we supplied a geometric construction for the graph of a composite function. We now give a geometric interpretation of the chain rule. For the graphs of g, f, and gf we examine the slopes at appropriate values and the derivative as a limit.

Let g and f be functions of the variables x and y respectively. In Figure TC4-6a we show the graph of g, f, and the rectangle $(A, B C D)$ of the graph of f. (TC3-6c, 3 od).

The slope of the graph of g is

$$\frac{dy}{dx}$$

If $y = f(x)$ and $x = g(t)$, then

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$

In Figure TC4-6b, let $y = gf(x)$. Then

$$\frac{dy}{dx} = \frac{dy}{df} \cdot \frac{df}{dx}$$
If \(f(x) \neq f(a) \), then the product of the slopes of chords \(A_1A_2 \) and \(C_1C_2 \) is equal to the slope of chord \(D_1D_2 \); that is,

\[
\frac{f(x) - f(a)}{x - a} \cdot \frac{f(x) - f(a)}{x - a} = \frac{f(a)}{x - a} \cdot \frac{f(a)}{x - a}, \quad x \neq a.
\]

If \(f(x) = f(a) \), the slope of the chord through the graph of \(f \) is zero, the slope of chord \(A_1A_2 \) at the graph of \(f \) is zero, but points \(C_1 \) and \(C_2 \) coincide (Figure 4). In this case, the slope of \(g \) at \(x = f(a) \).
1. For each of the following, find $D_{fg}(x)$, $D_{gf}(x)$, $D_{fg}(x)$, and $D_{gf}(x)$.

(a) $f(x) = x^3 - 2x$, $g(x) = \sqrt{x}$.

(1) $D_{fg}(x) = D[(x^{3/2} - 2x^{1/2})]$

(2) $D_{gf}(x) = D[x^{3/2} - 2x^{1/2}]$

(4) $L_{gf}(x) = L_{x^{3/2} - 2x^{1/2}}$

(5) $D_{fg}(x) = D(x^{3/2} - 2x^{1/2})$

(6) $D_{gf}(x) = D(x^{3/2} - 2x^{1/2})$
(c) \(f(x) = x^2 \), \(g(x) = \sin x \).

(1) \(Df(x) = D \sin^2 x \)

\[- 2 \sin x \cos x \]

(2) \(Dg(x) = D \sin(x^2) \)

\[2x \cos(x^2) \]

(3) \(\Delta f(x) = 1 \]

(4) \(\Delta g(x) = D \sin x \)

\[\cos x \]

(a) \(\gamma(\theta) = 1 + \]

(1) \(\ln_e \)

\[\theta \]

\[\theta \]
(e) \(f(x) = \sin(x^2) \), \(g(x) = \sqrt{1 - x^2} \)

(i) \(D(g(x)) = D\sin(1 - x^2) \)
\[= -2x \cos(1 - x^2) \]

(ii) \(D(g(x)) = D\sqrt{1 - x^2} \)
\[= \frac{x}{\cos(x)} \]

(iii) \(D(g(x)) = D\frac{x}{\cos(x)} \)
\[= \frac{x \cos(x) - x^2 \sin(x)}{\cos^2(x)} \]

(iv) \(\frac{\text{sin}(x)}{x} \)
\[= \frac{\sin(x)}{x} \]

2. Find \(\ln(x) \)...

(i) \(\cdot \cdot \cdot \)

\[\ln(x) \]

(ii) \(\cdot \cdot \cdot \)

\[\ln(x) \]

(iii) \(\cdot \cdot \cdot \)

\[\ln(x) \]

(iv) \(\cdot \cdot \cdot \)

\[\ln(x) \]
(c) \[\frac{\sqrt{1 - 3x} + 1}{\sqrt{1 - 3x}} = \frac{3}{2(1 - 3x)^{3/2}} \]

\[D \left(\frac{\sqrt{1 - 3x} + 1}{\sqrt{1 - 3x}} \right) = \frac{3}{2(1 - 3x)^{3/2}} \]

(d) \[\sqrt{\sin^2 x + x^2} \]

\[D \sqrt{\sin^2 x + x^2} = \frac{2x + \sin 2x}{2\sqrt{\sin^2 x + x^2}} \]

5. Evaluate:

(a) \[D_x \sqrt{a^2 - x^2} = \frac{x - a}{\sqrt{a^2 - x^2}} \]

(b) \[(x^2 + 1)^{-1/2} = \frac{x^3}{(x^2 + 1)^{3/2}} \]

(c) \[D_x \left(\frac{x^2 - a^2}{x^2 + a^2} \right) = \frac{2ax}{(x^2 - a^2)^{1/2}(x^2 + a^2)^{3/2}} \]

(d) \[D_x \left(\frac{1 + \sqrt{1 - 2x}}{\sqrt{1 - 2x}} \right) = D \left(\frac{1}{\sqrt{1 - 2x}} + 1 - \sqrt{1 - 2x} \right) \]

\[= \frac{1}{(1 - 2x)^{3/2}} + \frac{1}{(1 - 2x)^{1/2}} \]

\[= \frac{2(1 - x)}{(1 - 2x)^{3/2}} \]

(e) \[D_x \left((2x^2 - 2x + 1)^{-1/2} \right) = (2x^2 - 2x + 1)^{-1/2} + xD(2x^2 - 2x + 1)^{-1/2} \]

\[= \frac{1 - x}{(2x^2 - 2x + 1)^{3/2}} \]

5. Evaluate:

(a) \[D \left(\frac{\sqrt{1 + \cos x}}{2\sqrt{1 + \cos x}} \right) = \frac{\cos x}{2\sqrt{1 + \cos x}} = \frac{-\sin x}{2\sqrt{1 + \cos x}} \]

(b) \[D \left(\sqrt{x^2 \sin x} \right) = \sqrt{\sin x} \frac{Dx^2}{\sqrt{\sin x}} + x^2 \frac{D\sqrt{\sin x}}{\sqrt{\sin x}} = \frac{4x \sin x + x^2 \cos x}{2 \sqrt{x^2 \sin x}} \]
(c) \(D_x(\cos(\cos(x))) = -\sin(\cos(x))D(\cos(x)) = -\sin x \cdot \sin(\cos x) \cdot \sin(\cos(x)) \)

(d) \(D_x(\arcsin(x)) = \frac{D \cos x}{\sqrt{1 - \cos^2 x}} = -\frac{\sin x}{|\sin x|} \)

Note: If \(0 < x < \pi \), \(D[\arcsin(\cos x)] = -1 \), and if \(\pi < x < 2\pi \), \(D[\arcsin(\cos x)] = 1 \), etc. Refer to Exercise 4-5, Number 1c.

(e) \(D_x(\arctan(\arctan x)) = \frac{D \arctan x}{1 + (\arctan x)^2} = \frac{1}{(1 + x^2)(1 + (\arctan x)^2)} \)

(f) \(D_x(x^2 \sin x \cos x) = \sin x \cos x \cdot Dx^2 + x^2 \cos x \cdot D \sin x + x^2 \sin x \cdot D \cos x = x(x \cos 2x + \sin 2x) \)

(g) \(D_x \left(\frac{\sin^2 x}{\sin(x^2)} \right) = \frac{\sin(x^2)D \sin^2 x - \sin^2 x \cdot D \sin(x^2)}{\sin^2(x^2)} \)

(h) \(D_x(\tan \left(\frac{1 + x}{1 - x} \right)) = \sec^2 \left(\frac{1 + x}{1 - x} \right) \cdot D \left(\frac{1 + x}{1 - x} \right) = \frac{2}{(1 - x)^2} \cdot \sec^2 \left(\frac{1 + x}{1 - x} \right) \)

Evaluate:

(a) \(D_x(\arcsin(\sin x - \cos x)) = \frac{D(\sin x - \cos x)}{\sqrt{1 - (\sin x - \cos x)^2}} = \frac{\sin x + \cos x}{\sqrt{\sin x - \cos x}} \)

(b) \(D_x \left(\arcsin \frac{1 - x^2}{1 + x^2} \right) = \frac{D \left(\frac{1 - x^2}{1 + x^2} \right)}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2} \right)^2}} \)

\(= \frac{-2x}{|x|(1 + x^2)} \)
(c) $D_x(\arctan(x + \sqrt{1 + x^2})) = \frac{D(x + \sqrt{1 + x^2})}{1 + (x + \sqrt{1 + x^2})^2}$

(d) $D_x(\arctan \frac{1 + x}{1 - x}) = \frac{D\left(\frac{1 + x}{1 - x}\right)}{1 + \left(\frac{1 + x}{1 - x}\right)^2} = \frac{1}{1 + x^2}$

(e) $D_x\left((\arcsin(x^2))^2\right) = -2(\arcsin(x^2))^3 D\arcsin(x^2)$

(f) $D_x(\arccsc \sqrt{1 + x^2}) = \frac{D\sqrt{1 + x^2}}{|x|\sqrt{1 + x^2}} = \frac{1}{|x|(1 + x^2)}$

(g) $D_x(\arctan \frac{x + 1}{x - 1} + \arctan x) = \frac{D\left(\frac{x + 1}{x - 1}\right)}{1 + \left(\frac{x + 1}{x - 1}\right)^2} + \frac{1}{1 + x^2}$

(h) $D_x(\arcsin x) = \frac{\arctan x D\arcsin x - \arcsin x D\arctan x}{(\arctan x)^2}$

(i) $D_x(\arcsin(\arcsin x)) = \frac{1}{\sqrt{1 - (\arcsin x)^2}}$
7. Evaluate:

(a) $D_v \sin x$, where $v = \cos x$.

Let $v = \cos x$. Then

$$\sin x = \sqrt{1 - v^2}, \text{ if } \sin x > 0,$$

and

$$\sin x = -\sqrt{1 - v^2}, \text{ if } \sin x < 0.$$ For $\sin x > 0$,

$$D_v \sin x = D_v \sqrt{1 - v^2} = \frac{-v}{\sqrt{1 - v^2}} = -\frac{\cos x}{\sin x} = -\cot x.$$

For $\sin x < 0$,

$$D_v \sin x = D_v \left(-\sqrt{1 - v^2} \right) = \frac{v}{\sqrt{1 - v^2}} = -\frac{\cos x}{\sin x} = -\cot x.$$

Hence for all x except $x = nx$, n an integer, $D_v \sin x = -\cot x$, where $v = \cos x$.

(b) $D_u \sqrt{1 - u^2}$, where $u = x^2$.

$$D_u \sqrt{1 - u^2} = D_u \frac{1 - u}{2\sqrt{1 - u^2}}, \text{ where } u = x^2.$$

$$D_u \frac{1 - u}{2\sqrt{1 - u^2}} = -\frac{1}{2\sqrt{1 - u^2}} = -\frac{1}{2\sqrt{1 - x^4}}.$$

(c) $D_v (2 + 3 \cos^2 x)$ where $v = \sin x$.

$$D_v (2 + 3 \cos^2 x) = D_v (2 + 3(1 - \sin^2 x))$$

$$= D_v (2 + 3(1 - v^2))$$

$$= D_v (5 - 3v^2)$$

$$= -6v = -6 \sin x.$$
8. Compute the limits of each of the following ratios.

(a) \(\lim_{x \to a} \frac{\sqrt{x^2 - 1} - \sqrt{a^2 - 1}}{x - a} = f'(a) \) where \(f(x) = \sqrt{x^2 - 1} \)

\(f'(a) = \frac{a}{\sqrt{a^2 - 1}} \)

(b) \(\lim_{x \to a} \frac{(\arccos x)^2 - (\arccos a)^2}{x - a} = g'(a) \)

where \(g(x) = (\arccos x)^2 \).

\(g'(a) = \frac{-2 \arccos \frac{a}{\sqrt{1 - a^2}}}{\sqrt{1 - a^2}} \)

9. If \(g(x) = (Ax + B)\sin x + (Cx + D)\cos x \), determine the value of constants \(A, B, C, D \) such that for all \(x \), \(f'(x) = x \sin x \).

\(f(x) = (Ax + B)\sin x + (Cx + D)\cos x \)

\(f'(x) = (Ax + B + C)\cos x + (A - Cx - D)\sin x \)

\(f'(0) = B + C = 0 \), since \(f'(0) = 0 \cdot \sin 0 = 0 \).

\(f'\left(\frac{\pi}{2}\right) = A - \frac{\pi}{2} C - D = \frac{\pi}{2} \), since \(f'\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \), and \(A - D = \frac{\pi}{2} (1 + C) \).

\(f'\left(\frac{\pi}{2}\right) = \pi A = 0 \), hence \(A = 0 \).

Hence \(f'(x) = (-Cx - D)\sin x \) and \(C = -1, D = 0 \).

Thus \(A = 0, B = 1, C = -1, D = 0 \), and

\(f(x) = -\sin x + \sin x \cos x \).
10. If \(g(x) = (Ax^2 + Bx + C)\sin x + (Dx^2 + Ex + F)\cos x \), determine the value of constants \(A, B, C, D, E, F \) such that for all \(x \),

\[
g'(x) = x^2 \cos x .
\]

\[
g'(x) = \sin x (2Ax + B - Bx^2 - Ex - F) + \cos x (Ax^2 + Bx + C + 2Ax + E) ,
\]

\[
g'(0) = C + E = 0 ,
\]

\[
g'\left(\frac{\pi}{2}\right) = 2\pi A + B - D\frac{\pi}{2} - E\frac{\pi}{2} = 0 ,
\]

\[
g'\left(\frac{3\pi}{2}\right) = -(3\pi A + E - D\frac{3\pi}{2} - E\frac{3\pi}{2} - F) = 0 ,
\]

\[
g'\left(\frac{5\pi}{2}\right) = 5\pi A + B - \frac{25\pi^2}{4} + D\pi + \frac{25\pi^2}{4} - E\pi - F = 0 ,
\]

\[
2\pi A + 2\pi^2 + \pi E = 0
\]

and \(2\pi A - \pi D - \pi E = 0 \), whence,

\(D = 0 , \ E = 2 \pi , \ C = -2\pi \),

\[
g'(\pi) = -(\pi^2 A + \pi B + C + 2\pi D + C) = -\pi^2 ,
\]

\[
g'(2\pi) = 4\pi^2 A + 4\pi B + C + 4\pi D + 2\pi = 4\pi^2 ,
\]

\[
2\pi A + \pi B + 2\pi D = 3\pi^2 , \text{ whence,}
\]

\(A = 0 , \ B = 2 \), \(C = -2 \), \(D = 0 \), and

\[
g'(x) = (x^2 + 2)\sin x + 2x \cos x .
\]

Determine the derivative \(g!(x) \) in terms of \(f'(x) \) if:

(a) \(g(x) = f(x^3) + f'(x^{-1/3}) \),

\[
g'(x) = 3x^2 f'(x^3) - \frac{1}{3} x^{-4/3} f'(x^{-1/3}) .
\]

(b) \(g(x) = f(s\sin^2 x) + f'(\cos^2 x) \),

\[
g'(x) = 2 \sin x \cos x f'(\sin^2 x) - 2 \cos x \sin x f'(\cos^2 x) = \sin 2x f'(\sin x) - \cos 2x f'(\cos x) .
\]

(c) \(g(x) = f(\arcsin x) + f'(\arctan x) \),

\[
g'(x) = \frac{1}{\sqrt{1 - x^2}} f'(\arcsin x) + \frac{1}{1 + x^2} f'(\arctan x) .
\]
12. Prove that the derivative of an even function is odd and vice versa (it is assumed that the derivative exists).

Let \(f \) be an even function, e.g., \(f(x) = f(-x) \).

\[Df(x) = Df(-x) \text{ or } f'(x) = f'(-x) \] and \(f' \) is odd.

If \(g \) is an odd function, \(g(x) = -g(-x) \).

Then

\[Dg(x) = -Dg(-x) \text{ or } g'(x) = -g'(-x) \] and \(g' \) is even.

These results also follow by considering the graphs of \(f \) or both cases.

13. Show that it is impossible to find polynomials \(p \) and \(q \) such that:

(a) \(Dp(x) = \frac{1}{x} \).

(b) \(Dp(x) = \frac{1}{x} \).

(c) \(Dp(x) = \frac{1}{x} \).

\[\therefore p(x) = x \]

Then,

\[x \frac{p'(x)}{x} = -xp'(x) \]

Equating the degree of each side:

\[1 = m + n - 1 \text{ or } m = n \]

Also, \(2m = n \) or \(n = 0 \).

This is also impossible.

\[\therefore (a) \text{ Assume } Dp(x) = \frac{1}{x} \text{ where the degree of } p \text{ is } n \text{ and the degree of } q \text{ is } m, \text{ where } m, n \neq 0 \text{ and } p(x) \text{ and } q(x) \text{ are relatively prime (i.e., have no common factors).} \]

Then,

\[x^2 = q(x)p'(x) - p(x)q'(x) \]

Equating the degrees of each side:

\[2m + 1 = m + n - 1 \text{ or } m = n \]
Also, \[xq(x) - p'(x) = \frac{-p(x)q'(x)}{q(x)}. \]

Since the left-hand side is a polynomial, so must the right-hand side. Also, since \(p \) and \(q \) are relatively prime, this implies that \(q'(x) \) is divisible by \(q(x) \). This is impossible since the degree of \(q' \) is one less than the degree of \(q \).

TC4-7. Notation.

This section is included (at this point) as a reference: it need not be assigned as a unit for study in its own right.

Solutions Exercises 4-7

1. Let \(y = \sin x \) and \(x = t^2 + \frac{1}{t} \).

Find \(\frac{dy}{dt} \) and \(\frac{dy}{dx} \) at \(t = 1 \).

\[\frac{dy}{dt} = D \sin \left(t^2 + \frac{1}{t} \right) = \cos \left(t^2 + \frac{1}{t} \right) (2t - \frac{1}{t^2}) , \]

\[\frac{dy}{dx} \bigg|_{t=1} = \cos 2. \]

\[\frac{dy}{dx} = D \sin x = \cos x \]

\[\frac{dy}{dx} \bigg|_{x=1} = \cos 1. \]

2. Let \(y = f(x) \) and \(x = h(t) \).

Express \(\frac{dy}{dt} \bigg|_{t=t_0} \) in terms of \(t_0 \).

\[\frac{dy}{dt} = Dh(t) = \frac{df}{dx} \left(h(t) \right) \frac{dx}{dt} \bigg|_{t=t_0} = \frac{df}{dx} \left(h(t_0) \right) \frac{dh}{dt} \bigg|_{t=t_0} \]

3. Let \(y = f(x) \), \(x = h(t) \), \(x_0 = h(t_0) \).

Using Theorem 4-6 show that

\[\frac{dy}{dx} \bigg|_{x=x_0} = \frac{dy}{dt} \bigg|_{t=t_0}. \]
\[
\begin{align*}
\frac{dv}{dt} \bigg|_{t=t_0} &= \frac{d}{dt} \left(mh(t) \right) \bigg|_{t=t_0} = f(h(t)) h'(t) \bigg|_{t=t_0} \\
\frac{dx}{dt} \bigg|_{t=t_0} &= \frac{d}{dt} \left(h(t) \right) \bigg|_{t=t_0} = h'(t) \bigg|_{t=t_0} \\
\frac{f(h(t_0)) h'(t_0)}{h'(t_0)} &= f'(x_0) \\
\frac{dy}{dx} \bigg|_{x=x_0} &= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\end{align*}
\]

4. Find the following:

(a) \(D_x \sin x \bigg|_{x=0} + D_x \sin x \bigg|_{x=\frac{\pi}{4}} = \cos 0 + \cos \frac{\pi}{4} = \frac{2 + \sqrt{2}}{2} \)

(b) \(D_x \left(x^2 + \sin a \sin x \right) \bigg|_{x=\frac{\pi}{3}} = \frac{10\pi}{3} + \frac{1}{2} \sin a \)

(c) \(\frac{d}{dx} \left(x^2 - a^2 \right) \bigg|_{x=a} = 2a \)

(d) \(D_x \left(f(a) \sin x + f(x) \sin a + f(x) \sin x \right) \bigg|_{x=a} = \left(f(a) \cos x + \sin a f'(x) + \sin x f'(x) + f(x) \cos x \right) \bigg|_{x=a} = 2 \left(f(a) \cos a + f'(a) \sin a \right) \)

5. Let \(y = f(t) \), \(w = g(t) \), \(t = h(x) \), \(z = \frac{x}{w} \).

(a) Using Leibnizian notation, find \(\frac{dz}{dx} \) in terms of \(\frac{dy}{dt} \), \(\frac{dw}{dt} \), and \(\frac{dt}{dx} \).

\[
\frac{dz}{dx} = \frac{d}{dx} \left(\frac{x}{w} \right) = \frac{w \frac{dx}{dt} - y \frac{dw}{dt}}{w^2} \frac{x}{w}
\]

\[
= \frac{w \frac{dy}{dt} \frac{dt}{dx} - w \frac{dt}{dx} \frac{dw}{dt}}{w^2}
\]
In elementary calculus texts it is customary to consider formal techniques of implicit differentiation and omit reference to questions that are involved. This text offers an honest, direct approach. It utilizes well-chosen examples to point up the great convenience of implicit differentiation and indicate the impossibility of obtaining an explicit definition for all functions defined implicitly. The discussion of Equation (3) in Section 4-8.

\[x^2 \arctan z + z = \sin x \]

includes a plausible argument justifying the existence of the unique function \(x \rightarrow z \). This informal "proof" is in line with the formal proof of Theorem A5a.

Theorem A5b may be paraphrased: if an implicit relationship

\[F(x,y) = 0 \]

defines a function \(x \rightarrow y \) or \(y \rightarrow x \), and if that function possesses a derivative when the point \((x,y)\) satisfies the implicit relationship, then that derivative is generally obtainable by formal implicit differentiation. The text includes an example illustrating the case where the derivative at a point \((x,y)\) exists but is not obtainable by implicit differentiation.

Solutions Exercises 4-8

1. For positive \(x \), if \(y = x^r \), where \(r \) is a rational number, say

\[r = \frac{p}{q} \quad (p, q \text{ integers}) \]

then \(y^q = x^p \). Assuming the existence of the derivative \(D_x y \), derive the formula \(D_x y = rx^{r-1} \) using implicit differentiation and the differentiation formula \(D_x x^n = nx^{n-1} \), for integral \(n \).

\[y = x^r \text{, where } r = \frac{p}{q}, x > 0. \quad \text{If } y^q = x^p, \quad \frac{D}{D_x} y^q = D_x x^p \text{ and} \]

\[qy^{q-1} D_x y = px^{p-1}, \quad \text{whence } \quad D_x y = \frac{p x^{p-1}}{q y^{q-1}} = \frac{p x^{p-1}}{q} = rx^{r-1}. \]
2. For each of the following, find $D_y x$ without solving for y as a function of x.
 (a) $5x^2 + y^2 = 12$.

 $$10x + 2y D_y x = 0 \text{ and } D_y x = \frac{-5x}{y}$$

 (b) $2x^2 - y^2 + x - 4 = 0$.

 $$4x - 2y D_y x + 1 = 0$$

 $$D_y x = \frac{4x + 1}{2y}$$

 (c) $y^2 - 3x^2 + 6y = 12$.

 $$2y D_y x - 6x + 6 D_x y = 0$$

 $$D_y x = \frac{3x}{y + 3}$$

(a) $x^3 + y^3 - 2xy = 0$.

$$3x^2 + 3y^2 D_y x - 2x D_x y - 2y = 0$$

$$D_y x = \frac{2y - 3x^2}{3y^2 - 2x}$$

3. For each of the following use implicit differentiation to find $D_x y$.
 (a) $x^2 = \frac{y - x}{y + x}$.

$$2x = \frac{(y + x)(D_x y - 1) - (y - x)(D_y y + 1)}{(y + x)^2}$$

$$D_x y = \frac{x(y + x)^2 + y}{x}$$

(b) $x^2 y + xy^2 = x^3$.

$$2xy + x^2 D_x y + y^2 + 2xy D_y x y = 3x^2$$

$$D_y x = \frac{3x^2 - 2xy - y^2}{x^2 + 2xy}$$
Use implicit differentiation to find $D_x y$.

(a) $\sqrt{x} y + \sqrt{y} = a \sqrt{a}$, a constant.

\[
\sqrt{y} \frac{dx}{dy} + \frac{x}{2 \sqrt{y}} + \frac{1}{2 \sqrt{x}} \frac{dy}{dx} + \sqrt{x} = 0.
\]

\[
D_x y = \frac{x(\sqrt{x} + 2 \sqrt{y})}{y(2 \sqrt{x} + \sqrt{y})}.
\]

(b) $2x^2 + 3xy + y^2 + x - 2y + 1 = 0$

\[
4x \frac{dx}{dy} + 3y \frac{dx}{dy} + 3x + 2y + 4x + 2y = 0
\]

\[
D_x y = \frac{2 - 3x - 2y}{4x + 3y + 1}.
\]

(c) $(x + y)^{1/2} + (x - y)^{1/2} = 1$

\[
\frac{1}{2(x + y)^{1/2}} \frac{dy}{dx} + \frac{1}{2(x - y)^{1/2}} (Dx - 1) = 0
\]

\[
D_x y = \frac{\sqrt{x + y} - \sqrt{x - y}}{\sqrt{x + y} + \sqrt{x - y}}.
\]
5. For each equation, find the slope of the curve represented at the stated point.

(a) \(2x^2 + 3xy + y^2 + x - 2y + 1 = 0\) at the point \((-2,1)\).

\[
4x + 3y + 3x \frac{Dy}{Dx} + 2y \frac{Dy}{Dx} + 1 - 2 \frac{Dy}{Dx} = 0
\]

At \((-2,1)\), \(\frac{Dy}{Dx} = \frac{-2}{3}\).

(b) \(x^3 + 2y^2 + y^3 - 1 = 0\) at the point \((1,-1)\).

\[
3x^2 + 2y^2 \frac{Dy}{Dx} + 2x^2 y^2 + 3y^2 \frac{Dy}{Dx} = 0
\]

At \((1,-1)\), \(\frac{Dy}{Dx} = -5\).

(c) \(x^2 - xy - 6y^2 = 2\) at the point \((4,1)\).

\[
2x - \frac{1}{2} \sqrt{xy} - \frac{1}{2} x^{3/2} y^{-1/2} \frac{Dy}{Dx} - 12y \frac{Dy}{Dx} = 0
\]

At \((4,1)\), \(\frac{Dy}{Dx} = \frac{5}{16}\).

(d) \(x \cos y = 3x^2 - 5\) at the point \((\sqrt{2}, \frac{\pi}{4})\).

\[
x(-\sin y \frac{Dy}{Dx} + \cos y \frac{Dy}{Dx}) = 6x
\]

At \((\sqrt{2}, \frac{\pi}{4})\), \(\frac{Dy}{Dx} = \frac{-1\sqrt{2}}{2}\)
For each equation, find the slope of the curve represented at the point or points where \(x = y \). Give a geometric explanation for these results.

(a) \(x^2 - 3axy + y^2 = 0 \).

\[
3x^2 - 3ax \frac{dy}{dx} - 3ay + 3y^2 \frac{dy}{dx} = 0
\]

\[
\left. \frac{dy}{dx} \right|_{x=y} = \frac{-2x^2 + 3ay}{3ax + 3y^2} = -1 \]

(b) \(x^m + y^n = 2 \).

\[
mx^{m-1} + ny^{n-1} \frac{dy}{dx} = 0
\]

\[
\left. \frac{dy}{dx} \right|_{x=y} = \frac{-nx^{m-1}}{my^{n-1}} = -1 \]

(c) \(x^2 + y^2 = 2axy + a^2 \) \((a \neq 0) \).

\[
2x + 2y \frac{dy}{dx} = 2ax \frac{dy}{dx} + 2ay
\]

\[
\left. \frac{dy}{dx} \right|_{x=y} = \frac{2ay - 2x}{2y - 2ax} = -1
\]

All three curves are symmetric about the line, \(y = x \). Thus at the point where \(x = y \) the tangents to the curves are orthogonal to the line (Refer to Exercises 2-5, No. 10).

7. Find \(\frac{dy}{dx} \) by implicit differentiation.

(a) \(a \sin y + b \cos x = 0 \) \((a, b \text{ constant}) \).

\[
\frac{a \cos y}{\frac{dy}{dx}} - \frac{b \sin x}{\frac{dy}{dx}} = 0
\]

\[
\frac{dy}{dx} = \frac{b \sin x}{a \cos y}
\]
(b) \[x \cos y + y \sin x = 0. \]

\[
\cos y = x \sin y. D_x y + \sin x D_y y + y \cos x = 0
\]

\[
D_x y = \frac{\cos y + y \cos x}{x \sin y - \sin x}
\]

(c) \[\sin xy = \sin x + \sin y. \]

\[
(cos-xy)(y + xD_y y) = \cos x + \cos y. D_x y
\]

\[
D_x y = \frac{\cos xy - \cos x}{\cos y - x \cos xy}
\]

(d) \[\csc(x + y) = y. \]

\[-\csc(x + y) \cot(x + y)(1 + D_x y) = D_x y
\]

\[
D_x y = -\frac{\csc(x + y) \cdot \cot(x + y)}{\csc(x + y) \cdot \cot(x + y) + 1}
\]

(e) \[x \tan y - y \tan x = 1. \]

\[
\tan y + x \sec^2 y. D_y y - \tan x D_x y - y \sec^2 x = 0
\]

\[
D_y y = \frac{\tan y - y \sec^2 x}{\tan x - x \sec^2 y}
\]

(f) \[\tan xy - x^2 = 0. \]

\[
(\sec^2 xy)(y + xD_x y) = 2x = 0
\]

\[
D_x y = \frac{2x \sec^2 xy}{x \sec^2 xy}
\]

(g) \[y \sin x = x \tan y. \]

\[
\sin x D_y y + y \cos x = \tan y + x \sec^2 y. D_y y
\]

\[
D_x y = \frac{\tan y - y \cos x}{\sin x - x \sec^2 y}
\]
3. If $0 < x < a$, then the equation $\sqrt{x} + \sqrt{y} = \sqrt{a}$ defines y as a function of x. Assuming the existence of the derivative, show without solving for y that $f''(x)$ is always negative.

\[
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0
\]

\[
\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}
\]

which is always negative since $x, y > 0$.

9. Assuming that $D_x y = D_y x = 0$ (i.e., x and y are independent), find the following:

(a) $D_x (x^2 + xy + \cos y)$.

\[
D_x (x^2 + xy + \cos y) = 2x + x \cdot D_y y + y \cdot \sin y \cdot D_x y = 2x + y.
\]

(b) $D_x (y^2) + D_y (x^2)$.

\[
D_x (y^2) + D_y (x^2) = 2y \cdot D_x y + 2x \cdot D_y x = 0.
\]

(c) $D_x (x^2) + D_y (y^2)$.

\[
D_x (x^2) + D_y (y^2) = 2x + 2y.
\]

(d) $D_x f(xy) + D_y f(x)$.

\[
D_x f(xy) + D_y f(x) = f'(xy)(x \cdot D_x y + y) + f'(x) \cdot D_y x = yf'(xy).
\]

(e) $D_x (xy)^2$.

\[
D_x (xy)^2 = 2(xy)(x \cdot D_x y + y) = 2xy^2.
\]
10. Let \(c_1 \) and \(c_2 \) be two curves which intersect at the point \((x_0, y_0) \) and let the slopes of \(c_1 \) and \(c_2 \) at \((x_0, y_0) \) be \(m_1 \) and \(m_2 \), respectively. If the product \(m_1 m_2 \) equals -1, we say that the curves \(c_1 \) and \(c_2 \) are orthogonal.

(a) Show that the lines with equations

\[
4y - 3x - 10 = 0 \quad \text{and} \quad 3y + 4x + 15 = 0
\]

are orthogonal.

\[
4D_y - 3D_x = 0 \quad \text{and} \quad D_y = \frac{3}{4} = \frac{1}{m_1}
\]

\[
3D_y + 4D_x = 0 \quad \text{and} \quad D_x = -\frac{4}{3} = m_2
\]

\(m_1 \cdot m_2 = -1 \) hence the lines are orthogonal.

(b) Show that the circle \(x^2 + y^2 = r^2 \), \(r \) constant, is orthogonal to the line \(y = mx \), \(m \) constant.

\[
2x + 2y \frac{D_y}{D_x} = 0 \quad \text{and} \quad \frac{D_y}{D_x} = -\frac{x}{y} = m_1
\]

\[
m_1 \cdot m_2 = \frac{y}{x}
\]

11. Find the points of intersection of the ellipse \(x^2 + 10y^2 = 10 \) and the hyperbola \(2x^2 - 8y^2 = 8 \), and the slopes of the curves at these points of intersection. Show that the curves are orthogonal.

Points of intersection are

\[
\left(\frac{\sqrt{5}}{3}, \frac{1}{3} \right), \left(\frac{\sqrt{5}}{3}, -\frac{1}{3} \right), \left(-\frac{\sqrt{5}}{3}, \frac{1}{3} \right), \quad \text{and} \quad \left(-\frac{\sqrt{5}}{3}, -\frac{1}{3} \right)
\]

For the ellipse \(D_x y = \frac{x}{2y} \)

For the hyperbola \(D_x x = \frac{x}{2y} \)

\[
\left(\frac{m_1 m_2}{80y^2} \right) \cdot \text{For each point of intersection, } m_1 \cdot m_2 = -1
\]
12. Show that the family of curves \(y^2 = 4a(x + a) \) is self-orthogonal, i.e., each two members of the family, \(y^2 = 4a_1(x + a_1) \) and \(y^2 = 4a_2(x + a_2) \), that intersect, necessarily intersect at right angles.

Let \((x_0, y_0)\) be the point of intersection of the two members of the family. The slopes of the curves \(y^2 = 4a_1(x + a_1) \) and \(y^2 = 4a_2(x + a_2) \) at \((x_0, y_0)\) are \(\frac{2a_1}{y_0} \) and \(\frac{2a_2}{y_0} \), respectively. At \((x_0, y_0)\) we have
\[
s_1(x_0 + a_1) = a_2(x_0 + a_2) \quad \text{whence} \quad x_0 = -(a_1 + a_2)
\]
and
\[
y_0^2 = 4a_1(x_0 + a_1) = 4a_1a_2. \quad \text{Thus, the product of the slopes of the curves at} \ (x_0, y_0) \ \text{is} \ \frac{2a_1}{y_0} \cdot \frac{2a_2}{y_0} = \frac{-4a_1a_2}{y_0^2} = -1. \quad \text{The result is immediate.}
\]

A13. For what values of \(k \), will there be exactly one line passing through the point \((0, k)\) and orthogonal to the parabola \(y = x^2 \)? For what values of \(k \), will there be exactly three orthogonal lines?

Let the equation of the line through \((0, k)\) be:
\[y = mx + k. \]

The line intersects \(y = x^2 \) at \(x = \frac{m \pm \sqrt{m^2 + 4k}}{2} \). Slope of parabola at points of intersection is \(m \pm \sqrt{m^2 + 4k} \). For orthogonality
\[
m(m \pm \sqrt{m^2 + 4k}) = -1 \quad \text{and} \quad k = \frac{1}{2} + \frac{1}{4m^2}. \quad \text{Hence, for all real numbers} \ m, \ k > \frac{1}{2} \ \text{there will be two orthogonal lines of the form} \ y = mx + k \ \text{which pass through the point} \ (0, k) \ \text{and are orthogonal to the parabola. However, since} \ y' = 2x \ \text{is equal to zero at} \ (0, 0) \ \text{the} \ y \text{-axis is orthogonal to the parabola at the origin.}
\]

If \(k \leq \frac{1}{2} \), only the \(y \)-axis is orthogonal to parabola.

If \(k > \frac{1}{2} \), 3 lines are orthogonal to parabola.
11. A ball dropped out of a window [image of a window with measurements] 16t^2 feet in t seconds. An observer is watching from another window at the same height 48 feet away. At what rate is the distance of the ball from the observer increasing two seconds after the ball is dropped?

(a) Write an equation which defines the distance \(d(t) \) between the observer and the ball at time \(t \).

(b) Use implicit differentiation to answer the question of the problem.

\[\frac{dv}{dt} = \frac{256}{t} \]

The distance of the ball from the observer is increasing at the rate of \(\frac{256}{t} \) ft/sec two seconds after the ball is dropped.

15. (a) Given the simple harmonic motion is described by the function \(x = t \sin (\omega t + c) \) where \(\omega \) and \(c \) are constants. Find the velocity at time \(t = t_0 \).

\[v = D_t \sin(\omega t + c) = \omega \cos(\omega t + c) \]

\[v(t) = \sin(\omega t + c) \]

(b) Simple harmonic motion may also be described by the function \(x = t \cos(\omega t + c) \) where \(\omega \) and \(c \) are constants. Find the velocity at time \(t = t_0 \).

\[v = D_t \cos(\omega t + c) = -\omega \sin(\omega t + c) \]

\[v(t) = \cos(\omega t + c) \]
(c) In what sense are the motions in (a) and (b) the same?

The magnitudes of the motion described in (a) and (b) are the same except for a phase shift of \(\frac{\pi}{2} \) radians.

16. If a simple harmonic motion is described by the function

\[p(t) = A \sin \omega t + B \cos \omega t \]

where \(A, B, \omega \) are constants, determine the maximum speed.

Refer to Solutions Exercises 4-4, No. 15.

\[A \sin \omega t + B \cos \omega t = \sqrt{A^2 + B^2} \sin(\omega t + \alpha) \]

\[v(t) = \omega \sqrt{A^2 + B^2} \cos(\omega t + \alpha) \]

Speed is maximum when \(\cos(\omega t + \alpha) = 1 \)

Maximum speed = \(\omega \sqrt{A^2 + B^2} \)

Solutions Miscellaneous Exercises

1. Evaluate:

(a) \[D(x + \frac{1}{x})^{1/2} = \frac{1}{2}(x + \frac{1}{x})^{-1/2} \left(1 - \frac{1}{x^2}\right) \]

(b) \[D(\text{arcsin} \sqrt{x})^2 = \arcsin \sqrt{x} \]

(c) \[D(3x^2 - 1) \quad x = 3 \quad \begin{array}{c} \frac{3x}{3x^2 - 1} \\ \frac{3}{2} \end{array} \quad x = \frac{3}{2} = \frac{9 \sqrt{3}}{3} \]

(d) \[D_u \sqrt{x^2 - x^2}, \quad \text{where } u = x^2 \quad \text{and } 0 < x < 1 \]

\[D_u \sqrt{x - x^2} = D_x \sqrt{x - x^2}, \quad D_x \left(\frac{1 - 2x}{2x^2 - x} \right) = \frac{1 - 2x}{2x^2 - x} \]

\[D_x \left(\frac{1}{4x^2 - x^2} \right) = \frac{1}{4x^2 - x^2} \]
(e) \[\frac{\sqrt{x + 2}}{2x + \sqrt{x}} = \frac{1}{2x + \sqrt{x}} \left(\frac{\sqrt{x(2-x)}}{2\sqrt{x}} \right) \]

(f) \[D(x^3 - 2)^6 = 36x^2(x^3 - 2)^5 \]

(g) \[D \frac{x^3}{x^3 - 3} = \frac{2x}{3(x^2 - 2)^{2/3}} \]

(h) \[D_u \left(x^2 - x^{-1/2} + x^{-2} \right) \text{ where } u = \sqrt{x} \]

\[D_u \left(x^2 - x^{-1/2} + x^{-2} \right) = D_x \left(x^2 - x^{-1/2} + x^{-2} \right) D_u \]

\[= (2x + \frac{1}{2}x^{-3/2} - 2x^{-3})(2x^{1/2}) \]

\[= 4x^{3/2} + x^{-1/2} - 4x^{-5/2} \]

(i) \[D \left(\frac{x}{x + \sqrt{a^2 - x^2}} \right) = \frac{a^2}{(x + \sqrt{a^2 - x^2})^2 \sqrt{a^2 - x^2}} \]

(j) \[D\sqrt{x + 1} = \frac{1}{2\sqrt{x} + 1} \]

(k) \[D_v (\sin x \cdot \cot x) \text{ where } v = \cos x \]

\[D_v (\sin x \cdot \cot x) = D_x (\sin x \cdot \cot x) \cdot D_v x \]

\[= (-\sin x) \cdot \left(\frac{-1}{\sin x} \right) \]

(l) \[D (\sin x^{-1/2} - \cos x^{1/2}) = \frac{-\cos(x^{-1/2}) - \sin(x^{1/2})}{2x^{3/2}} + \frac{-\sin(x^{1/2})}{2x^{1/2}} \]

(m) \[D_v \left(\frac{1 - \sin x}{1 + \cos x} \right) \text{ where } v = \cos x \]

\[D_v \left(\frac{1 - \sin x}{1 + \cos x} \right) = D_x \left(\frac{1 - \sin x}{1 + \cos x} \right) \cdot D_v x \]

\[= \frac{-\sin x}{(1 + \cos x)^2} \cdot \frac{-2 \sin x}{\sin x} = \frac{-2 \sin x}{\sin x(1 + \cos x)^2} \]

(n) \[D \left(\frac{2 + t}{3t^2 - 1} \right) = \frac{-3t^2 - 12t - 1}{(3t^2 - 1)^2} \]

(o) \[D \left(\frac{2x - 3)^2}{x^2 - 1} \right) = 4(x^2 - 1)(2x - 3) - 3x^2(2x - 3)^2 \]

\[\cdot \left(x^2 - 1 \right) + 4(x^2 - 1)^2 \]

(p) \[D(2x^3 + 5x^2 - x + 2)^10 = 10(6x^3 + 10x - 1)(2x^3 + 5x^2 - x + 2)^9 \]

190
In Section 2.4 we defined the velocity of an object, whose location on a straight line at time \(t = t_0 \) is given by \(s = \phi(t) \), as the limit of the ratio

\[
\frac{\phi(t) - \phi(t_0)}{t - t_0}
\]

and in Section 2.5 we observed that this limit is the value of the derivative \(\phi' \) at \(t = t_0 \). Experimentally it has been established that the distance covered in time \(t \) by a freely falling body is proportional to \(t^2 \), and therefore it can be represented by the function

\[
\phi: t \rightarrow ct^2,
\]

where \(c \) is a positive constant. Show that the velocity of a freely falling body is directly proportional to the time.

\[
\phi'(t) = 2ct = kt, \text{ where } k = \frac{c}{10} \text{ is a positive constant.}
\]

3. Suppose a projectile is ejected at a point \(P \) which is 20 feet above the ground with initial velocity of \(v_0 \) feet per second. Neglect friction and assume that the projectile moves up and down in a straight line. Let \(\theta(t) \) denote the height (above \(P \)) in feet that the projectile attains \(t \) seconds after ejection. Note that if gravitational attraction were not acting on the projectile, it would continue to move upward with a constant velocity, traveling a distance of \(v_0 t \) feet per second, so that its height at time \(t \) would be given by \(\theta(t) = v_0 t \). We know that the force of gravity acting on the projectile causes it to slow down until its velocity is zero and then travel back to the earth. On the basis of physical ex-
periments the formula \(s(t) = v_0 t - \frac{1}{2} gt^2 \), where \(g \) represents the force of gravity, is used to represent the height (above \(F \)) of the projectile as long as it is aloft. Note that \(s(t) = 0 \) when \(t = 0 \), and when \(t = \frac{2v_0}{g} \). This means that the projectile returns to the initial 20-foot level after \(\frac{2v_0}{g} \) seconds.

(a) Find the velocity of the projectile at \(t = t_0 \) (in terms of \(v_0 \) and \(g \)).

\[\theta(t) = v_0 t - \frac{1}{2} gt^2 \]

The velocity is given by,

\[\theta'(t) = v_0 - gt \]

whence \(\theta'(t_0) = v_0 - gt_0 \).

(b) Sketch the \(s \) vs. \(t \) and the \(v \) vs. \(t \) curves on the same set of axes.

(c) Compute (in terms of \(v_0 \)) the time required for the velocity to drop to zero.

\[\theta'(t) = v_0 - gt = 0 \] if \(t = \frac{v_0}{g} \)
(c) What is the velocity on return to the initial 20 foot level?

\[\phi(t) = t(v_0 - \frac{1}{2} gt) = 0 \] if \(t = 0 \) or \(t = \frac{v_0}{g} \).

The velocity on return to the initial 20 foot level is given by:

\[\phi\left(\frac{2v_0}{g}\right) = v_0. \]

(e) Assume that the projectile returns to earth at a point 30 feet below the initial take off point \(P \). What is the velocity at impact?

We know that \((v_{\text{final}})^2 - (v_0)^2 = 2gs \)

since \(v_f^2 = (v_0 + gt)^2 \).

Since the object is traveling downward, \(g \) is positive. Thus \((v_f)^2 = v_0^2 + 2gs \) and \(v_f^2 = v_0^2 + 60g \) since \(s = 30 \).

Hence, \(v_f = \sqrt{v_0^2 + 60g} \).
In Chapter 5 we study the derivative f' in order to obtain information about the function f. We here note some generalizations about functions which are derivatives.

1. The derivative of a continuous function is not necessarily continuous.

Example TO5-1. Consider the function f given by

$$ f(x) = \begin{cases} \frac{2 \sin \frac{1}{x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} $$

The derivative, given by,

$$ f'(x) = \begin{cases} 2 \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} $$

is continuous for all $x \neq 0$. The derivative cannot be continuous at 0 since $\lim_{x \to 0} f'(x)$ does not exist.

2. Any derivative f' which exists throughout an interval has the intermediate value property; that is, if f' takes on any two values in the interval $[a, b]$, then f' takes on every value between them (Exercises 5-3, No. 20). This property is quite remarkable in that it holds for derivatives having points of discontinuity (Example TO5-1).

3. An immediate consequence of the intermediate value property of derivatives is the fact that a derivative, if discontinuous, cannot have a finite jump. Note that in Example TO5-1 neither $\lim_{x \to 0^+} f'(x)$ nor $\lim_{x \to 0^-} f'(x)$ exists. (See Exercises 3-4, No. 16 for comment on left-sided and right-sided limits.)
Solutions Exercises 5-1

1. (a) Obtain an expression for the first and higher derivatives of x^n where n is a natural number.

$$D^n x^n = nx^{n-1}, \text{ if } n > 0$$

In general, if $n > 1$,

$$D^n x^n = n(n-1)(n-2) \cdots (n-r+1)x^{n-r}$$

which can formally be proved by mathematical induction (Section A3-1).

For the case $i > n$, $D^i x^n = 0$, since $D^n x^n = n(n-1)(n-2) \cdots (2)(1) = n!$, and $D^n x^n = 0$. Higher order derivatives are then all zero.

(b) Do the same for $x^{p/q}$ where p/q is rational and not integral, p and q relatively prime. What is the domain of f when $f(x) = x^{1/2}$?

For what values of p/q is the domain of f' different from that of $f : x \rightarrow x^{p/q}$? Answer the same question for higher derivatives of $x^{p/q}$.

By corollary to Theorem 4-3,

$$D x^{r} = r x^{r-1}$$

for all rational numbers r. By induction, just as in 1(a) above,

$$D^n x^{r} = r(r-1)(r-2) \cdots (r-n+1)x^{r-n}$$

since $r - n$ is rational and $r - n \neq 0$.

If $0 < p/q < 1$, then the domains of f and f' differ: domain f includes zero, and domain f' does not ($f'(x)$ will have x in the denominator and $f(x)$ will not). In general, the domain of $f^{(n)}$ will differ from that of f if $0 < p/q < n$.

Note: p and q are relatively prime. If p/q were integral, Exercise 1(a) above would apply.
2. What is the twenty-third derivative of
 (a) \(\sin x \) ?
 (c) \(\sin 2x \) ?
 (b) \(\cos x \) ?
 (d) \(5x^{17} = \sqrt{2} \cdot x^{10} - 3x^3 - 70x^2 \) ?

 (a)
 \[
 \begin{align*}
 f(x) &= \cos x \\
 f'(x) &= -\sin x \\
 f''(x) &= -\cos x \\
 f'''(x) &= \sin x
 \end{align*}
 \]

 We see that successive differentiation yields patterns.

 Thus,
 \[
 f^{(2)}(x) = \sin x
 \]

 (b) \(\sin x \)
The result of problem 3g is used in 3h; hence, if 3h is assigned, 3g should also be assigned.

3. Find the n-th derivatives of the following functions.

(a) \(f : x \rightarrow (ax + b)^n \)

(b) \(\frac{d^n f}{dx^n} \)

(c) \(\text{By th. . . } \)
By twice applying the addition formula for cosines, or, alternatively, from DeMoivre's Theorem (SMIC, Intermediate Mathematics, Chapter 12), we get:

\[\cos 3x = 4 \cos^3 x - 3 \cos x \]

or

\[\cos 6x = 32 \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1 \]

Thus,
We could write this:

\[f(n)(x) = \frac{(-1)^n h! \left(\left(x + \frac{a^{n+1}}{2} \right)^{n+1} - \left(x - \frac{a^{n+1}}{2} \right)^{n+1} \right)}{2a(x - a)^{n+1}} \]

\[\frac{1}{(x - a)^{n+1}} \left(\binom{n+1}{i} x^{n+1-i} - \binom{n+1}{j} x^{n+1-j} \right) = \frac{1}{a} \binom{n+1}{k} x^{n-k} - \frac{1}{a} \binom{n+1}{k} x^{k+1} \]

(h) \(f : x \rightarrow \frac{1}{x^2 + a^2} \)

We use the result \(f(n)(x) \) and the fact that this result may be verified by an brute force method.

Let \(f \) be the function defined above. In all, \(a \) and \(b \)

(a) Show that \(u_1(x) \) follows from \(f(n)(x) \) and \(f(n+1)(x) \) at \(a \).
Also,
\[
\frac{f(x + h) - f(x)}{h} = \frac{f(x) - f(h)}{h} \cdot \frac{f(h) - f(x)}{h}
\]

and

\[
\lim_{h \to 0} f(x) \cdot \frac{f(h) - f(x)}{h} = \lim_{h \to 0} \frac{f(h)}{h} \cdot \lim_{h \to 0} \frac{f(h) - f(x)}{h} = \lambda \cdot 1
\]

Consequently, for \(h = x \),

\[
\lim_{h \to 0} \frac{f(h) - f(x)}{h} = -\lambda
\]

3. If \(f(x + h) - f(x) = \lambda h \) is defined for all \(x \) and \(h \), then \(\lambda \) is called the derivative of \(f \) at \(x \), denoted by \(f'(x) \).

The proof proceeds as follows:

1. Continuity at every point.

2. \(f(x) = \lambda x \).

3. Linearity of \(f \) with respect to \(h \).

This condition (linearity, as well as homogeneity) is sufficient to determine \(f \) uniquely. We'll suppose \(f \) as given and...
Lemma 1. Continuity at x_0 implies continuity for all x.

Proof. Given $\varepsilon > 0$, we have by continuity at x_0 that for $|h| < \delta$

$$|F(x_0 + h) - F(x_0)| < \varepsilon.$$ But $F(x_0 + h) - F(x_0) = F(x) - F(x_0) - F(x)$.

For any x, so F is continuous at any point.

Lemma 2. $F(\mathbb{R}) = \mathbb{R}$, rational and x any real number.

Proof.

Similarly, $F(\mathbb{R}) = \mathbb{R}$, an integer implies this is easily shown by mathematical induction. Now let $\frac{a}{n}$. Then

$$F(\frac{a}{n}) = \frac{r}{n}$$

or

$$F(\frac{a}{n}) = \frac{r}{n}$$

or

$$\frac{1}{n} r(x) = r(x)$$

Similarly, $F(\mathbb{R}) = \mathbb{R}$, any natural number. Combining these two facts in one equation:

$$F(\mathbb{Q}) = \mathbb{Q}, \quad p \text{ and } q \text{ any natural numbers}$$

or

$$F(\mathbb{Q}) = \mathbb{Q}$$

rational.

Lemma 3. $F(\mathbb{N}) = \mathbb{N}$, \mathbb{N} is any natural number.

Proof.

Let $F(\mathbb{N}) = \mathbb{N}$, \mathbb{N} is any natural number. Then

$$a \in \mathbb{N}$$

Continuity....
So \(a = 0 \) and \(F(h) = hF(1) + O = h \) for any \(h \). But this is sufficient to show homogeneity:

\[
F(kx) = kx \cdot F(1) = k \cdot F(x)
\]

So \(F \) is homogeneous and, consequently, differentiable.

6. Given that the function \(F \) is defined for \(x \in (0, a) \), and satisfies \(F(x') - x'F(x) = \sum (a_1 x')^i \) for all \(x' \) (where \(a_1 \) is a constant),

Show that \(F \) is everywhere differentiable and that its derivative graphs of \(F \) assuming

(a) \(F(0) = 0 \), \(F'(0) = 0 \)
(b) \(F(0) = 0 \), \(F'(0) = 1 \)
(c) \(F(0) = 0 \) and the graph of \(F \) that \(F \) is differentiable

graphs of \(F \)

If \(x \) is any real number, then \(x' \) is

\(x' \) such that \(0 < x < a \)

Then,

\[
F' = \frac{F(x') - xF(x)}{x'}
\]

Similarly,

is differentiable.

Thus, \(F \) is differentiable

therefore, \(F \) is differentiable

every point in \((0, a) \)

Note that
5-2. The Derivative at an Extremum

We distinguish between an extremum (a value of the function) and the point (or value x') at which the function takes on an extremum.

Theorem 5-2d. It is as important to know what theorem says does not imply as it is to know what it does imply. It does not imply that f has an extremum; it does not imply that f has an extremum at x = a.

Theorem 5-2b: The statement of the theorem is geometrically plausible. On the other hand, the geometric interpretation does not illuminate the proof but may actually cause confusion since the method of proof is indirect.

Corollaries: A powerful tool for checking possible solutions and developing theorems have four common hypotheses. The continuity of f at x = c, the existence of a and b, the existence of f'(a) = a, t = f(t). In this case, the remaining hypothesis commonly the value of f' at the end-points, a, b.

Exponent Theorem: A substitution by dividing by a constant, for example, the value of a function f(x) at x = c also maximizes f(x). (In Exponent Theorem, however, division of the f(x,y) function is justified.)
2. Make a careful sketch on the interval \([0,1]\) of the graph of the function
\[f(x) = 4x + x^2 - x^3\] given in Example 5-2a. Does the graph confirm the conclusions of the text?
5. (a) Three men live on the same straight road. Where on the road should they agree to meet so that the sum of the distances they travel along the road from their homes to their meeting place is to be a minimum?

We suppose that no two men live in the same house. Given any two men, the sum of the distances they travel to meet at any given point between them is independent of the point. Thus the point should be shown to minimize the travel at the third man, i.e., at the home of the man who lives between the other men.

(b) What is the answer if the number of men is even?

If the four homes are given, the men can meet at point B or at point C.

(c) Suppose that n men live on the road in the same line.

If n is even, then the men can meet at point B or at point C.

or \(\frac{n}{2} \) th homes. The same applies if the road is divided into two equal parts by the man living in the middle, as follows:

(d) Suppose that n men live on the road in the same line.

Before a point P such that any two men can meet at P.

Since $AJ = \frac{n}{2}$ th of the road, the distance from A to X_{j+1} is the same as from A to X_{j+1} and P.

\[X_{j+1} = \text{point on road} \]
6. A stone wall 100 yards long stands on a ranch. Part or all of it is to be used in forming a rectangular corral, using an additional 250 yards of fencing for the other three sides. Find the maximum area which can be so enclosed.

The area of the corral is given by

\[A(x) = \frac{x^2}{2} \]

where \(x \leq 100 \) and \(x \geq 0 \).

Since \(x \leq 100 \), the area enclosed is at most 5000 square yards. The maximum area occurs when the wall is used for one side of the corral.
f'(x) = 2x - \frac{924}{x^2} = 0 \text{ if and only if } x = \frac{3}{462}. \text{ The function } f \text{ has only one extremum at } x = \frac{3}{462}. \text{ For } x \rightarrow 0^- \text{ (Exercises 3-4, No. 16)} \text{ and } x \text{ sufficiently large, } f(x) \text{ can be made arbitrarily large. Thus, the extremum is a minimum. (See graph of } f). \text{ The dimensions that require the minimum material are } \frac{3}{462} \text{ by } \frac{3}{462} \text{ by } \frac{1}{2} \frac{3}{462} \text{ (in inches).}

8. A right triangle with hypotenuse \(k \) is rotated about one of its legs. Find the maximum volume of the right circular cone produced.

The volume of the cone is given by
\[V = \frac{\pi x}{3} (k^2 - x^2) = r(x), \text{ where} \]
\[0 < x < k. \quad f'(x) = \frac{\pi}{3} (k^2 - 3x^2) = 0 \]
\[\text{if } x = \frac{k}{\sqrt{3}}. \]
\[f\left(\frac{k}{\sqrt{3}}\right) = \frac{2\sqrt{3} \pi k^3}{27}, \quad f(0) = 0, \quad \text{and} \]
\[f(k) = 0. \quad \text{Thus, the maximum volume is at the interior point } x = \frac{k}{\sqrt{3}}. \]

The maximum volume is \(\frac{2\sqrt{3} \pi k^3}{27} \).
9. Determine the lengths of the sides of a triangle of maximum area with base \(b \) and perimeter \(p \). (Hint: use Heron's formula for the area of a triangle: \(A = \sqrt{s(s-a)(s-b)(s-c)} \), where \(a, b, c \) are the lengths of the sides, and \(s = \frac{1}{2}(a+b+c) = \frac{p}{2} \).)

\[
A = f(x) = \sqrt{s(s-x)(s-b)(s-x)} , \quad x \leq s \\
A' = \frac{(s-b)(s-x) + s(b-s)(s-x)}{2s(s-b)(x+b-s)} \\
A'' = \frac{s(b-s)(2x+b-2s)}{2s(s-x)(s-b)(x+b-s)} \\
A'(x) = 0 \quad \text{if} \quad b = s = \frac{p}{2} \quad \text{or} \quad x = \frac{p-b}{2} . \quad \text{If} \quad x = \frac{p-b}{2} , \text{the area is zero. The maximum area is given by an isosceles triangle with two equal sides} \quad \frac{p-b}{2} .
\]

Solutions Exercises 5-2b

1. Prove the corollaries to Theorem 5-2b.

Corollary 1. Let \(f \) be continuous on the closed interval \([a,b]\) and differentiable on the open interval \((a,b)\). If there exists only one point \(u \) in \((a,b)\) where \(f'(u) = 0 \) and if either \(f(a) < f(u) < f(b) \) or \(f(a) < f(u) < f(b) \) then \(f(u) \) is not a local extremum.

Consider the case where \(f(a) < f(u) < f(b) \) (proof for \(f(a) > f(u) > f(b) \) is similar). Suppose \(f(u) \) is a local extremum on \((a,b)\), then by Theorem 5-2b \(f \) is increasing on one of the closed intervals \([a,u]\) and \([u,b]\) and decreasing on the other. Therefore, either \(f(a) < f(u) \) and \(f(u) > f(b) \), or \(f(a) > f(u) \) and \(f(u) < f(b) \). But this is a contradiction.

Corollary 2. Let \(f \) be continuous on the closed interval \([a,b]\) and differentiable on the open interval \((a,b)\). Let there be only one point \(u \) in the open interval where \(f'(u) = 0 \). If \(f(u) > f(a) \) and \(f(u) > f(b) \) then \(f(u) \) is the maximum of \(f \) on \([a,b]\). If \(f(u) < f(a) \) and \(f(u) < f(b) \) then \(f(u) \) is the minimum of \(f \) on \([a,b]\).

\(f'(x) \neq 0 \) on \((a,u)\) and \((u,b)\). Therefore (Theorem 5-2a), there are no extrema on these intervals. Then, by Theorem 5-2b, \(f \) is either increasing or decreasing on \([a,u]\) and \([u,b]\). If \(f(u) > f(a) \) and \(f(u) > f(b) \) then it follows that \(f(u) \) is the maximum of \(f \) on \([u,b]\) and \(f(u) \)
is the maximum of \(f \) on \([a, b]\). Therefore, \(f(u) \) is the maximum of \(f \) on \([a, b]\).

Similarly, if \(f(u) < f(a) \) and \(f(u) < f(b) \), then \(f(u) \) is the minimum of \(f \) on \([a, b]\).

2. For each of the following functions locate and characterize all extrema. On what intervals is the function increasing? Decreasing?

(a) \(f : x \rightarrow 4x^4 - 8x^2 + 1 \)

\[f(x) = 4x^4 - 8x^2 + 1 \]
\[f'(x) = 16x^3 - 16x = 16x(x^2 - 1) \]

is zero if \(x = 0 \) or \(x = 1 \) or \(x = -1 \). Since \(f(-1) = f(1) = -3 \) and \(f(0) = 1 \), by Lemma 5.2 we conclude that \(f(0) \) is a local extremum; \(f(0) = 1 \) is a local maximum. Similarly, since \(f(-2) = f(2) = 33 \) we may conclude that \(f(-1) = f(1) = -3 \) are minima. The function \(f \) is decreasing throughout the intervals \(x \leq -1 \) and \([0, 1] \); \(f \) is increasing throughout the intervals \([-1, 0] \) and \(x \geq 1 \).

(b) \(f : x \rightarrow x^4 - 4x^3 \)

\[f(x) = x^4 - 4x^3 \]
\[f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3) \]

is zero if \(x = 0 \) or \(x = 3 \). \(f(0) = 0 \) and \(f(3) = -27 \). Since \(f(-1) > f(0) > f(3) \), \(f(0) \) is not a local extremum, by the Corollary to Theorem 5.2b. Since \(f(0) = f(6) \), \(f(3) \) is an extremum by Lemma 5.2. \(f(3) \) is a minimum value of \(f \). The function is decreasing throughout the interval \(x \leq 3 \) and increasing throughout the interval \(x \geq 3 \).

(c) \(f : x \rightarrow \frac{x^3}{1 + x^2} \)

\[f(x) = \frac{x^3}{1 + x^2} \]
\[f'(x) = \frac{4x^3 + 6x^5}{(1 + x^2)^2} = 0 \text{ if and only if } x = 0 \text{.} \]
\[f(0) = 0 \text{, } f(-1) = -\frac{1}{2} \text{.} \]

\[f'(x) > 0 \text{.} \]
(d) $f : x \mapsto \frac{x}{x^2 - 1}$

$f(x) = \frac{x}{x^2 - 1}$

$f'(x) = \frac{-x^2 + 1}{(x^2 - 1)^2}$. Since $f'(x) = 0$ has no solution, f has no extremum, but is decreasing throughout the intervals $x < -1$, $(-1, 1)$, and $x > 1$. $(f'(x) < 0$ for all x, $|x| \neq 1$).

(e) $f : x \mapsto \frac{x}{1 + x^2}$

$f(x) = \frac{x}{1 + x^2}$

$f'(x) = \frac{1 - x^2}{(1 + x^2)^2}$ is zero if $x = 1$ or $x = -1$. $f(-1) = -\frac{1}{2}$ is a minimum value and $f(1) = \frac{1}{2}$ is a maximum value of f. The function f is increasing throughout the closed interval $[-1, 1]$ and decreasing throughout the intervals $x < -1$ and $x > 1$.

3. A rectangle is inscribed in a circle of radius R. Find the rectangle of maximum area, of maximum perimeter.

From the rectangle problem, Exercises 1-1, Number 2, we have $A = f(w) = \sqrt{R^2 - w^2}$ on the interval $[0, 2R]$, i.e., $0 \leq w \leq 2R$, where w is the length of one side of the rectangle. The derivative $f'(w) = \frac{4R^2 - 2w^2}{\sqrt{4R^2 - w^2}}$ is zero at $w = \sqrt{2} R$. We note that $f(0) = f(2R) = 0$ and $f(\sqrt{2} R) = 2R^2$ and conclude that the maximum area is taken on at the interior point $\sqrt{2} R$. Thus, the rectangle of maximum area is a square of side $\sqrt{2} R$.

For the maximum perimeter,

$P = 2(\ell + w)$

$\ell = 2(\sqrt{4R^2 - w^2} + w) = g(w)$.

The derivative $g'(w) = -\frac{2w}{\sqrt{4R^2 - w^2}} + 2$ is zero at $w = \sqrt{2} R$. Since $g(0) = 4\sqrt{2} R$, we conclude that the maximum perimeter is taken on at the interior point $\sqrt{2} R$. The rectangle of maximum perimeter is a square of side $\sqrt{2} R$.
4. The area of the printed text on a page is \(A \) square centimeters. The left and right margins are each \(c \) centimeters wide, and the upper and lower margins are each \(d \) centimeters. What are the most economical dimensions of the pages if only the amount of paper matters?

Let the total area of the page be \(T \).

\[
T = (x + 2c)(y + 2d)
\]

\[
= (x + 2c)(\frac{A}{x} + 2d) = f(x)
\]

\[
f'(x) = \frac{2dx^2 - 2Ac}{x^2}
\]

is zero at \(x = \sqrt{\frac{Ac}{d}} \).

\[
f'(x) > 0 \text{ if } x^2 > \frac{Ac}{d}, \text{ and}
\]

\[
f'(x) < 0 \text{ if } x^2 < \frac{Ac}{d}.
\]

So \(x = \sqrt{\frac{Ac}{d}} \) is a minimum, and the most economical dimensions of the pages are

\[
\sqrt{\frac{Ac}{d}} + 2c \text{ by } \sqrt{\frac{Ac}{d}} + 2d, \text{ in centimeters.}
\]

\[
T = f(x) = (x + 2c)(\frac{A}{x} + 2d), \text{ where } c = d = 1, A = 2.
\]
5. A rectangle has two of its vertices on the x-axis and the other two above the axis on the parabola \(y = 6 - x^2 \). What are the dimensions of such a rectangle if its area is to be a maximum?

(See Exercises 1-1, No. 6.)

\[
A = f(x) = 12x - 2x^3, \quad 0 \leq x \leq \sqrt{6}
\]

\[
f'(x) = 12 - 6x^2 = 0 \quad \text{if} \quad x = \sqrt{2}
\]

\[
f(0) = f(\sqrt{6}) = 0 \quad \text{and} \quad f(\sqrt{2}) = 8\sqrt{2}
\]

The area is a maximum if the dimensions are \(2\sqrt{2} \) by \(\sqrt{6} \).

6. A rectangular sheet of galvanized metal is bent to form the sides and bottom of a trough so that the cross section has this shape: \[\square \]. If the metal is 14 inches wide, how deep must the trough be to carry the most water?

(See Exercises 1-1, No. 7.)

\[
V = V(d) = 14d - 2d^2, \quad 0 \leq d \leq 7
\]

where \(d \) is the depth.

\[
f'(d) = 14 - 4d = 0 \quad \text{if} \quad d = \frac{7}{2}
\]

\[
f(0) = f\left(\frac{7}{2}\right) = 0 \quad \text{and} \quad f\left(\frac{7}{2}\right) = \frac{49}{2}
\]

The trough should be \(\frac{7}{2} \) inches deep to carry the most water.

7. Find the right circular cylinder of greatest volume that can be inscribed in a right circular cone of radius \(r \) and height \(h \).

(See Exercises 1-1, No. 9.)

\[
v = v(x) = \pi x^2 - \frac{\pi x^3}{r}, \quad 0 \leq x \leq r
\]

where \(x \) is the radius of the cylinder.

\[
f'(x) = 2\pi x - \frac{3\pi x^2}{r} = 0 \quad \text{if} \quad x = 0 \quad \text{or} \quad x = \frac{2}{3} r
\]

\[
f(0) = f(r) = 0 \quad \text{and} \quad f\left(\frac{2}{3} r\right) = \frac{4}{27} \pi r^3
\]

The right circular cylinder of greatest volume has a radius which is \(\frac{2}{3} \) of the radius of the cone and a height which is \(\frac{1}{3} \) of the height of the cone.
The lower right-hand corner of a page is folded over so as to reach the left edge in such a way that one endpoint of the crease is on the right-hand edge of the page, and the other endpoint is on the bottom edge of the page, as in the figure. If the width of the page is c inches, find the minimum length of the crease.

(See Exercises 1-1, No. 11.)

We note, using similar triangles and the Pythagorean Theorem, that

\[f^2 = f(x) = \frac{3x}{2x^2 - c}, \quad \text{for } x > \frac{c}{2}. \]

\[f'(x) = \frac{\frac{9x}{2x^2}}{(2x - c)^2} \text{ is zero if } \]

\[x = 0 \text{ or } x = \frac{3}{4} c. \] Since $x = 0$

is not in the domain of f we consider only $x = \frac{3}{4} c$ for extremum.

\[f\left(\frac{3}{4} c\right) = \frac{27}{16} c^2. \]

\[f\left(\frac{3}{4} c\right) = \frac{16c^2}{2} \text{ and } f(c) = 2c^2. \]

We conclude that $f\left(\frac{3}{4} c\right)$ is a minimum value. The minimum length of the crease is $\frac{3\sqrt{3}}{4} c$.

9. What is the smallest positive value of t such that the slope of

\[y = 2 \sin \left(\frac{t}{2} - \frac{\pi}{3}\right) \text{ is zero?} \]

\[f(t) = 2 \sin \left(\frac{t}{2} - \frac{\pi}{3}\right). \]

\[f'(t) = \cos \left(\frac{t}{2} - \frac{\pi}{3}\right) \text{ is zero if } \]

\[\frac{t}{2} - \frac{\pi}{3} = \frac{\pi}{2}, \text{ i.e., for } t = \frac{5\pi}{3}. \]

10. A wall h feet high stands d feet away from a tall building. A ladder L feet long reaches from the ground outside the wall to the building. Let θ be the angle between the ladder and the building.

(a) Show that if the ladder touches the top of the wall,

\[L = d \csc \theta + h \sec \theta. \]

Refer to the figure.
(b) Find the shortest ladder that will reach the building if \(h = 8 \) and \(d = 24 \).

\[
f(\phi) = 8 \sec \phi + 24 \csc \phi, \text{ if } h = 8 \text{ and } d = 24.
\]

\[
f'(\phi) = 8(\sec \phi \tan \phi - 3 \csc \phi \cot \phi) \text{ is zero if } \tan \frac{3\phi}{2} = 3, \text{ i.e., } \phi = \arctan 3^{1/3}.
\]

For this value of \(\phi \), \(f(\phi) = 8(3^{2/3} + 1)^{3/2} \). The shortest ladder has length \(8(3^{2/3} + 1)^{3/2} \approx 44 \). To see that \(f \) is a minimum at \(\phi = \arctan 3^{1/3} \) we find \(f(\arctan \frac{3}{2}) = 23\sqrt{3} \) and \(f(\arctan 4) = 14\sqrt{17} \), for example. Clearly, each of these values is greater than \(f(\arctan 3^{1/3}) \). Thus, by Corollary 2 to Theorem 5-2b, \(f(3^{1/3}) \) is a minimum value.

11. In an experiment repeated \(n \) times, one obtains the numbers \(a_1, a_2, \ldots, a_n \) for a certain physical quantity \(x \). What value of \(x \) should we take if we want to:

(a) minimize the sum of the squares of the deviations, i.e.,

\[
(x - a_1)^2 + (x - a_2)^2 + \ldots + (x - a_n)^2.
\]

Let \(f(x) = (x - a_1)^2 + (x - a_2)^2 + \ldots + (x - a_n)^2 \). Then

\[
f'(x) = 2(x - a_1) + 2(x - a_2) + \ldots + 2(x - a_n).
\]

\(f'(x) = 0 \) when \(x = \frac{a_1 + a_2 + \ldots + a_n}{n} \) (the arithmetic mean of the \(a_i \)'s). Since the graph of \(f \) is a parabola

\[
f(x) = nx^2 - 2x \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} a_i^2,
\]

\(f(x) \) is minimum when \(x \) is the arithmetic mean.

(b) What value of \(x \) should we take if we want to minimize the sum of the absolute values of the deviations, i.e.,

\[
|x - a_1| + |x - a_2| + \ldots + |x - a_n|.
\]

Take \(f(x) = |x - a_1| + |x - a_2| + \ldots + |x - a_n| \). Note that \(f \) is continuous everywhere and differentiable except when \(x = a_r, \) \(r = 1, 2, \ldots, n \). We have

\[
f'(x) = \sum_{i=1}^{n} \text{sgn}(x - a_i), \quad (x \neq a_i).
\]

Since

\[
\text{sgn}(x) = \begin{cases}
1, & x > a_i \\
0, & x = a_i \\
-1, & x < a_i
\end{cases}
\]

218
we see that \(f'(x) \) cannot be zero unless there are as many minuses as pluses; i.e., the number of terms is even, \(n = 2m \), and \(a_m < x < a_{m+1} \). If \(x < a_m \) we see that the number of pluses is less than the number of minuses, \(f'(x) < 0 \), and \(f \) is decreasing in each interval \([a_i, a_{i+1}]\) where \(i < m \) and \(a_i \neq a_{i+1} \). Thus \(f \) is decreasing whenever \(x < a_m \). Similarly, when \(x > a_m \), the number of pluses exceeds the number of minuses and \(f \) is increasing. Since \(f \) is constant for \(a_m < x \leq a_{m+1} \), it follows that all such values of \(x \) yield the global minimum.

Similarly, if \(n \) is odd, \(n = 2m - 1 \), we conclude that \(f \) is decreasing for \(x < a_m \) and increasing for \(x > a_m \). It follows that the minimum occurs at \(x = a_m \).

12. Find the maximum of \(x^m y^n \) (\(m \) and \(n \) rational and greater than 0) if
\[x + y = c \ (c \text{ constant}) \] and \(x \geq 0, y \geq 0 \).

Note that this statement includes results established in Exercises 5-2a, Numbers 8 and 9, and Exercises 5-2b, Numbers 3, 5, 6, 7, and 11, as special cases.

Let \(F(x) = x^m (c - x)^n \) then
\[F'(x) = mx^{m-1}(c - x)^n - nx^m (c - x)^{n-1} \]
If \(F'(x) = 0 \), then
\[x^{m-1}(c - x)^{m-1}(m(c - x) - nx) = 0 \]
\(x = 0 \) and \(x = c \) are endpoints whose function values are zero. The maximum is achieved where
\[m(c - x) - nx = 0 \], or where \(x = \frac{mc}{m + n} \). Thus \(y = \frac{mc}{m + n} \), and
the maximum is
\[\left(\frac{mc}{m + n} \right)^{m+n} \]
13. Find the minimum of $x + y$ if $x^m y^n = k$ (where x constant, m and n rational and greater than 0).

The maximizing ratio $\frac{x}{y}$ in Number 12 is the same as the minimizing ratio $\frac{x}{y}$ in Number 13. (Exercises 5-2a, No. 7 is a special case of this problem.)

$$x + y = x + \frac{k^{1/n}}{x^{m/n}} = F(x)$$

$$F'(x) = 1 - \frac{m}{n} k^{1/n} x^{-(m/n)-1}$$

If $F'(x) = 0$, then

$$x = \left(\frac{m}{n} k^{1/n}\right)^{n/(m+n)}$$
$$y = \left(\frac{m}{n} k^{1/n}\right)^{m/(m+n)}$$

503-3: The Law of the Mean.

Rolle's Theorem (Lemma 5-3) is named for Michel Rolle (1652-1719), a French contemporary of Newton and Leibnitz. In some versions of the Theorem, the end values, $f(p)$ and $f(q)$, are taken to be zero.

The Law of the Mean (Theorem 5-3) is a generalization of Rolle's Theorem: it does not assume that $f(p) = f(q)$.

In many other texts the Law of the Mean is referred to as the Mean Value Theorem of the Differential Calculus as opposed to the Mean Value Theorem of the Integral Calculus which we call simply the Mean Value Theorem. (We do not prove the Mean Value Theorem in the text, but leave it to the exercises since it is not used here to prove any later theorem.)

The Law of the Mean would be false if there were theoretical gaps in the set of real numbers. The proof of the theorem depends on the completeness of the real number system. More specifically, the proof may be traced, in turn, through Lemmas 5-3, 5-2, Theorem 5-2a, Lemma 3-4, Theorems A4-1, 3-7a, b, and the Nested Interval Principle (A1-5) to the Separation Axiom.

Geometric intuition suggests that the Law of the Mean should follow immediately from Rolle's Theorem. The inherent Difficulties were discussed in
the text. However, the intuition remains valid; compare with the Generalized Law of the Mean (Chapter 11). Consider a differentiable arc (Chapter 11) given in parametric form by the equations

\[x = F(t), \quad y = G(t), \quad \text{for} \quad t_1 \leq t \leq t_2, \]

where \(F \) and \(G \) are continuous on the closed interval \([t_1, t_2]\) and differentiable on the open interval \((t_1, t_2)\). If \(F'(t) \) and \(G'(t) \) are not simultaneously zero in \((t_1, t_2)\), then there is a value \(u \) in \((t_1, t_2)\) for which the slope of the curve is the same as the slope of the chord joining the endpoints, \((F(t_1), G(t_1))\) and \((F(t_2), G(t_2))\). If \(F'(u) \neq 0 \), this statement takes the form

\[\frac{G'(u)}{F'(u)} = \frac{G(t_2) - G(t_1)}{F(t_2) - F(t_1)} \]

(Generalized Law of the Mean).

Statement of the Generalized Law of the Mean: Let \(F \) and \(G \) be functions continuous on \([a, b]\) and differentiable on \((a, b)\). There exists a value \(u \) in \((a, b)\) where

\[G'(u)\left[F(b) - F(a)\right] = F'(u)\left[G(b) - G(a)\right]. \]

The Law of the Mean is the special case with \(G(x) = x \).

There are functions that do not satisfy the hypothesis of Theorem 5-3 for which the conclusion of the theorem holds.

The Law of the Mean is of utmost importance since it is used in the proof of most of the theorems of differential calculus. The theorem should be thoroughly understood and permanently remembered by each student of calculus.

Example 5.3.1 shows that \(f'(a) \) may exist although \(\lim_{x \to a} f'(x) \) does not exist. We now prove that if \(\lim_{x \to a} f'(x) \) exists, then \(f'(a) \) exists. By our hypothesis, \(f'(x) \) exists for all \(x \) in a deleted neighborhood of \(a \).

Let \(L = \lim_{x \to a} f'(x) \). Given \(\epsilon > 0 \), there is a \(\delta \) so that

\[|f'(x) - L| < \epsilon \quad \text{if} \quad 0 < |x - a| < \delta \]

Let \(r(x) = \frac{f(x) - f(a)}{x - a} \) if \(0 < |x - a| < \delta \). By the Law of the Mean

\[r(x) = f'(\xi), \quad 0 < |\xi - a| < |x - a| < \delta, \]

hence

\[|r(x) - L| = |f'(\xi) - L| < \epsilon \quad \text{if} \quad 0 < |x - a| < \delta. \]
1. Prove Corollary 2 to Lemma 5-3.

Corollary 2. A polynomial of degree \(n \) can have no more than \(n \) distinct real roots.

Let \(p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \), \(a_n \neq 0 \). The \(n \)-th derivative of \(p \) is given by \(p^{(n)}(x) = n! a_n \), a nonzero constant function.

It follows by Corollary 1 to Lemma 5-3 that \(p^{(n-1)} \) has at most one real root. Applying this argument recursively we obtain the desired result.

2. Sketch the graphs of the functions in Example 5.3a.

\[f(x) = x^3 - 3x + 1 \]
3. Is the following converse of Rolle's Theorem true? If \(f \) is continuous on the closed interval \([p, q]\) and differentiable on the open interval \((p, q)\), and if there is at least one point \(u \) in the open interval where \(f'(u) = 0 \), then there are two points \(m \) and \(n \) in \([p, q]\) such that \(f(m) = f(n) \).

Not true. Counterexample: \(f = x^3 \) for any interval containing \(x = 0 \) in its interior.

4. Does Rolle's Theorem justify the conclusion that \(\frac{dy}{dx} = 0 \) for some values of \(x \) in the interval \(-1 \leq x \leq 1\) for \((y + 1)^3 = x^2\) ?

\[
\begin{align*}
\frac{dy}{dx} &= \frac{2x}{3(y + 1)^2} = \frac{2}{3(x + 1)^2}.
\end{align*}
\]

The conclusion of Rolle's Theorem does not hold for the closed interval \([-1,1]\) since \(\frac{dy}{dx} \) does not exist at \(x = 0 \).

5. Given: \(f(x) = x(x - 1)(x - 2)(x - 3)(x - 4) \). Determine how many solutions \(f'(x) = 0 \) has and find intervals including each of these without calculating \(f'(x) \).

By Corollary 1 to Lemma 3-3, \(f'(x) = 0 \) has four solutions. There is one solution in each of the open intervals \((0,1), (1,2), (2,3), (3,4)\) since the zeros of \(f \) are \(0, 1, 2, 3, 4\).

6. Verify that Rolle's Theorem (Lemma 3-3) holds for the given function in the given interval or give a reason why it does not.

(a) \(f : x \rightarrow x^3 + 4x^2 - 7x - 10 \), \([-1,2]\)

(b) \(f : x \rightarrow \frac{2 - x^2}{x} \), \([-1,1]\)

(c) \(f(x) = x^2 + 4x^2 - 7x - 10 \)

\(f'(x) = 3x^2 + 8x - 7 \)

\(f(-1) = f(2) = 0 \)

One of the zeros of \(f' \), \(\frac{-4 + \sqrt{32}}{3} \), is in the interval \((-1,2)\).

Thus, Rolle's Theorem holds.
The function is not continuous at $x = 0$ and hence the theorem does not apply.

7. Prove that the equation

$$f(x) = x^n + px + q$$

cannot have more than two real solutions for n an integer. n nor more than three real solutions for an odd n. Use Rolle's Theorem. This problem can also be done without it (Exercises 7, No. 2).

If n is even, f' is of odd degree and f' has one and only one solution. It follows from Corollary that f would have more than two real solutions if this were true. Similarly, if n is odd, f' is of even degree and $f''(x) = 0$ has no more than two solutions. In this case $f(x) = 0$ has no more than three real solutions.

8. A function f has

$$f(x) = x^n + px + q$$

in the interval (a, b). Show that the equation $f''(x) = 0$ has at least one solution in the open interval (a, b).

By Corollary

the open interval (a, b) must have at least one solution.

9. Show that the function $f(x) = \tan x$ is not defined at $x = \frac{\pi}{2}$ and $f''(x)$ is not defined at $x = \frac{\pi}{2}$.

The theorem does not apply in the above way.

The open interval $(\frac{\pi}{2}, \infty)$, $(0, \frac{\pi}{2})$, $f''(x)$ is not defined at $x = \frac{\pi}{2}$, and for $x = 0$ is given by $f''(x) = \tan^3 x \sec^2 x$. Thus, if the Law of the Mean holds, then there exists ξ in $(0, 0.5)$ such that $f''(\xi) = \tan^3 x \sec^2 x$, which is nonnegative.
10. For each of the following functions show that the Law of the Mean fails to hold on the interval \([-a, a]\), if \(a > 0\). Explain why the theorem fails.

(a) \(f : x \rightarrow |x|\)

\[f(-a) = f(a) = a. \] Yet \(f'(x) = \text{either } -1 \text{ or } 1 \text{ and never zero, so the Law of the Mean fails to hold.} \]

(b) \(f : x \rightarrow \frac{1}{x}\)

If the Law of the Mean holds for \(f\) on the interval \([-a, a]\), then for some \(u \in (-a, a)\), \(f'(u) = -\frac{a}{2}\). But \(f'(x) = -\frac{1}{x^2}\) and so is never positive. (\(f\) is not continuous at \(x = 0\).)

11. Show that the equation \(x^2 + x^3 - x - 2 = 0\) has exactly one solution in the open interval \((1, 2)\).

\[f(x) = x^3 + x^3 - x - 2 \text{ and } f'(x) = 3x^2 + 3x - 1. \] Since \(f(1) < 0\) and \(f(2) > 0\), the function \(f\) has only one zero in the interval \((1, 2)\), by the Intermediate Value Theorem. Note that \(f\) is continuous on \([1, 2]\). The function \(f\) has only one zero in the interval \((1, 2)\).

12. Show that \(\frac{u}{u^2 + 2} = \frac{1}{4}\) for the given function \(u\).

Let \(f(x) = \frac{x}{x^2 + 2}\).

\[f'(x) = 0 \text{ if } x = 0 \text{ or } x = \pm \sqrt{2}. \] Since \(f(u) = \frac{1}{4}\) and \(f(0) = 0\) and \(f(\pm \sqrt{2}) = \frac{1}{2}\), there are zero in the open interval \((0, \infty)\) by the Intermediate Value Theorem.

13. Find a number that satisfies the conclusion of the Mean Value Theorem for the given function \(f\).

(a) \(f : x \rightarrow \sin x\)

\[u = \arcsin \left(\frac{2}{\pi} \right). \]
(b) \(f : x \rightarrow x^3, -1 \leq x \leq 1 \)
\[u = -\frac{\sqrt{3}}{3} \text{ or } \frac{\sqrt{3}}{3} \]

(c) \(f : x \rightarrow x^3 - 2x^2 + 1, -1 \leq x \leq 0 \)
\[u = 2 - \frac{\sqrt{12}}{3} \]

(d) \(f : x \rightarrow \cos x + \sin x, 0 \leq x \leq \pi \)
\[u = \frac{\pi}{4} \text{ or } \frac{5\pi}{4} \]

14. Derive each of the following by applying the Law of the Mean.

(a) \(|\sin x - \sin y| \leq |x - y| \)

If \(f(x) = \sin x \), then
\[
\frac{f(x) - f(y)}{x - y} = \frac{\sin x - \sin y}{x - y} \]

By the Law of the Mean, \(f(x) = \sin x \) is differentiable for all \(x \).

and hence
\[
|\sin x - \sin y| \leq |x - y| \]

(b) \(f(x) = e^x \)

If \(f(x) = e^x \), then
\[
\frac{f(x) - f(y)}{x - y} = \frac{e^x - e^y}{x - y} \]

For all \(x \), since
\[
e^x \]

we have
\[
|\frac{e^x - e^y}{x - y}| \leq e^{\frac{x+y}{2}} \]

so that
15. Use the Law of the Mean to approximate \(\sqrt[3]{1.008} \).

Here \(f(x) = \sqrt[3]{x} \) and we can choose \(p = 1 \), \(q = 8 \) for numerical simplicity. If we approximate \(f(x) \) by the linear function \(g \) whose graph is the chord joining the points \((1,1)\) and \((8,2)\),

\[
g(x) = \frac{x}{8} (x - 1)
\]

Thus, an approximate value of \(\sqrt[3]{1.008} \) is\

Since \(|g(x) - f(x)| \leq M|a| \) in \([p,q]\), we have the error estimate

\[
|1.001 - \sqrt[3]{1.008}| \leq \frac{M}{2}\sqrt[3]{1.008}
\]

or

\[
|1.001 - \sqrt[3]{1.008}| \leq \frac{1}{24}
\]

To get a better approximation, a convenient value is \(q = \frac{27}{8} \) then

and

and
it follows that

\[
\frac{3\sqrt[3]{1.008} - 3\sqrt[3]{1}}{1.008 - 1} = \frac{3}{3\sqrt[3]{u^2}} = \frac{1}{\sqrt[3]{u^2}}, \quad 1 < u < 1.008.
\]

(here \(f(x) = 3\sqrt[3]{x} , q = 1.008 , p = 1 \)). Then, since \(f'(u) \) is monotonic in \([1, 1.008] \), we have

\[
\frac{0.008}{3\sqrt[3]{u^2}} < \frac{0.008}{3\sqrt[3]{1.008^2}} < \sqrt[3]{1.008} < \frac{0.008}{3},
\]

or

\[
1.001 < \sqrt[3]{1.008}.
\]

16. Use the Law of the Mean to

\[
\frac{d-\pi}{d-p} = 1.001,
\]

Choose

\[
p = \frac{\pi}{3} , \quad q = \frac{\pi}{3}.
\]

Note that \(p \) and \(q \) are solutions of

\[
\cos \theta = \frac{8}{5}, \quad \frac{\pi}{2} < \theta < \frac{\pi}{6}.
\]

Since

\[
\sin \theta = \frac{1}{5}.
\]

of

\[
\frac{\pi}{6} < \theta < \frac{\pi}{2}.
\]

17. Show that \(a \left(\begin{array}{c} 1 \cr n \end{array} \right) \) is

\(a > 1 , n > 1 \) (rule 10.2). Let \(f(x) = \frac{\ln x}{x} , u < v \),

Choose \(q = a^n + \varepsilon , \quad p = a^n \)

\[
\varepsilon
\]
and if \(a > 1 \),
\[
\frac{\sqrt[n]{a^n} + \epsilon}{n(a^n + \epsilon)} < \frac{\sqrt[n]{a^n} + \epsilon}{n(a^n)} = 1 - \frac{\epsilon}{a^n}.
\]

Since
\[
\frac{\sqrt[n]{a^n} + \epsilon}{n(a^n + \epsilon)} < \frac{\sqrt[n]{a^n} + \epsilon}{n(a^n)} = 1 - \frac{\epsilon}{a^n}
\]
we obtain the desired inequalities.

18. Using Number 17, obtain the following approximations:

(a) \(3 \frac{1}{16} < \frac{3}{\sqrt[3]{6}} < 3 \frac{1}{9} \).

If \(n = 2^n \) in the first part of the argument,
\[
\frac{\sqrt[n]{a^n} + \epsilon}{n(\sqrt[n]{a^n} + \epsilon)} < \frac{\sqrt[n]{a^n} + \epsilon}{n(\sqrt[n]{a^n})} = 1 - \frac{\epsilon}{a^n}
\]

(b) \(3, \frac{3}{\sqrt[3]{24}} \).

If we set \(\frac{1}{10} \sqrt[3]{30} \), we obtain the desired inequality.

(c) show that...

\[
\frac{2}{\sqrt[3]{3}} = \frac{2}{\sqrt[3]{2}}
\]

We note that the middle term is obtained by taking
\[
\frac{a + c}{2}
\]
and
\[
\frac{2}{\sqrt[3]{24}}
\]
for the purpose.

Letting
\[
\frac{1}{\sqrt[3]{24}} = \frac{1}{\sqrt[3]{2} \cdot \sqrt[3]{12}} = \frac{1}{2(\sqrt[3]{2} + \sqrt[3]{12})}
\]

therefore
\[
\frac{1}{2(\sqrt[3]{2} + \sqrt[3]{12})}
\]
A19. (a) Show that a straight line can intersect the graph of a polynomial function of \(n \)-th degree at most \(n \) times.

Let \(y = mx + b \) be an equation of a straight line and
\[
p(x) = a_0 + a_1x + \ldots + a_nx^n\]
be an \(n \)-th degree polynomial \((a_n \neq 0) \).

Then if \(y = p(x) \), we have \(g(x) = 0 \), where
\[
g(x) = (a_0 - b) + (a_1 - m)x + a_2x^2 + \ldots + a_nx^n, a_n \neq 0.
\]

Lemma 5-3 (proved in Solution 44, 1): \(g(x) \), a polynomial of \(n \)-th degree, has at most \(n \) distinct roots. Therefore, a straight line can intersect the graph of a polynomial function of \(n \)-th degree at most \(n \) times (unless, of course, \(g(x) \) is identically 0, i.e., \(p \) is linear and \(p(x) = mx + b \)).

(b) Obtain the corresponding result.

Let \(R(x) = \frac{p(x)}{g(x)} \), where \(g(x) \) is a polynomial of degree \(s \geq 0 \), \(g(x) \neq 0 \), and \(R(x) \) is a rational function of degree \(n \) in \(x \).

If \(g(x) = 0 \), then \(R(x) \) is not defined in \(x = \frac{a_0 - b}{a_1 - m} \).

In any case, \(R(x) \) is a rational function of degree \(n \) in \(x \).

Thus,
\[
\text{the equation } R(x) = \text{constant } \neq 0 \text{ has solutions } x \text{ if and only if } R
\]
is linear in \(x \).

(c) Conclude.

No. 20. Prove the intermediate value property of continuous functions.

Suppose \(f'(p) \) exists. Then there exists a value \(\beta \) satisfying
\[
\lim_{h \to 0} \frac{f(p + h) - f(p)}{h} = f'(p).
\]
Suppose \(f'(p) \) exists. Then there exists a value \(\beta \) satisfying
\[
\lim_{h \to 0} \frac{f(p + h) - f(p)}{h} = f'(p).
\]
For the function
\[g(x) = \frac{f(x + h) - f(x)}{h}, \]
where \(h \) is fixed and satisfies the preceding conditions, it follows that
\[g(p) < m < g(q - h). \]
The function \(g(x) \) is continuous on the closed interval \([p, q - h]\)
and therefore satisfies the intermediate value property on that interval.
There must then exist a value \(r \) in \((p, q - h)\) such that
\[g(r) = \frac{f(r + h) - f(r)}{h} = m. \]
By the Law of the Mean we have for some value \(u \), \(f(r + h) = f(r) = uf'(u) \)
where \(r < u < r + h \). It follows that \(f'(u) = m \).

Alternate Solution:

Let
\[g(x) = \begin{cases} \frac{1}{x - p} & \text{for } x \neq p, \\ \frac{1}{p} & \text{for } x = p. \end{cases} \]
\(g(x) \) is continuous on all values but \(x = p \) and \(\frac{1}{x - p} \) for \(x \neq p \).

Similarly, let
\[f(x) = \begin{cases} \frac{1}{x - q} & \text{for } x \neq q, \\ \frac{1}{q} & \text{for } x = q. \end{cases} \]
\(f(x) \) is continuous on all values but \(x = q \) and \(\frac{1}{x - q} \) for \(x \neq q \).

In \([p, q]\) the Mean Value Theorem takes
\[f'(u) \text{ on } [p, q] \]
there exists a \(u \) such that \(f'(u) = \frac{f(p) - f(q)}{p - q} \) for all \(x \)
in \([p, q]\) and \(f'(u) \) takes on all values
between \(f'(p) \) and \(f'(q) \) by the Law of the Mean that \(f'(x) \) takes on all values \(f'(p) \) and \(f'(q) \).
TC5-4. Applications of the Law of the Mean.

The Law of the Mean is useful in situations when we wish to derive a property of a function \(f \) from a property of the derivative \(f' \).

Corollary 1 to Theorem 5-4a states the seemingly obvious proposition that if the direction of a curve is horizontal on an interval then the curve is a horizontal straight line. In kinematic terms, it states that an object which has zero velocity stays in the same place. (To the student this may seem like disappointingly small potatoes.) Perhaps it should be pointed out that it is worthwhile to check our analytical abstractions occasionally to see how closely they are related to the intuitive conceptions from which they have sprung. Further, we shall see in Chapter 7 that this seemingly insignificant corollary has important consequences.

Example 5-4a. How small is seemingly insignificant?

In order to guarantee that the factor \(2/2 \) is positive, we assure that

\[
\left| \frac{\Delta f}{\Delta x} \right| < 2
\]

We suppose that \(\left| f' \right| < 2 \).

follows that

It is sufficient.

1. On what intervals is the function

\[f(x) = \frac{x^2 - 1}{x - 2} \]

strongly monotone? By Theorem 5-4b, \(f \) is increasing for \(x < 2 \) and for \(x > 2 \) decreasing for \(1 < x < 2 \) and for \(x < 1 \).
By Theorem 5-4c, \(f(1) \) is a maximum and \(f(3) \) is a minimum.

\[f(x) = x^2 - \frac{1}{2} x \]

2. Locate all critical points.

\[f'(x) = 2x - \frac{1}{2} \]

Refer to Ex. 31.

\[f''(x) = 2 \quad \text{for} \quad x = \frac{1}{2} \]

\[f \text{ is increasing for } -\frac{1}{3} < x < \frac{2}{3} \]

\[f \text{ is decreasing for } -\frac{2}{3} < x < \frac{1}{3} \]
3. For each of the following functions find all points a for which \(f'(a) = 0 \). Examine the sign of \(f' \) and determine those intervals on which \(f \) is strongly monotone.

(a) \(f(x) = \frac{x}{1 + x^2} \)

\[f(x) = \frac{x}{1 + x^2}, \quad f'(x) = \frac{1 - 2x}{(1 + x^2)^2} \]

\(f'(x) \) is zero if \(x = -\frac{\sqrt{2}}{2} \) and \(\frac{\sqrt{2}}{2} \).

\(f' \) is increasing if \(|x| < \frac{\sqrt{2}}{2} \) and decreasing if \(|x| > \frac{\sqrt{2}}{2} \).

(b) \(f(x) = (1 - x)^b \)

\[f(x) = (1 - x)^b, \quad f'(x) = b(1 - x)^{b-1} \]

\(f'(1) = 0 \). For \(x < 1 \), \(f'(x) < 0 \) and \(f \) is decreasing.

(c) \(f(x) = \sqrt{x} \)

\[f'(x) = \frac{1}{2\sqrt{x}} \]

\(f'(0) = 0 \) and decreasing everywhere.

(Actually, this is true for every interval.)

Number: 14

(d) \(f(x) = \frac{x^2 + \gamma}{x^2} \)

\[f(x) = \frac{x^2 + \gamma}{x^2}, \quad f'(x) = \frac{1 - \gamma}{x^2} \]

\(f'(0) = 0 \) and \(f' \) is decreasing for \(x > \sqrt{2} \) and increasing for \(x < \sqrt{2} \).
If p and q are integers and
\[f(x) = (x - 1)^p (x + 1)^q \] for \(p \geq 2, q \geq 2 \)
find the extrema of \(f \) for the following cases:

(a) \(p \) and \(q \) are both even.
(b) \(p \) is even and \(q \) is odd.
(c) \(p \) is odd and \(q \) is even.
(d) \(p \) and \(q \) are both odd.

First observe on the basis of Lemma 10.2 that there is at least one extremum in the open interval \((-1,1)\). Next we note that the derivative vanishes at only one point in \((-1,1)\) so that this is the only extremum in the interval; namely,
\[
\frac{d}{dx} f(x) = \frac{d}{dx} \left((x - 1)^p (x + 1)^q \right) = \frac{1}{p+q} \left(p (x - 1)^{p-1} (x + 1)^q - q (x - 1)^p (x + 1)^{q-1} \right)
\]
so that \(\frac{d}{dx} f(x) = 0 \) in \((-1,1)\) only at \(x = \frac{q-p}{p+q} \). Finally we observe that, if \(q \) is even, the sign of the derivative changes at \(x = 1 \) and there is an extremum there; if \(q \) is odd, the sign does not change and there is an inflection. The same remains true for \(p \) at \(x = -1 \). With this as a guide and knowing also the sign of \(f \) at \(x = \pm 1 \), we can easily sketch the graph.
5. If \(p, q \) and \(r \) are positive, graph of the function \(f : x \rightarrow (x)^p(x)^q(x)^r \).

Discuss some special cases in \(\mathbb{R} \).

(a) Intercepts: \(f(x) = 0 \)

\[r(0) = 0 \]

(b) As \(x \) increases through positive values, \(f(x) \) increases without bound; as \(x \) decreases through negative values, \(f(x) \) grows large without bound. If \(x = q = r = 0 \), then \(f(x) \) grows large without bound.

(c) By Lemma 5.2, we see that the derivative in each open interval \((a,b)\) is

\[f'(x) = [p(x)^p + q(x)^q + r(x)^r] \]

\[= \omega(x)(x-a)^{p-1} \]

Now \(Q(x) \) is quadratic, and there are two zeros; these roots must then correspond to the intervals \((a,b)\) and \((b,c)\).

We can now easily analyze the behavior of \(g(x)(x-a)^n \) where \(g(x) \) is differentiable. There are three basic cases to consider:
(i) \(n = 1 \). The graph \(y = g(x)(x - \alpha) \) crosses the x-axis at \(\alpha \) without tangency.

(ii) \(n \) even. The graph \(y = g(x)(x - \alpha)^n \) does not cross the x-axis at \(\alpha \), is tangent there and has constant sign in a deleted neighborhood of \(\alpha \). Hence \(x = \alpha \) yields an extremum.

(iii) \(n \) odd, \(n > 1 \). The graph crosses the x-axis at \(\alpha \) and has a tangency there.

To sketch the graph of \(f \), we observe the changes of sign in the function and use the foregoing. Since \(r, q, \) and \(r \) can satisfy the conditions (i), (ii), (iii) independently, there are 27 distinct cases.

We sketch the case \(p = 1 \), odd, \(q = 2 \), even, and \(r = 1 \).
\[S = 4\pi r^2 + 2\pi r. \]
\[= \frac{4}{3} \pi r^2 + \frac{2V}{r}, \]

where \(V \) represents the volume.

If the cost of the pipe is \(k \) per square foot, then the total cost, \(C \), is given by
\[C = \frac{8}{3} k\pi r^2 + \frac{2kV}{r} = f(r). \]
\[f'(r) = 2k\left(\frac{8}{3} \pi r - \frac{V}{r^2}\right) = 2k\left(\frac{8\pi r^3 - 3V}{3r^2}\right) \]
is zero if \(r = \frac{3\sqrt{2V}}{8\pi} \). We observe that if \(r < \frac{3\sqrt{2V}}{8\pi} \), then \(f'(r) < 0 \), and if \(r > \frac{3\sqrt{2V}}{8\pi} \), then \(f'(r) > 0 \). By Theorem 3-4c, \(f\left(\frac{3\sqrt{2V}}{8\pi}\right) \) is a minimum. If \(r = \frac{3\sqrt{2V}}{8\pi} \), then \(f\left(\frac{3\sqrt{2V}}{8\pi}\right) = 2\left(\frac{\sqrt{2V}}{8\pi}\right)^{1/3} \), so that \(\frac{r}{L} = \frac{3}{8} \). The most economical dimensions are \(r = \frac{3}{8} \).

7. Find the length of the longest rod which can be carried horizontally around a corner from a corridor 10 ft. wide into one 5 ft. wide.

See Exercises 1-1, Number 10.

\[L = f(\theta) = 5(2 \csc \theta + \sec \theta)^3. \]
\[f'(\theta) = 15(2 \csc \theta + \sec \theta)^2 \left(\cot \theta + \sec \theta \tan \theta \right) \]
is zero if \(\tan \theta = 2 \) and \(\theta = \arctan \frac{2}{1/3} \). For this value of \(\theta \),

\[L = f(\theta) = 5\left(2^{2/3} + 2^{2/3} + 1\right)^{1/2} + (2^{2/3} + 1)^{1/2} \]

\[= 5\left(2^{2/3} + 1\right)^{3/2}. \]

To see that this is a minimum value of \(f(\theta) \), we observe that there is only one extremum in the interval \((0, \pi)\) and for \(\theta \) near 0 and \(\pi \) in this interval, \(f(\theta) \) is very large. So \(L = f\left(\arctan \frac{2}{1/3}\right) \) is a minimum of \(f \).
8. Find a point P on the arc AB such that the sum of the lengths of the chords AP and BF is a maximum ($0 < \theta \leq \frac{\pi}{2}$).

Let angle $POB = 2\phi$. Then angle $POA = 2\theta - 2\phi$. If we let x equal length of chord PB and y equal length of chord AP, then since triangles POB and POA are isosceles, we have

$$x = 2r \sin \phi \quad \text{and} \quad y = 2r \sin(\theta - \phi).$$

To maximize $x + y$ let

$$f(\theta) = 2r \left(\sin \phi + \sin(\theta - \phi) \right),$$

whence

$$f'(\theta) = 2r \left(\cos \phi - \cos(\theta - \phi) \right).$$

Hence

$$\phi = \frac{\theta}{2}.$$

This occurs when P is the midpoint of arc AB.

One could also consider the family of (confocal) ellipses whose foci are at A and B By symmetry, the largest ellipse intersecting the arc (minor) AB will be tangent to it at the midpoint.

9. Show how to determine a line, if possible, which passes through the point $(5, 8)$ such that the area of the triangle formed in the first quadrant is a positive number a. For what values of a is it impossible to construct such a triangle?

By similar triangles,

$$\frac{8}{x} = \frac{8}{x - 5},$$

or

$$y = \frac{8x}{x - 5}.$$

Let the area of the triangle be $f(x)$, then

$$f(x) = \frac{1}{2}xy = \frac{4x^2}{x - 5}, \quad x > 5.$$
Then \(f(x) = a \) only if the quadratic equation \(4x^2 = a(x - 5) \) has real roots. Since

\[
x = \frac{a + \sqrt{a^2 - 80}}{8},
\]
a must be greater than or equal to 80. This implies that the minimum value of

\[
f(x) = \frac{4x^2}{x - 5}, \quad x > 5
\]
is 80. Note that for \(a > 80 \), there are two triangles satisfying our conditions.

We can also obtain this result by setting

\[
f'(x) = 0
\]

\[
\frac{4x(x - 10)}{(x - 5)^2} = 0.
\]

Thus \(x = 10 \) and \(f(10) = 80 \). A graph of \(f \) with the domain extended to all \(x \) is given.
10. Find a point on the altitude of an isosceles triangle such that the sum of its distances from the vertices is the smallest possible.

The sum of the distances, S, is the sum of the lengths of the segments AP, BP, and CP, where P is a point on the altitude of triangle ABC. $S = 2a \sec \alpha + h - a \tan \alpha$, where a represents $\frac{1}{2}$ the length of the base AC. $S = f(\alpha)$, so that

$$f'(\alpha) = a \sec \alpha \left(\frac{2 \sin \alpha - 1}{\cos \alpha} \right).$$

We note that $f'(\alpha)$ is zero if and only if $\sin \alpha = \frac{1}{2}$, that is $\alpha = \frac{\pi}{6}$.

If $\alpha > \frac{\pi}{6}$, then $f'(\alpha) > 0$ and if $\alpha < \frac{\pi}{6}$, then $f'(\alpha) < 0$, hence $f'\left(\frac{\pi}{6}\right)$ is a minimum. We note that this minimum is unobtainable if the base angles are less than $\frac{\pi}{6}$ radians, as P must remain in the interior of the triangle. If $\alpha \leq \text{angle A} < \frac{\pi}{6}$ then the minimum of f is obtained at the endpoint of the interval, where $\alpha = \text{angle A}$.

Alternative Solution:

$$S = f(x) = 2\sqrt{(h - x)^2 + a^2} + x$$

so that

$$f'(x) = \frac{-2(a - x)}{\sqrt{(h - x)^2 + a^2}} + 1$$

is zero if

$$2(h - x) = \sqrt{(h - x)^2 + a^2}$$

or

$$h - x = \frac{a}{\sqrt{3}}.$$

This result agrees with that obtained above.
11. Let \(f \) be differentiable on a neighborhood of a point \(a \) for which \(f'(a) = 0 \). If \(f'(x) \leq 0 \) when \(x < a \) and \(f'(x) \geq 0 \) when \(x > a \) then \(f(a) \) is a minimum. If \(f'(x) \geq 0 \) when \(x < a \) and \(f'(x) \leq 0 \) when \(x > a \) then \(f(a) \) is a maximum. Give a proof.

We consider the case for \(f(a) \) a minimum. The proof for \(f(a) \) a maximum is similar. Let \(x \) be a point of a deleted neighborhood of \(a \). By the Law of the Mean there is a number \(u \) such that \(f(x) - f(a) = f'(u)(x - a) \) for \(a < u < x \) and for \(x < u < a \). From the hypothesis, whether \(x < a \) or \(x > a \), it follows that

\[
f'(u)(x - a) \geq 0.
\]

We conclude that \(f(x) \geq f(a) \) for all \(x \) in the neighborhood of \(a \).

Therefore \(f(a) \) is a minimum.

12. Let \(f \) be continuous on the closed interval \([a,b]\) and differentiable on the open interval \((a,b)\). Suppose \(u \) is the one point in \((a,b)\) where \(f'(u) = 0 \). Prove that if \(f'(x) \) reverses sign in a neighborhood of \(u \), then \(f(u) \) is the global extremum of \(f \) on \([a,b]\) appropriate to the sense of reversal.

By the hypothesis, \(f'(x) = 0 \) has only one solution, \(x = u \). The derivative \(f'(x) \) must have constant sign in each of the intervals \((a,u), (u,b)\) or we could find another zero of the derivative by Exercises 5-3, Number 17. Since \(f'(x) \) reverses sign in a neighborhood of \(u \), either \(f'(x) > 0 \) for \(x < u \), or \(f'(x) > 0 \) for \(x > u \). We will consider the case where \(f'(x) > 0 \) for \(x < u \) and \(f'(x) < 0 \) for \(x > u \) (the proof for the other case is similar). By Theorem 5-4c, \(f(u) \) is a maximum in a neighborhood of \(u \). By the Law of the Mean, for the interval \([a,u]\), \(f(a) - f(u) = f'(v)(a - u) \) for some \(v \), \(a < v < u \). Thus, in this case \(f'(v)(a - u) < 0 \) and \(f(a) < f(u) \). In the same way, applying the Law of the Mean to the closed interval \([u,b]\) we can show that \(f(b) < f(u) \). The only extrema on \([a,b]\) are at the endpoints or at points where \(f'(x) = 0 \). Since we have eliminated the endpoints as possible maxima, we conclude that \(f(u) \) is a global maximum of \(f \) on \([a,b]\).
13. Given a function f such that $f(1) = f(2) = 4$, and such that $f''(x)$ exists and is positive throughout the interval $1 \leq x \leq 3$. What can you conclude about $f'(2.5)$? about $f(2.5)$? Prove your statements, stating whatever theorems you use in your proof. (Note: This statement of the problem differs from that in the text.)

$$f(1) = f(2) = 4.$$

Since f'' exists on the interval $[1,3]$, f' is continuous and differentiable on $[1,3]$ and f also is continuous and differentiable on $[1,3]$.

By Rolle's Theorem, there is a number u, $1 < u < 2$, such that $f'(u) = 0$. Since $f''(x) > 0$ on the interval $[1,3]$, f' is increasing on $[1,3]$ and hence, for $u < x < 3$, $f'(x) > f'(u) = 0$. Thus $f'(2.5) > 0$. Since $f'(x) > 0$ for x in $(u,3)$, f is increasing in $[u,3]$; since $u < 2$, it follows that $f(2.5) > f(2) = 4$.

14. Let f be a differentiable function on (a,b). Prove that the requirement that f be increasing is equivalent to the condition that $f'(x) \geq 0$ everywhere but that every interval contains points where $f'(x) > 0$.

Let us assume first that f increasing. If there were an entire interval on which $f'(x) = 0$ then by Corollary 1 to Theorem 5-4a it would follow that f is constant on that interval in contradiction to the assumption that f is strongly increasing. On the other hand, suppose that $f'(x) \geq 0$ but that every interval contains points where $f'(x) > 0$.

Take any pair of points x_1, x_2 in (a,b) with $x_1 < x_2$. We will show $f(x_1) < f(x_2)$. By hypothesis, there is a point u in (x_1, x_2) where $f'(u) > 0$. Since $f'(u) = \lim_{x \to u} \frac{f(x) - f(u)}{x - u}$, it follows by Lemma 3-4 that for some sufficiently small δ-neighborhood of u within (x_1, x_2)

$$f(x) - f(u) > 0.$$

Choose particular values p, q in this δ-neighborhood so that $p < u$ and $q > u$. We then have $x_1 < p < u < q < x_2$. It follows from (1) that

$$f(p) < f(u) < f(q).$$

However, under the assumption $f'(x) \geq 0$ in (a,b), we have from Theorem 5-4a that

$$f(x_1) \leq f(p)$$ and $$f(q) \leq f(x_2).$$

Combining the results of (2) and (3) we see that if $x_1 < x_2$ then $f(x_1) < f(x_2)$, i.e., that $f(x)$ is increasing.
15. Given that \(f \) is everywhere differentiable. If for all \(x \) such that \(f'(x) > 0 \), \(f(x) \leq f(0) \), prove that \(f(x) < f(0) \) for all \(x > 0 \).

Suppose there exists an \(x_0 \) such that \(f(x_0) > f(0) \).

Let \(x_1 \) be a point in \([0, x_0]\) where \(f(x_1) \) is a maximum. Since \(f(x_1) > f(x_0) > f(0) \) we have \(x_1 \neq 0 \). If \(x_1 \neq x_0 \) then \(f'(x_1) = 0 \) by Theorem 5-2a. If \(x_1 = x_0 \) then \(f'(x_1) \geq 0 \) (or, on the contrary, \(f'(x_1) < 0 \) there would be a neighborhood of \(x_1 \) wherein \(f(x) > f(x_1) \) for \(x < x_1 \), as can be shown by the application of Lemma 3-4 in the preceding problem or by the result of Exercises 5-4, No. 17). In either case, from \(f'(x_1) > 0 \) we conclude by the hypothesis of the problem that \(f(x_1) < f(0) \), a contradiction.

16. A function \(g \) is such that \(g'' \) is continuous and positive in the interval \((p, q)\). What is the maximum number of roots of each of the equations \(g(x) = 0 \) and \(g'(x) = 0 \) in \((p, q)\)? Prove your result and give some illustrative examples.

We have \(g'' \) is continuous and positive on \((p, q)\). Then \(g' \) is continuous and increasing on \((p, q)\) and thus can have at most one real root (else \(g'(x_1) = g'(x_2) = 0 \) and \(g' \) is not increasing).

If \(g'(x) = 0 \), for any value of \(x \), say \(x_0 \), then \(g'(x) > 0 \) for \(x > x_0 \) and \(g'(x) < 0 \) for \(x < x_0 \) (\(g' \) is increasing). Then \(g \) is increasing for \(x > x_0 \) and decreasing for \(x < x_0 \) and can have at most two real roots. If \(g'(x) = 0 \) for no value of \(x \), then either \(g'(x) < 0 \) for all \(x \) or \(g'(x) > 0 \) for all \(x \), and \(g(x) \) is either increasing or decreasing for all \(x \) and can have at most one real root.

Case 1.

\[
\begin{align*}
g(x) &= \frac{1}{x} \\
g''(x) &= 0 \\
g'(x) &\text{ has no roots} \\
g(x) &\text{ has no roots}
\end{align*}
\]
Case 1.

\[g(x) = x^2 + 1 \]
\[g''(x) > 0 \]
\[g^*(x) \text{ has one root} \]
\[g(x) \text{ has no root} \]

Case 2.

\[g(x) = x^4 + x^2 \]
\[g''(x) > 0 \]
\[g^*(x) \text{ has one root} \]
\[g(x) \text{ has one root} \]

Case 3.

\[g(x) = x^2 - 1 \]
\[g''(x) > 0 \]
\[g^*(x) \text{ has one root} \]
\[g(x) \text{ has two roots} \]

Case 4.

\[g(x) = \frac{1}{x + 1} \]
\[g''(x) > 0 \]
\[g^*(x) \text{ has no roots} \]
\[g(x) \text{ has one root} \]
17. (a) If \(f'(a) > 0 \) show for values of \(x \) in a neighborhood of \(a \) that if \(x > a \) then \(f(x) > f(a) \), and if \(x < a \) then \(f(x) < f(a) \).

\[f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

Thus by Lemma 3-4 there is a \(\delta > 0 \) such that \(\frac{f(x) - f(a)}{x - a} > 0 \) for each \(x \) satisfying \(0 < |x - a| < \delta \) if \(f'(a) > 0 \). Thus, if \(x > a \) then \(f(x) > f(a) \), and if \(x < a \) then \(f(x) < f(a) \).

(b) Give an example of a function \(f \) for which \(f'(a) > 0 \) but which is not increasing in any neighborhood of \(a \), no matter how small.

One example is given by the function defined in Exercises 4-3a, Number 4. Another example, at \(f(x) = 0 \), is the function defined by

\[f(x) = \begin{cases}
 2 \sin \frac{\pi}{x} + x, & x \neq 0 \\
 0, & x = 0.
\end{cases} \]

The product rule for differentiation does not apply here, so we fall back on the definition:

\[f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \left[x \sin \frac{\pi}{x} + 1 \right] = \frac{1}{1} \]

If \(x \neq 0 \), then \(f'(x) = \frac{1}{x} \cos \frac{\pi}{x} + 2x \sin \frac{\pi}{x} \). If \(x = \frac{1}{2n} \) then \(\cos \frac{\pi}{x} = 1 \), and if \(x = \frac{1}{2n + 1} \) then \(\cos \frac{\pi}{x} = -1 \). Thus if \(0 < x < \frac{\pi - 1}{2} \) then \(f'(\frac{1}{2n}) < 0 \) and \(f'(\frac{1}{2n + 1}) > 0 \). By Lemma 3-4 (if \(f' \) is continuous at every point other than 0) \(f' \) is positive and therefore \(f \) is increasing in a neighborhood of \(\frac{1}{2n} \), and negative and therefore \(f \) is decreasing in a neighborhood of \(\frac{1}{2n + 1} \). Thus every interval centered at 0 contains a subinterval where \(f \) is increasing and a subinterval where \(f \) is decreasing. Therefore \(f \) is not monotone in any interval which contains 0.
5-5. Applications of the Second Derivative.

The study of convex functions and convex sets is a beautiful subject in its own right. However, it is included here primarily as an aid in describing the appearance of the graph of a function. The generality with which we state the definition is more than we need for this course. Most of this discussion and corresponding exercises may appropriately be used as collateral study.

Definition 5-5 does not require that \(f \) be continuous. We can more fully appreciate the notion of convexity by seeing one implication of the requirement that a function be convex. Let us assume that \(f \) is flexed upward. It is geometrically evident and easily verified analytically that the difference quotient \(\frac{f(x_0 + h) - f(x_0)}{h} \) is a nondecreasing function of \(h \) for fixed \(x \). Moreover, \(\frac{f(x_0 + h) - f(x_0)}{h} > \frac{f(x_0 - h) - f(x_0)}{-h} \) if \(h > 0 \).

It then follows that the limit of \(\frac{f(x_0 + h) - f(x_0)}{h} \) as \(h \) approaches 0 either through positive values or through negative values exists. Thus, a convex function must have right and left-sided derivatives everywhere. Contrast this kind of behavior with the bizarre behavior permitted a continuous function, say the Weierstrass function.

Solutions Exercises 5-5

Note: Number 14 is used in Numbers 15, 22-24. Numbers 21-23 should be assigned (as a block) together.

1. For each of the following functions, locate and characterize all extrema and state the intervals on which the function is increasing (decreasing). On what intervals is the graph flexed upward? downward?

(a) \(f : x \rightarrow x^2 + x^{-2} \)
(b) \(f : x \rightarrow \frac{2}{x^2} + \frac{1}{x} \)
(c) \(f : x \rightarrow x^{1/2} + x^{-1/2} \)
(d) \(f : x \rightarrow x^3 + ax^2 + bx + c \)
(a) \(f(x) = x^2 + x^{-2} \)

\[f'(x) = 2x - 2x^{-3} = 2\left(\frac{x}{x^3} - 1\right) \]

\[f''(x) = 2 + 6x^{-4} > 0 \text{ for } x \neq 0. \]

Thus, \(f(1) \) is a local minimum of \(f \), and \(f(-1) \) is a local minimum of \(f \). The function \(f \) is decreasing on the intervals \((0,1)\) and \(x < -1 \), and increasing on the intervals \((-1,0)\) and \(x > 1 \). The function \(f \) is flexed upward for all \(x \) in its domain, that is, for \(x \neq 0 \).

(b) \(f(x) = \frac{2}{x^2} + \frac{1}{x} \)

\[f'(x) = -\frac{1}{x^3}(4 + x) \]

\[f''(x) = \frac{2}{x^4}(6 + x) \]

\[f''(4) > 0. \]

Thus \(f(4) \) is a local minimum of \(f \). The function \(f \) is decreasing for \(x < -4 \) and for \(x > 0 \), and is increasing on the interval \((-4,0)\). The function \(f \) is flexed upward on the interval \((-6,0)\) and for \(x > 0 \), downward for \(x < -6 \).

(c) \(f(x) = x^{1/2} + x^{-1/2} \)

\[f'(x) = \frac{x - 1}{2x^{3/2}} \]

\[f''(x) = \frac{3 - x}{4x^{5/2}} \]

\[f''(1) > 0. \]

Thus \(f(1) \) is a local minimum of \(f \). The function \(f \) is decreasing on the interval \((0,1)\) and is increasing for \(x > 1 \). The function \(f \) is flexed upward on the interval \((0,3)\) and downward for \(x > 3 \).
(d) \(f(x) = x^3 + ax^2 + bx + c \)
\[f'(x) = 3x^2 + 2ax + b. \]

Every cubic is centrosymmetric about its point of inflection (p. 250).

TC2-2, and TC2-3) and has either no maxima or minima (e.g., \(f(x)^{2} = x^2 \))
or a maximum and minimum spaced equally apart from the center of

symmetry.

For brevity, we assume \(a, b > 0 \). The solution for other cases is

similar.

(i) If the discriminant of \(f'(x) > 0 \), then \(f \) will have a maxi-
mum, minimum, and point of inflection. \(f \) will be flexed downward for \(x < -a + \sqrt{2a - 3b} \), increasing for

\(x > \frac{-a + \sqrt{2a - 3b}}{3} \) and for \(x < \frac{-a - \sqrt{2a - 3b}}{3} \), decreasing

for \(\frac{-a - \sqrt{2a - 3b}}{3} < x < \frac{-a + \sqrt{2a - 3b}}{3} \).

(ii) If the discriminant of \(f''(x) < 0 \), \(f \) will have only a point of

inflection at \(x = \frac{-a}{3} \). No maximum or minimum; \(f \) increasing

for all \(x \).

2. Show that the graph of the function
\(f(x) = 3 \sin 2x + 5 \cos 2x \)
is flexed upward when \(f'(x) > 0 \) and flexed downward when \(f(x) > 0 \).

\(f(x) = 3 \sin 2x + 5 \cos 2x \)
\[f'(x) = 6 \cos 2x - 10 \sin 2x \]
\[f''(x) = -12 \sin 2x - 20 \cos 2x \]
\[= -4 f'(x) \cdot \]

The conclusion follows at once by Theorem 5-5b.

3. Find and characterize the extrema of the function
\(f(x) = x \sin x + \cos x \)
on the closed interval \([0, \pi] \). On what intervals is the graph of the
function flexed downward? upward?

\(f(x) = x \sin x + \cos x \)
\[f'(x) = x \cos x \]
\[f''(x) = \cos x - x \sin x \]
4. Assume that the function \(f \) has a local maximum (or minimum) at \(x = a \), where \(f'(a) = 0 \), and \(f''(a) \neq 0 \). Determine conditions on a function \(g \), assumed differentiable, such that \(x \rightarrow gf(x) \) also has a local maximum (or minimum) at \(x = a \).

To guarantee that \(gf(x) \) has a local maximum at \(a \), we require

\[[gf(a)]' = 0 \text{ and } [gf(a)]'' < 0. \]

\[[gf(x)]' = g'f(x) \cdot f'(x) = 0 \]

\[[gf(x)]'' = g''f(x) \cdot f'(x)^2 + g'f(x) \cdot f''(x). \]

Since \(f''(a) < 0 \) and \(f'(a) = 0 \), \([gf(a)]'' < 0 \) only if \(g'f(a) > 0 \).

If \(g \) is an increasing function of \(f \), and \(f \) has a local maximum of \(a \), then the conclusion that \(gf \) has a local maximum at \(a \) follows easily without calculus.

We use similar reasoning for the minimum.

5. Use Theorem 5-5a to locate and classify all extrema of the function \(f : x \rightarrow \sin x(1 + \cos x) \) on the closed interval \([-\pi, \pi]\). On what intervals is the graph of the function flexed downward? upward?

\[f(x) = \sin x(1 + \cos x) = \sin x + \frac{\sin 2x}{2} \]

\[f'(x) = \cos x + \cos 2x = (2 \cos x - 1)(\cos x + 1). \]

\[f''(x) = -\sin x - 2 \sin 2x = -\sin x(1 + \cos x) \]

Since \(\cos \left(\frac{\pi}{3} \right) = \frac{1}{2} \) and \(f''(\frac{\pi}{3}) = 0 \), we obtain \(r(\frac{\pi}{3}) = \frac{3\sqrt{2}}{4} \) as a maximum value of \(f \) on \([-\pi, \pi]\) and \(f'(-\frac{\pi}{3}) = \frac{3\sqrt{2}}{4} \) as a minimum value.

The graph of \(f \) is flexed upward on the intervals \((-\pi, -x_0)\) and \((0, x_0)\), where \(\cos x_0 = \frac{1}{4} \) and \(x_0 = 1.82 \), approximately. The graph of \(f \) is flexed downward on the intervals \((-x_0, 0)\) and \((x_0, \pi)\).
6. Let \(f(x) = x - \sin x \). Does \(f \) have any extrema? Justify your answer.

\[
f(x) = x - \sin x
\]
\[
f'(x) = 1 - \cos x
\]
\[
f''(x) = 0 \text{ if } \cos x = 1; \text{ that is, if } x = 2n\pi, n \text{ an integer, otherwise } f''(x) > 0.
\]
By Theorem 5-14a the function \(f \) is weakly increasing on any neighborhood of \(x = 2n\pi, n \text{ an integer, and hence } f \) has no extrema.

7. Let \(f(x) = \frac{x}{\sin x} \). Does \(f \) have any extrema in the open interval \((0, \frac{\pi}{2})\)? Justify your answer.

\[
f(x) = \frac{x}{\sin x}
\]
\[
f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}
\]
If \(f'(x) = 0 \), then \(\sin x + x \cos x = 0 \), or equivalently, \(\tan x = -1 \).

However, in the interval \((0, \frac{\pi}{2})\), \(\tan x \) has no solution; hence \(f \) has no extrema in the open interval \((0, \frac{\pi}{2})\). To see that \(\tan x = x \) has no solution in \((0, \frac{\pi}{2})\) consider \(g(x) = \tan x - x \).

We have \(g'(x) = \sec^2 x - 1 \) so that \(g'(x) > 0 \) for all \(x \) in \((0, \frac{\pi}{2})\). Since \(g(0) = 0 \) it follows that \(g(x) > 0 \) for all \(x \) in \((0, \frac{\pi}{2})\), by Theorem 5-14a.

8. At what point of the positive x-axis is the angle subtended by the two points \((0,3)\) and \((4,7)\) greatest?

See figure at right: \(\tan \alpha = \frac{3}{x} \) and \(\tan \beta = \frac{7}{4-x} \) so that

\[
\tan(\alpha + \beta) = \frac{\frac{3}{x} + \frac{7}{4-x}}{1 - \frac{21}{x(4-x)}} = \frac{4(3 + x)}{x(4-x) - 21}
\]

It is sufficient to find \(x \) so that \(\alpha + \beta \) is a minimum or that
\[\tan(\alpha + \beta) \] is a minimum (see No. 4).
\[
D_x \tan(\alpha + \beta) = \frac{4(x^2 + 6x - 33)}{(4x - x^2 - 21)^2} = F(x)
\]
\[F(x) = 0 \] if \(x = \sqrt{42} - 3 \).

If \(x \) is in the interval \((0, \sqrt{42} - 3)\) then \(F(x) < 0 \), and if \(x \) is greater than \(\sqrt{42} - 3 \) then \(F(x) > 0 \). Thus, \(\tan(\alpha + \beta) \) is a minimum if \(x = \sqrt{42} - 3 \), by Theorem 4. It follows that the angle subtended by the points \((0,3)\) and \((4,7)\) is the greatest at the point \(-\sqrt{42} - 3\).

9. Suppose that \(f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0 \) but \(f^{(n)}(a) \neq 0 \). Determine whether \(f'(a) \) is a local extremum and if it is, which kind.

(Hint: consider separately the cases \(n \) even and \(n \) odd.)

Let \(f''(a) = f^{(n)}(a) = \cdots = f^{(n-1)}(a) = 0 \) but \(f^{(n)}(a) \neq 0 \).

(1) whenever \(f^{(n)}(a) > 0 \) \(f(a) \) is a local minimum.

(1) whenever \(f^{(n)}(a) < 0 \) \(f(a) \) is a local maximum.

Consider the following:

\[\text{Proof of Case } (1) \]

Assume that \(f'(a) = f''(a) = \cdots = f^{(n-1)}(a) = 0 \) and \(f^{(n)}(a) > 0 \). Then \(f(x) \) is not entirely increasing.
Since \(\alpha \in D \) and \(\beta \in D \) there is at least one point \((x_f, y_f) \), where \(x_a < t < x_b \), on the segment which is not in \(D \). This means that \(y_f - f(t) > 0 \). It follows by continuity that there is a neighborhood of \(x = t \) where \(y - f(t) > 0 \), hence the segment joining \(x = t \) to \((x_b, y_b)\), where \(x_b = y_f - 1 \) and \(t = y_f \), by the Intermediate Value Theorem (Theorem 7.8) the segment joining \((x_a, y_a) \) to \((x_b, y_b)\) is a chord to the graph of \(f \). If \(y_b < f(t) \), the graph of \(f \) must be below the chord since \(y_b > f(t) \). Hence, it follows that \(f_t < y(t) \). We have a contradiction.

Alternative Proof.

Consider \(p \), \(y \in D \), the set of points \(t \), i.e.,

\[(x, y) : x = \text{integer}, \; y \in \mathbb{R} \]

The curve \(f \) is not continuous at \(p \) if

\[f(t) = \begin{cases} 0 & \text{if } t = x \text{ for some } x \in \mathbb{Z} \\ \frac{1}{n} & \text{if } t = \frac{x}{n} \text{ for some } x, n \in \mathbb{Z} \end{cases} \]
Proof. Let a be any fixed point in I. Equations of chords through $(a, f(a))$ and $(q, f(q))$, for other points $q \neq a$ in I, will be of the form

$$y = g(x) = f(a) + \frac{f(q) - f(a)}{q - a} (x - a).$$

By Definition 5.5, the graph of $g(x)$ is defined from a to $f(a)$. If $f(p) \leq g(p)$ for all p between a and q, then $f(p)$ is a point in I and $p < q$ or $q < p < a$. In either case, we have:

$$f(p) \leq g(p) \leq f(q).$$

If $p < a$, then $q > p$. In such a case,

$$f(q) - f(a) \leq f(q) - f(p) = \frac{f(q) - f(a)}{q - a} (q - a).$$

If $p > a$, then $q < p$. In such a case,

$$f(q) - f(a) \geq f(q) - f(p) = \frac{f(q) - f(a)}{q - a} (q - a).$$

In both cases,

$$f(q) - f(a) = \frac{f(q) - f(a)}{q - a} (q - a).$$

By expanding,

$$f(q) = f(a) + \frac{f(q) - f(a)}{q - a} (q - a).$$
so that
\[
\frac{g(x) - r(b)}{x - b} \leq \frac{r(p) - r(b)}{p - b}
\]
for all \(x\) in \(I\). In particular, taking
\[
g(p) = r(p)
\]
12. (a) Let \(f\) be differentiable on an interval \(I\). Prove that the function
\[
\phi(x) = \begin{cases}
\frac{f(x) - f(a)}{x - a} & \text{if } x \neq a \\
\phi(a) & \text{if } x = a
\end{cases}
\]
is weakly increasing, where \(\phi(a)\) is the point of \(I\).
\[\psi(x) = \begin{cases} \frac{f(x) - f(b)}{x - b}, & x \neq b \\ f'(b) & \end{cases} \]

are both decreasing on \(I \). Since \(\phi(a) \geq \phi(b) \) and \(\psi(a) \geq \psi(b) \), it follows that \(f'(a) \geq \phi'(b) \).

In other words, \(f' \).

Conversely, we show the graph of \(f \).

Proof. For the purpose, we have by the fact:

\[
\text{and} \quad \frac{f(x) - f(b)}{x - b} \leq f'(b) \text{ for } x \neq b.
\]

Since \(f'(a) \geq \phi'(b) \), we have \(f''(x) \geq 0 \).

Conversely, if \(f''(x) \geq 0 \) then \(f''(x) \).
Alternative Proof. If f is convex on (a,b) then f' is weakly decreasing on (a,b) by the results of Number 11(b) above. Since f is twice differentiable on (a,b), $f''(x) \geq 0$ by Theorem 4. Since f' is weakly increasing on (a,b),

14. (a) Let x and y be two points such that $x < y$. If the function f, show that a point in the interval the points $(x, f(x))$ and $(y, f(y))$ on the line joining the points coordinates are

$$\left(u \alpha + (1 - \alpha) y \right)$$

for some θ with $0 \leq \theta \leq 1$.

If $A(x, a)$ and $B(y, b)$, the line AB if its any in

$$x = \frac{a - b}{y - x}$$

and x is between

all other being the.
we require that \(f \) is convex on \(I \), and that additionally, the graph of \(f \) is flexed upward, then, by definition 7.7, all chords lie above their corresponding arcs, or
\[
f(a + (1 - \theta)a') = \varphi'(a) - \frac{\varphi''(a)}{2}
\]
This equation, then, is just the equation of the graph of \(f \) taken to be convex with graph flexed upward. If the graph of \(f \) is flexed downward,
\[
f(b + (1 - \theta)b') = \varphi(b)
\]
(a) Use (b) to show that \(f \) is flexed upward.

\[
\begin{align*}
\int f(x) & \geq f(a) + (x - a) f'(a) \\
\int f(x) & \geq f(b) + (x - b) f'(b)
\end{align*}
\]
or \((\theta - \theta^2)(\sqrt{x} - \sqrt{y})^2 \geq 0\)

which is a true statement.

Starting from this fact and reversing the steps taken above, we obtain the desired result.

15. (a) Derive the following property of convex functions. In the graph of \(f\) is flexed downward on an interval \(I\), then for all points \(a\), \(b\) in \(I\) and any positive numbers \(\frac{p}{q}\), \(\frac{r}{s}\)

\[
\frac{p}{q}f(a) + \frac{r}{s}f(b) \geq f\left(\frac{pa + rb}{p + q}\right)
\]

In words, the function value at a weighted average of the endpoints is less than or equal to the weighted average of the function values.

We have for \(I\) that

\[
f\left(\frac{pa + rb}{p + q}\right) = f\left(\frac{rb + pa}{r + p}\right)
\]

for all \(a\), \(b\) in \(I\).

But

\[
\frac{p}{q}f(a) + \frac{r}{s}f(b)
\]

and

\[
f\left(\frac{pa + rb}{p + q}\right)
\]
To prove necessity, use results established in Exercises 7-9, Number 15, and set \(p = q = 1 \).

To prove sufficiency we must show that if \(f \) is continuous and

\[
\frac{f\left(\frac{a + b}{2}\right)}{2} \leq \frac{f(a) + f(b)}{2} \tag{1}
\]

for all \(x \), then the graph of \(f \) is linear on each interval \((a, b) \) from (1) that

\[
\frac{A}{\Delta x} = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{f(x_i)}{2} \right)
\]

Doubling the number of steps, we obtain

\[
\frac{A}{\Delta x} = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{f(x_i)}{2} \right)
\]

Now, we obtain

\[
\frac{1}{n} \left(\sum_{i=1}^{n} f(x_i) \right)
\]
provided \(|\theta - r| < \frac{b - a}{b - a}\). It follows that \((-f(x) < f(x) \leq e\).

At the same time
\[
|\theta f(a) + (1 \sigma i(u) \vdash (a, \ldots, \ldots) - |\theta f(a)| - |\sigma i(u) f(a)|
\]

We have
\[
f((a, \ldots, \ldots) = f((a, \ldots, \ldots)) - \frac{b - a}{b - a}.
\]

Given any \(\varepsilon > 0\) such that \(\varepsilon > 0\). \(\frac{b - a}{b - a}\) sufficiently small that
\[
\frac{b - a}{b - a} \leq \varepsilon
\]

We have extended \(\text{extime} (b, \ldots, \ldots)\) and the continuity of \(f\) follows

for all \(x \in \mathbb{R}\).
18. Under what circumstances will the graph of a function and its inverse both be flexed downward? One flexed downward and the other upward?

Answer this question both with and without calculus.

Without calculus: Let \([a,b]\) be an interval in the domain of \(f\). If the graph of \(f\) on \([a,b]\) is flexed upward, it is inferior to the angle of \((a,f(a))\) formed by the ray to \((b,f(b))\) with the ray going vertically upward. Reflection in the line \(y = x\) takes the upward ray into a ray going horizontally to the right and the reflected graph is in the upper half plane. If the angle was acute (increasing), the reflected graph lies in the first quadrant below the chord. If the angle was obtuse (decreasing), the reflected graph lies in the second quadrant above the chord. The same argument can be made algebraically.

With calculus: Assume \(f'(x)
\begin{align*}
\int f'(x) &= f(x) + C \\
\text{or} \\
\int f'(x) &= f(x) + C.
\end{align*}
\]
15. Let u, v, and w be three vectors such that $u + v = w$. Then, $u = w - v$. Show that the other two have the same magnitude by several examples.

We have $u + v = w$. Then, $u = w - v$. Therefore, the other two have the same magnitude by several examples.

I decreased. I needed downward
22. \(f(a) \) Let \(a, b, c \) be three points in \(I \) such that \(a < b < c \), and suppose that the graph of \(f \) is flexed upward in \(I \). Show that
\[
f(b) \leq \frac{c - b}{c - a} f(a) + \frac{b - a}{c - a} f(c).
\]
(Hint: use the result of Number 14.)

Hence, show that
\[
f(a) \geq \frac{b - a}{c - a} f(a) + \frac{c - a}{c - b} f(b),
\]
\[
f(c) \geq \frac{b - a}{b - c} f(b) + \frac{c - b}{b - a} f(c).
\]

Similarly to \(14(a) \) on the number line here rather than the plane, let \(b = (1 - \theta) c \), for some \(\theta : 0 < \theta < 1 \). Then
\[
\theta = 1 - \theta = \frac{c - a}{c - b} = \frac{b - a}{b - c}.
\]

Now from \(14(c) \),
\[
f(a) = f(b) = f(c).
\]

Let the chord \(\overline{ac} \) be the linear function \(f(x) = \beta \), and by the upper bound on \(\beta \), there is a point in \(I \) such that...
23. (a) If the graph of f is flexed upward in an open interval, show that f is continuous in the interval.

Let a be some point in an open interval I. We wish to show f is continuous at a, i.e.,

$$\lim_{x \to a} f(x) = f(a).$$

If a is not an endpoint of I and thus there exists some d such that $[a-d, a+d]$ is contained in I. We first note that as a consequence of 22(a),

$$f(c) - f(a) \leq \frac{f(c) - f(a)}{c-a} \leq \frac{f(c) - f(b)}{c-b}$$

for a, b, c in an interval I and $a < b < c$. This is a statement about the slopes of the chords connecting $(a, f(a))$, $(b, f(b))$ and $(c, f(c))$ on the graph of f, illustrated in the figure below. The proof is contained in the solution to Number 11.
Now if $a < x < a + d$, using these inequalities we have

$$\frac{f(x) - f(a)}{x - a} < \frac{f(a + d) - f(a)}{d}$$

and using $a - d < a < x$

$$\frac{f(a) - f(a - d)}{d} < \frac{f(x) - f(a)}{x - a}$$

or

$$\frac{f(a) - f(a - d)}{d} \leq \frac{f(x) - f(a)}{x - a} \leq \frac{f(a + d) - f(a)}{x - a}$$

The same inequality follows if $a - d < x < a$.

So $\left| \frac{f(x) - f(a)}{x - a} \right| < k$, k constant, in the deleted 2d-neighborhood of a.

Then $-k|a - x| \leq |f(x) - f(a)| \leq k|a - x|$, and by the Squeezed Theorem, as $|x - a| \to 0$, $|f(x) - f(a)| \to 0$.

and $\lim_{x \to a} f(x) = f(a)$.

(b) Show by a counter-example that the result in (a) is not valid for a closed interval.

The graph of

$$f(x) = \begin{cases} \frac{1}{x}, & x = 0 \\ 0, & 0 < x \leq 1 \end{cases}$$

is flexed upward but is not continuous at $x = 0$ i.e., it is not continuous on $[0,1]$.
24. If the graph of f is flexed upward in an interval, then f possesses left and right-sided derivatives at each interior point of the interval. (See Exercises 4-2a, No. 9)

We are given a function f, convex on an interval I, its graph flexed upward. We wish to show that

$$\lim_{x \to \alpha^+} \frac{f(x) - f(\alpha)}{x - \alpha}$$

and

$$\lim_{x \to \alpha^-} \frac{f(x) - f(\alpha)}{x - \alpha}$$

exist, where α is an interior point of I.

We again use the fact that

$$\frac{f(x) - f(\alpha)}{x - \alpha} = g(x)$$

is an increasing function on I.

Since g is in the interior of I, there exist points a and b in I such that $a < \alpha < b$. For x such that $x \neq \alpha$ and $a < x < b$, we have

$$g(a) < g(x) < g(b).$$

On $[a, \alpha)$ and $(\alpha, b]$, g is a bounded monotone function. We wish to show that this implies the existence of left and right-hand limits of g at α, i.e.,

$$g_-(\alpha) = \lim_{x \to \alpha^+} g(x)$$

and

$$g_+(\alpha) = \lim_{x \to \alpha^-} g(x).$$

These limits are just the left and right-sided derivatives of f at α respectively. We now prove their existence.

We show g bounded and monotone on $[a, \alpha)$ implies a limit at α. The argument for g on $(\alpha, b]$ is very similar. To prove our assertion, we use the concept of least upper bound (l.u.b.) discussed in Appendix 1-5. We claim that

$$\lim_{x \to \alpha} g(x) = \text{l.u.b.} \{g(x) \mid x \in [a, \alpha]\}.$$
Now the least upper bound of the set \(g(x), x \in [a, \alpha] \), is either the limit of \(g(x) \) or \(x = \alpha \), since \(g \) is weakly increasing, or it is a member of the set \(g(x) \). If it is a member of the set, say \(g(x) \), then \(g \) must be constant or \(g(x) \), and the limit of \(g(x) = c \) at \(\alpha \) is \(c \). So

\[
\lim_{x \to \alpha^-} g(x) = \text{u.b.} \{g(x)\}, x \in [a, \alpha]
\]

Similarly,

\[
\lim_{x \to \alpha^+} g(x) = \text{u.b.} \{g(x)\}, x \in (a, b]
\]

TC5-6. Constrained Extreme Value Problems.

Extremum problems with constraints involve two or more variables and/or more functions of these variables. One of the functions is to be maximized or minimized; the other(s) to be held fixed, thus imposing restrictions or constraint on the variables.

The work in this section presupposes familiarity with implicitly defined functions and their derivatives (Sections 4-S, A5).

Examples have been selected to illustrate techniques that are generally applicable as well as methods appropriate for only certain types of problems. Obviously, there are many ways to attack an extremum problem with constraints (e.g., Exercises 5-6b and 5-4g).

We may picture a line as the intersection of two planes; a curve in a plane as the intersection of a surface and a plane; and a curve in space as the intersection of two surfaces.

If the domain \(D \) of the function given by \(y = f(x) \) is an interval, then the ordered pairs \((x, y) \) represent points in 2-space over the interval \(D \). Similarly, if \(z = f(x, y) \) defines a function with domain \(D \), a region in the \(xy \) plane, then the triples \((x, y, z) \) represent points in 3-space over the region \(D \). Consequently, the relation \(z = f(x, y) \) may, in general, be represented by a surface.

We may describe this surface in a way which does not require a 3-dimensional sketch. First, we observe that for any value of \(z \), say \(z_0 \), the relation \(z_0 = f(x, y) \) describes a curve which is the intersection of the surface \(z = f(x, y) \) and the plane \(z = z_0 \). Then, we obtain a set of such curves by taking various values of \(z \). These curves, called level curves or contour lines, provide a description of the surface.
For the circular paraboloid given by \(z = f(x, y) = x^2 + y^2 \), level curves corresponding to \(z = \frac{125}{28} \), \(\frac{125}{8} \), and \(\frac{627}{16} \) are shown in Figure 5-6a.

Now we consider a relation \(g(x, y) = 0 \) in which the \(z \) term is absent. We note that the equation \(g(x, y) = 0 \) imposes no restriction on \(z \) and hence \(z \) takes on all real values (in a 3-dimensional frame of reference). The relation \(g(x, y) = 0 \) is represented by a cylindrical surface. In Example 5-6a, the relation \(g(x, y) = 4y^2 - 16y - 12x - 75 = 0 \) is seen as a surface called a parabolic cylinder. The name derives from the fact that for each real value of \(z \), say \(z_0 \), the plane \(z = z_0 \) intersects the cylindrical surface in a parabola.

The parabolic cylinder
\[
g(x, y) = 4y^2 - 16y - 12x - 75 = 0
\]
meets the surface
\[
f(x, y) = x^2 + y^2 = z
\]
along a curve in space. In the extreme value problem we locate the high and low points of this curve. The three possible extrema are the points
\[
(-\frac{5}{2}, -\frac{5}{2}, \frac{125}{8}), (-\frac{15}{2}, \frac{125}{8}), \text{ and } (-\frac{9}{2}, 6, \frac{627}{16}),
\]
respectively. Clearly, the low point is \((-\frac{5}{2}, -\frac{5}{2}, \frac{125}{8})\) where \(z = \frac{125}{8} \).

Solutions Exercises 5-6

1. (a) For a given volume \(V \) find the dimensions of a cylindrical tin can with smallest surface area.

\[
V = \pi r^2 h \quad \frac{dV}{dr} = 2\pi hr \quad \frac{dV}{dh} = \pi r^2 \quad \frac{dV}{dr} = 0
\]

so that \(\frac{d^2}{dr^2} = -\frac{2h}{r} \)

Surface area, \(s = 2\pi rh + 2\pi r^2 \)

\[
\frac{ds}{dr} = 2\pi h + 2\pi \frac{dh}{dr} + 4\pi r
\]

\[
\frac{ds}{dr} = 2\pi (2r - h)
\]
is zero if \(h = 2r \)

\[
\frac{d^2 s}{dr^2} = 2\pi (2r - h) \quad \text{is 12r if } h = 2r.
\]

Hence by Theorem 5-5a the surface area is minimum if \(h = 2r \), where

\[
x = \left(\frac{V}{2\pi}\right)^{1/3} \quad \text{and} \quad h = 2\left(\frac{V}{2\pi}\right)^{1/3}
\]

271
(b) If the cost of the sides, top, and bottom of the can is \$a\text{ cents per square inch, and if the cost of the bead joining the top and bottom to the sides is } b\text{ cents per linear inch, find the most economical dimensions of the can for a given volume } V.\]

Let cost = \(C\).

\[C = 2\pi(a(r + h^2) + 2bh) + 4b\pi r\]

\[D_r C = 2\pi(a dr + h + 2r) + 4b\pi\]

\[\text{since } \frac{dh}{dr} = -\frac{2b}{r}\]

\[D_r C = 0 \text{ if } h = 2r - \frac{3a}{2b}\]

where \(r\) is the positive solution of the equation

\[2\pi r^3 + \frac{a}{r} = 0\]

To show these are most economical, we apply Theorem 5.5a.

\[D_r [2\pi(-ah + 2br)] = 2\pi(-a\frac{dh}{dr}) + \frac{2b}{r} = 0\]

for \(h = 2r\).

2. (a) A cylindrical steel iron tank without top is to have volume \(V\).

Let \(h\) be the height of the tank, and \(r\) the radius of the base. The side of the tank is to be constructed from steel costing \(P\) dollars per square foot and the base from iron costing \(Q\) dollars per square foot. Find the radius and height of the tank for which the cost of material in the tank is minimized.

\[V = \pi r^2 h\]

\[h = \frac{V}{\pi r^2}\]

Cost = \(C = P(2\pi rh) + Q\pi r^2\)

\[\frac{dC}{dr} = 2\pi P h + 2Q r = 0\]

\[f''(r) = \frac{4PQ}{r^2} + 2Q > 0 \text{ for all } r > 0\]

Hence by Theorem 5.5b, the radius and height for which cost is minimized is

\[r = \left(\frac{2Q}{P}\right)^{1/3}, h = \left(\frac{2P}{Q}\right)^{1/3}\]
(b) More realistically, suppose that the base has been cut from a square of side $2r$. Find the dimensions yielding minimum cost including the cost of material trimmed away.

Cost = $C = \frac{2\pi r}{r} + 4\pi r^2 = g(r)$

$g'(r) = \frac{8\pi^3}{r^2} - \frac{2P\pi}{r}$

Minimum cost if

$r = \frac{VP}{4\pi} = \frac{V}{\pi \frac{1}{3}} = \frac{4}{\pi \frac{1}{3}}$

3. Find the radius and height of the cone of greatest volume that can be made from a circular sheet of radius r by cutting a wedge from the center and bending the remaining portion to form a cone.

Let R denote the radius of base of cone and h, the height. Since,

$r^2 = h^2 + R^2$ is a constant,

$0 = 2h + 2R \frac{dR}{dh}$

whence $\frac{dR}{dh} = -\frac{h}{R}$

$v = \frac{1}{3} \pi R^2 h$, so that

$\frac{dv}{dh} = \frac{2}{3} \pi R^2 + \frac{1}{3} \pi R^2$.

$\frac{dv}{dh} = \frac{h}{3} (R^2 - 2h^2)$ is zero if $R = h$

$\frac{d^2v}{dh^2} = \frac{2}{3} (2R \frac{dR}{dh} - 4h) = -2h < 0$ for $h > 0$.

Maximum volume is obtained if

$h = \frac{\sqrt{3}}{3} r$ and $R = h$.
A point \(P \) is at a distance \(h \) above the center \(C \) of a sphere of radius \(r \), where \(h > r \). A cone is constructed having \(P \) for vertex, and for base the circle formed by cutting the sphere with a plane perpendicular to \(PC \). In order to have the volume of the cone as great as possible, should this plane be above or below \(C \)? How far?

Suppose the plane is above \(C \). If we move the plane toward \(C \), the height of the cone and the area of the base will each increase so that no maximum volume is reached. Therefore the plane is at \(C \) or below \(C \). Let \(R \) denote the radius of the cone and \(h + x \) the altitude, where \(x \) denotes the distance from the center \(C \) to the plane of the base of the cone. Then the volume,

\[
V = \frac{\pi}{3} R^2 (h + x),
\]

and

\[
dV = \frac{\pi}{3} [2R(h + x) \frac{dR}{dx} + R^2].
\]

Since \(r^2 = R^2 + x^2 \),

\[
0 = 2R \frac{dR}{dx} + 2x \quad \text{and} \quad \frac{dR}{dx} = -\frac{x}{R}.
\]

It follows that

\[
\frac{dV}{dx} = \frac{\pi}{3} [-2xh - 2x^2 + R^2]
\]

\[
= \frac{\pi}{3} (-3x^2 - 2xh + r^2)
\]

is zero if

\[
x = -\frac{h + \sqrt{h^2 + 3r^2}}{3}.
\]

Since \(\frac{d^2V}{dx^2} = -\frac{2\pi}{3} (3x + 1) \), by Theorem 5-5a, the volume of the cone is maximum if \(x = -\frac{h + \sqrt{h^2 + 3r^2}}{3} \), the distance from \(C \) to the plane, where the plane is below \(C \).
5. A long strip of paper 8 inches wide is cut off square at one end. A corner of this end is then folded over to the opposite side at A', thus forming triangle ABC. Find the area of the smallest triangle that can be formed in this way.

Let $AB = BA' = x$

Then $BD = 8 - x$

and $DA' = 4\sqrt{x} - 4$ by the Pythagorean Theorem.

Area of Triangle $ABC = \frac{x^2}{\sqrt{x} - 4} = f(x)$.

$f'(x) = \frac{2x^2 - 16x}{2(x - 4)^{3/2}}$ is zero if $x = \frac{16}{3}$

$f''(\frac{16}{3}) > 0$ and hence $f(\frac{16}{3})$ is minimum value. The area of the smallest triangle is $f(\frac{16}{3}) = \frac{128\sqrt{3}}{9}$.

6. (a) Let the general equation of a straight line L be given in the form $ax + by = c$.

Find the point Q on L for which the distance to a given point P not on L is a minimum. Prove that the line joining P to Q is perpendicular to L.

Let $P = (u, v)$ be the fixed point and $Q = (x, y)$ be the point on L. If s is the distance from P to Q then

$s^2 = (x - u)^2 + (y - v)^2$

and this quantity is to be minimized. At a minimum we have, on differentiating with respect to x,

...
\[
2(x - u) + 2(y - v)y' = 0.
\]

From \(ax + by = c \), we have
\[
y' = -\frac{a}{b}.
\]

Entering (2) in (1) we obtain
\[a(y - v) = b(x - u)\]

And we see that the line \(PQ \) is perpendicular to \(L \). Setting
\[a(x - u) + b(y - v) = c - au - bv = w,\]

we obtain for the coordinates of \(Q \)
\[
x = u + \frac{sv}{a^2 + b^2} \quad \text{and} \quad y = v + \frac{sw}{a^2 + b^2}.
\]

(b) On the curve \(C \) given by \(f(x, y) = 0 \) let \(Q \) be the point nearest to a point \(P \) not on the curve. If \(Q \) is not an endpoint of \(C \), and all necessary derivatives exist, prove that the line joining \(P \) to \(Q \) is perpendicular to \(C \).

Let \(P = (u, v) \), denote the given point, \(Q = (x, y) \) the point on \(C \), and \(s \) the distance from \(P \) to \(Q \). We have
\[
s^2 = (x - u)^2 + (y - v)^2.
\]

If \(s \) is a minimum and \((x, y) \) is not an endpoint of \(C \) then, on differentiating with respect to \(x \), we have
\[2(x - u) + 2(y - v)y' = 0.
\]

The slope of the line \(PQ \) is then
\[
\frac{y - v}{x - u} = -\frac{1}{y'}.
\]

Since the product of the slope of \(PQ \) and the slope \(y' \) of \(C \) is -1, we have established perpendicularity.

7. Find the extreme of \(x^2 + y^2 \) if \(x \) and \(y \) are subject to the constraint \(x^2 + 12x + y^2 - 8y + 51 = 0 \). Give a geometric interpretation.

Differentiating \(x^2 + y^2 \) with respect to \(x \) we obtain \(2x + 2yy' \).

Let \(2x + 2yy' = 0 \).

From the constraint condition, we also have
Therefore
\[2x + 2y \left(\frac{12 - 2x}{2y - 8} \right) = 0 \]
or
\[y = \frac{2x}{3}. \]

With \(y = \frac{2}{3} x \) and \(x^2 - 12x + y^2 - 8y + 51 = 0 \), we obtain the following maximum and minimum points \((x, y) = (6 + \frac{3\sqrt{13}}{13}, \frac{4 + 2\sqrt{13}}{13})\), \((6 - \frac{3\sqrt{13}}{13}, \frac{4 - 2\sqrt{13}}{13})\). Thus the extreme values of \(x^2 + y^2 \) are \(x^2 + \frac{4x^2}{9} = (2\sqrt{13} \pm 1)^2 \). Geometrically, we note that we are maximizing the square of the distance between the origin and the curve \(x^2 - 12x + y^2 - 8y + 51 = 0 \).

Alternatively, we first note that the constraint condition is that \(x \) and \(y \) lie on the circle \((x - 6)^2 + (y - 4)^2 = 1\), (center \((6, 4)\), radius 1). Since \(\sqrt{x^2 + y^2} \) is the distance between the point \((x, y)\) and the origin, we have to find the closest and farthest points of the given circle to the origin. These are the points \(P \) and \(Q \) on the line connecting the center to the origin.

Thus, the extreme values of \(x^2 + y^2 \) are \([60 \pm 11]^2 \) or \((\sqrt{6^2 + 4^2} \pm 1)^2 = (2\sqrt{13} \pm 1)^2\).
8. If \(x_1 > 0, i = 1, 2, \ldots, n \)
and \(x_1 + x_2 + \ldots + x_n = s \) (constant),
find the maximum value of the product
\[x_1 x_2 \ldots x_n \]
(assuming it exists).

Assume the maximizing values for \(x_i, i \geq 3 \) are given by
\[x_i = a_i \]
then we have to determine \(x_1 \) and \(x_2 \) such that
\[x_1 + x_2 = s - (a_3 + a_4 + \ldots + a_n) \]
and
\[x_1 x_2 \]
is a maximum.

This latter problem has been solved previously (Section 1-1) and, consequently, \(x_1 = x_2 \). By the same argument we conclude that \(x_1 = x_3 \), \(x_1 = x_4 \), etc.; hence, \(x_1 = x_2 = \ldots = x_n = \frac{s}{n} \).

5-7. Tangent and Normal Lines.

The postponement to this section of the discussion of tangent lines was deliberate. With the Law of the Mean as a basis, we are now ready to exploit properties of tangent lines and justify the use of their equations to approximate functional values.

Miscellaneous Exercises, Numbers 1-3, are pertinent to this section and may be assigned at any time: the discussion of Number 3 includes general consideration of the number of tangent lines that can be drawn from a given point to a given conic section.

Solutions Exercises 5-7

1. Show that the number of tangent lines that can be drawn from the point \((h, k)\) to the curve \(y = x^2 \) is two, one, or zero, according to whether \(k \) is less than \(h^2 \), equal to \(h^2 \), or greater than \(h^2 \), respectively.
If \(y = x^2 \), \(y' = 2x \).

Let \((x_0, y_0)\) be a point of tangency on \(y = x^2 \). Then an equation of the line through the point \((x_0, y_0)\) with slope \(2x_0\) is:

\[
y = 2x_0(x - x_0) + y_0.
\]

The line joining the point \((x_0, y_0)\) to \((h, k)\) is given by

\[
y = \frac{y_0 - k}{x_0 - h}(x - x_0) + y_0.
\]

Equations (1) and (2) describe the same line if the slopes are equal; that is, if

\[
2x_0 = \frac{y_0 - k}{x_0 - h}(x_0^2 - k).
\]

or \(x_0^2 - 2x_0h + k = 0\). This equation has solutions

\[
x_0 = h \pm \sqrt{h^2 - k}.
\]

If \(k < h^2 \), there are two solutions and hence two points of tangency, i.e., two tangent lines. If \(k = h^2 \), there is exactly one solution, one tangent line. If \(k > h^2 \), there are no solutions and hence no tangent line as specified.

Interpreted geometrically, this theorem states that

(1) no tangent line to \(y = x^2 \) passes through the convex region \(y > x^2 \);

(2) through any point on \(y = x^2 \), only one tangent line to \(y = x^2 \) can be drawn, namely, the tangent through that point;

(3) through any point "exterior" to the parabola, i.e., any point in the region \(y < x^2 \), two tangent lines to the parabola may be drawn.
2. Find equations for the tangent and normal lines to the graphs of the following functions at the given points.

(a) \(f : x \rightarrow x \sin x \), \(x = 0 \), \(x = \frac{\pi}{6} \)

\[f'(x) = x \cos x + \sin x \]

Tangent line at \(x = 0 \): \(y = 0 \).

Normal line at \(x = 0 \): \(x = 0 \).

Tangent line at \(x = \frac{\pi}{6} \): \(y = x \).

Normal line at \(x = \frac{\pi}{6} \): \(y = -x + \pi \).

(b) \(f : x \rightarrow \arcsin \left(\frac{1}{x} \right) \), \(x = 2 \).

\[f'(x) = \frac{x^{-1}}{x^2 - 1} \]

\[f(2) = \frac{\pi}{6} \]

Tangent line at \(x = 2 \): \(y = \frac{\pi}{6} (x - 2) + \frac{\pi}{6} \).

Normal line at \(x = 2 \): \(y = 2\sqrt{3} (x - 2) + \frac{\pi}{6} \).

(c) \(f : x \rightarrow \frac{x^3}{1 + x^2} \), \(x = -1 \), \(x = 0 \).

\[f'(x) = \frac{2x^2(3 + x^2)}{(1 + x^2)^3} \]

Tangent line at \(x = -1 \): \(y = x + \frac{1}{2} \).

Normal line at \(x = -1 \): \(y = -x - \frac{3}{2} \).

Tangent line at \(x = 0 \): \(y = 0 \).

Normal line at \(x = 0 \): \(x = 0 \).
and the hyperbola
\[\frac{x^2}{p^2} - \frac{y^2}{q^2} = 1. \]

and the hyperbola
\[\frac{x^2}{p^2} - \frac{y^2}{q^2} = 1. \]

obtain equations of the lines tangent at \((a, b)\) to each curve in a symmetrical form like that of Example 5-7b for the circle.

For the ellipse \(\frac{x^2}{p^2} + \frac{y^2}{q^2} = 1\), the tangent line at \((a, b)\) has equation
\[\frac{ax}{p^2} + \frac{by}{q^2} = \frac{a^2}{p^2} + \frac{b^2}{q^2} = 1. \]

For the hyperbola, the line tangent at \((a, b)\) is given by
\[\frac{ax}{p^2} - \frac{by}{q^2} = \frac{a^2}{p^2} - \frac{b^2}{q^2} = 1. \]

(b) For the same two curves, obtain equations for the normal lines at \((a, b)\) to each curve in an analogous form.

For the ellipse, the normal line at \((a, b)\) is given by
\[\frac{bx}{q^2} + \frac{ay}{p^2} = ab \left(\frac{1}{2} + \frac{1}{2} \right). \]

For the hyperbola, the normal line at \((a, b)\) is given by
\[\frac{bx}{q^2} + \frac{ay}{p^2} = ab \left(\frac{1}{2} + \frac{1}{2} \right). \]
4. Prove that the line tangent to the circle of Example 5-7 at \((a,b)\) on the circle meets the circle at no other point.

If \(\frac{ax + by = r^2}{x^2 + y^2 = r^2}\), then \(x = \frac{r^2 - by}{a}\). Substituting this value in \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\), we have
\[
\left(\frac{r^2 - by}{a}\right)^2 + \frac{y^2}{b^2} = 1
\]
or \(r^2 y^2 - 2br^2 y + r^2 b^2 = a^2 - b^2 = r^2\). This equation has but one solution, \(y = \frac{b}{2}\), since the discriminant is zero. Therefore, the tangent line \(ax + by = r^2\) meets the circle in only one point \((a,b)\).

5. Show that the graph of the functions \(f\) and \(g\) where \(f : x \rightarrow 6x^2\) and \(g : x \rightarrow 4x^3 + 2\) have a common tangent line at the point \((1,6)\). Sketch the graph.

We need to show that \(f'(x)\) and \(g'(x)\) have a common tangent line at the point \((1,6)\). Sketch the graph.

So
\[
f'(x) = 12x; g'(x) = 12x^2.
\]

\[
f(1) = g(1) = 6; f'(1) = g'(1) = 12.
\]
6. If \(f : x \rightarrow ax^2 + bx + c \ (a \neq 0) \), show that the tangent line to the graph of \(f \) at the point \((p, f(p))\) is parallel to the chord joining the points \((m, f(m))\) and \((n, f(n))\) only if \(p = \frac{m + n}{2} \).

The tangent line at \((p, f(p))\) has slope \(f'(p) \), the chord joining \((m, f(m))\) and \((n, f(n))\) has slope \(\frac{f(m) - f(n)}{m - n} \). The chord and the tangent will be parallel only if their slopes are equal, i.e., only if

\[
f'(p) = \frac{f(m) - f(n)}{m - n}
\]

or, as \(f'(p) = 2ap + b \),

\[
2ap + b = \frac{f(m) - f(n)}{m - n}
\]

if we assume that \(m \neq n \). So we have \(2ap + b = \frac{a(m + n) + b}{m - n} \) or

\[
p = \frac{m + n}{2}
\]

7. Given the ellipse \(b^2x^2 + a^2y^2 = a^2b^2 \) and an arbitrary point \(P \) on the curve but not on either axis. Prove that if the normal at \(P \) to the ellipse passes through the origin, then the ellipse is a circle.

The normal at \(P(x_0, y_0) \) has equation

\[
\frac{x_{0}y}{a^2} = \frac{y_{0}x}{b^2} = x_{0}y_{0} \left(\frac{1}{a^2} - \frac{1}{b^2} \right)
\]

If the normal at \(P \) passes through the origin then \(x = 0, y = 0 \) satisfies the above equation so that

\[
\frac{1}{a^2} - \frac{1}{b^2} = 0
\]

or

\[
b^2 = a^2
\]

whence the original equation is

\[
x^2 + y^2 = a^2
\]

the equation of a circle.

We are interested in the value of \(f \) twice differentiable, at some point \(x = a \). However, we only know the value of \(f \) at some point \(a \), close to \(a \). We may \(a < a \). We estimate the error in approximating \(f(a) \) by \(f(a) \) by use of the Law of the Mean. Applying the Law of the Mean twice, we have

\[
 f(a) - f(u) = (a - u)f'(v), \quad a < u < a
\]

and

\[
 f'(a) - f'((a) = (u - a)f''(v), \quad a < v < a
\]

Then

\[
 |f(a) - f(u)| = |(a - u)f'(v) - (u - a)(u - a)f''(v)|
\]

Since \(|u - a| < |a - a| \)

\[
 |f(a) - f(u)| \leq |(a - a)f'(u) - (u - a)(u - a)f''(v)|
\]

\[
 < |a - a||f'(u)| + (u - a)^2|f''(v)|
\]

Now, if \(f(a) \) is at or near a maximum (peak), \(|f'(a)| \) is very small, and \(f'(a) \) - \(f'(a) \) is nearly second order in \(|a - a| \). In that case, for \(a \) close to \(a \), the error in approximating \(f(a) \) by \(f(u) \) is small.

As an application, suppose we are to obtain estimates for \(\sin 89^\circ \) and \(\sin 5^\circ \). Suppose the angles are measured to within \(\pm 5^\circ \), so that the experimentally determined value obtained for \(\sin 89^\circ \) lies between \(\sin 88.5^\circ \) and \(\sin 89.5^\circ \). Then the error in estimating \(\sin 89^\circ \) and \(\sin 5^\circ \) from the given measurements is much less for the former, since

\[
 f'(89^\circ) \approx 0.0 \quad \text{and} \quad f'(5^\circ) \approx 1.0.
\]

To illustrate numerically,

\[
 \begin{align*}
 \sin 89.5^\circ &= .99966, \\
 \sin 88.5^\circ &= .99966, \\
 \sin 5.5^\circ &= .09585, \\
 \cos 4.5^\circ &= .7846, \\
 \sin 89.5^\circ - \sin 88.5^\circ &= .00430, \\
 \sin 5.5^\circ - \sin 4.5^\circ &= .01739.
\end{align*}
\]

The error in estimating \(\sin 89^\circ \) is less than \(\frac{1}{50} \) th the error in estimating \(\sin 5^\circ \).
9. (a) Estimate the error of approximation to \(y = \sin x \) by the tangent at \(x = 0 \).

From the Law of the Mean we have

\[
\sin x = \sin 0 = x \cos u,
\]

where \(u \) lies between 0 and \(x \). Similarly,

\[
\cos u = \cos 0 = \cos u - 1 = -u \sin v,
\]

where \(v \) lies between 0 and \(u \). Combining the results we have

\[
\sin x = x \cos v - x(1 - u \sin v)
\]

or

\[
x - \sin x = xu \sin v.
\]

Knowing that \(0 < |v| < |u| < x \) and \(|u| < 1 \), we obtain an estimate of the type in the text, namely,

\[
|x - \sin x| \leq x^2.
\]

(b) Show that the error is at least third order in \(|x| \), i.e., that

\[
|x - \sin x| \leq c|x|^3,
\]

where \(c \) is constant.

We carry the argument of (a) one step further. We have, as in the first line above,

\[
\sin v = v \cos w,
\]

where \(w \) lies between 0 and \(v \). Hence,

\[
x - \sin x = xw v \cos w,
\]

whence

\[
|x - \sin x| \leq |x|^3.
\]

Thus \(x \) is an excellent approximation to \(\sin x \) for small angles.

10. Compare the methods of this section with the methods of Section 5.2 and Exercises 5.24, Numbers 15 and 16.

The interesting question is the relative precision of the two methods of estimation. The error in approximation to \(f(x) \) for \(x \) in \((p, q)\) is bounded above by \(e = (x - p)(q - p)M_2\), where \(M_2 \) is an upper bound for \(|f''(x)| \) on \((p, q)\). The error in the tangent approximation is bounded by \(e^* = (x - a)^2M_2^* \) where \(M_2^* \) is an upper bound for \(|f''(x)| \) in the interval between \(a \) and \(x \).
In Example 5-3b, we had \(x = 10, \ p = 9, \ q = 16 \), and we used
\[
1 < \frac{2}{10^3/2} < \frac{1}{10^3/2} \leq 10^{-5} \text{ in } (p, q) \text{ to obtain } e < 10^{-5}.
\]
In the tangent approximation, we use \(a = 9 \), and the same bound on the derivative to obtain \(e < \frac{1}{10^3} \). Thus, independently of which of the approximations to \(\sqrt{10} \) is better, the tangent approximation gives us better information about \(\sqrt{10} \) in this case.

In Exercises 5-3, Number 15, observe for \(f(x) = \frac{1}{x} \) that \(f''(x) \)
is a decreasing function of \(x \) for \(x > 1 \). In approximation to \(\frac{1}{1,008} \) by linear interpolation, take \(p = 1, \ q = (1.003)^3 \), by the tangent method, \(p = 1.003 \). Use \(M = \left| f'(1) \right| = \frac{1}{1.003} \). Then
\[
e < \frac{(1.003)^3 - 1}{1.008} < \frac{1}{6} < 1.2,
\]
so we see that the tangent method offers improvement in precision.

A similar analysis applies in Exercises 5-3, Number 16. Here the difficulty in the linear interpolation method is the choice of a point \(q \) where \(f''(q) \) is known and is close enough to \(f'' \left(\frac{a}{b} \right) \) and suitable for the purposes of precise approximation.

1. Show how to approximate \(\sqrt{2} + 1 \) and estimate the error of approximation.

We shall approximate the graph of \(f(x) = x^{1/n} \) by its tangent line at \(x = 2^n \). We have
\[
f'(x) = \frac{1}{n} \cdot x^{n-1},
\]
\[
f'(2^n) = \frac{1}{n} \cdot (2^n)^{1/n} \cdot (2^n)^{1/n} = \frac{1}{n} \cdot 2^{n-1}
\]
The equation of the tangent line through \((2^n, 2)\) is
\[
y = \frac{1}{n} \cdot 2^{n-1} \cdot (x - 2^n) + 2.
\]
If \(x = 2^n + 1 \),
\[
y = \frac{1}{n} \cdot 2^{n-1} + 2.
\]
The absolute error of this value as an approximation for \(f(2^n + 1) \) is given by
\[
e \leq M \left((2^n + 1) - 2^n \right)^2 \leq \frac{1}{n},
\]
an upper bound is decreasing and positive and so we have the bound

\[M = \alpha(n) = \left(\frac{n}{2} \right)^{2n-1}. \]

- The location of an object at time \(t \) on a straight line is given by the law of motion

\[s = 5 \sin 3t - 3 \sin 5t. \]

Once it begins when does the particle first reach a stop? How far is it then from the starting point?

\[s = 5 \sin 3t - 3 \sin 5t, \]
\[\frac{ds}{dt} = 15 \cos 3t - 15 \cos 5t \]
\[= -15(\cos 5t - \cos 3t) \]
\[= -15(\cos(4t + t) - \cos(4t - t)) \]
\[= -15(-2 \sin 4t \sin t) \]
\[= 30 \sin 4t \sin t \]
\[= 0 \text{ only if } \sin 4t = 0 \text{ or } \sin t = 0. \]

So \(\frac{ds}{dt} = 0 \) at \(t = \frac{\pi}{4} \), the first stop after the particle has begun, i.e., \(t > 0 \), at \(t = \frac{\pi}{4} \),

\[s = 5 \sin \frac{3\pi}{4} - 3 \sin \frac{5\pi}{4} = \sqrt{2}. \]

13. Find an equation of the tangent line to the folium of Descartes

\[x^3 - y^3 + 3axy = 0. \]

at the point \((x_0, y_0)\). Note particularly the situation at the point \((0,0)\).

Let \(F(x,y) = x^3 + y^2 - 3axy = 0 \).

\[3x^2 + 3y \left(\frac{y'}{4} - 3axy' - 3ay = 0 \right) \]

\[y' = \frac{x^2 - ay}{ax - y^2} \]

(Note that \(ax - y^2 \neq 0 \) if \(x \neq 0 \)). The tangent line to the curve
We observe, moreover, that vertical tangents may occur when \(\frac{dx}{dy} = 0 \); namely, among the points \((x,y)\) on the graph where \(ax - y^2 = 0 \). This condition is satisfied at the points \((0,0)\) and \(\left(\frac{3\sqrt{a}}{a}, \frac{3\sqrt{a}}{a}\right)\). At \((0,0)\), the expression for \(y' \) is not defined. In fact, the curve crosses itself at \((0,0)\) and does not have a tangent there in the usual sense, but does have two tangents in a sense clarified by parametric representation (Chapter 11).

The situation can be analyzed in the present context in the following way. If a curve has a tangent (non-vertical) at the origin, then its slope is \(\lim_{x \to 0} \frac{y}{x} \). For definiteness take \(a > 0 \) (for \(a < 0 \), the curve is the reflection in the origin of \(x^3 + y^3 - 3\sqrt{a}xy = 0 \) and the problem is essentially the same). We separate off one of the branches of the curve in a neighborhood of \(x = 0 \) by restricting \(|y| \leq |x| \).

Now, using \(|y| \leq |x| \) we see that, for \(x \neq 0 \),

\[
\frac{|y|}{x} = \left| \frac{x^3 + y^3}{3ax^2} \right| \leq \frac{2}{3a} |x|
\]

Thus, \(\lim_{x \to 0} \frac{y}{x} = 0 \) and the curve has a horizontal tangent at \((0,0)\). From the symmetry, we see that it also has a vertical tangent.

It remains to be proved that the conditions \(F(x,y) = 0 \) and \(|y| \leq |x|\) really define \(y \) as a function of \(x \). For this, use the techniques of Section 4-8. Namely, for a fixed \(x \), \(x = \xi \) where \(\xi \not\in \mathbb{Q} \), define

\[
g(y) = F(\xi, y) = \xi^3 + y^3 - 3\xi y^2
\]

The derivative
As constant sign for \(y < a\sqrt{|T|} \), hence \(g(y) \) is strongly monotone in
\([-a\sqrt{|T|}, a\sqrt{|T|}] \). Now, we have

\[
g(aT) = T^2(1 + a^2) - 3a^2
\]

and

\[
g(-aT) = T^2(1 - a^2) + 3a^2
\]

so that \(g \) takes opposite signs at these two points for sufficiently

small \(|T|\). We conclude that there is a unique value, \(\eta \) for which
\(F(\xi, \eta) = 0 \).

14. Find the equation of the tangent line to the graph of the equation

\[
x^2 - \frac{x}{y} - 2y^2 = 6
\]

at the point \((4,1)\).

\[
x^2 - \frac{x}{y} - 2y^2 = 6
\]

\[
2x - \frac{2x}{y} \cdot \frac{y}{x^2} - 2y = 0
\]

At this point, \((4,1)\), the slope is \(\frac{5}{8} \). The tangent line at \((4,1)\) is
given by

\[-8y - 5x + 12 = 0\]

T05-8. Sketching of Graph.

This section provides a fitting conclusion to the chapter: the student is
given an opportunity to examine local and global properties of a function
and then summarize his findings in a sketch of the graph. The work here draws
upon analytic geometry as well as the calculus and unifies both. Given
two isolated points (conveniently located) on a curve, we now are in a position
to determine whether the points should be connected (e.g., points \((a,0)\) and
\((b,0)\)) in Miscellaneous Exercises, No. 5(c), (d)). Furthermore, we can isolate
intervals where the graph is wild; we can find familiar curves which serve as
adequate models for the required graph over certain intervals. The model may
be a straight line, as in the case of asymptotes, or graph of the familiar function
\(x \rightarrow 2^x \).

The discussion of Miscellaneous Exercises Number 5 in the Teacher's
Commentary provides a guide for sketching graphs of relations defined by.
rational expressions.

We leave the selection of exercises to you. A wide variety (in terms of level of difficulty, degree of abstraction, depth of insight required) is provided, but this is not intended to suggest that one assignment should comprise the entire range of variation.

Solutions exercises 5-8

1. Draw the graph of \(f : x \rightarrow 4x^5 + 5x^4 - 20x^3 - 50x^2 - 40x \). (See Example 5-6a)

\[
\begin{align*}
 f(x) &= 4x^5 + 5x^4 - 20x^3 - 50x^2 - 40x \\
 f'(x) &= 20(x + 1)^3(x - 2) \\
 f''(x) &= 20(x + 1)^2(4x - 5)
\end{align*}
\]

The graph is flexed downward for \(x < \frac{5}{4} \) and flexed upward for \(x > \frac{5}{4} \).

\(f(-1) \) is a local maximum, and \(f(2) \) is a local minimum. \(f(-1) = 11 \), \(f(0) = 0 \), \(f\left(\frac{5}{4}\right) = -\frac{454}{3} \), \(f(2) = -232 \).
2. Locate the point of inflection on the graph of \(f(x) = (x + 1) \arctan x \).

\[f'(x) = (x + 1) \arctan x. \]

We have \(f''(x) = \frac{2(1 - x)}{(1 + x^2)^2} \); since \(f''(1) = 0 \) and \(f''(x) \) changes sign as \(x \) increases through the value \(1 \), it follows that \((1, \frac{\pi}{4})\) is a point of inflection.

3. Determine equations of the horizontal and vertical asymptotes, if any, of the graph of:

(a) \(xy + y = x \).

If \(xy + y = x \), then \(y = \frac{x}{1 + x} \). Now, \(\lim_{x \to -1} \frac{1}{y} = \lim_{x \to -1} \frac{1 + x}{x} = 0 \). It follows that the line \(x = -1 \) is a vertical asymptote. Also \(\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{y}{x} = 1 \), whence the line \(y = 1 \) is a horizontal asymptote.

(b) \(x^2 y - 3x + 2 = 0 \).

\[y = \frac{3x - 2}{x^2}. \] We have, \(\lim_{x \to 0} y = \lim_{x \to 0} \frac{y}{x} = \lim_{x \to 0} \frac{3x - 2}{x^2} = 0 \), whence the line \(y = 0 \) is a horizontal asymptote. Also \(\lim_{x \to 0} \frac{1}{y} = \lim_{x \to 0} \frac{x^2}{3x - 2} = 0 \), whence the line \(x = 0 \) is a vertical asymptote. (See also Solutions Miscellaneous Exercises, No. 5.)

\[x^2 y - 3x + 2 = 0 \]
4. Find horizontal and vertical asymptotes, maxima, minima, and inflection points. Show all tests used to identify each such point and draw the graph of the function.

(a) \(f(x) = \frac{x}{x^2 + 1} \)
(b) \(f(x) = \frac{x^2}{x^2 + 1} \)

For parts (a) and (b) refer to Solutions' Miscellaneous Exercises, Number 5.

(a) \(f(x) = \frac{x}{x^2 + 1} \)

\[f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} \]

\[f''(x) = \frac{2x(2x^2 + 3)}{(x^2 + 1)^3} \]

Since \(f'(1) = 0 \) and \(f''(1) < 0 \), by Theorem 5-5a, \((1, \frac{1}{2}) \) is a maximum point. Similarly, \((-1, -\frac{1}{2}) \) is a minimum point. By Definition 5-8, \((\sqrt{3}, \frac{\sqrt{3}}{2}) \) and \((-\sqrt{3}, -\frac{\sqrt{3}}{2}) \) are points of inflection.

The \(x \)-axis is a horizontal asymptote since \(\lim_{x \to \infty} f(x) = 0 \), and also \(\lim_{x \to -\infty} f(x) = 0 \).
By Theorem 5-5a, \((0,0)\) is a minimum point. Points of inflection are \((\sqrt{3}, \frac{1}{3})\) and \((\sqrt{3}, \frac{1}{3})\), by Definition 5-8. The line \(y = 1\) is a horizontal asymptote, since \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{f(x)}{x} = 1\).

5. Use information...
for $-\sqrt{3} < x < 0$ and flexed upward for $0 < x < \sqrt{3}$.

(a) $x = \sqrt{2 - x}$
f(x) = \cos^2 x + 2 \cos x
f'(x) = 2 \cos x \sin x (\cos x + 1)
f''(x) = -2(\cos x + 1)(2 \cos x - 1)

Maxima points ...
Minimum points ...
Points of inflection ...

f'(x) = \cos \alpha
f''(x) = \frac{\cos \alpha}{(1 - \cos^2 \alpha)^{3/2}}

The graph is ...
for all \alpha in the ...
definition domain ...
and f''(\alpha) > 0
f is mini...
7. Discuss symmetry, intercepts, asymptotes, extrema, intervals of flexure, and sketch the graph.

(a) \(f(x) = \frac{2(x - 2)}{x^2} \)

Refer to Solutions Miscellaneous Exercises.

\[
\begin{align*}
2(x) &= \frac{2(x - 2)}{x^2} \\
r'(x) &= \frac{6 - 4x}{x^3} \\
r''(x) &= \frac{6(4 - x)}{x^4}
\end{align*}
\]

Intercepts:
Horizontal:
Vertical:
Asymptote:

Maximum points:
Minimum points:
Points of inflection:

Curves:
\(x = 0 \), \(x = 2 \), and

\[
\begin{align*}
2 &= x \\
2 &= x - 2
\end{align*}
\]
8. Draw the graph of \(y = e^x \) and locate any vertical asymptotes. If an extremum exists, locate it and the point of intersection of the curve with this line. Show that the curve has one and only one extremum and locate and classify this point.

This relation...

\[y = e^x \]

As \(x \to \infty \), \(y \to \infty \). Since the relation... the axis of symmetry is... the vertical asymptote.

To find the extremum... \(y = e^x \) is an increasing function. Thus...

as the only critical point at this point...

We saw...
9. Show that the function \(f(x) = \frac{ax + b}{cx + d} \) (assumed non-constant) has no maxima or minima regardless of the values of \(a, b, c, \) and \(d \).

If \(c = 0 \), the graph is a straight line and the result is valid for any \(f(0) \). If \(c \neq 0 \),

\[
\frac{\partial f}{\partial x} = \frac{-ad - bc}{(cx + d)^2}
\]

Thus, the graph is concave upward if \(\frac{d}{c} > \frac{b}{c} \) and concave downward if \(\frac{d}{c} < \frac{b}{c} \). The graph is decreasing or increasing in \((-\infty, -\frac{d}{c}) \cup (-\frac{d}{c}, \infty)\) depending on whether \(\frac{d}{c} - \frac{b}{c} \) is greater than or less than 0.

To verify that the graph has no maxima or minima, we note that \(\frac{\partial}{\partial x} \left(\frac{1}{cx + d} \right) = \frac{-ax - b}{(cx + d)^2} \) and \(\frac{\partial}{\partial x} \left(\frac{1}{cx + d} \right) = \frac{-ax - b}{(cx + d)^2} \) for the case where \(\frac{d}{c} - \frac{b}{c} \). We sketch the graph for the case where \(\frac{d}{c} - \frac{b}{c} \).
10. Prove that the inflection points of the curve \(y^2(4 + x^2) = 4x^2 \) lie on the curve \(y = \sin x \).

\[
\begin{align*}
y &= \sin x \\
y' &= \cos x \\
y'' &= -\sin x
\end{align*}
\]

We know that \(a \) and \(b \) are the points where the inflection points lie on the curve \(y = \sin x \). In the equation:

\[
\begin{align*}
\frac{a - b}{\sin a - \sin b} &= \frac{c}{\cos c} \\
&= 1
\end{align*}
\]
(a) Prove that if a curve is differentiable and flexed downward in an interval, the curve lies wholly under its tangent line in that interval.

Let f be differentiable and flexed downward on $[a, b]$. For any u in $[a, b]$, the tangent line at $(u, f(u))$ is given by

$$y = f'(u)(x - u) + f(u).$$

We are to prove that $f(x) > y$, for all x in $[a, b]$. We have for any x in $[a, b]$,

$$f(x) - y = f(x) - f(u) - f'(u)(x - u).$$

For some z in $[a, b]$ between u and x, by the Law of the Mean, since f is flexed downward on $[a, b]$, it is convex, then

$$f''(z) = f'(u); \quad f''(z) = f'(u) > f'(u) > 0,$$

by Theorems 5-3b and 5-4b. It follows that

$$a < x < b \text{ in } [a, b].$$

(b) Show that the point u at $u = a$ if u is a point of increase.

The tangent line at $x = a$ is given by

$$y = f'(a)(x - a) + f(a).$$

Since $f''(z) = f'(u)$ is positive for z between some a and b, $f''(z)$ is increasing, by Theorem 5-4b. Therefore, the tangent line at $x = a$ since $f'(a) > 0$.

(c) Let $f''(z)$ be what values of n, if any, f, the non-increasing points? Give sketches comparing the graphs of $f''(z)$ and $f'(z)$.
The graph of f can have a point of inflection only at $x = 0$ (we assume $n > 2$). For n odd, $f''(x)$ changes sign at zero and therefore $(0,0)$ is a point of inflection. For n even, $f''(x) \geq 0$ for all x and $(0,0)$ is not an inflection point.

12. For a rational $f(x)$, where $a \neq 0$, if $f'(x)$ has no asymptotes, it exists.

P.
For $p > q$, $\lim r(x)$ does not exist since
\[r(x) = \frac{a_p + a_{p-1}x^{-1} + \cdots + a_0x^{-p}}{b_qx^{-p} + \cdots + b_0}. \]
Increases without bound as $x \to -\infty$. The same conditions hold for the existence of $\lim r(x)$.

A.3. For what values of a does the function
\[f(x) = \frac{x^a - 1}{x^a} \]
assume different values in the same limit? Explain in detail for this case.

Since $f(x) = \frac{x^a - 1}{x^a}$, the function assumes different values if and only if a does.

The graph of $f(x)$ shows that the function has

Case 1:

The function approaches 1 as x approaches 0.

Case 2:

The function approaches -1 as x approaches 0.

And so on.
Case 2: \(4 - 3a - c \)

Thus, \(g(x) = \frac{x + \frac{4}{3}}{(x + 2)^2} \), and

\[
0 \leq \frac{x + \frac{4}{3}}{(x + 2)^2} \leq \frac{1}{3}.
\]

\(g(x) \) approximates \(\frac{1}{3} \) for every very small (i.e., for \(x \) close to \(c \)).

It is typical that in Case 1, \(g(x) \) has an upper bound by some similar value, but does not take on all values.
Case 3. \(4 - 3a > 0 \)

First consider \(a = 0 \) and \(a = 1 \); here

\[
\ell(x) = \frac{x}{x(x + 1)} \quad \text{for } a = 0,
\]

and

\[
\ell(x) = \frac{1}{(x + 1)(x + 2)} \quad \text{for } a = 1.
\]

For both of these, \(\ell(x) \) has a domain \(\mathbb{R} - \{0, -1\} \), and hence \(\sigma \) cannot assume 0 or \(-1\). Therefore, for all \(a \in \mathbb{R} \), we write \(\ell(x) \) in the form

\[
\ell(x) = \frac{x}{(x + 1/\sigma)(x + 1/\tau)} \quad (\sigma > 0, \tau > 0)
\]

and note that \(\sigma = \tau = 1/\sqrt{4 - 3a} \).

We divide Case 3 into two subcases, between these asymptotes. The case \(a = 1 \) is the right of both asymptotes, \(a = 0 \) lies in the left of both asymptotes.

...
Here $g(x)$ is the function that changes sign from $f(x)$ and $g(x) = a$.

All values depend on the local minimum.
As $|x|$ becomes very large, $f(x)$ becomes arbitrarily close to $x + a$. As $x \to a^-$, $f(x)$ becomes arbitrarily large. As $x \to a^+$, $f(x)$ becomes arbitrarily large.

(b) In (a) the slope of the slant asymptote is $\lim_{x \to a} \frac{x^2}{x-a} = 1$.

Show that for the function $f : x \mapsto 1 + x - 2\sqrt{x}$, $x \geq 0$,

the $\lim_{x \to \infty} \frac{f(x)}{x}$ exists although the graph has no linear asymptotes.

$$\frac{f(x)}{x} = \frac{1 + x - 2\sqrt{x}}{x} = 1 + \frac{1}{x} - \frac{2}{\sqrt{x}}$$

Therefore,
$$\lim_{x \to \infty} \frac{f(x)}{x} = 1.$$

So any linear asymptote would have to be of the form $x + b$. But for all b, $(x - b) - f(x)$ is arbitrarily large for x sufficiently large. For $x - b - (1 + x - 2\sqrt{x}) = b - 1 + 2\sqrt{x}$, which is unbounded since \sqrt{x} is unbounded.
1. Show that there are two tangent lines to the graph of \(y = x^3 - 3x^2 + 3x \) which pass through the point \((1,1)\). Find their equations.

Let \((x_0, y_0)\) be a point of tangency. Each line tangent to the curve \(y \) at the point \((x_0, y_0)\) has slope \(3(x_0 - 1)^2\). Each line through the points \((x_0, y_0)\) and \((1,1)\) has slope \(\frac{y_0 - 1}{x_0 - 1}\). Thus

\[
3(x_0 - 1)^2 = \frac{y_0 - 1}{x_0 - 1},
\]

whence \(x_0 = 1\) or \(x_0 = \frac{11}{2}\) (since, \(y_0 = x_0^3 - 3x_0^2 + 3x_0 \)). The line \(y = 1\) is tangent at the point \((1,1)\) and the line \(by - 24x + 96 = 0\) is tangent at the point \(\left(\frac{11}{2}, \frac{73}{8}\right)\).

2. Show that the tangent line to the conic section

\[
ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0
\]

at a point \((x_0, y_0)\) on the curve has the equation:

\[
ax_0x + b(y_0x + x_0y) + cy_0y + d(x_0 + x) + e(y_0 + y) + f = 0.
\]

At the point \((x_0, y_0)\) on the conic, the slope of the tangent line is

\[
y' = -\frac{ax_0 + by_0 + d}{bx_0 + cy_0 + e}.
\]

For the tangent line at the point \((x_0, y_0)\),

\[
\frac{y - y_0}{x - x_0} = -\frac{ax_0 + by_0 + d}{bx_0 + cy_0 + e}.
\]

Thus the equation of the tangent line at \((x_0, y_0)\) is

\[
axx_0 + b(xy_0 + x_0y) + cy_0y + d(x + x_0) + e(y + y_0) + f = 0
\]

(using, \(ax_0^2 + 2bx_0y_0 + cy_0^2 + 2dx_0 + 2ey_0 + f = 0\)).
A3. For what points \((h,k)\) can one draw two tangent lines, one tangent line, no tangent line to the graph of
\[\begin{align*}
(a) \quad x^2 + 3xy + y^2 &= a^2, \quad (a > 0) \\
(b) \quad 3x^2 + xy + 3y^2 &= a^2, \quad (a > 0) \\
(c) \quad \sqrt[3]{x} + \sqrt[3]{y} &= \sqrt[3]{a}, \quad (a > 0)
\end{align*}\]
Interpret geometrically.

To find the equation of a tangent line from a point \((h,k)\) to the curve \(F(x,y) = 0\), we solve the simultaneous equations
\[\begin{align*}
(1) \quad \frac{y - h}{x - k} &= \frac{dy}{dx} \quad \text{at } x = p, \quad y = q \\
(2) \quad F(p,q) &= 0
\end{align*}\]
(Note that (1) merely states that the slope of the line joining points \((h,k)\) and \((x,y)\) is equal to the slope of the curve at \((p,q)\).)

To find \(\frac{dy}{dx}\) from \(F(x,y) = 0\), it is generally easier to differentiate implicitly.

If we now eliminate either \(p\) or \(q\), the resulting equation in the other variable will be a quadratic. The condition for two, one, or zero tangents will correspond to the condition for two real and unequal roots, two equal roots, or no real roots, respectively. This condition is satisfied by setting the discriminant greater than, equal to, or less than, zero, respectively.

Geometrically, the solution is easier once we recognize the curve. The curve
\[ax^2 + bxy + cy^2 + dx + ey + f = 0\]
is a conic section.

- If \(b^2 - 4ac > 0\), the curve is a hyperbola.
- If \(b^2 - 4ac = 0\), the curve is a parabola.
- If \(b^2 - 4ac < 0\), the curve is an ellipse.

(There can be degenerate cases of these, e.g., the hyperbola case can include 2 intersecting straight lines, the elliptic case can include a single point \((x^2 + y^2 = 0)\).)
For any point \((p, q)\) on the curve (that is, \(a^2 - (p^2 + 3pq + q^2) = 0\)) there will be exactly one tangent line to the curve.

For any point in the shaded region (i.e., \(a^2 - (p^2 + 3pq + q^2) < 0\)) there will be no tangent lines to the curve.

For any other points (that is, \(a^2 - (p^2 + 3pq + q^2) > 0\)) there will be two tangent lines to the curve.

Note that the geometric interpretation agrees with results obtained algebraically by using the discriminant, \(a^2 - (p^2 + 3pq + q^2) = 0\). The point \((0, 0)\) is special in that the tangent lines to the curve which pass through \((0, 0)\) are really asymptotes which are given by \(y = mx\), where \(m^2 + 3m + 1 = 0\).
For a point \((p, q)\) on the curve (i.e., \(3p^2 + pq + 3q^2 - a^2 = 0\)), there will be exactly one tangent line. For a point \((p, q)\) inside the curve (i.e., \(3p^2 + pq + 3q^2 - a^2 < 0\)), there will be no tangent lines to the curve. For a point outside the curve (where \(3p^2 + pq + 3q^2 - a^2 > 0\)), there will be two tangent lines to the curve. Again \(3p^2 + pq + 3q^2 - a^2\) corresponds to the discriminant.

(c) The curve here is a portion of a parabola whose axis is the line \(y = x\).
For any point inside the cross-hatched region, there are no tangent lines to the curve.

For any point such that \(\sqrt{x} + \sqrt{y} - \sqrt{a} < 0 \), there are two tangent lines to the curve.

For any other point (i.e., all points in the second and fourth quadrants and the points \((x,0)\) and \((0,x)\), \(x > a\) and \(x < 0\)), there is one tangent line to the curve.

If we had the entire parabola, i.e.,
\[
\sqrt{x} + \sqrt{y} = \sqrt{a},
\]
then the conditions would be
\[
\begin{align*}
\sqrt{x} + \sqrt{y} - \sqrt{a} &< 0, \\
\sqrt{x} + \sqrt{y} - \sqrt{a} &= 0, \\
\sqrt{x} + \sqrt{y} - \sqrt{a} &> 0,
\end{align*}
\]
for two, one, and zero tangents, respectively.

Also, in general, if we have a smooth closed convex curve, then there will be two, one, or zero tangent lines from a point, according to the point being outside, on, or inside the curve, respectively.

4. Determine equations of the horizontal and vertical asymptotes, if any, of the graph of
\[xy^2 + 4y - x = 0.\]

Note: Refer to the discussion of Miscellaneous Exercises, Number 5.

The graph has the asymptote \(x = 0\) for both large positive and negative \(y\) (since \(\lim_{y \to \infty} \frac{4y}{y^2 - 1} = 0\) and \(\lim_{y \to -\infty} \frac{4y}{y^2 - 1} = 0\)).

It has the horizontal asymptote \(y = 1\) to the right (since \(\lim_{y \to 1^+} \frac{4y}{y^2 - 1} = +\infty\)) and to the left (since \(\lim_{y \to 1^-} \frac{4y}{y^2 - 1} = -\infty\)); also the horizontal asymptote \(y = 1\) to the right (since \(\lim_{y \to 1^+} \frac{4y}{y^2 - 1} = +\infty\)) and to the left (since \(\lim_{y \to 1^-} \frac{4y}{y^2 - 1} = -\infty\)).

(See No. 5)
The graph of f has the vertical asymptote $x = 0$ for both large positive and negative y; also, the horizontal asymptote $y = 0$ to the right and to the left.

$$F(x, y) = xy^2 - 4y - x = 0$$

(b) $xy - \cos x = 0$

$$y = f(x) = \frac{\cos x}{x}$$
5. Sketch the graphs of:

(a) \[y = \frac{(x - a)^m}{(x - b)^n} \]

(b) \[y^2 = \frac{(x - a)^m}{(x - b)^n} \]

(c) \[y = \frac{(x - a)^m(x - b)^n}{(x - c)^p} \]

(d) \[y^2 = \frac{(x - a)^m(x - b)^n}{(x - c)^p} \]

\[m, n \text{ integers, } m, n \geq 1, a \neq b \]

In the discussion of this problem we do not attempt to consider each of the possible cases: \(m, n, p \) even or odd; \(m > n > p \), \(m < n < p \), etc.; \(a > b > c \), etc. We are content to obtain a great deal of information about the graph of a rational function (and, thereafter, a relation) with minimum effort. In general, we examine the behavior of the graph for \(x \) in the neighborhood of \(a, b, c \), respectively, and for large \(|x|\).

In particular, we consider the points where the curve "touches" (crosses, or is tangent to) the x-axis, horizontal asymptotes (to the right and/or to the left), and vertical asymptotes (above and/or below).

(a) \[y = \frac{(x - a)^m}{(x - b)^n} = f(x) \]

Case 1.

Consider the case: \(a > b \), \(m \) even, \(n \) even, \(m > n \).

Zeros of \(f \): We set \(x - a = 0 \). The point \((a,0)\) is on the curve. Since \(m \) is even, \(f(x) \) does not change sign in the neighborhood of \(a \); thus the graph of \(f \) is tangent to the x-axis at \(a \).

(If \(m \) were odd, the graph would cross the x-axis at \(a \)).

Vertical asymptote: Set \(x - b = 0 \). The line \(x = b \) is a vertical asymptote since

\[\lim_{x \to b^-} \frac{(x - a)^m}{(x - b)^n} = \infty \quad \text{and} \quad \lim_{x \to b^+} \frac{(x - a)^m}{(x - b)^n} = 0. \]

Behavior for large \(|x|\): For large \(|x|\), \(y \) approximates

\[x^m = x^{m-n} \].

Thus the graph of \(f \) approximates the graph of

\[x \mapsto x^\alpha \] (\(\alpha = m - n > 0 \)) for large \(|x|\).
Sketch of graph: For the left branch of the curves \((x < b)\) we locate the minimum point by finding the zero of the derivative.

The minimal is at \(x = \frac{mb - na}{m - n}, m \neq n\).

Case 1. \(m\), \(n\) even, \(m > n\)

Case 2.

Consider the case: \(a < b, m\) even, \(n\) odd, \(m < n\).

Zeros of \(f\): See case 1.

Vertical asymptote: The line \(x = b\) is a vertical asymptote above and below since

\[
\lim_{x \to b^-} \frac{(x - a)^m}{(x - b)^n} = -\infty \quad \text{and} \quad \lim_{x \to b^+} \frac{(x - a)^m}{(x - b)^n} = +\infty.
\]

Behavior for large \(|x|\): For large \(|x|\), \(y\) approximates \(x^m = \frac{1}{x^{n-m}} (n - m > 0)\). The \(x\)-axis is a horizontal asymptote to the right and to the left. Since the curve is tangent to the \(x\)-axis at \(x = a\), it must have at least one minimum point for \(x < a\).

The minimum point is at \(x = \frac{mb - na}{m - n}\).
Case 2. m even, n odd, $m < n$

$$y = \frac{(x - a)^m}{(x - b)^n}$$

Case 3. m, n odd, $m = n$

$$y = \frac{(x - a)^m}{(x - b)^n}$$
Consider the case:

(a) \(a > b \), \(m \) odd, \(n \) even, \(m < n \).

In this case the maximum occurs at \(x = \frac{mb - na}{m - n} \) (Compare with cases 1 and 2.).

Case 4. \(m \) odd, \(n \) even, \(m < n \)

The portion of the graph for \(x > a \) in part (a), case 4, is the graph of \(y^2 \) (the solid curve).
Then, from the graph of y^2, we obtain (by approximating the square root of ordinates) the required graph of $|y|$ (the dotted curve) and, thereafter, by reflection in the x-axis, the required graph.

The curve is symmetric with respect to the x-axis.

Let $a > b > c$.

We observe that for m, n, p even, $m + n > p$, the situation is like that in (a), case 1. The line $x = c$ is an asymptote above for each branch of the curve (since m, n, p are even). Again, the curve is tangent to the x-axis at $x = a$, and in addition, at $x = b$. For large $|x|$ the curve approximates the graph of $x \to x^\alpha$, where $\alpha = m + n - p > 0$.

\[
\Lambda(c) = \frac{(x - a)^m(x - b)^n}{(x - c)^p}
\]
For ϕ, n even, p odd, $m+n>p$, the left branch of the curve is reflected in the x-axis.
In general, if \(m + n = p \), the curve approximates the line \(y = 1 \); if \(m + n < p \), the line \(y = 1 \) is a horizontal asymptote. If \(m + n > p \), the \(x \)-axis is a horizontal asymptote.

\[
y^2 = \frac{(x - a)^m (x - b)^n}{(x - c)^p}
\]

As in part (b) we may use the results (in respective cases) of (c) to obtain the graph of \(y^2 \) and thereafter the graph of \(|y| \). Finally, by reflecting the graph of \(|y| \) in the \(x \)-axis, we obtain the required graph.

6. In past SMSG writers' conferences it has been observed that when the number of writers on a team is 28 or greater, all the available time is spent in discussion between members of the group, so that no writing gets done. Assuming that in a group of \(x \) writers \((28 \geq x \geq 1)\) each participant is engaged in writing \(40 \left(1 - \left(\frac{x - 1}{27} \right)^2 \right) \) hours per week, determine the size of the team which maximizes the total number of hours the group spent writing. (Draw your own conclusions about the team which wrote this book.)

The total number of hours worked by the team is given by

\[
f(x) = 40kx \left(1 - \left(\frac{x - 1}{27} \right)^2 \right),
\]

where \(k \) is the number of weeks worked, \(k \) independent of \(x \). Then \(f'(x) = 40k \left(1 - \left(\frac{x - 1}{27} \right)^2 \right)^2 \cdot \frac{2}{\sqrt{27}} \)

\[f'(x) = 0 \text{ if } 3x^2 - 4x - 728 = 0; \text{ i.e., } x = \frac{4 + \sqrt{572}}{6}.
\]

Since we are interested in an integral solution, and since

\[16 < \frac{4 + \sqrt{572}}{6} < 17\],

we consider \(x = 16 \) and \(x = 17 \). By Corollary 2 to Theorem 5-2b, since \(f(0) = f(28) = 0 \) and \(f(16) > f(17) > 0 \), a team of 16 members is the most efficient team.

7. A picture \(h \) feet high is placed on a wall with its base \(b \) feet above the level of the observer's eye. If he stands \(x \) feet from the wall, verify that the angle of vision \(\phi \) subtended by the picture is given by

\[
\phi = \arccot \frac{x}{h + b} = \arccot \frac{x}{b}.
\]

Show that to get the "best" view of the picture, i.e., the largest angle of vision, the observer should stand \(\sqrt{b(h + b)} \) feet away from the wall.
Since \(\phi + \alpha = \arccot \frac{x}{h + b} \)
and \(\alpha = \arccot \frac{x}{b} \),
\(\phi = \arccot \frac{x}{h + b} - \arccot \frac{x}{b} \).
We have
\[
D_x \phi = \frac{-(h + b)}{(h + b)^2 + x^2} \cdot \frac{b}{b^2 + x^2} + \frac{hx^2}{[(h + b)^2 + x^2](b^2 + x^2)}
\]
whence \(D_x \phi \) is zero if
\[
bh(h + b) = hx^2.
\]
or
\[
x = \sqrt{b(h + b)}
\]
By Theorem 5-4c, \(\phi \) is a maximum.

8. Let \(ABC \) be a right triangle, \(AB \) perpendicular to \(BC \), the length of \(AB = h \), the length of \(BC = x \). Let \(AD \) be tangent to side \(BC \). Determine \(x \) so that the angle \(\phi \) between the tangent and the hypotenuse of triangle \(ABC \) is a maximum.

\[
AD = \sqrt{x^2 + h^2}
\]
and \(AC = \sqrt{h^2 + 4x^2} \).

Hence by applying the tangent to triangle \(ABC \) we have,
\[
x^2 = (x^2 + h^2) + (h^2) + (x^2 + h^2) - 4x^2 \cdot h^2 \cdot \phi^2,
\]
or
\[
\cos \phi = \frac{\frac{x^2 + h^2}{[(x^2 + h^2)(4x^2 + h^2)]^{1/2}}}{1/2}.
\]
It follows that
\[
\frac{d\theta}{dx} = \frac{-bx(4x^4 + 5x^2h^2 + h^4) + (h^2 + 2x^2)(5xh^2 + 8x^3)}{\sin \theta (4x^4 + 5x^2h^2 + h^4)^{3/2}}
\]
is zero if \(16x^4 + 20x^3h^2 + 8x^2h^4 + 5xh^6 + 8x^3h^2 + 16x^4\), or \(x = \frac{h}{\sqrt{2}}\).

By Theorem 2-4c the angle \(\theta\) is a maximum if \(\frac{h}{\sqrt{2}}\).

9. The location of an object on a straight line at time \(t\) is given by the formula

\[S = At^2 - (1 + A^2)\]

Show that the object moves forward initially, when \(A\) is positive, but ultimately retreats. Show also that for different values of \(A\) the maximum possible distance that the particle can move forward is \(\frac{1}{2}\).

\[
\frac{dS}{dt} = 2A - 2(1 + A^2)t, \quad \frac{d^2S}{dt^2} = -2(1 + A^2)
\]
The object moves forward, \(\frac{d^2S}{dt^2} > 0\), for \(\frac{A}{2(1 + A^2)} > t\).

The object retreats, \(\frac{d^2S}{dt^2} < 0\), for a fixed value of \(A\) the particle reaches a forward distance

\[S = -\frac{A^2}{4(1 + A^2)} \quad \text{at} \quad \frac{A}{2(1 + A^2)} = \frac{1}{t(1 + A^4)}
\]

forward distance \(\frac{A^2}{4(1 + A^2)}\) is the maximum possible distance since

\[r'(A) = \frac{A(1 - A^2)}{2(1 + A^2)} \quad \text{derivative of distance}
\]
is a maximum value of \(r\).

10. A man standing at the edge of a pool plans to reach a point \(\frac{1}{4}\) of the way across the pool in the shortest possible time. He plans to run along the edge, then swim the same distance and then swim straight to his destination at 35 feet per second and run 24 feet per second, how far should he run before diving in?
Let v represent the distance the man swims and u, the distance he runs; the total distance is $u + v$ and the time t required is given by:

$$t = \frac{u}{24} + \frac{v}{20}.$$

Let r represent the radius of the pool. Then

$$u = \frac{\pi r}{2} - r\theta,$$

$$= r\left(\frac{\pi}{2} - \theta\right),$$

and

$$v^2 = \left(\frac{\pi}{2} - \theta\right)^2 = \frac{\pi^2}{4} - \pi \theta + \theta^2.$$

Differentiating, we obtain

$$\frac{dv}{d\theta} = \frac{\pi}{2} - 2\theta.$$

Hence

$$\frac{dv}{d\theta} = \frac{\pi}{2} - 2\theta.$$

Since $\frac{dv}{d\theta}$ is constant, we have

$$\frac{dv}{d\theta} = \frac{\pi}{2} - 2\theta.$$

When

and then

Since $\frac{dv}{d\theta} = \frac{\pi}{2} - 2\theta$ all the way and
A conical cup with radius \(r \), height \(h \), is filled with water. Find the radius \(R \) of the sphere which displaces the largest volume of water when jammed into the cup.

There are three cases to consider:

Case 1. The sphere is completely submerged in the cone. For this case, the largest displacement occurs (see figure below) when

\[
R = h \tan \theta
\]

or

\[
R = \frac{h}{1 + \tan \theta}
\]
Case 2. The sphere is sitting on the cone. In this case,

\[R > \frac{h}{\sec \theta \tan \theta} \]

Set \(H \) as the height in water. Then

whence

Using the terms

we have

Thus, for maximum...
to maximize H we make R as small as possible ($R \geq h \tan \theta$). Consequently, the volume V is greater in Case 2 than in Case 3.

We now compare the volume for Case 1 and 2.

Let V_1 and V_2 represent the volume in Case 1 and 2, respectively. Then,

$$V_1 = \frac{4}{3} \pi \left(\frac{4}{3} h \right)^3$$

$$V_2 = \frac{2}{3} \pi \left(\frac{1}{3} h \right)^3$$

where

$$H = \frac{h \tan \theta}{\sec \theta + \tan \theta}$$

(Where $\tan \theta \neq \frac{1}{2}$)

Thus

$$H = \frac{h \tan \theta}{\sec \theta + \tan \theta}$$

Now

Also,

in the equation (sec)

$$\text{326}$$
So for maximum volume, \(V \),

\[
R = \frac{h}{1 + \csc \theta},
\]

\[
= \frac{h}{1 + \frac{r^2 + h^2}{r}}
\]

\[
= \frac{rh}{r + \sqrt{r^2 + h^2}}
\]
Teacher's Commentary

Appendix 1

THE REAL NUMBERS

We treat the real numbers axiomatically in this appendix as a skeleton summary of their properties. The goal is review not systematic development of the already familiar properties of the real numbers from a set of axioms.

Solutions Exercises 1.1

1. Verify:
 (a) that the natural numbers admit division:

 Consider, for example,

 (b) that the rational numbers admit division:

 Treat the rational numbers:

 It is sufficient to demonstrate:

 Under addition and subtraction, these operations are:

 Under these operations:

 (c) that the operations are not commutative or as:

 Consider, for example:

 \[
 \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \\
 \frac{1}{2} + \frac{1}{3} = \frac{5}{6} \\
 \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \\
 \frac{1}{2} \div \frac{1}{3} = \frac{3}{2}
 \]
2. Prove: For any real number \(a \), \(-a\) = \(a \).

Every element has an additive inverse, and the sum of these is equal to zero. Take the element \(-a\).

Then,
\[
\begin{align*}
(-a) + (\cdot (-a)) &= 0, \\
\text{and} \\
a + (-a) + (-a) &= a.
\end{align*}
\]

By field properties:
\[
(a + (-a)) + (-a) = 0, \quad (a + (-a)) + a = a - a.
\]

3. Prove: For any real number \(a \), \((-1)a = -a\).

\[
(-1)a + (\cdot (-1)a) = 0.
\]

or
\[
(-1)a + (-a) = a.
\]

Hence \((-1)a\) is the additive inverse of \(a \).

4. Prove: For any real numbers \(a \) and \(b \), \(a \cdot b = b \cdot a \).

From No. 3.

5. Prove: For any real numbers \(a \) and \(b \), \(a \cdot b = b \cdot a \).

Hence, \((-1)(-a) = ab\).

6. Prove: For any real numbers \(a \) and \(b \), \(a \cdot b = 0 \) if and only if \(a = 0 \) or \(b = 0 \).

Suppose \(a \cdot b = 0 \).

If \(a = 0 \), \(ab = 0 \) is true. If \(b = 0 \), then \(ab = 0 \) is true. So \(b = 0 \).

may also equal zero.
7. Verify that the numbers \(\frac{a + b}{2} \), where \(a \) and \(b \) are rational numbers, constitute a field.

This follows immediately from Number 1 (b).

Solutions

Exercises A.1.

1. Prove: For any real number \(a \):
 (a) if \(a > 0 \), then \(0 > -a \).
 (b) if \(0 > a \), then \(-a > 0 \).

 (a) \(a > 0 \)
 \[a + (-a) > 0 \quad \text{(a)} \]
 \[0 > -a \]

2. Prove: For any real numbers \(a, b, c, d \), then \(a + c > b + d \).

 Since \(a > b \) \quad \text{(a)}

 Therefore, \(a + c > b + d \) \quad \text{(b)}

3. Prove: For any real \(a, b \), then \(b > a \).

 Adding \(b \) to both sides.

4. (a) For any positive \(a, b \):

 \[a^2 > b^2 \]

 Suppose \(a < b \)
 \[a^2 > b^2 \]
 \[a < b, \quad a, b > 0 \]

 Also \(c > a \)

 \[b < a \]. Hence, \(a < b \).
(b) For any negative numbers \(a \) and \(b \), \(a > b \) if and only if \(b^2 > a^2 \).

Suppose \(a > b \), then \(-b > a\) and \(-a\) and \(-b\) are positive.

Hence, from 4(a), \((b)^2 > (-a)^2\) or \(b^2 > a^2\). Conversely, suppose \(b^2 > a^2 \). Since \(b^2 = (-b)^2 \), \((-a)^2 = b^2 \), \(-b > 0\), and \(-a > 0\), it follows from 4(a) that \(b^2 > a^2 \iff b > -a \iff a > b \).

5. Prove: For any real numbers \(a \) and any positive number \(b \),

(a) \(a^2 \geq b \) if and only if \(a \geq \sqrt{b} \) or \(a \leq -\sqrt{b} \)

Suppose \(a^2 \geq b \). Now, if \(a^2 = b \), then \(a = \sqrt{b} \); or \(a = -\sqrt{b} \). Hence \(a \geq \sqrt{b} \) or \(a \leq -\sqrt{b} \). Assume \(a > b \). Then \(a^2 > (\sqrt{b})^2 \) implies that \(a > \sqrt{b} \) by 4(a). \(a = 0 \) is impossible, since \(b \) was assumed positive. If \(a < 0 \), then \(-a > 0 \). So, again by 4(a), \(a < \sqrt{b} \) since \((-a)^2 = a^2 > (\sqrt{b})^2 \).

But by Problem 3, if \(a < \sqrt{b} \), then \((-a)(-1) < \sqrt{b}(-1)\) or \(a < -\sqrt{b} \). Thus we see that if \(a^2 < b \), then either \(a > \sqrt{b} \) or \(a < -\sqrt{b} \). Conversely, suppose \(a = b \) and \(a \neq -\sqrt{b} \). If \(b > \sqrt{b} \), then \(a^2 = b \). Thus \(a > \sqrt{b} \) or \(a < -\sqrt{b} \). \(a \leq \sqrt{b} \) or \(a \geq -\sqrt{b} \). Finally, if \(a < \sqrt{b} \), then \(a = -\sqrt{b} \) or \(a > \sqrt{b} \) then \(a^2 < b \).

(b) \(a^2 < b \) if

\(\sqrt{b} > a > 0 \) or \(a < -\sqrt{b} \), hence

4(a) applies.

\(\sqrt{b} < a < b \) or the converse.

Finally, if \(a = \sqrt{b} \), then \(a^2 = b \).

Thus, in all cases, \(a^2 < b \) or \(b = \sqrt{b} \). The proof is complete.
6. Prove that if \(a > b > 0 \) and \(c > d > 0 \), then \(ac > bd \).

\[
\begin{align*}
\text{If } a > b \text{ and } c > 0 & \implies \text{ac > bc}, \\
\text{b > 0 and } c > d & \implies \text{bc > bd}.
\end{align*}
\]

Hence, \(ac > bd \), by transitivity.

7. Prove: For any real numbers \(a \) and \(b \), if both \(a > 0 \) and \(b > 0 \) or both \(a < 0 \) and \(b < 0 \), then \(ab > 0 \).

By trichotomy either: \(a > 0 \) or \(a < 0 \) and if \(b < 0 \) then \(ab < 0 \).

Contradiction.
So, if \(a > 0 \), then \(b > 0 \).

8. Prove: For any real number \(a \),
 (a) if \(a > 0 \), then \(\frac{1}{a} < 0 \);
 (b) if \(a < 0 \), then \(\frac{1}{a} > 0 \).

9. For \(\frac{1}{a} \) or \(\frac{1}{b} \),

 If \(ac < 0 \) and \(\frac{a}{b} < 0 \),

 If \(bd > 0 \) and \(\frac{b}{d} > 0 \),

 Hence, \(\frac{1}{bd} \times \frac{1}{bd} \times \frac{b}{d} \).

10. Show that for \(\frac{1}{a} < \frac{1}{b} \).

 If \(a > b > 0 \),

 \[
 \frac{1}{ab} > 0, \text{ thus } \frac{1}{ab} > \left(\frac{1}{ab}\right).
 \]
11. Prove that the complex numbers form a field \(\mathbb{C} \) and that there can be no order relation on \(\mathbb{C} \).

The proof that the complex numbers form a field is quite routine, with the possible exception of the existence of the multiplicative inverse. This proceeds as follows. Let \(a + bi \neq 0 \) we wish to find a complex \(z \) so that \((a + bi)z = 1 \) as multiplication. We could write \(z = \frac{1}{a + bi} \), and then rationalize, \(\frac{1}{a + bi} \times \frac{a - bi}{a - bi} = \frac{a - bi}{a + b^2} \). Since \(a + bi \neq 0 \), \(a
eq 0 \) or \(b
eq 0 \), so \(a^2 + b^2 \neq 0 \). Thus, \(z = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \) is well defined. So, we claim that \((a + bi)(\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i) = 1 \).

We obtain
\[
\frac{a^2 - b^2}{a^2 + b^2} + \frac{ab}{a^2 + b^2}i
\]
\[
= \frac{a^2 + b^2}{a^2 + b^2} = 1.
\]

Now, using the facts that have been proved for the ordering on the real numbers would hold for any ordered field. This is because all the properties were based on the field and order axioms, not on any properties of the real numbers. Thus, in any ordered field, \(a^2 \geq 0 \) and \(a^2 = 0 \) if the complex numbers were ordered. In particular, \(a^2 > 0 \) and \(a^2 = 0 \) if the complex numbers were ordered. By the trichotomy law, \(a^2 > 0 \) and \(a^2 = 0 \).

But \(a^2 = 0 \) also holds. Hence, \(a = 0 \) by the addition law. So, \(a^2 = 0 \) and \(a^2 > 0 \) by the trichotomy law. Thus, there can be no order relation on the complex numbers.

First, we note that if \(a \) and \(b \) are rational numbers, then the relation \(> \) because \(\mathbb{R} \) is a subset of \(\mathbb{C} \). Show that \(\mathbb{R} \) is also ordered by the relation \(> \) where
\[
\frac{a}{b} > \frac{c}{d} \quad \text{if} \quad \frac{a}{b} \text{ and } \frac{c}{d} \text{ are rational} \quad \text{and} \quad \frac{a}{b} \text{ is greater than } \frac{c}{d}.
\]

Next, we show that if \(a \neq 0 \) and \(b \neq 0 \), then \(a + b \) is rational. So, \(a + b \) satisfies the trichotomy law, since addition is a trichotomy law for the real numbers.
We have $a-b\sqrt{2} > c-d\sqrt{2}$; $a-b\sqrt{2} < c-d\sqrt{2}$, or $a-b\sqrt{2} = c-d\sqrt{2}$. In the first two cases we have, by definition, that $a+b\sqrt{2} > c+d\sqrt{2}$, or $a+b\sqrt{2} < c+d\sqrt{2}$. But if $a-b\sqrt{2} = c-d\sqrt{2}$, then by our remark at the beginning $a-c$ and $b-d$, or $a-b\sqrt{2} = c+d\sqrt{2}$. Thus, $a+b\sqrt{2} = c+d\sqrt{2}$, or $a+b\sqrt{2} < c+d\sqrt{2}$. But, $a+b\sqrt{2}$ and $c+d\sqrt{2}$ satisfy at most one of these relations. For, the first one cannot be satisfied, since then by definition $a+b\sqrt{2} = c+d\sqrt{2}$ and $a-b\sqrt{2} < c-d\sqrt{2}$, and this would contradict the fact that $a+b\sqrt{2}$ satisfies trichotomy on the field of reals. Primarily, if $a+b\sqrt{2} = c+d\sqrt{2}$, $a=c$ and $b=d$, then $a+b\sqrt{2} = c+d\sqrt{2}$, and again this is the only relation possible.

\textbf{Transitive Law.} This follows from the definition of the relation.

\textbf{Addition Law.} Suppose $a > b$.

If the third element c is any c, then

$$a + b\sqrt{2} > c + d\sqrt{2}.$$

But the multiplicative law

$$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac + \frac{ad}{2} + \frac{bc}{2}) + (bd)(\sqrt{2})$$

Thus, $(aq + bcs) + (as + bs)\sqrt{2} = (ac + \frac{ad}{2} + \frac{bc}{2}) + (bd)(\sqrt{2})$.

So, $$(a+b\sqrt{2})(c+d\sqrt{2}) = (ac + \frac{ad}{2} + \frac{bc}{2}) + (bd)(\sqrt{2})$$

But

$$(aq + bcs) + (as + bs)\sqrt{2} = (ac + \frac{ad}{2} + \frac{bc}{2}) + (bd)(\sqrt{2})$$
13. Show that for all real numbers \(x \) and \(y \), \(x^2 + xy + y^2 \geq 0 \).

Alternatively,

\[x^2 + xy + y^2 \geq x^2 - 2|xy| + y^2 \geq (|x| - |y|)^2 \geq 0. \]

14. (a) Prove that \((x + y)^2 \geq 4xy \).

(b) For positive numbers \(a \) and \(b \), show that the arithmetic mean is not less than the geometric mean which, in turn, greater than or equal to the harmonic mean:

\[\frac{a + b}{2} \geq \sqrt{ab} \geq \frac{2ab}{a + b}. \]

When does equality hold in this relation?

Since the numbers in the inequality are positive, it suffices to show that

\[\left(\frac{a + b}{2} \right)^2 \geq ab \geq \frac{ab}{(a + b)^2}. \]

By part (a), \(\left(\frac{a + b}{2} \right)^2 \geq ab \) and this implies \(1 \geq \frac{ab}{(a + b)^2} \), which proves the second part on multiplying by \(ab \). The sign of equality holds if and only if \(a = b \).

15. Find all values of \(x \) for which \(ax^2 + 2bx + c > 0 \), \(a \neq 0 \).

Discuss all possible cases.

Let \(f(x) = ax^2 + 2bx + c \). From Intermediate Mathematics, it is known that the graph of \(f \) is a parabola which crosses the \(x \)-axis at \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) (if the roots are real) and has its highest or
Consider the three cases for $a > 0$.

Case 1: $b^2 - ac < 0$

Here, $ax^2 + 2bx + c > 0$ for all x.

Case 2: $b^2 - ac = 0$

Here, $ax^2 + 2bx + c \geq 0$ for all x.

Case 3: $b^2 - ac > 0$

Here, $ax^2 + 2bx + c \geq 0$ for

$$x \geq \frac{-b + \sqrt{b^2 - ac}}{a} \quad \text{and} \quad x \leq \frac{-b - \sqrt{b^2 - ac}}{a}$$

For $a < 0$, the parabola opens downward and we obtain slightly different results.

Alternatively,

$$ax^2 + 2bx + c = a \left(x + \frac{b}{a} \right)^2 + \frac{ac - b^2}{a^2}$$

The results for each of the six cases follow directly from this form.
16. Observe that
\[(a_1 x + b_1)^2 + (a_2 x + b_2)^2 + \ldots + (a_n x + b_n)^2 \geq 0;\]
then use the solution of Number 15, to prove the Cauchy Inequality:
\[(a_1 b_1 + a_2 b_2 + \ldots + a_n b_n)^2 \leq (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2),\]
with equality, if and only if \(a_i = kb_i\), or \(b_i = 0\), for
\(r = 1, 2, \ldots, n\) and \(k\), some constant.

Since \((a_1 x + b_1)^2 \geq 0\), for all values of \(x\), then
\[(a_1 x + b_1)^2 + (a_2 x + b_2)^2 + \ldots + (a_n x + b_n)^2 \geq 0\]
for all values of \(x\).

Simplifying:
\[\left(\sum_{i=1}^{n} a_i^2\right) x^2 + 2\left(\sum_{i=1}^{n} a_i b_i\right) x + \left(\sum_{i=1}^{n} b_i^2\right) \geq 0.\]

Now using Number 15 with
\[a = a_1^2 + a_2^2 + \ldots + a_n^2\]
\[b = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n\]
and \(c = b_1^2 + b_2^2 + \ldots + b_n^2\), the desired inequality follows from
the condition that \(a^2 - ac \leq 0\). To have equality,
\[(a_1 x + b_1)^2 = 0, i = 1, 2, \ldots, n\]
or
\[a_i = kb_i \quad (k \text{ constant}).\]
17. If \(a_1, a_2, \ldots, a_n \) are positive numbers, show that

\[
\frac{a_1 + a_2 + \ldots + a_n}{n} \geq \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}
\]

(Arithmetic Mean) \(\geq \) (Harmonic Mean)

This generalizes part of 14(b).

By Cauchy's Inequality,

\[
\left(\sqrt{a_1^2} + \sqrt{a_2^2} + \ldots + \sqrt{a_n^2} \right) \left(\frac{1}{\sqrt{a_1^2}} + \frac{1}{\sqrt{a_2^2}} + \ldots + \frac{1}{\sqrt{a_n^2}} \right) \geq n^2.
\]

Equivalently,

\[
\frac{a_1 + a_2 + \ldots + a_n}{n} \geq \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}
\]

18. Prove the general triangle inequality:

\[
\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} + \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2} \geq \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}.
\]

Squaring both sides and simplifying, we now need to prove

\[
2\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2} \geq -2(x_1y_1 + x_2y_2 + \ldots + x_ny_n).
\]

The preceding inequality follows directly from Cauchy's Inequality.
TC Al-3. Absolute Value and Inequality.

In Section A2-1 (footnote), we define $|a|$ as $\sqrt{a^2}$. This definition has the virtue of emphasizing the positivity of the square root. It also helps to prevent the error of writing $\sqrt{a^2} = a$ in case $a < 0$. This error leads to the amusing "proof":

$$1 = \sqrt{1} = \sqrt{(-1)^2} = 1$$

thus:

$$1 = -1$$

We note that the form $\sqrt{a^2}$ lends itself, more conveniently, to mathematical manipulation (e.g., in Exercises 5-2b, No. 11, the expression for $f'(x)$ requires careful inspection).

Solutions Exercises Al-3

1. Find the absolute value of the following numbers.

 (a) 1.75
 (b) $\frac{\pi}{4}$
 (c) $\sin\left(-\frac{\pi}{4}\right)$
 (d) $\cos\left(-\frac{\pi}{2}\right)$

2. (a) For what real numbers x does $\sqrt{x^2} = -x$?

 $$x \leq 0$$

(b) For what real numbers x does $|1 - x| = x - 1$?

 $$x \geq 1$$
3. Solve the equations:

(a) \(|3 - x| = 1\) \(x = 2\) or \(x = 4\).

(b) \(|4x + 3| = 1\) \(x = -\frac{1}{2}\) or \(x = -1\).

(c) \(|x + 2| = x\) Either \(x + 2 \geq 0\) or \(x + 2 < 0\), then \(x + 2 = x\), or \(-(x + 2) = x\). Thus there are no solutions.

(d) \(|x + 1| = |x - 3|\) The only solution is \(x = 1\).

(e) \(|2x + 5| + |5x + 2| = 0\) There are no solutions.

(f) \(|2x + 3| = |5 - x|\) \(x = 8\) or \(x = \frac{2}{3}\).

(g) \(2|3x + 4| + |x - 2| = 1 + |3 + x|\) There are no solutions.

4. For what values of \(x\) is each of the following true? (Express your answer in terms of inequalities satisfied by \(x\).)

(a) \(|x| \leq 0\) \(x = 0\)
(b) \(|x| \neq x\) \(x < 0\)
(c) \(|x| < 3\) \(-3 < x < 3\)
(d) \(|x - 6| \leq 1\) \(5 \leq x \leq 7\)
(e) \(|x - 3| > 2\) \(x < 1\) or \(x > 5\)
(f) \(|2x - 3| < 1\) \(1 < x < 2\)
(g) \(|x - a| < a\) \(0 < x < 2a\)
(h) \(|x^2 - 3| < 1\) \(\sqrt{2} < x < 2\) or \(-2 < x < -\sqrt{2}\)
(i) \([(x - 2)(x - 3)] > 2\) \(x < 1\) or \(x > 4\)
(j) \(|x - 1| > |x - 3|\) \(x > 2\)
(k) \(|x - 5| + 1 \cdot |x + 5|\) \(x = \frac{1}{2}\)
5. Sketch the graphs of the following equations:
(a) \(|x - 1| + |y| = 1\)

For \(x \geq 1, y > 0\), then
\(x - 1 + y = 1\) or \(x + y = 2\),
line \(AB\).

For \(x \geq 1, y < 0\), then
\(x - 1 - y = 1\) or \(x - y = 2\),
line \(BC\).

For \(x < 1, y < 0\), then
\(-x + 1 - y = 1\) or
\(-x + y = 0\), line \(CD\).

For \(x < 1, y \geq 0\), then
\(-x + 1 + y = 1\) or
\(y = x\), line \(DA\).
(b) \(|x + y| + |x - y| = 2\)

Resolves into 4 parts:
\[x = \pm 1 \text{ and } y = \pm 1\]
where \(|x| \leq 1 \text{ and } |y| \leq 1\)

(c) \(y = |x - 1| + |x - 3|\)

For \(x < 1\), then \(y = -2x + 4\).
For \(1 \leq x \leq 3\), then \(y = 2\).
For \(x > 3\), then \(y = 2x - 4\).

(d) \(y = |x - 1| + |x - 3| + 2|x - 4|\)

For \(x < 1\), then \(y = -4x + 12\).
For \(1 \leq x < 3\), then \(y = -2x + 10\).
For \(3 \leq x < 4\), then \(y = 4\).
For \(4 \leq x\), then \(y = 4x - 12\).
(e) \(y = |x - 1| + |x - 3| + 2|x - 4| + 3|x - 5| \)

For \(x < 1 \), then \(y = -7x + 27 \).

For \(1 \leq x < 3 \), then \(y = -5x + 25 \).

For \(3 \leq x < 4 \), then \(y = -3x + 19 \).

For \(4 \leq x < 5 \), then \(y = x + 3 \).

For \(5 \leq x \), then \(y = 7x - 27 \).
5. (a) Show that if \(a > b > 0 \), then \(\frac{ab}{a + b} < b \).

\[0 < b \iff a < a + b \]
\[\iff ab < b(a + b) \]
\[\iff \frac{ab}{a + b} < b, \text{ since } a + b > 0. \]

(b) Thus, show that for positive numbers \(a \) and \(b \), the condition \(b \leq \min(a, b) \) is satisfied by \(b = \frac{ab}{a + b} \).

For \(a \neq b \) the result follows from part (a). For \(a = b \), \(b = \frac{a}{2} < a \).

7. (a) Show for positive \(a, b \) that \(\frac{a + b}{2} < \max(a, b) \), if \(a \neq b \).

\[\frac{a + b}{2} < \max(a, b) + \frac{\max(a, b)}{2} \leq \max(a, b) \]

(b) Prove for all \(a, b \) that
\[\max(a, b) = \frac{1}{2}(a + b + |a - b|) \]
\[\min(a, b) = \frac{1}{2}(a + b - |a - b|). \]

Assume, without loss of generality, that \(a > b \), then \(\max(a, b) = a = \frac{1}{2}(a - b + a - b) \), and \(\min(a, b) = b = \frac{1}{2}(a + b - (a + b)) \).

8. Show that \(\max(a, b) + \max(c, d) \geq \max(a + c, b + d) \).

From Number 15
\[\max(a, b) + \max(c, d) = \frac{1}{2}(a + b + c + d + |a - b| + |c - d|), \]
\[\max(a + c, b + d) = \frac{1}{2}(a + b + c + d + |a + c - (b + d)|) \]
\[= \frac{1}{2}(a + b + c + d + |(a - b) + (c - d)|). \]

The result follows at once.
9. Show that if \(ab \geq 0 \), then \(ab \geq \min(a^2, b^2) \).

\[
ab = |a| |b| \geq (\min(|a|, |b|))^2 = \min(a^2, b^2).
\]

10. Show that if \(a = \max(a, b, c) \), then \(-a = \min(-a, b, c) \).

If \(a = \max(a, b, c) \), \(a \geq b \), \(a \geq c \),

then \(-a \leq -b \) and \(-a \leq -c \).

So,

\(-a = \min(-a, b, c) \).

11. Denote \(\min\left\{ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \ldots, \frac{a_n}{b_n} \right\} \) by \(\min\left\{ \frac{a_r}{b_r} \right\} \) and similarly for \(\max \).

If \(b_r > 0 \), \(r = 1, 2, \ldots, n \), prove that

\[
\min\left\{ \frac{a_r}{b_r} \right\} = \frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n} \leq \max\left\{ \frac{a_r}{b_r} \right\}.
\]

Denote \(\min\left\{ \frac{e_r}{b_r} \right\} \) by \(\frac{e_k}{b_k} \), \(1 \leq k \leq n \), and

\[
\max\left\{ \frac{e_r}{b_r} \right\} \text{ by } \frac{e_\ell}{b_\ell}, \ 1 \leq \ell \leq n.
\]

Then, \(\frac{a_k}{b_k} \leq \frac{a_r}{b_r} \), \(r = 1, 2, \ldots, n \).

Or, \(\frac{a_k}{b_k} \leq \frac{a_r}{b_r} \), for all \(r \). Adding,

\[
a_k b_1 + a_k b_2 + \ldots + a_k b_n \leq b_k a_1 + b_k a_2 + \ldots + b_k a_n.
\]

Factoring and dividing, we obtain

\[
\min\left\{ \frac{a_r}{b_r} \right\} = \frac{a_k}{b_k} \leq \frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n}.
\]

In the same way the remaining inequality may be obtained.
12. Prove that
\[
\frac{1}{n} < \frac{1 + 2 + \ldots + n}{(n)^2 + (n-1)^2 + \ldots + 1} \leq 1 \text{ for } n = 1, 2, 3, \ldots, n.
\]

Use the inequality obtained in Number 11, with
\[
\frac{a}{r^2} = \frac{r}{s^2} \quad \text{or} \quad \frac{1}{r^2} = \frac{1}{s^2}.
\]

13. (a) Prove directly from the properties of order for \(e > 0 \) that if \(-e < x < e\) then \(|x| \leq e\). Conversely, if \(|x| < e\), then \(-e < x < e\).

Suppose \(-e \leq x \leq e\). If \(0 < x\), \(|x| = x \leq e\).
If \(x < 0\), \(|x| = -x\). But \(-e \leq x\) implies \(-x \leq e\). So,
\[-x = |x| \leq e.\]

Conversely, suppose \(|x| \leq e\). If \(0 \leq x\), \(|x| = x\), so \(-e < 0 \leq x \leq e\), thus \(-e \leq x \leq e\). Similarly for \(x < 0\).

(b) Prove that if \(x\) is an element of an ordered field and if \(|x| < e\) for all positive values \(e\), then \(x = 0\).

If \(x \neq 0\), take \(e = |x|\). We then have the contradictory statements \(|x| = |x|\) and \(|x| < |x|\).

14. (a) Prove that \(|ab| = |a| \cdot |b|\).

Just consider the three cases
\[ab > 0, \quad ab = 0, \quad ab < 0.\]
(b) Prove that \(|\frac{a}{b}| = |a| \cdot |\frac{1}{b}| \), \(b \neq 0 \).

From part (a) we have

\[
\left| \frac{a}{b} \right| = \left| a \cdot \frac{1}{b} \right| = |a| \cdot \left| \frac{1}{b} \right|.
\]

and

\[
|b| = \left| \frac{1}{b} \right| = \left| \frac{b}{b} \right| = 1.
\]

Hence

\[
\left| \frac{a}{b} \right| = |a| \cdot \left| \frac{1}{b} \right| = |a| \cdot \frac{1}{|b|}.
\]

Therefore

\[
\left| \frac{a}{b} \right| = |a| \cdot \frac{1}{|b|} = \frac{|a|}{|b|}.
\]

15. Prove that \(|x - y| \leq |x| + |y| \).

In \(|a + b| \leq |a| + |b| \), set \(a = x \), \(b = -y \).

16. Under what conditions do the equality signs hold for

\[
|a| \sim |b| \leq |a + b| \leq |a| + |b|?
\]

Equality occurs only if \(a = b = 0 \).

17. If \(0 < x < 1 \), we can multiply both sides of the inequality \(x < 1 \) by \(x \) to obtain \(x^2 < x \) (and similarly, we can show that \(x^3 < x^2 \), \(x^4 < x^3 \), and so on). Use this result to show that if \(0 < |x| < 1 \),

then

\[
|x^2 + 2x| \leq |x^2| + |2x| \leq |x| + |2x| = 3|x|,
\]

\[
\left\{ |x^2| = |x|^2 < |x| \text{ since } 0 < |x| < 1 \right\}.
\]

18. Prove the following inequalities

(a) \(x + \frac{1}{x} \geq 2 \), \(x > 0 \).
Since \((x - 1)^2 \geq 0\), we have
\[x^2 - 2x + 1 \geq 0 \text{ or } x^2 + 1 \geq 2x. \]

Since \(-\frac{1}{x} > 0\), we obtain \(x + \frac{1}{x} \geq 2\).

(b) \(x + \frac{1}{x} \leq -2\), \(x < 0\).

\((x + 1)^2 \geq 0\). So \(x^2 + 2x + 1 \geq 0\), or \(x^2 + 1 \geq -2x\).

Since \(x < 0\), \(\frac{1}{x} < 0\), so \(\frac{1}{x} (x^2 + 1) \leq \frac{1}{x} (-2x)\) or \(x + \frac{1}{x} \leq -2\).

(c): \(|x + \frac{1}{x}| \geq 2\), \(x \neq 0\).

From (a) we have, \(x + \frac{1}{x} \geq 2\) for \(x > 0\)
or \(|x + \frac{1}{x}| \geq 2\) for \(x > 0\).

From (b) we have, \(-|x + \frac{1}{x}| \geq 2\) for \(x < 0\)
or \(|x + \frac{1}{x}| \geq 2\) for \(x < 0\).

Thus, \(|x + \frac{1}{x}| \geq 2\) for \(x \neq 0\).

19. Prove: \(x^2 \geq |x||x|\) for all real \(x\).

If \(x \geq 0\), \(x = |x|\), and \(x^2 = |x|^2\).

If \(x < 0\), \(|x||x| < 0 < x^2\).

20. Show that \(|x - a| < \frac{|a|}{2}\), then \(\frac{|a|}{2} < |x| < \frac{3|a|}{2}\) for all \(a \neq 0\).

Using the inequalities of 13(a), we obtain
\[|x - a| < \frac{|a|}{2} \rightarrow -\frac{|a|}{2} < x - a < \frac{|a|}{2}. \]
21. Prove that for positive \(a \) and \(b \), where \(a \neq b \), the following inequality holds:

\[
\frac{b - a}{2(a + b)} < \frac{1}{2} \sqrt{ab} \quad \text{or} \quad \frac{b - a}{2(a + b)} < \frac{1}{2} \frac{\sqrt{ab}}{\sqrt{ab}}
\]

To avoid the square root, let \(a = \frac{m^2 - n^2}{2} \) and \(b = \frac{m^2 + n^2}{2} \), then we have:

\[
\frac{\frac{m^2 - n^2}{2} - \frac{m^2 + n^2}{2}}{2(\frac{m^2 + n^2}{2})} < \frac{1}{2} \frac{\sqrt{\frac{m^2 - n^2}{2} \cdot \frac{m^2 + n^2}{2}}}{\sqrt{\frac{m^2 - n^2}{2} \cdot \frac{m^2 + n^2}{2}}}
\]

Both of these inequalities are

By way of example we show one of the equivalent cases:

(a) The point \(x \) is less than the line \(a \).

\[|x + 2| < 1\]

(b) The point \(x \) is less than the origin.

\[|x - 1| < 1\]

2. In each case, determine if the condition that \(x \) is in the interval:

(a) \((-2, -1)\)

(b) \((-1, 5)\)

(c) \([5.9, 6.1]\)

(d) \([-2.95, -2.05)\)
3. Find the interval or deleted interval to which all values of \(x \) must belong for each of the following:

(a) \(|x + 2| < 1 \) \((-3, -1)\)

(b) \(0 < |x + 2| < 1 \) \((-3, -1)\) with \((-1, 0)\) deleted.

(c) \(|x + a| < \frac{|a|}{2} \) \((-\frac{1}{2}, \frac{1}{2})\)

(d) \(0 < |x + a| < \frac{|a|}{2} \) \((-\frac{1}{2}, \frac{1}{2})\) with \(a \neq 0 \) deleted.

4. (a) A set of points \(A \) is said to be bounded if there is a number \(M \) such that \(|x| < M \) for all \(x \) in the set. Which of the intervals in Number 3 are bounded? Which are not? Prove your assertions.

They are all bounded:
(a) and (b) lie in the set.
(c) and (d) lie in the set.

There is an upper bound if a set is bounded.
(a) and (b) have an upper bound. (c) and (d) do not have an upper bound.
Prove your assertions.
5. For each of the following statements, give the interval or intervals on which the statement is true.

(a) \(x^2 - x - 6 > 0 \)

or \((x - 3)(x + 2) > 0\). Thus \(x-3\) and \(x+2\) must both be greater, or both less, than zero:

(1) \(-4 \leq x \leq 3\)

(2) \(-\infty < x < -2\)

(3) \(3 < x < \infty\)

Three possibilities:

(1) All three factors positive.
(2) Only one factor negative.
(3) One factor is 0.

So, either:

(1) \(-4 \leq x \leq 3\)

or \(-\infty < x < -2\)

or \(3 < x < \infty\)
6. In each of the following, for the given value of a, find a neighborhood of a where the given inequality holds.

(a) $a = \frac{3}{2}$, $|2x - 3| < \frac{3}{2}$, $|x - \frac{3}{2}| < \frac{1}{14}$

(b) $a = \frac{\pi}{2}$, $|\sin x - 1| \leq \frac{1}{\sqrt{2}}$

We then have:

$|\sin x - 1| \leq \frac{1}{\sqrt{2}}$

Thus, $|x - \frac{\pi}{2}| \leq \frac{1}{\sqrt{2}}$

(c) $a = \frac{\pi}{4}$, $|\sin x - 1| \leq \frac{1}{\sqrt{2}}$

(d) $a = \frac{\pi}{6}$, $|\sin x - 1| \leq \frac{1}{\sqrt{2}}$

(e) $|x - 1| < \frac{2}{3}$
TC Al-5. Completeness of the Real Number System. The Separation Axiom.

The completeness of the real number system is a consequence of the Separation Axiom. We note that in the axiom the sets A and B are required to be disjoint; e.g.,

\[A = \{ x : x \in U \} \quad \text{and} \quad B = \{ y : y \in V \} \]

is the unique separation number of U and V. In other words, the separation axiom does not require that A and B be disjoint. Any separation number of A and B may be considered a rational number.

The completeness of the real number system plays an important part in the rigorous development of the field of analysis. We have used an algebraic development upon the Separation Axiom because of its intuitive geometric content. It asserts the absence of gaps in the line, and the Fundamental Theorem of Integral Calculus, the least upper bound property of the real number system, and the Separation Axiom are all logically equivalent. It is a matter of choice, and often of convenience, which of these statements to use.

We have approached the real number system from a purely analytic point of view. For example, we define the set of real numbers as the completion of the set of rational numbers in a certain sense. This approach is useful in that it avoids any mention of continuity, and says nothing about the real numbers other than that they form a complete field. However, it is often convenient to use the model of the real numbers as intervals or Dedekind cuts. This latter approach is equally valid and leads to the same conclusions.
2. Prove Corollary 2 to the Least Upper Bound Principle. A set of numbers which is bounded below has a greatest lower bound.

For the proof of Corollary 2, let \tilde{A} be a set of numbers and let \tilde{E} be the set of lower bounds of \tilde{A}. The set $\tilde{A} = (\ldots \tilde{A})$ has as the set of its upper bounds, \tilde{E}, the greatest lower bound \tilde{M} of \tilde{A} is given. \tilde{M} is the greatest lower bound of \tilde{A}.

3. (a) Prove if A and B
4. (a) Prove for every real number \(a \), that there is an integer \(n \) greater than \(a \) (Principle of Archimedes).

Suppose there were no integer greater than \(a \). Then, since the integers would have an upper bound \(a \), they would have a least upper bound \(M \). The number \(M + \frac{1}{2} \) would not be an upper bound since \(M \) is least. Consequently there is an integer \(n > M - \frac{1}{2} \).

Then \(n + 1 > M + \frac{1}{2} > M \), contrary to the definitions of integers and least upper bound.

(b) Prove that given any \(\epsilon > 0 \) there is a positive integer \(n \) such that

\[
0 < \frac{1}{n} < \epsilon
\]

5. (a) We define the infinite decimal

\[
0. \overline{c_0 c_1 c_2 \ldots}
\]

where \(c_0 \) is an integer and \(c_1, c_2, \ldots \) are digits as in our decimal number. Prove that the preceeding statement is true for all unique real numbers.
Given a real number \(r \) we define its decimal representation recursively in terms of the integer part function \([x]\) as follows:

\[c_0 = [r] \]

\[c_n = \left(10^n (r - c_0 - \frac{c_1}{10} - \frac{c_2}{10^2} - \ldots - \frac{c_{n-1}}{10^{n-1}}) \right) \]

Show that the inequality in part (a) is satisfied for this choice of \(c_n \). Show also that decimals consisting entirely of \(9 \)'s from some point on are avoided. (Thus, we obtain \(2 = 0.999\ldots \) but not \(2 = 1.999\ldots \))

Since \(x - 1 < [x] \),

\[(1)\quad 10^n (r - c_0 - \frac{c_1}{10} - \frac{c_2}{10^2} - \ldots - \frac{c_{n-1}}{10^{n-1}}) \quad \text{is equivalent}
\]

\[(2)\quad 0 < c_n \quad \text{but not} \quad 2 = 1.999\ldots \]

(Note the similarity.)

Next, we establish a mathematical induction argument. For \(c_1 \), we have

\[c_1 = \frac{c_1}{10} \]

\[c_1 = \frac{c_1}{10} = \ldots \]

From \((1)\) we have

\[c_n = \frac{c_n}{10} \]

\[c_n = \frac{c_n}{10} = \ldots \]

Finally, \(c_n = 9 \) implies

\[9 = 9.999\ldots \]

\[9 = 9.999\ldots \]
Now, let us suppose that \(r \) can be represented as a decimal with an infinite string of 9's

\[r = d_0.d_1d_2 \ldots d_{p-1}d_p999 \ldots \]

where we may without loss of generality suppose that either \(p = 0 \) or \(d_p \neq 9 \) (i.e., that the last decimal place where a 9 does not appear, if there is any, is the \(p \)-th place) consider the number

\[p = 1 \frac{1}{10} \frac{1}{10} \frac{1}{10} \ldots \]

Take \(d_p = p \) for \(p = 1 \). Let \(r \) lie between the numbers

\[d_0 \frac{1}{10} \frac{1}{10} \frac{1}{10} \ldots \]

and

\[d_0 \frac{1}{10} \frac{1}{10} \frac{1}{10} \ldots \]

Since the \(\frac{1}{10} \) above can be written as a unique decimal, it follows that \(p = r \). Now it remains to show that this yields a unique decimal, since (c) is equivalent to the definition of \(d_n \) by means of the recursive equality \(d_n = d_{n-1} \) for \(n \neq p \), \(d_p = p \). Consider that equality holds on the left in (c) for the representation then the terminating decimal.

Fixed value of \(p \) for all \(n \) such that the smallest positive integer satisfies the condition of the preceding theorem, then the decimal consists of \(p \) digits. Thus

\[\frac{1}{10} \frac{1}{10} \frac{1}{10} \ldots \]

by \(n \) digits.

(hint: Consider the smallest positive integer that satisfies the conditions of the preceding theorem.)
Let \(r = c_0 \cdot c_1 \cdots c_q b_1 b_2 \cdots b_p \).

Then \(r = \frac{\gamma}{10^q} + \frac{\beta}{10^{q+q}} + \frac{\gamma}{10^{2q+q}} + \cdots \),

where \(\gamma = 10^q (c_0 \cdot c_1 \cdots c_q) \),

and \(\beta = 10^p (b_1 \cdot b_2 \cdots b_p) \).

This latter representation can be written

with common ratio \(\frac{1}{10^p} \),

\[
\begin{align*}
r &= \frac{1}{10^q} \frac{1}{10^{q+q}} \cdots \\
&= \frac{1}{10^q} \frac{1}{10^{q+q}} \cdots \\
&= \frac{1}{10^q(1+1+\cdots)}.
\end{align*}
\]

are integers.

\(\Pi(b) \) Prove that each "terminating" decimal is in polynomials if and only if the sequence is considered as being represented in terms of the co-efficients of the decimal.

In each representation, the co-efficients are found in terms of the co-efficients of the decimal.

\[a_0 + a_1 \cdot 10^{-1} + a_2 \cdot 10^{-2} + \cdots \]

Let:

<table>
<thead>
<tr>
<th>(a_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

\(a_{i+1} = a_i \cdot 10 \)
Compare this procedure with the "long division" process:

\[\begin{array}{rrrrr}
\hline
 & 1 & 4 & 8 & 7 \\
\hline
\times & 7 & & & \\
\hline
 & 0 & 0 & 0 & 0 0 0 0 0 0 \\
\hline
 & 2 & 8 & 0 & \\
\hline
 & 2 & 0 & 0 & & 2 0 0 \\
\hline
 & & & 6 & 0 & 1 4 0 \\
\hline
 & & & 6 & 0 & \\
\hline
 & & & & 2 0 0 \\
\hline
 & & & & 2 0 0 \\
\hline
 & & & & 0 0 0 0 \\
\hline
0
\end{array} \]

Note that we stop with a remainder \(1\) as we did before. We would get a repetition of the same digits if we were to continue the division process.

\(\frac{1}{7} \)

In general, we shall have \(a_k \cdots a_2 a_1 a_0 \) which is repeated since there are only \(b \) different possible remainders. The argument given here is based on the division algorithm which must eventually repeat unless all possible remainders must occur.

Let \(q = \frac{a_k \cdots a_2 a_1 a_0}{b} \) where \(a_0, a_1, \ldots, a_k \) are digits, \(q \) is the quotient and \(b > 1 \). Let \(r \) be the remainder. Then we have given the initial number \(b \) is...
whence

\[0 \leq 10^k s - m \alpha_k - m \]

Consequently, on dividing \(10^k s \) by \(m \) we get as quotient \(k \) and the remainder \(r \). Since \(m \) can only be one of the integers \(1, 2, \ldots, m \), it follows that at least two of the integers \(1, 2, \ldots, m \) must be the same. We now prove that the fraction \(s \) is periodic with the period \(p = 1 \).
Prove for every positive prime \(\alpha \) other than 2 and 5 that there exists an integer, all of whose digits are ones, for which \(\alpha \) is a factor; i.e., \(\alpha \) is a factor of some number of the form
\[10^n + 10^{n-1} + 10^{n-2} + \ldots + 10 + 1. \]

Let \(\alpha \) be the given prime. We can write (from part (a))
\[
\frac{1}{\alpha} = \frac{(10^\beta - 1)\gamma + \delta}{10^\gamma(10^\beta - 1)}
\]
or
\[
\alpha((10^\beta - 1)\gamma + \delta) = 10^\gamma(10^\beta - 1).
\]

Since \(\alpha \) is neither 2 nor 5 it follows that \(\alpha \) is a factor of
\[10^\beta - 1 = 9(10^\beta - 1, \ldots, 10 + 1). \]

If \(\alpha \neq 3 \), then \(\alpha \) must be a factor of the expression in parenthesis. If \(\alpha = 3 \), then \(\alpha \) is a factor of \(10^3 + 10 + 1 \). In either case, the result is proved.

7. (a) Consider a polynomial with integer coefficients:
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0. \quad (a_n \neq 0) \]

Prove that if \(\frac{p}{q} \) is a rational root of this polynomial, then \(p \) is a factor of \(a_n \) and \(q \) is a factor of \(a_0 \).

If \(\frac{p}{q} \) is a root, then
\[a_n \left(\frac{p}{q}\right)^n + \ldots + a_1 \left(\frac{p}{q}\right) + a_0 = 0. \]

Since \(n \) is a multiple of \(q \),
\[a_n p^n + \ldots + a_1 p q^{n-1} = 0, \]

It follows that \(p \) is a factor of \(a_n \). Since \(p \) and \(q \) have no common factors, \(q \) is a factor of \(a_0 \).

(b) Show that \(x^2 + x + 1 \) has irrational roots.
By the preceding result the only conceivable rational roots are 1 and -1 and neither is a root.

(c) Prove that if \sqrt{n} is rational then it is integral.

A rational root $\frac{a}{q}$ of $x^2 - n = 0$ must be integer, since $q \neq 1$.

(d) Prove that $\sqrt{3} - \sqrt{2}$ is irrational.

Set $a = \sqrt{3} - \sqrt{2}$. Squaring we obtain

$$a^2 = 3 - 2 \sqrt{6}$$

whence

$$a^2 = 1$$

and

$$a = \pm 1$$

which is a contradiction.

8. A also obeys the separation of A.

Let α, β be in A, then $\alpha \beta$ is in A.

Now suppose a, β in A, then $a - \beta$ is in A.

and a
There is one more case; for every ε, there exist $\alpha, \beta \in \mathbb{A}, \mathbb{B}$ such that $\beta - \alpha \leq \varepsilon$, but for no α, β does $\alpha = \beta$. We first find pairs of numbers (α_n, β_n) such that $\beta_n - \alpha_n < \frac{1}{n}$ and

$\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n \leq \ldots$, $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_n \geq \ldots$. Setting $\varepsilon = 1$, there exist (α_1, β_1) such that $\beta_1 - \alpha_1 < 1$. Setting $\varepsilon = \frac{1}{2}$, there exist (α_2, β_2) such that $\beta_2 - \alpha_2 < \frac{1}{2}$. Then, either $\alpha_2 > \alpha_1$ or $\beta_2 < \beta_1$. If $\alpha_2 > \alpha_1$ and $\beta_2 < \beta_1$, then we have found $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$ as desired. If either $\alpha_2 < \alpha_1$ or $\beta_2 > \beta_1$, say $\alpha_2 < \alpha_1$, then $\beta_2 - \alpha_1 < \frac{1}{2}$ and the pairs $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$ satisfy the condition. At every step, such a choice can be made, and so the pairs (α_n, β_n) exist.

Now, by the Nested Interval Principle, there is some s contained in all $[\alpha_n, \beta_n]$. We choose s so that s separates A and B. Else, either $s > \alpha$ and $s > \beta$ or $s < \beta$ and $s < \alpha$, say the former. But for some n large enough, $\beta_n - \alpha_n < \varepsilon$. So s is not in $[\alpha_n, \beta_n]$. Similarly for $s < \alpha$. So s is a separation number for A and B.

9. Prove that an ordered field in which the Least Upper Bound Principle holds also obeys the Separation Axiom.

Take two sets, A and B, for which every member of A is less than or equal to each member of B. By the Least Upper Bound Principle, there exists a least upper bound s for A such that $s \geq a, a \in A$ and $s \leq b, b \in B$ any other upper bound for A. In particular, $s \leq b, b \in B$, since each member of B is an upper bound for A. So s is a separation number for A and B and the Separation Axiom holds.
Appendix 2

FUNCTIONS AND THEIR REPRESENTATIONS

TC A2-l. Functions.

Functions whose domains and ranges are subsets of real numbers are usually called "real valued functions of a real variable." In Chapter 11 we shall talk about vector valued functions of a real variable. In Chapter 14 we shall discuss sequences of real numbers, i.e., real valued functions of an integer variable. In the same chapter we also have sequences of functions, i.e., function-valued functions of an integer variable.

Example A2-1b. The statement that the range of the function \(f : x \rightarrow x^2 \) is the set of nonnegative real numbers is equivalent to the statement that every positive number \(p \) has a square root. This can be proved in the following way. Let \(A \) be the set of nonnegative numbers whose squares are less than \(p \). A is not empty since \(0 \) is in \(A \). A is bounded above, say by \(p + 1 \). Thus, \(A \) has a least upper bound, \(s \). (Section 11.6). We cannot have \(s^2 < p \), for, if \(h < 1 \), then

\[
(s + h)^2 = s^2 + 2sh + h^2
\]

\[
= s^2 + h(2s + h)
\]

\[
< s^2 + h(2s + 1)
\]

\[
< s^2 + h(2p + 3).
\]

Thus, if

\[
h < \min(1, \frac{p - s^2}{2p + 3}),
\]

then \((s + h)^2 < p\) and \(s \) could not be an upper bound for \(A \). Similarly, \(s^2 > p \) is impossible, for if

\[
0 < h < \frac{s^2 - p}{2s},
\]

then \((s - h)^2 > p\), and thus \(s \) could not be the least upper bound of \(A \). Hence \(s^2 = p \).
Example 2-1e. We can define many other functions whose graphs are contained in the graph of \(x^2 + y^2 = 25\); we need only assign each \(x\) either \(\sqrt{25 - x^2}\) or \(-\sqrt{25 - x^2}\). For example, for any \(a\), \(-5 \leq a < 5\), we have,

\[
\begin{align*}
\mathcal{F}_a : x &\rightarrow \begin{cases} \\
\sqrt{25 - x^2}, & -5 \leq x \leq a \\
-\sqrt{25 - x^2}, & a < x \leq 5,
\end{cases} \\
\text{or} \\
\mathcal{F}_a : x &\rightarrow \begin{cases} \\
\sqrt{25 - x^2}, & x \text{ rational, } |x| \leq 5 \\
-\sqrt{25 - x^2}, & x \text{ irrational, } |x| < 5
\end{cases}
\end{align*}
\]

However, the examples in the text are distinguished by the property that they are the only continuous functions defined on \([-5, 5]\) whose graphs are contained in the graph of \(x^2 + y^2 = 25\).

Solutions Exercise A2-1

1. Below are given examples of associations between elements of two sets. Decide whether each example may properly represent a function. This also requires you to specify the domain and range for each function. Note that no particular variable has to be the domain variable, and also some of the relations may give rise to several functions.

Note that answers supplied are not necessarily the only correct ones. They are, like the examples, merely samples of the kind of ideas that are possible.

(a) Assign to each nonnegative integer \(n\) the number \(2n - 5\).

This is a function with domain the set of nonnegative integers and range the set of odd integers not less than \(-5\).

(b) Assign to each real number \(x\) the number \(7\).

A constant function. Domain the set of real numbers. Range the set consisting of the one element, \(7\).

(c) Assign to the number 10 the real number \(y\).

Not a function.
(d) Assign to each pair of distinct points in the plane the distance between them.

A function whose domain is the set of all pairs of distinct points in the plane and whose range is the set of positive real numbers.

(e) \(y = -3 \) (for all \(x \))

May represent a function (constant), whose domain is the set of real numbers. The range is \((-3)\).

(f) \(x = 4 \) (for all \(y \) and \(z \)).

Not a function if \(x \) is considered the domain variable. It is a function if the set of ordered pairs \((y, z)\) is considered the domain with \(y \) and \(z \) real numbers. The range is \((4)\).

(g) \(x + y = 2 \)

A function, domain = \(\{x : x \text{ is a real number}\} \) and range = \(\{y : y = 2 - x\} \), or vice versa.

(h) \(y = 2x^2 + 3 \)

A function, with domain the set of all real numbers and range = \(\{y : y \geq 3\} \).

If \(y \) is taken as the domain variable, the range set must be restricted to avoid ambiguity, and if the range is restricted to reals, the domain may have to be restricted to real numbers \(\geq 3 \).

(i) \(y^2 - 4 = x \)

If \(x \) is an element of the domain, this equation does not define a function explicitly. But \(f : x \rightarrow y = \sqrt{x + 4}, x \geq -4 \), and \(g : x \rightarrow y = -\sqrt{x + 4}, x \geq -4 \), are functions whose ranges are the nonnegative and nonpositive real numbers, respectively. Also \(h : y \rightarrow x = y^2 - 4, y \leq -2 \) or \(y \geq 2 \), is a function whose range is \(\{x : x \geq -4\} \).
(j) \(y \leq 2x - 1 \)

Not a function.

(k) \(f(x) = \sqrt[3]{16 - x^2} \)

A function. Usually, the domain is restricted to the set \(\{ x : -4 \leq x \leq 4 \} \) so that the range will be real numbers, here the interval \([-4, 0]\). Complex numbers are not used in this course in the calculus.

(l) \(x^2 + y^2 = 16 \)

This equation does not represent a function explicitly. See part (k) for one possible function obtained from this equation.
3. A function \(f \) is completely defined by the table:

\[
\begin{array}{c|cccc}
 x & 0 & 1 & 2 & 3 & 4 \\
 f(x) & 3 & 5 & 9 & 13 & 5
\end{array}
\]

(a) Describe the domain and range of \(f \).

Domain = \(\{0, 1, 2, 3, 4\} \), Range = \(\{3, 5, 9, 13, 5\} \).

(b) Write an equation with suitably restricted domain that defines \(f \).

\[f(x) = 4x - 3, \quad x \text{ an integer, and } 0 \leq x \leq 4. \]

4. If \(f : x \mapsto x^2 + 3x - 5 \), find

(a) \(f(0) = 3 \)

(b) \(f(2) = 6 \)

(c) \(f(3) = 6 \)

(d) \(f(1) = 3 \)

(e) \(f(3) = 3 + 3 - 5 = 5 \)

(f) \(f(3) = 4 \)

(g) \(f(2) = 2 \)

(h) \(f(2) = 2 \)

(i) \(f(1) = 1 \)

(j) \(f(1) = 1 \)
Given the function \(f : x \rightarrow x \) and \(g : x \rightarrow \frac{x^2}{x} \). If \(x \) is a real number, are \(f \) and \(g \) the same function? Why or why not?

They are NOT the same function, since \(x = 0 \) is not in the domain of \(g \).
Given the functions \(f : x \rightarrow x + 2 \) and \(g : x \rightarrow \frac{x^2 - 1}{x - 2} \). If \(x \) is real, are \(f \) and \(g \) the same function? Why or why not?

They are not the same function, since \(x = 2 \) is not in the domain of \(g \) but is in \(f \).

1. What number or numbers have the image 10 under the following mappings?

 (a) \(f : x \rightarrow 2x \) \quad x = 5 \)

 (b) \(g : x \rightarrow x^2 \) \quad x = \pm \sqrt{10} \)

 (c) \(h : x \rightarrow \sqrt{x^2 + 36} \) \quad x = \pm 8 \)

 (d) \(\alpha : x \rightarrow |x - 4| \) \quad x = 14, -6 \)

 (e) \(\phi : x \rightarrow [x] \) \quad 10 \leq x < 11 \)

2. Which of the following statements are always true for any function \(f \), assuming that \(x_1 \) and \(x_2 \) are in the domain of \(f \)?

 (a) If \(x_1 = x_2 \), then \(f(x_1) = f(x_2) \).

 (b) If \(x_1 \neq x_2 \), then \(f(x_1) \neq f(x_2) \).

 (c) If \(f(x_1) = f(x_2) \), then \(x_1 = x_2 \).

 (d) If \(f(x_1) \neq f(x_2) \), then \(x_1 \neq x_2 \).

 (a) and (d) are always true.

3. If \(f(x) = |x| \), which of the following statements are true for all real numbers \(x \) and \(t \)?

 (a) \(f \) is an odd function.

 (b) \(f(x^2) = (f(x))^2 \)

 (c) \(f(x - t) \leq f(x) - f(t) \)

 (d) \(f(x + t) \leq f(x) + f(t) \)

 (b) and (d) are true statements.
12. Which of the following functions are even, which are odd, and which are neither even nor odd?

(a) \(f : x \rightarrow 3x \) odd
(b) \(f : x \rightarrow -2x^2 + 5 \) even
(c) \(f : x \rightarrow x^2 - 4x + 4 \) neither
(d) \(f : x \rightarrow -2x + 1 \) neither
(e) \(f : x \rightarrow x^3 + 4 \) neither
(f) \(f : x \rightarrow x^3 - 2x \) odd
(g) \(f : x \rightarrow 2^{1/x} \) neither
(h) \(f : x \rightarrow 2^{1/x^2} \) even

13. Which of the following graphs could represent functions?

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

\[372^\circ\]

\[370^\circ\]
Sketch the graphs of

(a) \(g : x \rightarrow -f(x) \)

(b) \(g : x \rightarrow f(-x) \)

(c) \(g : x \rightarrow |f(x)| \)

(d) \(g : x \rightarrow f(|x|) \)

14. Suppose that \(f : x \rightarrow f(x) \) is the function whose graph is shown.

\(f \), \(a \), \(d \), \(e \) and \(f \) could represent functions.
15. A function \(f \) is defined by \(f(x) = \begin{cases} \frac{x}{|x|} & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases} \)

Identify this function and sketch its graph.

The signum function.

16. Sketch the graph of each function, specifying its domain and range. In each case, the domain is the set of all real numbers.

(a) \(f : x \rightarrow \frac{x}{|x|} \)

Range: all nonnegative reals.

(b) \(f : x \rightarrow -|x| \)

Range: all nonpositive reals.
Consider separately the three possibilities:

1. $0 < x$,
2. $0 \leq x \leq 1$,
3. $x > 1$.

\(f : x \rightarrow |x| - x \)

Range: all nonnegative reals.

\(f : x \rightarrow |x| + |x - 1| \)

\(f : x \rightarrow [x] \)

\(f : x \rightarrow \text{sgn } x \)

\(f : x \rightarrow x[x] \)

\(f : x \rightarrow x^{[x]} \)

Range: all integers.

Range: all nonnegative reals.

Range: $y : y \geq 1$ for $x \geq 0$.

Range: $y : y = 0$ or $y > \frac{1}{2}$.

Range: $[-1, 0, 1]$.

Range: $y : y \geq 0$ except $y = n^2 - n$, where n is an integer ≥ 2.

375

382
Sketch the graphs of the functions in Exercises 17 to 19. For those functions which are periodic, indicate their period. Indicate those functions which are even or odd.

17. (a) $f : x \rightarrow x - \left[x - \frac{1}{2}\right]$
(b) $f : x \rightarrow 2x^{2} - \left[2x^{2}\right]$
18. (a) \(f : x \rightarrow a - [ax] \quad a > 0 \)

Periodic: \(p = \frac{1}{a} \).

Note that the slope of each piece is \(a \).
Note that \(f(x) = g(x) + h(x) \) where \(g(x) = 2x - \lfloor 2x \rfloor \) and \(h(x) = 3x - \lfloor 3x \rfloor \), two periodic functions like that of part (a).

Functions \(g \) and \(h \) have periods \(\frac{1}{2} \) and \(\frac{1}{3} \), respectively; hence \(g + h \) is periodic and its period is the least common integer multiple of \(\frac{1}{2} \) and \(\frac{1}{3} \), which is \(1 \); i.e., \(2 \cdot \frac{1}{2} = 3 \cdot \frac{1}{3} = 1 \). In general, if two periodic functions \(f_1 \) and \(f_2 \) have periods \(p_1 \) and \(p_2 \), respectively (\(p_1, p_2 \) positive real numbers), then if there exist integers \(n_1 \) and \(n_2 \) such that \(n_1 p_1 = n_2 p_2 \), then \(f_1 + f_2 \) is periodic with period \(n_1 p_1 \).

Note also that the slope of each piece of the graph of \(f \) is \(\sqrt{2} \).

\[
\begin{align*}
(x) & : x \rightarrow x(\sqrt{2} + 1) - \lfloor x\sqrt{2} \rfloor - \lfloor x \rfloor,
\end{align*}
\]

In this case, \(f(x) = g(x) + h(x) \) where \(g(x) = x\sqrt{2} - \lfloor x\sqrt{2} \rfloor \) and \(h(x) = x - \lfloor x \rfloor \). The periods of \(g \) and \(h \) are \(\frac{1}{\sqrt{2}} \) and \(1 \) respectively, and since these numbers are incommensurable, \(f = g + h \) is not a periodic function. Note that the points of discontinuity occur at the integers and at integer multiples of \(\frac{1}{\sqrt{2}} \). The slope of each piece of the graph of \(f \) is \(1 + \sqrt{2} \).
This function is also called the Heaviside Unit function and is designated by
\[f : x \rightarrow H(x). \]

(b) \[f : x \rightarrow H(x) + H(x - 2) \]

c) \[f : x \rightarrow H(x) \cdot H(x - 2) \]

d) \[f : x \rightarrow (x - 2)^2 \cdot H(x) \]

e) \[f : x \rightarrow H(x) + H(x - 2) + H(x - 4) \]
20. If \(f \) and \(g \) are periodic functions of periods \(m \) and \(n \), respectively, \((m\ \text{and}\ n, \text{integers})\), show that \(f + g \) and \(f \cdot g \) are also periodic. Give examples to show that the period of \(f + g \) can either be greater or less than both of \(m \) and \(n \). Repeat the same for the product \(f \cdot g \).

(Note: The problem in the text lacks the condition "\(m \) and \(n \), integers.")

Since any integer multiple of a period is also a period, \(f + g \) and \(f \cdot g \) are periodic with period \(mn \). However, this may or may not be the fundamental period.
If we choose \(f(x) = \sin m \pi x \) (period \(2 \)) and \(g(x) = \sin \frac{2m \pi x}{3} \) (period \(3 \)), then \(f + g \) and \(f \cdot g \) both have period 6.

If, however, we choose \(f(x) = \sin \frac{2m \pi x}{3} \) (period \(3 \)) and
\(g(x) = \sin \frac{2m \pi x}{3} \) (period \(6 \)), then \(f + g \) has period 2.

If \(f(x) = 2 \sin m \pi x \) (period \(2 \)) and \(g(x) = \cos m \pi x \) (period \(2 \)), then
\(f(x) \cdot g(x) = \sin 2m \pi x \) which has period 1.

21. (a) Can a function be both even and odd?
Yes; only \(f : x \to 0 \).

(b) What can you say about the evenness or oddness of the product of:

1. an even function by an even function?
2. an even function by an odd function?
3. an odd function by an odd function?

(c) Show that every function whose domain contains \(-x\) whenever it contains \(x\) can be expressed as the sum of an even function plus an odd function.

\[
f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}
\]

22. Find functions \(f(x) \) satisfying \(f(x) - f(-x) = 1 \) (called a functional equation).
Suggestion: Use Number 21(c).

Let \(f(x) = E(x) + \Theta(x) \) where \(E \) is even and \(\Theta \) is odd. Then
\(f(-x) = E(x) - \Theta(x) \). Using the given condition, we have,

\[
E(x) - \Theta(x) = E^2(x) - \Theta^2(x) - 1
\]

Hence, \(E(x) = \sqrt{1 + \Theta^2(x)} \) and
\[
f(x) = \theta(x) + \theta(x) \] ,\(\theta(x) = \tan x \), \(f(x) = \sec x + \tan x \).
Alternatively. Let \(f(0) = 1 \) or \(-1\) and let \(f(x) \) be an arbitrary nonzero function for \(x > 0 \). Then define \(\tilde{f}(x) = \frac{1}{f(x)} \) for \(x > 0 \). This construction gives the entire class of functions satisfying the given functional equation.

23. Prove that no periodic function other than a constant can be a rational function. (Note: A rational function is the ratio of two polynomial functions.)

Our proof is indirect. Assume that there exists a rational function \(\frac{P(x)}{Q(x)} \) (\(P, Q \), polynomials) which has a period \(m > 0 \). Let \(a \) denote the value of the function at \(x = a \) where \(Q(a) \neq 0 \). Now consider the polynomial equation \(P(x) - kQ(x) = 0 \). This polynomial vanishes for \(x = a + nm, n = 0, 1, 2, \ldots \). Since a polynomial of degree \(d \) can have at most \(d \) roots, we get a contradiction, and thus our initial assumption is false.

TC A2-2. Composite Functions.

In the introduction to this section it is suggested that the operation of composition for functions has no counterpart in the algebra of numbers. However, the set \(P(A) \), consisting of all one-to-one mappings of the set \(A \) onto itself, with the operation of composition has the following properties (we denote the inverse of \(f \) by \(f^{-1} \) and the identity function by \(I \)):

(i) \(f, g, h \in P(A) \), then \(gh \in P(A) \).

(ii) \((fg)h = f(gh) \) for all \(f, g, h \in P(A) \).

(iii) \(fI = f = IF \) for all \(f \in P(A) \).

(iv) \(f f^{-1} = f^{-1} f = I \) for all \(f \in P(A) \).

These are the postulates for a group. Thus, \(P(A) \) shares the same algebraic structure with the positive reals under multiplication, with the reals under addition, and many other familiar groups.
1. Given that $f : x \rightarrow x - 2$ and $g : x \rightarrow x^2 + 1$ for all real x, find

(a) $f(2) + g(2) = 3$
(b) $f(2) - g(2) = 1$
(c) $fg(2) = 3$

(d) $gf(2) = 5$
(e) $f(x) + g(x) = x^2 + x - 1$
(f) $f(x) - g(x) = x^2 - 2x + x - 3$
(g) $fg(x) = x^2 - 1$
(h) $gf(x) = x^2 - 2 - 4x + 5$

2. If $f(x) = 3x + 2$ and $g(x) = 5$, find

(a) $fg(x) = f(5) = 17$
(b) $gf(x) = g(3x + 2) = 5$

3. If $f(x) = 2x + 1$ and $g(x) = x^2$, find $fg(x)$ and $gf(x)$. For what values of x, if any, are $fg(x)$ and $gf(x)$ equal?

$fg(x) = 2x^2 + 1$; $gf(x) = 4x^2 + 4x + 1$.

$fg = gf$ when $2x^2 + 1 = 4x^2 + 4x + 1$, or $2x^2 + 4x = 0$, or $x = 0$, or -2.

4. For each pair of functions f and g, find the composite functions fg and gf and specify the domain (and range, if possible) of each.

(a) $f : x \rightarrow \frac{1}{x}$; $g : x \rightarrow 2x - 6$
(b) $f : x \rightarrow \frac{1}{x}$; $g : x \rightarrow x^2 - 4$
(c) $f : x \rightarrow \frac{1}{x}$; $g : x \rightarrow \sqrt{x}$
(d) $f : x \rightarrow x^2$; $g : x \rightarrow \sqrt{x}$
(e) $f : x \rightarrow x^2$; $g : x \rightarrow x^\frac{1}{2}$
(f) $f : x \rightarrow -x^2$; $g : x \rightarrow x^\frac{1}{2}$
Given that \(f(x) = x^2 + 3 \) and \(g(x) = \sqrt{x + 2} \), solve the equation \(f_g(x) = g(x) \).

\[
\begin{align*}
\text{fg}(x) &= |x + 2| + 3 = \sqrt{x + 2} + 5 = g(x) \quad \text{if and only if} \\
x^2 + 4x + 4 + 6|x + 2| + 9 &= x^2 + 5 \quad \text{or} \\
4x + 8 + 6|x + 2| &= 0, \text{ whence} \\
x &= -2.
\end{align*}
\]

Note: The use of "if and only if" requires absolute value.

Alternatively, solve \(x + 5 = \sqrt{x + 2} \) for the set of possible solutions, and then check the results in the original equation.

5. Given that \(f(x) = x^2 + 3 \) and \(g(x) = \sqrt{x + 2} \), solve the equation \(f_g(x) = g(x) \).

\[
\begin{align*}
\text{fg}(x) &= |x + 2| + 3 = \sqrt{x + 2} + 5 = g(x) \quad \text{if and only if} \\
x^2 + 4x + 4 + 6|x + 2| + 9 &= x^2 + 5 \quad \text{or} \\
4x + 8 + 6|x + 2| &= 0, \text{ whence} \\
x &= -2.
\end{align*}
\]

Note: The use of "if and only if" requires absolute value.

Alternatively, solve \(x + 5 = \sqrt{x + 2} \) for the set of possible solutions, and then check the results in the original equation.

6. Solve Problem 5 taking \(g(x) = \sqrt{x + 2} \).

No solutions.
7. Describe functions \(f \) and \(g \) such that \(gf \) will equal:

(a) \(3(x + 2) - 4 \)
\(f(x) = x + 2 \) \(g(x) = 3x - 4 \)

(b) \((2x - 5)^3 \)
\(f(x) = 2x - 5 \) \(g(x) = (2x - 5)^3 \)

(c) \(\frac{x^2 - 4}{2x - 5} \)
\(f(x) = x^2 - 4 \) \(g(x) = \frac{x}{2x - 5} \)

(d) \(\sqrt{x^2 - 4} \)
\(f(x) = \frac{x}{4} \) \(g(x) = \sqrt{x} \)

The answer is not unique. A simple answer may be \(f(x) = x \) and \(g(x) \) equal to function shown. The functions shown above are typical of those used later.

8. For each pair of functions \(f \) and \(g \) find the composite functions \(fg \) and \(gf \) and specify the domain (and range, if possible) of each. Also, sketch the graph of each and give the period (fundamental) of those which are periodic.

(a) \(f : x \rightarrow \frac{1}{x} \); \(g : x \rightarrow \text{sgn}(x - 2) \)
\[fg(x) = |\text{sgn}(x - 2)| \]
\[gf(x) = \text{sgn}(|x| - 2) \]

Domain: all reals; \[\text{Range: } (0, \infty) \]

Domain: all reals; \[\text{Range: } [-1, 0, 1] \]
9. What can you say about the evenness or oddness of the composite of an

 (a) even function of an even function? \text{EVEN}
 (b) even function of an odd function? \text{EVEN}
 (c) odd function of an odd function? \text{ODD}
 (d) odd function of an even function? \text{EVEN}

10. If the function \(f \) is periodic, what can you say about the periodic character of the composite functions \(fg \) and \(gf \) assuming these exist, \(g \) is an arbitrary function (not periodic). Illustrate by examples.

 \(g\) has the same periods as \(f \) and may have a smaller fundamental period.
 \(fg \) need not be periodic.

 Example:
 \[f : x \mapsto \sin x, \quad \text{period} \ 2\pi, \]
 \[g : x \mapsto x^2, \]
 \[gf : x \mapsto (\sin x)^2, \quad \text{period} \ \pi, \]
 \[fg : x \mapsto \sin x^2. \]
II. If the functions \(f \) and \(g \) are each periodic, then the composite functions \(fg \) and \(gf \) (assumed to exist) are also periodic. Can the period of either one be less than that of both \(f \) and \(g \)?

Yes. If \(f(x) = \sin \pi x \), and if \(g \) is defined by

\[
\begin{align*}
g(x) &= \begin{cases}
1, & 0 \leq x < 1 \\
-1, & 1 \leq x < 2
\end{cases}
\end{align*}
\]

and \(g(x + 2) = g(x) \) (\(g \) is called the square wave function). Then \(fg(x) = 0 \) for all \(x \), and \(fg \) has any period \(p > 0 \). (The period of \(gf \) is \(1 \).)

A12. A sequence \(a_0, a_1, a_2, \ldots, a_n, \ldots \) is defined by the equation

\[a_{n+1} = f(a_n), \quad n = 0, 1, 2, 3, \ldots \]

where \(f \) is a given function and \(b_0 \) is a given number. If \(a_0 = 0 \) and \(f : x \rightarrow \sqrt{2 + x} \), then

\[
\begin{align*}
a_1 &= f(a_0) = \sqrt{2} \\
a_2 &= f(a_1) = f(\sqrt{2}) = \sqrt{2 + \sqrt{2}} \\
a_3 &= f(a_2) = f(\sqrt{2 + \sqrt{2}}) = \sqrt{2 + \sqrt{2 + \sqrt{2}}}
\end{align*}
\]

Show that for any \(n \),

(a) \(a_n < 2 \).

By Induction:

For \(n = 1 \), \(a_2 = \sqrt{2 + \sqrt{2}} < 2 \).

Assume \(a_n < 2 \) for \(n = k \).

Then \(a_{k+1} = \sqrt{2 + a_k} < \sqrt{2 + 2} = \sqrt{4} = 2 \) Q.E.D.
A13. If \(a_{n+1} = f(a_n), \ n = 0, 1, 2, \ldots, a_0 = \mu, \) find \(a_n\) as a function of \(\mu\) and \(n\), for the following functions \(f:\)

(a) \(f: x \rightarrow a + bx\)

\[
\begin{align*}
a_0 &= \mu \\
a_1 &= f(a_0) = a + b\mu \\
a_2 &= f(a_1) = a + b(a + b\mu) \\
a_n &= f(a_{n-1}) = a + ab + ab^2 + \ldots + ab^{n-1} + b^n \\
\end{align*}
\]

(b) \(f: x \rightarrow x^m\)

\[
\begin{align*}
a_0 &= \mu \\
a_1 &= \mu^m \\
a_2 &= (\mu^m)^2 = \mu^{m^2} \\
a_n &= (\mu^{m-1})^m = \mu^{m^n} \\
\end{align*}
\]

(b) \[a_n > 2 - \frac{1}{2^{n-1}}, \ n > 0.\]

The statement is true for \(n = 1\). Suppose it is true for \(n = k\),

Then

\[
\begin{align*}
a_{k+1} &= \sqrt{2 + a_k} \\
a_{k+1}^2 - 4 &= a_k - 2 \\
2 - a_{k+1} &= \frac{2 - a_k}{2 + a_k} < \frac{2 - a_k}{2} \\
2 - \left(2 - \frac{1}{2^{k-1}}\right) &\leq \frac{1}{2^k} \\
\end{align*}
\]

from which the conclusion follows.
(c) \(f : x \rightarrow \sqrt{|x|} \)

\[
\begin{align*}
 a_0 &= \mu \\
 a_1 &= \sqrt{|\mu|} = |\mu|^{1/2} > 0 \\
 a_2 &= (|\mu|^{1/2})^{1/2} = |\mu|^{1/4} \\
 a_n &= |\mu|^{1/2^n}
\end{align*}
\]

(d) \(f : x \rightarrow \sqrt{1 - x^2} \)

\[
\begin{align*}
 a_0 &= \mu \\
 a_1 &= \sqrt{1 - \mu^2} \\
 a_2 &= \sqrt{1 - (1 - \mu^2)} = |\mu| \\
 a_{2n} &= |\mu| \quad \text{and} \quad a_{2n+1} = \sqrt{1 - \mu^2} \quad \text{for} \ n > 0.
\end{align*}
\]

(e) \(f : x \rightarrow (1 - x)^{-1} \)

\[
\begin{align*}
 a_0 &= \mu \\
 a_1 &= \frac{1}{1 - \mu} \\
 a_2 &= \frac{1}{1 \cdot \frac{1}{1 - \mu}} = \frac{1}{\frac{1}{\mu}} = 1 - \frac{1}{\mu} \\
 a_3 &= \frac{1}{1 - (1 - \frac{1}{\mu})} = \frac{1}{\frac{2}{\mu}} \\
 a_{3n} &= \mu, \quad a_{3n+1} = \frac{1}{1 - \mu}, \quad a_{3n+2} = 1 - \frac{1}{\mu}
\end{align*}
\]
(c) \(f : x \rightarrow \sqrt{|x|} \)
\[
\begin{align*}
a_0 &= \mu \\
a_1 &= \sqrt{|\mu|} = |\mu|^{1/2} > 0 \\
a_2 &= (|\mu|^{1/2})^{1/2} = |\mu|^{1/4} \\
\end{align*}
\[
\begin{align*}
e_n &= |\mu|^{1/2^n} \\
\end{align*}
\]

(d) \(f : x \rightarrow \sqrt{1 - x^2} \)
\[
\begin{align*}
a_0 &= \mu \\
a_1 &= \sqrt{1 - \mu^2} \\
a_2 &= \sqrt{1 - (1 - \mu^2)} = |\mu| \\
\end{align*}
\[
\begin{align*}
e_{2n} &= |\mu| \
\text{and } e_{2n+1} &= \sqrt{1 - \mu^2} \quad \text{for } n > 0 \\
\end{align*}
\]

(e) \(f : x \rightarrow (1 - x)^{-1} \)
\[
\begin{align*}
a_0 &= \mu \\
a_1 &= \frac{1}{1 - \mu} \\
a_2 &= \frac{1}{1 - \frac{1}{1 - \mu}} = \frac{1}{1 - \frac{1}{\mu}} = 1 - \frac{1}{\mu} \\
a_3 &= \frac{1}{1 - \frac{1}{\mu}} = \frac{1}{1 - \mu} \\
\end{align*}
\[
\begin{align*}
e_{3n} &= 1 - \mu, \quad e_{3n+1} = \frac{1}{1 - \mu}, \quad e_{3n+2} = 1 - \frac{1}{\mu} \\
\end{align*}
\]
A2-3. Inverse Functions.

Given any set A, a relation R on A is a rule which permits us to say for any pair x, y in A whether or not x is related to y by the relation R to y. If x has the relation R to y then we write $x R y$; if not, we write $x \not R y$. Thus for the relation $\not=$, we write $x \not= y$.

The graph of a relation is the set of points (x, y) in $A \times A$ for which $x R y$. Thus, the graph of the relation $\not=$ in $A \times A$ is the line $y = x$.

Consider the relation $\not=$, $\not<$, $\not>$ on A. The graph of this relation is the unit hyperbola $y = \frac{1}{x}$.

Definition

When the relation R is such that the domain of the inverse is the entire set A, and R is the inverse of $\not R$ (although $\not R$ is not always the inverse of R), we say R is a function. The relation $\not=$ is an example of this. The relation $\not<$ is not a function. The relation $\not>$ is a function.
1. What is the reflection of the line \(y = f(x) = 3x \) in the line \(y = x \)? Write an equation defining the inverse of \(f \).
\[
x = 3y
\]

2. Which points are their own reflections in the line \(y = x \)? What is the graph of all such points?
Those points with ordinates equal to their abscissas on the line \(y = x \).

3. (a) Find the slope of the line
That the segment \(\overline{PQ} \) is parallel to the line \(y = x \).
Slope of line \(\overline{PQ} \) since points are
\[
\text{Slope of line } \overline{PQ} \quad \frac{b-a}{a-b}
\]
(b) Prove that the line \(y = x \) is orthogonal to the line \(y = a \).
Let \((a - x)^2 + (a - y)^2 \).

4. What is the reflection of
(a) \(y = x \)
(b) \(y = x \)
(c) \(y = x \)
(d) \(y = x \)
(e) \(y = x \)
5. Describe any function or functions you can think of which are their own inverses.

Any function whose graph has \(y = x \) as an axis of symmetry; e.g.,

\[
\begin{align*}
& f(x) = x, \quad x - \frac{1}{x}, \\
& x^2.
\end{align*}
\]

6. An equation or an expression (e.g., \(x^2 + y^2 = 1 \)) is symmetric in \(x \) and \(y \) if the equations or the expression remain unaltered by interchanging \(x \) and \(y \); e.g., \(x^2 + y^2 = 1 \), \(x^2 - y^2 = 1 \), \(x^2 + y^2 = 1 \), \(x^2 - y^2 = 1 \), \(y = x \), \(y = -x \), \(y = |x| \), \(y = |x^2| \), \(y = x + y \). It follows that graphically, equations are symmetric about the \(y = x \) line.

Geometrically, we can imagine the graph as a mirror, i.e., for any portion of the graph there is another portion which is the mirror image. The equation

\[
y = x
\]

is obviously symmetric. What then are the axes of symmetry? (mirror line, etc.)

The \(x \) and \(y \) axes are the axes of symmetry, i.e.,

\[
y = x
\]

is obviously symmetric about the \(x \) and \(y \) axes.

Consider the expression

\[
|a - b| = |b - c| = |c - a|
\]

for \(a, b, c \). Consider the expression

\[
\max(a, b, c) = \max(b, c, a)
\]

for the \(a, b, c \) as well as \(a, c, b \), and so on.

Another solution for the problem (see letters \(a, b, c \) above).

\[
4 \text{ max}(a, b, c), \quad \text{max}(a, b, c)
\]
8. Find the inverse of each function:

(a) \(f : x \rightarrow 3x + 6 \)

(b) \(f : x \rightarrow x^3 - 5 \)

(c) \(f : x \rightarrow \frac{2}{x} - 3 \)

9. Which of the following functions have an inverse? Find the inverse by means of a graph or equation and give its domain and range.

(a) \(f : x \rightarrow x^2 \)

(b) \(f : x \rightarrow \frac{1}{x} \)

(c) \(f : x \rightarrow |x| \)

(d) \(f : x \rightarrow [x] \)

(e) \(f : x \rightarrow x|\sqrt{x} - 1| \)

(f) \(f : x \rightarrow 0 \)

10. As we have seen, some functions have more than one inverse. Do the following:

(a) Sketch graphs of \(y = |x - 6| \) and \(y = x - 4 \) for \(x \leq 0 \), and determine if there is an inverse.

(b) What relationship between the graphs do you notice? It is said that \(f \) is called the \textbf{restriction} of \(f' \) to the range \(\{x : x > 0\} \).

and \(f' \) is similarly the restriction to the range \(\{x : x \geq 0\} \).
Consider the function $f(x) = \sqrt{x}$ and its inverse $f^{-1}(x) = x^2$. If we analyze the graphs of these functions, we can see that they are reflections of each other across the line $y = x$. Hence, $f(x)$ does not have a unique inverse as defined.
Write an equation defining each inverse of part (b) and sketch the graphs.

\[g_1: x \rightarrow \sqrt{4 - x^2} \]

\[g_2: x \rightarrow \sqrt{4 - x^2} \]

12. Do Problem 11 for \(f(x) \).

(a) \(f(x) = x^2 \)

Domain: \(x \neq 0 \)

Range: \(y \geq 0 \)

Domain: \(x \geq 0 \)

Range: \(y \leq 4 \)
13. Given that \(f(x) \) is a function and \(g(x) \) is its inverse, find \(f(g(x)) \) and \(g(f(x)) \). For the value of \(x \) for which \(f(x) = x \), is \(g(x) \) also equal to \(x \)? Give reasons for your answer.

No \(x = 2x - 3 \)

Yes \(x = 1 \)

No composition of \(f \) and \(g \) is the identity function, which is not true.

For \(x \), \(y \) is in the domain of \(f \).

\(f(g(x)) = x + 1 \)

\(g(f(x)) = x \)

For \(x = 1 \), \(g(x) = 1 \) for all \(y \) in the domain of \(g \).

\(f(2) = 2 \left(\frac{1}{2} \right) + 1 \)

\(g(2) = 2 \left(\frac{1}{2} \right) + 1 \)

\(f(2) = 2 \) is not equal to \(2 \left(\frac{1}{2} \right) + 1 \), so \(f(2) \) is not an element of the range of \(g \).

Equation has at least one negative.
TC A2-4. Monotone Functions.

Example A2-4b. The comments (TC Example A2-1b) about the existence of a square root apply equally well to the existence of n-th roots. The same idea proves the existence of n-th roots. Thus, let \(A \) be the set of nonnegative numbers whose n-th power is less than p. Since 0 \(\in A \) and p is an upper bound for \(A \), \(A \) has a least upper bound \(s \) for n.

\[
(s + h)^n - s^n \sum_{k=1}^{n} \binom{n}{k} s^{n-k} h^k
\]

and

\[
\sum_{k=1}^{n} \binom{n}{k} s^{n-k} h^k
\]

Thus, as in TC Example A2-1b, if n is not integer, p is not p. Therefore, s - p.

(As stated.)

is a real number.

is due to the In

write, for example, all real y in another

and we define all

y > 0.
One reason for this restriction is that it preserves the laws of exponents, in particular
\[(x^m)^n = x^{mn}\]

Otherwise, the following ambiguity would arise.

\[\left[\left(-8\right)^{\frac{2}{3}}\right]^{\frac{1}{2}} = \left[2^3\right]^{\frac{1}{2}} = 2\]

and

\[\left[\left(\frac{2}{3}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} = \left(\frac{2}{3}\right)^{\frac{1}{4}}\]

There is an alternative way of defining the m^{th} root of a, which we shall use...
2. Which of the following functions are nondecreasing? In each case the domain is the set of real numbers unless otherwise restricted.

(a) \(f_1 : x \mapsto c, c \) a constant
- Weakly increasing and weakly decreasing

(b) \(f_2 : x \mapsto x \)
- Increasing

(c) \(f_3 : x \mapsto |x| \)
- Not monotone

(d) \(f_4 : x \mapsto [x] \)
- Weakly increasing

(e) \(f_5 : x \mapsto \text{sgn } x \)
- Increasing

(f) \(f_6 : x \mapsto x^2, x \geq 0 \)
- Increasing

(g) \(f_7 : x \mapsto x^{-1} \)
- Decreasing

(h) \(f_8 : x \mapsto x|x| \)
- Increasing

(i) \(f_9 : x \mapsto -|x| \)

(j) \(f_{10} : x \mapsto -|x| \)

(k) \(f_{11} : x \mapsto -|x| \)

(l) \(f_{12} : x \mapsto -|x| \)

(m) \(f_{13} : x \mapsto -|x| \)

3. For each \(a \) at int. parts such that \(a \) is a monotone or a non-decreasing set. gives

\(f_{14} : a \mapsto \frac{a}{2} \)

\(f_{15} : a \mapsto a \)

\(f_{16} : a \mapsto a \)

\(f_{17} : a \mapsto a \)

\(f_{18} : a \mapsto a \)
We are given that the functions

- \(f_1 \) is weakly increasing,
- \(f_2 \) is increasing,
- \(g_1 \) is weakly decreasing,
- \(g_2 \) is decreasing,

in a common domain. What is the monotonic nature of any of the following functions?

(a) \(f_1 + f_2 \),
(b) \(f_2 + g_1 \),
(c) \(g_1 \cdot g_2 \),
(d) \(e^x \cdot e^y \),
(e) \(f_1 \cdot f_2 \),
(f) \(g_1 \cdot g_2 \),
(g) \(g_1 \cdot g_2 \),
(h) \(e^x \cdot e^y \),
(i) \(f_1^{f_2} \),
(j) \(e^{g_1} \),
(k) \(f_1 \cdot g_1 \),
(l) \(g_1 \),
(m) \(e^{e^x} \),
(n) \(e^{e^y} \),
(o) \(e^{e^x} \),
(p) \(e^{e^y} \),
(q) \(e^{e^x} \),
(r) \(e^{e^y} \).
The Circular (Trigonometric) Functions.

There are three closely related, though distinct, kinds of trigonometric functions passing under the same name. First, there are the trigonometric functions of geometrical objects, namely, the angles introduced in geometry. Then, when we introduce an angle measure, the functions are functions of a real variable. The real functions depend upon the measure of the angles. Thus, the numerical functions obtained by measuring angles in degrees (a relic of the Babylonian sexagesimal numeration) are not the same as the functions obtained by measuring the angle in radians. Since an angle measured in degrees is measured by $\frac{\pi}{180}$ radians, a trigonometric function, e.g., the sine function, defined in terms of degree measure is related to the corresponding trigonometric function defined in terms of radian measure.

In the following discussion, see page 304. Also, all trigonometric functions may be used as a true statement in the form: $\sin^2 x + \cos^2 x = 1$.

1. Prove.
2. Prove:

(a) \(\sin(x + \frac{\pi}{2}) = \cos x \)

(b) \(\sin(x - \frac{\pi}{2}) = \cos x \)

(e) \(\cos \pi = -1 \)

(f) \(\cos(-\frac{\pi}{2}) = 0 \)

\(\sin(\pi + \frac{\pi}{2}) = \cos \pi \) from (4);

\(\sin(\pi - \frac{\pi}{2}) = \sin(-\frac{\pi}{2}) \) from (1)
(b) \(\cos(x + y) = \cos x \cos y + \sin x \sin y \)

\[
\cos(x + y) = \sin(x + y + \frac{\pi}{2}) - \sin(x + y - \frac{\pi}{2})
\]

Use (4), (5), Number 2(a), (c) and 3(a).

(c) \(\sin 2t = 2 \sin t \cos t \)

\(t - x - y \) in (4).

(d) \(\cos 2t = \cos^2 y - \sin^2 t \)

(e) \(\sin 3t \) et cetera.

Use Number 3(b).

(f) \(\cos 3t \) etc.

Use Numbers 1(...)

(g) \(\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \)

(\(\tan 2x \))

Divide...
(b) \(\cos(x + y) = \cos x \cos y + \sin x \sin y \)

(c) \(\sin 2t = 2 \sin t \cos t \)

(d) \(\cos 2t = \cos^2 t - \sin^2 t \)

(e) \(\sin 3t = 3 \sin t - 4 \sin^3 t \)

(f) \(\cos 3t = 4 \cos^3 t - 3 \cos t \)

(g) \(\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \)

(i) \(\tan \frac{x}{2} \)
4. Prove:

(a) \[\sin \frac{x}{2} = \pm \frac{1 - \cos x}{2} \]

(b) \[\cos \frac{x}{2} = \pm \frac{1 + \cos x}{2} \]

(c) Explain the significance of the \(\pm \) sign in (a) and (b).

For (a) and (b) use (d) of Number 3, letting \(x = 2t \) and \(t = \frac{x}{2} \).

The significance of the \(\pm \) sign is that the square root may be either positive or negative. Apparently which sign to use depends on the value of \(x \). To simplify the discussion, we will also assume that \(\sin x > 0 \) for \(0 < x < \frac{\pi}{2} \).

It now follows that

\[\sin x > 0 \quad \text{for} \quad 0 < x < \pi, \]
\[\sin x < 0 \quad \text{for} \quad \pi < x < 2\pi, \]

from

\[\sin x = \sin(\pi - x) \]

and

\[-\sin \frac{x}{2} = \sin(\pi + x). \]

Furthermore, from \(\cos x = \sin(x + \frac{\pi}{2}) \), it then follows that

\[\cos x > 0 \quad \text{for} \quad 0 < x < \frac{\pi}{2} \]

and

\[\cos x < 0 \quad \text{for} \quad \frac{\pi}{2} < x < 2\pi. \]

5. Determine the numerical values of the following:

(a) \[\sin \frac{3\pi}{2} = \sin(\pi + \frac{\pi}{2}) = -\sin \frac{\pi}{2} = -1 \]

(b) \[\cos \frac{13\pi}{6} = \cos(2\pi + \frac{\pi}{6}) = \cos \frac{\pi}{6}. \]

Since \(0 = \cos \frac{\pi}{2} = \cos 3(\frac{\pi}{6}) = 4 \cos^3(\frac{\pi}{6}) - 3 \cos \frac{\pi}{6}, \) \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \).
(c) \(\tan \frac{\pi}{3} = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \sqrt{3} \)

Since \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \), \(\cos \frac{\pi}{3} = 2(\frac{\sqrt{3}}{4}) - 1 = \frac{1}{2} \).

Since, \(\sin^2 x + \cos^2 x = 1 \), \(\sin \frac{\pi}{6} = \frac{1}{2} \) and \(\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \).

\[\tan \frac{\pi}{3} = \frac{\sqrt{3}}{1} = \sqrt{3} \]

(d) \(\sin(-\frac{\pi}{4}) = -\sin \frac{\pi}{4} = -\sqrt{1 - \cos^2 \frac{\pi}{4}} = -\sqrt{\frac{1}{2}} = -\frac{\sqrt{2}}{2} \)

(e) \(\sin(\frac{\pi}{12}) = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin \frac{\pi}{4} \cdot \cos \frac{\pi}{6} + \cos \frac{\pi}{4} \cdot \sin \frac{\pi}{6} \)

\(\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \sin \frac{\pi}{6} = \frac{1}{2} \)

\(\sin(\frac{\pi}{12}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} \)

(f) \(\tan \frac{\pi}{6} = \frac{\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{1}{2} = \frac{\sqrt{3}}{3} \)

(g) \(\cos \frac{5\pi}{6} = \cos(\frac{\pi}{2} + \frac{\pi}{3}) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2} \)

\(\sin \frac{\pi}{3} = \sqrt{1 - \cos^2 \frac{\pi}{3}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} \)

(h) \(\sin \frac{\pi}{10} = \sqrt{\frac{1 - \cos \frac{\pi}{10}}{2}} \)

Since \(\cos \frac{\pi}{5} = \sqrt{\frac{1 + \frac{\sqrt{5}}{2}}{2}} = \frac{\sqrt{5} + 1}{4} \),

\(\sin \frac{\pi}{10} = \sqrt{\frac{1 - \frac{\sqrt{5} + 1}{4}}{2}} = \frac{\sqrt{5} - 1}{4} \)
(i) \(\cos^3 \left(\frac{3\pi}{6} \right) = \left[\cos \left(\frac{\pi}{2} - \frac{\pi}{6} \right) \right]^3 = \left[-\sin \left(-\frac{\pi}{3} \right) \right]^3 = \left[\sin \frac{\pi}{3} \right]^3 = \left(\frac{\sqrt{3}}{2} \right)^3 = 1 \)

\[\tan \frac{\pi}{2} = \sqrt{3} - 2\sqrt{3} \]

\(\sin(\frac{\pi}{2} - x) \equiv \cos x \), \(\sin 2(\frac{\pi}{10}) = \sqrt{3} \left(\frac{1}{10} \right) \),

\[2 \sin \frac{\pi}{10} \cos \frac{\pi}{10} = 4 \cos^3 \frac{\pi}{10} - 3 \cos \frac{\pi}{10} \]
\[\cos \frac{\pi}{10} > 0 \), \(4 \cos^2 \frac{\pi}{10} - 2 \sin \frac{\pi}{10} = 3 \),
\[4 \sin^2 \frac{\pi}{10} + 2 \sin \frac{\pi}{10} - 1 = 0 \]

Thus, \(\sin \frac{\pi}{10} = \frac{-1 + \sqrt{5}}{4} \),
\[\cos \frac{\pi}{5} = \cos 2 \left(\frac{\pi}{10} \right) = 1 - 2 \sin^2 \frac{\pi}{10} = \frac{1 + \sqrt{5}}{4} \]

and \(\sin \frac{\pi}{5} = \sqrt{1 - \cos^2 \frac{\pi}{5}} = \frac{\sqrt{5} - \sqrt{5}}{4} \).

Finally, \(\tan \frac{\pi}{5} = \frac{\sqrt{5} - 2\sqrt{2}}{1 + \sqrt{5}} = \sqrt{5} - 2\sqrt{2} \approx .727 \).

6. Sketch the graph of each of the following functions. For those functions which are periodic, indicate their periods. Indicate those functions which are even or odd.

(a) \(f : \) \(\sin x + \cos x \) \hspace{1cm} \text{Period} = 2\pi

Also note: \(f(x) = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) \).
(b) \(f : x \rightarrow \sin \frac{2\pi}{3} x + \cos xx \) Period = 6

(c) \(f : x \rightarrow \sin x + \cos x\sqrt{x} \)

(d) \(f : x \rightarrow \sin 2x \) Period = odd.
(e) $f: x \rightarrow |\sin 3\pi x|$ Period $= \frac{1}{3}$ even.

(f) $f: x \rightarrow \cos^2 \pi x$ Period $= 1$ even.

(g) $f: x \rightarrow 2 \sin x^2$ even.
7. (a) What is the period of \(\sin ax \), \(a \neq 0 \)?
(b) What is the period of \(\sin (ax + b) \), \(a \neq 0 \)?
(c) For what values of \(a \) and \(b \) is the function odd? even?

In (a) and (b), the period is \(\frac{2\pi}{a} \). For \(a \neq 0 \), \(b = nm \), \(n \) an integer, then \(x \rightarrow \sin (ax + b) \) is an odd function.

For \(b = \frac{2n + 1}{2} \pi \), \(n \) an integer, \(x \rightarrow \sin (ax + b) \) is an even function.

8. For each pair of functions \(f \) and \(g \) find the composite functions \(fg \) and \(gf \) and specify the domain and range, (if possible) of each. Also, sketch the graph of each, and give the period (fundamental) of those which are periodic.

(a) \(f : x \rightarrow \sin \pi x \); \(g : x \rightarrow \text{sgn } x \).

\[fg : x \rightarrow \sin \pi (\text{sgn } x) = 0 \]
\[gf : x \rightarrow \text{sgn}(\sin \pi x) \]

Domain: all reals.
Range: \([0]\).
Period \(\neq 0 \).

Domain: all reals.
Range: \([-1, 0, 1]\).
Period = 2.
(b) \(f : x \rightarrow \sin ax \), \(a > 0 \); \(g : x \rightarrow \text{sgn } x \)

\[f_g : x \rightarrow \sin \text{sgn}(\sin x) \]; \(g(f(x)) = \text{sgn}(\sin ax) \)

If \(a \) is an integer:

Domain: all reals.
Range: \([0]\).

If \(a \neq \) an integer:

\[\sin ax \]

\[\sin (-ax) \]

Domain: all reals.
Range: \([\sin(-ax), 0, \sin ax]\)

(c) \(f : x \rightarrow 3|\sin x| \); \(g(x) = [x] \)

\[f_g : x \rightarrow 3|\sin[x]| \]

Domain: all reals.
Range: \(3|\sin n|, n \) integer

410
The function f_g can be written as $f_g(x) = \max\{\sin \pi x, x - [x]\}$, where $[x]$ denotes the greatest integer less than or equal to x.

For $|x| < 1$, $x^2 < x$. So, f_g can be written as

$$f_g(x) = \begin{cases}
\max(\sin \pi x, x - [x]), & |x| > 1 \\
\max(\sin \pi x^2, x^2 - [x^2]), & |x| < 1
\end{cases}$$

The graph of f_g is given by the solid line curve. The value of f_g, in the various intervals, is given by the functions indicated on top of the graph in that interval.

Periodic outside of the interval $[-1,1]$ with period $= 2$.

The function g_f is defined as $g_f(x) = \min\{\max(\sin \pi x, x - [x]), \max^2(\sin \pi x, x - [x])\}$.

Since, $\max(\sin \pi x, x - [x])$ is always between 0 and 1, the \max^2 will be the minimum.

We may therefore write

$$g_f(x) = (\max(\sin \pi x, x - [x])^2$$

This is periodic with period $= 2$.

Diagram:

A graph showing the function f_g with its periodic nature outside the interval $[-1,1]$ and the solid line curve for the interval. The graph illustrates the behavior of f_g in different intervals, with clear markers indicating the maxima and minima.

Text:

A detailed explanation of the function f_g is provided, including its definition, domain, and range. The periodicity of f_g outside the interval $[-1,1]$ is also highlighted, along with the definition of g_f and its periodicity. The text is accompanied by a clear diagram that visually represents the function's behavior.
9. Solve for all \(x \) in \([0,2\pi]\):

\[
\sin^m x + \cos^m x = 1, \quad (m \text{ an integer } > 2)
\]

Since, \(\sin^2 x + \cos^2 x = 1 \) for all \(x \), and

\[
\sin^2 x \geq \sin^m x,
\cos^2 x \geq \cos^m x,
\]

solutions must satisfy

\[
\sin^m x = 1 \text{ or } \cos^m x = 1.
\]

For \(m \), even, \(x = \frac{\pi}{2}, \frac{3\pi}{2} \) or \(x = 0, \pi \).

For \(m \), odd, \(x = \frac{\pi}{2} \) or \(x = 0 \).

\(m \) odd has as solutions \(x = 0, \frac{\pi}{2} \).

For \(m \) even, solutions are \(x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \).

A10. If (3) on page 304 is replaced by \(\cos x = \sin(x + \frac{\pi}{2}) \), then using (1) to (5), show that

\[
\cos^2 x + \sin^2 x = 1.
\]

A notation in parentheses after a statement will indicate the basis for the step. The first five statements are the axioms. The derived statements are numbered in sequence starting from 6.

(1) \(\sin x \) is periodic with period \(2\pi \).
\(\sin \frac{\pi}{2} = 1 \)

\(\sin \left(x + \frac{\pi}{2}\right) = \cos x \)

\(\sin(x + y) = \sin x \cos y + \cos x \sin y \)

\(\sin(-x) = -\sin x \)

\(\sin 0 = 0 \), \(\cos 0 = 1 \)

\(\cos\left(-\frac{\pi}{2}\right) = 0 \)

\(\sin(x - \frac{\pi}{2}) = \sin x \cos(-\frac{\pi}{2}) + \sin(-\frac{\pi}{2}) \cos x = -\cos x \)

\(\cos\left(-\frac{\pi}{2}\right) = 0 \), \(\sin(x - \frac{\pi}{2}) = \sin x \cos\left(-\frac{\pi}{2}\right) + \sin\left(-\frac{\pi}{2}\right) \cos x = -\cos x \)

\(\cos\frac{\pi}{2} = 0 \), \(\sin x = 0 \), \(\sin \pi = 0 \)

\(\sin\left(-\frac{\pi}{2}\right) = -\sin x \)

\(\sin\left(-\frac{\pi}{2}\right) = -\sin x \)

\(\cos\left(-\frac{\pi}{2}\right) = 0 \), \(\cos\left(-\frac{\pi}{2}\right) = 0 \)

\(\sin(x + \frac{\pi}{2}) = \sin(-x) = -\sin x \)

\(\cos(x + \frac{\pi}{2}) = \sin(-x) = -\sin x \)

\(\sin(x + y + \frac{\pi}{2}) = \cos(x + y) = \sin(x + \frac{\pi}{2}) \cos y + \sin y \cos(x + \frac{\pi}{2}) \)

\(\cos(x + y) = \cos x \cos y - \sin x \sin y \)

\(\sin^2(x + y) + \cos^2(x + y) = (\cos^2 x + \sin^2 x)(\cos^2 y + \sin^2 y) \)

If \(y = -x \), \(\sin^2 0 + \cos^2 0 = 1 = (\cos^2 x + \sin^2 x)^2 \)

And so, \(\cos^2 x + \sin^2 x = 1 \)

Show how to solve the cubic equation \(4x^3 - 3x = a \) (\(|a| \leq 1\)) trigonometrically.

Let \(x = \cos \theta \), \(4 \cos^3 \theta - 3 \cos \theta = \cos 3\theta \) by Number 3(f). So, \(\cos 3\theta = a \); find \(3\theta \) from trigonometric tables and then \(\cos \theta = x \).
TC A2-6. **Polar Coordinates.**

Descartes introduced oblique axes as well as perpendicular axes. The only reason that rectangular coordinate axes are preferred to oblique axes (at an angle \(\theta \), \(0 < \theta < \frac{\pi}{2} \)) is that the formula expressing the distance between points would become more complicated (by involving the familiar Law of Cosines).

Solutions Exercises A2-6

1. Find all polar coordinates of each of the following points:

 (a) \((6, \frac{\pi}{6}) = (6, \frac{\pi}{6} + 2\pi n), (-6, \frac{\pi}{6} + (2\pi n + \pi))\)

 (b) \((-6, \frac{\pi}{6}) = (-6, \frac{\pi}{6} + 2\pi n), (6, \frac{\pi}{6} + (2\pi n + \pi))\)

 (c) \((6, -\frac{\pi}{6}) = (6, -\frac{\pi}{6} + 2\pi n), (-6, -\frac{\pi}{6} + (2\pi n + \pi))\)

 (d) \((-6, -\frac{\pi}{6}) = (-6, -\frac{\pi}{6} + 2\pi n), (6, -\frac{\pi}{6} + (2\pi n + \pi))\)

2. Find rectangular coordinates of the points in Number 1.

 (a) \((6, \frac{\pi}{6}) = (3\sqrt{2}, 3\sqrt{2})\)

 (b) \((-6, \frac{\pi}{6}) = (-3\sqrt{2}, -3\sqrt{2})\)

 (c) \((6, -\frac{\pi}{6}) = (3\sqrt{2}, -3\sqrt{2})\)

 (d) \((-6, -\frac{\pi}{6}) = (-3\sqrt{2}, 3\sqrt{2})\)

3. Find polar coordinates of each of the following points given in rectangular coordinates:

 (a) \((4, -4) = (4\sqrt{2}, -\frac{\pi}{4} + 2\pi n)\)

 (b) \((-3\sqrt{2}, \frac{3}{2}) = (3\sqrt{2}, \frac{2\pi}{3} + 2\pi n)\)

 (c) \((-2, -2\sqrt{3}) = (4, \frac{4\pi}{3} + 2\pi n)\)

 (d) \((0, -10) = (10, \frac{\pi}{2} + 2\pi n)\)

 (e) \((-3, 0) = (3, (2\pi n + \pi))\)
Given the cartesian coordinates \((x, y)\) of a point, formulate unique polar coordinates \((r, \theta)\) for \(0 \leq \theta \leq \pi\). (Hint: use \(\arccos \frac{r}{x}\)).

\[
\left(\frac{y}{\sqrt{x^2 + y^2}} \right), \arccos \frac{x}{\sqrt{x^2 + y^2}}
\]

5. Determine the polar coordinates of the 3 vertices of an equilateral triangle if a side of the triangle has length \(L\), the centroid of the triangle coincides with the pole, and one angular coordinate of a vertex is \(\theta_1\) radians.

The centroid is at the intersection of the medians.

\[
s = \frac{L}{3}, \quad \frac{\sqrt{3}}{2} L = \frac{\sqrt{3}}{3} L = \text{distance of vertex from centroid.}
\]

Coordinates of the 3 vertices are:

\[
\left(\frac{\sqrt{3}}{3} L, \theta_1 \right), \left(\frac{\sqrt{3}}{3} L, \theta_1 + \frac{2\pi}{3} \right), \left(\frac{\sqrt{3}}{3} L, \theta_1 + \frac{4\pi}{3} \right).
\]

6. Find equations, in polar coordinates, of the following curves:

- \(x = c\), \(c\) a constant.
 \[r \cos \theta = c\]

- \(y = c\), \(c\) a constant.
 \[r \sin \theta = c\]

- \(ax + by = c\).
 \[r(a \cos \theta + b \sin \theta) = c\]

- \(x^2 + (y - k)^2 = k^2\).
 \[r^2 \sin^2 \theta = r - 2k \sin \theta\]

- \(y^2 = 4ax\).
 \[r^2 \sin^2 \theta = r^2 \frac{4a \cos \theta}{1 - \cos \theta}\]

- \(x^2 - y^2 = a^2\).
 \[r^2 \cos 2\theta = a^2\]
7. Find equations, in rectangular coordinates, of the following curves:

(a) \(x^2 + y^2 = a^2 \)

(b) \(r \sin \theta = -a \)

(c) \(r = 2a \sin \theta \)

(d) \(r = \frac{1}{1 - \cos \theta} \)

(e) \(r = 2 \tan \theta \)

8. Derive an equation in polar coordinates for conic sections with a focus at the pole and directrix perpendicular to the polar axis and \(p \) units to the right of the pole.

\[
\frac{r}{p - r \cos \theta} = \epsilon
\]

\[
r(1 + \cos \theta) = \rho
\]

\[
r = \frac{\rho \epsilon}{1 + \cos \theta}
\]

9. Repeat Number 8 if the directrix is parallel to the polar axis and \(p \) units above the focus at the pole.

\[
\frac{r}{p - r \sin \theta} = \epsilon
\]

\[
r = \frac{\rho \epsilon}{1 + \sin \theta}
\]
10. Repeat Number 8 if the directrix is parallel to the polar axis and p units below the focus at the pole.

$$r = \frac{ep}{1 - e \sin \theta}$$

11. Discuss and sketch each of the following curves in polar coordinates:

(a) $r = \frac{5}{1 - \cos \theta}$

Since $e = 1$, the graph is a parabola and its directrix is 5 units to the left of the pole.

(b) $r = \frac{12}{1 - 3 \cos \theta}$

Since $e = 1$, the graph is a hyperbola with its directrix 4 units to the left of the pole.
10. Repeat number 8 if the directrix is parallel to the polar axis and p units below the focus at the pole.

$$r = \frac{ep}{1 - e \sin \theta}$$

11. Discuss and sketch each of the following curves in polar coordinates:

(a) $r = \frac{8}{1 - \cos \theta}$

Since $e = 1$, the graph is a parabola and its directrix is 8 units to the left of the pole.

(b) $r = \frac{12}{1 - \cos \theta}$

Since $e = 3$, the graph is a hyperbola with its directrix 4 units to the left of the pole.
(c) $r = \frac{2b}{\sin \theta}$
(d) \[r = \frac{16}{5 + 3 \sin \theta} = \frac{16}{5 + \frac{3}{5} \sin \theta} \]

Since \(e = \frac{3}{2} \), the graph is an ellipse with its directrix \(\frac{16}{3} \) units above the pole.

(e) \[r \sin \varphi = \ldots \]

Since \(e = \frac{3}{2} \), the graph is an ellipse with its directrix \(\frac{16}{3} \) units above the pole.
12. Certain types of symmetry of curves in polar coordinates are readily detected. For example, a curve is symmetric about the pole if the equation is unchanged when \(r \) is replaced by \(-r\). What kind of symmetry occurs if an equation is unchanged when
(a) \(\theta \) is replaced by \(-\theta\)?

Symmetric about the polar axis.

(b) \(\theta \) is replaced by \(\pi - \theta\)

Symmetric about the line \(\theta = \frac{\pi}{2} \)

(c) \(r \) and \(\theta \) are replaced by \(-r\) and \(-\theta\) respectively.

Symmetric about the line \(\theta = \frac{\pi}{2} \)

(d) \(\theta \) is replaced by \(\pi + \theta\)

Symmetric about the line \(\theta = \frac{\pi}{2} \)

13. Without actually drawing the graphs of the following equations, which of the following graphs do you think are possible for the graphs of the following equations?

(a) \(r^2 = 4 \sin 2\theta \)

Symmetric about the line \(\theta = \frac{\pi}{4} \)

Two lines of symmetry, the lines \(\theta = \frac{\pi}{4} \) and \(\theta = \frac{3\pi}{4} \),

(b) \(r = 2 \sin \theta \)

Symmetric about the line \(\theta = \frac{\pi}{2} \)

and \(\theta = \frac{3\pi}{2} \)

(c) \(r^2 = 4 \sin \theta \)

Symmetric about the line \(\theta = \frac{\pi}{2} \)

(d) \(r(1 - \cos \theta) = 0 \)

Since \(r = 0 \)
(c) $r = \cos^2 \theta$

Since $f(\theta) = f(-\theta)$, symmetric about polar axis.

Since $f(\theta) = f(\pi - \theta)$, it is symmetric about the line $\theta = \frac{\pi}{2}$.

Since $\cos(x + \pi) = -\cos x$, and this angle is 2θ, and the \cos is squared, the lines $\theta = \frac{\pi}{4}$ and $\theta = \frac{3\pi}{4}$ are axes of symmetry.

14. Sketch the following curves in polar coordinates:

(a) $r = a\theta$
(b) \(r = a(1 - \cos \theta) \)
(c) $r = a \sin 2\theta$
(d) \(r = a^2 \sin^2 \theta \cos^2 \theta \)
$r \theta = a$
15. In each of the following, find all points of intersection of the given pairs of equations. (Recall that the polar representation of a point is not unique.)

(a) \(r = 2 - 2 \sin \theta \), \(r = 2 - 2 \cos \theta \).

\[
\begin{align*}
\sin \theta &= \cos \theta, \\
\tan \theta &= 1 \\
\theta &= \frac{\pi}{4}, \frac{5\pi}{4} \\
\end{align*}
\]

Points are \((2 - \sqrt{2}, \frac{\pi}{4})\) and \((2 - \sqrt{2}, \frac{5\pi}{4})\) and since \(r \) in each equation may equal 0, the point \((0, 0)\) is common to both (for different \(\theta \)).

(b) \(r = -2 \sin 2\theta \), \(r = -2 \cos \theta \).

\[
\begin{align*}
-2 \sin 2\theta &= -4 \sin \theta \cos \theta \\
\sin \theta &= -\frac{1}{2} \\
\theta &= \frac{7\pi}{6}, \frac{11\pi}{6} \\
(0, \frac{\pi}{2}) &= (0, \frac{3\pi}{2}) \\
\end{align*}
\]

(c) \(r = 1 \), \(1 = \cos \theta \).

\[
\begin{align*}
\cos \theta &= 1 \\
\theta &= 0, \pi \\
(0, 0) &, (\pi, 0) \\
\end{align*}
\]
The items included in this collection were selected because they cover ideas pertinent to the calculus. Notice that they have not been grouped to form formal tests; they are merely representative of items that may be used for diagnostic purposes at the start of the course or after a brief review of functions.

1. Describe the domain and range of each function and sketch their graphs. Also, note whether the functions are even, odd, periodic, or monotonic (in the whole domain). If periodic, give the fundamental (smallest) period.

(a) \(f(x) = 7x - [3x] \cdot [bx] \)
(c) \(f : x \rightarrow 3 \sin x + 4 \cos x \)

To find maximum (i.e., critical point):

\[3 \sin x + 4 \cos x = 0 \]

The maximum of \(\sin x \) occurs at \(\frac{\pi}{2} \).

If \(x + \alpha = \frac{\pi}{2} \), then \(x = \arccos \frac{\pi}{2} \).

\[\alpha = \frac{\pi}{2} - x \]

Domain: all reals.
Range: \([0, 5]\).
2. For each pair f and g of the following functions, find the composite functions fg and gf and state their domains and ranges (if the composites exist).

(a) $f : x \rightarrow x^3$,
$g : x \rightarrow \sqrt{x + 8}$,

$fg : x \rightarrow \left(x^3 + 8\right)^{1/3}$,

Domain: $x \leq -2$,
Range: $y \geq 0$.

(b) $f : x \rightarrow \sin x$,
$g : x \rightarrow \cos x$,

$fg : x \rightarrow \max(\sin x, \cos x)$.

Domain: all reals.
Range: $[1, -\frac{\sqrt{2}}{2}]$.
Period: π.

(c) $f : x \rightarrow \max(\sin x, \cos x)$.

Domain: all reals.
Range: $[1, -\frac{\sqrt{2}}{2}]$.
Period: π.
(d) \(f: x \mapsto \max(\sin \pi x, \cos \pi x) \),
\(g: x \mapsto [x] \)

\(fg: x \mapsto \max(\sin \pi [x], \cos \pi [x]) \);

Domain: all reals;
Range: \((0,1)\).

\(gf: x \mapsto [\max(\sin \pi x, \cos \pi x)] \);

Domain: all reals;
Range: \((-1,0,1)\).

(e) \(f: x \mapsto 1 + \text{sgn} 2x \),
\(g: x \mapsto \cos \frac{3\pi x}{2} \)

\(fg: x \mapsto 1 + \text{sgn} 2 \cos \frac{3\pi x}{2} \),
\(g: x \mapsto \cos \frac{3\pi x}{2}(1 + \text{sgn} x) \);

Domain: all reals;
Range: \((0,1,2)\).

Range: \([-1,0,1]\).

3. Which of the following functions when properly defined have inverses?
Describe an inverse for each by means of a graph (sketch) and an equation. Also, give the domain and range of the function and its inverse.

(a) \(f: x \mapsto x^2 + 1 \)

This function, \(x^2 + 1 \), will have an inverse because of either of the two statements: either \(\{x \cong 0\} \) or \(\{x \cong \infty\} \), will have an inverse.

If domain of \(f \) is \(\mathbb{R} \), range is \((1, \infty)\), and inverse will be

\(g: x \mapsto \sqrt{x - 1} \).

Domain of \(g \) is \([1, \infty)\). Range is \([\infty, \infty)\).
(b) \(f : x \rightarrow x^2|x| \)

Eligible domains of \(f \) are subsets of either \((-\infty, 0]\) or \([0, \infty)\).

If the domain of \(f \) is taken to be \([0, \infty)\), then its range is the
same set.

The inverse is \(g : x \rightarrow \sqrt[3]{x} \); domain = range = \([0, \infty)\).

(c) \(f : x \rightarrow |x| \)

Eligible domain: \((-\infty, 0] \cup [0, \infty)\).

If we change the domain to \([0, \infty)\), and its range \(f \) is \([0, \infty)\) and its range is \([0, \infty)\).
4. If \(f(x) = (3x^5 + 1)^3 \), find at least two different functions \(g \) such that \(fg = gf \).

The function \(g : x \mapsto x \) may be considered trivial, but it is valid.

Another is \(g : x \mapsto k \), where \(k = (3k^5 + 1)^3 \).

The inverse of \(f \), defined by \(g(x) = \sqrt[3]{\frac{3x - 1}{3}} \), is also such a function.

5. Starting from the identities
 (i) \(\sin(x + y) = \sin x \cos y + \cos x \sin y \),
 (ii) \(\cos x = \sin(\frac{\pi}{2} - x) \),
 (iii) \(-\sin x = \sin(-x) \) and,
 (iv) \(\sin \frac{\pi}{2} = 1 \),
 prove that
 (a) \(\cos(x + y) = \cos x \cos y - \sin x \sin y \).

From (iii), \(\sin 0 = 0 \), or \(\sin 0 = 0 \).
Then by (i), \(0 = \sin 0 = \sin(\frac{\pi}{2} - \frac{\pi}{2}) = \cos 0 = 0 \).

By (i) and (ii), \(\cos x = \sin(\frac{\pi}{2} + (-x))\)

\[= \sin \frac{\pi}{2} \cos(-x) + \cos \frac{\pi}{2} \sin(-x), \]

hence, \(\cos x = \cos(-x) \).

Then by (ii) and (i), \(\cos(x + y) = \cos(-x - y) = \sin(\frac{\pi}{2} + x + y)\)

\[= \sin(\frac{\pi}{2} + x) \cos y + \cos(\frac{\pi}{2} + x) \sin y, \]

By (ii), \(\sin(\frac{\pi}{2} + x) = \cos(-x) = \cos x \)
and \(\cos(\frac{\pi}{2} + x) = \sin(-x) = -\sin x \).

So \(\cos(x + y) = \cos x \cos y - \sin x \sin y \).
(b) \(\sin 3x = 3 \sin x \cos^2 x - \sin^3 x\)

\[
\sin 3x = \sin(2x + x) = \sin 2x \cos x + \cos 2x \sin x
\]

But \(\sin 2x = \sin(x + x) = 2 \sin x \cos x\),

\[
\cos 2x = \cos(x + x) = \cos^2 x - \sin^2 x.
\]

Hence, \(\sin 3x = 2 \sin x \cos^2 x + \sin x \cos^2 x - \sin^3 x = 3 \sin x \cos^2 x - \sin^3 x\)

(c) \(\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}\)

From the definition \(\tan x = \frac{\sin x}{\cos x}\), we have

\[
\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2 \sin x \cos x}{2 \cos^2 x - \sin^2 x}
\]

\[
= \frac{2 \tan x}{1 - \tan^2 x}
\]

6. Evaluate:

(a) \(\sin 5\pi = \sin \pi = 0\)

(b) \(\cos \frac{\pi}{3} = \frac{1}{2}\)

(c) \(\tan \frac{5\pi}{3} = -\sqrt{3}\)

(d) \(-\sin \frac{3\pi}{2} = \sin \frac{3\pi}{2} = -1\)

(e) \(\cos(-\frac{3\pi}{4}) = \cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}\)
7. Sketch, using polar coordinates, a graph of \(r = \tan \theta \).
The Principle of Mathematical Induction.

The Principle of Mathematical Induction may be thought of as a postulate for the set of natural numbers \(N \), rather than as a postulate about legitimate methods of proof (Metamathematics). Thus, we may state the principle in the following form:

Let \(M \) be a subset of \(N \) satisfying

(i) \(1 \in M \),

(ii) if \(n \in M \) then \(n + 1 \in M \),

then \(M = N \).

We can then deduce the form of the principle in the text by setting \(M \) equal to the set of natural numbers \(n \) for which \(A_n \) is true.

As stated here, the Principle of Mathematical Induction can be used to play a central role in the axiomatic development of the natural numbers. In Foundations of Analysis by E. Landau (Chelsea), the arithmetic of the natural, rational, real, and complex numbers is developed solely on the basis of the five postulates of Peano. The fifth postulate is the postulate of induction.

Solutions Exercises A3-1

The solutions of several of the exercises follow the same pattern for the sequential step. In each case after assuming \(A_k \), we add an appropriate term to each side of the equation which is the expression of \(A_k \), and show that the resulting equation reduces to \(A_{k+1} \). For brevity we give only the solutions of two such exercises; these will be found below in 2 and 12.

1. Prove by mathematical induction that \(1 + 2 + 3 + \ldots + n = \frac{1}{2} n(n + 1) \).

Follow the pattern given in 2.
2. By mathematical induction prove the familiar result, giving the sum of an arithmetic progression to \(n \) terms:

\[
a + (a + d) + (a + 2d) + \ldots + \left(a + (n - 1)d \right) = \frac{n}{2} [2a + (n - 1)d].
\]

Initial Step. \(a = \frac{1}{2}(2a + 0 \cdot d) = a \).

Sequential Step. Assume \(A_k : a + (a + d) + (a + 2d) + \ldots + [a + (k - 1)d] = \frac{k}{2}[2a + (k - 1)d] \).

Add \(a + kd \) to both sides getting:

\[
a + (a + d) + \ldots + [a + (k - 1)d] + (a + kd)
= \frac{k}{2}[2a + (k - 1)d] + (a + kd)
= ka + \frac{k(k - 1)}{2} d + a + kd
= (k + 1)a + \frac{k^2 - k + 2k}{2} d
= \frac{(k + 1)}{2}(2a + kd)
= \frac{k + 1}{2} [2a + [(k + 1) - 1]d]
\]

which is \(A_{k+1} \).

This completes the proof.

3. By mathematical induction prove the familiar result, giving the sum of a geometric progression to \(n \) terms:

\[
a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}.
\]

Follow the pattern given in 2.

Prove the following four statements by mathematical induction.

4. \(1^2 + 3^2 + 5^2 + \ldots + (2n - 1)^2 = \frac{1}{3}(4n^3 - n) \).

Follow the pattern given in 2.
5. \(2n \leq 2^n\)

Initial Step. \(2 \cdot 1 \leq 2^1\).

Sequential Step. Assume \(A_k : 2 \cdot k \leq 2^k\),

Then

\[2(k + 1) = 2k + 2 \leq 2k + 2k = 2 \cdot 2k \leq 2 \cdot 2^k\]

by the assumption \(A_k\).

Therefore \(2(k + 1) \leq 2^{k+1}\) which is \(A_{k+1}\).

This completes the proof.

6. If \(p > -1\); then, for every positive integer \(n\), \((1 + p)^n \geq 1 + np\).

Initial Step. \((1 + p)^1 \geq 1 + 1 \cdot p\).

Sequential Step. Assume \(A_k : (1 + p)^k \geq 1 + kp\).

Then, since \(p > -1, 1 + p > 0\), and we may multiply both sides of the inequality by \(1 + p\) without changing its sense.

Therefore

\[(1 + p)^{k+1} \geq (1 + kp)(1 + p) \geq 1 + kp + p + kp^2\]

and dropping the positive quantity \(kp^2\) we get \((1 + p)^{k+1} \geq 1 + (k + 1)p\), which is \(A_{k+1}\).

This completes the proof.

7. \(1 + 2 \cdot 2 + 3 \cdot 2^2 + \ldots + n \cdot 2^{n-1} = 1 + (n - 1)2^n\).

Follow the pattern given in 2.

Prove the following by the second principle of mathematical induction.

8. For all natural numbers \(n\), the number \(n + 1\) either is a prime or can be factored into primes.

We use the second principle of induction.

Initial Step. The number 2 is a prime.
Sequential Step. Let A_n be the statement of Exercise 8, and assume that A_s is true for all natural numbers s satisfying $s \leq k$. In other words, every integer $2, 3, 4, \ldots, k+1$ is prime or a product of primes. In order to prove A_{k+1}, we must show that $k+2$ is either prime or can be factored into primes. If $k+2$ is prime we are done.

If not, we can write $k+2$ as a product of factors $r^i S_T$, both less than $k+2$, hence, both less than or equal to $k+1$. By hypothesis, then, both factors r, t must be primes or products of primes. It follows that $k+2$ can be written as a product of primes and that A_{k+1} is true.

9. For each natural number n greater than one, let U_n be a real number with the property that for at least one pair of natural numbers p, q with $p + q = n$, $U_n = p + U_q$.

When $n = 1$, we define $U_1 = a$ where a is some given real number. Prove that $U_n = na$ for all n.

Initial Step. $U_1 = 1 \cdot a$ by definition.

Sequential Step. Let A_n be the statement of Exercise 9. Using the second principle of induction we assume that for each number $s \leq k$ that A_s is true.

Now A_{k+1} must be established. But if U_{k+1} is a real number such that for at least one pair of natural numbers, f and g such that $f + g = k + 1$, $U_{k+1} = U_f + U_g$,

we know that f and g must each be less than or equal to k; and therefore U_f and U_g are real numbers to which the sequential hypothesis may be applied. Therefore

$$U_{k+1} = f \cdot a + g \cdot a = (f + g) \cdot a = (k + 1) a,$$

and so

$$U_{k+1} = f \cdot a + g \cdot a = (f + g) \cdot a = (k + 1) a,$$

which is A_{k+1}.

This completes the proof.
10. Attempt to prove 8 and 9 from the first principle to see what difficulties arise.

In 8 note that the sequential step is based essentially upon the fact that r and t are each at most $k + 1$, not necessarily equal to $k + 1$. It would therefore be impossible to derive A_{k+1} from A_k alone and we cannot employ the first principle. Similarly in 9, we know only that f and g are at most k, not that they are necessarily equal to k. So we need to be able to refer to A_s for $s \leq k$, not to just A_k.

In the next three problems, first discover a formula for the sum, and then prove by mathematical induction that you are correct.

11. \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{n(n + 1)} \)

To discover the formula for the sum, we might try writing down the sums in succession:

Thus

\[
\begin{align*}
S_1 &= \frac{1}{1 \cdot 2} = \frac{1}{2}, \\
S_2 &= \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}, \\
S_3 &= \frac{2}{3} + \frac{1}{3 \cdot 4} = \frac{3}{4}, \\
S_4 &= \frac{3}{4} + \frac{1}{4 \cdot 5} = \frac{4}{5}.
\end{align*}
\]

So we guess \(S_n = \frac{n}{n + 1} \) and try to prove it.

For the proof follow the pattern of 2.

12. \(1^3 + 2^3 + 3^3 + \ldots + n^3 \). (Hint: Compare the sums you get here with Examples A3-1a and A3-1g in the text, or, alternatively, assume that the required result is a polynomial of degree 4.)

To guess the sum, we write down in succession the following:

\[
\begin{align*}
S_1 &= 1^3 = 1 = 1^2 = 1^2, \\
S_2 &= 1 + 2^3 = 9 = 3^2 = (1 + 2)^2, \\
S_3 &= 9 + 3^3 = 36 = 6^2 = (1 + 2 + 3)^2, \\
S_4 &= 36 + 4^3 = 100 = 10^2 = (1 + 2 + 3 + 4)^2.
\end{align*}
\]
We guess therefore that $S_n = (1 + 2 + 3 + \ldots + n)^2$. To prove this directly by induction is quite messy (try it), but if we remember from number 1 that $1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2}$, we get a formula much easier to prove: $1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n + 1)^2}{4}$.

Now we follow the pattern of 2.

Initial Step. $1^3 = \frac{1^2(1 + 1)^2}{4}$.

Sequential Step. Assume $A_k : 1^3 + 2^3 + \ldots + k^3 = \frac{k^2(k + 1)^2}{4}$.

Add $(k + 1)^3$ to both sides, getting the following:

\[1^3 + 2^3 + \ldots + k^3 + (k + 1)^3 = \frac{k^2(k + 1)^2}{4} + (k + 1)^3\]

\[= \left[\frac{k^2(k^2 + 4k + 4)}{4}\right]\]

\[= \frac{(k + 1)^2(k^2 + 2k + 2)}{4}\]

\[= \frac{(k + 1)^2((k + 1) + 1)^2}{4}\]

which is A_{k+1}.

This completes the proof.

13. $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n + 1)$. (Hint: Compare this with Example A3-lg in the text.)

To guess the sum we write down in succession the following:

$S_1 = 1 \cdot 2 = 2$

$S_2 = 2 + 2 \cdot 3 = 8$

$S_3 = 8 + 3 \cdot 4 = 20$

$S_4 = 20 + 4 \cdot 5 = 40$

This does not seem to be getting us very far. We try another approach.

If you have worked Example A3-lg (and remember it) try writing S_n in this fashion,
\[S_n = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n + 1) \]
\[= 1(1 + 1) + 2(2 + 1) + 3(3 + 1) + \ldots + n(n + 1) \]
\[= 1^2 + 1 + 2^2 + 2 + 3^2 + 3 + \ldots + n^2 + n \]
\[= (1^2 + 2^2 + 3^2 + \ldots + n^2) + (1 + 2 + 3 + \ldots + n) \]
\[= \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} = \frac{n(n + 1)(2n + 1 + 3)}{6} \]
\[= \frac{n(n + 1)(n + 2)}{3}. \]

Another way of guessing this formula would be to assume, as in Example A3-1g, that since the general term \(S_n \) is quadratic, the formula might be cubic
\[1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n(n + 1) = an^3 + bn^2 + cn + d \]
and then let \(n \) take on the successive values \(1, 2, 3, \) and \(4 \) to determine \(a, b, c, \) and \(d. \) Thus, by successive subtractions,

\[a + b + c + d = 2 \]
\[8a + 12b + 6c + d = 8 \]
\[27a + 27b + 9c + d = 20 \]
\[64a + 64b + 16c + d = 40 \]

Therefore,
\[a = \frac{1}{3}, b = 1, c = \frac{2}{3}, d = 0, \]
and
\[S_n = \frac{1}{3}n^3 + \frac{2}{3}n^2 + \frac{2}{3}n = \frac{n(n + 1)(n + 2)}{3}. \]

The proof of these results follows the patterns of 2 and 12.

14. Prove for all positive integers \(n, \)
\[\left(1 + \frac{3}{1} \right) \left(1 + \frac{2}{1} \right) \left(1 + \frac{1}{1} \right) \ldots \left(1 + \frac{2n + 1}{n^2} \right) = (n + 1)^2. \]

Check the initial step.
Assume \(A_k, \) and multiply both sides of the resulting equation by the appropriate factor, and reduce to get \(A_{k+1}. \)
15. Prove that \((1 + x)(1 + x^2)(1 + x^4) \cdots (1 + x^{2^n}) = \frac{1 - x^{n+1}}{1 - x}\).

Follow the pattern of Solution 14.

16. Prove that \(n(n^2 + 5)\) is divisible by 6 for all integral \(n\).

Initial Step. \(1(1 + 5) = 6\) and this is divisible by 6.

Assume \(A_k : k(k^2 + 5) = 6p\) where \(p\) is a positive integer.

Consider:
\[
(k + 1)((k + 1)^2 + 5) = (k + 1)^3 + 5(k + 1)
\]
\[
= k^3 + 3k^2 + 3k + 1 + 5k + 5
\]
\[
= (k^3 + 5k) + (3k^2 + 3k) + 1 + 5
\]
\[
= k(k^2 + 5) + 3k(k + 1) + 6.
\]

By \(A_k\) we know that \(k(k^2 + 5) = 6p\), and since \(k\) is a positive integer either \(k\) or \(k + 1\) is an even integer. Therefore the second term is divisible both by 2 and by 3, and therefore by 6. Finally we get
\[
(k + 1)((k + 1)^2 + 5) = 6p + 6q + 6
\]
\[
= 6(p + q + 1)
\]
and this finishes the proof, since we know that the sum of three positive integers is a positive integer.

17. Any infinite straight line separates the plane into two parts; two intersecting straight lines separate the plane into four parts; and three non-concurrent lines, of which no two are parallel, separate the plane into seven parts. Determine the number of parts into which the plane is separated by \(n\) straight lines of which no three meet in a single common point and no two are parallel; then prove your result.

Can you obtain a more general result when parallelism is permitted? If concurrence is permitted? If both are permitted?

Both our method of guessing the answer, and our proof will be sequential.

Let \(R_n\) be the number of regions into which the plane is divided by \(n\) lines of which no two are parallel and no three are concurrent. If we draw an \((n + 1)\)-th line under the same conditions, it must meet all the other lines in \(n\) new points of intersection. In crossing \(n\) lines it must go through \(n + 1\) regions of the plane, dividing each region into two parts, thus adding \(n + 1\) new regions. We conclude that
\[R_{n+1} = (n + 1) + R_n \]

Here, \(R_1 = 2 \); this is a recursive definition for \(R_n \). We have,

\[R_n = 2 + 2 + 3 + 4 + \ldots + n = \frac{1}{2}(n^2 + n + 2) \]

and this result can be obtained directly from the recursion formula by a straightforward induction.

If parallelism is permitted, each pair of parallel lines existing reduces \(R_n \) by 1, since one crossing is eliminated. Thus if \(p \) lines are parallel, you can pick \(\frac{p(p-1)}{2} \) pairs of parallel lines and there will be this many fewer regions

\[R_n = 1 + \frac{n(n+1)}{2} - \frac{(p-1)p}{2} \]

For example if four lines are drawn, three of which are parallel, there will be

\[1 + \frac{4(5)}{2} - \frac{3(2)}{2} = 8 \text{ regions.} \]

Similarly, any line which concurs with an already existing intersection point reduces the total number of intersection points by one, and the number of regions of the plane by one. Again we must remember, as in

\[n=4, \ p=0, \ c=0 \quad R_n=11 \]
\[n=4, \ p=2, \ c=0 \quad R_n=10 \]
\[n=4, \ p=0, \ c=3 \quad R_n=10 \]
\[n=4, \ p=2, \ c=3 \quad R_n=9 \]

the parallel case, that pairs of extra concurrencies must all be counted.

Thus if \(c \) lines concur at one point

\[R_n = 1 + \frac{n(n+1)}{2} - \frac{(c-1)(c-2)}{2} \]
If a line provides both a case of parallelism and a case of concurrence, it must be counted each way in reducing the number of regions, as is shown in the figure. In general if there are j families of parallel lines with p_1, p_2, \ldots, p_j lines in each family and k families of concurrent lines with c_1, c_2, \ldots, c_k lines in each family, we have

$$r_n = 1 + \frac{n(n+1)}{2}$$

\[\left[\frac{p_1(p_1 - 1)}{2} + \frac{p_2(p_2 - 1)}{2} + \cdots + \frac{p_j(p_j - 1)}{2} \right] \\
= \left[\frac{c_1 - 1)(c_1 - 2)}{2} + \frac{c_2 - 1)(c_2 - 2)}{2} + \cdots + \frac{c_k - 1)(c_k - 2)}{2} \right] \]

The proof of this is too lengthy for insertion here.

16. Consider the sequence of fractions:

$\frac{1}{2}, \frac{3}{5}, \frac{7}{12}, \ldots, \frac{p_n}{q_n}, \ldots$

where each fraction is obtained from the preceding by the rule

$$p_n = p_{n-1} + 2q_{n-1}$$

$$q_n = p_{n-1} + q_{n-1}$$

Show that for n sufficiently large, the difference between $\frac{p_n}{q_n}$ and $\sqrt{2}$ can be made as small as desired. Show also that the approximation to $\sqrt{2}$ is improved at each successive stage of the sequence and that the error alternates in sign. Prove also that p_n and q_n are relatively prime, that is, the fraction $\frac{p_n}{q_n}$ is in lowest terms.

Let the error at the n-th stage be denoted by $e_n = \frac{p_n}{q_n} - \sqrt{2}$. We may define the error e_{n+1} at the next stage recursively in terms of e_n, as follows:

$$e_{n+1} = \frac{p_n + 2q_n}{p_n + q_n} - \sqrt{2}$$

$$e_{n+1} = \frac{p_n}{q_n + 1} - \sqrt{2}$$
Since \(1 - \sqrt{2} \) is negative, it follows that \(e_{n+1} \) has the opposite sign from \(e_n \), and the sign alternates if the denominator is shown to be positive. We shall prove by induction that \(|e_n| < \frac{1}{2^n} \) and thereby show simultaneously that the denominator above is positive, and that the error can be made as small as desired by taking \(n \) sufficiently large.

Initial Step. \(|e_1| = |1 - \sqrt{2}| = \frac{q_1}{d_5} \ldots < \frac{1}{2} \).

Sequential Step. Assume \(|e_k| < \frac{1}{2^k} \). For the denominator of \(e_{k+1} \), we have

\[
e_{k+1} + 1 + \sqrt{2} > \frac{1}{2^k} + 1 + \sqrt{2} > \frac{1}{2} + 1 + \sqrt{2} > \frac{1}{2} + \sqrt{2} > 1.
\]

We also have \(\sqrt{2} - 1 < \frac{1}{2} \).

It follows from the recursive expression for \(e_{k+1} \) that

\[
|e_{k+1}| < \frac{1}{2} |e_k| < \frac{1}{2} \cdot \frac{1}{2^k} = \frac{1}{2^{k+1}}.
\]

To prove that \(p_n \) and \(q_n \) have no common factor other than 1, we note that

\[
p_n = p_{n+1} - q_{n+1} \quad q_n = 2q_{n+1} - p_{n+1}.
\]

We then reason inductively as follows:

Initial Step. The only common factor of \(p_1 \) and of \(q_1 \) is 1.

Sequential Step. Assume \(p_k \) and \(q_k \) have no common factor other than 1. If \(p_{k+1} \) and \(q_{k+1} \) had such a common factor, then, by the above formula it would have to be a common factor of \(p_k \) and \(q_k \). Contradiction.
19. Let \(p \) be any polynomial of degree \(m \). Let \(q(n) \) denote the sum
\[
q(n) = p(1) + p(2) + p(3) + \ldots + p(n).
\]
Prove that there is a polynomial \(q \) of degree \(m \) satisfying (1).

Initial Step. We observe that if \(p(x) = c \), where \(c \) is a constant and we have
\[
q(x) = \sum p(x) = c(n + 1).
\]
Hence \(q(x) = c(n + 1) \) is a polynomial of degree 1.

Sequential Step. Let \(p \) be of degree less than \(m \). Then
\[
q(x) = \sum p(x) = \sum (c + d(x - x_1)) = \sum c + \sum d(x - x_1),
\]
where the \(x_1 \) are the \(x \)-values.

Next we observe that
\[
q(x) = \sum p(x) = \sum c + \sum d(x - x_1).
\]

Furthermore, the expression in braces reduces by successive additions and subtractions to \((q + 1)^{k+2} - 1^{k+2}\), and we obtain the desired polynomial,

\[q(x) = \frac{a}{k+2}[(x + 1)^{k+2} - 1^{k+2}] + q_1(x) \]

where \(q(n) = p(1) + \ldots + p(n)\).

Now we prove (3):

Initial Step. If \(k = 0\), \((x + 1)^{k+2} - 1^{k+2}\) and the degree of \(k\) is 0:

Sequential Step. \((x+1)^{k+3} - (x+1)^{k+2} - 1^{k+2}\)

20. Let the function \(f(n) = \frac{a}{k+2}\).

Initial Step. \(f(1) = \ldots\)

Sequential Step. \(f(n+1) = \ldots\)

In particular, we have \(f(1)\).

Similarly, \(g(n)\) is defined by:

Initial Step. \(g(1) = \ldots\)

Sequential Step. \(g(n+1) = \ldots\)

Find the minimum value for which:

Initial Step. \(f(2) > g(1)\)...

General. \(f(n) > g(n)\)

Sequential Step.
21. Prove for all natural numbers n, that \(\frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2^n \sqrt{2}} \) is an integer. (Hint: Try to express \(x^n \) in terms of \(x^{n-1}, y^{n-1}, x^{n-2}, y^{n-2} \), etc.)

Let \(F_n = \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2^n \sqrt{2}} \)

Initial Step: \(F_1 = \frac{(1 + \sqrt{2}) - (1 - \sqrt{2})}{2 \sqrt{2}} = \frac{2 \sqrt{2}}{2 \sqrt{2}} = 1 \)

Inductive Step: Assume \(F_k = \frac{(1 + \sqrt{2})^k - (1 - \sqrt{2})^k}{2^k \sqrt{2}} \) is an integer. Then

\[
F_{k+1} = \frac{(1 + \sqrt{2})^{k+1} - (1 - \sqrt{2})^{k+1}}{2^{k+1} \sqrt{2}}
\]

\[
= \frac{(1 + \sqrt{2})^k (1 + \sqrt{2}) - (1 - \sqrt{2})^k (1 - \sqrt{2})}{2^{k+1} \sqrt{2}}
\]

\[
= \frac{(1 + \sqrt{2})^k}{2^k \sqrt{2}} - \frac{(1 - \sqrt{2})^k}{2^k \sqrt{2}}
\]

\[
= \frac{2^k + 2^k \sqrt{2} - 2^k - 2^k \sqrt{2}}{2^{k+1} \sqrt{2}}
\]

\[
= \frac{2^k}{2^{k+1} \sqrt{2}}
\]

By the inductive hypothesis, \(F_k \) is an integer, so \(\frac{2^k}{2^{k+1} \sqrt{2}} \) is also an integer, prove it.
1. Prove

\[\sum_{k=1}^{n} (a\alpha_k + b\beta_k) = a \sum_{k=1}^{n} \alpha_k + b \sum_{k=1}^{n} \beta_k. \]

The linearity of summation follows from the distributive properties of real numbers and the use of induction.

2. Write each of the following sums.

(a) \[\sum_{k=1}^{n} x_k \]

(b) \[\sum_{j=2}^{b} y^j \]

(c) \[\sum_{k=-2}^{2} z_k \]

(d) \[\sum_{m=0}^{\infty} \frac{1}{2^m} \]

(e) \[\sum_{i=0}^{\infty} \frac{1}{(i+1)^2} \]

(f) \[\sum_{r=0}^{n} \frac{1}{r!} \]
3. Which of the following statements are true and which are false? Justify your conclusions.

(a) \(\sum_{j=3}^{10} 4 = 7 \cdot 4 = 28 \)

(b) \(\sum_{j=m}^{n} 4 = 4(n - m + 1) \)

(c) \(\sum_{k=1}^{10} k^2 = 10 \sum_{k=1}^{y} k^2 \)

(d) \(\sum_{k=1}^{1000} k^2 = \sum_{k=1}^{1000} \sum_{k-3}^{k} \)

(e) \(\sum_{k=1}^{n} k^3 = \sum_{j-2}^{j} \)

(f) \(\sum_{m=1}^{10} \left(\sum_{m-1}^{n} \right) \)

(g) \(\sum_{m=1}^{10} \left(\sum_{m-1}^{n} \right) \)

(h) \(\sum_{i=0}^{n} \)

(i) \(\sum_{k=0}^{n} \)

(j) \(\sum_{k=0}^{n} \)
(a) False; \(\sum_{j=3}^{10} 4 \cdot 4 = 32 \)

(b) True

(c) False; \(\sum_{k=1}^{10} k^2 = 10^2 \) \(\sum_{k=1}^{y} k = \sum_{k=1}^{y} k \)

(d) True

(e) True

(f) False; unless

(g) False; unless \(k > 0 \)

(h) True; the missing

(i) True; \(m \) take

(j) True. \(\sum_{k=0}^{\infty} k^2 \) \(\sum_{k=0}^{\infty} k \)

(k) \(\sum_{k=1}^{l} k \)
5. Subdivide the interval [0,1] into \(n \) equal parts. In each subinterval obtain upper and lower bounds for \(x^2 \). Using sigma notation, use these upper and lower bounds to obtain expressions for upper and lower estimates of the area under the curve \(y = x^2 \) on [0,1]. If you can evaluate these sums without reading elsewhere, do so.

Lower sum = \[\sum_{k=0}^{n-1} \left(\frac{k}{n} \right)^2 - \frac{1}{n} \sum_{k=0}^{n-1} k^2 = \frac{1}{6} \cdot \frac{1}{n} \cdot \frac{2n(n-1)(2n-1)}{6} = \frac{2}{3} \]

Upper sum = \[\sum_{k=1}^{n} \left(\frac{k}{n} \right)^2 - \frac{1}{n} \sum_{k=1}^{n} k^2 = \frac{1}{3} \cdot \frac{1}{n} \cdot \frac{1}{6} = \frac{1}{6} \]

6. (a) Write out the sum for the first \(n \) terms of an arithmetic progression with first term \(a \) and common difference \(d \). Express the same sum in sigma notation.

\[\sum_{k=1}^{n} a + (k-1)d = \sum_{k=1}^{n} (a + (k-1)d) = \sum_{k=1}^{n} (a + (k-1)d) \]

(b) In sigma notation, express the sum of the first \(p \) terms of a geometric progression with first term \(a \) and common ratio \(r \).

\[\sum_{k=1}^{p} a \cdot r^{k-1} \]

7. (a) Given

\[f(n) = \sum_{r=1}^{n} \frac{1}{r^2} \]

Find

\[f(n) = \sum_{r=1}^{n} \frac{1}{r^2} \]
(b) Give an example of a function g (similar to that in (a)) such that
\[g(n) = 1, \quad n = 1, 2, \ldots, 10^6, \]
\[g(10^6 + 1) = 0. \]

\[g(n) = 1 - \frac{(n - 1)(n - 2)(n - 3) \cdots 1}{10^6!}. \]

8. Write each of the following:

(a) \[\sum_{n=1}^{4} \left\{ \sum_{r=1}^{3} r(n - r) \right\} \]

(b) \[\sum_{n=1}^{8} \left\{ \sum_{r=1}^{4} (\ldots) \right\} \]

\[\sum_{n=1}^{8} \left\{ \sum_{r=1}^{4} \left(\begin{array}{c} n \\ r \end{array} \right) \right\} \]
\[\sum_{i=1}^{2} \sum_{j=1}^{3} 1 \cdot j = 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 + 2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 - 18 \]

Evaluate:

(a) \[\sum_{i=1}^{m} \sum_{j=1}^{n} i \cdot j \]

(b) \[\sum_{i=1}^{m} \sum_{j=1}^{n} (i \cdot j) \]

(c) \[\sum_{i=1}^{m} \left\{ \sum_{j=1}^{n} j \right\} \]

(d) \[\sum_{i=1}^{m} \left(\sum_{j=1}^{n} 1 \right) \]
Now use (b) and (c) to give
\[\sum_{i=1}^{m} \sum_{j=1}^{n} \min(i, j) = \frac{mn}{2} - \frac{(m-1)(m+1)}{6}, \]

10. (a) Show that
\[\frac{1}{k(k-1)} = \frac{1}{k} - \frac{1}{k-1}, \quad k \neq 1. \]

(b) Evaluate
\[\sum_{k=2}^{1000} \frac{1}{k(k-1)}. \]

11. If \(a(n) = \sum_{i=1}^{n} \)
\[n = \sum_{i=1}^{n} f(i) \]

\[f(m) = 1, \ m \geq 1. \]

\[n^2 = \sum_{i=1}^{n} f(i) \]

\[f(m) = 1, \ m \geq 1. \]

\[an^2 + bn + c = \sum_{i=1}^{n} i(i-1) \]

\[i(a) = \ldots, \quad (m-1) - c \]

\[\cos n = \sum_{i=1}^{n} f(i) \]

\[a! \sum_{i=1}^{2} \]

13. big ... large.

We set \((n) \)

\[\binom{n}{r} \]
(a) \(\binom{n}{0} = \binom{n}{n} = 1 \)
\(\binom{n}{1} = \binom{n}{n-1} = n \)
\(\binom{n}{r} = \binom{n}{n-r} \)

\(\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \)

(b) \(\binom{n}{r} = \binom{n}{n-r} \)

\(\binom{n}{0} = \frac{n!}{n!0!} = \frac{n!}{n!} = 1 \)
\(\binom{n}{n} = \frac{n!}{0!n!} = 1 \)

\(\frac{n!}{(n-r-1)!r!} = \binom{n}{r} \)

\(\frac{n!}{(n-1)!} \cdot \frac{1}{r!} = \binom{n}{r} \)

\(\frac{(n-1)!}{(n-1-r)!} \cdot \frac{1}{r!} = \binom{n-1}{r} \)

\(\binom{n}{r} \cdot \frac{1}{r!} = \binom{n}{r+1} \)

\(\binom{n}{r+1} \cdot \frac{1}{r+1} = \binom{n}{r} \)

\(\sum_{r=0}^{n} \binom{n}{r} = 2^n \)

\(\text{A3-2a} \)
\[(x + y)^{n+1} = (x + y)^n(x + y) = \left(\sum_{r=0}^{n} \binom{n}{r} x^{n-r} y^r \right)(x + y)\]

\[= \sum_{r=0}^{n} \left(\binom{n}{r} x^{n-r+1} y^r + \binom{n}{r} x^{n-r} y^{r+1} \right)\]

\[= \sum_{r=1}^{n} \left(\binom{n}{r} \right) x^{n-r} y^r + \binom{n}{n} x^0 y^{n+1}\]

(\text{using (b)})

\[= \sum_{r=1}^{n} \binom{n+1}{r} x^{n-r} y^r + \sum_{r=0}^{n} \binom{n+1}{n+1} x^{n-r} y^r\]

\[= \sum_{r=0}^{k} \binom{n+1}{r} x^{n-r} y^r\]

(\text{using (c)})
15. Evaluate the following sums.

\[a_{n} = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = \sum_{r=0}^{n} \binom{n}{r} \]

Since \((1 + x)^{n} = \sum_{r=0}^{n} \binom{n}{r} x^{r}\),

\[b_{n} = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = \sum_{r=0}^{n} \binom{n}{r} \]

If \(n = \infty\),

\[\sum_{r=0}^{n} \binom{n}{r} = \lim_{n \to \infty} \sum_{r=0}^{n} \binom{n}{r} = \lim_{n \to \infty} (1 + 1)^{n} = 2^{n} \]

16. Sum \[\sum_{r=0}^{n} r \binom{n}{r} \] using 15(a).

\[\sum_{r=0}^{n} r \binom{n}{r} = \frac{d}{dx} \left[x \sum_{r=0}^{n} \binom{n}{r} x^{r} \right] \bigg|_{x=1} = \frac{d}{dx} \left[x \cdot 2^{n} \right] \bigg|_{x=1} = n \cdot 2^{n} \]

Theorem: \[\sum_{r=0}^{n} \binom{n}{r} = 2^{n} \]

\[\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n} \]
The following sums are telescoping form, i.e., in the form
\[\sum_{k=1}^{n} (u(k) - u(k-1)) \], and evaluate

(a) \[\sum_{k=1}^{n} k(k+1) \]

(b) \[\sum_{k=1}^{n} k(2k-1) \]

(c) \[\sum_{k=1}^{n} 2k(2k+1) \]

(d) \[\sum_{k=1}^{n} k(k+1)(k+2) \]
\(\frac{1}{3} \sum_{k=1}^{n} (k(k+1)(k+2) - (k-1)k(k+1)) = \frac{n(n+1)(n+2)}{3} \)

(b) \(k(2k-1) = 2k(k+1) - 3k \). Using (a) and \(3k = \frac{2}{3}(k(k+1) - (k-1)k) \), the sum is \(\frac{2n(n+1)(n+2)}{3} - \frac{3n(n+1)}{2} \).

(c) \(2k(2k+1) = kk(k+1) - 2k \). Using (a) and (b), the sum is \(\frac{4n(n+1)(n+2)}{3} - n(k+1) \).

(d) Here, \(u(k) = \frac{k(k+1)(k+2)(k+3)}{4} \) and the sum is \(\frac{n(n+1)(n+2)(n+3)}{4} \).

(e) \(\sum_{k=1}^{n} k = \frac{k(k+1)(k+2)}{3} - \frac{3k(k+1)}{2} - k \). Whence \(u(k) = \frac{k(k+1)(k+2)(k+3)}{4} - \frac{3k(k+1)(k+2)}{3} - \frac{k(k+1)}{2} \) and the sum is \(\frac{n(n+1)(n+2)(n+3)}{4} - n(n+1)(n+2) - \frac{n(n+1)}{2} \).

(f) Here, \(u(k) = -\frac{1}{2(k+1)(k+2)} \) and the sum is \(\frac{1}{2} \frac{1}{1+2} - \frac{1}{(n+1)(n+2)} \).

(g) Here, \(u(k) = (k+1)! \) and the sum is \((n+1)! - 1 \).

(h) Here, \(u(k) = \frac{x+1}{r-1} \) and the sum is \(\frac{x+1}{r-1} - 1 \), \(r \neq 1 \).

2. Using \(\sum_{k=1}^{n} (u(k) - u(k-1)) = u(n) - u(0) \), establish a short dictionary of summation formulae by considering the following functions \(u \):

(a) \((a + b) + (a + (k+1)b) + \ldots + (a + (p-1)b) \)

(b) The reciprocal of (a).

(c) \(r^k \)

(d) \(kr^k \)

(e) \(k^2r^k \)

(f) \(k! \)

(g) \((k!)^2 \)

(h) \(\arctan k \)

(i) \(k \sin^k \)

(j) \(\log(k) \)
(a) \((p + 1)d \sum_{k=1}^{n} (a + kd)(a + (k + 1)d) \ldots (a + (k + p - 1)d)\)
\[= (a \cdot na) (a + (n + 1)d) \ldots (a + (p) \cdot d) - a(a + d) \ldots (a + pd).\]

(b) \((p + 1)d \sum_{k=1}^{n} ((a + (k - 1)d)(a + kd) \ldots (a + (k + p - 1)d))^{-1}\)
\[= (a(a + d) \ldots (a + pd))^{-1} - ((a + nd)(a + (n + 1)d) \ldots (a + (k + p)d))^{-1}.\]

(c) \((r - 1) \sum_{k=1}^{n} k^{-1} = r^n - 1\)

(d) \((r - 1) \sum_{k=1}^{n} kr^{-1} + \sum_{k=1}^{n} k^{-1} = n^r \text{ for }\)
\[\sum_{k=1}^{n} k^{-1} = \frac{n(r - 1)r^n - 1}{r - 1}.\]

(e) \((r - 1) \sum_{k=1}^{n} r^2 k^{-1} = r^2 - 1 + \sum_{k=1}^{n} r^{-1} - 2 \sum_{k=1}^{n} kr^{-1}.\)
(Now use (c) and (d))

(f) \(\sum_{k=1}^{n} (k - 1)! (k - 1) = n^r - 1\)

(g) \(\sum_{k=1}^{n} (k^2 - 1)((k - 1))! = (n!)^2 - 1\)

(h) \(\sum_{k=1}^{n} \arctan \frac{1}{k^2 - k + 1} = \arctan\)

(i) \(\frac{1}{2} \sin \frac{\pi}{2^n} \sum_{k=1}^{n} \cos(k \cdot \frac{1}{2^n}) = n \sin \frac{\pi}{2^n} \sum_{k=1}^{n} \sin(k \cdot \frac{1}{2^n}).\)
(Now use Equation 8)
4. Another method for summing $\sum_{k=0}^{n} P(k)$ (P - a polynomial) can be obtained by using a special case of Number 2a, i.e.,

$$\sum_{k=1}^{n} (k+1)(k)(k-1)...(k-r+1) = \frac{(n+1)(n)(n-1)...(n-r+1)}{r!}$$

or

$$\sum_{k=1}^{n} k(k-1)...(k-r+1) = \frac{(n+1)(n)(n-1)...(n-r+1)}{r!}$$

First, we show how to represent any polynomial $P(k)$ of r-th degree in the form

$$P(k) = a_0 + a_1 k + \frac{a_2 k(k-1)}{2!} + \frac{a_3 k(k-1)(k-2)}{3!} + \ldots + \frac{a_r k(k-1)...(k-r+1)}{r!}$$

If $k = 0$, then $a_0 = P(0)$; if $k = 1$, then $a_1 = P(1) - P(0)$; if $k = 2$, then $a_2 = P(2) - 2P(1) + P(0)$. In general, it can be shown that
(ii) \(a_m = P(m) - \frac{P(m-1)}{2} + \frac{(-1)^m}{2} P(0) \),

Since both sides of (1), are polynomials of degree \(r \) and (1) is satisfied for \(m = 0, 1, \ldots, r \), it must be an identity.

Now sum \(\sum_{k=1}^{n} P(k) \)

\[
\sum_{k=1}^{n} P(k) = a_0 n + \frac{a_1 (n+1)(n)}{2} + \cdots + \frac{a_r (n+1)(n)(n-1)! \cdots (n-r+1)}{r!}
\]

5. Using Problem 4, find the following sums:

(a) \(\sum_{k=1}^{n} k^2 \)

\[
k^2 = a_0 + a_1 k + \frac{a_2 k(k+1)}{2!}
\]

where \(a_0 = 0^2 \), \(a_1 = 1^2 - 0^2 = 1 \), \(a_2 = 2^2 - 2(1) + 0 = 2 \). Thus, \(k^2 = k + k(k-1) \) and

\[
\sum_{k=1}^{n} k^2 = \frac{n(n+1)}{2} + \frac{(n+1)(n)(n-1)}{3} = \frac{a(n+1)(2n+1)}{6}
\]

(b) \(\sum_{k=1}^{n} k^3 - \left(\sum_{k=1}^{n} k \right)^2 \)

\[
k^3 = a_0 + a_1 k + \frac{a_2 k(k+1)}{2!} + \frac{a_3 k(k-1)(k-2)}{3!} \text{ where } a_0 = 0^3 \text{, } a_1 = 1 \text{, } a_2 = 3^2 - 2(1) = 6 \text{, } a_3 = 3^3 - 3(8) + 3(1) = 6 \text{. Thus,}
\]

\[
k^3 = k + 3k(k-1) + k(k-1)(k-2) \text{ (compare with number 14)}
\]

and

\[
\sum_{k=1}^{n} k^3 = \frac{(n+1)n}{2} + \frac{3(n+1)(n)(n-1)}{3} + \frac{(n+1)(n)(n-1)(n-2)}{4} = \frac{n^2(n+1)^2}{4}
\]
\[\sum_{k=1}^{n} k = \frac{(n+1)n}{2}. \]

Finally, \[\sum_{k=1}^{n} \binom{k}{2} = \frac{n(n+1)(n+2)}{6}. \]

(c) \[\sum_{k=1}^{n} k^3 = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + a_4 n^4 \]

...\[a_4, k(k-1)(k-2)(k-3) \]

where,

\[a_0 = 0, a_1 = 1, a_2 = 2^2 - 2(1) = 2, \]

\[a_3 = 3^3 - 3(2^2) + 3(1) = 18, \]

\[a_4 = 4^4 - 4(3^3) + 6(2^2) - 4(1) = 94. \]

Then,

\[\sum_{k=1}^{n} k^3 = \frac{(n+1)^2(n+2)}{4} + \frac{7(n+1)(n)(n-1)}{3} + \frac{6(n+1)(n)(n-1)(n-2)(n-3)}{4} \]

6. (a) Establish Equation (ii) of Number 4.

Since \(a_0, a_1, \ldots, a_r \) are defined by the equation

\[P(k) = a_0 \binom{k}{0} + a_1 \binom{k}{1} + \cdots + a_r \binom{k}{r}, \]

we have the following \(r \) linear equations for the \(a_i \)'s:

\[P(0) = a_0 \binom{0}{0} = a_0, \]

\[P(1) = a_0 \binom{1}{0} + a_1 \binom{1}{1} = a_0 + a_1, \]

\[P(2) = a_0 \binom{2}{0} + a_1 \binom{2}{1} + a_2 \binom{2}{2} = a_0 + 2a_1 + a_2, \]

\[\vdots \]

\[P(r) = a_0 \binom{r}{0} + a_1 \binom{r}{1} + \cdots + a_r \binom{r}{r}. \]

Our proof is by mathematical induction. Assume that...
(A) \(a_n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (\sum_{j=0}^{m-1} a_j^m) \)

is valid for \(n = 0, 1, \ldots, m-1 \). We now wish to show that the expression for \(a_m \) is also valid for \(n = m \). This is equivalent to showing

\[(B) \quad P(m) = a_0^m + a_1^m + \cdots + a_m^m = \sum_{j=0}^{m} a_j^m \]

(for the values of \(m \) given above, \(n = 1, 2, \ldots, m \). This will involve manipulations on double series.

\[\sum_{j=0}^{m} a_j^m = \sum_{j=0}^{m} \sum_{k=0}^{j} (-1)^k \binom{j}{k} P(j-k)^m \]

(by substituting \(a_j = a_j^m \) in \(P \)).

Now let \(k = j+1 \). Then,

\[\sum_{j=0}^{m} a_j^m = \sum_{j=0}^{m} \sum_{i=0}^{j-1} (-1)^{j-i} \binom{m}{j-i} P(i)^m \]

Noting that \(\binom{m}{j-i} = \binom{m}{j-i} \) and interchanging order of summation, we get

\[\sum_{j=0}^{m} a_j^m = \sum_{i=0}^{m} \sum_{j=i}^{m} (-1)^{j-i} \binom{m}{j} P(i)^m \]

\[= \sum_{i=0}^{m} \sum_{j=1}^{m} (-1)^{j-i} \binom{m}{j} P(i)^m \]

Since \(\binom{m}{j} = \binom{m-1}{j-1} \),

\[\sum_{i=0}^{m} \sum_{j=1}^{m} (-1)^{j-i} \binom{m}{j} P(i)^m = \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} P(i)^m \]

Now let \(i = i + r \), which reduces the last summation to

\[\binom{m}{i} \sum_{r=0}^{m-1} (-1)^r \binom{m-r}{i} = 0 \text{ if } i \neq m \]

\[= 1 \text{ if } i = m \]

(see Exercises A3-2a, No. 15b).
Finally, $\sum_{j=0}^{m} a_j^{(m)} = P(m)$ which was to be shown.

Since our inductive hypothesis (A) is valid for $n = 0$, it is valid for all n.

(b) Show that a_m is zero for $m > r$.

Suppose we wanted the equation $F(x) = a_0^{(x)} + a_1^{(x)} + \ldots + a_m^{(x)}$ (where m is any number > r), to be satisfied for $x = 0, 1, 2, \ldots, m$ where $F(x)$ is some given function. By setting $x = 0, 1, 2, \ldots, m$ in turn the a_i's will have to satisfy

$F(0) = a_0^{(0)}$,

$F(1) = a_0^{(1)} + a_1^{(1)}$,

\vdots

$F(m) = a_0^{(m)} + a_1^{(m)} + \ldots + a_m^{(m)}$.

It follows (from algebra) that this system of $(m + 1)$ linear equations in $(m + 1)$ unknowns has a unique solution for all $F(x)$. By our inductive argument in part (a), the solution is given as

$$a_i = F(n)(\binom{n}{0} - F(n - 1)(\binom{n}{1} + \ldots + (-1)^{m}F(n)(\binom{n}{m})$$

for $n = 0, 1, 2, \ldots, m$.

If we now choose $F(x)$ to be the polynomial $P(x)$ of degree r in part (a), then $F(x)$ is identical to

$$a_0^{(x)} + a_1^{(x)} + \ldots + a_r^{(x)}$$

(from Problem 4). It then follows that

$$a_{r+1}^{(x)} + a_{r+2}^{(x)} + \ldots + a_m^{(x)}$$

vanishes for $x = 0, 1, 2, \ldots, m$. If a polynomial of degree m vanishes for $m + 1$ different values it must identically vanish. Therefore,

$$a_{r+1} = a_{r+2} = \ldots = a_m = 0$$

for all $m > r$.

\[474\]
Teacher's Commentary

Appendix A

FUNCTIONS CONTINUOUS ON AN INTERVAL

Solutions Exercises A4-1

1. Is the continuity of f essential to the hypothesis of the Boundedness Theorem?

Yes. Consider

$$f : x \rightarrow f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$ on $[0,1]$.

2. Can a discontinuous function whose domain is a closed interval be bounded?

Yes. Consider $x \rightarrow [2x]$ on $[0,1]$, or $x \rightarrow [nx]$.

3. Do Numbers 1 and 2 amount to the same question?

No. Number 1 asks, Is the Boundedness Theorem true if we drop the hypothesis of continuity? while Number 2 asks, Is continuity necessary for boundedness?

4. Can a nonconstant function whose domain is the set of real numbers be bounded?

Yes; e.g., $x \rightarrow \sin x$ or $x \rightarrow \frac{x^2}{x^2 + 1}$

5. Give an example of a monotone function on $[0,1]$ with exactly n points of discontinuity.

$x \rightarrow [nx]$.

6. Can a monotone function on $[0,1]$ have infinitely many points of discontinuity? Justify your answer.

Yes; e.g.,

$$x \rightarrow \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
7. (a) Give an example of a bounded function f defined on $[0,1]$ such that f has no extreme values.

$$f(x) = \begin{cases}
 x & \text{for } 0 < x < 1, \\
 \frac{3}{2} & \text{for } x = 0, 1.
\end{cases}$$

(b) Repeat (a) with the extra condition that f have an inverse.

$$f(x) = \begin{cases}
 x + 1 & \text{for } x \neq \frac{1}{n}, \text{ n a positive integer}, \\
 x & \text{for } x = \frac{1}{n}, \\
 \frac{3}{4} & \text{for } x = 0.
\end{cases}$$
(Domain: $0 \leq x \leq 1$.)

8. Give an example of a function f defined in the interval $[0,1]$ such that:

(a) f has neither an upper or lower bound.

$$f_1(x) = \begin{cases}
 \tan(x + \frac{1}{2})x & \text{for } 0 < x < 1, \\
 0 & \text{for } x = 0, 1.
\end{cases}$$

$$f_2(x) = \begin{cases}
 x + \frac{1}{x} & \text{for } 0 < x < 1, \\
 0 & \text{for } x = 0, 1.
\end{cases}$$

(b) f has a lower bound but no upper bound.

$$f_1(x) = \begin{cases}
 \frac{1}{x} & \text{for } 0 < x \leq 1, \\
 0 & \text{for } x = 0.
\end{cases}$$

$$f_2(x) = \begin{cases}
 \tan(x + \frac{1}{2}) & \text{for } 0 < x \leq \frac{1}{2}, \\
 0 & \text{for } \frac{1}{2} < x \leq 1.
\end{cases}$$

(c) f achieves the upper and lower bounds an infinite number of times.
(For this case give a function that is not constant in any interval.)
9. Show that any function \(f \) satisfying Number 8(c) cannot be continuous in the entire interval.

Successively divide the interval into halves, and in each case choose one half interval in which the function assumes its upper and lower bounds \((M \text{ and } m)\), infinitely often. By the Nested Interval Property we obtain a number \(s \) with the property that in every neighborhood of \(s \), \(f \) assumes the values \(M \) and \(m \). But this is impossible at a point of continuity unless \(M = m \).

10. Give an example of a function \(f \) defined on \([0,1]\) such that \(f \) takes on every value between 0 and 1 once and only once but is discontinuous for all \(x \).

\[
f_1(x) = \begin{cases}
 x & \text{for } x \text{ irrational} \\
 \frac{1}{q} & \text{for } x = \frac{p}{q}, \text{ rational,}
\end{cases}
\]

is discontinuous at all points but \(x = \frac{1}{2} \). To rid ourselves of this point of continuity we only need to interchange two values; e.g., set \(f(0) = \frac{1}{2} \) and \(f(\frac{1}{2}) = 1 \). So

\[
f_2(x) = \begin{cases}
 x & \text{for } x \text{ irrational} \\
 \frac{1}{q} & \text{for } x = \frac{p}{q}, \text{ rational, } p < 0, \frac{1}{2},
\end{cases}
\]

suffices.

11. Show that a function which is increasing in some neighborhood of each point of an interval \((a,b)\) is an increasing function in \((a,b)\).

(Note: The text problem using the concept "increasing at a point" is out of place. It is a problem given in Exercises A7-2.)

Consider the set \(A \) of points \(\alpha \) in \((a,b)\) such that \(f \) is increasing in \((a,\alpha)\). Call \(\alpha \) the least upper bound of \(A \). Then for \(\beta > \alpha \), \(f \) is not increasing in \((a,\beta)\).

We are given that \(f \) is increasing in a neighborhood of \(\alpha \) if \(\alpha < b \). Therefore, for some \(h \), \(f \) is increasing in \((\alpha - h, \alpha + h)\). Hence, \(f \) is increasing in \((a,\alpha + h)\). But this means that \(\alpha + h \) is in \(A \),

\[471\]
12. A function \(\phi \) is said to be weakly increasing "on the right" in a neighborhood of \(x \) if \(\phi(x) \geq \phi(a) \) for all \(x \) in the neighborhood satisfying \(x > a \).

(a) Show that if \(\phi \) is continuous and weakly increasing on the right of all points in \((b, c)\), then \(\phi \) is weakly increasing in \((b, c)\).

If \(\phi \) is not weakly increasing on \((a, b)\), there exist points \(x_1, x_2 \in (a, b) \) such that \(x_1 < x_2 \) and \(\phi(x_1) > \phi(x_2) \). Since \(\phi \) is continuous, it has a maximum \(\eta \) on \([x_1, x_2]\). Let \(\xi = \text{pup} \{x : \phi(x) = \eta, x \in [x_1, x_2]\} \). By continuity, \(\phi(\xi) = \eta \).

Now \(\phi(x_2) \) is not the maximum since \(\phi(x_2) < \phi(x_1) \); consequently, \(x_2 \neq \xi \). Since \(\phi(x) \leq \phi(\xi) \) for \(x > \xi \) in some neighborhood of \(\xi \), the condition that \(\phi \) is everywhere increasing on the right is contradicted at \(x = x_2 \).

(b) Show by a counterexample that \((a)\) does not necessarily hold if \(\phi \) is discontinuous.

\[
f(x) = \begin{cases} x, & \text{for } x \in [0,1] \\ x - 1, & \text{for } x \in [1,2] \end{cases}
\]

16. A function has the property that for each point of an interval where it is defined, there is a neighborhood in which the function is bounded. Show that the function is bounded over the whole interval. (This is an example where a local property implies a global one. It is clear that the global property here implies the local one.)

Let \(I \) be the interval for which \(f \) is locally bounded and let \(a \) and \(b \) be the respective left and right endpoints of \(I \). Let \(A \) be the set of points consisting of the point \(a \) and those points \(\alpha \) of \(I \) for which \(f(x) \) is bounded on the interval \(I_{\alpha} = I \cap \{x : x \leq \alpha\} \). Take \(\bar{x} = \sup A \). If \(\alpha > \bar{x} \), then \(f \) cannot be bounded on \(I_{\alpha} \). If \(\bar{x} = \sup A \), then \(f \) is bounded on \(I \). If \(\bar{x} = b \), then \(f \) is bounded on a neighborhood of \(\bar{x} \). It follows that \(f \) is bounded on the union of \(A \), and this neighborhood, contradicting that there is no interval \(I_{\alpha} \) with \(\alpha > \bar{x} \) for which \(f \) is bounded.
1. Give an example of a function defined everywhere in a closed interval but.

1. Give an example of a function defined everywhere in a closed interval but unbounded in the neighborhood of every point of the interval. (Suggestion:

See Exercises 3-5, No. 15.)

\[f(x) = \begin{cases}
0, & \text{if } x \text{ is irrational,} \\
q, & \text{if } x \text{ is rational and } x = \frac{p}{q} \text{ in lowest terms.}
\end{cases} \]

Solutions Exercises A3-2.

1. Can a discontinuous function have the Intermediate Value Property? Give examples.

Yes; e.g., \(x \rightarrow x - [x] \).

Let the function \(f \) be the derivative of a function \(g \). Prove that \(f \) has the Intermediate Value Property.

Let \(r_n(x) = \frac{g(x + h) - g(x)}{h} \). Let \(f(a) = \alpha \) and \(f(b) = \beta \). Take \(\gamma \) between \(\alpha \) and \(\beta \). Let \(\varepsilon = \frac{\beta - \alpha}{2} \min(|r_n(a) - \alpha|, |r_n(b) - \beta|) \). Then we can find \(\delta_1, \delta_2 \), so that \(|r_n(a) - \alpha| < \varepsilon \) if \(0 < h < \delta_1 \), and, \(|r_n(b) - \beta| < \varepsilon \) if \(0 < h < \delta_2 \). Take \(h \) less than both \(\delta_1 \) and \(\delta_2 \). Then \(\gamma \) is between \(r_n(a) \) and \(r_n(b) \). But \(r_n(x) \) is continuous and hence has the Intermediate Value Property. Thus for some \(x \) between \(a \) and \(b \), \(r_n(x) = \gamma \). But then, by the Law of the Mean, there is a point \(\xi \) between \(x \) and \(x + h \) for which \(f'(\xi) = \frac{g'([\xi]) = g(x + h) - g(x)}{h} \).

A3. Given the half-circle \(y = \sqrt{1 - x^2} \), it can be shown that chords parallel to the x-axis of length \(\frac{1}{n} \) exist where \(n \) is any positive integer.

This result can be generalized to any continuous function taking on the value 0 at 0 and 1. Chords which intersect the curve, or lie entirely outside the curve, or coincide with the curve are permitted. Prove this.

The problem may be stated analytically as follows. Prove that if \(f \) is continuous on \([0,1]\) and \(f(0) = f(1) = 0 \), then for each positive integer \(n \) we can find an \(x \) in \([0,1]\) such that \(f(x) = f(x + \frac{1}{n}) \). The function \(g(x) = f(x + \frac{1}{n}) \) defined on \([0,1 - \frac{1}{n}]\) is continuous. It is impossible that \(g(x) > 0 \) for \(x \) in \([0,1 - \frac{1}{n}]\), since if it were, then

\[f(1) = g(1 - \frac{1}{n}) + g(\frac{1}{n}) + \ldots + g(1 - \frac{1}{n}) > 0 \]
Similarly, we cannot have \(g(x) < 0 \) for \(x \) in \([0, 1 - \frac{1}{n}] \). Hence \(g \) changes sign, and by the Intermediate Value Theorem, there is an \(x \) in \([0, 1 - \frac{1}{n}] \) for which \(g(x) = 0 \).

Solutions Exercises A-2

1. Show that the Weierstrass function is not monotone in any interval.

Given any interval \(I \), we can choose \(n \) large enough so that we can find two points \(\frac{1}{3^n} \) and \(\frac{1 + \frac{1}{3^n}}{3^n} \) in \(I \). Then by the construction of \(f \), if \(f\left(\frac{1}{3^n}\right) < f\left(\frac{1 + \frac{1}{3^n}}{3^n}\right) \), then \(f\left(\frac{1}{3^n} + \frac{1}{3^{n+1}}\right) > f\left(\frac{1}{3^n} + \frac{2}{3^{n+1}}\right) \), and if \(f\left(\frac{1}{3^n}\right) > f\left(\frac{1 + \frac{1}{3^n}}{3^n}\right) \), then \(f\left(\frac{1}{3^n} + \frac{1}{3^{n+1}}\right) < f\left(\frac{1}{3^n} + \frac{2}{3^{n+1}}\right) \). Hence \(f \) is not monotone on \(I \).
When we speak about a function, \(F \), of two variables we would be more consistent if we wrote

\[F : (x, y) \rightarrow F((x, y)) \]

Having said this, we can afford the convenience of the sloppier notation

\[F : (x, y) \rightarrow F(x, y) \]

Since a linear \(\delta \)-neighborhood of \(a \) consists of all points \(x \), whose distance to \(a \) is less than \(\delta \), it might seem more natural to define a planar \(\delta \)-neighborhood of \((a, b) \) to consist of all \((x, y) \) such that

\[\sqrt{(x - a)^2 + (y - b)^2} \leq \delta \]

Since every square neighborhood contains a circular neighborhood and vice versa, the two notions are equivalent. For our purposes, it has been more convenient to work with square neighborhoods.

Solutions/Exercises A5

1. Find conditions for which the equations

\[a_1 t + b_1 x + c_1 y + d_1 = 0 \]
\[a_2 t + b_2 x + c_2 y + d_2 = 0 \]

determine \(x \) and \(y \) as functions of \(t \).

From the two equations we easily obtain

(i) \((a_2 c_1 - a_1 c_2)t + (b_2 c_1 - b_1 c_2)y + b_1 d_1 - b_2 d_2 = 0\)

and

(ii) \((a_2 c_1 - a_1 c_2)t + (b_2 c_1 - b_1 c_2)x + c_1 d_2 - c_2 d_1 = 0\)

Hence, if \(b_2 c_1 - b_1 c_2 \neq 0 \), we find
2. Consider linear approximations to F and G, then use Number 1 to generalize Theorem A5b to the situation $F(t, x, y) = 0 = G(t, x, y)$.

Suppose $F(t_0, x_0, y_0) = 0 = G(t_0, x_0, y_0)$, and suppose that F and G have representations

$$F(t, x, y) = a_1(t - t_0) + b_1(x - x_0) + c_1(y - y_0) + (b_2 - t_0)\varepsilon_1(t, x, y) + (x - x_0)\varepsilon_2(t, x, y) + (y - y_0)\varepsilon_3(t, x, y),$$

$$G(t, x, y) = a_2(t - t_0) + b_2(x - x_0) + c_2(y - y_0) + (t - t_0)\varepsilon_4(t, x, y) + (x - x_0)\varepsilon_5(t, x, y) + (y - y_0)\varepsilon_6(t, x, y),$$

where

$$\lim_{x \to x_0, y \to y_0} \varepsilon_i(t, x, y) = 0, \quad i = 1, 2, \ldots, 6.$$

Then if $b_2c_1 - b_1c_2 \neq 0$, unique functions $t \to f(t)$, $t \to g(t)$ are determined such that

(i) $F(t, f(t), g(t)) = G(t, f(t), g(t)) = 0$,

(ii) $f'(t_0) = -\frac{a_2c_1 - a_1c_2}{b_2c_1 - b_1c_2}$,

(iii) $g'(t_0) = -\frac{a_1b_2 - a_2b_1}{b_2c_1 - b_1c_2}$.

This method can be generalized to

$$F_i(x_1, x_2, \ldots, x_n; y_1, y_2, \ldots, y_m) = 0, \quad i = 1, 2, \ldots, m,$$

where, under appropriate conditions, (1) uniquely determines y_1, \ldots, y_m as functions of x_1, \ldots, x_n. The theorem describing this situation is called the Implicit Function Theorem and is discussed in advanced texts.
Prove that the following equations uniquely define \(y \) as an implicit function of \(x \) near the points indicated. (Note: The wording of the problem has been slightly changed from that in the text.)

\((a) \quad 3x^2 + xy + 3y^2 = 7, \quad \left(\frac{22}{3}, 0 \right) , \)

\[
F(x, y) = 3x^2 + xy + 3y^2 - 7 = 0
\]

\[
\phi_1(y) = 3y^2 + 3y + 3y^2 - 7^2
\]

\[
= 3(y^2 + \frac{3y}{3} + \frac{9}{3}) = 0
\]

\[
\phi_2(x) = 3\left(x + \frac{3}{3} \right)^2 - 7
\]

\[= 3\left(x + \frac{1}{2} \right)^2 - 7 + 3\]

\(\phi_3(x) \) for all \(i \) are polynomials, hence continuous, and are monotone in the neighborhood of all points \((x, y) \) on \(F(x, y) = 0 \) such that \(x = \frac{2}{3} \); for \(i = \sqrt{2} \), \(\phi_4(y) \) monotone in a neighborhood of \(y = 0 \). All \(\psi_i(x) \) are polynomials in \(x \), hence continuous. So \(F(x, y) \) at \(\left(\frac{22}{3}, 0 \right) \) meets the conditions of the Implicit Function Theorem.

\((b) \quad F(x, y) = x^2 - 3xy + y^3 = 0 \)

\(\phi_5(x) \) and \(\psi_6(x) \) are polynomials in \(x \) and \(y \), respectively, for all \(i \), \(\eta \), hence continuous over their entire domain.

\[
\phi_5(x) = y^3 - 3xy + \frac{3}{3}y^3
\]

\[
\phi_5'(x) = 3y - 3x
\]

\[
\phi_5'(y) > 0 \text{ for } y^2 > \frac{3}{3}
\]

\[
\phi_5'(y) < 0 \text{ for } y^2 < \frac{3}{3}
\]

Since \(\phi_5' \) is continuous, \(\phi_5'(y) > 0 \) or \(\phi_5'(y) < 0 \) in some neighborhood of all points such that \(y^2 > \frac{3}{3} \). Therefore, \(\phi_6 \) is monotone in a neighborhood of each of these points. Since \((\frac{22}{3})^2 - \frac{3}{3} \), we are finished.

\((c) \quad F(x, y) = x \cos xy = 0 \)

\[
\phi_7(x) = \cos xy \quad \text{a continuous function of } y \quad \text{for all } i
\]

\[
\phi_7'(y) = \frac{1}{2} \sin xy \quad \text{For } i \text{ close to } 1, \text{ } y \text{ close to } \frac{3}{3}
\]

\[
\sin xy > 0 \text{ and } \phi_7'(y) < 0 \text{. Then } \phi_7'(y) \text{ is decreasing in some

483
4. Find the first and second derivatives of the implicit functions defined by (a), (b), and (c) of Number 3. (Note: The wording is slightly different from that in the text.)

(a) $3x^2 - xy - 3y^2 = 0$

(i) $6x + xy' + y' + 6yy' = 0$; $y' = \frac{6x + y}{x + 6y}$

(ii) $x + xy' + y = y' + 6y(1) + 6y' = 0$

$$y'' = \frac{6 + 2y' + 6(y')^2}{x + 6y} = \frac{210x^2 + 700x + 210y^2}{(x + 6y)^3}$$

(b) $x^3 - 3xy + y^3 = 0$

(i) $3x^2 - 3xy' - 3y + 3y^2y' = 0$; $y' = \frac{x^2 - 3y}{x - y}$

(ii) $2x = xy'' - y'' = y' + 3y^2y'' + 2y(y')^2 = 0$

$$y'' = \frac{2x + 2y' + 2y(y')^2}{x - y^2} = \frac{2x + 6x^2 + 2x^2}{(x - y^2)^2} + 2xy$$

(c) $x \cos xy = 0$

We note that the given equation implies $x = 0$ or $\cos xy = 0$. Hence $\cos xy = 0 \Rightarrow xy = \frac{n\pi}{2}$, n an integer. Hence

(i) $xy' + y = 0 \Rightarrow y' = -\frac{y}{x}$

(ii) $xy'' + y' + y \Rightarrow y'' = -\frac{y'}{x} = \frac{2y}{x^2}$
5. Show that there is no unique solution for \(y \) in Number 3(b) in any neighborhood of the point \((x^{2/3}, y^{1/3})\). (Note: "in any neighborhood of" replaces "near" used in the text.)

Using the same analysis as in 3(b), we can determine a unique function \(y = x \) satisfying the equation near \((x^{2/3}, y^{1/3})\). Moreover,
\[
\frac{dy}{dx} = \frac{1}{dy} \text{ is positive to the right of } x^{2/3} \text{ and negative to the left.}
\]
Hence the function has a maximum at \(x^{2/3} \). Thus in any neighborhood of \((x^{2/3}, y^{1/3})\), if \(x < x^{2/3} \), there are two values of \(y \) for every value of \(x \).

6. For possible inverse function of \(f(x) \), show that
\[
\frac{d^2y}{dx^2} = -\frac{\frac{d^2y}{dy^2}}{\left(\frac{dx}{dy}\right)^3}.
\]
Differentiating \(y = f(x) \) implicitly with respect to \(y \), we have
\[
1 = f'(x) \frac{dx}{dy}.
\]
Differentiating again we obtain
\[
0 = f'(x) \frac{d^2x}{dy^2} + \frac{dx}{dy} f''(x) \frac{dy}{dx}.
\]
Hence,
\[
\frac{d^2x}{dy^2} = -\frac{(dx)^2 f''(x)}{(dx)^2 f'(x)}.
\]
\[
\frac{dy}{dx} = \frac{\frac{dx}{dy}}{(\frac{dx}{dy})^2}.
\]
Since \(\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \) and \(f'(x) = \frac{dy}{dx} \),