This 4-year project located in Rockford, Illinois, tested the minicomputer-controlled interactive instruction by two-way cable against more traditional learning situations during a 12-lesson course in prefire planning administered to the city's fire department. This volume describing the development and implementation of the cable television communication system and its effectiveness in urban administration presents a comprehensive account of all phases of the experiment, including cognitive performance and affective results, as well as a description and discussion of the two-way technology and its performance, a cost analysis for the training program, and public policy implications. (Author/RAO)
MICHIGAN STATE UNIVERSITY-ROCKFORD TWO-WAY CABLE PROJECT
System Design Application Experiments and Public Policy Issues

Thomas F. Baldwin
Bradley S. Greenberg
Martin P. Block
John R. Edelenberg
Thomas A. Muth

FINAL REPORT
NSF Grant No. AP775-4286

Department of Telecommunication
Michigan State University
East Lansing, Michigan
June 1978

Contributing authors to this report include: James Wright, Stevens McVoy, John Pachuta, Nicky Stoyanoff, Michael Sheridan, Jayne Zeman, Keith Smith, Michael Gorbutt, Rubin Yaden, Michael Wirth, Judith Saxton.
Acknowledgements

It will be impossible to acknowledge all persons who have contributed to this project. However, it is essential to name a few.

Rockford Mayor Robert McGraw and Aldermen Lee Shervey, Michael O’Neal, Joseph Coutts, Robert Crowe and Victor Bell were initiators of the project and have supported the work through the four years.

The Rockford Fire Department is remarkably innovative. The Department has been a willing and enthusiastic partner to Michigan State University. Chief James Cregan, Deputy Chiefs Doug Bressler, Robert Quist, Paul Patton, and John Jung, Dominic Gugliuzza. Richard Connell, Howard Stewart, Ronald Graw, Vincent Collins. Nancy Johnson—Marge Cook—and, to name only a few, have been most helpful. We are also sincerely grateful to the 285 firefighters in Rockford who participated in the experiment. They were very patient with the tests and waves of questionnaires. The men of Station Number Seven, outside the cable service area, worked with us in the formative evaluation stages, responding to pretests and commenting on the initial videotape.

Rockford Cablevision, Inc. assumed a major burden and a good deal of the risk in making the system work. Earl Himeson, President, committed capital and personnel to the two-way communication system. The original engineering of the system was carefully and imaginatively designed to accommodate two-way services, long before the industry understood and accepted two-way. James Wright was primarily responsible and worked very closely with the Michigan State University staff through the entire project. John Bowers, James Thomas, Frank Shelley and Dean Deyo also worked closely with the project staff.

Crucial engineering support was provided by Stevens McVoy of Canagin Scientific Corporation. His concept of a fiber multiplexed, switched return system was vital to the Rockford experiment and has been an important factor in the industry-wide renewed interest and development of two-way cable. Allen Fulmer also made major contributions to the system design and function. Tim Dumming was one principal troubleshooter for the system.

The Michigan State University field office in Rockford was responsible for the research, writing and production of the 12 television lessons and the administration of the experiment. These tasks were accomplished exceptionally well by John Pacilia, the Field Director, and Michael Sheridan, the Executive Producer. Television graphics were ably provided by Karyl Bauman. These people may take credit for the teaching effectiveness of the videotapes and the favorable response by the firefighters. Large scale field experiments are always difficult to manage. The fact that this one went relatively smoothly is attributable to the diligence of this staff and their effective liaison with the Rockford Fire Department.

At Michigan State University, several students in the Mass Media and Communication Ph.D. programs and in Computer Science were major contributors. Jaime Zenaty became the principal computer programmer and wrote much of the technical and computer sections of this report and was responsible for the computer documentation in Volume III. She also coordinated the medical education demonstration for the National HURA (Health in Underserved Rural Areas) Conference. Nick Stoyanoff coordinated the pretesting and formative evaluation used in the planning of the videotapes, and in the experiment, the instrument design and collection and analysis of data. Lee Thornton did much of the background research for the firefighter training experiment and was responsible for a number of suggestions that were incorporated in the design. Robert Yadon helped to write some of the technical papers on the project and worked on future applications and technology. He also worked with Mike Wirth who was responsible for the basic research on costs and the cost analysis. Jim Wollert and Brian Fontes worked tirelessly on the original design proposal and followed up on the exploration and development of additional applications of the two-way technology. Judith Saxton was one of the researchers on public policy issues. Jack Waskoskis and Mark Miller both were active participants in the experimental design phase of the project. Michael Gorbutt was one of the designers and the builder of the timecode interface and video switcher controller.
Dennis Phillips began the system design and computer programming for the project while the equipment was still in East Lansing. Eric Smith also worked on the system in East Lansing and moved with the equipment to Rockford to complete the computer programming and testing after installation. He also created the programs to accommodate the University of Michigan two-way experiment in the Rockford Public Schools.

Robert Schlater, Chairman of the Telecommunication Department, and Erwin Bettinghaus, Dean of the College of Communication Arts and Sciences willingly accepted the additional administrative burden associated with such a large project, and found the means to compensate for the loss of faculty and graduate students to the project. John Abel and Donald Montgomery, Michigan State University faculty members, were invaluable to the project at crucial points, while they were on campus. Kent Gustafson, of the Michigan State University Instructional Development and Telecommunication Services unit, served the project well as a consultant in the instructional design area. Sanford Lenchner, a co-investigator in the earliest Michigan State University-NSF cable study, bears a major responsibility for the staff interest in broadband communication. He introduced a number of concepts that were further developed in this study.

In addition to her other duties, Becki Henry kept the books, handled personnel matters and travel and did the manuscript typing. These tasks were immensely complicated by the fact that the project staff was in two locations, separated by 300 miles, and in several departments of the University.

Heather Thiessen was the principal proofreader in the preparation of these volumes and has managed the associated dissemination activities.

From the crude, much-edited original manuscripts, Phyllis West (typesetting) and Frank Coscarelli (layout), Michigan State University Printing, created what we believe to be very readable and attractive reports.

Richard Howe of the Michigan State University Contract and Grant Administration office was always helpful in properly caring for fiscal matters.

WKAR-TV at Michigan State did the studio and post production television. Richard Brundle worked closely with the project producer. Jackie Denn took good care of production details and provided the necessary continuity from tape to tape. The presenter on the 12 videotapes was Craig Halverson. Other voices heard on each of the instructional tapes were Colby Lewis and Catherine O'Connor.

We are deeply indebted to the National Science Foundation for the opportunity to conceive, design, implement and evaluate an entirely new telecommunication system. We believe the NSF program was imaginative and bold in its concept and plan. The program administration through Allen Shinn and Charles Brownstein was in every way supportive.

The spouses, children, friends and colleagues of the members of the staff made continuous sacrifices to the project. We thank them.
Table of Contents

Chapter 1
Introduction and Abstract of Findings ... 1

Chapter 2
A Developmental Model for Two-Way Cable Technology 5

Chapter 3
Firefighter Training and the Two-Way Lesson Format 13

Chapter 4
Lesson Development Cycle: Content Research Through Production and Formative Evaluation ... 19

Chapter 5
Minicomputer Hardware and Software Design 29

Chapter 6
Cable System Technology and Performance 43

Chapter 7
Preparation for Training and the Experiment 49

Chapter 8
The Training Experiment .. 53

Chapter 9
Cost Analysis .. 65

Chapter 10
Public Policy in Two-Way Cable .. 77

Chapter 11
Postscript ... 81
List of Figures

Figure 2-1. Application Categories and Generations of Technological Development

Figure 2-2. First Generation: Area Multiplexing

Figure 2-3. Second Generation: Interactive Responses

Figure 2-4. Third Generation: Home Terminal and Peripherals

Figure 4-1. Flow Chart for Program Development

Figure 4-2. Headend Two-Way Cable Project Fire Planning Instructional Program Development Progress Through October 1, 1976

Figure 4-3. Storyboard

Figure 4. Production Studio First Place Number Two, Rockford, Illinois

Figure 5-1. Response Terminal Modified Jerrold SX-2 Channel Converter

Figure 5-2. System Configuration

Figure 5-3. Headend Minicomputer Configuration

Figure 5-4. System Cabling Timecode Interface and Video Switcher

Figure 5-5. System Information Flow

Figure 6-6. Sample Linear Program

Figure 6-7. Videocassette Production Script Lesson 4 "Vertical Structures"

Figure 6-8. Laser Processor

Figure 6-9. Production of an Interactive Item

Figure 7-1. Quasem Multiplexing

Figure 6-2. Typical Headend Return-Circuit Control

Figure 6-3. CSS/Amplifier Station

Figure 8-1. Participants in "Two-Way Group" Treatment

Figure 8-2. Participants in "Two-Way Individual" Treatment
List of Tables

Table 6-1. Interference Levels by Type of Service
Table 6-2. Upstream Spectrum Allocation by Type of Service
Table 8-1. Pretest and Posttest Scores on 27 Common Interactive Items by Treatment
Table 8-2. Posttest Scores on 75 Items by Treatment
Table 8-3. Posttest Scores on 27 Interactive Items Not in Pretest by Treatment
Table 8-4. Posttest Scores on 27 Unique Items by Treatment
Table 8-5. Regression Coefficients Obtained from Regression of Posttest Scores on Pretest Scores and Experimental Treatments
Table 8-6. Comparison of Predicted Mean Scores for the Posttest With the Actual Mean Scores Obtained
Table 8-7. Regression Coefficients Obtained from Regression of Posttest Scores and the Manipulation
Table 8-8. Follow-Up Posttest Scores by Treatment and Item Sub-Sets
Table 8-9. Affective Responses to Terminal in Two-Way Group Treatment
Table 8-10. Affective Responses in Two-Way Treatments
Table 8-11. Comparisons of Instructional Mode With Live Instruction
Table 9-1. Building Identification by Size and Type
Table 9-2. Time Allocation Per Activity and Building Size
Table 9-3. Projected Costs Per Activity and Building Size
Table 9-5. Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series Originally Produced by the Fire Department Compared to Auto-Tutorial and High-Quality, Visualized Lectures
List of Tables (Continued)

Table 9-6.
Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials Compared to Auto-Tutorial and High-Quality, Visualized Lectures 68

Table 9-7.
Average Series Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series Originally Produced by the Fire Department with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High-Quality, Visualized Lectures 69

Table 9-8.
Average Series Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High-Quality, Visualized Lectures 69

Table 9-9.
Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series Originally Produced by the Fire Department Compared to Auto-Tutorial and High-Quality, Visualized Lectures 69

Table 9-10.
Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials Compared to Auto-Tutorial and High-Quality, Visualized Lectures 70

Table 9-11.
Average Series Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series Originally Produced Within the Fire Department with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High-Quality, Visualized Lectures 70

Table 9-12.
Average Series Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series With Purchase of Prepackaged Materials with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High-Quality, Visualized Lectures 70

Table 9-13.
Cost-Effectiveness Ratios for Alternate Methods of Prefire Plan Staffing 72

Table 9-14.
Additional Costs Per Mile of Cable to Convert a "Two-Way Capable" System to a "Two-Way Ready" Cable System in Rockford, Illinois 73

Table 9-15.
Cost Comparison of One-Way vs. Two-Way Operating Expenses 73

Table 9-16.
Break-Even Analysis of Cable Monthly Operating Expenses 74

Table 9-17.
Estimated Costs and Revenues of Pay Cable 74
APPENDICES

Appendix IV-1.	Task Analyses: High Rise Fire Survey, Industrial Complex Survey, Formulation of the Prefire Plan	87
Appendix IV-2.	Building Survey Report Forms	95
Appendix IV-3.	Extract of Prefire Plan Survey	111
Appendix IV-4.	Preliminary Behavioral Objectives: "Perimeter Survey"	115
Appendix IV-5.	Comments on Pretest for Lesson #7	119
Appendix IV-6.	Revised Behavioral Objectives: Lesson #7	125
Appendix IV-7.	Revised Pretest Lesson #7	127
Appendix IV-8.	Results of Pretest #7	135
Appendix IV-9.	Second Revision: Behavioral Objectives for Lesson #7	145
Appendix IV-10.	Initial Outline: Lesson #7	149
Appendix IV-11.	Analysis of Interactive Items Lesson #7	155
Appendix IV-12.	Formative Evaluation: Lesson #7	159
Appendix IV-13.	Michigan State University Comments: Lesson #7	165
Appendix IV-14.	Disposition of Comments Lesson #7	169
Appendix V.	SMPTE Timecode Interface and Computer-Controlled Video Switcher	173

Appendix VII-1.	Program Schedule	197
Appendix VII-2 through VII-7.	Firefighter Briefing Booklet	203
Appendix VII-8.	Printout, "Lesson Summary"	219
Appendix VII-9.	Printout, "Cumulative Scores and Averages"	223
Appendices (Continued)

<table>
<thead>
<tr>
<th>Appendix VIII-1.</th>
<th>Assignment to Conditions</th>
<th>227</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix VIII-2.</td>
<td>Pretest and Behavioral Objectives</td>
<td>231</td>
</tr>
<tr>
<td>Appendix VIII-3.</td>
<td>Posttest and Behavioral Objectives</td>
<td>243</td>
</tr>
<tr>
<td>Appendix VIII-4.</td>
<td>Sample Answer Sheets</td>
<td>269</td>
</tr>
<tr>
<td>Appendix VIII-5.</td>
<td>Follow-up Test</td>
<td>275</td>
</tr>
<tr>
<td>Appendix VIII-6.</td>
<td>First Affective Instrument Metric Multidimensional and Semantic Differential Scales</td>
<td>287</td>
</tr>
<tr>
<td>Appendix VIII-7.</td>
<td>Second Affective Instrument</td>
<td>303</td>
</tr>
<tr>
<td>Appendix VIII-8.</td>
<td>MDS Summary, Grand Means and Variances</td>
<td>319</td>
</tr>
<tr>
<td>Appendix VIII-9.</td>
<td>MDS Tables</td>
<td>323</td>
</tr>
<tr>
<td>Appendix VIII-10.</td>
<td>Unidimensional Scale Tables</td>
<td>327</td>
</tr>
<tr>
<td>Appendix X-1.</td>
<td>Letters from Warner, Broadband Technologies</td>
<td>333</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction and Abstract of Findings

Overview

This volume describes the development and implementation of a two-way interactive cable television communication system and its effectiveness in urban administration. The four-year National Science Foundation experiment, located in Rockford, Illinois, tested the minicomputer-controlled interactive instruction of two-way cable against more traditional learning situations during a 12-lesson course in prefire planning administered to the city's fire department. Presented here is a comprehensive account of all phases of the experiment itself, including cognitive performance and affective results, as well as a description and discussion of the two-way technology and its performance, a cost analysis for the training program and public policy implications.

Since the scope of the experiment includes areas of interest to urban administrators and fire officials, cable system operators, computer scientists and engineers, educators and communication specialists, the chapters will be of differential interest to specialists. Chapter 1 presents the background on this project, descriptions of other operational two-way cable systems and general references to the literature identifying other experiments and demonstrations. Chapter 2 describes a model for the evolution of two-way communication systems with small matching steps in technological development and service implementation. Chapter 3 discusses firefighter training, prefire planning and the format created for the two-way interactive lessons. Chapter 4 is devoted to the lesson development cycle including content research, pretesting, scripting, production and formative evaluation. Chapter 5 describes the minicomputer and other cable headend equipment and the software necessary to scan terminals and automate the instructional system. The cable system configuration to accommodate the two-way communication and special system distribution plant design characteristics are outlined in Chapter 6. Chapter 7 presents the preparation for the experiment, which is described in detail in Chapter 8. Chapter 8 also includes the results of the experiment. Chapter 9 is the cost analysis. It includes the cost of two-way cable training compared to other methods as well as the general value of training all firefighters to participate in the prefire planning process. The chapter concludes with estimates of the incremental cost of adding two-way communication to a one-way cable system. Chapter 10 is an analysis of the public policy issues raised by the introduction of two-way communication in cable. Chapter 11 is a postscript to the experiment, indicating follow-up activities in the fire service and other two-way communication applications that have emerged from the original project.

Research Results Summary

We believe the research reported here supports the following conclusions:

1. Digital return communication from the feeder lines is feasible in a single cable system.
2. A switching system is effective in limiting return system noise and signal ingress.
3. De-ingressing the system for return communication improves system performance in both directions.
4. No extraordinary system maintenance is required for two-way communication, if the system is properly designed at the outset.
5. Two-way, interactive cable instruction is more effective than comparable one-way television in teaching cognitive information. The two-way advantage in learning remains after six months.
6. Two-way, interactive television, where respondents have individual response capability and personal feedback, is more favorably assessed than one-way television and is considered equal to live instruction by the participants.
7. Automated, prepackaged two-way cable television is administratively more efficient and reliable than one-way television systems for record-keeping.
8. The cost of two-way television, in most circumstances, is lower than auto-tutorial or lecture methods.
9. Two-way cable television is more expensive than one-way television, but in large scale training systems, the difference in dollars is very small.

1. This report is based upon research supported by the National Science Foundation under Grant No. APR75-14286. Any opinions, findings and conclusions are those of the authors and do not necessarily reflect the views of the National Science Foundation.
The cost of prefire planning as a collateral duty of all firefighters trained in building survey and preplanning is much less than the cost of prefire planning by full-time specialists.

Large cable systems (10,000 subscribers or more) are more likely to find two-way service profitable.

The cost of operating a two-way cable system is more likely to impede initiation of two-way service than cost of construction.

The potential for public service use of two-way cable services places a major burden on franchise authorities and cable systems in determining when to implement two-way service.

The responsibility of the franchise authority in two-way cable may extend to development and aggregation of public services, particularly in public safety and education, and in monitoring upstream spectrum management.

Background on Two-Way Cable

The history of two-way cable is well-documented in other volumes. “Cable Television: Strategy for Penetrating Key Urban Markets” by James D. Scott, describes the first experiments and commercial ventures. (4) The early two-way technology and its attempted application in the U.S. is thoroughly discussed in Richard Veith’s Talk-Back TV: Two-Way Cable Television. (5) Worldwide experiments in two-way cable are outlined in Two-Way Cable Television: Experiences with Pilot Projects in North America, Japan and Europe. (6) Peg Kay, through the Cable Television Information Center, with National Science Foundation support, analyzes the applications of two-way cable in the public sector. (7)

In inventorying two-way cable applications, reference should also be made to the Rand Corporation’s Spartanburg, South Carolina project (8) and the New York University-Alternate Media Center project in Reading, Pennsylvania. (9) In addition to the present Michigan State University applications, the two-way system in Rockford is employed in a teacher development program in the Rockford Public Schools. The experiment is directed by the University of Michigan. (10)

The two major operational two-way systems, which have not been fully described in generally available literature, are the TOCOM, Inc., system in Woodlands, Texas—and elsewhere, and the Coaxial Scientific Corporation Telecinema system in Columbus, Ohio. A third system, Warner Cable Corporation, also in Columbus, brings the resources of a major communications conglomerate into the field for the first time. All three enterprises are described...
in this volume in an effort to complete the record of earlier work provided in the literature described above. These three systems are important because, along with the Rockford system, they represent the most advanced, practical, two-way technologies, and, for all the experimental efforts described in the literature identified above, the only currently operational two-way systems.

Because the technology for the Coaxial Scientific Corporation Telecinema system is the forerunner of the Rockford two-way system, it is described in detail in a later section. Telecinema is a four-channel pay per-program movie and sports service associated with a CATV system.

TOCOM, Inc., of Dallas, Texas, was one of the earliest innovators in two-way cable system design and application. There are currently two systems available, allowing an operator to upgrade his system on a demand basis. The smallest system is the TOCOM III-A which serves up to 2,000 home terminals. It offers up to 36 channels of standard TV reception, plus fire, intrusion and medical alarm services. In addition, the system can handle per-program pay TV, as well as opinion polling and power load management where desired. The larger TOCOM III-B utilizes III-A units throughout the plant as remote data systems, which act as polling stations for sub-areas of the plant and are controlled by a larger minicomputer.

Each home terminal consists of a digital transmitter and receiver with its own unique hardwired identification. Every few seconds, the central data system requests the alarm status of each of the 2,000 home terminals within its area. The system is designed so that monitoring service may be offered to subscribers regardless of whether they elect the basic CATV service. For those who want the basic CATV service, control of the converter connected to the home terminal is accomplished via a hand-held unit which incorporates channel selection capabilities as well as a response mode for interactive education polling. (11)

The Warner Cable Corporation system in Columbus has the potential to serve 100,000 households. The addressers are partitioned into groups of no more than 16,000. Each group is fed independently by the headend. Noise in the return trunk is controlled by a gating system, similar to that pioneered in the cable industry by Coaxial Scientific Corporation, which limits the number of terminals with a clear path to the headend at any given time. The switches are located at each bridger amplifier, serving up to 600 subscribers. The terminal has 10 channel selection buttons that are used in combination with three other buttons to provide 30 channels: one bank for over-the-air television, the second bank for "community" channels (e.g., local news and information, children's programs) and the third for per-view pay programs (e.g., movies, sports, instruction). Responses in polling and instructional programs are made on five buttons independent of the channel selection buttons. (12)

Notes — Chapter 1

(3) Thomas F. Baldwin, Bradley S. Greenberg, Thomas A. Muth, "Experimental Applications of Two-Way Cable Communications in Urban Administration and Social Service Delivery," College of Communication Arts and Sciences, Michigan State University, January 2, 1975, Prepared under Grant No. SSH74 20683 A01, National Science Foundation.
Chapter 2

A Developmental Model for Two-Way Cable Technology

In responding to the National Science Foundation's commitment to experiments in public service applications of two-way cable technology, we recognized an obvious need to fit the firefighter training experiment into a larger developmental context for two-way cable. Therefore, we created a systematic model which carefully times and integrates the technical capability of various broadband communication systems with economically viable communication applications on a step-by-step evolutionary basis.

Communication Capabilities of Coaxial Cable

We began with a description of the particular communication capabilities and potentials of cable. A coaxial cable system, by its physical nature, is most efficiently used as a means of disseminating information from a single point, or source, to a large number of points, or users. Conversely, it may also be used as an efficient means of transporting information from a large number of remote sources back to a single point. A cable system is used least efficiently in point-to-point communication. Unlike the telephone which has the capability of switching signals from one telephone station (office, home, phonebooth) to another, most cable systems are not switched, but rather designed in a branching configuration. Because of this distribution characteristic, discussion of two-way cable return systems is generally in terms of digital signals generated by push-button response pads.

A typical cable system resembles a tree, with a network of trunk cable and trunk amplifiers delivering full video signals from the headend, or transmission center, to bridger amplifiers. These amplifiers then transfer the signal to a system of feeder cable and feeder amplifiers. The feeder system delivers the signal to the tap-off units, and then by service drops into the subscriber's home. Interference problems in the feeder and drop portions of the cable system make the transmission of video signals from the subscriber's home to the headend (i.e., upstream) impractical. Hence, return video signal service is possible only in the trunk portion of the system, while data return signals are workable in the feeder portion. (An aural return signal service via coaxial cable would seem to be of limited value because of the existing service provided by telephone.) This leaves the most practical design for the upstream portion of a two-way cable system as video and high-speed data by trunk cable, and data only by the feeder cable.

The next consideration is the allocation of the limited bandwidth in the cable system to forward and return channels. Despite the popular characterization of cable as a medium of abundance, there is a very real limit to the available bandwidth in the cable system. The use of any available frequency must be considered in terms of both opportunity cost and the cost of additional equipment necessary to support it. This demands careful planning and spectrum management.

It should be obvious that an increase in the bandwidth allocated to return signals will cause a decrease in the bandwidth available for forward video signals. Fortunately data signals generally require considerably less bandwidth than video signals, and can be multiplexed by time, frequency and area. An optimal allocation seems to be approximately 250 MHz for forward service use channels and only about 25 MHz for the return service. More details about the basic two-way system in each stage of its evolution will be provided later.

Applications of Two-Way Cable

One of the greatest obstacles to the continued development of two-way cable technology has been the attraction of necessary investment capital. Investors have not seen sufficient return from any application of the current technology to justify the risk. The exploitation of two-way cable applications has failed because each application has been considered in isolation without a convergence of multiple applications for cost-sharing the two-way plant. Further, the two-way technology has never evolved as a synthesis of practical need and cost-efficient technology. Two-way has been considered in terms of some end-state of both technology and application. The step-at-a-time approach has not been followed.

This chapter was written principally by Martin Block, D. Stevens McVoy, James Wright, John Bulenberg and Thomas Baldwin.
Unlike other communication media, two-way cable has captured the interest of the public sector early in the developmental stages. Whatever the future of two-way communication, there is almost no doubt that the public sector will play a prominent role, and that two-way cable will involve applications from both public and private sectors. A wide variety of public sector applications for the two-way cable technology has been funded by the National Science Foundation and other federal agencies. These are described in the previously mentioned volume, Social Services and Cable TV. (See Note 7, Chapter 1.)

Private sector applications of two-way cable technology have lagged behind because of limited research and development money in the relatively small cable industry. Further, the industry has been preoccupied with more immediately profitable commercial applications such as per-channel pay entertainment. The private sector application receiving the most attention is per-program pay TV, with the previously discussed Telecinema and Warner systems the only large scale operational examples. For the future, other private sector applications may include marketing and advertising research, in-home shopping and in-home monitoring and surveillance services. Among the suggested marketing and advertising research applications are television audience measurement, television advertising copy pretesting and posttesting, television program pilot testing, package design tests, advertising concept tests, product purchase behavior measurement and various other questionnaire-oriented research including awareness and preference measurement. Among the in-home shopping applications are electronic supermarkets and catalogs using special dedicated channels and interactive advertising. Among the in-home monitoring and surveillance applications are heat and smoke detectors, intrusion alarms, tamper alarms, electric, gas and water metering, electric load management, CATV and pay-TV control. Also in the future are applications such as electronic mail and news delivery, opinion polling and many more.

While the list of suggested applications for two-way cable can be greatly expanded beyond the general categories mentioned here, such lists almost always consider two-way cable technology as fully developed for multiple services. Rarely is two-way cable technology considered as an evolutionary process, with some applications preceding others as the technology and demand develops. It should be obvious that some applications of two-way cable, such as per-program pay TV, are possible given the state of the technology today, and other more complex applications, such as power load management, require continued technological development.

In order to simplify the relationship between the technological evolution of two-way cable and the applications, a classification scheme of six categories will be used. Ignoring all applications which primarily involve communication in an institutional framework, such as high-speed data communication between banks or upstream video transmission from city hall to the cable transmission center, and concentrating on applications involving communication with only digital return from homes, the classification scheme includes the four private sector applications already discussed—pay entertainment, shopping services, marketing research and monitoring services—plus categories in education and community information. The education category includes the in-service training applications in an in-home setting along with various adult education applications. The community information category includes the electronic mail delivery application, automated newspapers and related services, the public forum concept and the social service information and referral system. (See Figure 2-1.) The next task is to consider the evolutionary steps in the development of two-way cable technology.

The First Generation

The first generation in the proposed model for two-way cable system development was designed for a per-program pay TV system in Columbus, Ohio, and represents the important first step in the evolutionary process of two-way cable technology. The Telecinema per-program pay TV system has been in operation since 1973. The system uses a home terminal which costs approximately $50,1 and allows four channels of pay TV programming. The subscriber selects the appropriate channel, and is then billed only for the programs that are watched. This method of pay TV is different from per-channel pay TV where the subscriber pays a flat monthly fee for unlimited viewing on the pay channel.

A typical pattern for a per-channel pay TV system is very high initial subscription, probably around 40 percent of all cable subscribers. In the first few months of service. Part of the explanation for this "churn" is the fact that people use only a small portion of the entire package of programs that is available, but feel they are paying for all of it—a sense that they are overpaying in relation to their usage.

The Telecinema per-program system first tried charging subscribers only for the movies that were watched. Penetration was 80 percent and average monthly revenues were about $4, which was not

1. Different models of converters were modified for this purpose; $50 represents an average cost in 1973 dollars.
Figure 2-1. APPLICATIONS CATEGORIES AND THE GENERATIONS OF TECHNOLOGICAL DEVELOPMENT.

<table>
<thead>
<tr>
<th>APPLICATIONS</th>
<th>FIRST</th>
<th>SECOND</th>
<th>THIRD</th>
<th>FOURTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAY TV</td>
<td>"AREA MULTIPLEXING"</td>
<td>"INTERACTIVE RESPONSE"</td>
<td>"MICRO-PROCESSING"</td>
<td>"LOCAL MEMORY"</td>
</tr>
<tr>
<td></td>
<td>PAY TV</td>
<td>INTERACTIVE ADVERTISING</td>
<td>COMPLEX ORDERING</td>
<td>ON-DEMAND CATALOGS</td>
</tr>
<tr>
<td>SHOPPING</td>
<td></td>
<td>MULTIPLE-CHOICE QUESTIONNAIRES</td>
<td>COMPLEX QUESTIONNAIRES</td>
<td>SELF-PACED</td>
</tr>
<tr>
<td>MARKETING</td>
<td></td>
<td>FIXED SCHEDULE TRAINING</td>
<td></td>
<td>ON-DEMAND LESSONS</td>
</tr>
<tr>
<td>RESEARCH</td>
<td></td>
<td>PUBLIC FORUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONITORING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDUCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

enough to cover the costs of both the movies and the two-way system. In 1974, a $3 maintenance fee was added. This caused the penetration to drop from 80 percent to 40 percent, but the subscribers who dropped the service were those who did not watch many movies. Revenue averaged $8 per month among the remaining 40 percent.

In December, 1975, Telecinema began experimenting with other forms of programming in addition to theater films. Adult, children's and foreign films, nightclub performances and sports events were added. Average revenue increased to $11 per month.

The Telecinema system with over 5,000 subscribers was the first, and for many years the only, operating per-program pay TV system in the United States. The system was designed to solve the early technical problems found when attempting to use interrogation-response type terminals in cable applications—the high cost of the terminals and RF interference. Early cost estimates for in-home terminals ranged from $300 to $1,000, which was obviously too high to permit profitable operation. System maintenance costs, because of signal intrusion, were also estimated to be prohibitively high.

In order for two-way cable to become economically feasible, it was necessary to design a system around a reliable terminal that would cost approximately $50, and be part of a system that could be reasonably maintained. The solution was suggested after consideration of the types of multiplexing available for the return data signal generated by the in-home terminals. Time division multiplexing (TDM) offers the advantage of sharing a single frequency for all the terminals, but can easily be jammed by one malfunctioning terminal. The source of the trouble is very difficult to find. Frequency division multiplexing (FDM) solves the problem of terminal jamming, but if very many terminals are to be used, too much spectrum space is consumed. The solution is a combination FDM/TDM system which allows area multiplexing. It consists of the simultaneous transmission of groups of 100 to 200 frequency multiplexed terminals at different time intervals.

Area multiplexing is accomplished through the use of digitally controlled code operated switches (COS). Each COS consists of band-splitting filters which separate the downstream (50 to 300 MHz) frequencies from the upstream (5 to 30 MHz) frequencies. Downstream signals pass through the COS continuously without interruption, while the upstream frequencies are either passed or blocked as directed by a digital signal generated by minicomputer. This now allows an entire system of in-home terminals to...
be scanned in small groups by activating and deactivating appropriate COSs. Placing a primary COS at each trunk and a secondary COS at each bridger amplifier makes possible the scan of an entire feeder branch which would normally consist of 100 to 200 homes. This design can be seen in Figure 2-2.

The use of the COS system allows for a much less expensive terminal than a typical interrogation-response terminal because a great deal of circuitry can be eliminated, including the RF receive, decoder and address-recognition circuitry. A simple FDM terminal requires only a data encoder and RF transmitter circuitry, which, with the area multiplexing provided by the COS network, is all that is required. The home terminal consists of a cable converter which costs approximately $30 modified by the addition of a circuitry board containing only an FSK transmitter and data encoding circuitry, costing an additional $20. The terminal transmitter is assigned a discrete frequency in its own COS area, and transmits continuously. Each terminal transmits a 16-bit data word which indicates the status of the converter including the channel selected, whether the subscriber's television set is off or on and whether the security key on the converter is on or off.

A General Automation SPC-16 minicomputer manages the entire scanning operation through the use of

Figure 2-2. FIRST GENERATION: AREA MULTIPLEXING
of special interfaces which control a COS addresser and RF receiver. The minicomputer, operating in real time, routinely scans the system to collect data and generates viewing reports. Additional routines are available for terminal installation and system maintenance. Batch programs generate billing and other reports required by the cable operator.

- System maintenance is easily accomplished through the combined use of the minicomputer and the COS network to isolate interference and other problems. End of line oscillators (ELO) at the end of each feeder line add a unique carrier frequency for easy identification and help in balancing the system. The Columbus Telecinema system is maintained in this manner using one technician for approximately 200 miles of the plant.

The first generation two-way cable system is primarily designed as a per-program entertainment system. It does not allow for any interactive response, but only relatively simple monitoring of the status of the cable converter attached to the television set or an alarm wired to the cable. The only other feasible application for first generation technology is simple television audience measurement, since the system can be scanned at more frequent intervals than commercially available mechanical diary services and in a universe of households instead of a sample. The first generation, however, has clearly demonstrated both the technical and commercial viability of this technology, and paves the way for new generations.

The Second Generation

The second generation system was designed for the Michigan State University experiments in Rockford. Approximately one-third of the Michigan State University project investment has involved the development of the necessary two-way cable hardware and software required for the project. Additional investment has been made by Rockford Cablevision in constructing the necessary two-way plant in the city.

The major difference between the first generation (Columbus Telecinema) and the second generation (Rockford) is the addition of an interactive response capability at the terminal. Rather than providing only the capability for monitoring the status of a channel converter, the channel converter selection buttons can be depressed to transmit a return signal. This requires relatively minor modification of the first generation terminal, including addition of interactive channels and a transmit button. The additional channels allow the terminal to function not only as a converter but also as an interactive terminal. The transmit button, along with a timed LED display, insure that the subscriber responds only when desired and at intervals longer than the minimum scan. The second generation terminal requires a push-button type converter, which is not necessary in the first generation.

The transportation system including the COS network and ELOs remains the same as before. The major difference in the second generation is in the minicomputer system. Since more processing is necessary with the possibility of a response in addition to the monitoring already required, the minicomputer needs to be augmented with extended core memory and sufficient disk storage to accommodate interaction. The primary addition to the second generation is not hardware, but rather computer software. The minicomputer software necessary to support second generation applications must not only perform the basic system scan routine and system maintenance, but it must also process response data in real time.

For training experiments, the coordination of downstream video signals and interactive response signals requires control of headend video equipment by the minicomputer system. This is accomplished by using computer-controllable character generation equipment, standard Society of Motion Picture and Television Engineers (SMPTE) timecode interfacing with all video tape equipment and standard process control input/output signals and relays to control the necessary video equipment. Thus, the minicomputer controls the entire two-way system. The second generation system is shown in Figure 2-3. It is described in more detail in Chapters 5 and 6.

The second generation terminal costs more than the first generation because of the need for a more sophisticated basic converter, and a small amount of additional circuitry and terminal modification. Depending on the quantity, second generation terminal costs range from $100 to $150.

The second generation allows for upstream transmission of digital signals, but it does not allow the subscriber to receive individualized information; that is, downstream information is received by all television sets tuned to the same channel. It is not practical to allow subscribers to have the downstream portion of any interactive programming "on-demand": rather such programming would be distributed on a prearranged schedule. This is a serious limitation.

1. Without the channel converter, the cost of the unit would be reduced. A stripped-down terminal device would provide only interactive response generated from a simplified push-button pad, perhaps only four buttons, but would not provide any monitoring of channel converter status. This would limit application of the system to interactive response, eliminating per-program entertainment.
Figure 2-3. SECOND GENERATION: INTERACTIVE RESPONSES

CABLE HEADEND

- CHARACTER GENERATOR
- VIDEOTAPE RECORDER
- TIMECODE READER
- MINI-COMPUTER
- TRANSMITTER AMPLIFIER
- PRIMARY COS

CODE OPERATED SWITCH

SECTION 1
100 TO 200 HOMES

- SUBSCRIBER OR FIRE STATION TERMINAL

SECONDARY COS #1
SECONDARY COS #2
FROM OTHER COS SECTIONS

COS SECTION 2
106 TO 200 HOMES

- "UPSTREAM" DATA SIGNALS (7.5 - 9.5 MHz)
- "DOWNSTREAM" VIDEO SIGNALS (50-270 MHz)
- MAIN TRUNK LINE

- CRT
- TIMECODE CONTROLLER
- RS 232c CONTROLLER
- COS CONTROLLER
- SCANNING RECEIVER
- LOG-IN DATA
- COS SIGNALS
Private sector applications include in-home shopping services such as interactive advertising and a crude form of electronic catalog that would be operating on a fixed schedule. Marketing research applications can be greatly expanded because of the addition of active response. Multiple choice questions can be asked and special video material shown to respondents in their own homes.

The capital cost of the first generation of two-way service is accommodated by the per-program pay TV revenue. The incremental cost of the second generation, e.g., in a more sophisticated terminal and greater computer capacity, may be in the range of $40 to $90 per household or drop. Educational programs (public schools, public safety) which lease the service on a regular basis will cover a portion of that cost. Market research, direct selling and alarm systems should cover the remainder. These are useful applications; however, monitoring in the second generation must be limited to simple closure switches, such as a relay signal from a smoke or heat detector, because only a few data bits are available in the terminal.

Partially because of the limited second generation equipment in monitoring applications, the third generation is being developed. The immediate advantage of third generation two-way cable technology is the ability to monitor home activity which requires more complex sensing than a single bit.

The Third Generation

A necessary part of a residential two-way cable power load management system is the ability to monitor utility meters. While transmitting utility meter information through the upstream communication system represents no technical problem, assuming the 16-bit data format, the scan must be designed to prevent the reading of utility meters from occupying the entire system. The problem for third generation terminal design is to provide 16-bit data words recognizable by the minicomputer as either utility meter information, interactive response or channel status. The terminal itself would be required to alternately select channel status and utility meter information to make possible

Figure 2-4. THIRD GENERATION: HOME TERMINAL AND PERIPHERALS
The only practical solution to the data formatting problem is the addition of a microprocessor chip to the terminal. Microprocessors, such as the RCA 1600 COSMAC series, would add approximately $20 to the cost of the second generation terminal. Adding a ROM chip to store program instructions would allow the microprocessor to accumulate utility meter data and format the 16-bit transmission word at the appropriate times. The third generation terminal is currently being developed. A working diagram is shown in Figure 2-4.

The addition of the microprocessor to the terminal provides flexibility to most second generation applications. The ability to format the 16-bit transmission word within the terminal makes possible the transmission of more complex data from the terminal than simple multiple choice selections. In the in-home shopping application, more complex information such as color, size or credit card numbers could be quickly entered through the keyboard, and then transmitted all at once rather than digit by digit. The marketing research and educational applications would also benefit from the increased input flexibility by being capable of accepting input data more complex than a single digit.

Another improvement in terminal technology is necessary at this step before moving ahead to the fourth generation. To improve control and security of the system, it is desirable to move the essential electronics out of the TV control terminal to a central location on the exterior of the home. This shift, a part of the third generation, does not add anything in terms of potential applications, but rather provides more efficient operation because of increased maintenance convenience and terminal security. The latter is of critical importance, particularly in the utility metering applications and per-program pay television, where thefts of service staggering in magnitude have recently been discovered.

The Fourth Generation and Beyond

The evolutionary steps beyond the third generation are not as clear as the first steps because the associated electronics and information processing technology itself are continually evolving. The next step will no doubt be the addition of low cost memory storage in either the terminal itself, or in a COS. This will make possible the transmission of time-compressed digital signals to a memory in a specific location such as an individual terminal.

The addition of the microprocessor chip to the terminal also makes possible the decoding of downstream information with the addition of a RF receiver to the terminal. While additional signal decoding and character generation circuitry would also be required, it is technically possible to allow selection of portions of downstream data signals using a keying or addressing scheme. If an entire downstream channel were devoted to digital information, then it would be possible to "page" a portion of that data stream for local display on the home television set. This makes possible electronic automated newspapers which the subscriber can page through on demand. One video channel could easily accommodate the equivalent of 1.000 pages. The news could be computer refreshed and controlled. Another application is the delivery of second class mail and on-demand catalogs. A limitation is the probable restriction to digital information. The information is always stored in the downstream communications channel which, given the limited available bandwidth, may not be the most efficient use of the spectrum.

The addition of memory partially solves the problem of inefficient use of available spectrum space, since the electronic newspaper or mail would not always be present in the system, but rather multiplexed on a downstream channel carrying similar signals to other terminals. Not only does this provide better spectrum use, but it also allows the transportation of more personalized messages.

For this generation of two-way cable terminal to become feasible, the cost of memory will have to drop substantially, a result which can be expected from improved memory technology such as the development of the "bubble memory." This generation also implies substantial increases in the amount of computer power necessary to run the system. With each new generation, the size, speed and computational power of the controlling minicomputer system must be upgraded. Existing minicomputer systems are adequate through the third generation, with the addition of more processing units as the number of terminals in a cable system grows. The fourth generation implies exponential growth in the volume of information which requires processing. It is difficult to speculate beyond this generation because of the rapid development of associated technology, and it is even possible that the fundamental transmission system will itself change to a lightwave rather than a radio frequency system. It is clear that, in any case, the technology and the associated new applications will continue to grow in a series of sequential evolutionary steps.
Chapter 3

Firefighter Training and the Two-Way Lesson Format

Standardized training, with an interactive component, came up frequently in our investigation of the potential applications of two-way cable. The need for training and retraining in government and the social services is great, in some instances because of the high turnover of personnel and in other cases because of the complexity of tasks and changing technologies. In most situations, cost factors, work schedules and other administrative considerations suggested packaged instruction.

In firefighting, daily training is a routine. The National Commission on Fire Protection and Control charges that the fire service is not getting the best equipment and training because the scientific community has not contributed sufficiently. The Commission urges:

"... the Federal research agencies, such as the National Science Foundation and the National Bureau of Standards, to sponsor research appropriate to their respective missions within the areas of productivity of fire departments, causes of firefighter injuries, effectiveness of fire prevention efforts, and the skills required to perform various fire department functions." (1)

The Commission concludes that "training can favorably influence a department’s effectiveness—in saving lives, reducing property losses and preventing injuries to firefighters." (2)

Two-way cable television can bring live or packaged training programs by well-prepared specialists to the firefighter in its station house and provide an opportunity for response and reinforcement. For volunteer firefighters, the training can take place in the home at convenient times.

In Rockford, advanced training is carried out in two ways: (1) in station houses with instruction by self-teaching materials and company officers and (2) at the Training Academy which is specially equipped with training laboratories and materials. Training at the Academy risks underprotection in the district when trainees are removed from their stations, or adds the cost of overtime pay. The Academy could become a center for specialized training and drills and a production center for materials to be distributed to stations by television and other means.

 Much of the training takes place on the job as the firefighter moves up in responsibility, as new knowledge is developed and new equipment is acquired. Training Officers in the fire service have one of the more complex training tasks in industry or government. Firefighters generally work 24-hour shifts. Activities are always broken up by fire and emergency calls. Special off-duty days, vacations and sick days complicate the training and record keeping activities. Training by company officers in the station house is dependent on the confidence, ability, training and administrative capability of the company officer. Standardization is difficult to achieve.

Pre-packaged videotape with two-way interaction and reporting could standardize the training, focus attention on the training materials because of the necessity to continuously respond and provide the training officer with an instant record of who participated in the training exercises and who needed to be rescheduled for make-ups. New materials could be created for two-way training or existing training materials could easily be adapted to two-way instruction.

Training Topic

The selection of a topic for the firefighter training experiments was based on the following criteria: (1) overall national importance in the development of fire protection capability; (2) significance of the topic in Rockford; (3) breadth of the learning tasks encompassed; (4) the need for an advanced training area which would be appropriate for almost all firefighters regardless of level of experience.

Prefire planning was selected as the topic for the experimental instruction. Prefire planning is an activity designed to provide the firefighter with a logical and systematic plan for identifying and classifying potential fire problems. This allows the firefighter to carefully formulate, in advance, a tactical or action plan for a given building, in the event a fire occurs. The plans may then be continuously studied in training sessions and taken to a fire should one occur. The goal is efficient containment and suppression with minimum life hazard. The task of prefire planning is a complex process which draws upon the firefighter’s previous training and

1. This chapter was written principally by Thomas Baldwin and John Pachuta.
experience. It represents a task facing all fire departments. In October 1974, a statewide survey of 638 Illinois fire officers revealed that "emergency planning (prefire planning, disaster planning and master emergency planning)" ranked as the number one category of needed subject matter expertise.

Interactive Training

It would be incorrect to suggest that an interactive form of training was dictated by the circumstances of firefighter training in Rockford, since we embarked on the study with the principal objective of employing two-way communication. Nonetheless, the firefighter training application seemed to optimize the potential benefits of two-way training from a central location to remote locations.

In creating the interactive system, we made a number of assumptions about the value of the interaction. These assumptions dealt with specific learning and administrative components, as follow:

Attention and participation. Interactive items, spaced throughout the instructional programs, would force participation and help to keep the trainees alert and attentive.

Motivation. Awareness that each response would be fed back individually and in aggregate scores at the end of the lessons, and that hard copy records would be made, would serve to keep trainees motivated to create a good record.

Feedback. Reinforcement would be provided by the feedback at each step of the instruction.

Competition. Since station or individual scores could be compared, competition would maintain interest and motivation.

Teasing. On occasion, interactive items could be used as teasers to lead into a new segment of instruction. Firefighters would have to guess or rely on previous experience. This technique would heighten interest in learning the material.

Pacing. The interactive questions would serve to break up the television lecture-demonstration format and revive interest.

Drill. Frequent repetition of prefire planning symbols and other material would aid recall. Quizzes would provide a summary and review.

Administration. The interactive system, including a log-in procedure, frequent interactive questions and computer printout of results, would improve training system administration and reduce administrative costs.

The Two-Way Lesson Format

With these hopes for two-way training, keeping within the technology which we had available, the format described here was devised and used throughout the television series.

One-half hour before each lesson a pre-program sequence of character generated displays began. These are illustrated below:

Display #1: The normal character generated display for a day on which a lesson was scheduled consisted of an announcement of the next program time. Added to this were more personalized items dealing with the audience members. Birthdays of firefighters were announced along with information phoned in by the audience. Occasionally, quiz questions were asked dealing with firefighter history, sports, trivia, etc. It was also possible to utilize the bottom line of the display for a longer message which would "crawl" across the screen from right to left.

Display #2: Twenty-two minutes later, a countdown tape informed the men that only five minutes remained before they would be required to log-in. The time at the bottom changed every 30 seconds to keep the audience updated. Music was played under the countdown. The slides over which the message was placed consisted of Rockford scenes and firefighting equipment.
Display #3: Five minutes later, the log-in started. The log-in, in effect, registered the participants for the lesson. The firefighters were given five minutes to enter their code letters into the two-way system. As an additional signal to begin the lesson, the words "ENTER CODE LETTERS" were flashed during the entire log-in. The maximum number in the audience for any lesson was 35, distributed as in the above example. As soon as the code was received, it was displayed on the television screen. The time given was ample for all stations to log-in. This time could be reduced to two or three minutes in future training.

Feedback #1: This type of feedback gave the audience the answer selected by each individual as identified by the code letters. This was used for the majority of the interactive items.

Feedback #2: This type of feedback gave the number selecting each option. It was used only occasionally to vary the feedback.

The feedback confirmed receipt of the answers and gave a view of how others answered. If not all answers had been received in 30 seconds, those responses received to that point were printed. If an
When an individual, or group, failed to respond to two consecutive questions, they were dropped and the computer thereafter read only the remaining codes for purposes of advancing the lesson. This was necessary because stations were sometimes called to a fire during a lesson.

After the display of answers, the system automatically returned to videotape and the narrator discussed the correct answer. The questions had been designed so that they represented small learning steps as in programmed instruction. The programs were designed to have a correct response rate of about 90 percent so that the learners would have consistent positive reinforcement. Over all the lessons, the average was 89.61 percent, with very few questions falling below the 80 percent level.

Occasionally, “challenge questions” were asked. These did not relate to information previously covered, but led into instructional material to follow. The object was to stimulate interest, teasing the learners into the next unit.

After the quick quiz feedback was presented, the narrator reviewed the correct answers.

The lesson concluded with a character generated presentation of the percent correct over the whole lesson, combining the quick quiz with all other questions.

Feedback #5: At the end of each lesson, a total score was given which reflected the percentage correct for each individual over all of the interactive items and the quick quiz. Participants also saw the percent correct for each shift of firefighters over all lessons to date. The last two types of feedback introduced an element of competition. After the lesson was concluded, a few minutes of relaxation for the firefighters was provided by interactive computer games.
Feedback #: The final feedback for each lesson was a display of the average score of each individual to that point in the series.

Immediately after each lesson, complete written reports on the lesson performance for each participant were produced on the line printer. This included an item-by-item response of each individual, by code letters, and the individual's final lesson score. Across the bottom of the report was the percentage correct for each item. This was followed by the scores on each lesson of the series to date for each individual and the average score for the series. This report, which was blank for each incomplete or missed lesson, was used to schedule make-ups.

Computer Functions

A special user-oriented computer language was developed for setting up the lessons in the computer. The parameters of each lesson were determined and stored—the types of questions, text of character generated messages, color backgrounds, nature of feedback, correct answers, etc. The times that specific operations were to be performed were also stored in the computer. During the lesson runs, the separately entered operations and timecodes on the videotapes were automatically coordinated by the lesson processor program, which controlled the entire administration of a lesson.

These operations include starting and pausing the videotape, switching to character generator, scanning the terminals for responses, generating feedback, restarting the videotape, aggregating scores and making printed reports. Once a lesson began, everything from the log-in through the final summary report was automatic.

The computer functions are described in detail in Chapter 5. Computer program documentation is in a separate volume. (4)

Notes—Chapter 3

(2) Ibid., p. 37.
Chapter 4
Lesson Development Cycle: Content Research Through Production and Formative Evaluation

This chapter describes the development of the 12-lesson prefire planning series, from content organization, pretesting and scripting through location and studio production and formative evaluation.

Organization of Prefire Planning Content

Having decided on prefire planning as the topic for two-way instruction, the potential course content was analyzed. The project Field Director accompanied Rockford Fire Department officers on prefire plan surveys of two buildings and observed the follow-up process. From this experience the flow chart, shown in Figure 41, was prepared.

The two buildings surveyed were a high rise apartment for the aged and an industrial complex which presented specialized hazards to firefighters and perimeter buildings. Task analyses were performed on the prefire plan survey process for each building. The survey function was of major importance for the instruction, since surveying was to become the responsibility of the firefighters and their company officers.

Once the building survey was completed, several steps were taken to convert the raw survey information and diagrams into finished prefire plans, with separate formats for fire commanders and fire companies. The task analyses for the two building types and the post survey steps appear in Appendix IV-1.

To avoid confusion on terms and documents in prefire planning, certain terms were defined and described.

Prefire Planning Terminology

Prefire Plan Survey—The form used by firefighters when initially surveying a building for which a prefire plan is being developed. The survey is designed to contain all of the pertinent information necessary to make a successful prefire plan. From the survey, diagrams will be drawn which represent the building and an initial reaction plan will be formulated. At the company level, pertinent information will be extracted by individual engine and ladder units. The prefire plan survey itself will then go on file for use by the company officers. At the district level, a completed prefire plan survey will be kept in the Chief's file.

Floor Plan Diagrams — Graphic representations of the floors of the selected building for which a prefire plan is being developed. The diagrams will include all utility shut-off locations, F.D. connections, important internal structures and any other structures that would affect firefighting operations. There will be diagrams for every important floor and for all areas that present particular hazards.

Perimeter Diagram — Graphic representation of the area surrounding the selected building for which a prefire plan is being developed. The diagram will include all shut-offs, hydrants, exposures, F.D. connections and important structures.

Initial Reaction Plan — Plan developed by district chiefs with input from company officers which verbally tells which F.D. vehicles are to be positioned in the initial response to a fire in a selected building.

Prefire Plan Packet — Packet containing the prefire plan survey, floor plan diagrams, perimeter diagrams and the initial reaction plan which is sent to the individual fire companies so that pertinent company information can be extracted.

Pertinent Information Extract — List of important company information obtained from the prefire plan survey. This extract will be individualized for each company based upon its role in the initial reaction plan.

Prefire Plan — The compiled information packet at the company level which will be used by firefighters in individual companies. This packet contains the floor and perimeter diagrams, the initial reaction plan and the pertinent information extract. (It is important to note that for the district chiefs, the "Prefire Plan Packet" serves the function of the company's "Prefire Plans." District chiefs will carry the entire packet to a fire while the individual companies will carry their personalized documentation.)

Programs

With the task analyses in hand, an attempt was made to reorganize the fire department's prefire plan survey form into areas that could be treated se-
Figure 4-1. FLOW CHART FOR PREFIRE SURVEY AND PLANNING

START

CONTACT OWNER/MANAGER TO ARRANGE FOR APPOINTMENT

EXPLAIN PURPOSE OF PREFIRE PLAN AS OPPOSED TO FIRE INSPECTION

ARRANGE FOR TIME TO DO PREFIRE PLAN SURVEY

CONDUCT PREFIRE PLAN SURVEY IN BUILDING

CONDUCT PERIMETER INSPECTION

RETURN TO STATION TO ANALYZE DATA

SEND PLANNING PACKETS TO INDIVIDUAL COMPANIES

COMPANY OFFICERS EXTRACT INFORMATION PERTINENT TO THEIR INITIAL RESPONSE

RETURN TO BUILDING TO COLLECT SUPPLEMENTAL INFORMATION

RETURN TO BUILDING TO COMPLETE SURVEY INFORMATION

IS ALL INFORMATION ON PREFIRE PLAN SURVEY FORM COMPLETE?

YES

RETURN TO BUILDING TO COLLECT SUPPLEMENTAL INFORMATION

YES

IS IT NECESSARY TO PHYSICALLY POSITION VEHICLES AT BUILDING?

NO

NO

YES

RETURN TO BUILDING AND PHYSICALLY POSITION VEHICLES

IS IT NECESSARY TO PHYSICALLY POSITION VEHICLES AT BUILDING?

NO

YES

DIAGRAM ALL PERTINENT STRUCTURES IN AREA

PLAN INITIAL RESPONSE AND VEHICLE POSITIONS

PREFIRE PLAN SURVEY FILED FOR USE ONLY BY COMPANY OFFICERS

HIGH-RANKING FIRE DEPARTMENT OFFICERS WITH INPUT FROM SELECTED PERSONNEL

1. Packet has prefire plan survey, diagrams, and initial response.

2. Packet has prefire plan survey, diagrams, and initial response.
The Rockford Fire Department preplanning process was broken down into a proposed series of 14 lessons. The original breakdown underwent several transformations as the subject matter was fully researched and scripts timed. The result was a 12-program instructional series which is described below.

Program #1—Pretest: This tape combines 27 interactive items from the eight tapes that follow into a pretest to determine entry-level knowledge. At least two behavioral objectives from each of programs #2 through #9 are tested in this tape. The scores can be used as a basis of comparison with the later posttest (program #10) to measure learning.

Program #2—Introduction to Prefire Planning and Fire Protection Equipment, Part 1: This lesson introduces the learner to the concept of prefire planning and briefly looks at each of the steps in the prefire planning. The building survey report form is introduced. The videotape simulates various survey situations before giving examples of form entries. This practice of giving sample form entries is carried through the tapes that follow until the entire form is completed in program #9. The learner is introduced to the topic “Fire Protection Equipment” with a discussion of various types of automatic sprinkler systems. The use and characteristics of wet, dry and deluge systems are discussed. The videotape also looks at automatic chemical sprinkler systems and briefly introduces the major types found in buildings. The use of prefire planning symbols in formulating final diagrams is presented. The symbols for various sprinkler systems and sprinkler controls are introduced.

Program #3—Fire Protection Equipment, Part 2: This program continues the discussion of fire protection equipment by introducing learner to the prefire planning survey of fire pumps, alarm systems and various structures found in the yards of buildings. Again, examples of real situations are given and the learner is shown how to record the information for later reference. Eight additional prefire planning symbols are introduced and the learner responds to a drill on these symbols and symbols learned in the previous lesson.

Program #4—Building Construction, Part 1: Introduction to the important points in surveying building construction; in this part, types of roof construction and structures found on roofs. Prefire planning symbols for roof structures are introduced. The learner is shown how to diagram a roof and its contours. Drill on symbols learned so far.

Program #5—Building Construction, Part 2: Additional aspects of building construction are introduced; particularly, various types of door and window construction. A brief presentation of utility shutoffs gives the learner information on the important shutoffs and how they should be listed on the survey form. Prefire planning symbols for certain doors and shutoffs are presented and several tactical considerations concerning forcible entry and ventilation are discussed. Symbol drill.

Program #6—Vertical Structures: This program concentrates on vertical movement during a fire by discussing stairways, smoke-proof towers and elevators. The learner is given an extensive look at “emergency service” elevator operation and an overview of the components which make up overall elevator construction. Five more prefire planning symbols are introduced. Symbol drill.

Program #7—Communications, Rescue and Salvage: The survey items specific to communications, rescue and salvage at the fire scene are identified. Such unique situations as preparation for the rescue of handicapped and bedridden people and the significance of pressurized structures are described. There are no new symbols presented in this lesson, but the quick quiz at the end of the program checks symbols from previous sessions.

Program #8—Hazardous Materials: This program looks at the properties of hazardous materials and explains what actions should be taken with unknown substances while on a prefire plan survey. Information from the Fire Protection Guide on Hazardous Materials is stressed. The learner is given examples of entries from the five codes in the Guide. The symbol which will be used to mark a hazardous area is presented. Symbol drill.

Program #9—Perimeter Survey: This lesson takes the learner outside of the building being surveyed and incorporates information about structures and obstacles found on the perimeter of a building. A perimeter diagram is developed and rules are established about making a rough sketch of the area surrounding a building. No new symbols are introduced in this lesson, but a quiz checks a sampling of symbols from previous lessons.
Program #10—Posttest: This program tests the learner on information presented in the previous eight lessons. The 76 questions in the posttest incorporate 27 that were asked in the pretest (program #1), plus 22 more that were asked in the programs. The 27 questions remaining were based on the content of the tapes but had never been asked of the learners.

Program #11—Post-Survey Steps: This lesson discusses the actions that take place after a building survey report has been completed by the prefire planning team. Emphasis is placed on administrative procedures associated with the prefire planning process and upon the role of each person in the overall system.

Program #12—Survey/Plan/Utilization: This lesson rounds out the prefire planning course by acting as both a test and a good example of how to prefire plan a building. Roper-Whitney, Inc., of Rockford, Illinois, is preplanned. The learner is taken from the initial contact with the building owner, through all the steps. The questions asked in the tape require that the learner recall information from previous lessons. The lesson is a second post-test, verifying the learning of discrete items of information as well as the student's ability to synthesize the elements of the process.

The behavioral objectives for all of these lessons appear in Appendix VIII-3, Posttest and Behavioral Objectives.

Pretesting Through Scripting

The following sections describe the prefire planning program development process from its beginning state to its completion as a series of videotaped lessons. Each step is discussed in chronological order. A quick overview of these steps is given in Figure 4-2, which is a sample of the progress chart used during the project production.

Program Series Outline

From a task analysis of the prefire planning process, an outline of program topics was prepared. The outline of topics underwent several revisions as research into the content progressed and as the length of each topic became apparent. To simplify the description of the development cycle, a single program has been selected. It is Program #9 in the series of 12 programs, titled “Perimeter Survey.” The portion of the prefire planning survey form on the building perimeter is Appendix IV-3.

Initial Research

Initial research for each topic was conducted by a project research assistant in conjunction with the Field Director. The researcher was a member of the Rockford Fire Department. He listed all areas under a particular topic which should be considered and pretested prior to inclusion in the script.

Behavioral Objectives—First Drafts

After discussion with the research assistant, the Field Director formulated a first draft of the behavioral objectives for the videotape. These objectives attempted to include all material which should be pretested and evaluated later. One of the preliminary objectives for the perimeter survey lesson was: “The learner will identify specific items on the perimeter of a selected building (a) exposures, (b) overhead obstructions, (c) ground obstructions, (d) adjoining structures and (e) combustible materials.” Appendix IV-4 is the first draft of the complete set of behavioral objectives for the topic “Perimeter Survey.”
Rockford Fire Academy Review

The behavioral objectives were then discussed with personnel at the Rockford Fire Academy to assure that the topics and issues listed were indeed vital to the individual firefighter. The Field Director weighed these comments and, as necessary, modified the behavioral objectives based upon comments received at the Academy.

Since much of the prefire planning process concentrates on the new application of existing skills rather than the learning of altogether new skills, the entry level knowledge of the Rockford firefighters had to be determined. Therefore, at least three individual questions were drawn up for each objective and sub-objective. The items were coded by objective to facilitate scoring and cross-referencing. A few affective items, which remained the same for each pretest, were added to get an impression of the value placed on the content and its level of difficulty.

First Michigan State University Review

The draft of the pretest along with the behavioral objectives was then sent to Michigan State University, where the on-campus research staff reviewed the work. This review was an opportunity for "third parties," not part of the initial research but knowledgeable in instructional design and research methods, to look at the material from a new perspective. Comments were returned to the Field Director for incorporation in the next behavioral objective and pretest revision. Appendix IV-5 contains comments received from the on-campus researchers on the first drafts of material on "Perimeter Survey."
Behavioral Objectives — First Revision

The Field Director then incorporated all comments into the pretest experience. Appendix IV-6 shows the revised objectives based upon the comments from Michigan State University in Appendix IV-5. Appendix IV-7 is the revised pretest, reflecting the new behavioral objectives. For example, subheading A, “exposures,” under objective #1, is tested by questions #3, #20 and #26. All of these questions are coded “1A” in the left-hand margin of the pretest.

Pretest Administered

The pretest was then administered to firefighters in Rockford Fire Station Number Seven, which is located outside of the cable system coverage. The men assigned to that station perform the same tasks and undergo the same training as men from other fire stations in the city. Because they are beyond reach of cable and could not participate in the experimental program via cable, the firefighters at Station Number Seven participated as subjects for pretesting and formative evaluation. A total of 15 men are assigned to the three shifts at that station.

Analysis of Pretest Results

The Field Director scored the pretest and analyzed the responses given by the men. Appendix IV-8 is the analysis of the pretest results for “Perimeter Survey.” Scores are listed for each individual firefighter and a score for each objective and subobjective is tabulated.

A system was initiated to determine which objectives should receive priority in the development of interactive items. Any objective for which the questions received scores lower than 75 percent were included in the content of the tape and were the subject of an interactive item. The percentage figures served as guidelines and were altered depending upon test results and content area. The content of questions scoring poorly in the retest was singled out for emphasis in the program script. Affective item results were also compiled and compared to similar items from previous pretests.

Behavioral Objectives — Second Revision

The Field Director again revised the behavioral objectives based upon the pretest analysis. Appendix IV-9 is the second revision of the behavioral objectives for “Perimeter Survey.” Based on the pretest, objective #1 was revised into a more compact format.

Second Michigan State University Review

The pretest results and the revised behavioral objectives were then reviewed at Michigan State University. Any discrepancies in the analysis were noted and, if appropriate, a third revision of the behavioral objectives was suggested. In the case of the topic “Perimeter Survey,” the second revision of the behavioral objectives was not changed.

Script — First Draft

The Field Director then used the revised behavioral objectives and the pretest data to write the first draft of the videotape script. An outline of the material to be covered was formulated, and interactive items were incorporated into the content. Appendix IV-10 is the initial outline for the videotape dealing with “Perimeter Survey.” All of the information pretested was then weighted, in accordance with the scheme outlined above, based on the test scores and placed in the outline of material.

Appendix IV-11 is an analysis of the interactive videotape items dealing with “Perimeter Survey.” All objectives were covered by interactive items during the videotape experience.

Third Michigan State University Review

The first script draft was then sent to Michigan State University where it was read and reviewed. Objectives were matched with pretest results and the script was edited for content clarity.

Consultant Review

At the same time, the script was also given to content consultants, experienced in the content of the field being discussed. They read the script for accuracy of content.

Script — Second Draft

The Field Director then wrote the second draft of the script based on the comments from Michigan State University and the content consultants.

Fourth Michigan State University Review and Final Script

The second draft of the script was sent to the Michigan State University Project Director, who made a final script review. The Field Director finalized the script based on these comments.

Location Production

The basic production for each of the programs was done in Rockford under the following plan:

1. Each program would present a specific content area. The total series would be 10 to 15 programs.
2. Each program length would be determined by the content covered but would be scripted to range between 30 and 40 minutes.
Each program would incorporate as many interactive questions as possible. Interaction would occur at least once every five minutes.

Each program in the series would be capable of use as a two-way interactive experience and also as a traditional one-way program. (This would allow use of the series 'outside the two-way technology for the one-way experimental versions and also in conventional television systems where the two-way technology is not yet available.)

Type faces for graphics would be standardized for visual continuity.

A modular studio set design would be employed to provide an individual look to each program while retaining a series identity.

A rear projection screen would be incorporated as one of the main elements of the studio set to create visual reinforcement as material is presented and to facilitate transitions.

A professional television announcer would be used as the on-camera presenter for convenience of production and communication effectiveness.

Pacing mechanisms would be used in each program to break the delivery of information:

(a) A cartoon character named Godfrey to present historical firefighting vignettes.

(b) Musical interludes to provide background for visual review material or to provide comic relief, and

(c) A voice change (female) to deliver the questions and multiple choice options at interactive points.

All alphanumeric questions would be displayed with blue backgrounds. The computer-generated feedback and the indication of the correct answers would be displayed on blue backgrounds. This would be consistent over the entire series to cue viewers to particular behaviors or expectations.

During development and production, the Field Director acted as content researcher and writer. In preparing scripts, a unique script format was necessary to accommodate the computer and character generated elements of the programs. Instead of the usual television script form with audio and video columns, the two-way television script included a third column at the far right with directions for the computer. Had the computer directions been included in the audio and video columns, they would have interfered with the script reading during video production. A sample script page is presented in Chapter 5, Figure 5-6.

The videotape was produced with five-second "bridges" at the end of the presentation of the options for an interactive question. These were simply an extension of the visual for five seconds without audio. After an interaction and feedback display, it permitted the computer to begin rolling the videotape prior to the point where it would switch the video output from character generator to videotape, avoiding a roll.

During the production of the videotapes, the right hand "computer column" was ignored except to insert the five-second bridges. The column was not used again until the lesson was timecoded and programmed for computer control.

The special script format and the five-second bridges were the only special production arrangements necessary to accommodate the two-way television presentation. (Since the firefighter training series, University of Michigan, Rockford Public Schools and Swedish-American Hospital producers have easily adapted to the two-way production.)

After the initial script draft, the Producer attempted to mold the content into a cohesive visual experience. Visualizations and demonstrations were designed to emphasize the specific objectives. The script drafts were also reviewed and revised by the project advisors at the Rockford Fire Department and Michigan State University.

A typical program averaged 40 minutes in length, included 200 slides and a few minutes of motion picture film in addition to studio action. In some cases the studio presentation included models, props and graphic displays. The average production sequence necessary to create all these elements from start to finish for each program was 10 to 12 weeks. After the third program in the series a graphic designer/artist shared the workload with the producer.

During development and production, the Field Director acted as content researcher and writer. In preparing scripts, a unique script format was necessary to accommodate the computer and character generated elements of the programs. Instead of the usual television script form with audio and video columns, the two-way television script included a third column at the far right with directions for the computer. Had the computer directions been included in the audio and video columns, they would have interfered with the script reading during video production. A sample script page is presented in Chapter 5, Figure 5-6.

The videotape was produced with five-second "bridges" at the end of the presentation of the options for an interactive question. These were simply an extension of the visual for five seconds without audio. After an interaction and feedback display, it permitted the computer to begin rolling the videotape prior to the point where it would switch the video output from character generator to videotape, avoiding a roll.

During the production of the videotapes, the right hand "computer column" was ignored except to insert the five-second bridges. The column was not used again until the lesson was timecoded and programmed for computer control.

The special script format and the five-second bridges were the only special production arrangements necessary to accommodate the two-way television presentation. (Since the firefighter training series, University of Michigan, Rockford Public Schools and Swedish-American Hospital producers have easily adapted to the two-way production.)

After the initial script draft, the Producer attempted to mold the content into a cohesive visual experience. Visualizations and demonstrations were designed to emphasize the specific objectives. The script drafts were also reviewed and revised by the project advisors at the Rockford Fire Department and Michigan State University.

A typical program averaged 40 minutes in length, included 200 slides and a few minutes of motion picture film in addition to studio action. In some cases the studio presentation included models, props and graphic displays. The average production sequence necessary to create all these elements from start to finish for each program was 10 to 12 weeks. After the third program in the series a graphic designer/artist shared the workload with the producer. Because of the number of programs and the time frame, it was necessary to work on two to three programs simultaneously, all in different stages of completion. This required the development of a very elaborate production status board. Below is an example of the basic sequence of production events.

1. Add production modifications to the final draft of the script
2. Hold script finalization meeting with writer and production staff
3. Storyboard script—layout words, number slides, sketch diagrams and describe all photos (See example in Figure 4-3)
Create all checklists for location shooting of slides and film, graphic type specifications, color art graphics, studio models

Prepare and proof typesetting list

Paste-up and proofread type

Revise storyboard pending location shooting of appropriate examples of content

Keyline diagrams and symbols

Create color art (Godfrey and/or diagrams)

Copy and mount photographs

Run through program elements with Fire Department advisors

Revise as necessary from advisors’ critique

Complete all production elements

Run through again to check all production and content elements

Revise script pending corrections from run-through

Duplicate and distribute script 20 days before studio production

Type Teleprompter copy

Produce all corrections and revisions slide/film/graphics

Run through a final time of all program elements by staff and advisors

Package program for travel to studio production center

Status boards were designed to track each program through its various stages of development. The scheduling of work and production dates had to be done over an extended period to allow enough time to accomplish all these steps.

All production work was done in a temporary studio constructed next to the Project Field Office at Fire Station Number Two in Rockford. (See Figure 4-4.)

Studio Production

All of the studio and post production was done in the WKAR Television studios at Michigan State University. The performance and credibility of the on-camera presenter had been pretested with firefighters who were not included in the experiment in Rockford by using a television training program he made for the Michigan State Police. He scored very well on all the criteria—credibility, likeability and style. For audio pacing and interest, another distinctive voice was used to narrate the Godfrey historical vignettes and a third voice, female, to narrate all questions and answer options. Natural sound and musical openings, bridges and closings were also used.

Since the Producer arrived at WKAR-TV with essentially a prepackaged program the primary problem was to communicate the program style and detail to the production staff. The WKAR producer/directors were assigned to the prefire planning productions on a rotating basis. The assistant director, however, remained throughout providing continuity to the production functions.

Formative Evaluation and Revision

After production of the videotape based upon the finalized script, formative evaluation took place at Station Number Seven (which was not a test station in the final experiment). Firefighters on all three shifts viewed the videotape, using answer sheets to respond to the interactive items. The Field Director observed as the firefighters viewed the tape and noted any reaction to the content presented or to treatment of material.

After the viewings, the Field Director conducted informal debriefings with the firefighters and listed their comments concerning the program. These sessions lasted approximately half an hour and all firefighters present were asked to contribute to the discussions. (See Appendix IV-12.)

Additionally, the program was viewed by personnel at the Rockford Fire Academy, by project consultants and by on-campus researchers. The Field Director noted comments by the first two. Michigan State University researchers sent their comments to the field office in written form. (Appendix IV-13.)

Finally, input from all sources was combined into a concise list. The comments were reviewed point-by-point by the Project Director and the Field Office. A disposition for each comment was determined four weeks before the scheduled date for final revision in the studio. (Appendix IV-14.)

The Producer then returned to the studio and modified the program into the decided-upon form. If a program was to undergo extensive modification, this required the creation of additional graphics and of new or partially new segments. After modification, the videotape was again viewed by the Fire Academy, project consultants, Michigan State University researchers and the field office. If the revisions met the desired goal, the program was considered complete and usable on the two-way cable television system.
C) Explain the difference between fire inspection and prefire plan survey.
Figure 4.4. PRODUCTION STUDIO FIRE HOUSE NUMBER TWO, ROCKFORD, ILLINOIS

PRINT WASHER
SAFE LIGHT
SLIDE STORAGE
SLIDE STORAGE FOR ART MATERIALS
PHOTOGRAPHIC REFERENCE BOOKS
PROJECTION SCREEN
WET SINK
CABINET
STORAGE UNDER COUNTER
ENLARGER
COUNTER
TIMER
LIGHT TABLE
LIGHT TABLE
DRAWING BOARD W/MAYLINE
DRAWING BOARD W/MAYLINE
WORK BENCH
WORK BENCH
FILM EDITING BENCH
LIGHT
LIGHT
COPY STAND (ON WALL)
PROJECTOR
CAMERA, STORAGE ON SHELF
TRANSFER LETTER STORAGE
LIGHT
X
LIGHT
X
DRAWING BOARD W/T-SQUARE
TABLE
WAXER
ART STORAGE UNDER TABLES
TABLE UNDER TABLES
WORK AREA
WORK AREA
STORYBOARD DISPLAY STRIPS
DRAWING BOARD
DRAWING BOARD
DARK ROOM
STORAGE
STORAGE
STORAGE
Chapter 5
Minicomputer Hardware and Software Design

The introduction of two-way cable communication technology permits the development of a new instructional system which combines the advantages of television and computer-aided instruction for potentially large populations at relatively low cost. The design of the minicomputer-based two-way cable instructional system began with three basic objectives: (1) to deliver instructional lessons via a two-way cable television system using a push-button response pad to transmit student interactions; (2) to place all phases of lesson administration under minicomputer control, providing a completely automated lesson processor system; (This included integration of videotaped material with character-generated displays, polling of student interaction and maintenance of student records.) and (3) to develop a system that could be easily adapted to any subject with system instructions that could be understood by noncomputer personnel.

The entire instructional system represents a combination of complex hardware and software. The hardware necessary to support instructional programs of this kind begins with a viable two-way cable television system, to which is added minicomputer-controlled video origination equipment. The software must coordinate the processing of a series of lessons, including control of all necessary video equipment and monitoring of student interactive response, in real time. The hardware and software configurations for the Rockford experiments were designed to accommodate the simultaneous administration of two different lessons over separate video channels.²

System Overview

The Michigan State University/Rockford digital-return, two-way cable communication system in the firefighter training experiment uses response pads designed by Coaxial Scientific Corporation at a small-quantity cost of $150 each. These terminals are much lower in cost than the $300 terminals used in most other systems. They are modified standard cable television channel converters (Jerrold SX-2). Each standard converter has 12 push-button switches and a three-position band switch, normally used for selecting up to 36 cable channels. The adapted converter has, in addition, a four-position response mode switch, a response transmit button and a response indicator light. The response mode switch can be set to the normal channel selection mode, or to one of three designated response channels. (Figure 5-1.)

![Response terminal. Modified Jerrold SX-2 channel converter.](image)

When a response channel is selected, the 12 push-button switches and band switch function as an alphanumeric keyboard, whose symbols may be arbitrarily assigned. (e.g., a template may be placed over the keyboard to provide specific operation instructions). The terminal's transmitter continuously sends a 16-bit data word to the computer-controlled receiver located at the headend. This data word reports the status of the keyboard and function switches, as well as other pertinent information. When a user wishes to transmit an upstream response, he or she depresses the corresponding push-button switch and then depresses

1. This chapter was written principally by Martin Block, Jayne Zentary, John Eulenberg, Michael Gorbutt and Eric Smith.
2. During the actual firefighter experiment, however, only one lesson was run at a time.
the response transmit button. This sets a response bit in the data word for a short time, during which the response indicator light is illuminated.

In order to accommodate a large number of terminals, the cable network is accessed by the technique known as area multiplexing described briefly in Chapter 2. In this technique, the network is divided into a number of primary sectors, each further divided into secondary sectors. The upstream signal from each primary and secondary sector is passed by digitally controlled in-line code-operated switches (COSs). At any one time, the computer can scan a secondary sector of up to 200 terminals, addressed by selecting a combination of one primary and one secondary switch. Each terminal within a secondary sector has its own unique frequency. The computer-controlled receiver tunes in on this frequency in order to read the data word from the terminal.

The minicomputer which controls the system is a General Automation SPC-16/65 with 64K 16-bit word memory; real time operating system; 10 megaword disk storage; and necessary peripheral equipment, controllers and interfaces. This is shown in Figure 5-2 in diagram and photograph. An essential component in the headend hardware configuration is a timecode generator/reader, used to synchronize videotaped lessons with their corresponding computer interactions. The Michigan State University/Rockford system’s Shintron 367 timecode unit communicates with the computer via a video interface module designed and built for the project at Michigan State University’s Artificial Language Laboratory. For computer-generated text, the system uses a character generator which provides four different software-selectable color backgrounds. The computer also controls a video switch which selects either the video-cassette recorder/player (VCR) or the character generator as the source of the outgoing video signal. Terminal data is collected using a transmitter and scanning receiver designed by Coaxial Scientific Corporation.

Figure 5-2. SYSTEM CONFIGURATION
Minicomputer System

The minicomputer system consists of the minicomputer and various peripheral devices and controllers as shown in Figure 5-3. The General Automation SPC-16/65 is configured using the General Automation RTOS II real time disk based operating system.

The minicomputer itself, designed as a general purpose machine, has 65,536 words of 16-bit core memory and a 960 ns memory cycle time. The minicomputer features the extended processor option which adds hardware multiply and divide, and foreground and background processor capability; and the real time fail-safe group which provides a real time clock operation, monitor alarm, system safe line and power fail restart interrupts. Also included in the RTOS II package is a disk storage capacity of 5.0 million words (16 bits) with an average access time of 60 ms. The disk storage drives consist of two units with one fixed and one removable pack on each unit. Data on the disks is formatted 400 words per sector with eight sectors per track.

The control device for the system is a Hazeltine 2000 CRT terminal connected to the system using a 9600 baud line. The ASR-33 Teletype unit is used primarily for system maintenance but can also be used as a backup system control device.

The 400 card per minute card reader reads standard 80-column cards and is used to configure the system, input programs and update and maintain application disk files. The 200 line per minute line printer uses standard ASCII code and prints up to 132 columns of five-by-seven dot matrix character style with six- or eight lines per inch spacing. The line printer is used in most system operations, and also provides the hard copy results of interactive lesson administration and other reports. The card reader and line printer were supplied by General Automation as an option to the RTOS II package. For a more detailed description of this equipment, refer to the General Automation SPC-16 System Reference Manual. (1)

The special controllers necessary to interface the scanning receiver and COS transmitter were built and supplied by Coaxial Scientific Corporation. The controllers necessary to interface the headend video equipment and the minicomputer are standard General Automation general purpose input/output controllers. A more detailed discussion of the functions of these special controllers follows.

Headend Video Equipment

Video equipment at the cable system headend includes two Sony VO-2600 VCRs; two character generators (Telemation and 3M) for alphanumeric message display; two Shintron 367 timecode units for recording and reading timecodes on the videotapes; and the Michigan State University Timecode Interface and Video Switcher Controller which enables the minicomputer to control and receive timecode data from the VCRs, as well as to control all VCR functions and the outgoing video signal. (See Figure 5-2.)

The Michigan State University Timecode Interface and Video Switcher provides the necessary link between minicomputer and video equipment which makes the two-way instructional system completely computerized. (See Figure 5-4.) It enables synchronization of the videotape and computer operations for the interactive lessons.

The timing operation begins by pre-recording the SMPTE timecode information on the first audio track of each videotape using the timecode reader/generator. Hours, minutes, seconds and frames of tape time are digitally encoded for each frame of the videotape. During the actual lesson administration, the timecode track of the videotape is played back and decoded by the timecode reader, and presented to the interface unit in multiplexed form. The interface unit demultiplexes the data and makes it available to the minicomputer. The minicomputer is pre-programmed with times at which interactive items are to occur during a lesson. The lesson processor program which coordinates the lesson administration continuously checks the running timecode supplied by the Interface against the pre-programmed interactive codes. If they are equal, the processor executes a routine for interactions.

A key feature of interactive items is instant feedback provided by the computer in the form of character-generated messages. In order to provide this display, the videotape must be paused, and the video output line switched to the character generator. The Interface-Video Switcher provides this capability by sending signals to the VCR through an external IOS (General Automation's Input/Output System) driver. In this manner, signals of forward, stop, rewind, fast forward, pause, VCR video source and character-generated video source can be sent to the VCR by the minicomputer.

A more technical discussion of the interface may be found in Appendix V-1.
Figure 5-3. HEADEND MINICOMPUTER CONFIGURATION

- UPSTREAM RESPONSE TRANSMISSION EQUIPMENT
- HEADEND VIDEO EQUIPMENT
- SCANNING RECEIVER CONTROLLER
 COAXIAL SCIENTIFIC CORPORATION
- COS TRANSMITTER CONTROLLER
 COAXIAL SCIENTIFIC CORPORATION
- CHARACTER GENERATOR CONTROLLER
- TIME CODE INTERFACE AND VIDEO SWITCHER CONTROLLERS
- MINICOMPUTER
 GENERAL AUTOMATION
 SPC-16/65
 64K WORDS (16 BIT)
- DISK STORAGE
 5.0M WORDS
 (16 BIT)
- CRT TERMINAL
 HAZELTINE 2000
- TELETYPewriter
 ASR-33
- CARD READER
 400 CARDS
 PER MINUTE
- LINE PRINTER
 200 LINES
 PER MINUTE
Figure 5.4. SYSTEM CBLING TIMECODE INTERFACE AND VIDEO SWITCHER

TIMECODE

OUTPUT

VCR 1

VIDEOCASSETTE RECORDERS

VCR 2

REMOTE CONTROL

MINICOMPUTER
GENERAL PURPOSE
I/O CONTROLLERS

PADDLE PCB

GPIO/

PADDLE PCB

VTOL

CONTROL SIGNALS

INTERFACE #1

MULTIPLEXED TIMECODE DATA

INTERFACE #2

MULTIPLEXED TIMECODE DATA

INTERFACE UNIT

SELECTED DEMULTIPLEXED TIMECODE DATA

MULTIPLEXED TIMECODE DATA

BUFFER PCB

SHINTRON 1

TIMECODE READERS

BUFFER PCB

SHINTRON 2
System Software

The software resident on the minicomputer, written in FORTRAN and General Automation assembler CAP-16, supports not only the administration of interactive video lessons, but also provides complete facilities for preparing computer interaction scripts and files for each lesson, for maintaining a working image of the cable network, and for managing student records and preparing statistical reports on completed interactive lessons. (See Figure 5-5.) The system design provides completely automated lesson administration, requiring the headend operator merely to load the current lesson videotape into the VCR and to initiate the lesson processor program by entering the lesson name and number via the CRT keyboard.

Lesson Processor Preparation

The lesson processor program ($LESSON) consists of 40 subroutine modules which control hardware functions, file access, terminal addressing, log-ins and scanning, timing and lesson summaries. Six user-created data files must be established by system utility software in preparation for lesson administration by $LESSON: (1) NETWORK - a list of all primary and secondary COSs and terminals in the cable system; (2) TIMECODE - an array of timecodes marking interactive cueing points; (3) RECORD - a file of student responses for the lesson; (4) IDENT - a list of specific information for a lesson; (5) ITEM - a series of parameters for each interactive item in the lesson; and (6) TEXT - question and response texts to be displayed by the character generator during a lesson.

The NETWORK File

NETWORK is an indexed sequential access (ISAM) file, established by using General Automation's File Management System (FMS), which contains a listing of all possible terminals which might be scanned during the lesson administration. An integer array, it can accommodate up to 60 six-word listings which contain the number and frequency of both primary and secondary code-operated switches, as well as the terminal frequency and fire station. Terminals can be added or deleted from the file at any time using the system utility program $SYU.

The TIMECODE File

TIMECODE is an FMS ISAM file of videotape timecodes which are used to synchronize the video lesson with its corresponding computer interactions. A timecode generator/reader interfaced with the minicomputer records and reads the timecodes on audio channel 1 of a dual-track videocassette. Each record in the TIMECODE file, an integer array for each lesson, can accommodate 80 four-word timecode values which contain lesson number, minutes, seconds and frames for each cueing point.

The operator creates the TIMECODE files for a particular lesson by using utility program $VIDCU2. While viewing the videotape, console key is depressed at each point of interaction, causing the timecode reader to read the timecode, which is then stored in the TIMECODE array. During the actual lesson administration, this TIMECODE array will be checked against the running timecode on the videocassette to locate interactive points, which occur when the two timecodes are equal. These points include: (1) the initial point to switch to the videotape and begin the lesson; (2) the point to start looking for audience response for a normal question; (3) the point to display feedback for each normal question; (4) the point to start looking for responses for quick quizzes; (5) the point to display a quiz score at the end of the quiz; (6) the point to display a lesson score; and (7) the point to end the lesson and rewind the tape.

The RECORD File

The RECORD file contains a byte array called ANSWER for each lesson, which contains a listing of responses to each interactive item by ID code, a "key" of correct answers for the lessons and an attendance code. The array can accommodate 126 student sub-records per lesson; the first sub-record is used for the "key." Bytes 1-3 of each sub-record contain the student's ID code, while bytes 6-30 contain responses for each item. Byte 4 is used to indicate the status of the student for the particular lesson (0 if ID has not taken the lesson; terminal number if ID is currently-taking the lesson; blank if ID has taken the lesson). The utility program $RECORD establishes an empty record array for each lesson using a roster of student ID's to create each sub-record; the lesson processor fills in the key and student responses in the course of lesson administration. Software to change student responses, and to add or delete an ID code from a lesson record, is also available.

The LEAF Program—the IDENT, ITEM and TEXT Files

LEAF (Language for Educators And Firefighters) is a computer language developed especially for use

1. The GA minicomputer executive system designates main programs by a "$" preceding the lesson name.
2. Since no videotaped lesson was longer than one hour, the "hours" portion of the SMPTE timecode was used to encode the lesson number.
Figure 5.5. SYSTEM INFORMATION FLOW

- OPERATOR INPUT
 - $VIDCU2 ROUTINE
 - TIMECODE FILE
 - OPERATOR INPUT
 - $SYU ROUTINE
 - NETWORK FILE

- USER-WRITTEN LEAF PROGRAM
 - $LEAF COMPILER
 - IDENT FILE
 - TEXT FILE
 - ITEM FILE

- $RECORD ROUTINE
- $RECORD FILE

- $LESSON PROCESSOR
 - AUDIENCE
 - LESSON FILE
 - STUDENT RECORD FILE

- WRITTEN LEAF
 - TEXT FILE
 - ITEM FILE
 - NETWORK FILE
 - IDENT FILE
 - TIMECODE FILE
in the Michigan State University-Rockford instructional system. It is highly user-oriented and allows the lesson author to convey information about interactive items in the lesson to the lesson processor. A Michigan State University-designed LEAF compiler processes each LEAF lesson program, establishing the IDENT, ITEM and TEXT files used by $LESSON.

A LEAF program consists of three sections: Initialization, Configuration and Report. The LEAF format is designed so that the Configuration section parallels the audio-video production script for the corresponding lesson. Figure 5-6 presents a complete LEAF program for that lesson. A sample page from an actual lesson script is given in Figure 5-7.

Figure 5-6. SAMPLE LEAF PROGRAM

```plaintext
IDENT
  • THIS IS A SAMPLE LEAF PROGRAM
  • FOR THE LESSON ON VERTICAL STRUCTURES, WHICH IS PROGRAM 4.

  • INITIALIZATION SECTION
  • NAME: VERTICAL STRUCTURES
    • ILIST: 1B
    • DATE: 01/27/77
    • AUTHOR: ERIC SMITH
    • ROLL: MASTER
    • GENERATE

  • CONFIGURATION SECTION
  • THE FIRST 6 ITEMS ARE MULTIPLE CHOICE

BEGIN
  CALL
  ITEM 1 M(2,4,3)
  HEAD WHAT PERCENTAGE OF THESE FIRES OCCURRED ABOVE THE 5TH FLOOR?
  FOIL A. 27%
  FOIL B. 35%
  FOIL C. 44%
  FOIL D. 53%
  ECHO I.X
  ITEM 2 M(1,3,2)
  HEAD IDENTIFY THE STRUCTURE
  FOIL A. OPEN STAIRWAY
  FOIL B. ENCLOSED STAIRWAY
  FOIL C. SMOKE-PROOF TOWER
  ECHO I.X
  • ITEMS 3 AND 4 USE AN EXTERNAL VIDEO SOURCE. THEY DO NOT HAVE HEAD OR FOIL STATEMENTS
  • ITEM 3 M(5,4,1)
  ECHO I.X
  ITEM 4 M(5,4,4)
  'ECHO I.X
  ITEM 5 M(2,4,2)
  HEAD WHICH OF THE FOLLOWING STATEMENTS IS TRUE?
  FOIL A. THIS ELEVATOR HAS FIREMAN'S SERVICE
  FOIL B. THIS ELEVATOR WAS NOT DESIGNED FOR FIRE DEPT. OPERATION

FOIL C. THIS ELEVATOR HAS A PHOTO CELL TO DETECT FIRES

FOIL D. THE FIREMAN'S SERVICE KEY WILL OPERATE THIS ELEVATOR.

ECHO I.X
ITEM 6 M(4,3,1)
HEAD WHAT IS THE LOCATION OF THE ELEVATOR?
FOIL A. MAIN FLOOR WEST LOBBY
FOIL B. BASEMENT LOADING DOCK
FOIL C. 1ST FLOOR LAUNDRY ROOM
ECHO I.X

• THE NEXT TWO ITEMS ARE DICHOTOMY ITEMS
• ITEM 7 D(2,1)
  HEAD DOES THIS ELEVATOR HAVE FIRE DEPARTMENT SERVICE?
  FOIL A. YES
  FOIL B. NO
  ECHO I.X
ITEM 8 D(2,2)
HEAD WHAT IS THE TYPE OF THE ELEVATOR?
  FOIL A. HYDRAULIC
  FOIL B. CABLE-SUPPORTED
  ECHO I.X
ITEM 9 M(3,4,4)
HEAD WHICH FLOORS DOES THIS ELEVATOR SERVICE?
  FOIL A. 1ST FLOOR - 12TH FLOOR
  FOIL B. 1ST FLOOR - 7TH FLOOR
  FOIL C. BASEMENT - 12TH FLOOR
  FOIL D. BASEMENT - 7TH FLOOR
  ECHO I.X
• • QUICK QUIZ ITEM IS NEXT
• ITEM 10 Q(5,1,2,1,2,3,2,3,2,3,1,3)
STOP
• • REPORT SECTION
• REPORT
  TITLE
  HIST
  FREQ
END
```
<table>
<thead>
<tr>
<th>VIDEO</th>
<th>AUDIO</th>
<th>COMPUTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take slide of question mark. 2-shot with talent, down stage with R.P. over right shoulder.</td>
<td>QUES. VOICE: Now that we have looked at stairways, enclosed stairways and smoke-proof towers, let’s see if you can identify the following structures. Here is a look at a structure in a high-rise building. Notice the diagram which shows its location. What type of vertical structure have we just looked at? A., open stairway B., an enclosed stairway, or C., a smoke-proof tower?</td>
<td>STOP TAPE. COMPUTER-CHARACTER GENERATOR FEEDBACK BY CODES</td>
</tr>
<tr>
<td>Lap several slides of enclosed stairway. (36,37,38)</td>
<td></td>
<td>START TAPE.</td>
</tr>
<tr>
<td>SUPER: IDENTIFY THIS STRUCTURE (R.P., 39)</td>
<td>BEEPS</td>
<td></td>
</tr>
<tr>
<td>Hold last slide. Less super.</td>
<td>TALENT: Now, let’s take a look at the pictures again. Notice that this structure is completely enclosed and is separated from the rest of the building by single fire-rated doors.</td>
<td></td>
</tr>
<tr>
<td>Super, Wipe (40, R.P.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. OPEN STAIRWAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. ENCLOSED STAIRWAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. SMOKE-PROOF TOWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hold 10 sec.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take talent in studio (#41) with R.P. First slide of enclosed stairway on R.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolve through slides of enclosed stairway. F.C. (42,43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPER: "B. ENCLOSED STAIRWAY." R.P. (44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-7. AUDIO-VIDEO-COMPUTER PRODUCTION SCRIPT LESSON 4 "VERTICAL STRUCTURES"
The Initialization Section consists of a list of statements which contain the name of the lesson, number of interactive items in a lesson, the date, lesson author, equipment used during the lesson and whether the interactive item text will be displayed by the character generator. A maximum of 14 allowable equipment codes is permitted. The presence of a GENERATE statement is a signal to the LEAF compiler to store question and answer texts as arecord file. All information obtained in the Initialization section for a particular lesson is stored by LEAF as a record in the IDENT file.

The Configuration Section contains an ITEM BLOCK for each interactive question in the lesson, giving the ordinal of the current item, type of question (multiple choice, ranking, dichotomy, quick quiz), color for the background of any character-generated text, number of foils and the correct answer. This information is stored for each item in each lesson as a record in the FMS file ITEM. If the text of each item is to be displayed by the character generator (indicated in the Initialization section), the ITEM BLOCK also includes HEAD and FOIL statements, which give the text for each item stored in the TEXT file. Each HEAD and FOIL can occupy two 30-character lines, with a maximum TEXT file size for each lesson of five disk sectors.

The final configuration section command is ECHO, an option which allows for immediate response feedback after an interaction has occurred. ECHO information, passed to the lesson processor via FMS file IDENT, displays via the character generator a breakdown of student responses to each item in various formats: for each foil, the number of percentage of respondents, or if desired, a listing of their ID codes. (See Feedback #1, #2 and #3, Chapter 3.)

The Report Section is a series of statements specifying the types of printed reports to be generated at the headend at the end of the lesson: TITLE prints IDENT information, current data and time, and a list of individuals participating in the lesson; FREQ prints a frequency distribution of items, while ANAL prints an item analysis and HIST calls for a cumulative frequency distribution of items. For the Rockford firefighter training experiment, these commands were inoperative. Report generation was included as part of the main lesson processor program.

Once the six system files have been established, system information about the lesson is completed. The lesson may be shown at any time by inputting the lesson name and number to the lesson processor program \$LESSON. The program accesses all of the stored data and manages all interactions, including starting and stopping the VCR, transferring video output to the character generator, scanning the terminals and providing instant response feedback. The processor program also updates the student RECORD file.

The Lesson Processor (\$LESSON)

To begin executing a lesson, \$LESSON (See Figure 5-8) first retrieves necessary lesson information from FMS files IDENT, ITEM, TEXT, NETWORK and TIMECODE and creates appropriate arrays for the data. Next, in preparation for the log-in procedure, it switches video output to the character generator through the computer-controlled video switcher.

The log-in procedure, during which respondents enter a three-letter ID code, one letter at a time, using their response terminals, is one of the more complicated routines of the lesson processor in terms of hardware/software interaction. The subroutine LOGIN, which calls eight other subroutines during execution, controls the operation, which first writes a log-in message to respondents on the character generator and sets a five-minute limit for the procedure to be completed. The program then uses NETWORK file information to set scanning flags for all terminals in the system to be scanned.

The scanning routines begin by addressing the primary and secondary COSs controlling each network sector (refer to Chapter 2), by sending a signal at the correct frequency to open the corresponding switches. The individual terminals in each sector are then scanned for data, which are decoded and converted to their computer code equivalent. Appropriate signal level checks are made to insure good transmission of data.

Since the log-in procedure involves a three-letter ID, each terminal must be scanned three times to collect the full identification code. A respondent can cancel an erroneous entry and log-in again with the correct ID. More than one respondent can log-in from a single terminal; subsequent responses from that terminal during the lesson are credited to each member of the group. Each three-letter code is checked against the master list of ID's from the student RECORD file and displayed on the television screen by the character generator to confirm that the log-in has been accomplished. In addition, the routine stores the terminal number of each respondent in the attendance byte of his record in the ANSWER array to indicate that the student is currently taking the lesson.

Having completed the log-in, the lesson processor sends a forward command to the VCR, and the lesson videotape begins. At this point the processor begins checking the current time codes on the videotape with the next sequential value in the
Figure 5-8. LESSON PROCESSOR

INPUT LESSON NAME

ATTACH FMS FILES; INITIALIZE VARIABLES

LOG-IN PROCEDURES

CHECK TIMECODES

PROCESS ITEMS

WRITE TEXT IF CHARACTER-GENERATED

QUICK QUIZ?

YES

NO

CHECK TIMECODE SCAN

RECORD ANSWERS

YES

NO

ECHO?

DISPLAY RESPONSES ON CHARACTER GENERATOR

CONTINUE

DISPLAY LESSON RESULTS

UPDATE STUDENT RECORD FILE

PRINT LESSON SUMMARY

STOP

CONTINUE
TIMECODE array. This timing sequence continues until the running timecode equals or exceeds the stored timecode value. The pointer in the timecode array is then advanced and the processor begins an interactive item.

At each interactive point in the lesson, the processor retrieves necessary question information, such as question type, number of foils, background color and ECHO information from the ITEM file. Scanning flags are set for those terminals entered during the log-in; the program then scans those terminals for responses and stores answers in the data array ANSWER. Questions and foils are included as part of the lesson videotapes in the Rockford firefighter experiment. If all terminals transmit responses while the question is displayed on the running videotape, the tape is paused only when character-generated feedback is requested through the LEAF ECHO option. However, if respondents are slow in transmitting their answers, the processor stops the tape and switches the video output to the character generator, which displays question and foils retrieved from the TEXT file. (See Figure 5-9.)

In either case, the time at which the tape should be paused is found as a cueing point in the TIMECODE array. The processor also checks for missed responses from each terminal. If a respondent fails to register on two consecutive items, the scanning flag for that ID is turned off, and the terminal is no longer scanned for data. This option was frequently used during the Rockford experiment, when firefighters left their station in response to a fire alarm!

If the lesson author requested immediate item feedback in the LEAF program, it is displayed by the ECHO routine. Depending on the specified user option, ECHO checks the ANSWER array for all lesson respondents and displays the information in the chosen format; e.g., number responding to each foil.

Figure 5-9. EXECUTION OF AN INTERACTIVE ITEM
percentage responding to each foil, individual responses by ID code. The routine pauses the videotape (if it has not already been paused during the scan) and switches video output to the character generator to display the feedback. At the end of the display, the processor releases the videotape, waits five seconds and then returns video output to the videocassette player. This masks the jumpy video signal which occurs when the VCR is taken off pause. The videotape lesson continues until the next interactive point is found by the timing program.

In addition to processing single interactive items, LEAF is also designed to permit a series of questions in rapid succession, with limited response time, uninterrupted by feedback between questions. This "quick quiz" option, first designated in the LEAF program for the lesson, is identified to the lesson processor at the time of the interaction. A special scan, which allows only five seconds per response and does not stop the videotape, records answers. At the end of the quiz, a cumulative ECHO reports percentage scores for the entire quiz.

When it has executed the given number of interactive items in the lesson, the processor begins its closing operations. A printed lesson summary is generated, listing individual scores and item-by-item response, as well as an item analysis of test questions. The ECHO routine displays a final percentage score for each student taking the lesson, and then, in the firefighter training application, computes and displays the average score for each firefighter on a particular shift. In addition, the processor transfers student responses in the data array ANSWER to permanent disk storage on file RECORD. As its last timing function, the processor checks for the end of the tape, issues appropriate commands to the VCR to stop and then rewind the tape and sends an end-of-lesson message to students via the character generator.

Summary

The minicomputer software system described here combines the advantages of television and computer-aided instruction for potentially large numbers of students at relatively low cost. Using technological developments in two-way cable delivery and computer-hardware interfaces, the system automates the interactive lesson administration and maintains accurate, up-to-date records of student attendance and progress throughout an entire series of lessons. At the present time, with current terminal addressing systems, video equipment, minicomputer memory and the "mass" character of the audience, the interactions in each lesson are, of necessity, limited. The full dimensions of computer-assisted instruction, with more complicated branching, repetition and feedback, remain to be explored and developed for use by two-way cable television systems.

The present system has been employed to provide in-service training of firefighters and teachers in Rockford, Illinois. System components, such as file structures, the LEAF language and compiler, and the lesson processor itself are designed for easy adaptability to any type of instructional lesson and are readily understandable by non-computer personnel.

For a complete description of the Michigan State University-Rockford system software configuration, refer to a separate volume to this report, which contains complete programming documentation. (2)

Notes — Chapter 5

Chapter 6
Cable System Technology and Performance

Upstream Response Transmission Equipment

The Michigan State University-Rockford Cable Project represents the successful application of the first and second generation two-way cable technology described in Chapter 2. The Rockford Cablevision plant is a four quadrant, single trunk line cable system. The upstream response subsystem consists of control devices at the cable system headend, primary code-operated switches (P-COS), secondary code-operated switches (S-COS), response terminals and test end-of-line test oscillators (ELO). (See Figure 6-1.) The two COSs generate identification signals which are used to confirm their activation. These signals are transmitted to the cable system headend along with an FSK-modulated terminal signal and the ELO signal.

The Rockford system departs from usual system design in one important respect—the feeder cable upstream path passes only the 5 to 10.5 MHz spectrum, while frequencies of 12.5 MHz and above are attenuated by 25 dB or more. The trunk cable passes the full 5 to 30 MHz, which includes the feeder data signals. This feeder cable bandwidth limiting, together with the technique of feeder switching developed by Coaxial Scientific Corporation, and quadrant switching, has brought electrical interference, short-wave signal intrusion and system amplifier-cascade noise down to manageable levels.

The minicomputer discussed in Chapter 5 sequentially interrogates the response terminals in the field by (1) transmitting coded FSK (frequency shift keyed) signals at 112 MHz to addressable receivers located in the P-COSs and S-COSs, which select quadrant and amplifier, and (2) by tuning one-by-one through the various terminal FSK signals, identifying each terminal by its unique combination of COS, ELO and terminal frequencies.

All return signals from each quadrant, shown in Figure 6-2, are split to allow use of television Channels T-8 or T-9, and of non-switched data signals in the T-10 band to be used separately, while the switched feeder return signals are isolated by a 5 to 10.5 MHz low pass filter and routed to a diode switch operated by the minicomputer-controlled P-COS. A P-COS identifying tone is made to go through this switch as verification of its operation. Feeder return diode-switch outputs from all quadrants are brought together (with only one "on" at a time), and after passing through a second filter and an amplifier, are fed to the FSK receiver.

At any instant of terminal interrogation, about 4,000 feet of feeder cable, 9,000 feet of trunk cable and 15,000 feet of subscriber service cable (i.e., 40 subscribers) are "on" and are a potential source of short-wave radio or electrical interference. The system is designed to survey only one quadrant of the plant at a time, which drastically reduces upstream, on-line interference from the remaining three quadrants. In addition, during this experiment, the amount of feeder cable and the subscribers-per-amplifier count were both low due to the "turning-up" of only enough amplifiers to create the desired return path. A normal fully operational amplifier would have about 8,000 feet of feeder and 65 subscribers with an ingress-exposure factor about twice as large.

The amplifier and S-COS configuration used in Rockford is shown in Figure 6-3. A Magnavox 4-MS-2 series amplifier was factory modified (1) to limit the feeder return to the 5 to 10.5 MHz frequency band, and (2) to include a feeder return disable capability which is accessed through the amplifier's unused seventh port. A modified COS incorporates the FSK receiver and addressable logic which provides the control voltage to the feeder return switch. This S-COS also injects a special frequency into the return path which functions for test and identification purposes. Finally, the terminal, as shown in Figure 5-1 of Chapter 5, houses an FSK transmitter which is "on" all the time and which is modulated by activating any of several push-buttons, including the added transmit button, on the modified Jerrold SX-2. This causes a data word, which is also continuously transmitted; to change its content accordingly. The ELO is a test signal transmitter located, as its name implies, at the end of the line. This signal is simply monitored for its presence and amplitude.

1. This chapter was written principally by James Wright, Martin Block and Robert Yadon.
Figure 6-1. QUADRANT MULTIPLEXING
Figure 6-2. TYPICAL HEADEND RETURN-CIRCUIT CONTROL

FROM SYSTEM MIXING NETWORK

FORWARD 112 MHZ CONTROL SIGNAL

NORTH WEST EAST SOUTH

4

5- 30 MHz

TRUNK

NORTH QUADRANT

DIPLexER

H L

5- 30 MHz

RETURN VIDEO (RF)

RETURN BUSINESS DATA
RETURN COMMUNICATIONS (T-8, T-9, T-10)

SWITCHED RETURN DATA

LOW PASS FILTER

L P F

5- 10.5 MHz

RETURN CABLE

P-COS (P1) RECEIVER

CONTROL CABLE

DS-W DS-S DS-E

DIODE SWITCH (DS-K)

BAND PASS FILTER

B P F

7.5- 10.5 MHz

LOCAL TEST POINT

20 DB AMP

TO FSK RECEIVER

FROM LOCAL TERMINAL

P-COS TONE 10- 10.5 MHz

LOCAL TEST POINT

20 DB AMP

TO FSK RECEIVER

FROM LOCAL TERMINAL
Distribution Plant Design Precautions

In anticipation of the then known problems attendant to two-way cable, Rockford Cablevision system designers were especially attentive to factors which could contribute to cable interference intrusion (or ingress) and affect the upstream signals.

The active and passive equipment selected for the system (amplifiers, directional couplers, tap-off units, power-insertion units) had high RF shielding over the entire frequency spectrum, from well below 5 MHz to well above 300 MHz. A shielding effectiveness of 140 to 150 db was the minimum acceptable rating. Trunk and feeder cable fittings had similar shielding ratings accomplished in part by using available steel cable insert sleeves. It was important that the fitting seize and hold the cable so securely that the two became as one so as to prevent any relative movement. Too much pressure would result in metal deformation and "cold-flow," so it was important that torque wrenches be used to tighten all fittings. As a further precaution against fitting problems, the Rockford system uses two full-sized, flat-bottomed expansion-loops at each utility pole. This provides more protection than necessary to prevent cable rupture from flexing fatigue, but it virtually eliminates forces acting on the fittings from cable flexing, twisting and expansion and vibration, thereby removing the major cause of loose fittings.

Service drops are the most difficult of potential interference ingress sources to control; first, because there are more miles of such cable, and second, because the system is at the mercy of the subscriber after the cable enters the home. The subscriber will very likely abuse the cable near the TV set, due to normal home activities, with the result that system shielding can approach zero at this point.

Rockford selected the eight-mil bonded construction type of cable as the only one available at the time which provided sufficient shielding at low cost. Long ferruled fittings using a hex-crimp crimp-ring were selected, and the cable was installed using loops which, in this application, were designed to prevent vibration from causing metal fatigue. At the ground-block, the eight-mil cable ended and a double-braided cable continued on to the wall-plate...
and to the matching transformer. In a final effort to minimize "ingress," TV matching transformers of the "high-pass" variety were selected, and in the case of 75 ohm sets, a separate high-pass filter was installed. These devices provide a low frequency rejection of 25 to 40 db reading from 30 to 5 MHz.

Cable System Performance

The manufacturer’s specifications for upstream television signals call for return amplifier output levels of +30 dbmv for four channels. This level generates extremely low intermodulation products and, in the Rockford system of switched feeders, results in an intrinsic signal-to-noise ratio of about 50 db. A change in level setting techniques should be mentioned here, in which one uses the return amplifier inputs as the equalization and control point, rather than the amplifier outputs, as in normal forward transmission. This is mandated by the multiplicity of signal sources arriving at the amplifier via different paths of random lengths and attenuations.

The +30 dbmv television signal was used as the starting point and four such signals accepted as the desired amplifier loading. By assuming a 9 db gain as required for a "worst case" situation, an amplifier input of +21 dbmv for television becomes the specified level for the trunk return-amplifier television signal inputs.

Assuming a 10 KHz data signal bandwidth, and a 10 KHz guardband, a 4 MHz television channel (Note: 4 MHz vs. 6 MHz is intentional.) will accommodate 200-200 such data channels. By operating these 200 channels at -2 dbmv (amplifier input), the amplifier will be loaded approximately as heavily as with one television channel at +21 dbmv, and this becomes the specified level for the trunk return-amplifier television signal inputs. Line extender amplifiers are operated at a +1 dbmv input, based on the output capabilities of the various signal sources and system losses.

From these input levels, the maximum permissible interference levels for each of the types of noise may be determined. Table 6-1 below indicates various interference levels measured over the two types of service, television and data.

Table 6-1. Interference Levels by Type of Service

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Trunk Amplifier Input Level (dbmv)</th>
<th>Random Noise (dbmv)</th>
<th>Discrete Radio Signals (dbmv)</th>
<th>Electrical Noise (dbmv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 MHz</td>
<td>+21</td>
<td>-36</td>
<td>-25</td>
<td></td>
</tr>
<tr>
<td>Data 10 KHz</td>
<td>-2</td>
<td>-22</td>
<td>-22</td>
<td>-22</td>
</tr>
</tbody>
</table>

As the nuisance value of the interference is frequency related, it is necessary to list the Rockford Cablevision frequency assignments for its return system. In Table 6-2 below, the spectrum allocation of the upstream portion of the system is indicated.

Table 6-2. Upstream Spectrum Allocation by Type of Service

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Frequency Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
</tr>
<tr>
<td>Data Acquisition (Feeder and Trunk)</td>
<td>7.5 MHz</td>
</tr>
<tr>
<td>Voice. System Alarms (Trunk only)</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Television (Trunk only)</td>
<td>11.75 MHz</td>
</tr>
<tr>
<td>Business Data (Trunk only)</td>
<td>23.75 MHz</td>
</tr>
</tbody>
</table>

While indicated as a separate service in Table 6-2, it should be noted that "voice" is used only in conjunction with the remote television services. Note also that the business data band will avoid the citizens' band (CB) at 27 MHz. Random noise, as an interference is dealt with in system design and will be no problem whatever for data if it satisfies the requirements of the television service.

Discrete radio interference is a major problem in the 5 to 15 MHz band, and again at 26.96 to 27.41 MHz (e.g., CB), and can be in the 15, 20 and 40 meter amateur bands. While FSK data and FM voice systems can tolerate interference ratios of 10 db., even up to 4 db, experience has shown that there is no problem holding this interference to at least the 10 db ratio and normally to a 20 db or greater ratio. Within the television channels used, T-8 and T-9, the major problem area is the 13 to 15 MHz range, and here again the desired -36 dbmv (-57 db ratio) can be achieved with reasonable maintenance measures due to essentially trunk-only exposure. The CB interference problem is nearly uncontrollable, and the goal became a two-fold one of avoiding the use of these frequencies, and of containing them sufficiently to prevent significant loading to the return system. The abandonment of the CB frequencies meant that television channel T-10 could not be used for television. The resulting split-band was assigned to the business-data service.

Electrical interference, at -22 dbmv measured at 10 KHz bandwidth for data, or at -25 dbmv calculated to a 4 MHz bandwidth for television, does not pose a serious problem. The greatest exposure area, the feeder cables, are able to tolerate the highest interference level in the system, and conversely, where the best protection is needed, at the trunk television frequencies, there is the most protection.
Distribution System Test and Maintenance Procedures

Initial “set-up” of the cable system return transmission path is accomplished by inserting a composite test signal (at 6, 9, 19, and 28 MHz) into the input of the last return amplifier (first forward amp) with all the frequencies at the same level (e.g., -2 dbm). The display at the headend is monitored and the amplifier gain and slope controls are varied to achieve a “flat” display of an amplitude gain and with the losses built in between the amplifier and the test point. The “flat” display is logged and the field person then moves back to the next amplifier and repeats the procedure until the first return amplifier is reached. A technique is being developed to allow the field person to carry a small TV set and to remotely control the headend display, observing it while he or she adjusts each amplifier. Initially all signal sources (e.g., terminals, ELOs, TV modulators) must be set up using a two-person team to assure that the amplifier input signals are properly balanced. The remotely controlled monitoring will serve this operational need as well as for initial amplifier “set-up.”

Signal-intrusion into the “return” path of a cable is directly related to signal-radiation by the forward system. The nature of the system defect determines the magnitude of both the signal ingress and egress. The first step followed in de-ingressing is to carefully monitor the involved area with a “Sniffer” (Com Sonics) and to correct any observed radiation down to a level somewhat below the FCC radiation limits. After this a technician moves, one amplifier at a time, feeder-by-feeder, tap-by-tap and drop-by-drop, as necessary, correcting problems until the ingress is some 10 db better than the minimum. This procedure results in a rigorous testing of the overall integrity of the cable plant and reveals problems that are only marginally apparent, if at all, on the forward system. One end-result of de-ingressing the return system is better performance on the forward system.
Chapter 7

Preparation for Training and the Experiment

In the experiment there were two conditions, two-way and one-way television training. Each condition included two treatments related to the response mode. In the two-way condition, two-way individual treatment participants each responded to interactive questions with a personal response terminal. In the two-way group treatment, a group of respondents used a single terminal to make a consensus response to questions. The one-way condition treatments included the one-way paper and pencil treatment where answers to the questions were circled by each participant on a prepared form, and the one-way covert response treatment where participants were asked only to make a mental note of the answers to the questions. Only the two-way condition treatments received feedback, as described in Chapter 3, on their responses. The conditions and treatments are described in more detail in Chapter 8.

Scheduling

In creating a program schedule for the experiment, several things were taken into consideration. Traditionally, the firefighters work a normal eight-to-five day even though they are present in their stations for 24 hours. The time after 5 p.m. is considered “free” in that the men are allowed to read, study, watch TV or do other things in the station house. To conform with the normal workday pattern, programs could only be scheduled during the 8 a.m. to 5 p.m. time period.

An additional consideration was the possible order bias if one experimental treatment were consistently scheduled at a different time of day from another. For example, if all two-way programs were viewed in the morning and all one-way programs in the afternoon, “time of day” as a variable would be introduced and could influence the result. As a result, lesson times of 9:32 a.m. and 1:32 p.m. were agreed upon by Fire Department officials and the researchers. The morning and afternoon times were alternated among all treatments so that each firefighter saw five instructional tapes at 9:32 a.m. and five at 1:32 p.m. (Tapes #1 and #10 of the 12 videotapes were paper-and-pencil tests which all treatment groups viewed simultaneously.) Two cablecasts were scheduled for each program day, a one-way lesson and a two-way lesson.

Although the firefighters have a training period set aside for Saturdays and Sundays, activity is more casual than on weekdays. Fire Academy and other Departmental officers advised that weekend viewings would occur in a different atmosphere than weekday viewings and, therefore, might produce a different result for programs scheduled on weekends. On this advice, only Saturdays were included in the program schedule and then only for make-up lessons when the firefighters missed the cablecast on the primary viewing day.

Another necessity was administrative time for the distribution and collection of answer sheets and questionnaires and for the maintenance of records for the one-way stations. It was decided that Mondays could be used for this purpose. No lessons were scheduled on Mondays. (See Appendix VII-1, Program Schedule.) The Field Director physically “made the rounds” of the stations to distribute and collect the paperwork. The cost of this activity was a factor in comparing one-way and two-way treatments.

To facilitate record-keeping procedures within the project, each learner was given a three-digit series of code letters which identified him through the course of the experiment. The codes also identified working shifts and the experimental treatment.

As a preliminary step, a briefing was planned to explain the nature of the project and the role which each firefighter and each experimental treatment would have in arriving at the final results. During the last two weeks of January and the first week of February, the Field Director personally briefed all 30 shifts at the 10 Rockford fire stations. Each firefighter was given a booklet containing the briefing and copies of the prefire planning forms which would be used during the videotape coursework. The firefighter's name was written on the front of the booklet along with his code letters. Questions about the project were answered at this time to be certain the firefighters understood what

1. This chapter was written principally by John Pachuta.
would be expected of them. The stations were also given phone numbers to reach the Field Director if any unusual situations should arise.

Appendices VII-2 through VII-7 detail the information that was given to the firefighters during the briefings. Appendix VII-2 is a general overview of the project which was given to all of the firefighters. Appendices VII-3 through VII-6 are the parts of the briefings which were specifically tailored to the four treatments. Appendix VII-7 explains the pretest.

The two-way system performed extremely well during the field experiment. None of the 138 scheduled one-way and two-way lessons were cancelled due to a total system failure. Occasionally, a terminal or COS failed to work properly, delaying one station, which was rescheduled in the make-up periods.

Pretest

The 27 question pretest was cablecast in the first week of the experiment (February 7-12, 1977). All stations viewed the pretest in a one-way mode, responding to the questions using an answer sheet that was passed out beforehand. Because the pretest results were vital to the experimental design, the following week (February 14-19, 1977) was also used for make-ups of the pretest, which were scheduled on an individual basis for the firefighters who were absent from work the previous week. With the exception of those with long-term injuries, who are released from their duties until they are capable of returning to their companies, all men in the Department took the pretest. The experiment started with a universe of 208 divided among the four treatments.

Two-Way Experience

The week of February 14 also included the initial stages of training the men at the two-way stations to use the interactive terminals. (See Figure 5-1, Chapter 5.) During the briefing sequence, the Field Director had also informed the two-way treatment participants that the bottom bank of the terminal, marked M through X, would be used for video games. A character-generated display told the stations, "PRESS THE RED TRANSMIT BUTTON ON YOUR TERMINAL TO PLAY TIC-TAC-TOE." When a station responded, the computer addressed it individually (i.e., "FIREHOUSE #1 WELCOME TO TIC-TAC-TOE") and gave instructions for the game. The station had the choice of playing X or O and could challenge the computer by placing its mark in the tic-tac-toe board using the following sequence of letters from the bottom bank:

M	N	O
P	Q	R
S	T	U

Interest was added to the game because the computer was programmed to lose if a defined series of moves was made by its opponent at a fire station. Upon winning a game, the computer told the audience "THAT WILL TEACH YOU TO PLAY WITH A COMPUTER." Its losing comment was "HEY, I'M NOT SUPPOSED TO LOSE." Since all of the stations could watch as one station challenged the computer, a feeling of competition developed to see who could find the most ways to beat the computer. In fact, the computer could lose in eight different ways.

February 18-20, the two-way participants were given their final briefing on the use of terminals. The Field Director called the officers on the three shifts at all of the two-way stations and asked them to turn to the project channel. Using a microphone attached to the system, the field director "talked the stations through" the log-in procedures that would be used during the project. Each man entered his code letters in the terminal. If anyone in the audience had a question during this practice, he was advised to call the Field Director immediately. The Field Director sat next to the phone at the control center and answered all questions live over the audio portion of the channel.

It is interesting to note that several of the phone calls were made by the men not for informational purposes, but to hear themselves being addressed over the two-way system.

Each log-in practice lasted about half an hour. The men had the opportunity to log-in a total of four times. The Field Director then again called the officers and ascertained that all of the men on the shift understood the use of the terminals. Satisfied that the firefighters felt comfortable with the technology, the Field Director told the audience to use the same procedure in logging in for the first two-way lesson the following week.

One variation to this procedure occurred. On the final day of log-in practice (February 20), the entire two-way system was ready to be checked out with a programmed lesson. To fully verify the system's readiness, a practice eight-question quiz dealing with fire history was given to the men. The quiz, which did not count as part of the series, ran successfully with men from all four of the two-way sta-
tions. With this experience we concluded that the system was operational.

Video games were available continuously when the channel wasn’t being used for lessons.

Other Uses of the System

The cable channel was also used for other purposes. Periodically, the Rockford Fire Academy ran a series of one-way Emergency Medical Technician training tapes to satisfy Illinois state certification requirements. These lessons were scheduled only on days when make-up lessons from the prefire planning series were shown, and only after the interactive lesson was cablecast.

The field office encouraged the firefighters to watch the channel by displaying a series of fire history and trivia questions when no programs were scheduled. The men were directed to phone in the correct answers. A list of all firefighters who answered items correctly for that particular day was compiled and cablecast. The first quiz dealt with the “Great Chicago Fire.” Some of the questions asked for information not readily available. For example, one question was “Who was the mayor of Chicago during the fire?” The question was answered quickly by several stations. Later, it was discovered that the research section of the Rockford Public Library had received five calls that day for the information. The calls, of course, came from the fire stations. Different topics were covered during these quizzes and the firefighters became quite competitive in attempting to be first with the correct answer.

As the project progressed, additional interactive games were added to the system’s capabilities. The most successful of these was a six-player Blackjack game in which the four interactive fire stations and the cable headend could compete against the computer in its role as “dealer.” “Cards” were generated randomly by the computer. Players, in turn, would “hit” or “stay” by pressing one of two buttons on the terminal. The success of this game can be attributed to the fact that all stations were able to play at the same time. Other interactive games involved the computer playing against an individual station. Often, viewers were frustrated in their attempts to be the first to gain access to the system. Interactive Blackjack allowed them to play every time and also to compete against each other as well as the computer.

The first two-way lesson ran on the afternoon of February 21, 1977. All four interactive stations logged into the system and responded during the entire program. The final interactive lesson, discounting make-ups, was cablecast on May 20, 1977. A total of 192 firefighters in all four treatments completed the pretest and posttest, a completion rate of 92 percent. The 16 men who did not complete the series were dropped for the following reasons:

4 men on sick leave during the project.
1 man retired from the Department
6 men were transferred between stations and changed treatment groups.
5 men were on vacation during the latter part of the experiment and were unable to make up all of the lessons before the posttest. (Approximately one-third of the firefighters were on vacation at some point during the project. All were able to make up missed lessons except these five.)

Administrative Differences in the Treatments

Because of the large number of persons, in three shifts, sparsely located over a relatively wide geographical area, the effort required for recordkeeping and the accuracy of records varied over the treatments.

During the one-way covert response treatment, officers were asked to take attendance at each session using forms distributed by the Field Director. The system necessitated internal station procedures among the officers of the three shifts for storage of the records and assignment of individuals to take attendance in the absence of an officer. The attendance record was occasionally neglected or incomplete. Although attendance records were checked weekly by the project field office, incomplete or erroneous information was often difficult and time-consuming to track down when discovered. It often took two additional days to correct the record because of the three-day work cycle. Sometimes the records were “pencil-whipped.” That is, an officer would indicate for the record that all of the men on his shift viewed all of a particular lesson whether or not they actually did so. At times, the videotape lesson schedule interfered with other station house training, fire inspections, Academy drills or fire calls.

The record-keeping procedures of the one-way, paper-and-pencil treatment produced more reliable results. Each firefighter was given an answer sheet to follow along with the lesson. By filling the code letters at the top of the sheet, a firefighter’s presence during the lesson was recorded. However, administrative problems did occur. Frequently, a fire-
fighter neglected to fill in his code letters. If the officer was not in the habit of checking the answer sheets to insure that they were coded, the individual's presence might not be recorded. This means of recordkeeping also required complicated in-station procedures. Answer sheets needed to be stored temporarily at stations. Often there was an accidental destruction or misplacement of the forms. If a firefighter neglected to return his sheet to the officer, or if the officer misplaced the completed answer sheets from his shift, the record was lost. Although these problems occurred infrequently during the project, the record was incomplete. Over a longer period of time and greater number of lessons, the problems would be compounded.

The efficiency of instant computerized recordkeeping displayed advantages in several ways. The two-way group and two-way individual applications allowed daily updating of attendance and lesson scores.

Appendix VII-8 shows a sample printout for one of the interactive lessons. The heading gives the lesson number along with the date and time that the report was generated. Listed along the left hand side of the printout are the code letters of all of the firefighters who had viewed the lesson to that point. The letters next to the codes indicate the manner in which the lesson was viewed; (e.g., L-"loner" or individual; G-as part of a group; S-as "spokesperson" for a group, the one actually pushing the buttons).

The numbers from 1 to 25 sequentially identify the interactive items included in the program. The responses for each individual per item are printed out in the appropriate columns. The far right-hand columns give the lesson scores as raw numbers along with the percentage correct for each individual. The bottom rows of the report constitute an item analysis of each interactive question included in the lesson.

A composite record was also generated by the computer. A sample of this report is included in Appendix VII-9. The left-hand column lists all of the trainees using the two-way system. While the numbers from 2 through 9 and 11 in the top row identify the interactive lessons. Lessons 1, 10 and 12 were administered in a one-way mode. The report gave an overall look at each learner's scores to date and aided with the scheduling of make-up lessons. By finding the blanks in this report, the Field Director was able to reschedule lessons for those who were absent at the primary viewing times.

An additional perspective of the advantages of two-way record-keeping can be gained by contrasting it with current procedures being used in the Rockford Fire Department. The officers on each shift at each station are required to maintain monthly training records for their personnel. Once a month, this record is forwarded, through the deputy chiefs, to the Rockford Fire Training Academy. At the Academy, an administrative secretary keeps comprehensive records of individual training. Included in these files are evaluations made by Academy officers during annual refresher courses and scores for various exams. Half of the secretary's 40-hour week is devoted to the updating of these records.
Chapter 8

The Training Experiment

Experimental Conditions

The major manipulation in the field experiment was the presence or absence of a digital return capability, using terminals to initiate the digital return. This distinction will be referred to as the TWO-WAY and ONE-WAY conditions. Within each condition response modes were manipulated.

In the two-way condition the two response modes were: (1) a two-way individual response treatment, which had one terminal for each participant; and (2) a two-way group response treatment in which one terminal served all the participants at selected viewing locations.

Within the one-way condition, the assigned response modes were (1) paper and pencil response, where each firefighter circled answer options on a prepared form, and (2) covert response, where participants were instructed to make a mental note of the answer. These interventions yielded the following experimental design:

<table>
<thead>
<tr>
<th>Experimental Treatments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way Condition</td>
<td>One-Way Condition</td>
</tr>
<tr>
<td>Group Response Treatment</td>
<td>Individual Response Treatment</td>
</tr>
</tbody>
</table>

Two-Way Group Treatment

Participants (n=54) in this condition viewed the videotaped lessons in six groups, varying in size from 6 to 13, using one television receiver, and one terminal per group (Figure 8-1). Each time a new lesson was viewed, a different group member operated the terminal; after all lessons, each person had operated the terminal at least once. Group members were encouraged to interact with each other about the content of the lessons and the interactive question during the presentation. When the group had reached a consensus as to the correct answer to an interactive item, the individual operating the terminal initiated the response by pushing the button on the terminal which corresponded to an answer foil appearing on the screen. After the responses from all participants in the two-way conditions had been received, character-generated feedback appeared on the screen in one of the three modes described in Chapter 3. The program was then switched back to the videocassette where the talent provided the correct answer. During the "quick quiz", the group had only five seconds after the last option appeared to make a selection. Immediately thereafter the scores from the quick quiz appeared by code letter. After the quick quiz was discussed by the narrator, the total scores for the program, including the earlier interactive items and the quick quiz, were presented. This was followed by the cumulative score for the series to date for all two-way condition members of the participating shift. In all of the character-generated feedback for the two-way group treatment the participant-group members within a station received identical information—scores to options selected.

Two-Way Individual Treatment

Participants (n=50) in this condition also viewed the video lesson in a group setting, but each participant operated his own terminal (Figure 8-2). Participants were encouraged not to talk with each other about the content of the lessons during the presentation, and to come to a solution to each interactive item independently. Once a solution had been reached, each participant entered his own

1. This chapter was written principally by Bradley Greenberg, Nicky Stoyanoff and Thomas Baldwin.
response by pushing the appropriate terminal button. The feedback in this condition appeared on the screen by individual code letters. At each lesson's end, participants received character-generated feedback reflecting their individual achievement on the interactive items.

Since both individual and group conditions participated in lessons simultaneously, the feedback on the television screens was a mixture of code letters and responses or scores that represented individual and group behavior. The members of the group condition were able to show slightly better results because individual responses could be checked against the group and corrected, if desired, before transmission. The average score over all the lessons for participants in the group condition was 90.74; for individual condition participants, 88.44.

One-Way Covert Response Treatment

Participants (n = 50) in this condition simply viewed the lessons in a group setting. There were nine total groups which varied in size from four to eight men. While participants were asked to make a mental note of the answers to the interactive items, they had no opportunity to formally initiate any responses to any of the interactive items. Participants could judge how well they were doing on the series of interactive items by mentally comparing their answers with the answers provided by the narrator. However, at no time were the participants in either one-way treatment provided with feedback indicating how they fared on the series of questions and quick quizzes.

Participants

Participants for the pretest in this study were 208 firefighters from the Rockford Fire Department. The Rockford Fire Department has 11 station houses throughout greater Rockford. All but one were part of the experimental design. Station Number Seven was out of the city limits and not served by cable. The firefighters in that station viewed the tapes, in advance, on a cassette playback machine in their station house and supplied feedback in the formative evaluation process as described in Chapter 4. The Fire Department uses three shifts of firefighters at each station house, with each shift working 24 hours on and 48 hours off. The number of men employed at each station varies from 9 to 24, depending on the specialized equipment necessary to service the particular area. As a result of having to maintain and operate special equipment, firefighters within any one station house possess specialized occupational skills.

While each station within the city limits had a television set connected to cable, not all stations had bi-directional television capabilities. But, the presence or absence of a two-way capability was a function of location, and not staffing. Participants in stations with and without that capability were comparable in education, ranks and years of experience. Within each grouping of stations, station house shifts were randomly assigned to response treatments. While station houses were sometimes split among two treatments (e.g., between one-way paper and pencil and one-way covert response), no single shift was ever split between the one- and two-way conditions. Appendix VIII-1 shows the final breakdown of station-shifts to treatment groups, and the number of men in each group.
Instrumentation

Two types of measurement instruments were created to assess the effects of the manipulations:

1. two learning instruments, which were designed to assess the relative comprehension and retention of specific information presented in the lessons, and

2. two affective instruments, which were designed to assess the attitudinal orientation of the individuals participating in the experiment toward various aspects of their learning experience and viewing conditions.

The measurement instruments that were developed will now be described in detail in terms of objectives, development and administration.

The Pre/Post Test

To adequately assess how much immediate learning had taken place within any one experimental condition (relative to all others), a pretest and a posttest were constructed covering the building survey aspects of prefire planning (eight programs). The pretest consisted of 27, four-foil multiple-choice items, with one item tapping each of the 27 behavioral objectives developed for the lessons. (See Appendix VIII-2.) These were 27 of 177 interactive items shown during the videotaped lessons. At the time these 27 items were selected for the pretest, a set of 22 additional interactive items was also drawn from the 177 items used in the eight programs. These tapped 22 of the same behavioral objectives and were used as part of the posttest. A third set of items also was constructed; one item tapped each of the original 27 behavioral objectives developed for the stimulus. None in this final set of 27 items had been used as interactive items during the programs, but they were designed to be equivalent to the other item sets in terms of content areas tested and degree of difficulty.

The posttest (see Appendix VIII-3) consisted of:

(a) the 27 items which appeared on the pretest,
(b) the 22 items drawn from the remaining set of 150 interactive items not appearing on the pretest, and
(c) the 27 equivalent items which tested material presented in the stimulus tapes, but which had not been used as interactive items.

The items were all transferred to a videotape format most closely resembling a long series of interactive items. This allowed for the simultaneous administration of tests to participants in all conditions. The pretest was administered one week after a three-week period of orientation given to all participants, describing the telecommunication system and other dynamics of the experimental design. The posttest was administered one week after the last of the eight videotapes comprising the prefire planning course was cablecast. This was approximately 18 weeks after the pretest had been administered.

For the pre- and posttests, each participant was given a response sheet (see Appendix VIII-4) which contained the foils of the multiple-choice items in the tests. To respond to any item, the participant circled the letter on the response sheet which corresponded to the item foil.

The Follow-Up Instrument

To adequately assess how much information from the prefire planning course participants in each experimental condition retained over time, a follow-up instrument was constructed. This consisted of the 76 item posttest and interactive items from videotape Program #11. The additional seven items from Lesson #11 taped two of the 27 behavioral objectives developed for the prefire planning series. These items were specifically created to assess knowledge about the post-survey prefire planning process.

The 76 items repeated from the posttest were administered in their original format, i.e., with the questions appearing in the videotape and the participants responding on individual answer sheets. The seven interactive items chosen from Lesson #11 were transferred to a paper and pencil, multiple choice test. The follow-up test (see Appendix VIII-5) was administered to all members of the Rockford Fire Department approximately six months after the prefire planning course had ended.

Affective Instruments

Two measurement instruments were created to assess quantitatively the participants' attitudinal orientation toward various aspects of the overall experiment. First, a metric multidimensional instrument was constructed for assessing the participants' attitudinal orientation toward:

(a) the mode of instruction,
(b) the prefire planning content of the videotaped lessons and
(c) the profession of firefighting.

A second affective instrument was constructed to assess the participants' attitudinal orientation toward specific aspects of the viewing conditions. Both the metric multidimensional instrument and the second affective instrument will now be described in greater detail.

55
The Metric Multidimensional Scaling Instrument

The first step in creating the multidimensional scaling (MDS) instrument, was to generate a series of statements describing the aims, purposes, intentions and implications of the effect of the stimulus on the participants' attitudinal orientations and behaviors. These concepts were then presented to the staff/personnel for examination, critique and comment. Also involved in these sessions were firefighting personnel who were familiar with the vocabulary used by the individuals who would be participants in the experiment. The result of this process yielded a set of concepts which were then cast into the paired-comparison format of the MDS instrument.

The paired comparison format asks the respondent to make comparisons between the selected set of concepts by first, providing a "criterion-pair" which establishes a metric (or ruler) by which judgments can be made, and second, by presenting the respondent with an exhaustive list of all possible two-concept combinations that can be generated from the (original) set of concepts. The questions which appear in the questionnaire are of the following form:

If A and B are U units apart, how far apart are X and Y?

The "criterion-pair" which was utilized for this particular instrument was arbitrarily created by setting the difference in meaning between the concepts USEFUL and ESSENTIAL as being equal to 100 units. That is, respondents were instructed to consider the difference in meaning between the concepts USEFUL and ESSENTIAL as being equal to a distance of 100 units, and to make their judgments about the similarity or difference (translated into distance) between the other paired concepts on the basis of that "standard."

Three separate MDS instruments (see Appendix VIII-6) were embedded in the overall instrument, tapping participants' orientation toward the mode of instruction, the content of the lessons being presented and the profession of firefighting in general. Attitudes toward the profession of firefighting were assessed by having respondents make comparisons between the following set of concepts:

<table>
<thead>
<tr>
<th>Attitude</th>
<th>Extremely Essential</th>
<th>Somewhat Essential</th>
<th>Slightly Essential</th>
<th>Slightly Unnecessary</th>
<th>Somewhat Unnecessary</th>
<th>Extremely Unnecessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIREFIGHTING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFESSIONAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEAMWORK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKILLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Similarly, attitudes toward the content of the videotaped programs were assessed by having respondents make comparisons between the concepts listed below:

<table>
<thead>
<tr>
<th>Attitude</th>
<th>EXTREMELY ESSENTIAL</th>
<th>EXTREMELY USEFUL</th>
<th>EXTREMELY TIME CONSUMING</th>
<th>EXTREMELY PUBLIC RELATIONS</th>
<th>EXTREMELY SAFE COMMUNITY</th>
<th>EXTREMELY PROFESSIONAL</th>
<th>EXTREMELY BUSY WORK</th>
<th>EXTREMELY INSPECTION</th>
<th>EXTREMELY ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally, attitudes toward the mode of instruction each participant experienced was assessed by having respondents make comparisons between the following concepts:

<table>
<thead>
<tr>
<th>Attitude</th>
<th>Extremely</th>
<th>Somewhat</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Somewhat</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV TRAINING</td>
<td>EFFECTIVE</td>
<td>INTERESTING</td>
<td>DIFFICULT</td>
<td>GOOD</td>
<td>INVOLVING</td>
<td>ME</td>
</tr>
</tbody>
</table>

Semantic Differential Type Scales

In addition to the three MDS instruments, three sets of six-point semantic differential type scales were included in the instrument as secondary indicators of the participants' orientation toward the concepts in the MDS instrument.

There were five scales tapping the participants' attitude toward their profession in general (i.e.):

I think Firefighting is:

The other scaled concepts were "professional," "skilled" and "team oriented."

There were six scales tapping the participants' orientation toward the prefire planning content of the lessons (i.e.):

I think prefire planning is:

56
The other concepts were "useful," "time consuming," "good public relations," "professional" and "my job."

There were five scales tapping their orientation toward the mode of instruction (i.e.):

The other concepts were "useful," "time consuming," "good public relations," "professional" and "my job."

The complete semantic differential instrument is in Appendix VIII-6.

Finally, a set of demographic items tapping age, educational attainment and occupational skill concluded the instrument. All items were screened by the principal investigators and project staff for purposes of clarity and interpretability, before they were included in the instrument.

The attitude instruments described above were administered at five points in time during the course of the experiment. The administration times were:

Time 1: During the orientation period, approximately one week before the pretest was aired.

Time 2: After Lesson #3 had been aired, approximately 6 weeks after the pretest had been aired.

Time 3: After Lesson #6 had been aired, approximately 12 weeks after the pretest had been aired.

Time 4: After Lesson #9 had been aired, approximately 18 weeks after the pretest had been aired.

Time 5: Approximately four weeks after the posttest had been aired, approximately 22 weeks after the pretest had been aired.

The Second Affective Instrument

The second affective instrument (see Appendix VIII-7) was constructed to assess the participants' attitudinal orientation toward various aspects of the viewing conditions, especially the two-way viewing condition. Participants were asked to compare their current learning situation with a potential "live" instructional situation covering the same material and to indicate their communication activity with other participants about the experiment. In addition, participants in the two-way condition were asked to indicate the importance of feedback, e.g., if it was important to know whether or not they were logged into properly, whether they had responded to an interactive item correctly and how well they compared with other participants. Essentially, these questions were designed to determine the participants' attitudinal orientation toward specific qualities of the interactive mode. The second affective instrument was administered twice, once after Program #8 (approximately 16 weeks after the pretest), and again three weeks after the posttest (approximately 21 weeks after the pretest).

Results

An analysis of variance of the results of the 27 item pretest indicated that there were no significant differences among treatments in the scores firefighters attained on the pretest (see Table 8-1). Each treatment scored an average of 16-17 items correct of the possible total of 27. However, at the time of the posttest, the groups differed significantly in their overall test scores. Table 8-2 shows the treatment scores for the entire posttest ranged from 64 to 69 items correct of the possible 76. All groups scored relatively high on the posttest, but the overall significant difference occurred in the comparison of firefighters in both two-way treatments with firefighters in the one-way covert response treatment.

Table 8-1. Pretest and Posttest Scores on 27 Common Interactive Items by Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Two-Way Individual</th>
<th>Two-Way Group</th>
<th>One-Way Paper/Pencil</th>
<th>One-Way Covert</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME:</td>
<td>(n=45)</td>
<td>(n=46)</td>
<td>(n=52)</td>
<td>(n=49)*</td>
</tr>
<tr>
<td>Pre*</td>
<td>17.07</td>
<td>16.85</td>
<td>15.78</td>
<td>15.78</td>
</tr>
<tr>
<td>Post*</td>
<td>24.84</td>
<td>24.52</td>
<td>23.88</td>
<td>23.22</td>
</tr>
</tbody>
</table>

* A small attenuation in subjects occurred in all treatments because of transfer, sick leave and retirement. 192 of theorized 208 completed both the pretest and posttest.

Results are statistically significant. (F = 10.63, df = 3/197, p < .001). The means for each two-way treatment are statistically larger than the mean for the one-way covert treatment (p < .01, Scheffe). Tables 4-5 to 4.4 contain all participants who completed the posttest.
Firefighters in the two-way treatments scored significantly higher on the posttest than did firefighters in the one-way covert response treatment.

Separate analyses of variance were computed for each of the three sub-tests which comprised the overall posttest. There were significant differences between firefighters in both two-way treatments and firefighters in the one-way covert response treatment in the scores they obtained on the set of 22 interactive items and the 27 non-interactive items (Tables 8-3 and 8-4). For these two sets of items, there were not significant differences between firefighters in the one-way paper and pencil treatment and firefighters in either two-way treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Two-Way Individual</th>
<th>Two-Way Group</th>
<th>One-Way Paper/Pencil</th>
<th>One-Way Covert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=47)</td>
<td>20.09</td>
<td>20.33</td>
<td>19.20</td>
<td>18.75</td>
</tr>
</tbody>
</table>

The differences among treatments are statistically significant (F=8.57, df=3/197, p<.001). The means for each two-way treatment are statistically larger than the mean for the one-way covert treatment (p<.01, Scheffe).

Table 8-4. Posttest Scores on 27 Unique Items by Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Two-Way Individual</th>
<th>Two-Way Group</th>
<th>One-Way Paper/Pencil</th>
<th>One-Way Covert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=47)</td>
<td>24.09</td>
<td>23.73</td>
<td>23.26</td>
<td>21.85</td>
</tr>
</tbody>
</table>

The differences among means are statistically significant (F=8.44, df=3/197, p<.001). The means for each two-way treatment are statistically larger than the mean for the one-way covert treatment (p<.01, Scheffe).

Furthermore, Table 8-1 indicates that for the 27 interactive items which appeared on both the pretest and the posttest, there was a significant difference between the firefighters in the two-way individual treatment and firefighters in the one-way covert response treatment. For both the repeated and unique portions of the posttest then, maximum learning occurred among those in the two-way treatments and least learning in the one-way covert response treatment.

To assess more precisely the effects of the manipulations, two regression analyses were performed. These regressions (1) determine if the manipulation accounted for a significant amount of variance in the posttest scores, and (2) determine the relative effect of each learning mode on the posttest score. A set of dummy variables were created by treating each learning condition as a separate variable and assigning arbitrary scores (1.0) for all cases depending upon their presence or absence in each learning condition. Since the dummy variables have arbitrary metric values, they may be treated as interval-level variables and inserted into a regression equation. However, the inclusion of all dummy-coded variables created from a given nominally-scaled variable would render the normal equations unsolvable, since the Kth dummy variable is completely determined by the first K-1 dummy variables entered into the regression equation (where K = the number of levels). It is necessary then, to exclude one of the dummy coded variables from the regression equation. However, this exclusion does not result in a loss of information since this variable becomes a "reference category" by which the effects of the other dummy coded variables can be interpreted.

Table 8-5 shows the results obtained from regressing the posttest scores created from the 27 common interactive items on the pretest scores and each of the three dummy coded variables (representing the four conditions). The results of this analysis indicate that a significant amount of variance in the posttest scores is accounted for by these four variables (F=11.04, df=4.187, p<.001). The R^2 value, which is equivalent to the eta-squared in (conventional) analysis of variance, indicates that 19 percent of the variance in the 27 posttest items is explained by these variables. The relative effect of each learning treatment on the posttest scores is indicated by the unstandardized regression coefficients of the dummy coded variables in Table 8-5. The unstandardized coefficients for both two-way treatments are significant (F=8.27, p<.01 for the two-way in-

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unstandardized regression coefficient</th>
<th>Standardized regression coefficient</th>
<th>Standard error</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest Scores</td>
<td>.26</td>
<td>.35</td>
<td>.49</td>
<td>28.17*</td>
</tr>
<tr>
<td>Two-Way Individual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1.28</td>
<td>.25</td>
<td>.45</td>
<td>8.27*</td>
</tr>
<tr>
<td>Two-Way Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>1.02</td>
<td>.19</td>
<td>.44</td>
<td>5.29*</td>
</tr>
<tr>
<td>One-Way Paper/pencil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>.48</td>
<td>.23</td>
<td>.43</td>
<td>1.24</td>
</tr>
<tr>
<td>(Constant)</td>
<td>19.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F(4,187) = 11.04, p<.001
*p<.01
*p<.05
individual condition; and $F = 5.29, p<.05$ for the two-way group condition). Further, the magnitude of the coefficients for these treatments are 2.67 and 2.13 times greater (respectively) than the coefficient for the one-way paper and pencil treatment (which was not significant). This means that presence or absence of either of the two-way treatments made a significant difference in the score obtained on the posttest.

Utilizing the unstandardized regression coefficients obtained in the regression analysis described above, the predicted posttest scores were calculated and are presented in Table 8-6. The predicted posttest scores (based on the regression) closely match the actual (mean) scores obtained. Utilizing the unstandardized coefficients for each of the dummy coded variables, a new variable (MANIPULATION)

Table 8-6. Comparison of Predicted Mean Scores for the Posttest With the Actual Mean Scores Obtained (N = 192)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Predicted Score</th>
<th>Obtained Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way Individual Treatment</td>
<td>24.67</td>
<td>24.84</td>
</tr>
<tr>
<td>Two-Way Group Treatment</td>
<td>24.41</td>
<td>24.52</td>
</tr>
<tr>
<td>One-Way Paper/Pencil Treatment</td>
<td>23.87</td>
<td>23.88</td>
</tr>
<tr>
<td>One-Way Covert Treatment</td>
<td>23.39</td>
<td>23.22</td>
</tr>
</tbody>
</table>

was created which incorporated the effects of all treatment conditions. The posttest scores for the 27 common interactive items were then regressed on the pretest scores for those items and the variable MANIPULATION. Table 8-7 indicates that there was a significant amount of variation explained in the posttest scores by the manipulation while linearly controlling for the effect of the pretest. These results permit the following summary in terms of information gain:

(1) there were no significant differences among firefighters in any of the treatments in the amount of knowledge they possessed about pre-fire planning at the beginning of the experiment

(2) there were significant learning differences in the overall posttest scores between firefighters in the two-way treatments and firefighters in the one-way no response treatment

(3) a significant amount of variation in the 27 common interactive items on the posttest was attributable to the intervention (i.e., manipulation) while linearly controlling for participants' performance on the pretest

(4) in terms of learning, participants in both two-way treatments scored significantly higher on the posttest than did participants in the one-way covert response treatment, and higher (but not significantly higher) than participants in the one-way paper and pencil treatment.

The Follow-Up Cognitive Test

Six months later, the posttest was readministered to 196 firefighters to determine learning retention. Added to the 76-item posttest were seven items from Lesson #11, viewed after the original posttest. An analysis of variance of the 83 follow-up test items identified a significant difference among the treatments' test scores. Table 8-8 shows that the treatment scores ranged from 69 to 74 items correct of the possible 83. While all groups averaged better than 83 percent of the items correct, firefighters in the two-way individual treatment scored significantly higher than did individuals in the one-way paper and pencil treatment.

Separate analyses of variance were performed for each of the four sub-sets of items which comprised the follow-up test:

(a) The 27 interactive items which constituted the pretest and also were used on the posttest (Pre/Post Items)

(b) The 22 interactive items added to the posttest (Post-Only Items).

(c) The 27 equivalent items which were not interactive items in the videolesson but which did appear on the posttest (Equivalent Items)

(d) The seven items from Lesson #11 which assessed knowledge about creating and finalizing a prefire plan (New Items)
The results of these four analyses of variance appear below and in Table 8-8:

(1) The Pre/Post Items. The condition scores ranged from 23 to 24 items correct of the possible 27, with a significant difference between the scores obtained by individuals in the two-way individual treatment and the scores obtained by participants in the one-way paper and pencil treatment. Firefighters in the two-way individual treatment scored slightly (but not significantly) higher on these items than did firefighters in the one-way covert response treatment.

(2) The Post-Only Items. The treatment scores ranged from 18 to 20 items correct of the possible 22, with firefighters in the two-way group response scoring significantly higher than firefighters in the one-way paper and pencil response.

(3) The Equivalent Items. The treatment scores ranged from 23 to 24 correct out of a possible 27, with no significant differences among the groups.

(4) The New Items. The condition scores ranged from four to five correct out of a possible seven. The firefighters in the two-way individual response mode and the one-way covert response made each scored significantly higher on these seven items than did participants in the one-way paper and pencil response.

On the basis of these findings, we feel confident in concluding that there was considerable retention of the information presented six months after the pre-fire planning series was cablecast, with participants in the two-way condition typically scoring slightly better than participants in the one-way condition. This was especially so for the two-way individual terminal participants.

Affective Results

An affective instrument was administered, first after Lesson #8, and again three weeks after the posttest. This instrument assessed the participants' reactions to the style of instruction they received, and asked them to make comparisons between TV instruction and potential live instruction of the same material. Some questions were asked only in two-way condition and others were asked in both conditions.

On the basis of these findings, we feel confident in concluding that there was considerable retention of the information presented six months after the pre-fire planning series was cablecast, with participants in the two-way condition typically scoring slightly better than participants in the one-way condition. This was especially so for the two-way individual terminal participants.

| Table 8-8. Follow-Up Posttest Scores by Treatment and Item Sub-Set |
|-------------------------|-------------------------|-------------------------|-------------------------|
| | Two-way Individual | Two-way Group | One-way Paper/ Pencil | One-way Covert |
| Item Subset | (n = 45) | (n = 48) | (n = 53) | (n = 50) |
| Raw scores, 83 items | 74.31 | 72.88 | 69.68 | 71.76 |
| Pre/Post, 27 items | 24.51 | 23.90 | 23.08 | 23.72 |
| Post-Only, 22 items | 19.82 | 20.21 | 18.74 | 19.36 |
| Equivalent, 27 items | 24.16 | 23.50 | 23.02 | 23.20 |
| New, 7 items | 5.82 | 5.27 | 4.85 | 5.48 |

The differences among treatments are statistically significant. (F = 4.37, df = 3/192, p < .01). The mean for the two-way individual treatment is statistically larger than the mean for the one-way paper and pencil treatment (p < .01; Scheffe).

The differences among treatments are statistically significant. (F = 2.98, df = 3/192, p < .05). The mean for the two-way individual treatment is statistically larger than the mean for the one-way paper and pencil treatment (p < .05; Scheffe).

The differences among treatments are statistically significant. (F = 2.44, df = 3/192, p < .01). The mean for the two-way group treatment is statistically larger than the mean for the one-way paper and pencil treatment (p < .01; Scheffe).

There were no significant differences among the means for this set of items (F = 1.74, df = 3/192, p = .16).

The differences among treatments are statistically significant. (F = 6.76, df = 3/192, p < .001). The means for the two-way individual treatment and the one-way covert treatment are each statistically larger than the mean for the one-way paper and pencil treatment (p < .05; Scheffe). These new items came from lesson #11.

Table 8-9 provides the results for questions asked only of those in the two-way group treatment, a total of 42 participants. When this instrument was first administered, each participant had handled the terminal at least once within the group. By the second testing, most group members had handled the terminal twice. Personal satisfaction from handling the terminal increased between the two test administrations, although not significantly. The question they answered specified that “100” was the amount of satisfaction they should consider receiving when not handling the terminal and they were asked to use

| Table 8-9. Affective Responses to Terminal in Two-Way Group Treatment |
|-------------------------|-------------------------|-------------------------|
| | T, | T, |
| Behrens- | | |
| Fisher | | |
| Times Handled | 1.12 | 1.59 | 2.35* |
| Satisfaction | 71.30 | 80.37 | 1.03 |
| Attentiveness | 98.59 | 100.85 | 0.22 |

p < .05
that as a baseline for indicating a figure to reflect how much satisfaction they got when handling the terminal. Both scores at both times were much less than 100, suggesting the firefighters were more satisfied with the televised lessons when they did not have the responsibility for handling the terminal in the group situation. Secondly, they were asked how attentive they were when handling the terminal as when not.

Table 8.10 summarizes the results of a set of affective questions administered in both two-way treatments. Logging in was more important initially to those in the two-way individual treatment than it was to those in the two-way group treatment (p<.05) and it increased over time for the former, while decreasing for the latter (p<.01). A large majority of firefighters in both two-way treatments at both time periods compared their scores and answers with the other two-way participants. Comparing scores increased from 70 percent who did so at Time 1 to more than 80 percent at Time 2, a substantial, but not statistically significant increase. Satisfaction from getting the questions right was uniformly high (over 90 percent) in both treatments at both testings, and knowing the scores on the quick quizzes was also important to more than three-fourths of the participants, especially two-way individual participants.

In summary, from these two tables, it appears that personal satisfaction from the televised lessons while handling the terminal increased over time, although it remained an extra burden for handlers. Further, it was important for each individual to see his ID code log in, but primarily if it meant that the firefighter was personally identifying himself as the terminal handler for the entire interactive lesson and not just the log-in itself. There was uniform participation in checking one's own scores against the correct ones, and those of other firefighters.

At both testing sessions, a common set of questions was administered to participants in all four experimental treatments. These results are in Table 8.11. For each question, the participants were to compare their activity to what they believed it would have been like under conditions of live instruction, with live instruction to be considered a score of "100." Row 10a indicates how interesting the participants judged their particular mode of receiving the profile training. At Time 1, the groups were not different. The two-way individual participants had a substantial increase on this measure, such that by Time 2, they showed a near significant difference (p<.10) from the other treatments. Row 10b indicates that the interactive items were useful for all groups at both time periods, although they never quite matched the live situation. However, the third item, asking how much they thought they learned compared to live instruction, shows that all treatments believed they learned nearly as much or more than in live instruction. Across all these items, there is a pattern suggesting that maximum interest, utility, and perceived learning developed primarily in the two-way individual treatment.

Table 8.10. Affective Responses in Two-Way Treatments

<table>
<thead>
<tr>
<th></th>
<th>Individual</th>
<th>Group</th>
<th>T,</th>
<th>Individual</th>
<th>Group</th>
<th>T,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-in Important</td>
<td>84%</td>
<td>64%</td>
<td>(1.67)*</td>
<td>93%</td>
<td>52%</td>
<td>(3.73)*</td>
</tr>
<tr>
<td>Compared Scores</td>
<td>88%</td>
<td>74%</td>
<td>(.50)</td>
<td>81%</td>
<td>81%</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Compared Answers</td>
<td>76%</td>
<td>74%</td>
<td>(.17)</td>
<td>65%</td>
<td>76%</td>
<td>(1.00)</td>
</tr>
<tr>
<td>Satisfied in Seeing</td>
<td>82%</td>
<td>88%</td>
<td>(.33)</td>
<td>91%</td>
<td>93%</td>
<td>(.18)</td>
</tr>
<tr>
<td>Important to Know</td>
<td>80%</td>
<td>76%</td>
<td>(.33)</td>
<td>81%</td>
<td>64%</td>
<td>(1.55)*</td>
</tr>
</tbody>
</table>

*p < .05
	* p < .10

In summary, from these two tables, it appears that personal satisfaction from the televised lessons while handling the terminal increased over time, although it remained an extra burden for handlers. Further, it was important for each individual to see his ID code log in, but primarily if it meant that the firefighter was personally identifying himself as the terminal handler for the entire interactive lesson and not just the log-in itself. There was uniform participation in checking one's own scores against the correct ones, and those of other firefighters.

At both testing sessions, a common set of questions was administered to participants in all four experimental treatments. These results are in Table 8.11. For each question, the participants were to compare their activity to what they believed it would have been like under conditions of live instruction, with live instruction to be considered a score of "100." Row 10a indicates how interesting the participants judged their particular mode of receiving the profile training. At Time 1, the groups were not different. The two-way individual participants had a substantial increase on this measure, such that by Time 2, they showed a near significant difference (p<.10) from the other treatments. Row 10b indicates that the interactive items were useful for all groups at both time periods, although they never quite matched the live situation. However, the third item, asking how much they thought they learned compared to live instruction, shows that all treatments believed they learned nearly as much or more than in live instruction. Across all these items, there is a pattern suggesting that maximum interest, utility, and perceived learning developed primarily in the two-way individual treatment.

Table 8.11. Comparisons of Instructional Mode With Live Instruction

<table>
<thead>
<tr>
<th>Compared to Live Instruction</th>
<th>Two-Way Individual</th>
<th>Two-Way Group</th>
<th>One-Way Paper/Pencil</th>
<th>One-Way Covert</th>
</tr>
</thead>
<tbody>
<tr>
<td>T,</td>
<td>T,</td>
<td>T,</td>
<td>T,</td>
<td>T,</td>
</tr>
<tr>
<td>a. How interesting?</td>
<td>89</td>
<td>106</td>
<td>88</td>
<td>82</td>
</tr>
<tr>
<td>b. How useful the questions?</td>
<td>82</td>
<td>85</td>
<td>78</td>
<td>71</td>
</tr>
<tr>
<td>c. How much learned?</td>
<td>104</td>
<td>104</td>
<td>85</td>
<td>94</td>
</tr>
</tbody>
</table>
The Results of the MDS Instrument

The results in this section identify the major trends in the data that were apparent after several basic analyses were performed. Two sets of results are reported for each MDS set of concepts: first, substantial changes in the mean distance between the focal concept and each of its attendant attributes (across time and across conditions) are discussed, and second, the results of the unidimensional items created from the set of concepts in each MDS instrument are presented.

Firefighting

Participants compared "firefighting" to the following set of concepts: safe, efficient, professional, teamwork, skilled and me. These major trends were apparent upon examination of the mean distance matrices for each condition across time: (1) By the final testing, participants in the two-way individual treatment evaluated each concept in the set to be closer to the concept of "firefighting" than did participants in any other treatment, with the exception of the concept "safe." (2) For the concept "safe," the two-way individual treatment exhibited the most change (98 units); i.e., from Time 1 to Time 5, the mean distance between the concept "firefighting" and "safe" decreased by 98 units. (3) By the final testing, participants in the two-way group treatment evaluated the concept "firefighting" as being further away from each of the other concepts than did participants in any other treatment. (4) Participants in the least involved group, one-way covert response, showed the smallest variability across time in the judged distance between "firefighting" and these concepts. Appendix VIII-9, Tables 1-6, present the mean distances between "firefighting" and each of the concepts in this set across time and treatments. An analysis of variance of the mean distances for each "focal-pair" indicated that there were no statistically significant differences either across time or treatments in the distances reported by the firefighters except in the following instances: (5) There were significant differences at Time 1 and Time 5 between participants in the two-way individual treatment and the two-way group treatment in their evaluation of the concepts "teamwork" and "firefighting," with participants in the two-way individual treatment perceiving firefighting as being closer to teamwork. (6) There was a significant difference at Time 5 between participants in the two-way individual treatment and the two-way group treatment in the evaluation of the professionalism, efficiency and skill associated with firefighting, with participants in the two-way individual treatment reporting significantly smaller mean distances.

Prefire Planning

The concept "prefire planning" was compared with the following nine concepts: essential, useful, time consuming, public relations, safe community, busy work, inspection and me. Appendix VIII-9, Tables 7-15, present the mean distances between "prefire planning" and each of the concepts in this set. Upon examination the following trends are evident: (1) By the fifth testing, the mean distances between "prefire planning" and each concept (except "inspection") was smallest in the two-way individual treatment. (A point emphasized in the instruction was that prefire planning and inspection were not the same thing, therefore the distance between "prefire planning" and "inspection" should increase.) (2) Over time, the largest movement toward the concept of "prefire planning" occurred in the two-way individual treatment for the concepts "professional," "safe community," and "time consuming." (3) The largest movement away from the concept of "prefire planning" occurred for the participants in the two-way group treatment who evaluated the concept "me" as being 76 units further away at Time 5 than at Time 1. (4) Large decreases in the mean distances between "prefire planning" and "public relations" were found for participants in both two-way conditions. An analysis of variance of the mean distances for each "focal pair" indicated that there were no significant differences either across treatments or across time in firefighters' evaluations except the instances listed below: (5) There was a significant difference at Time 4 between participants in the two-way individual treatment and participants in the one-way paper/pencil treatment in their evaluation of "prefire planning" and "public relations," with the two-way participants evaluating the distance as smaller. While the discrepancy between these two means diminished somewhat at Time 5, the order of the means remained the same. (6) There was a significant difference at Time 5 between participants in the two-way condition with respect to their evaluation of how time-consuming prefire planning was. Participants in the two-way individual treatment perceived prefire planning to be...
significantly more time consuming than did participants in the two-way group treatment.

TV Training

The concept TV training was compared with: effective, interesting, difficult, good, involving and me, at four points in time. Since the initial assessment of concepts took place before the firefighters had experienced the TV training, this concept was omitted at that time. Appendix VIII-9, Tables 16-21, present the mean distances between each of the concepts listed above across time and conditions. The initial analyses performed suggest that: (1) For every concept paired with “TV training,” the smallest mean distance at the final testing existed for the two-way individual treatment. (2) That positive trend commenced primarily between the first and second assessment and remained stable from that point for all concepts. (3) Whereas the mean distance between “TV training” and “effective” diminished over time for participants in the two-way individual treatment, it increased for the other three treatments. (4) This same pattern characterized the mean distance between “TV training” and “me.” (5) By the final testing, the mean distance between “TV training” and “good” was smallest in the two-way individual treatment.

An analysis of variance of the mean distances for each “focal-pair” indicated that there were no significant differences either across time or treatments in the distances reported by firefighters except for the following instances: (6) At time 4, there was a significant difference between participants in the two-way individual treatment and the one-way paper/pencil treatment, with the former evaluating their training as being more involving. (7) There was a significant decrease across time for participants in the two-way individual treatment in their evaluation of the self-concept “me” with reference to “TV training.”

The Unidimensional Items

The six-point ordinal scales created from the MDS concepts present a less detailed picture of the attitude changes which occurred during the course of the experiment. Appendix VIII-10, Tables 1-16, yield very few significant differences or even consistent tendencies across treatments and time in participants’ evaluation of firefighting, prefire planning and the TV training experience.

Summary of MDS Affective Results

While very few of the comparisons among the mean distances achieve “significance” when subjected to statistical test, these data strongly indicate that by the end of the experiment, participants in the two-way individual treatment more favorably evaluated their profession of firefighting, their TV training experience (by a considerable margin) and the content of the videotapes than did participants in any other treatment. Across the three sets of concepts, participants in the two-way individual treatment consistently reported smaller (Time 5) mean distances for each positive attribute included in the set of concepts. It was anticipated that an effective training program would result in the development of a “positive attitudinal orientation” on the part of the participants toward their profession, the content of the programs and the learning experience itself. While the orientation of participants in the two-way group, one way paper/pencil and one-way covert response treatments is somewhat inconsistent across the three sets of concepts, we feel confident in concluding that their orientation is somewhat favorable toward each of the focal concepts, with the orientation of the participants in the two-way individual treatment being considerably more favorable.

Performance

A final assessment of the effect of the training was an evaluation of field performance. After training, the first 28 prefire plan building surveys were scored for accuracy and completion. A perfect score was 100 points. The average score over the 28 surveys was 91 and the median score was 93.

Most of the errors were of omission; a heading or subheading was left blank. Often this occurred where the item was not applicable, but it was not indicated as such. The lessons did not emphasize a standard response to non-applicable blanks on the survey form. Another failure was to neglect the perimeter area, if observation of the perimeter did not indicate major hazards or buildings. The proper procedure, included in the lessons, is to note such perimeter features as railroad "racks and power lines.

Symbols for diagrams, a major element of the training, were consistently correct. Thirty-five symbols were taught, none of which were known at the beginning of the instruction.

Performance on-the-job is perhaps the best test of the training system. In this case, performance evaluation confirmed the generally high learning levels, as measured by the posttest. Because of a number of transfers that mixed the treatment groups, no attempt was made in the performance test, to differentiate among treatment conditions.
Chapter 9
Cost Analyses'

This chapter describes the costs of the two-way system, beginning with the specific application in prefire planning, expanding to the more general case of training in the fire department and concluding with the costs in the cable distribution and return system.

Prefire Planning

Prefire plan feasibility depended first on a determination that the net social benefits of prefire planning were positive, and then on selection of a cost-effective method of prefire planning.

Determining if the net social benefits of prefire planning are indeed positive calls for some type of cost/benefit analysis. If a program task is already being accomplished in some form—the benefits associated with the task achievement are assumed to be positive. Prefire planning is presently conducted in Rockford, but the resources devoted to the task have not been sufficient to make significant progress. Therefore, some discussion of the benefit stemming from the investment of resources in prefire planning is in order.

Benefits

Recent studies conducted in Illinois (1) and Massachusetts (2) identified prefire planning as a top priority in future efforts to combat the rising costs of destructive fire. Likewise, the Chicago Committee on High Rise Buildings concluded that prefire planning was of major importance in dealing with high rise fire problems. (3)

Prefire planning benefits both property owners and firefighters. The principal benefit for firefighters is the greater safety in fighting fires in preplanned buildings. For example, Ralph Patterson, an agricultural engineer in the U.S. Department of Agriculture, suggests that prefire planning could prevent most pesticide-related firefighter injuries. (4) Property owners also benefit. In West Hempstead, New York, a fire broke out in the 1½ story millwork shop of a lumberyard, located very close to numerous stacks of lumber and a gas station. By utilization of a prefire plan, all the lumber except the millwork was saved, as was the gas station. (5) Prefire planning is also expected to reduce the total time which elapses between fire ignition and eventual extinguishment (reflex time). (6) Reduction in reflex time should lead to controlling more fires prior to flashover, the critical point for life safety and fire control. This would substantially reduce property losses and firefighter injuries.

In sum, prefire planning provides much of the information necessary to fight fires safely and efficiently. Fire damage and death statistics in the United States suggest the costs of inadequate prefire planning. The net social benefits to be derived from prefire planning would, therefore, appear to be positive if costs of prefire planning are reasonable.

Costs

The task, then, is to cost the logical means of achieving a prefire-planned community. Assuming that prefire planning should be completed quickly, we examine here two options that plan all the major buildings in Rockford in slightly more than two years. One option is to create a team of prefire planning specialists within the department who would work full-time at prefire planning. The other option is to train all line officers and firefighters within the department to develop prefire plans for buildings in or near their own still districts (primary coverage area) as a collateral duty. In order to adequately cost these options, an estimate of the number of buildings involved and the amount of time necessary to conduct a prefire plan was obtained.

Buildings

Buildings were categorized by size and complexity of prefire planning by the Rockford Fire Department. In Table 9-1 below, Rockford buildings in critical need of prefire planning have been identified by type and broken down by number into three distinct size categories. The term "size," as used here, means the size of the prefire planning task. A relatively small chemical plant would be categorized as "large" because of the complexity of prefire planning the building.

1. This chapter was written principally by Thomas Baldwin, Michael Wirth, Robert Yadon and John Bowers.
Prefire Plan Time Allocation

The second phase was to determine the amount of time necessary to perform each discrete activity within the prefire plan. The Rockford Fire Department has identified eleven stages in its prefire planning procedure:

1. **Initial Contact** — Usually made by phone, but in some special cases it is made in person with the building's owner/manager.

2. **Prefire Plan Survey** — Usually made by a team of three or four men, depending on the complexity of the building.

3. **Follow-Up Contact** — Normally, a second visit must be arranged with the building's owner/manager.

4. **Follow-Up Visit** — Usually made to fill in data or re-examine certain features of the building. The entire team will not normally return; only one or two members.

5. **Vehicle Positioning** — Vehicles are physically positioned around large buildings to check out positions for the initial response plan. (May be combined with step #4.)

6. **Finalization of Survey** — Placing the survey into a final format for the prefire plan packet.

7. **Preparing Diagrams** — Diagramming the building(s) and perimeter.

8. **Initial Reaction Plan** — Officers and selected personnel go over survey diagrams and vehicle positioning reports to prepare a reaction plan.

9. **Duplication and Distribution** — Duplication and circulation of the prefire plan packet to company personnel.

10. **Extraction of Pertinent Information** — Companies extract basic information from the packets for use at the company level.

11. **Finalization of Prefire Plan** — Individual companies write their own plans based on the information in the prefire plan packets.

Estimates on the amount of time necessary to complete each phase of the prefire plan listed above are based on building size and complexity. The actual time in creating any prefire plan is subject to many variables (i.e., type of building, age of building, availability of blueprints, and necessity of return visits). Table 9-2 below shows Rockford Fire department estimates of the time necessary to complete each planning phase and the total time per building size.

Table 9-1. Building Identification by Size and Type

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools (Incl. Colleges)</td>
<td>37</td>
<td>57</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>Nursing Homes</td>
<td>0</td>
<td>12</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>Restaurants</td>
<td>0</td>
<td>0</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Theatres</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Taverns</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Manufacturing Firms</td>
<td>100</td>
<td>335</td>
<td>165</td>
<td>600</td>
</tr>
<tr>
<td>Hospitals</td>
<td>3</td>
<td>0</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Nurseries/Child Centers</td>
<td>0</td>
<td>0</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>Churches</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Clubs</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Apartment Buildings (High Rise)</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Motels/Hotels</td>
<td>12</td>
<td>25</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>TOTAL</td>
<td>161</td>
<td>420</td>
<td>677</td>
<td>1,287</td>
</tr>
</tbody>
</table>

Table 9-2. Time Allocation Per Activity and Building Size

<table>
<thead>
<tr>
<th>Activity</th>
<th>Large</th>
<th>Medium</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initial contact</td>
<td>1:00</td>
<td>.15</td>
<td>.05</td>
</tr>
<tr>
<td>2. Building survey</td>
<td>32:00</td>
<td>20:00</td>
<td>10:00</td>
</tr>
<tr>
<td>3. Follow-up contact</td>
<td>.10</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>4. Follow-up visit</td>
<td>16:00</td>
<td>6:00</td>
<td>2:00</td>
</tr>
<tr>
<td>5. Vehicle positioning</td>
<td>18:00</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6. Survey finalization</td>
<td>4:00</td>
<td>2:00</td>
<td>1:00</td>
</tr>
<tr>
<td>7. Diagram formulation</td>
<td>5:00</td>
<td>3:00</td>
<td>2:00</td>
</tr>
<tr>
<td>8. Initial reaction plan</td>
<td>6:00</td>
<td>4:00</td>
<td>2:00</td>
</tr>
<tr>
<td>9. Duplication and distribution</td>
<td>4:00</td>
<td>3:00</td>
<td>2:00</td>
</tr>
<tr>
<td>10. Information extraction</td>
<td>7:00</td>
<td>5:00</td>
<td>3:00</td>
</tr>
<tr>
<td>11. Plan finalization</td>
<td>4:00</td>
<td>2:00</td>
<td>1:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>98:10</td>
<td>45:50</td>
<td>7:10</td>
</tr>
</tbody>
</table>

With this basic information, it was possible to estimate the cost and the time to completion of prefire plans for the designated buildings under the two options.

Option 1: Prefire Planning Specialists

In this option, personnel were assigned to prefire planning full-time. The major cost is the salaries of persons so assigned. We have used a base salary of $18,373 and added 25 percent to cover benefits. The $22,096 total over a 40-hour week is an hourly rate of $11.96.

The specialists would conduct all phases of the survey except diagram preparation (step #7), done by a draftsman, and duplication and distribution (step #9), done by a clerk. The salary used for the draftsmen with benefits is $16,250 (an hourly rate of $8.46), while the salary used for the clerk is $10,000 (an hourly rate of $5.21).
The following projections do not consider additional costs, such as using firefighters to assist in vehicle positioning. It also implicitly assumes that specialist training costs are near zero, since in this situation, most training would be "on the job" from one member of the team to another. Therefore, cost projections for specialists in prefire planning are likely to be minimum costs to the City of Rockford under this planning option. Table 9-3 below shows the projected average costs for prefire planning, per activity and building size.

The costs listed in Table 9-3 are projected over all 1,267 buildings listed in Table 9-1. The minimum costs for a full-time specialist, prefire planning 1,267 buildings, is presented in Table 9-4 below.

Table 9-3. Projected Costs Per Activity and Building Size

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time and Costs Per Building Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LARGE</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
</tr>
<tr>
<td>1. Initial contact</td>
<td>1.00</td>
</tr>
<tr>
<td>2. Building survey</td>
<td>32:00</td>
</tr>
<tr>
<td>3. Follow-up contact</td>
<td>.10</td>
</tr>
<tr>
<td>4. Follow-up visit</td>
<td>16:00</td>
</tr>
<tr>
<td>5. Vehicle positioning</td>
<td>16:00</td>
</tr>
<tr>
<td>6. Survey finalization</td>
<td>4:00</td>
</tr>
<tr>
<td>7. Diagram formulation</td>
<td>5:00</td>
</tr>
<tr>
<td>8. Initial reaction plan</td>
<td>6:00</td>
</tr>
<tr>
<td>9. Duplication and distribution</td>
<td>4:00</td>
</tr>
<tr>
<td>10. Information extraction</td>
<td>7:00</td>
</tr>
<tr>
<td>11. Plan finalization</td>
<td>4:00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>98.10</td>
</tr>
</tbody>
</table>

Clark's salary used to project these costs.

Table 9-4. Minimum Costs for Full-Time Prefire Planning Specialists, Planning 1,267 Critical Buildings

<table>
<thead>
<tr>
<th>Building Size</th>
<th>Number of Buildings</th>
<th>Costs Per Building</th>
<th>Total Cost Per Building Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARGE</td>
<td>161</td>
<td>$1,118</td>
<td>$179,988</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>429</td>
<td>315</td>
<td>221,364</td>
</tr>
<tr>
<td>SMALL</td>
<td>677</td>
<td>257</td>
<td>173,989</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,267</td>
<td></td>
<td>$575,351</td>
</tr>
</tbody>
</table>

Option 2: Collateral Duty for All Station Personnel

If all station personnel participate in the prefire planning of buildings in their own station districts, as a collateral duty assignment, the major costs are: (1) training personnel in the appropriate tasks, (2) diagram formulation and (3) duplication and distribution of plans. This assumes that the time for prefire planning tasks can be spared from other duties without paid replacement (or in other words at zero opportunity cost).

Training Costs

Of these three cost elements, only the training costs remain to be calculated. Because the training took place in four different experimental treatments, we present a cost for each as if all 200 firefighters were trained by that method. In addition we have estimated costs for three other training methods—auto-tutorial, lecture at the Training Academy and lecture at the fire stations.

The auto-tutorial method costs were based on a videocassette playback machine bicycled from station to station. The cassettes would be identical to those used in the experimental treatments.

The lecture at the Academy is assumed to be a well-designed series with slides and graphic components comparable to those used in the television programs of the experiment.

The lecture at fire stations is the same as the lecture at the Academy, except that the lecturer, with visuals and equipment, moves from station to station.
All three of these methods are used on occasion by the Rockford Fire Department and constitute the major training alternatives. Overall, the seven training options present a comparison of the more capital-intensive training methods (e.g., two-way individual) to more labor-intensive approaches (e.g., lecture at the stations).

Tables 9-5 through 9-12 provide a look at the costs of training firefighters to conduct prefire plans. Under the seven training options, the first four tables (9-5 through 9-8) are based on costs incurred in training firefighters in Rockford projected over the training of all firefighters by each of the methods. Because of the continuing need to train new firefighters and provide refresher training for the others, the costs are provided for reruns of the material; every two years for all personnel, if the life of the series is twelve years, six runs can be made.

Tables 9-9 through 9-12 project the costs over a group of 1,000 trainees. This gives an indication of costs for a larger department.

Table 9-5. Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series Originally Produced by the Fire Department Compared to Auto-Tutorial and High Quality, Visualized Lectures.

(See notes to Tables 9-5 through 9-12 at the end of this Chapter.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way Individual</th>
<th>Two-way Group</th>
<th>One-way Paper/Pencil</th>
<th>One-way Covert</th>
<th>Auto-Tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production</td>
<td>$69.122 (8)</td>
<td>$69.122 (8)</td>
<td>$69.122 (8)</td>
<td>$69.122 (8)</td>
<td>$47,992 (10)</td>
<td>$47,992 (10)</td>
<td></td>
</tr>
<tr>
<td>or procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>4,320 (12)</td>
<td>9,504 (13)</td>
<td>11,664 (14)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
</tr>
<tr>
<td>Response processing,</td>
<td>7,423 (16)</td>
<td>5,998 (19)</td>
<td>964 (20)</td>
<td>96 (21)</td>
<td>840 (22)</td>
<td>840 (22)</td>
<td>840 (22)</td>
</tr>
<tr>
<td>feedback and record keeping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td></td>
<td></td>
<td></td>
<td>72 (24)</td>
<td>16 (24)</td>
<td>16 (24)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$78,201</td>
<td>$76,776</td>
<td>$71,762</td>
<td>$70,874</td>
<td>$58,752</td>
<td>$60,912</td>
<td></td>
</tr>
<tr>
<td>Cost per lesson per person</td>
<td>$32.58</td>
<td>$31.99</td>
<td>$29.90</td>
<td>$29.53</td>
<td>$31.73</td>
<td>$24.48</td>
<td>$25.38</td>
</tr>
</tbody>
</table>

Table 9-6. Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way Individual</th>
<th>Two-way Group</th>
<th>One-way Paper/Pencil</th>
<th>One-way Covert</th>
<th>Auto-Tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$2,900 (25)</td>
<td>$1,992 (10)</td>
<td>$47,992 (10)</td>
</tr>
<tr>
<td>or procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>4,320 (12)</td>
<td>9,504 (13)</td>
<td>11,664 (14)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
</tr>
<tr>
<td>Response processing,</td>
<td>7,423 (18)</td>
<td>5,998 (19)</td>
<td>964 (20)</td>
<td>96 (21)</td>
<td>840 (22)</td>
<td>840 (22)</td>
<td>840 (22)</td>
</tr>
<tr>
<td>feedback and record keeping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td></td>
<td></td>
<td></td>
<td>72 (24)</td>
<td>16 (24)</td>
<td>16 (24)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>$12,679</td>
<td>$11,254</td>
<td>$6,240</td>
<td>$5,353</td>
<td>$10,632</td>
<td>$8,752</td>
<td>$60,912</td>
</tr>
<tr>
<td>Cost per lesson per person</td>
<td>$5.28</td>
<td>$4.69</td>
<td>$2.60</td>
<td>$2.23</td>
<td>$4.43</td>
<td>$24.48</td>
<td>$25.38</td>
</tr>
</tbody>
</table>
Table 9-7. Average Series Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series Originally Produced by the Fire Department with Six Repetitions over a Period of 12 Years Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$7,999 (27)</td>
<td>$7,999 (27)</td>
<td></td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>4,320 (12)</td>
<td>4,680 (13)</td>
<td>4,752 (14)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,800 (16)</td>
<td>400 (17)</td>
<td>400 (17)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>7,423 (18)</td>
<td>5,998 (19)</td>
<td>984 (20)</td>
<td>96 (21)</td>
<td>840 (22)</td>
<td>840 (22)</td>
<td></td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>72 (24)</td>
<td>16 (24)</td>
<td>16 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$20,599</td>
<td>$19,174</td>
<td>$14,180</td>
<td>$13,372</td>
<td>$18,552</td>
<td>$13,935</td>
<td>$14,007</td>
</tr>
<tr>
<td>Cost per lesson, per person</td>
<td>$8.58</td>
<td>$7.99</td>
<td>$5.90</td>
<td>$5.53</td>
<td>$7.73</td>
<td>$5.81</td>
<td>$5.84</td>
</tr>
</tbody>
</table>

Table 9-8. Average Series Cost of Cable Training 200 Firefighters in 10 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials with Six Repetitions over a Period of 12 Years Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$600 (28)</td>
<td>$600 (28)</td>
<td>$500 (28)</td>
<td>$600 (28)</td>
<td>$7,999 (27)</td>
<td>$7,999 (27)</td>
<td></td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>4,320 (12)</td>
<td>4,680 (13)</td>
<td>4,752 (14)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,800 (16)</td>
<td>400 (17)</td>
<td>400 (17)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>7,423 (18)</td>
<td>5,998 (19)</td>
<td>984 (20)</td>
<td>96 (21)</td>
<td>840 (22)</td>
<td>840 (22)</td>
<td></td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>72 (24)</td>
<td>16 (24)</td>
<td>16 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$9,679</td>
<td>$8,254</td>
<td>$3,240</td>
<td>$2,352</td>
<td>$7,632</td>
<td>$13,935</td>
<td>$14,007</td>
</tr>
<tr>
<td>Cost per lesson, per person</td>
<td>$4.03</td>
<td>$3.44</td>
<td>$1.35</td>
<td>$0.98</td>
<td>$3.18</td>
<td>$5.81</td>
<td>$5.84</td>
</tr>
</tbody>
</table>

Table 9-9. Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series Originally Produced by the Fire Department Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$69,122 (8)</td>
<td>$69,122 (8)</td>
<td>$69,122 (8)</td>
<td>$69,122 (8)</td>
<td>$47,992 (10)</td>
<td>$47,992 (10)</td>
<td></td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>21,600 (29)</td>
<td>47,520 (30)</td>
<td>56,320 (31)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>9,000 (32)</td>
<td>2,000 (17)</td>
<td>2,000 (17)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>14,123 (33)</td>
<td>6,908 (34)</td>
<td>4,440 (35)</td>
<td>384 (36)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>380 (24)</td>
<td>80 (24)</td>
<td>80 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$84,901</td>
<td>$77,776</td>
<td>$75,218</td>
<td>$71,162</td>
<td>$103,602</td>
<td>$101,312</td>
<td>$112,112</td>
</tr>
<tr>
<td>Cost per lesson, per person</td>
<td>$7.08</td>
<td>$6.48</td>
<td>$6.27</td>
<td>$5.53</td>
<td>$8.65</td>
<td>$8.44</td>
<td>$9.34</td>
</tr>
</tbody>
</table>
Table 9-10. Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series with Purchase of Prepackaged Materials Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$3,600 (25)</td>
<td>$47,992 (10)</td>
<td>$47,992 (10)</td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>21,600 (29)</td>
<td>47,520 (32)</td>
<td>56,320 (31)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>9,000 (32)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>14,123 (33)</td>
<td>6,998 (34)</td>
<td>4,440 (35)</td>
<td>384 (36)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>360 (24)</td>
<td>0 (24)</td>
<td>0 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$19,379</td>
<td>$12,254</td>
<td>$9,696</td>
<td>$5,640</td>
<td>$39,280</td>
<td>$101,312</td>
<td>$112,112</td>
</tr>
</tbody>
</table>

Cost per lesson, per person: $1.61

Table 9-11. Average Series Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series Originally Produced Within the Fire Department with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$11,520 (26)</td>
<td>$7,999 (27)</td>
<td>$7,999 (27)</td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>21,600 (29)</td>
<td>47,520 (30)</td>
<td>56,320 (31)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>9,000 (32)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>14,123 (33)</td>
<td>6,998 (34)</td>
<td>4,440 (35)</td>
<td>384 (36)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>360 (24)</td>
<td>0 (24)</td>
<td>0 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$27,299</td>
<td>$20,174</td>
<td>$17,616</td>
<td>$13,560</td>
<td>$46,200</td>
<td>$61,319</td>
<td>$72,119</td>
</tr>
</tbody>
</table>

Cost per lesson, per person: $2.28

Table 9-12. Average Series Cost of Cable Training 1,000 Firefighters in 50 Stations in a 12-Lesson Series With Purchase of Prepackaged Materials with Six Repetitions Over a Period of 12 Years Compared to Auto-Tutorial and High Quality, Visualized Lectures.

<table>
<thead>
<tr>
<th>Item</th>
<th>Two-way individual</th>
<th>Two-way group</th>
<th>One-way paper/pencil</th>
<th>One-way covert</th>
<th>Auto-tutorial</th>
<th>Lecture Academy</th>
<th>Lecture Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and production or procurement</td>
<td>$600 (28)</td>
<td>$600 (28)</td>
<td>$600 (28)</td>
<td>$600 (28)</td>
<td>$600 (28)</td>
<td>$7,999 (27)</td>
<td>$7,999 (27)</td>
</tr>
<tr>
<td>Presentation personnel</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>216 (11)</td>
<td>21,600 (29)</td>
<td>47,520 (30)</td>
<td>56,320 (31)</td>
</tr>
<tr>
<td>Presentation equipment</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>1,440 (15)</td>
<td>9,000 (32)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Response processing, feedback and record keeping</td>
<td>14,123 (33)</td>
<td>6,998 (34)</td>
<td>4,440 (35)</td>
<td>384 (36)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
<td>3,720 (37)</td>
</tr>
<tr>
<td>Equipment maintenance</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>0 (23)</td>
<td>360 (24)</td>
<td>0 (24)</td>
<td>0 (24)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$17,195</td>
<td>$9,254</td>
<td>$6,696</td>
<td>$2,640</td>
<td>$35,280</td>
<td>$61,319</td>
<td>$72,119</td>
</tr>
</tbody>
</table>

Cost per lesson, per person: $1.36
Assumptions

Some basic assumptions were necessary to make the calculations. In comparing the actual costs of cable training with estimated costs for auto-tutorial and lectures, it was assumed that the quality of the lectures and auto-tutorial videotapes were equivalent to the videotapes used in cable-delivered instruction. In the case of auto-tutorial, the same tapes could be used so the development and production costs would be identical. For the lectures, the same investment would be made in researching and writing the lectures as in the preparation of the scripts for television. The visuals—slides, films and graphics—used in the lectures would be essentially the same as those used to make the videotapes; therefore the costs would be the same. The only difference between lecture and cable in development and production costs, then, would be the studio and post production costs.

The weakest element of the comparison is in the cost of “response processing, feedback and record keeping.” This is relatively easy to calculate for one-way television, auto-tutorial and lecture, but involves the costing of the two-way cable system for the two-way cable instructional methods. Fortunately, Rockford Cablevision has a “System Lease Plan” which prices two-way services. (7) Some of the services involved in the experiments were not priced, since the equipment and the service were unique to the experiments. However, the rationale for pricing service is included in the “System Lease Plan.” The lease price for headend equipment is calculated at one-thirty-sixth of the original cost of the equipment per month. The lease price for the terminals is one-eighth of the original cost per month. Customer terminal equipment is priced higher than the equipment that remains in the hands of the company. This is a conventional pricing scheme. However, it assumes that firefighter training would be the only service and provide the only return on the capital investment and operational expenses. Other users, and potential users, have emerged who might share in covering these costs, reducing the charge to the Fire Department. Assigning all costs to the Fire Department training application is the most conservative approach.

Whether or not the Rockford Cablevision “System Lease Plan” price list is realistic, requires further experience. The company has regular leases of data channels, but certainly not in sufficient numbers nor with the variety of different demands on the two-way system to fully test the market and the pricing plan. The best that can be said is that the “System Lease Plan” is a rational plan for a beginning, absent more experience with the market and the technical performance of the system.1

The precise means of determining each cost figure in the tables is indicated by footnote. The “bottom line” in the tables is the cost per lesson per person. This seems to be a more comprehensible figure than the total cost for the lesson series.

Cost Comparisons, 200

Firefighter Department

For the Rockford Fire Department, or comparably sized departments, training costs for cable and auto-tutorial methods are higher than lectures at the Academy or in the stations when the videotape materials for cable and auto-tutorial are produced professionally in color. (See Table 9-5.) However, if these video materials are produced elsewhere and purchased by the Department, the costs of cable and auto-tutorial instruction are only about one-fifth the cost of lectures. (Table 9-6.) When lessons are repeated often (e.g., every two years in these calculations), the costs are substantially reduced for department-produced lesson, and one-way cable instruction becomes less costly than lectures because “presentation personnel” costs are much lower. (Table 9-7) When video materials are purchased from outside, the costs of all cable methods and the auto-tutorial method are less than lectures prepared and delivered by Rockford Fire Department personnel. (Table 9-8)

In all cases, two-way cable instruction costs more than one-way television with the one-way, covert response method least expensive. This, however, was also the least effective teaching method of the four cable methods. Two-way cable is from two to three times as expensive as one-way cable. Nonetheless, for this most effective cable method, the cost is as low as $3.44 per lesson per person. The lowest cost for the lecture method is $5.81. It might be more fair to compare two-way cable to lectures than one-way cable, since the questioning and feedback in two-way cable serves as a substitute for the live instructor.

Two-way cable with individual terminals for each trainee is only slightly more expensive than two-way cable with one terminal per station. Although learning was not affected by this difference, the clear preference of firefighters for the individual terminals might justify the small additional expense.

It should be re-emphasized that the two-way costs (detailed in notes 18 and 19 for the 200-firefighter

1. It should be noted that, for the experiments, there were no charges to the Fire Department.
city and notes 33 and 34 for the 1,000-firefighter city) are the most conservative possible. These costs assume the firefighter training application, in itself, pays for terminal and all headend capital and operating costs.

Cost Comparisons, 1,000 Firefighter Department

For the larger fire department, with 1,000 firefighters, even with the cost of producing video materials internally for use on cable, the cost is about one-third less than lectures. The cost relationships between two-way and one-way are about the same as in the smaller department, but the costs of two-way cable instruction were as low as $.77 per lesson per person.

Cost of Prefire Planning by Station Personnel

The highest cost training method, two-way individual, with originally produced color videotape, for all Rockford firefighters is $78,201. Since diagramming costs will be about $30,968 and duplication/distribution approximately $17,115, the total cost of training all station personnel plus drafting/clerical costs would be $126,284.

Comparison of Prefire Planning Staffing Options

The prefire plan staffing option which proves most cost-effective, obviously should be the one selected by the Rockford Fire Department. Two elements are needed to determine the cost-effectiveness of these staffing options: (1) the costs of each option and (2) an appropriate performance indicator[s]. Since the cost data have already been provided, specification of the most important performance indicator[s] is all that remains.

The most important performance indicator would appear to be the time required to complete the prefure plans for the 1,267 priority buildings. It is estimated by the Rockford Fire Department that prefure planning, conducted as collateral duty for all station personnel, would yield finished plans for three buildings per company, per month (45 buildings per month total). This means that all of Rockford's priority buildings would have prefure plans in 28.2 months. To achieve the 28.2 months completion rate, approximately 11 full time specialists would have to be hired. (Since the average building takes 37.2 hours per week to plan, each specialist could be expected to complete one building per week.)

The cost-effectiveness ratios provided in Table 9-13 demonstrate conclusively that training all personnel to develop prefire plans even by the most costly training method, is superior to the team of specialists.

Table 9-13. Cost-Effectiveness Ratios for Alternate Methods of Prefire Plan Staffing

<table>
<thead>
<tr>
<th>Personnel Options</th>
<th>Performance/Total Costs</th>
<th>(costs in 000's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialists</td>
<td>28.2 months 575.35</td>
<td>.049</td>
</tr>
<tr>
<td>All Personnel</td>
<td>28.2 months 126.28</td>
<td>.223</td>
</tr>
</tbody>
</table>

The staffing option with the highest cost-effectiveness ratio is the preferred option.

Cost Comparison Between One-Way and Two-Way Cable

It is pertinent to the cable operator, and to the cost analysis of two-way cable, to determine the cost differential between a cable system with two-way capacity (amplifier housings capable of accommodating modular additions of return amplifiers) and a cable system with the on-line hardware (return amplifiers, switches and other equipment) in place. We will call this latter case a "two-way ready" system. (38) It is capable of two-way communication with terminals of some sort in the feeder system and a scanning and processing system at the headend. Discussion of the distinction between two-way capacity and two-way ready systems from a public policy frame of reference is in Chapter 10.

Table 9-14 presents the costs per mile, in Rockford, of converting the entire distribution plant, trunk and feeder cable, to a two-way ready system. The conversion cost, including all labor costs, is $826.89 per mile. These costs would be only slightly lower if the system were originally constructed to be two-way ready. Mass production of code operated switch controllers would reduce that cost item, but this would have little impact on the total figure.

Since these costs are for on-line distribution plant only, terminal and headend costs must be added. In the simplest case, where only the trunk cable in the two-way system is used for remote cablecasts, only a modem at the remote location and a modem at the headend are necessary. The cost would be about $2,800. For per-view pay television, the cost of the terminal (as noted in Chapter 2) is about $50. A minicomputer, scanning transceiver and other peripherals at the headend are about $50,000. For the firefighter training experiment, terminals (produced
Labor per mile. installation (average of one hour per amplifier per mile - 4.33 X $22/hour) .
3.73 Directional couplers per mile (for COSs and ELOs) at $16

The Rockford system is 426 miles with a density of 127 households per mile. The feeder to trunk ratio is about 2.5 to 1.

The number of trunk and line extender amplifiers per mile is based on the system average. The total number of trunk amplifiers (312) and line amplifiers (1560) each divided by the system miles (426).

Modified chassis (filter change in the feeder return section in the motherboard of the trunk amplifier and the addition of a switch) at $55 per modification (.73 X $55)

All labor charges include the trip charge which would be eliminated in originally building a two-way ready system.

Actual times for degressing ranged from 20 minutes to several hours per amplifier location.

in small quantities) were $150. This terminal was also useable as a channel converter. The headend costs were about $65,000. A more elaborate head-end, with capacity for per-view pay television, interactive instruction and alarm systems could be as much as $150,000.

Using the Rockford per mile two-way conversion costs in a hypothetical two-way capable 150-mile system, conversion to a two-way ready system would cost $124,034. When this figure is added to $65,000 in two-way headend equipment, the total construction and operationalization cost is $189,034. If this amount were borrowed at 10.5 percent interest, and if the cable system made equal annual payments on the note for 10 years, the system would have to generate an additional $31,423 annually to retire the debt and break even on the capital investment.

Cost estimates for the cable system above do not include any capital expenditure for home terminal devices. In some cases, such as the TOCOM, Inc., system in Woodlands, Texas, the $300 cost of the terminal is borne by the subscriber. In the Columbus "Telecinema" case, the company owns the terminal. The capital outlay for this lower cost terminal, however, is substantially reduced by the $40 deposit which is collected at installation. Since methods of capitalization, terminal technology and services vary significantly, the terminal cost is left out of this analysis.

Operating Costs

Table 9-15 provides a general comparison between the monthly operating expenses of two-way capacity and two-way ready operations. The figures indicate that a two-way ready system's office, overhead and miscellaneous expenses exceed those of a two-way capacity system until each system has approximately 10,000 subscribers. Installation, service and support expense comparisons, however, suggest that the two-way ready costs will always exceed two-way capacity costs. The last expense category provided in Table 9-15 is studio expenses.

Table 9-15. Cost Comparison of One-Way vs. Two-Way Operating Expenses (39)

<table>
<thead>
<tr>
<th>Two-Way Capacity ($/Subscriber/Mo.)</th>
<th>Two-Way Ready ($/Subscriber/Mo.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office, Overhead & Misc. Expenses</td>
<td></td>
</tr>
<tr>
<td>1,000 Subscribers</td>
<td>$11.00</td>
</tr>
<tr>
<td>2,000 Subscribers</td>
<td>6.10</td>
</tr>
<tr>
<td>3,000 Subscribers</td>
<td>4.20</td>
</tr>
<tr>
<td>7,000 Subscribers</td>
<td>2.50</td>
</tr>
<tr>
<td>10,000 Subscribers</td>
<td>2.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation, Service & Support Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 Subscribers</td>
</tr>
<tr>
<td>2,000 Subscribers</td>
</tr>
<tr>
<td>3,000 Subscribers</td>
</tr>
<tr>
<td>7,000 Subscribers</td>
</tr>
<tr>
<td>10,000 Subscribers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studio Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 Subscribers</td>
</tr>
<tr>
<td>2,000 Subscribers</td>
</tr>
<tr>
<td>3,000 Subscribers</td>
</tr>
<tr>
<td>7,000 Subscribers</td>
</tr>
<tr>
<td>10,000 Subscribers</td>
</tr>
</tbody>
</table>

Note: Expense figures based on aerial system.

These figures are detailed for purposes of the break-even analysis in Table 9-16. Studio costs can, of course, vary considerably from system to system. Two-way operating systems are probably more likely to incur significant studio operating costs than are their one-way counterparts. However, for purposes of demonstration, the studio expenses are assumed equal for both system types.

The data presented in Tables 9-17 detail the number of subscribers (and total sales revenue)
needed to meet operating expenses. When penetration of two-way service is relatively low (25 percent), two-way capacity systems break even sooner than do two-way ready systems. Inspection of Table 9-16 suggests two reasons for this situation: (1) two-way ready systems have somewhat higher monthly fixed costs of operation, and (2) the variable costs per subscriber increase substantially for two-way ready systems until they obtain more than 7,000 subscribers.

Obviously, two-way systems must develop new services, and/or sell those two-way services which presently exist (e.g., alarm monitoring and per-program pay TV) which utilize the system's two-way readiness to make the additional investment profitable. Such new services could also be expected to increase the revenue through the addition of new subscribers to the basic service.

Revenue and expense (operating) projections up to this point have been based on a system offering only the standard home security package (e.g., monitoring smoke detectors, security and medical alarms). Economies might be realized with more services. One example would be per-program pay TV. Table 9-17 compares the monthly costs of operating a per-program pay TV alone (two-way) with the costs of operating a per-program system (two-way). Inspection of Table 9-17 suggests that before a pay cable operation can make a direct contribution to system revenues, it must exceed its subscriber break-even point. Once a system goes beyond this point, all revenues represent profit. Since this is true for both per-channel and per-program pay cable, a per-program pay operation would have to result in a significant increase in pay cable revenues, and/or basic cable subscription revenues, for an entrepreneur to select per-program over per-channel pay cable.

Table 9-17. Estimated Costs and Revenues of Pay-Cable (43)

<table>
<thead>
<tr>
<th>Type of Operation</th>
<th>Monthly Costs</th>
<th>Monthly Subscriber Fee</th>
<th>Break-Even Number of Pay Subscribers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemation Program services (TPS) - stand alone (one-way)</td>
<td>524,949</td>
<td>57.87 (45)</td>
<td>3,170</td>
</tr>
<tr>
<td>Home Box Office - HBO satellite (one-way)</td>
<td>30,732</td>
<td>7.87</td>
<td>3,905</td>
</tr>
<tr>
<td>"Telecinema" - stand alone (two-way)</td>
<td>34,247</td>
<td>9.00 (46)</td>
<td>3,805</td>
</tr>
<tr>
<td>"Telecinema" - HBO satellite (two-way)</td>
<td>40,459</td>
<td>9.00</td>
<td>4,495</td>
</tr>
</tbody>
</table>

Conclusion

The preceding discussion suggests that: (1) larger cable systems are more likely to find the initiation of two-way service profitable than are smaller systems; (2) the costs of operating a two-way cable system are more likely to impede initiation of two-way services than are the costs of construction; and (3) over time, new two-way services such as per-program pay cable present the potential to generate profits in excess of those which could be earned by one-way systems.

Table 9-16. Break-Even Analysis of Cable Monthly Operating Expenses

<table>
<thead>
<tr>
<th>Expenses</th>
<th>No. of Subscribers</th>
<th>Fixed Costs</th>
<th>Variable Costs</th>
<th>Total Costs</th>
<th>Total Revenue</th>
<th>Monthly Operating Profit (Loss)</th>
<th>Monthly Sales Revenue</th>
<th>Break-Even Number of Subscribers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Two-Way Capacity</td>
<td>1,000</td>
<td>13.860 (40)</td>
<td>5.940</td>
<td>19,700</td>
<td>6,720 (41)</td>
<td>(13,080)</td>
<td>119,409 (42)</td>
<td>17,769</td>
</tr>
<tr>
<td>2,000</td>
<td>13.960</td>
<td>5.740</td>
<td>21,400</td>
<td>15,440</td>
<td>(7,960)</td>
<td>31,573</td>
<td>4,698</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>13.60</td>
<td>9.540</td>
<td>33,300</td>
<td>20,160</td>
<td>(13,240)</td>
<td>26,811</td>
<td>3,915</td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>13.60</td>
<td>22,540</td>
<td>47,000</td>
<td>47,040</td>
<td>0</td>
<td>27,346</td>
<td>4,096</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>13.860</td>
<td>33,140</td>
<td>67,200</td>
<td>67,200</td>
<td>0</td>
<td>27,346</td>
<td>4,096</td>
<td></td>
</tr>
<tr>
<td>B. Two-Way Ready System/25% Two-Way Service Penetration</td>
<td>1,000</td>
<td>15.120</td>
<td>6.480</td>
<td>21,600</td>
<td>7,970</td>
<td>(13,630)</td>
<td>10,877</td>
<td>10,148</td>
</tr>
<tr>
<td>2,000</td>
<td>15.120</td>
<td>10.480</td>
<td>25,600</td>
<td>15,940</td>
<td>(9,760)</td>
<td>44,142</td>
<td>5,539</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>15.120</td>
<td>15.480</td>
<td>30,600</td>
<td>23,910</td>
<td>(7,690)</td>
<td>42,685</td>
<td>5,381</td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>15.120</td>
<td>34.230</td>
<td>49,350</td>
<td>55,790</td>
<td>6,440</td>
<td>39,125</td>
<td>4,909</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>15.120</td>
<td>41.380</td>
<td>55,500</td>
<td>69,700</td>
<td>13,200</td>
<td>37,213</td>
<td>4,669</td>
<td></td>
</tr>
<tr>
<td>C. Two-Way Ready System/50% Two-Way Service Penetration</td>
<td>1,000</td>
<td>15.120</td>
<td>6.480</td>
<td>21,600</td>
<td>9,220</td>
<td>(12,380)</td>
<td>40,078</td>
<td>5,518</td>
</tr>
<tr>
<td>2,000</td>
<td>15.120</td>
<td>10.480</td>
<td>25,600</td>
<td>18,440</td>
<td>(7,160)</td>
<td>45,027</td>
<td>3,799</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>15.120</td>
<td>15.480</td>
<td>30,600</td>
<td>27,660</td>
<td>(13,040)</td>
<td>34,337</td>
<td>3,724</td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>15.120</td>
<td>34.230</td>
<td>49,350</td>
<td>64,540</td>
<td>15,190</td>
<td>32,066</td>
<td>3,492</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>15.120</td>
<td>41.380</td>
<td>56,500</td>
<td>92,200</td>
<td>35,700</td>
<td>27,431</td>
<td>2,975</td>
<td></td>
</tr>
<tr>
<td>D. Two-Way Ready System/70% Two-Way Service Penetration</td>
<td>1,000</td>
<td>15.120</td>
<td>6.480</td>
<td>21,600</td>
<td>10,220</td>
<td>(11,380)</td>
<td>41,317</td>
<td>4,043</td>
</tr>
<tr>
<td>2,000</td>
<td>15.120</td>
<td>10.480</td>
<td>25,600</td>
<td>20,440</td>
<td>(5,160)</td>
<td>31,029</td>
<td>3,026</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>15.120</td>
<td>15.480</td>
<td>30,600</td>
<td>30,660</td>
<td>0</td>
<td>30,534</td>
<td>2,986</td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>15.120</td>
<td>34.230</td>
<td>49,350</td>
<td>71,540</td>
<td>22,190</td>
<td>28,922</td>
<td>2,837</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>15.120</td>
<td>41.380</td>
<td>56,500</td>
<td>102,200</td>
<td>45,700</td>
<td>25,407</td>
<td>2,486</td>
<td></td>
</tr>
</tbody>
</table>
Notes — Chapter 9

[8] Production personnel salaries, research and writing, supervisory salaries, film, processing, graphics, videotape, studio production contract, etc. Production $24,025; salaries $45,097.

[9] Since these tapes would be identical to the tapes distributed through the cable system, the production cost is the same.

[10] It is assumed that the same research, planning, writing, and audio-visual aids production costs would be involved in these lessons as in the cable television lessons. The cost is therefore $69,122 less the producer salary for 12 weeks ($3,180), film ($1,000), announcer salary ($1,950), and studio production and editing ($15,000).

[11] Operator to prepare for and monitor video feeds at cable headend for 12 lessons for three shifts with one make-up for each original run. $3/hour.

[12] Cassette playback machine delivery and pick-up to 10 stations for three shifts each in station for 12 lessons and one make-up for each lesson. One and one-half hours for delivery and pickup to all stations at $4/hour.

[13] Ten stations with three shifts each at the Academy for 12 lessons with one Lieutenant spending two hours per session in preparation and presentation. One make-up offered for all 10 stations together for each shift, $12/hour.

[14] Ten stations with three shifts each in the station house for 12 lessons with one Lieutenant spending two-and-one-half hours in preparation, presentation and travel. One make-up offered for each shift for each lesson at the Academy (2 hours per session). $12/hour.

[15] Rental of playback machine at $20/hour for 72 hours.

[16] Cost of playback machine used exclusively for prefirr planning instruction (completely depreciated).

[17] Audiovisual equipment shared with other users (slide, film, and overhead projectors, etc.).

[18] Data/voice return channel at $136/month lease for three months, headend equipment at 1/36 of cost ($64,075) X three months, 67 terminals at 1/18 of cost ($150 each) X three months. (Rockford Cablevision “System Lease Plan” 11-24-75.)

[19] Data/voice return channel at $136/month lease for three months, headend equipment at 1/36 of cost ($64,075) X three months, 10 terminals at 1/18 of cost ($150 each) X three months. (Rockford Cablevision “System Lease Plan” 11-24-75.)

[20] Preparation of answer forms, delivery and pickup of forms, hand scoring of answers, posting. 200 trainees X 12 lessons X $.30 per answer form. 12 lessons delivery and pick-up at three years per lesson at $4/hour. Administrative supervision, 10 hours at $12/hour.

[21] Final examination and posting for 200 trainees X $.30 per answer form. Delivery and pickup, three hours at $4/hour. Administrative supervision two hours at $12/hour.

[22] Preparation of answer forms and hand scoring of answers posting. 200 trainees X 12 lessons X $.30 per answer form. Administrative supervision, 10 hours at $12/hour.

[23] Included in lease price.

[24] One percent per month for four months.

[26] $69,122 ÷ 6 (see note 8).

[27] $47,992 ÷ 6 (see note 10).

[29] Cassette playback machine delivery and pick-up to 50 stations for three shifts each in station for 12 lessons and one make-up for each lesson. One-and-one-half hours for delivery and pick-up at $4/hour.

[30] 50 stations with three shifts each for 12 lessons at the Academy with one Lieutenant spending two hours per session in preparation and presentation. Five make-ups offered for all 50 stations for each shift. $12/hour.

[31] 50 stations with three shifts each in the station house for 12 lessons with one Lieutenant spending two-and-one-half hours in preparation, presentation and travel. Five make-ups offered for all 50 stations for each shift. $12/hour.

[32] Cost of five playback machines used exclusively for prefirr planning instruction (completely depreciated).

[33] Data/voice return channel at $136/month lease for three months, headend equipment at 1/36 of cost ($64,075) X three months, 355 terminals at 1/18 of cost ($150 each) X three months. (Rockford Cablevision “System Lease Plan.” 11-24-75.)

[34] Data/voice return channel at $136/month lease for three months, headend equipment at 1/36 of cost ($64,075) X three months, 50 terminals at 1/18 of cost ($150 each) X three months. (Rockford Cablevision “System Lease Plan,” 11-24-75.)
Preparation of answer forms, delivery and pick-up of forms, hand scoring of answers, posting. 1000 trainees \(\times \) 12 lessons \(\times \) \$30 per answer form. 12 lesson delivery and pick-up at 15 hours per lesson at \$4/hour. Administrative supervision, 10 hours at \$12/hour.

Final examination and posting for 1,000 trainees \(\times \) \$30 per answer form. Delivery and pick-up, 15 hours at \$4/hour. Administrative supervision two hours at \$12/hour.

Preparation of answer forms and hand scoring of answers, posting. 1,000 trainees \(\times \) 12 lessons \(\times \) \$30 per answer form. Administrative supervision, 10 hours at \$12/hour.

The data provided in this section have come from four basic sources: John Bowers, Rockford Cablevision, Rockford, Illinois; John Hastings, Systems Engineering Manager, C-COR Electronics, Inc., State College, Pennsylvania; Donald Rozak, General Manager of Woodlands CATV Inc., Woodlands, Texas; Marshall Savage, Marketing Division, RCA Community Television Systems, North Hollywood, California; and Barry Silverstein, Cablenet International Corporation, Sarasota, Florida.

The data provided in this table were obtained from Woodlands CATV. They were prepared on March 11, 1977, and do not include pay TV expenses. Expense figures cited are those of the cable system alone, and do not include amortization of subscriber equipment (e.g., home terminal at \$300, basic home security package at \$200, or installation costs at approximately \$175 per household).

Fixed costs were obtained by assuming that 70 percent of the office, overhead, miscellaneous, installation, service, support and studio expenses for a 1,000 subscriber system represent typical fixed cost figures which should not vary with system subscriber levels.

Total revenue is computed for the one-way service by multiplying the average subscriber rate (\$6.72) by the number of subscribers. In the case of the two-way system, total revenue is calculated by first multiplying the average subscriber rate (\$6.72) by the number of basic subscribers, then adding \$5 for each subscriber who also uses the two-way service. In this case, the two-way service only includes monitoring smoke detectors, security and medical alarms, and does not include additional revenues possible with per-program pay TV.

The break-even sales level was obtained by using the following formula:

\[
\text{Break-Even Sales Level} = \frac{\text{Fixed Costs}}{1 - \frac{\text{Variable Costs}}{\text{Total Sales}}}
\]

All data are from estimates for a converter-filter two-way in the "Telecinema" system. All pay cable costs are assumed to be fixed costs with respect to the number of pay subscribers since it is assumed that each subscriber will deposit a sum equal to the depreciated value of the converter. These costs are exclusive of any two-way or one-way system costs.

"Telecinema" figures indicate that their average pay subscriber spends approximately \$9 per month.
Chapter 10

Public Policy in Two-Way Cable

The study of two-way cable technology in public service applications has identified a number of public policy issues to be faced as two-way services expand and develop. This section presents the background of existing policy in two-way cable communication, identifies definitional problems, suggests policies for the implementation of two-way service and outlines some of the responsibilities of local franchising authorities unique to two-way services, particularly in the area of upstream spectrum allocation.

Federal Rules

The Federal Communication Commission’s 1972 Report and Order on Cable Television Service (1) established “minimum” channel capacities which included a rule that cable systems in designated major television markets must have two-way communication potential. The FCC required that each cable system “maintain a plant having technical capacity for non-voice return communications.” (2) It reasoned that such “two-way communication, even rudimentary in nature, can be useful in a number of ways—for surveys, marketing services, burglar alarm devices, educational feedback, to name but a few.” (3)

The Commission held at that time that installation of return communication devices at each subscriber terminal was premature. Its rules were satisfied by construction of cable systems “with the potential of eventually providing return communication without having to engage in time-consuming and costly system rebuilding.” The construction of a new system with necessary “amplifiers and passive devices” or “equipment that could be easily altered to provide return service” would meet the requirement. (4)

The specific concern of the FCC was amplified in Reconsideration of Cable Television Report and Order (1972) (5) in which the FCC prohibited local franchising authorities from requiring a more sophisticated two-way capacity than prescribed by its regulations “because it is possible that any such requirement will exceed the state of the art or place undue burden on cable operators in this stage of cable development in major markets.” (6) FCC approval of plans by a franchising authority requiring the installation of more sophisticated two-way capability was to be granted only in those instances where a “franchising authority has a plan for actual use of a more sophisticated two-way capability and the cable operator can demonstrate its feasibility both practically and economically.” (7)

In 1976 the Commission attempted to resolve the question of whether to retain, delete or modify the two-way capacity requirement. (8) In rulemaking proceedings that year, most cable system operators filed comments which favored deletion of the requirement. They argued that it increased construction costs “from 10 to 140 percent” while remaining economically not viable for “at least five years.” (9) The Berkeley (California) Community Access Center filed comments which urged the deletion of the requirement in favor of its replacement by a local standard. (10) Retention of the requirement was urged by the Electronic Industries Association, educational authorities, city governments and the Cable Television Information Center. The National Association of Educational Broadcasters contended that “two-way instructive uses continue to develop and assume increased significance in the educational process.” (11) The City of Imperial Beach, California, asserted that cities could improve governmental efficiency and reduce operating costs by “sharing data processing and computer time.” (12)

The FCC reviewed considerations of costs and public benefits involved in constructing cable systems with two-way capacity. Alluding to the existence of a number of two-way cable experiments, the FCC noted that the general operation of “practical commercial two-way services” had not yet developed and that progress had been slower than anticipated. (13) But the Commission also observed that only modest costs were involved in building a plant with two-way capacity and failure to construct the capacity placed substantial obstacles in the path of two-way development. The possibility of very sub-
stantial public benefits persuaded the FCC to retain its "limited requirement" for two-way capacity. Accordingly, cable rules were modified to provide that not only major market cable but any system having 3,500 or more subscribers were required to comply having technical capacity for non-voice return communications." (14) Such systems in major markets which began operations after March 31, 1972, and those outside major markets that commenced operations after March 31, 1977, were required to provide the two-way capacity. All other systems having 3,500 or more subscribers were required to comply by June 21, 1986. (15) However, 3,500 subscriber systems which already met the 20-channel minimum capacity requirement (16) on or before June 21, 1976, were not required to modify their plants to comply with the two-way requirement. (17) In setting the subscriber level at 3,500, the FCC reasoned that "we have acted to exempt smaller, often less profitable systems from complying with our requirements and insured that larger communities will have the benefits associated with expanded channel capacity and the provision of access services." (18)

A major factor in the decision to retain the requirement for larger systems was the developmental "chicken and egg" problem. (19) "If the systems generally do not have the capacity to provide these services, then there is little incentive to develop the services. And if the services are not developed, then there is little incentive to install the capacity. (20)

Jurisdiction in Question

The FCC authority to require two-way capacity is now in question. A recent decision by the U.S. Court of Appeals for the Eighth Circuit has set aside the 1976 channel capacity rules (along with cable equipment and access rules) as beyond FCC jurisdiction. (21)

The decision is primarily directed to defeat FCC cable access channel requirements. (22) However, by way of footnote, the court attacks two-way capacity requirements:

Jurisdiction to require minimum channel capacity and two-way capacity has not been argued separately from the mandatory access requirement. Channel capacity is apparently necessary to provide access channels. The Commission has linked two-way capacity with the 20-channel requirement in the same regulation, apparently because the cost is lower if such capacity be added when the 20 channels are built. The relationship is not as clear as that of the 20-channel requirement, but to the extent that two-way capacity relates to the "access concept" or that two-way capacity cannot be separated from the 20-channel requirement, it must fall with the 20-channel and other regulations of the 1976 Report. (23)

Therefore, because two-way capacity is a part of the channel capacity rule and channel capacity is associated (at least, by the court) with mandatory access, the two-way provision was struck down along with access. If the two-way provision had been separated from the minimum channel capacity rule, it might have been treated differently. The FCC has decided to appeal the decision. (24)

FCC jurisdiction over two-way capacity has been questioned in other cases. The U.S. Court of Appeals for the District of Columbia, in National Association of Regulatory Utility Commissioners (NARUC) v. FCC (25), found that two-way, non-voice communication did not fall within the jurisdiction of the FCC:

We therefore conclude that most, if not all, of these uses to which the two-way, non-voice cable capacity is likely to be put, fall under the term "carrier"... It appears to us that the substantial bulk of the two-way, non-voice communications expected to be carried over leased access bandwidth will be both intrastate and common carrier in nature. The plain meaning of 152 (b) therefore seems to bar the Commission's assertion of a general pre-emptive power over all uses of access bandwidth. (26)

The Court concluded that two-way, non-voice communication was not "ancillary to broadcasting" and thus outside FCC jurisdiction. (27) This point is referenced by the Eighth Circuit decision previously discussed. (28)

More specifically, the NARUC definition established that those non-video, intrastate, two-way services transmitted via Class III and Class IV channels (29) fall outside the purview of the "reasonably ancillary" to broadcasting standard established in the Southwestern Case (30) and within the "intrastate" restrictions imposed under Section 152 (b) of the Communications Act of 1934 (31) and therefore is not under FCC jurisdiction. Under precedent established in such cases as Head vs. New Mexico Board (32), and TV Pix vs. Taylor (33), state regulation is valid provided uniform federal authority is unexercised or remains unexercised.

The "options paper" on cable prepared by the staff on the U.S. House Subcommittee on Communications has suggested greater state and local authority in cable matters. (34) It is anticipated that one outcome of the Communication Act rewrite, for which the options paper was written, will be the federal deregulation of cable.
The trend in judicial and legislative policy, therefore, is to give jurisdiction over two-way capacity to state or local governments. The exercise of local authority in two-way communication will probably best serve the needs of this emerging communication technology, since services will develop experimentally in a variety of forms in many different locations. Policy innovation at the local level could reflect local needs and specific services. There would be immediate feedback on policy effect and the capability to respond quickly. On the other hand, it would be difficult to impose any meaningful federal standards now without interfering with technical and service innovation.

Need for Clarification of Two-Way Capacity

As discussed earlier, two-way capacity is treated by the FCC as something less than active two-way service. Unless this distinction is clearly understood by franchising authorities, the promise of two-way capacity may be misleading. The FCC view of capacity does not require that the cable system be operational in the return mode, but only that it be capable of furnishing two-way, non-voice services. This necessitates installation of “certain passive equipment in the system’s distribution network and the use of downstream amplifiers which possess minimum second order distortion characteristics.”

The downstream amplifiers must be contained in a dual housing unit, built to receive a second amplifier, for upstream communications. The second amplifier is not actually installed. (38) Installation of the upstream amplifier would render the system active to transmit two-way communication assuming the installation of subscriber and headend terminal equipment.

Under existing federal rules, due to omission of explicit instructions, each government and cable system is left with the responsibility for making the transition from two-way capacity to active two-way services.

Introducing Provisions for Two-Way Cable

The nature of two-way cable communication is now clear enough so that some guidelines may be suggested for franchising authorities and cable companies anticipating a two-way system.

If it is the intent to write a two-way communication requirement into a franchise agreement, the nature of the two-way communication technology demands that the communication service or services to be provided be specified carefully. Each type of service makes unique demands on the character and technical capacity of the system—at the home terminal, in the distribution plant equipment and at the headend.

At this point it is useful to discuss the categories of service that might be provided by a two-way system. Some services may be wholly the province of private enterprise such as per-view pay programs for entertainment. Services such as training firefighters and other civil employees are associated with government and of predominant concern to public health, safety and welfare. Services such as fire, burglar and medical alarms, represent consumer and public benefits. The distinctions might be made according to the following scheme.

Consumer services would be defined as entertainment, education, alarms, etc., which are consumed directly by individuals. Institutional services are those that are used by private institutions (e.g., interbranch communication by banks and department stores) and government (e.g., internal communication and control in public safety departments).

These definitions require further refinement in terms of the source of support. Are the services associated primarily with the public or private sector? Where two-way services are primarily associated with the private sector, as is the case with per-view pay entertainment, advertising and electronic games, they may be defined as consumer-private two-way services. Where associated with private sector institutions, such as business data transfers, they may be defined as institutional-private two-way services.

Services that are principally supported by government may also be divided into consumer and institutional categories. Consumer-public two-way services may be defined as those used by the public but involving the government. These might include fire,
alarms, education, electronic mail and public recreation type entertainment. Institutional-public two-way services would include those services used internally by the government such as firefighter training or civil service education.

<table>
<thead>
<tr>
<th>Private</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer</td>
<td>Electronic games, etc.</td>
</tr>
<tr>
<td>Institutional</td>
<td>Data transfer between bank branches, etc.</td>
</tr>
</tbody>
</table>

If a franchise authority wished to develop particular two-way services, specification of such services could enter the agreement with the franchisee in at least two ways. One way would be the simple requirement that such a service be available on completion of the construction schedule (or as the system is turned on after each stage of construction). Such a franchise clause would seem to be appropriate for consumer- or institutional-private services where the service specified has been tested operationally and where market experience or projections would assure sufficient revenues to keep the two-way service from becoming a burden to the system or its subscribers.

If a two-way system were required exclusively for government services (institutional-public), the capital cost of the two-way system also could be viewed as socially desirable for the community and treated as a cost of acquiring the privileges in a franchise or as a direct cost to the government. In either case, the potential public benefit of the service would still be weighed against the costs, wherever assessed, in determining whether to include the service in the franchise.

The consumer-public category of two-way service presents special problems. In alarm communication, for example, the general public welfare is enhanced and cost of government service reduced, if alarm communication is available through two-way cable. At the same time the consumer realizes personal benefit. If the alarm communication service is mandated by the government, the franchise or ordinance must contain the two-way provision. If the desire is only to make the service available to those citizens who wish it, then the questions of marketability, cost and general public benefit all weigh in the decision to require a two-way system.

If investigation by the franchising authority identifies general value and also seems to indicate a desired consumer benefit, greater public welfare and/or increased government efficiency, writing a two-way service clause into the franchise would be appropriate. On the other hand, in the absence of strong evidence of the benefits of a service, the franchise could stipulate a field test. This would provide an opportunity for both the operator and the franchising authority to evaluate the benefit of the service without the high cost of completing a two-way system. Although many of the headend costs for a two-way system are fixed, distribution plants in many systems have been built to accommodate a two-way retrofit. The necessary switching hardware within the distribution plant can be added after construction. Thus such a field test would require modification of only a part of the cable system. Although a minimum-cost field test could not provide a random sample of households or geographically dispersed institutional sites, the test area could be designed to provide an economically feasible representation of a potential universe of users. Such a field test has been written into the Syracuse, New York, franchise. Smoke alarms and ambulance and police call buttons will be tested in 1,000 households.

(39) The franchise appears to leave the ultimate decision to extend the service to the entire franchise territory to the franchising authority. (40) This is perhaps the best policy, since the franchisee will certainly provide a major input to the evaluation process. To be most cautious, an arbitration arrangement could be specified to resolve differences in interpretation of field test results.

If a franchise authority is reluctant to impose even an experimental field test on a cable franchise, it might include a "state-of-the-art" clause in the ordinance or franchise agreement which would require two-way service prior to the end of the franchise period. Criteria by which state-of-the-art technology and service are judged may be hard to come by; however, the burden of establishing two-way cable technology as the state-of-the-art has been eased somewhat by the FCC requirement that systems have two-way capacity. The FCC Rules suggest that two-way service is important and imminent enough to warrant system design to accommodate it. A practical demonstration of a two-way service in other systems should provide impetus for suggesting the activation of the existing capability.

It is possible to set forth conditions which would lead to implementation of two-way service. The aggregation of a particular number of users for various types of two-way service would be an important condition. In aggregating users, the franchising authority may play a developmental role. This role could be particularly important in broadband communication because operators may not, on their own initiative, seek to develop applications of the technology which involve additional, and unique, public responsibility.

80
Whether a franchising authority can require activation of two-way capacity during the term of a franchise agreement, where activation is opposed by a cable system, varies from one jurisdiction to another. It seems that if the ordinance or legislative action which authorizes the franchise includes a provision for amendment of the franchise, the courts would support reasonable change. If the franchise agreement stands alone without adequate supporting legislation, it may be looked upon as a contractual relationship and change may be more difficult, absent franchisee concurrence.

Responsibilities for Local Government

Two-way cable is inherently a local service. The services to be supplied by such a system may involve agencies of local government (e.g., fire and police departments), entities endowed with a public interest, such as educational institutions, or local businesses.

A local government will have to assume some special burdens as it takes up the issue of cable development. As well as determining the kind of specific services it requires, the community may find it in the public interest to encourage development of community communication services that require advanced technology, a function similar to the FCC responsibility to "study new uses for radio, provide for experimental uses for frequencies and generally encourage the larger and more effective use of radio in the public interest." (42)

A unique responsibility for the local authority stems from the fact that in two-way cable, a variety of public and private services may eventually compete for upstream spectrum space. How the spectrum is allocated to these services is important to all users and potential users. Careful and conservative allocation is more critical as new services are developed and users increase.

At the present stage of development of two-way cable, it is possible to make only a tentative appointment of spectrum to services. This initial allocation can be flexible, particularly if the transmitting-receiving equipment remains in the hands of the cable system. While the cable systems may be in the best position to make the initial spectrum decisions in the developmental period, the franchising authority should reserve the opportunity to review spectrum plan and lease rates to protect public interest users (e.g., in firefighter training, alarm systems, electric power system communication). This is particularly important as competition for upstream spectrum increases.

Finally, the franchise authority and cable system must face the problem of adding new capacity as initial upstream spectrum is fully utilized. This matter is complicated by the high capital cost of changing the split between downstream and upstream signals or adding another cable. In these circumstances, a cable monopolist might forestall the capital cost of adding capacity by controlling demand through the lease rate structure.

The major problem for local authority is how to represent the public interest. On the upstream spectrum allocation and rate issues, perhaps the appropriate procedure is to exercise a right of approval so that a mechanism exists for the franchising authority to become informed of system development and to have the opportunity to express a judgment of public and user interest.

The addition of some two-way cable services (e.g., point-to-point data transmission, electric power system communication) clearly establishes those cable services in a domain which is generally encompassed by the traditional concept of "public utility." In these areas, the state government may be of assistance to local authorities in dealing with some of the complexities of franchise supervision. Although state governments have no previous experience in such areas as spectrum allocation, they may collect information as it becomes available and subsequently advise local authorities.

Summary

In this discussion we have attempted to document the history of public policy in two-way cable at federal and state levels and to point out where the developing technology leaves that rudimentary policy wanting.

Beyond establishing a clear meaning for two-way communication via cable, several important issues face franchising authorities: how to include two-way services in the agreement with the franchisee, how to represent the public interest in spectrum allocation and how and when to oversee lease rates. At this stage of development policy-makers face the historical problem in the telecommunication field—the need to take policy action while both technology and services are in developmental stages. In this case the problem is significantly different because it is primarily local and must be addressed by each community.
Notes — Chapter 10

(1) Cable Television Report and Order. 36 FCC 2d 143. February 2, 1972.
(2) 47 C.F.R. 76. 251(2)[3].
(4) Ibid.
(6) Ibid. Note 25.
(7) Ibid.
(10) Ibid.
(11) Ibid.
(12) Ibid. p. 309.
(13) Ibid.
(14) 47 C.F.R. 76.252 (a)(1).
(15) 47 C.F.R. 76.252 (b).
(16) 47 C.F.R. 76.252 (a)(1).
(17) 47 C.F.R. 76.252 (b).
(18) 59 FCC 2d 304.
(21) Midwest Video Corp. v. FCC (Case No. 76-1496) and ACLU v. FCC (Case No. 76-1839). U.S. Court of Appeals for the Eighth Circuit. February 21: 1978 (Cases joined in decision).
(22) The decision makes numerous references to "access rules" and requirements. Although operative decisional phrases allude to "channel capacity, equipment and access rules," the Court's "Conclusion" does not specify beyond these phrases.
(23) Midwest Video Corp. v. FCC. ACLU v. FCC (1978) at p. 16 and 17, footnote 2.
Project Goals

The primary goals of this experiment were to develop (1) a cost-feasible, functional two-way cable system for data return from the feeder system, and (2) to demonstrate applications of this technology in urban administration and social services. More specifically, we sought (3) to design and test an automated instructional system which would provide regular feedback, and still more specifically, (4) to implement a training system in the fire service that provides effective standardized instruction in an administratively efficient manner.

The first three objectives were achieved. To some extent, the system developed in these experiments has already become a model on which other systems will be patterned. Warner Cable Corporation hopes to be able to adapt the automated, interactional instructional system to the Columbus QUBE system. (1) (See Appendix X-1) The Syracuse, New York, two-way alarm system will use hardware and software developed for Rockford. (2) (See Appendix X-1) TOCOM, Inc. is using some of the Rockford concepts in its two-way systems and has employed one of the original Rockford two-way project staff members.

Reports of the project have been made to national conventions of instructional communications technologists (3), computer specialists (4), firefighters (5), public power operators and engineers (6), associations of cable television operators in the United States and Canada (7,8) and other groups. This is only the beginning of necessary dissemination activities, but indicates an interest in the interface of telecommunications and computer technologies in various applications.

The fourth objective, to initiate a practical training method in the fire service, and more generally to improve fire department communication, has also been achieved to the extent that the limited post-experiment experience indicates.

Rockford Fire Department

The field staff for the project has been in regular contact with the Rockford Fire Training Academy over the past three years. All four members of the Academy staff have developed television production skills to a fairly high level. Their current work, independent of project staff assistance, is competent and improving steadily. They are able to script in one- and two-way formats; make videotape on location and in the studio; edit and assemble segments; and mix audio. Their preparation of instructional television materials includes the ability to state instructional objectives clearly, and relate plans and scripts to those objectives. In addition to the Academy staff, three members of the Fire Department headquarters have become capable television producers for general and instructional communication purposes.

The Rockford Fire Department has purchased enough equipment to accomplish television production efficiently. The system employs simple black and white television equipment which has required little maintenance. The Training Academy personnel have produced instructional videotapes using the two-way interactive system that was developed through the project. Several people in the department are now capable of following the Operations Manual which programs the computer to process the lessons.

Since it is time-consuming to produce original materials for instructional purposes, the Training Academy personnel are converting existing instructional materials to two-way videotapes. Academy personnel will systematically convert materials used in conjunction with a 200-hour Advanced Firefighter Training Course to the two-way training mode. This entails adding interactive questions and quizzes to the training materials (slides, films, etc.) at appropriate points, videotaping on a three-quarter inch cassette, and preparing the tape for the two-way system. Six of these instructional programs had been made at this writing.

During the experimental 12-lesson prefire planning series, only four of the 10 Rockford fire stations were capable of receiving two-way television. Rockford Cablevision has now completed the conversion to two-way for all stations.

The Rockford Fire Department uses the two-way cable system for its daily briefing, “Update,” at 8:30 a.m. and 4:15 p.m. When this system is completely installed, the character-generated information will go upstream from the Fire Department alarm office to the headend, and downstream from the headend.
to the fire stations on channel B. The briefings include vital information such as hydrant reports and street closings. The Fire Department frequently adds a short videotape presenting special information about new programs, equipment and procedures, clarifications of policies, etc. Since the two-way system became operational for the experiment, 24 of these special briefings have been added to the regular daily "Update." Previously, these special briefings were presented personally by Deputy Chiefs to each of the three shift headquarters (33 separate presentations). Results of a review of the use of these programs completed in January 1978, are reported in Table 11-1.

In cooperation with the Civil Rights Equal Employment Opportunity Office, the Rockford Fire Department conducted several workshops to prepare applicants for the Fire Department civil service test. One of these workshops was conducted by television on the government channel to reach people who were unable to attend workshops in public buildings. The Fire Department Public Relations Officer made a presentation and then answered questions received by telephone. Twenty-three different individuals asked questions, and a fairly good audience among potential applicants watched the fire department program.

The Rockford Fire Department in cooperation with the Michigan State Fire College and Cablevision Director, produced a recruitment program which was run twice daily on the commercial channel for fire prevention month in October. Answer sheets printed in the newspapers and the Cablevision Program Guide program were run again in December 1977. Evaluation programs for the commercials have been conducted: "Safe Handling of Flammable Liquids," "Fire Safety Update," "Fire Prevention Week Posters," "Fire Safety, Man-on-the-Street Interviews," Parts I-III: "Christmas Fire Safety," "Update," Parts I and II.

Other Users

The University of Michigan used the two-way system to make in-service professional development materials available to teachers in 14 public schools in Rockford. The schools project ran from 8 a.m. to 4 p.m. weekdays from September 1977 through May 1978. The system functioned without major technological difficulties throughout the entire period. Virtually no special system maintenance was required for the two-way communication.

Swedish-American Hospital in Rockford, Michigan State University and Rockford Cablevision demonstrated the two-way system for continuing medical education as the first annual Health in Unserved Rural Areas (HURA) conference in February 1978, sponsored by the Department of Health, Education and Welfare.

Table 11-1. Survey of "Update" Usage, Rockford Fire Department (1976)

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
<td>Almost never</td>
</tr>
<tr>
<td>22%</td>
<td>Sometimes</td>
</tr>
<tr>
<td>72%</td>
<td>Almost always</td>
</tr>
</tbody>
</table>

Frequently, people select to watch the printed message portion of "Update."
Notes — Chapter 11

(2) Letter to Tom Baldwin, Michigan State University, from D. Steen McVoy, president, Broadband Technologies, Inc., October 4, 1977.

APPENDIX IV-1

Task Analyses:
High Rise Apartment Survey
Industrial Complex Survey
Formulation of the Prefire Plan
Task Analysis of Prefire Plan Survey for High-Rise Building

Contact owner or apartment manager and arrange for appointment.
Talk with owner or manager and explain that this is a prefire plan and not an inspection. Ascertain that difference is perceived.
Arrive at building office to begin prefire plan survey.

In The Office
Obtain the basic information needed for the heading of the prefire plan survey—Name of building, no. stories, type of occupancy, emergency telephone numbers.
If blueprints are available, check blueprints for the following information—Type of construction, dimensions of building, deadend corridors, location of exits.
Generally accompanied by manager, owner, or their representative, begin surveying first floor.

First Floor
Determine if F.D. keys exist.
Check to see which doors F.D. key will operate.
Check elevator for F.D. service key.
Find out what type of fire alarm system building has.
Locate annunciator panel and ascertain that it works. Make sure that all indications can be deciphered by firefighters.
Locate any utility shutoffs on the first floor and graphically diagram their location for reference later.
Note any problems that might be encountered in trying to shut off the utilities.
Locate all exits on first floor. Note their size and construction and see if they correspond to blueprints.
Check the sprinkler system if there is one: Note its characteristics for later reference—Automatic, dry, no. of risers.
Note if heat and/or smoke detectors are present.
Note if firewalls are present and locate them for later reference.
Note any other fire detector, control or extinguishing systems.
Look at average apartment and see if it corresponds to blueprints.
Ascertain if intercom or loud speaker system can be used for emergency communications.
Note any particular hazardous conditions that exist on first floor that would hamper firefighting operations.
Locate any valuables that are stored on the first floor.
Call elevator with F.D. service key.
Ride elevator to top floor of building.

Top Floor
Check to see if sprinkler system extends to top floor. If so, note same characteristics as before.
Locate the standpipes and diagram them for later use.
With tape measure, find out distance from standpipe to farthest point a fire hose will have to reach, down the distance.
Check stair towers for type of construction.
Find out if stair towers are vented and how the vents can be opened.
Check to see if stair towers have fire doors. If so, note type of construction.
List any utility or ventilation controls that exist on top floor. Note how they operate.
Note any particular hazards that exist on top floor.
Climb stairs to roof of building.

Roof
Examine all openings and vents in the roof and find out their origin and purpose.
Note all ventilation shafts and their means of operation.
Note the construction of the roof and the materials used.
Unlock penthouse and check elevator controls. Note how elevator can be operated from penthouse.
Check to see if penthouse is vented.
Take stairs or elevator to average floor.
Average Floor

Check general construction on floor. See if it is the same as the blueprint.

Note the materials used in construction.

Note the typical ceiling and windows, their materials and how they can be opened and shut.

Check location of: (a) mechanical shutoffs for individual floor: Ascertain from building manager that they are in the same location on all floors.

Check sprinkler system. Note same characteristics as before.

Note elevators, location of basement of building.

Basement

Locate any manual shutoffs in basement and make note of any problems that may be encountered in getting to them. Graphically map their location for later reference.

Check the heating system. Find out what type it is and important characteristics.

Note the construction of basement doors. Find out if they will be locked and if there is a nearest way to get them open.

Find any water valves in basement.

Mark down any hazardous conditions caused by the storage or location of service equipment in the basement.

Locate the emergency generator and note its characteristics. Find out how it works.

Locate access to basement and find best access route to shutoffs.

Throw basement and go outside.

Perimeter

Check the area for any exposures that would be affected by a fire in the building. Diagram their location and description.

Locate PIV and standpipe connections. Diagram their locations.

Locate hydrants and other water sources and diagram their locations.

Locate exits and determine best means for forcible entries.

Note if building has fire escape.

Note any hazardous conditions existing on outside of building that would hamper firefighting. List them and diagram them.

Measure off areas in which fire vehicles can physically fit.

Check area for all avenues of entrance and exit.

Ascertain that entire prefire survey has been filled out.

Return to fire station to begin prefire plan.
Task Analysis of Prefire Plan Survey for Industrial Building

Contact owner or supervisor and arrange for appointment.
Talk with owner or supervisor and explain that this is a prefire plan and not an inspection. Ascertain that the difference is perceived.
Arrive at building to begin prefire plan survey.

In The Office
Obtain the basic information needed for the heading of the prefire plan survey—Name of building, no. of stories, type of occupancy, emergency telephone numbers.
If blueprints are available, check for the following information—Type of construction, dimensions of buildings, elevator corridors, location of exits, types of operating hazards. (If no blueprints are available, check to see if any other overhead diagram exists. Often insurance companies will make record of the site for informational purposes.
Accompanied by owner or his representative, begin surveying the building(s).

First Floor or Each Building
Check to see which door F.D. keys will operate.
Check for F.D. service.
Find out what type of alarm system building has.
Locate alarm indicator panel and ascertain that it works. Make sure that all indications can be deciphered by firefighters.
Locate any utility shutoffs on the first floor and graphically diagram their location for later reference.
Note any problems that might be encountered in trying to shutoff the utilities. Check to see if all areas of the building are serviced by the same utilities.
Locate all exits that exist on the floor, note their size and construction and see if they correspond to blueprints.
Make special note of interior “hear It walls and diagram their locations.
Make special note of any abandoned, concealed shafts or underflow conveyors. Look for any other hazards that exist beneath the floor.
Check the sprinkler system if there is one. Note its characteristics for later reference. Make special note of degree of sprinkler head link and whether it is suitable for hazard involved.
Note if any heat and/or smoke detectors are present.
Note if any firewalls are present and locate them for later reference.
Ascertain that fire doors work properly and mark down the ones that don’t.
Determine if intercom or loud speaker system can be used for emergency communications.
Note any particularly hazardous working areas and diagram their locations.
Make special note of hazardous storage conditions. Find out if proper equipment is available to neutralize hazard.
Locate any material on floor that is particularly valuable.
Find out if any additional water is available for firefighting purposes. If so, locate and chart.
Note if any pieces of equipment are suspended from the ceiling. Determine if they present a hazardous condition.
Examine the ventilation system. Determine if it can be valuable for firefighting uses.
Determine if there are any natural paths for smoke to follow.
Note the construction of floors, walls, ceilings, windows and doors.
If there is an elevator, call it with key (if applicable) and ride it to next floor. If there is no elevator, take stairway to next floor.

Stairwell
Note construction materials.
Note if stairwell is enclosed or open. Check to see if it is vented.
Find out if stairwell doors are normally open or closed.
In Elevator

- Find out how door of elevator operates.
- Find out if elevator is open-shaft or closed-shaft.
- Note its type of construction.
- Locate elevator shutoffs and controls.

Every Floor

- Note if floor is sprinklered. Mark down some characteristics as before.
- Locate standpipes and diagram them for later use.
- With tape measure, find out distance from standpipe to farthest point a fire hose will have to reach.
- List any utility or ventilation controls on floor and note how they operate.
- Note all exits and fire escapes.
- Note the construction of floors, walls, windows and doors.
- Note “bearing” walls and their locations.
- Note if smoke and/or heat detectors are present.
- Note firewalls and locate them for later reference.
- Note any other fire detection, control or extinguishing devices.
- Ascertain that fire doors work properly. Mark down ones that don’t.
- Note any particularly hazardous working areas and diagram their locations.
- Make special note of hazardous storage conditions. Find out if proper equipment is available to neutralize hazard.
- Note if any pieces of equipment are suspended from ceiling. Determine if they present a hazardous condition.
- Examine the ventilation system. Determine if it can be used for firefighting purposes.
- Determine if there are any natural paths for fire to follow.

Roofs

- Note construction of roof and materials used.
- Examine all openings and vents. Find out their origins and purposes.
- Note all ventilation shafts and their means of operation.
- If elevator penthouse is present, unlock it and check elevator controls. Note how elevator can be operated from penthouse.
- Check to see if penthouse is vented.
- Examine any physical construction or structures that exist on roof (water tanks, metal towers, etc.).
- Determine what role they would play in the event of a fire.

Basement (In many industrial plants which have no basements, these characteristics apply to the first floors.)

- Locate any utility shutoffs and diagram their locations.
- Check the heating system. Find out its characteristics.
- Note the construction of floors, walls and ceilings.
- Find out which doors of basement are locked and the best way to enter basement.
- Find out what is stored in basement and note any hazardous storage conditions.
- Note if basement is sprinklered. Look for same characteristics as before.
- Locate the emergency generator and note its characteristics. Find out what it powers.
- Find out what will neutralize any flammable or combustible material stored in basement.
- Make special note of “bearing” walls and diagram their locations.
- Note if heat and/or smoke detectors are present.
- Note any other fire detection, control or extinguishing devices.
- Exit basement and go outside.
Perimeter

Check the area for any exposures that would be affected by a fire in the industrial building. Diagram their location and description.
Locate PTV and standpipe connections. Diagram their locations.
Locate hydrants and water sources and diagram their locations.
Locate exits and determine best means for forcible entries.
Note any fire escape and where they lead to.
Examine any storage tanks that exist in area. Find out what is stored in them and the characteristics of the stored substance. Find out which shutoffs control the flow of material to and from the tanks.
Note the construction of storage tank saddles. Determine if they will support tanks' weight in the event of a fire.
Note the presence of weeds, grass or other natural structures in area which would give a fire a path to follow.
Examine any outside storage areas. Determine if they present a hazardous condition to firefighters and find out how to neutralize any hazardous conditions that do exist.
Examine any other physical constructions that exist in area and determine if they present hazards in the event of a fire.
Examine fence which may exist around area. Find out which gates F.D. keys operate.
Measure off areas in which fire vehicles can physically fit.
Check area for all avenues of entrance and exit.
If supervisor has appointed someone to meet F.D., find out where he will be.
Make any adjustments to diagrams of building and area to update them.
Ascertain that entire prefire survey has been filled out.
Return at different time of day to see if exposures have changed.
File prefire plan at station.
Task Analysis for Formulation of Prefire Plan from Prefire Plan Survey

Analyze data on prefire plan to ascertain that it is complete.
If data is not complete, return to building to obtain supplementary data.
If it is uncertain that fire vehicles can fit in certain locations, return to building and physically position vehicles.
Diagram all floors and areas of building that contain information pertinent to firefighters. Use correct symbols when diagramming shut-offs, connections and hazards.
Diagram outside perimeter area. Include exposures, water supplies and any other structures or connections that would affect a firefighting situation.
Develop initial response plan for vehicles based upon the most effective way to fight a fire in the subject building.* Plan contains number and type of vehicles responding and written description of where they are to be positioned.
Diagram vehicular positions onto chart of perimeter area.
Send packet containing prefire plan survey, diagrams and initial response to individual fire companies.

In The Company

Extract material from prefire plan survey that is pertinent to that particular company's role in the response to a fire.
File prefire plan survey at company level for use by officers to gain overall perspective of building.
Develop company-level prefire plan that takes into account the company's expected role and alternate roles in fighting a fire in the subject building.
File the company's prefire plan in location that is easily accessible.
Update plan every six months.

*Response plan is based upon the following considerations. All carry equal weight in developing initial response: 1) Speed of entry to first floor and securing of elevator. 2) Location of F.D. connections. 3) Freeway lanes of access and egress. 4) Mobility of special pieces which take time and additional effort to move once committed. and 5) Best perspectives of all sides of a building.

*Normally done by company officers with input from other members of company.
APPENDIX IV-2

Building Survey Report Forms
Building Survey Report

General Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>No. of Stories</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
</tr>
<tr>
<td>F.D. Key Available?</td>
<td></td>
</tr>
<tr>
<td>Which Door?</td>
<td></td>
</tr>
<tr>
<td>Where Available?</td>
<td></td>
</tr>
<tr>
<td>Emergency Telephone Nos.</td>
<td></td>
</tr>
</tbody>
</table>

Blueprint Location

- []

Fire Protection Equipment

Automatic Sprinklers

- Wet
- Dry
- Deluge

Sprinkler Controls

- []

P.I.V.'s

- []

No. of Risers

- []

Location

- []

F.D. Connections

- []

Automatic Chemical Sprinklers

- Type

Deluge Application

- []

Local Application

- []

Location

- []
<table>
<thead>
<tr>
<th>HEATING SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>LOCATION</td>
</tr>
<tr>
<td>EMERGENCY POWER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENTILATION AND FORCIBLE ENTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSSIBLE POINTS OF VENTILATION</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>POSSIBLE POINTS OF FORCIBLE ENTRY</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VERTICAL STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAIRWAY / TOWER NO. 1</td>
</tr>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>LOCATION</td>
</tr>
<tr>
<td>FIRE DOORS? VENTED? FLOORS SERVICED</td>
</tr>
</tbody>
</table>

| STAIRWAY / TOWER NO. 2 |
| DESCRIPTION |
| LOCATION |
| FIRE DOORS? VENTED? FLOORS SERVICED |

| STAIRWAY / TOWER NO. 3 |
| DESCRIPTION |
| LOCATION |
| FIRE DOORS? VENTED? FLOORS SERVICED |

| ELEVATOR NO. 1 |
| LOCATION |
| F.D. SERVICE? |
| TYPE |
| FLOORS SERVICED|
| SHUTOFFS |
ELEVATOR NO. 2
LOCATION ____________________ F.D. SERVICE? __________________
TYPE ________________________ FLOORS SERVICED ___________
SHUTOFFS ____________________
ELEVATOR NO. 3
LOCATION ____________________ F.D. SERVICE? __________________
TYPE ________________________ FLOORS SERVICED ___________
SHUTOFFS ____________________
OTHER SHAFTS, DUCTS AND VERTICAL STRUCTURES ____________

COMMUNICATIONS
PROBLEMS ____________________
INTERNAL ____________________

RESCUE
LOCATION OF HANDICAPPED AND BEDRIDDEN _________________

PRESSURIZED STRUCTURES _________________
POSSIBLE PROBLEMS IN RESCUE ATTEMPTS
DEADEND CORRIDORS ____________________

LIMITED ACCESS/INACCESSIBLE AREAS __________________________

RESCUE
LOCATION OF VALUABLES ________________________________

112
OTHER SIGNIFICANT AREAS

HAZARDOUS MATERIALS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>LOCATION</th>
<th>IMPORTANT INFO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL EXTINGUISHING INSTRUCTIONS

PERIMETER SURVEY

EXPOSURES

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>DIR.</th>
<th>DIST.</th>
<th>HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBUSTIBLE MATERIALS

GROUND OBSTRUCTIONS

FENCES OR WALLS

PARKED CARS

OTHER
OVERHEAD OBSTRUCTIONS
Wires
Trees
Other

COMMON WALL STRUCTURES

GENERAL FIREFIGHTING INFORMATION
FIRE FLOW
LADDERING INFORMATION

HOSE INFORMATION

ADDITIONAL COMMENTS
<table>
<thead>
<tr>
<th>INITIAL REACTION</th>
<th>HAZARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HYDRANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F.D. CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDITIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
APPENDIX IV-3

Extract of Prefire Plan Survey
EXTRACT OF PREFIRE PLAN SURVEY FORM

PERIMETER SURVEY

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Type</th>
<th>Dir.</th>
<th>Dist.</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBUSTIBLE MATERIALS

- [Blank Line]

GROUND OBSTRUCTIONS

- **FENCES OR WALLS**
 - [Blank Line]
- **PARKED CARS**
 - [Blank Line]
- **OTHER**
 - [Blank Line]

OVERHEAD OBSTRUCTIONS

- **WIRES**
 - [Blank Line]
- **TREES**
 - [Blank Line]
- **OTHER**
 - [Blank Line]

ADJOINING STRUCTURES

- [Blank Line]
GENERAL FIREFIGHTING INFORMATION

FIRE FLOW

LADDERING INFORMATION

HOSE INFORMATION

ADDITIONAL COMMENTS
APPENDIX IV-4

Preliminary Behavioral Objectives:
“Perimeter Survey”
PRELIMINARY BEHAVIORAL OBJECTIVES: VIDEO TAPE #7

1.) The learner will identify specific things on the perimeter of a selected building.
 A.) Exposures
 B.) Overhead Obstructions
 C.) Ground Obstructions
 D.) Adjoining Structures
 C.) Combustible Material

2.) The learner will compile into finished prefire plans, information about:
 A.) Perimeter Inspection
 B.) Fire Flow
 C.) Laddering Information
 D.) Hose Information

3.) The learner will diagram the perimeter area of a selected building.

4.) The learner will interpret diagrams representing the perimeter area of a selected building.
APPENDIX IV-5

Comments on Pretest for Lesson #7
May 18, 1976

To: Pachuta and Sheridan
From: Greenberg and Stoianoff
Re: Comments on Pre-test for Video Tape #7

The statement of the objectives appears now to fairly well represent what all of us wish to express in such statements. My comments on them are here a matter of editing than of substance.

Behavioral Objective #1: I think that for clarity it should read "The learner will identify the following on the perimeter of a selected building."

Behavioral Objective #2: The words in 2C and 2D, "information," should be deleted because that same word appears in the stem of that behavioral objective. Perhaps it should be hoses rather than hose.

Behavioral Objective #4: It is the only one which is substantively unclear to me. I think the objective must indicate what it is that the learner "will interpret." It is too diffuse in its present form inasmuch as it does not specify the area and kinds of interpretation which you wish the learner to make from those diagrams. Take another crack at stating explicitly what that objective is designed to do.

On the pre-test itself, after Item 6, the statement of instructions is quite awkward. Perhaps it could say something like this: "On your finished pre-fire plans, different kinds of information would be located under different categories. Here are four categories in which information might be placed. For each of questions 7 thru 11, choose one of these four categories to indicate where you think the information would be found." You might want to play with that particular alternative but there ought to be a clearer statement of instructions than what is now found on the pre-test. On Page 2 under Figure 1, the word label is misspelled.

At some point, you might wish to consider how equivalently difficult pre-test items are for different behavioral objectives. For example, although there are twelve responses available for Behavioral Objective #4, they are all open-ended and they are primarily interdependent. That strikes me as much more difficult pre-test series than would be the kinds of items which test some of the other objectives, for example, Objective 1C. The reason for raising this question is that if we are to analyze the pre-test data in order to determine
the priority with which some content should be dealt with in the program itself, then it is essential that the pre-test be equivalently hard or equivalently easy across the several behavioral objectives. That is, if there are differential scores from firemen on the pre-test, they should represent differences in prior knowledge rather than differences in the severity with which we test different kinds of knowledge.
APPENDIX IV-6

Revised Behavioral Objectives:
Lesson #7
PRELIMINARY BEHAVIORAL OBJECTIVES: VIDEO TAPE #7 (REVISED)

1.) The learner will **identify** the following on the perimeter of a selected building:
 A.) Exposures
 B.) Overhead Obstructions
 C.) Ground Obstructions
 D.) Adjoining Structures
 E.) Combustible Material

2.) The learner will **compile** into finished prefire plans, information about:
 A.) Perimeter Inspection
 B.) Fire Flow
 C.) Ladderings
 D.) Hoses

3.) The learner will **diagram** the perimeter area of a selected building.

4.) The learner will **interpret** diagrams which give the following information about structures in the perimeter area of a selected building.
 A.) Description
 B.) Direction
 C.) Distance
 D.) Height
APPENDIX IV-7

Revised Pretest
Lesson #7
PRETEST - VIDEO TAPE #7

BRIEFLY DESCRIBE THE FOLLOWING:

1E. 1.) Combustible Materials

1B. 2.) Overhead Obstructions

1A. 3.) Exposures

2B. 4.) Fire Flow

1D. 5.) Adjoining Structures

1C. 6.) Ground Obstructions

ON YOUR FINISHED PREFIRE PLANS, DIFFERENT KINDS OF INFORMATION WOULD BE FOUND UNDER DIFFERENT HEADINGS. HERE ARE FOUR CHOICES OF HEADINGS UNDER WHICH INFORMATION MIGHT BE PLACED. FOR EACH OF QUESTIONS #7 THRU #11, CHOOSE ONE OF THE FOUR HEADINGS TO INDICATE WHERE YOU THINK THE INFORMATION WOULD BE FOUND. (CHOICES MAY BE USED MORE THAN ONCE)

The choices are:

A. Hose Information
B. Laddering Information
C. Perimeter Inspection
D. Fire Flow

2A. _____ 7.) Information on building overhangs.

2C. _____ 8.) Information on hard-packed surfaces.

2B. _____ 9.) Information on the capacity of the public water supply.

2D. _____ 10.) Information on any special nozzles that may be needed.

2A. _____ 11.) Information on quantities of parked cars in the area.

12.) Name two things you should look for when surveying a structure that adjoins a building which you are prefire planning.

1. ________________________________

2. ________________________________
FIGURE I.

YOU ARE DRAWING A PERIMETER DIAGRAM FOR THE "HI-GLOW" MANUFACTURING COMPANY. IN FIGURE I., DRAW AND LABEL THE THINGS DESCRIBED BELOW.

13.) A vacant lot bordering Hi-Glow to the south.

14.) A fire hydrant on the northeast corner of Second and Washington.

15.) A 100' X 100' one-story building restaurant on the southwest corner of First and Adams.

16.) A parking lot on the north side of the Hi-Glow building.

17.) A four-story warehouse taking up the entire block directly north of Hi-Glow.

18.) A cistern located 150' east of Hi-Glow.

19.) Name two ground obstructions that could interfere with firefighting operations.

1.

2.

132
FIGURE II

FIGURE II IS A SIMULATED PERIMETER DIAGRAM FOR "ACE MANUFACTURING". ANSWER THE FOLLOWING QUESTIONS ABOUT THE DIAGRAM.

FILL IN THE BLANKS WITH THE CORRECT ANSWERS:

20.) The most dangerous exposure hazard is ________________________

21.) A possible ground obstruction could be caused by ________________________

22.) A possible overhead obstruction could be caused by ________________________

IN THE SPACES BELOW, FILL IN THE REQUESTED INFORMATION ABOUT THE THREE MOST DANGEROUS EXPOSURE HAZARDS:

<table>
<thead>
<tr>
<th>23.) Description</th>
<th>Direction</th>
<th>Distance</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.) In the perimeter inspection part of your prefire plan survey form, information pertaining to a nearby overgrown grassy lot would be included under
A. Ground Obstacles
B. Adjoining Structures
C. Combustible Materials
D. Exposures

25.) Fire flow testing should be
A. done at the same time as the prefire plan survey and included in the survey information.
B. done separately and the information included in the prefire plan survey information.
C. done separately and the information kept separate from the prefire plan survey information.
D. done at the same time as the prefire plan survey, but the information kept separate

26.) Exposures which have priority in firefighting efforts have
A. a great deal of explosive material in storage.
B. possible trapped or endangered people present.
C. possible paths by which the fire could spread.
D. a great quantity of hazardous material in use.

27.) Under "Laddering Information" on your finished prefire plans, you'll give the least amount of space to
A. portable ground ladders.
B. aerial ladders.
C. snorkel rig placement.
D. hard-packed surfaces.

28.) Name two overhead obstructions that could interfere with firefighting operations.
1.
2.

29.) Name three things that could be classified as combustible material which might be located on the perimeter of the building you are surveying.
1.
2.
3.

30.) On your prefire plan survey, you have found that your aerial ladders will have no trouble operating at their normal angle. This means that a 75' aerial ladder will be able to reach________stories in the building you are surveying.
31.) Which of the following categories of information would be inserted in the space marked "Hose Information" on the prefire plan survey?

- [] Fire Flow
- [] Special couplings
- [] Hydrant locations
- [] Foam additives needed
- [] Length of lay
Overall, how much of the information asked of you did you think you
_____ Most of it
_____ Some of it
_____ Not much of it
_____ Very little of it

How much of the information asked of you do you think was important you to know?
_____ Most of it
_____ Some of it
_____ Not much of it
_____ Very little of it

How much of this information did you know at one time, but have for
_____ Most of it
_____ Some of it
_____ Not much of it
_____ Very little of it

How hard would it be for you to find out the things you didn't know
_____ Very hard
_____ Pretty hard
_____ Not very hard
_____ Not hard at all

If you knew all of this, do you think it would make you a better fi
_____ Definitely would
_____ Probably would
_____ Probably wouldn't
_____ Definitely wouldn't

How were the questions worded?
_____ Very clearly
_____ Most were clear
_____ About half were clear
_____ Most were confusing
_____ Very confused
APPENDIX IV-8

Results of Pretest #7
TO: Baldwin, Greenberg and Stoyanoff
FROM: Pachuta
RE: Results of Pretest #7

The revised pretest for video tape #7 was given at Rockford Fire Station #7 on the 24th and 25th of May and the 1st of June. A total of 12 men from three shifts took the test. The revised pretest is attached to this memo.

Below is a list of the scores and their associated statistics. The test contained 31 questions and a total of 49 points. Percentages reflect the number correct over 49.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Score</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>76%</td>
<td>Mean - 65.9</td>
</tr>
<tr>
<td>88%</td>
<td>67%</td>
<td>Median - 66</td>
</tr>
<tr>
<td>82%</td>
<td>65%</td>
<td>Variance - 531.07</td>
</tr>
<tr>
<td>82%</td>
<td>63%</td>
<td>Stan. Dev. - 23.05</td>
</tr>
</tbody>
</table>

The following objectives are revision #2 of the preliminary objectives that were stated in the memo of 10 May. Several changes suggested by Greenberg and Stoyanoff have been incorporated.

B.O. #1 The learner will identify the following on the perimeter of a selected building.
A.) Exposures
B.) Overhead Obstructions
C.) Ground Obstructions
D.) Adjoining Structures
E.) Combustible Material

Questions Testing Obj. 1A #3. #20. #26.

Scores 10 11 8
Total Score 29/36 = 81%

Questions Testing Obj. 1B #2. #22. #28 (2)
Scores 9 10 18/24
Total Score 37/48 = 77%
Scores 7 15/24 8
Total Score 30/48 = 63%

Questions Testing Obj. 1D #5. #12 (2)
Scores 9 19/24
Total Score 28/36 = 78%

Questions Testing Obj. 1E #1. #29 (3)
Scores 12 24/36
Total Score 36/48 = 75%

This objective dealt with identifying the things which comprise a basic visual inspection of the perimeter of a building. All of the men did well in answering the questions for this objective. The Rockford Fire Department has done quite a bit of perimeter inspections in the past and this realm is a known quantity to the firefighters.

The combustible materials that were referred to in objective 1E. differ from the more technical definition that was asked for in pretest #6. In that pretest, we were concerned with the difference between combustible and flammable material. Here, we were concerned with material on the perimeter of a building that could easily catch fire. At the beginning of the pretest, the men were informed that all of the questions referred to a "perimeter inspection" and the answers reflected this train of thought.

The lowest score of the five parts in the objective was from part C. The men had difficulty defining and identifying ground obstructions more from omitting key parts of the definition than from an ignorance of what was asked for. For instance, one man answered question #6 by saying "anything that gets in the way of firefighters," while another man said simply "fences." Only one man expressed a complete ignorance of the subject. He left the question blank.

On the whole, it seems that this objective does not need to be stressed in the final video tape. The terms will be presented once and defined briefly. Because all of the men display a great deal of knowledge in this area, this should be sufficient.

Since the survey form itself makes a distinction between overhead obstacles and ground obstacles, the differences should be stressed and made into an interactive point in the segment dealing with this objective.

Ques. #6 and Ques. #21 will be used as a basis in forming an interactive item.

The revised objective is:

Rev. B.O. #1 Given the perimeter of a selected building, the learner will identify obstructions, structures and materials that affect firefighting techniques.
B.O. #2 The learner will compile into finished prefire plans, information about:
A.) Perimeter Inspection
B.) Fire Flow
C.) Laddering
D.) Hoses

Questions Testing Obj. 2A #7. #11. #24.
Scores 4 12 1
Total Score 17/36 = 47%

Questions Testing Obj. 2B #4. #9. #25.
Scores 6 8 8
Total Score 22/36 = 61%

Questions Testing Obj. 2C #8. #27. #30.
Scores 2 5 7
Total Score 14/36 = 39%

Questions Testing Obj. 2D #10. #31 (3)
Scores 10 18/36
Total Score 28/48 = 58%

This objective scored much lower than objective #1. The problem, in general, was the lack of a formal scheme for ordering the information. In the past, all structures and materials noted on the perimeter of the building being surveyed were simply grouped together under "perimeter inspection." In the pretest, we asked the men to distinguish separate headings under which appropriate information would fit.

Questions #7 thru #11 deserve special note. Although the questions were similar in nature and used the same four options, the scores varied from a high of 12 (#11) to a low of two (#8). Most of the men who answered the questions incorrectly, chose to include the information asked for under "perimeter inspection" instead of another heading. This, again, shows a reliance on the term "perimeter inspection" as a catch-all.

Information on fire flow will be included in the prefire plan. The testing will be done separately using specialized techniques. Only half of the men could correctly define fire flow (ques. #4), so the definition should be included in the final video tape. The actual mechanics of fire flow testing are taught in the department via the Training Academy.

From the type of responses received, there is a strong indication that the final video tape should stress the type of information which should be placed under "Hose Information" and "Laddering Information" on the survey form. The men seemed to be confused about these two headings.
Ques. #7, Ques. #8, and Ques. #24 will be used in forming interactive items.

The pretest objective seems to be appropriate for the subject matter and was not changed.

Rev. B.O. #2 The learner will compile into finished prefire plans, information about:
 A.) Perimeter Inspection
 B.) Fire Flow
 C.) Laddering
 D.) Hoses

B.O. #3 The learner will diagram the perimeter area of a selected building.

Questions Testing Obj. 3 #13. #14. #15. #16. #17. #18.

Scores

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#13</td>
<td>8</td>
</tr>
<tr>
<td>#14</td>
<td>10</td>
</tr>
<tr>
<td>#15</td>
<td>6</td>
</tr>
<tr>
<td>#16</td>
<td>7</td>
</tr>
<tr>
<td>#17</td>
<td>8</td>
</tr>
<tr>
<td>#18</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Score 45/72 = 63%

The scores for the questions dealing with this objective were fairly constant for all items. In the past, the Rockford Fire Department has used maps to aid the men in finding out information about a building. The firefighters are familiar with the layout of a map and how to use it. Many of the stations have drawn quite a few diagrams of their own to aid them in finding basic fire department connections.

For the most part, an individual man either answered all of the questions correctly or missed them all. Two of the men skipped this section and didn't answer any of the questions. This seems to indicate that there is a wide variance in the amount of knowledge about this objective. Some of the men have no trouble at all drawing maps while others won't even attempt to do it.

For our purposes, it is important to standardize a system which all of the firefighters can use in drawing diagrams.

Ques. #13 thru #18 will be used to formulate several interactive items.

The objective, as it was written in the pretest, is appropriate.

Rev. B.O. #3 The learner will diagram the perimeter area of a selected building.

B.O. #4 The learner will interpret diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building.
 A.) Description
 B.) Direction
 C.) Distance
 D.) Height

Questions Testing Obj. 4A #23. (3) [Description]

Score 25/36

Total Score 25/36 = 71%
Questions Testing Obj. 4B #23. (3) [Direction]
Score 25/36
Total Score 25/36 = 69%

Questions Testing Obj. 4C #23. (3) [Distance]
Score 22/36
Total Score 22/36 = 61%

Questions Testing Obj. 4D #23. (3) [Height]
Score 25/36
Total Score 25/36 = 69%

This objective is closely associated with objective #3 and similar patterns emerged. Either a man answered all of the question correctly or he missed it entirely. Three men skipped the question altogether.

Although the question asked for, in effect, a "rank ordering" of the exposure hazards, the men were given credit if they simply identified four exposures and included the proper information about them. This was done because our advisors differed among themselves as to what would be "most hazardous."

Although the scores for this objective approach our cutoff point of "70%", questions should be included in the video tape which stress the standardized method we are initiating in the use of diagrams.

Ques. #23 will be used to form an interactive item.

Again, the objective appears to be a good one and will remain the same for scripting purposes.

Rev. B.O. #4 The learner will interpret diagrams which give the following information about obstructions, structures and materials in the perimeter of a selected building:
A.) Description
B.) Direction
C.) Distance
D.) Height

In general, this pretest was easier for the men than any of the others in the series. Although the men have not used a survey form such as the one we are instituting in the video tapes, they currently obtain diagrams of important buildings and go over them in the station houses. They are, therefore, familiar with maps and the terms associated with the perimeter of a building.

The emphasis in the video tape will be the "standardization" of prefire plan diagrams so that all of the stations in Rockford produce maps which are easily understood. This is something that is not currently being done.
Since this is the last of our "foundation" tapes, a review of tapes #2 thru #6 will be inserted into this program. The next four tapes (#8 thru #11) take the firefighters on prefire plan surveys and simulate fire scenes. Those tapes can better be used to experiment with the computer capabilities. In scripting this tape, it will be viewed as the last of a "series". For marketing purposes, the programs to this point are complete without computer interaction.

Attached to this memo is a composite look at the affective items. The responses are similar to the ones received on previous pretests.
Overall, how much of the information asked of you did you think you knew?

<table>
<thead>
<tr>
<th>0</th>
<th>Most of it</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Some of it</td>
</tr>
<tr>
<td>4</td>
<td>Not much of it</td>
</tr>
<tr>
<td>1</td>
<td>Very little of it</td>
</tr>
</tbody>
</table>

How much of the information asked of you do you think was important for you to know?

11	Most of it
1	Some of it
10	Not much of it
0	Very little of it

How much of this information did you know at one time, but have forgotten?

2	Most of it
7	Some of it
3	Not much of it
0	Very little of it

How hard would it be for you to find out the things you didn't know?

0	Very hard
1	Pretty hard
7	Not very hard
4	Not hard at all

If you knew all of this, do you think it would make you a better firefighter?

7	Definitely would
5	Probably would
0	Probably wouldn't
0	Definitely wouldn't

How were the questions worded?

6	Very clearly
6	Most were clear
0	About half were clear
0	Most were confusing
0	Very confused
APPENDIX IV-9
Second Revision

Behavioral Objectives for Lesson #7
BEHAVIORAL OBJECTIVES: VIDEO TAPE #7

B.O. #7-1 Given the perimeter of a selected building, the learner will identify obstructions, structures and materials that affect firefighting techniques.

B.O. #7-2 The learner will compile into finished prefire plans, information about:
 A.) Perimeter Survey
 B.) Fire Flow
 C.) Laddering
 D.) Hoses

B.O. #7-3 The learner will diagram the perimeter area of a selected building.

B.O. #7-4 The learner will interpret diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building.
 A.) Description
 B.) Direction
 C.) Distance
 D.) Height
Appendix IV-10

Initial Outline: Lesson #7
OUTLINE: VIDEO TAPE #7

I. SEGMENT 49 - Introduction to Perimeter Survey
 A. Film clip of building perimeter
 B. Question: When to do Perimeter Survey
 C. Reasons for doing perimeter survey after building survey
 D. Review of Fire Protection Equip. Perimeter Structures
 1. Question: Identify PIV Symbol
 2. Question: Identify Roof Tank Symbol
 3. Question: Identify Hydrant Symbol
 4. Question: Identify F.D. Connections Symbol

II. SEGMENT 50 - Exposures
 A. Historical Sequence - Chicago Tribune
 B. "Exposures" on the survey form
 C. Question: Identify Hazardous Exposure
 D. Filling in the survey form for "Exposures"
 1. Warehouse
 2. Abandoned Buildings

III. SEGMENT 51 - Combustible Material and Obstructions
 A. Combustible Material
 1. Film clip of grass fire
 2. Question: Def. of Combustible Material
 3. Combustible Material in relation to Perimeter Survey
 B. Ground Obstructions
 1. Survey form information
 2. Question: Identify Ground Obstruction
 C. Overhead Obstructions
 D. Godfrey Sequence
IV. SEGMENT 52 - Adjoining Structures
 A. Examples of adjoining structures
 B. Question: Identify Survey Form Heading

V. SEGMENT 53 - Perimeter Diagrams
 A. No new symbols for perimeter diagrams
 B. "Label" everything
 C. Use of graph paper to draw diagram
 D. Question: Identify Correct Diagram
 E. Question: Identify Distance
 F. Question: Identify Direction

VI. SEGMENT 54 - General Firefighting Information
 A. Film clip of fire
 B. Fire Flow
 1. Definition
 2. Survey form entry
 C. Laddering Information
 1. Examples
 2. Survey form entry
 D. Hose Information
 1. Examples
 2. Survey form entry
 E. Additional Comments
 1. Examples
 2. Survey form entry

VII. SEGMENT 55 - Quick Quiz over VTs #2 thru #7
 A. Question: Identify Symbol
 B. Question: Interpret Diagram
 C. Question: Identify Heading
D. Question: Identify Symbol for Gas Shutoff
E. Question: Identify Fire Flow
F. Question: Identify Symbol
G. Question: Identify Heading
H. Question: Identify Symbol for Overhead Door

II. SEGMENT 56 - Close of VT #7
 A. Farewell to Godfrey
 B. Credits
APPENDIX IV-11

Analysis of Interactive Items
Lesson #7
Analysis of Interactive Items

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. - When to do Perim. Survey</td>
<td>49-2</td>
<td>-</td>
<td>-</td>
<td>- *</td>
</tr>
<tr>
<td>2. - Identify PIV Symbol</td>
<td>49-4</td>
<td>Review Question - VT #2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. - Identify Roof Tank Symbol</td>
<td>49-5</td>
<td>Review Question - VT #2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. - Identify Hydrant Symbol</td>
<td>49-5</td>
<td>Review Question - VT #2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. - Identify F.D. Connections Sym.</td>
<td>49-6</td>
<td>Review Question - VT #2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. - Identify Hazardous Exposure</td>
<td>50-3</td>
<td>7-1</td>
<td>1A</td>
<td>31</td>
</tr>
<tr>
<td>7. - Def. of Combustible Material</td>
<td>51-1</td>
<td>Review Question - VT #6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. - Identify Ground Obstruction</td>
<td>51-5</td>
<td>7-1</td>
<td>1C</td>
<td>63</td>
</tr>
<tr>
<td>9. - Identify Survey From Heading</td>
<td>52-2</td>
<td>7-2A</td>
<td>2A</td>
<td>47</td>
</tr>
<tr>
<td>10. - Identify Correct Diagram</td>
<td>53-3</td>
<td>7-3</td>
<td>3</td>
<td>63</td>
</tr>
<tr>
<td>11. - Identify Distance</td>
<td>53-5</td>
<td>7-4C</td>
<td>4C</td>
<td>61</td>
</tr>
<tr>
<td>12. - Identify Direction</td>
<td>53-6</td>
<td>7-4B</td>
<td>4B</td>
<td>69</td>
</tr>
<tr>
<td>13. - Quick Quiz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. - Identify Symbol (Smoke Tr.)</td>
<td>55-1</td>
<td>Review Question - VT #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. - Interpret Diagram</td>
<td>55-2</td>
<td>7-4A, 7-4D</td>
<td>4A, 4D</td>
<td>69, 69</td>
</tr>
<tr>
<td>C. - Identify Heading</td>
<td>55-2</td>
<td>7-2D</td>
<td>2D</td>
<td>58</td>
</tr>
<tr>
<td>D. - Identify Symbol (Gas Sh.)</td>
<td>55-2</td>
<td>Review Question - VT #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. - Identify Fire Flow</td>
<td>55-3</td>
<td>7-2B</td>
<td>2B</td>
<td>61</td>
</tr>
<tr>
<td>F. - Identify Symbol (Open El.)</td>
<td>55-3</td>
<td>Review Question - VT #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. - Identify Heading</td>
<td>55-3</td>
<td>7-2C</td>
<td>2C</td>
<td>39</td>
</tr>
<tr>
<td>H. - Identify Symbol (OV Door)</td>
<td>55-4</td>
<td>Review Question - VT #3A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Warm-up question which will not count in final score.
APPENDIX IV-12

Formative Evaluation: Lesson #7
22 November 1976

TO: Baldwin, Greenberg and Stoyanoff

FROM: Pachuta

RE: Formative Evaluation for Video Tape #7 (#9)

Formative evaluation for video tape #7/#9 took place at Rockford Fire Station #7 during the week of 15 November. Attached are the scores and comments from the firefighters at Station #7 plus comments from others who have viewed the tape.

There were minor content errors noticed by the men, however, these can be corrected by editing out the inappropriate material and not redoing the segment in studio. Items #15 and #16 define these errors on the attached form.

The quick quiz for the video tape produced an abundance of comments from all groups who saw the program. Because of the diversity of comments, the quick quiz will be redone in its entirety. A new quick quiz will be written and cycled through MSU before going to studio with it.

Problems arose in interpreting the responses for the individual response mode in formative evaluation. These are enumerated in an attached memo.
FORMATIVE EVALUATION SCORES - "Perimeter Survey"

INDIVIDUAL

Tabulating the scores in this mode presented certain problems which are listed below:

1) One man in the individual mode has recently been transferred to Station #7. Because of this, he was unfamiliar with the past video tapes and the prefire planning symbols presented in them. Since 10 of the 18 gradable questions in this video tape deal with symbols which were originally presented in other tapes, his responses were eliminated from the scoring for those items.

2) One of the men in the group became irritated at the officer before the start of the quick quiz. As a result, he purposely answered every question in the quiz incorrectly. His scores were also eliminated, but only from the quick quiz portion of the items.

3) The ninth question in the quick quiz asks for the learner to identify the prefire planning symbol for a hazardous area. This symbol was not given to them in any previous tape because the actual studio production is occurring out of sequence with the order in which the final video tapes will be shown. The answer to the question, however, was alluded to in a foil for one of the other items on the tape. As a result, only one man missed the question.

4) The tenth and last item in the quick quiz asked for the prefire planning symbol for an overhead door. This symbol has been changed since the men saw the original version of the tape which presents it. Even so, two of the five men guessed the answer correctly.

Since different items have different base numbers from which the scores are derived, each item's score is placed over another number to indicate the total number of valid respondees for the item.
INDIVIDUAL SCORES

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Perimeter Survey</td>
<td>5/7</td>
</tr>
<tr>
<td>P.I.V. Symbol</td>
<td>4/6</td>
</tr>
<tr>
<td>Roof Tank Symbol</td>
<td>2/6</td>
</tr>
<tr>
<td>Hydrant Symbol</td>
<td>6/6</td>
</tr>
<tr>
<td>F.D. Connection Symbol</td>
<td>4/6</td>
</tr>
<tr>
<td>Railroad Siding</td>
<td>7/7</td>
</tr>
<tr>
<td>Correct Diagram</td>
<td>6/7</td>
</tr>
<tr>
<td>Distance</td>
<td>---</td>
</tr>
<tr>
<td>Direction</td>
<td>6/7</td>
</tr>
</tbody>
</table>

Quick Quiz

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke-Proof Tower Symbol</td>
<td>3/5</td>
</tr>
<tr>
<td>Nozzles Entry</td>
<td>3/6</td>
</tr>
<tr>
<td>Gas Shutoff Symbol</td>
<td>2/5</td>
</tr>
<tr>
<td>Fire Flow</td>
<td>4/6</td>
</tr>
<tr>
<td>Open Elevator Symbol</td>
<td>3/5</td>
</tr>
<tr>
<td>Hard-Packed Surfaces Entry</td>
<td>6/6</td>
</tr>
<tr>
<td>Annunciator Panel Symbol</td>
<td>0/5</td>
</tr>
<tr>
<td>Raised Siding Entry</td>
<td>6/6</td>
</tr>
<tr>
<td>Hazardous Area Symbol</td>
<td>4/5</td>
</tr>
<tr>
<td>Overhead Door Symbol</td>
<td>2/5</td>
</tr>
</tbody>
</table>

GROUP SCORE (3 men in group)

The following items were answered incorrectly in the group response mode of the formative evaluation:

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.I.V. Symbol</td>
<td></td>
</tr>
<tr>
<td>Roof Tank Symbol</td>
<td></td>
</tr>
</tbody>
</table>

Quick Quiz

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoke-Proof Tower Symbol</td>
<td></td>
</tr>
<tr>
<td>Nozzles Entry</td>
<td></td>
</tr>
<tr>
<td>Annunciator Panel Symbol</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX IV-13

Michigan State University Comments: Lesson #7
November 15, 1976

MEMO

TO: Pachuta, Sheridan, Bauman

FROM: Baldwin, Greenberg, Stoyanoff

RE: Tape #9 (7), Perimeter Survey: Evaluation

Again, this tape was excellent, but we did find a few items needing consideration for revision. You are probably aware of most of them.

1. The title was misspelled. Perimeter was spelled Peremeter.

2. Two words were misspelled in the survey form fill-out example: "story" and "masonry"

3. The gas station is 40' from the building in the survey.

4. The milk cow in the cartoon looks like part bull—is that way it kicked over the stool?

5. In the "fire flow" question, the word "needed" is one of the foils is partly off the screen.

6. On one of the interactive points, Carol's copy was not the same as the graphic. We don't need to fix this, but maybe the script should be proofed against the graphics in the future.

7. One of the questions about the location of items in the survey form is about a raised railroad siding and one of the foils is "overhead structures." We shouldn't have throw-away foils because it increases the probability of correct guessing and reduces the challenge. On another interactive question, there are only two foils (not a true-false).

8. Where did you get the formula for "flow" -- $F = 18C A^{0.5}$?
 This would be more correctly stated $F = 18C = \sqrt{\text{Area}}$ or $F = 18C(A)^{1/2}$.

cc. Stoyanoff

Greenberg

158
APPENDIX IV-14

Disposition of Comments
Lesson #7
FORMATIVE EVALUATION — Video Tape #7, Page #1

<table>
<thead>
<tr>
<th>Source</th>
<th>Comment</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSU</td>
<td>"Perimeter" in title misspelled</td>
<td>redo opening</td>
</tr>
<tr>
<td>MSU</td>
<td>two words misspelled in survey form</td>
<td>redo section about form</td>
</tr>
<tr>
<td>MSU</td>
<td>Correct answer not present in I^2</td>
<td>redo item</td>
</tr>
<tr>
<td>MSU</td>
<td>Cow looks like bull</td>
<td>stet</td>
</tr>
<tr>
<td>MSU</td>
<td>"Needed" partly off screen</td>
<td>redo quick quiz</td>
</tr>
<tr>
<td>MSU</td>
<td>Copy not same as I^2 copy</td>
<td>redo quick quiz</td>
</tr>
<tr>
<td>MSU</td>
<td>Bad foil in "raised RR crossing" I^2</td>
<td>delete item</td>
</tr>
<tr>
<td>MSU</td>
<td>only two choices in first I^2</td>
<td>stet (challenge ques.)</td>
</tr>
<tr>
<td>MSU</td>
<td>Restate fire flow formula</td>
<td>stet (formula from ref. manual)</td>
</tr>
<tr>
<td>Station #7</td>
<td>Too much dead air at beginning</td>
<td>edit out 6 sec.</td>
</tr>
<tr>
<td>Station #7</td>
<td>Could have carried Godfrey segment to modern "fire-proof" buildings</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>Didn't like wiggle wipe at start of "common wall structures"</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>"Identify Correct Diagram" I^2 - red question at end was confusing</td>
<td>delete 3rd asking of question.</td>
</tr>
<tr>
<td>Station #7</td>
<td>QQ I^2 - term "raised siding" confusing</td>
<td>redo quick quiz</td>
</tr>
<tr>
<td>Station #7</td>
<td>Explanation of foils for "railroad siding" I^2 - bad</td>
<td>delete explanation of foils</td>
</tr>
<tr>
<td>Station #7</td>
<td>Stream in picture can't be used for additional water</td>
<td>edit out reference to add. water source</td>
</tr>
<tr>
<td>Station #7</td>
<td>Answers to QQ given too fast</td>
<td>redo quick quiz</td>
</tr>
<tr>
<td>Station #7</td>
<td>Explain foils on QQ</td>
<td>redo quick quiz</td>
</tr>
<tr>
<td>Station #7</td>
<td>Would like study materials to accompany video tape</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>Discussion of fire flow confusing</td>
<td>insert fire flow definition</td>
</tr>
<tr>
<td>Indiv. Response</td>
<td>Roof Tank Symbol (2 of 6)</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>Smoke-Proof Tower Symbol (3 of 5)</td>
<td>stet</td>
</tr>
<tr>
<td>Indiv. Response</td>
<td>Nozzles Entry (3 of 8)</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>Gas Shutoff Symbol (2 of 5)</td>
<td>stet</td>
</tr>
<tr>
<td>Indiv. Response</td>
<td>Open Elevator Symbol (3 of 5)</td>
<td>stet</td>
</tr>
<tr>
<td>Station #7</td>
<td>Annunciator Panel Symbol (0 of 5)</td>
<td>stet</td>
</tr>
<tr>
<td>Indiv. Response</td>
<td>Overhead Door Symbol (2 of 5)</td>
<td>stet</td>
</tr>
<tr>
<td>Academy</td>
<td>QQ item about hard-packed surfaces misleading</td>
<td>revise item</td>
</tr>
<tr>
<td>Field Office</td>
<td>Several edits too tight - no time for talent to take breath</td>
<td>redo if possible</td>
</tr>
<tr>
<td>Field Office</td>
<td>No slate</td>
<td>insert slate</td>
</tr>
<tr>
<td>Field Office</td>
<td>Music under opening inappropriate</td>
<td>redo opening</td>
</tr>
</tbody>
</table>

Disposition

- redo opening
- redo section about form
- redo item
- stet
- redo quick quiz
- redo quick quiz
- delete item
- stet (challenge ques.)
- stet (formula from ref. manual)
- edit out 6 sec.
- stet
- stet
- delete 3rd asking of question.
- redo quick quiz
- delete explanation of foils
- edit out reference to add. water source
- redo quick quiz
- redo quick quiz
- stet
- insert fire flow definition
- stet
- revise item
- stet
- stet
- stet
- stet
- revise item
- redo if possible
- insert slate
- redo opening
APPENDIX V

SMPTE Time Code Interface and Computer-Controlled Video Switcher

John B. Eulenberg
Michael Gorbutt
Dennis Phillips
System Description

This Interface Unit is part of a system that enables a minicomputer to control and receive time code data from two video cassette tape recorders. These video tape recorders are used to play back pre-recorded class lectures onto a two-way cable television network.

Figure V-1. SYSTEM CONFIGURATION

![System Configuration Diagram]

The system operation will be described with the use of Figure V-1. The two-way cable system (1) transforms the output video signal (2) into a RF signal to be transmitted to users of the cable television system. These video signals are the outputs of either the video cassette recorders (VCR) or the character generators. The selection of which is to be outputed is made by the minicomputer. The actual relays (3) and (4) used to switch the video signals are located in the Interface Unit. The character generators are used to present written questions and answers onto the user's television sets. The users are expected to respond to these questions through the use of push button switches on channel selector boxes provided for each student. Each response along with its respective selector box ID code is digitized and put on the cable system. The response from each student is gathered by the minicomputer off the two-way cable system (5). But to do this the minicomputer must know when to look for responses. This is done through the use of a Shintron time code reader/generator. One of the two audio tracks of each video tape is pre-recorded with time code information generated by the timecode reader/generator unit. This time code data is digitally encoded in the form of Hours, Minutes, Seconds and Frames of tape time. During each class session, this time code audio track of the video tape is played back and decoded by the timecode reader/generator unit (6). This time code data is presented to the Interface Unit in a multiplexed form (7). The Interface Unit de-multiplexes the data and makes it available for the minicomputer whenever the minicomputer asks for it (8). The minicomputer is pre-
programmed with times to expect student responses for each lecture tape. This pre-programming is accomplished by use of the Interface Unit and a utility program which allows the operator to view a tape from start to finish, keying in from the console an indication of all relevant timing points as they are encountered. The utility program responds to each such keyed indication by summoning the current time code from the Interface Unit and recording it on a file. During administration of a lesson, the minicomputer periodically asks for tape times from the Interface Unit in order to know when to expect student responses and to which question a given response pertains. When a question is to be asked during a taped lecture, the minicomputer is programmed to write the question out on the character generator (9), stop the video tape by a pause control signal (10), and, switch the character generator to the video output line (4). After all the responses have been gathered by the minicomputer, the correct answer or other feedback is displayed on the user’s television by the character generator. The minicomputer then starts up the VCR again and switches the VCR back to the video output line and the taped lecture continues.

Interface Theory of Operation

The time code data received from the time code reader/generator units is time multiplexed in the form of digit values in BCD (DA, DB, DC, DD), and digit select lines (AN1 thru AN8). The four BCD inputs, DA, DB, DC and DD, to the right data latches (22 thru 25 and 32 thru 35) are connected in parallel. Therefore a digit value sent to the Interface Unit from a time code reader/generator is present at all the right digi latches at the same time. A digit select pulse latches this digit value into the correct digit latch. For example, a digit select pulse on the AN2 input line will store data into latch IC24 that was at its input lines. This stored BCD data is converted to seven segment lines by IC21 to drive the unit hours digit display (D2). The time code reader/generator provides the timing so that the digit select pulses will route the proper digit values to the proper display digits. The BCD information at the output of the digit latches is also provided as time code data inputs to the minicomputer by way of Variable Threshold Digital Input PCB. (VTDI) located in the minicomputer. Since there are two interface circuits (Interface #1 and #2) with time code data outputs, only one of them is enabled at a time by gating as an input to the VTDI PCB by the minicomputer. Therefore the circuiting discussed converts multiplexed time code data from a time code reader/generator unit to data stored in latches that is displayed and also available to the minicomputer upon request.

Because the data available to the minicomputer at the outputs of the latches is not always good data because of multiplexing, to overcome this problem, a data ready line (DR) is provided to tell the minicomputer when the data in the latches is good data. This data ready pulse is derived from the Tens Hours digit select signal (AN1). Normal circuit operation will be explained with the aid of Figures V-6 and V-7. When the minicomputer wants a time code reading of the VTR, it sends a data request pulse (DS) to the Interface Unit as shown in Figure V-7. This pulse triggers a monostable multivibrator, IC 76. When the next complete update of the time code display has been finished the monostable is reset by an update pulse. The data ready pulse DR which is sent to the minicomputer to indicate that the time code information at the data latch outputs is correct, is derived as shown in Figure V-7. If the VCR is stopped, a DR pulse will still be sent to the minicomputer because the monostable will reset itself after 40 milliseconds, as shown in Figure V-6. The data stored in the latches is the time code of when the VCR was stopped.

There are two interface circuits in the Interface Unit. Interface #1 and Interface #2. The time code outputs and the DR output of both are “OR ed” together. The minicomputer chooses which interface circuit to look at by an enable signal. This enabling is done by gating the time code outputs and the DR monostable (IC 56) of both circuits.
Interface Cabling

The cables linking the major components of the interfacing system are schematized in Figure V-2. The assignments for the cables are given in Tables V-1 through V-4 and in Figures V-4 and V-5.

Circuit Board Layout

Figure V-3 shows the arrangement of the circuit boards within the Interface Unit. Figure V-4 shows wiring of the components within the Unit which are not contained on the two large printed circuit boards, PCB #1 and PCB #2. This includes the demultiplexing circuitry, the video switching control circuitry, and device select circuitry. Figure V-5 shows the component layout and schematic for the printed circuit board introduced into the Shintron units to buffer the timecode reader output signals. Figures V-8A through V-8C show the interconnection schematics for the components resident on PCB #1 and PCB #2 and the display board. Figures V-9 and V-10 and Table V-7 detail the component layout on these boards and show the connections to the MAN-1 displays. Table V-5 gives the part number assignments for the integrated circuits. Table V-6 summarizes the current requirements for the system components. The power supply chosen was a Power Model 2C5-6B, rated at 6 amps for 5 VDC. This provides coverage of the calculated maximum 4 amps required by the Interface Unit and offers a margin for future expansion.

Control and Data Signals

The bit assignments on the General Purpose Input/Output Board and the Variable Threshold Digital Input Board in the General Automation SPC-16 minicomputer are given in Table V-8 and V-9.
Figure V-2. SYSTEM CABLING

TIMECODE AUDIO OUTPUT
VCR 1
V1
20p
REMOTE CONTROL
V2
20p
REMOTE CONTROL
VCR 2

VIDEOCASSETTE RECORDERS

COMPUTER

PADDLE PCB
GPIO

PADDLE PCB
VTDI

TIMECODE DATA

VTR 2
VTR 1

INTERFACE UNIT

BUFFER PCB

SHINTRON 1

PADDLE PCB

INTERFACE #1

IC 1

INTERFACE #2

IC 2

MULTIPLEXED TIMECODE DATA

MULTIPLEXED TIMECODE DATA

SHINTRON 2

BUFFER PCB

P1
30p

S1

P2
25p

S2

P1
30p

S1

P2
25p

S2

TIMECODE READER/GENERATORS

INTERFACE UNIT

S1

S2

MULTIPLEXED TIMECODE DATA

MULTIPLEXED TIMECODE DATA

INTERFACE UNIT

S1

S2
Figure V-3. ARRANGEMENT OF CIRCUIT BOARDS WITHIN UNIT

FRONT PANEL

Display PCB

INTERFACE PCB #2

(Top View)

INTERFACE PCB #1

Relay 2

5v 6 amp Power Supply

Relay 1

REAR PANEL
Figure V-6. TIMING RELATIONSHIPS

Figure V-7. TIMING RELATIONSHIPS
NOTE 1. When the Shintron is in Write Mode DP is high and timecode data to this unit is blocked. When Shintron is in READ MODE, DP is low and this unit displays continuously updated timecodes.

THIS FEATURE HAS BEEN DISABLED by bending pin 9 of IC #26 out of its socket so that timecode data from the Shintron is always displayed.

NOTE 2. → denotes a signal line arriving to the card through the main card edge connector. All such lines are terminated as follows:

→ denotes a signal line leaving the card through the main card edge connector. All such lines are open collector and are terminated as follows:
Figure V-8B. INTERFACE CIRCUITRY (cont.)

To Display Connector (See Table V-7)

Unit Hours (D2)

Ten Hours (D1)

Ten Minute (D3)

Unit Minute (D4)

To Display Connector
Figure V-8C. INTERFACE CIRCUITRY (cont.)
Figure V-9. INTERFACE PCB IC LAYOUT

Component Side

Display Current Limiting Resistors

Pull-Up and Pull-Down Resistors
PIN ASSIGNMENTS FOR MAN 1 LED DISPLAY

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a segment</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>common anode</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>d.p.</td>
</tr>
<tr>
<td>7</td>
<td>e</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
</tr>
<tr>
<td>9</td>
<td>common anode</td>
</tr>
<tr>
<td>10</td>
<td>c</td>
</tr>
<tr>
<td>11</td>
<td>g</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>b</td>
</tr>
<tr>
<td>14</td>
<td>common anode</td>
</tr>
</tbody>
</table>

(See Table V-7)
<table>
<thead>
<tr>
<th>Function</th>
<th>GPIO Paddle</th>
<th>Control</th>
<th>VTR1</th>
<th>VTR2</th>
<th>V1</th>
<th>V2</th>
<th>Interface #1</th>
<th>Interface #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCB Pad#</td>
<td>(37p)</td>
<td>(9p)</td>
<td>(9p)</td>
<td>(20p)</td>
<td>(20p)</td>
<td>(56p)</td>
<td>(56p)</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Ready DR</td>
<td>A03</td>
<td>5</td>
<td></td>
<td></td>
<td>36</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset to VTR1</td>
<td>B07</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset to VTR2</td>
<td>B15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Select</td>
<td>B00</td>
<td>10</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Request DS</td>
<td>B08</td>
<td>15</td>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set to CG1</td>
<td>B06</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5v</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5v</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5v</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop-VTR1</td>
<td>B01</td>
<td>20</td>
<td>A</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause-VTR1</td>
<td>B02</td>
<td>21</td>
<td>B</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rwd-VTR1</td>
<td>B03</td>
<td>22</td>
<td>C</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FF-VTR1</td>
<td>B04</td>
<td>23</td>
<td>D</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWD-VTR1</td>
<td>B05</td>
<td>24</td>
<td>E</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Func Off Sense-VTR1</td>
<td>A00</td>
<td>25</td>
<td>F</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND-VTR1</td>
<td>GND</td>
<td>26</td>
<td>'H'</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause Sense-VTR1</td>
<td>A01</td>
<td>27</td>
<td>J</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby Sense-VTR1</td>
<td>A02</td>
<td>28</td>
<td>K</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop-VTR2</td>
<td>B09</td>
<td>29</td>
<td>A</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause-VTR2</td>
<td>B10</td>
<td>30</td>
<td>B</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWD-VTR2</td>
<td>B11</td>
<td>31</td>
<td>C</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FF-VTR2</td>
<td>B12</td>
<td>32</td>
<td>D</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWD-VTR2</td>
<td>B13</td>
<td>33</td>
<td>E</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Func Off Sense-VTR2</td>
<td>A06</td>
<td>34</td>
<td>F</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND-VTR2</td>
<td>GND</td>
<td>35</td>
<td>H</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pause Sense-VTR2</td>
<td>A09</td>
<td>36</td>
<td>I</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby Sense-VTR2</td>
<td>A10</td>
<td>37</td>
<td>K</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Interface PCB</td>
<td>Timecode Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#1 and #2 (56 pin connectors)</td>
<td>(37 pin connector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND:</td>
<td>1 (Interface #1 only)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THRS 8</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UHRS 8</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMIN 8</td>
<td>14</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UMIN 8</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSEC 8</td>
<td>56</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEC 8</td>
<td>53</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRM 8</td>
<td>46</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFRM 8</td>
<td>42</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table V-3. PIN ASSIGNMENTS: CI CABLE

<table>
<thead>
<tr>
<th>Function</th>
<th>Timecode Data</th>
<th>VIDI Paddle PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[37 pin connector]</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>1</td>
<td>pin #</td>
</tr>
<tr>
<td>NC</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>THRS 8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>yellow</td>
</tr>
<tr>
<td>UHRS 8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>blk</td>
</tr>
<tr>
<td>TMIN 8</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>yellow</td>
</tr>
<tr>
<td>UMIN 8</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>blk</td>
</tr>
<tr>
<td>NC</td>
<td>19</td>
<td>blk</td>
</tr>
<tr>
<td>TSEC 8</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>blk</td>
</tr>
<tr>
<td>1</td>
<td>blak</td>
<td>white</td>
</tr>
<tr>
<td>USEC 8</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>blk</td>
</tr>
<tr>
<td>TFRM 8</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>yellow</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>grn</td>
</tr>
<tr>
<td>UFRM 8</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>blk</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>blk</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Table V-4. PIN ASSIGNMENTS: CABLE SI, WIRING SI1, SI2, S1, S2

Cable SI

<table>
<thead>
<tr>
<th>SHIN 1/SHIN 2</th>
<th>P2 (Rear of Shintron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Wiring S1, S2 see Figure V-5

Wiring SI1, SI2 see Figure V-4
Table V-5. INTEGRATED CIRCUIT PART NUMBERS AND SUBSTITUTIONS

<table>
<thead>
<tr>
<th>IC Number</th>
<th>IC Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>7447</td>
</tr>
<tr>
<td>12</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>13</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>14</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>15</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>16</td>
<td>7402 or 74L02 or 74LS02</td>
</tr>
<tr>
<td>21</td>
<td>7447</td>
</tr>
<tr>
<td>22</td>
<td>74175</td>
</tr>
<tr>
<td>23</td>
<td>74175</td>
</tr>
<tr>
<td>24</td>
<td>74175</td>
</tr>
<tr>
<td>25</td>
<td>74175</td>
</tr>
<tr>
<td>26</td>
<td>7404 or 74L04 or 74LS04</td>
</tr>
<tr>
<td>31</td>
<td>7447</td>
</tr>
<tr>
<td>32</td>
<td>74175</td>
</tr>
<tr>
<td>33</td>
<td>74175</td>
</tr>
<tr>
<td>34</td>
<td>74175</td>
</tr>
<tr>
<td>35</td>
<td>74175</td>
</tr>
<tr>
<td>36</td>
<td>7402 or 74L02 or 74LS02</td>
</tr>
<tr>
<td>41</td>
<td>7447 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>42</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>43</td>
<td>7433 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>44</td>
<td>7402 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>45</td>
<td>7403 or 74L03 or 74LS03</td>
</tr>
<tr>
<td>46</td>
<td>7406</td>
</tr>
<tr>
<td>51</td>
<td>7447</td>
</tr>
<tr>
<td>56</td>
<td>74121</td>
</tr>
<tr>
<td>61</td>
<td>7447</td>
</tr>
<tr>
<td>66</td>
<td>7400 or 74L00 or 74LS00</td>
</tr>
<tr>
<td>71</td>
<td>7447</td>
</tr>
<tr>
<td>76</td>
<td>74123</td>
</tr>
<tr>
<td>81</td>
<td>7447</td>
</tr>
</tbody>
</table>

Table V-6. IC CURRENT REQUIREMENTS PER INTERFACE PCB

<table>
<thead>
<tr>
<th>IC Type</th>
<th>Maximum Current</th>
<th>Number of IC's</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN 1 LED</td>
<td>120ma</td>
<td>8</td>
<td>960 ma</td>
</tr>
<tr>
<td>74L00</td>
<td>4ma</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>74L02</td>
<td>4ma</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>74L03</td>
<td>4ma</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>74L04</td>
<td>4ma</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>7406</td>
<td>40ma</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>7447</td>
<td>64ma</td>
<td>8</td>
<td>512</td>
</tr>
<tr>
<td>74121</td>
<td>23ma</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>74123</td>
<td>40ma</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>74175</td>
<td>30ma</td>
<td>8</td>
<td>240</td>
</tr>
<tr>
<td>7442</td>
<td>56ma</td>
<td>2</td>
<td>112ma</td>
</tr>
<tr>
<td>74L00</td>
<td>4ma</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>7476</td>
<td>83ma</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>75402</td>
<td>50ma</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

Both Interface PCB's: 3736ma

TOTAL SYSTEM CURRENT (MAX): 3944ma

(=4 AMP Max. (=3 AMP measured)
Table V-7. DISPLAY PCB PIN CONNECTIONS

<table>
<thead>
<tr>
<th>Interface PCB Pad#</th>
<th>Function</th>
<th>Display PCB Connector Pin#</th>
<th>Interface PCB Pad#</th>
<th>Function</th>
<th>Display PCB Connector Pin#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5v</td>
<td>4</td>
<td>37</td>
<td>D5-g</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>+5v</td>
<td>3</td>
<td>38</td>
<td>D5-d</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>+5v</td>
<td>2</td>
<td>39</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>4</td>
<td>+5v</td>
<td>1</td>
<td>40</td>
<td>D5-c</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>41</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>42</td>
<td>D4-b</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D1-g</td>
<td>68</td>
<td>43</td>
<td>D5-a</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>D1-f</td>
<td>71</td>
<td>44</td>
<td>D5-e</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>D1-a</td>
<td>72</td>
<td>45</td>
<td>D5-f</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>D1-d</td>
<td>65</td>
<td>46</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>11</td>
<td>D1-b</td>
<td>70</td>
<td>47</td>
<td>d.p.2</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>D1-c</td>
<td>67</td>
<td>48</td>
<td>D6-d</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>D2-g</td>
<td>60</td>
<td>49</td>
<td>D6-b</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>D1-e</td>
<td>69</td>
<td>50</td>
<td>D6-c</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>D2-a</td>
<td>62</td>
<td>51</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>16</td>
<td>D2-d</td>
<td>55</td>
<td>52</td>
<td>D6-e</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>D2-f</td>
<td>64</td>
<td>53</td>
<td>D6-g</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>D2-c</td>
<td>57</td>
<td>54</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>19</td>
<td>D3-b</td>
<td>50</td>
<td>55</td>
<td>D6-a</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>D2-b</td>
<td>59</td>
<td>56</td>
<td>D7-d</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>D3-g</td>
<td>54</td>
<td>57</td>
<td>D6-f</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>D2-a</td>
<td>61</td>
<td>58</td>
<td>D7-c</td>
<td>17</td>
</tr>
<tr>
<td>23</td>
<td>D3-a</td>
<td>56</td>
<td>59</td>
<td>D7-g</td>
<td>14</td>
</tr>
<tr>
<td>24</td>
<td>D3-d</td>
<td>47</td>
<td>60</td>
<td>D7-b</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>D3-f</td>
<td>58</td>
<td>61</td>
<td>D7-a</td>
<td>16</td>
</tr>
<tr>
<td>26</td>
<td>D3-c</td>
<td>49</td>
<td>62</td>
<td>D7-e</td>
<td>21</td>
</tr>
<tr>
<td>27</td>
<td>d.p.1</td>
<td>66</td>
<td>63</td>
<td>D7-f</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>D3-e</td>
<td>51</td>
<td>64</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>29</td>
<td>D4-g</td>
<td>38</td>
<td>65</td>
<td>d.p.3</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>D4-d</td>
<td>37</td>
<td>66</td>
<td>D8-d</td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td>D5-b</td>
<td>32</td>
<td>67</td>
<td>D8-g</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>D4-c</td>
<td>39</td>
<td>58</td>
<td>D8-c</td>
<td>11</td>
</tr>
<tr>
<td>33</td>
<td>D4-a</td>
<td>44</td>
<td>69</td>
<td>D8-f</td>
<td>12</td>
</tr>
<tr>
<td>34</td>
<td>D4-e</td>
<td>43</td>
<td>70</td>
<td>D8-e</td>
<td>13</td>
</tr>
<tr>
<td>35</td>
<td>D4-f</td>
<td>46</td>
<td>71</td>
<td>D8-a</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>NC</td>
<td>72</td>
<td>NC</td>
<td>D8-b</td>
<td>7</td>
</tr>
</tbody>
</table>
Table V-8. CONTROL WORDS
General Purpose Input/Output (GPIO) Board Data Bit Assignments

Input Word (Memory Address-Hex 35)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Interpretation</th>
<th>Device</th>
<th>Bit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function Off Sense</td>
<td>VCR#1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Pause Sense</td>
<td>VCR#1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Standby Sense</td>
<td>VCR#1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Not-Used</td>
<td>VCR#1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Not-Used</td>
<td>VCR#1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Not-Used</td>
<td>VCR#1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Not-Used</td>
<td>VCR#1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Function Off Sense</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Pause Sense</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Standby Sense</td>
<td>VCR#2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Not-Used</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Not-Used</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Not-Used</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Not-Used</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Not-Used</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Function Off Sense</td>
<td>VCR#2</td>
<td></td>
</tr>
</tbody>
</table>

Output Word (Memory Address-Hex 35)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Interpretation</th>
<th>Device</th>
<th>Bit Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Device Select</td>
<td>VCR#1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Stop</td>
<td>VCR#1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Pause</td>
<td>VCR#1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Rewind</td>
<td>VCR#1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Fast Forward</td>
<td>VCR#1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Forward</td>
<td>VCR#1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Set Video to Character Generator</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Reset Video to VCR</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Timecode Ready Date Request</td>
<td>VCR#2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Stop</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Pause</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Rewind</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Fast Forward</td>
<td>VCR#2</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Forward</td>
<td>VCR#2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Set Video to Character Generator</td>
<td>VCR#2</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Reset Video to VCR</td>
<td>VCR#2</td>
<td>1</td>
</tr>
<tr>
<td>Memory Location</td>
<td>Hex 32</td>
<td>Bit</td>
<td>Memory Location</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>UM1N</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>TMIN</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>UHRS</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>THRS</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>
POWER SUPPLY SPECIFICATIONS

POWERTEC
9168 DESOTO AVENUE
CHATSWORTH CALIFORNIA 91311
TWX 910-494-2092
(213) 882-0004

For units supplied with standard or special options (noted by "X" or "XXX" suffix, respectively) an additional data sheet is required.

SPECIFICATIONS:

AC INPUT: 105-125VAC/210-250VAC, 47-63 Hz
Derate 10% below 57 Hz

DC OUTPUT RATINGS:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OUTPUT VOLT.</th>
<th>MAX. AMP</th>
<th>INPUT CONNECTIONS</th>
<th>REG. ATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C5 6B</td>
<td>5</td>
<td>6</td>
<td>182</td>
<td>5mV</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>2.8</td>
<td>182</td>
<td>6mV</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>3.6</td>
<td>182</td>
<td>9mV</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>3.8</td>
<td>182</td>
<td>9mV</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>3.6</td>
<td>182</td>
<td>12mV</td>
</tr>
</tbody>
</table>

1) For a low line to high line voltage transition
2) For a 0-100% load transition

OUTPUT RIPPLE: 5mV P-P max. all voltages, any combination of line and load.

ADJUSTMENT PROCEDURE:

OUTPUT VOLTAGE: Output voltage is adjusted using the Vadj adjustment (increase - cc w)

CURRENT FOLDBACK: The overcurrent protection is factory adjusted to provide rated output current and proper supply protection at all rated outputs. Redefinition is accomplished by turning Ilim full cc w setting the output voltage to that desired and applying a load equal to 125% of the new full load rating. Adjust Ilim cc w until the output voltage decreases 50-100mV. This should be accomplished with the supply near room temperature.

VOLTAGE SENSING:

LOCAL: For most applications local voltage sensing provides adequate regulation at the load. These supplies operate in local sense automatically and do not require sense jumpers.

REMOTE: Remote sensing should be utilized where load low losses become excessive. CAUTION: To minimize the possibility of system instability keep load leads short, conservatively sized, and twisted together. Also twist sense leads and do not route near A.C. leads.

The hook-up for remote sensing is as follows:

These supplies are designed to prevent excessive voltage excursions in the event of an open sense lead.

APPLICATION DATA

OEM II SERIES

REGULATED DC POWER SUPPLY

MODELS

2C5-6B, 2C15-2.8B, 2C24-2.3B

TRANSIENT RESPONSE: 30us typical for a 50-100% load transition.

STABILITY: ±0.1% for 8 hours after warm-up.

TEMPERATURE COEFFICIENT: ±0.02% /°C max. ±0.005% /°C typical

OVERLOAD PROTECTION: Unit is protected from overload and short circuit by an adjustable current foldback.

THERMAL DERATING: 100% load @ 0°C-40°C ambient. Operate as follows above 40°C.

40°C - 100%
55°C - 75%
71°C - 50%

Moving air + additional derating will result in improved power supply reliability.

INPUT FUSING: 1A input fusing is recommended for power supply protection. Fusing is mandatory when crowbar over-voltage protection is utilized.

INPUT VOLTAGE:

PARALLEL OPERATION: Any combination of OEM II supplies may be connected in series as shown. To ensure proper turn-on common loads must meet both restrictions shown.

Restriction for common load Rc must be greater than either:

Rc > VA /IB or Rc > VB /IA

VAB - Output voltage of supply A&B respectively

PARALLEL OPERATION: OEM II supplies of the same output voltage may be connected in parallel to increase the total output current as follows:

1) Adjust output voltages within 0.2% of each other
2) Size output f ads., meter shunts, etc. for a minimum (but equal) 1.5% output voltage drop in each output lead
3) Remote sense may not be used when paralleling outputs

REMOTE VOLTAGE ADJUSTMENT: This may be accomplished by the following.

1) Cut R14 out of the circuit board
2) Turn Vadj fully cc w
3) Connect external resistor potentiometer between +S and the desired point of sensing on the positive output.

Resistance values up to 1.2K ohms will vary the output voltage over its full adjustment range. This mode of operation sacrifices the open sense lead protection of these supplies.
APPENDIX VII-1

Program Schedule
March Schedule

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>A</td>
<td>3</td>
<td>B</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>6</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>10</td>
<td>C</td>
<td>11</td>
<td>A</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>14</td>
<td>A</td>
<td>15</td>
<td>B</td>
<td>16</td>
<td>C</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>18</td>
<td>B</td>
<td>19</td>
<td>C</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
<td>22</td>
<td>C</td>
<td>23</td>
<td>A</td>
<td>24</td>
<td>B</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>26</td>
<td>A</td>
<td>27</td>
<td>B</td>
<td>28</td>
<td>C</td>
</tr>
<tr>
<td>29</td>
<td>A</td>
<td>30</td>
<td>B</td>
<td>31</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Schedule as needed**
- **Pick-up - AFF**
- **Pass out #5 & AFF**
- **Admin**
- **#3 Schedule as needed**
- **#4 Schedule as needed**
- **#5 Schedule as needed**
- **#6 Schedule as needed**
- **9:30 - 1 way**
- **1:30 - 2 way**
- **9:30 - 2 way**
- **1:30 - 1 way**
April Schedule

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>4</td>
<td>A</td>
<td>5</td>
<td>R</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>8</td>
<td>B</td>
<td>9</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>12</td>
<td>C</td>
<td>13</td>
<td>A</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>18</td>
<td>C</td>
<td>19</td>
<td>A</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>25</td>
<td>A</td>
<td>26</td>
<td>B</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>C</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule Details
- **March 28**: Schedule as needed
- **March 29**: Schedule as needed
- **March 30**: Schedule as needed
- **March 31**: Schedule as needed
- **April 1**: Schedule as needed
- **April 2**: Schedule as needed
- **April 3**: Schedule as needed
- **April 4**: Schedule as needed
- **April 5**: Schedule as needed
- **April 6**: Schedule as needed
- **April 7**: Schedule as needed
- **April 8**: Schedule as needed
- **April 9**: Schedule as needed
- **April 10**: Schedule as needed
- **April 11**: Schedule as needed
- **April 12**: Schedule as needed
- **April 13**: Schedule as needed
- **April 14**: Schedule as needed
- **April 15**: Schedule as needed
- **April 16**: Schedule as needed
- **April 17**: Schedule as needed
- **April 18**: Schedule as needed
- **April 19**: Schedule as needed
- **April 20**: Schedule as needed
- **April 21**: Schedule as needed
- **April 22**: Schedule as needed
- **April 23**: Schedule as needed
- **April 24**: Schedule as needed
- **April 25**: Schedule as needed
- **April 26**: Schedule as needed
- **April 27**: Schedule as needed
- **April 28**: Schedule as needed
- **April 29**: Schedule as needed
- **April 30**: Schedule as needed

Notes:
- **March 28**: Schedule as needed
- **March 29**: Schedule as needed
- **March 30**: Schedule as needed
- **March 31**: Schedule as needed
- **April 1**: Schedule as needed
- **April 2**: Schedule as needed
- **April 3**: Schedule as needed
- **April 4**: Schedule as needed
- **April 5**: Schedule as needed
- **April 6**: Schedule as needed
- **April 7**: Schedule as needed
- **April 8**: Schedule as needed
- **April 9**: Schedule as needed
- **April 10**: Schedule as needed
- **April 11**: Schedule as needed
- **April 12**: Schedule as needed
- **April 13**: Schedule as needed
- **April 14**: Schedule as needed
- **April 15**: Schedule as needed
- **April 16**: Schedule as needed
- **April 17**: Schedule as needed
- **April 18**: Schedule as needed
- **April 19**: Schedule as needed
- **April 20**: Schedule as needed
- **April 21**: Schedule as needed
- **April 22**: Schedule as needed
- **April 23**: Schedule as needed
- **April 24**: Schedule as needed
- **April 25**: Schedule as needed
- **April 26**: Schedule as needed
- **April 27**: Schedule as needed
- **April 28**: Schedule as needed
- **April 29**: Schedule as needed
- **April 30**: Schedule as needed

Special Notes:
- **March 28**: Schedule as needed
- **March 29**: Schedule as needed
- **March 30**: Schedule as needed
- **March 31**: Schedule as needed
- **April 1**: Schedule as needed
- **April 2**: Schedule as needed
- **April 3**: Schedule as needed
- **April 4**: Schedule as needed
- **April 5**: Schedule as needed
- **April 6**: Schedule as needed
- **April 7**: Schedule as needed
- **April 8**: Schedule as needed
- **April 9**: Schedule as needed
- **April 10**: Schedule as needed
- **April 11**: Schedule as needed
- **April 12**: Schedule as needed
- **April 13**: Schedule as needed
- **April 14**: Schedule as needed
- **April 15**: Schedule as needed
- **April 16**: Schedule as needed
- **April 17**: Schedule as needed
- **April 18**: Schedule as needed
- **April 19**: Schedule as needed
- **April 20**: Schedule as needed
- **April 21**: Schedule as needed
- **April 22**: Schedule as needed
- **April 23**: Schedule as needed
- **April 24**: Schedule as needed
- **April 25**: Schedule as needed
- **April 26**: Schedule as needed
- **April 27**: Schedule as needed
- **April 28**: Schedule as needed
- **April 29**: Schedule as needed
- **April 30**: Schedule as needed

Administrative Tasks:
- **March 28**: Pick up & AFF DUES.
- **March 29**: Pass out #6
- **March 30**: Schedule as needed
- **March 31**: Schedule as needed
- **April 1**: Schedule as needed
- **April 2**: Schedule as needed
- **April 3**: Schedule as needed
- **April 4**: Schedule as needed
- **April 5**: Schedule as needed
- **April 6**: Schedule as needed
- **April 7**: Schedule as needed
- **April 8**: Schedule as needed
- **April 9**: Schedule as needed
- **April 10**: Schedule as needed
- **April 11**: Schedule as needed
- **April 12**: Schedule as needed
- **April 13**: Schedule as needed
- **April 14**: Schedule as needed
- **April 15**: Schedule as needed
- **April 16**: Schedule as needed
- **April 17**: Schedule as needed
- **April 18**: Schedule as needed
- **April 19**: Schedule as needed
- **April 20**: Schedule as needed
- **April 21**: Schedule as needed
- **April 22**: Schedule as needed
- **April 23**: Schedule as needed
- **April 24**: Schedule as needed
- **April 25**: Schedule as needed
- **April 26**: Schedule as needed
- **April 27**: Schedule as needed
- **April 28**: Schedule as needed
- **April 29**: Schedule as needed
- **April 30**: Schedule as needed
<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>2</td>
<td>B</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>9</td>
<td>C</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>16</td>
<td>A</td>
<td>17</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>23</td>
<td>B</td>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>30</td>
<td>C</td>
<td>31</td>
<td>A</td>
</tr>
</tbody>
</table>

May Schedule

- **Monday**: Pick up - #9, & AFF QUES.
 - Pass out - #10
 - #10
 - 1:30

- **Tuesday**: Pick up - #10
 - 9:30 - 2 way
 - 1:30 - 1 way
 - #11
 - 1:30

- **Wednesday**: Pick up - ALL
 - 9:30 - 2 way
 - 1:30 - 1 way
 - #11
 - Schedule as needed

- **Thursday**: Pick up - #12
 - 9:30 - 2 way
 - 1:30 - 1 way
 - #12
 - Schedule as needed

- **Friday**: Pick up - ALL & AFF QUES.
 - Schedule as needed
 - 1:30 - 2 way
 - 1:30 - 2 way

- **Saturday**: Schedule as needed
 - 9:30 - 1 way
 - 1:30 - 1 way
 - 1:30 - 2 way

- **Sunday**: Schedule as needed
 - 9:30 - 1 way
 - 1:30 - 1 way
Appendices VII-2 through VII-7

Firefighter Briefing Booklet
Appendix VII-2
Instructions
(I. and II. same for all treatment groups)

I. Fire Fighter Orientation

For the next four months all of you will be participating in a project that uses cable television for in-service training here in this station.

The Rockford Cable Project is financed by a grant made by the National Science Foundation to examine the use of 2-way cable communications in urban settings. Forty-nine research organizations, cable systems and city governments responded to NSF's initial call for proposals in 1974. Seven of these groups were funded to design experiments in 2-way cable communication. In May 1975, three of these groups, including the Rockford Cable Project, were funded to carry out their experimental designs.

Three organizations are cooperating in the Rockford research effort. Michigan State University is the research organization. Rockford Cablevision is providing the technical expertise and 2-way distribution system. And the Rockford Fire Department and other consultants provided the technical information to develop the video tape training series being used in this experiment.

The twelve training tapes you'll be viewing concentrate on prefire planning, or in other words, preparing for a fire before it occurs. This topic was selected in part because a poll of 638 Illinois firefighters identified "emergency planning" as the number one fire training priority in Illinois. Because prefire planning is of vital interest nationwide, a representative of the National Fire Prevention Control Association will be here to observe our training program. The training series will probably be distributed nationally after our experiments in Rockford.

The training tapes will take you through the prefire plan process. You'll learn how to gather survey information and fit it into completed prefire plans for use at the scene of a fire.

II. How Two-Way Cable Works

(Pass around cross-section of coaxial cable)

As you know, cable television is a system for carrying television signals by wire rather than transmitting them over the air. The wire used is a coaxial cable which can carry many different television channels simultaneously.

(Graphic #1 — One-Way cable)

In most cases, cable systems are only capable of feeding programs from their control center to subscribers. This is known as one-way "downstream" communication—from the control center to receivers. Rockford Cablevision is one of the few systems which can carry information back "upstream" from subscribers to its control center at the Rockford Cablevision office. This allows two-way interactive communication between Rockford Cablevision and persons on the receiving end who have the appropriate equipment.

(Graphic #2 — Two-Way Cable)

All of the prefire training programs are on videotape. Every couple of minutes, a question is asked which covers material already presented or leads into the material to follow. In our experiment, firefighters will be assigned to four different ways of responding to these questions, so that we can make necessary comparisons. Each of you has been randomly assigned to one of these response groups.
Appendix VII-3
Special Treatment Instructions

III. Two-Way Individual Response

You are in the two-way individual response experimental group.

A. The Terminal

(Terminal used during demonstration)

In order to use the terminal for responses, two switches must be in the correct positions. First, be sure that the mode switch on the right side of the terminal is in its third clockwise position. Next, make sure that the bank select switch on the left side of the terminal is aligned with the row of letters A, B, C, D—the middle position. Once these two switches are in place, you’re ready to interact with the computer.

B. Logging-In

Notice that the line on the left-hand dial is aligned with the A, B, C, and D letters on their terminal. Each person will be given a three letter identification code which must be sent to the computer before the start of each lesson. These will be posted on your station bulletin board and also printed in front of your personal booklet. In order to log-in, the following steps must be followed. First, make sure that the switches are in the proper positions. Second, press the first letter of your identification code. Assuming that your identification code is ABC, you would press the button corresponding to the letter “A”. Next, press the transmit button on the upper right-hand side of the terminal. This transmit button sends the first letter of your identification code to the computer. When the letter is being transmitted, this small red light will be on. No new information can be transmitted until this light goes out. Once the computer has received the letter “A,” the transmit light will go out. After the transmit light goes out, press the letter “B,” and the transmit button, wait for the light to go out, then repeat the procedure for the letter C. Be very careful in entering your code letters. If you should make an error, enter letter “I.” This will erase the code you’ve entered and you may start over. After you enter the three digits of your code, you will see the letters appear on the TV screen. If the letter is correct, press letter “L” and the transmit button. This will “lock” your code into the computer.

This individual log-in procedure must be accomplished before the start of the training tape. You can log in at any time during a five minute period... three minutes before the half hour. A display on the TV screen will tell you when to start logging in. It will list all of the codes for the men who will be viewing the lesson. We will practice this procedure before the series begins. After this five minute period the video-tape will begin, even if you have not yet logged in. In the event that you fail to get logged in on time, do not view the training tape. Expect to participate in the session for which you are late. Each training tape will be replayed at a later date to take care of such problems.

C. Regular Video Tape Questions

Once you have logged-in and the training tape has begun, you will use the terminals to respond to questions every couple of minutes. When multiple choice questions appear simply press the button corresponding to the answer you think is correct and the transmit button sends your selection to the computer at Cablevision in the same way your identification was sent to the computer.

(Graphic #2A — computer picture)

For most questions, the question and options, or at least the answer possibilities, will remain on the screen until you have answered the question. It should be noted that there is a 30 second cut-off point, so that the tape goes on even if one of the stations gets called out during the middle of the program. You should in any case never take more than 30 seconds to enter an answer. If you don’t know the answer to some questions enter the letter E. It will always mean “can’t decide.” If you don’t, the computer will assume you are on a call and not record any more of your answers. On all of the questions, you will hear two beeps. These are just to remind you that you should be entering an answer.
For example, if asked, "Who was the first professional full-time chief of the Rockford Fire Department?" you will be given the following choices: A. James Cragan; B. Thomas Blake; C. John Lakin; or D. Warren Swenson. The question and choices would remain on the screen until all participants have answered. To answer, simply press button A, B, C, D or press "E" if you can't decide, and then the transmit button. In this case, you would press the C button and the transmit button to answer. If you had mistakenly pressed "B" and wanted to change your answer to "C" during the allotted time and before you pressed the transmit button, simply press "C" and the transmit button. Please don't look over the shoulder of the next guy to see what he's doing. Don't discuss the answers with the others. It is critically important for us to know how well the training programs are working. Therefore we need every man's individual answer.

Once everyone has answered the question, the computer and character generator will print out each person's response, letting you know whether your answer was correctly recorded by the computer. The instructor on the tape will then discuss the correct answers. In this case, C was the correct choice. The first professional full-time chief of the Rockford Fire Department was John Lakin who was chief from 1880 to 1891.

Some of the questions in the prefire planning series will seem fairly simple to you. This is because we would be questioning you over information that has been discussed. But your answer to the question is important. You will be reinforcing that particular bit of knowledge by thinking of the answer or making a response.

D. Quick Quizzes

In addition to the question and answer procedure just described, you will be taking a quiz at the end of each tape. The quiz is always preceded by a sign that says "Quick Quiz." The major difference between this quiz and the questions we just mentioned is that you will have five seconds to choose and enter an answer. A number of questions will be asked consecutively. After each question, the computer will take your answer for about five seconds and then the tape will move on. If you aren't sure of an answer, select your best guess or don't answer. There will be no "can't decide" option on quick quizzes. Since you'll have only five seconds to answer, you'll have to perform more quickly on quick quizzes. At the end of the "quick quiz," the percentage each person answered correctly will be printed out on the computer and character generator. At the completion of each training tape, the computer will print out the percentage, by code, each person got correct of all the interactive questions asked. This record will then be kept to monitor your performance throughout the training. No one outside the Rockford Fire Department and the research group will see the results since only the fire stations are able to receive the special training channel.

At the end of each session, you'll have to do two things to put the system back in its program entertainment mode. First, turn the mode button counterclockwise into its first position. Then, place the bank-select switch in its top position so that it corresponds with the numbers on your television dial. This will enable you to select channels on Cablevision by using the terminal.

F. Summary of Terminal Procedures

Let's repeat the procedures.

To set the terminal up for two-way communication, put the upper right hand "mode" switch in its third position. Put the bank-select switch on the left side of the terminal in its middle position.

Next, to log-in, look at your code letters, let's say "A." Then, press the button corresponding to the first letter of your code, let's say "B," and the transmit button. Repeat this same procedure for the last letter of your personal identification code.

To answer multiple choice questions, select an answer, and press the button corresponding to this answer and the transmit button. Don't take any more than five seconds to answer.

Answering the multiple choice questions asked in "Quick Quizzes" proceeds in the same manner. The major difference is that you'll have to work faster when taking a "Quick Quiz" since you'll only have five seconds to choose and enter an answer.

Once again be sure that you work independently in answering all questions.

To log-out turn the mode button counterclockwise into its first position and place the bank-select switch in its top position.
Appendix VII-4
(Specify treatment group instructions)

III. Two-Way Group Response

You are in the two-way group response experimental group.

A. The Terminal

(Use terminal during demonstration)

In order to use the terminal for responses, two switches must be in the correct position. First, be sure that the mode switch on the right side of the terminal is in its third position. Next, make sure that the bank select switch on the left side of the terminal is aligned with the row of letters A, B, C, D—the middle position. Once these two switches are in place, you're ready to interact with the computer.

B. Logging-in

Notice that the dial on the left-hand dial is aligned with the A, B, C, and D letters on the terminal. Each individual will be given a three-letter identification code which must be sent to the computer before the start of each lesson. These will be posted on your station bulletin board and also marked on the front of your personal booklet. In order to log-in, the following steps must be followed. First, make sure that the switches are in the proper position. Second, press the first letter of your identification code. Assuming that your identification code is ABC, you would press the button corresponding to the letter “A.” Next, press the transmit button on the upper right-hand side of the terminal. This transmit button sends the first letter of your identification code to the computer. When the letter is being transmitted, this small red light will be on. No new information can be transmitted until this light goes out. When the transmit light goes out, repeat the procedure for the letters B and C. Be very careful in entering your code letters. If you should make an error, enter letter “L,” this will erase the code you have entered and you may start over. After you enter the three digits of your code you will see the letters appear on the TV screen. When all of the codes from your station have been logged-in, press letter “L” and transmit it. This will let the computer know that the attendance-taking is complete.

This log-in procedure must be accomplished prior to the start of each training tape. You can log in at any time during a five-minute period: three minutes before the half hour at which the training tape is to begin, and two minutes after the half hour. A display on the TV screen will tell you when to start logging-in. It will list all of the codes for the men who will be viewing the lesson. We will practice this procedure before the series begins. After this five minute period the videotape will begin, even if some individuals are not logged in. In the event that you fail to get logged in on time, do not view the training tape or participate in the session for which you are late. Each training tape will be replayed at a later date to take care of such problems.

C. Regular Videotape Questions

Once you have logged-in and the training tape has begun, you will be using the terminals to respond to questions every few minutes.

Only one of you will hold the terminal and make the responses during a lesson. We will rotate this assignment, telling you who the terminal operator is by a notice on your bulletin board.

If the chosen person is not available for a particular lesson, the person who held the terminal at the last training session should substitute.

Whoever operates the terminal should first ask the others what the best answer is, then enter the majority answer. In a split decision, or where there is not a majority, the person operating the terminal should enter the letter E which will stand for, “can’t decide.” To enter the answer, first press the button corresponding to the answer you think is correct and second, punch the transmit button. This sends your selection to the computer at Cablevision in the same way your identification code was sent to the computer.
For most questions, the question and answer options, or at least the answer options, will remain on the screen until you have answered the question. It should be noted that there is a 30-second cut-off point, so that the tape goes on even if one of the stations gets called out during the middle of the program. You should in any case never take more than 30 seconds to enter an answer. On all of the questions, you will hear two beeps. These are just to remind you that you should be entering an answer.

For example, if asked, "Who was the first professional full-time chief of the Rockford Fire Department?", you might be given the following choices: A. James Cragan; B. Thomas Black; C. John Lakin; or D. Wayne Swanson. The question and choices would remain on the screen until all participants have answered. To answer, simply press button A, B, C, D, or press "E" if you can't decide, and then press the transmit button. In this case we would press the C button and then the transmit button to answer. If you had made an error and mistakenly pressed "B" and had not yet pressed the transmit button, you would simply press "C" and then the transmit button.

Once all stations have answered the question, the computer and character generator will print out each group's response, letting you know whether your answer was correctly recorded by the computer. The moderator on the tape will then discuss the correct answer. In this case, C was the correct choice. The first professional full-time chief of the Rockford Fire Department was John Lakin who was chief from 1880 to 1891.

Some of the questions in the prefire planning series will seem fairly simple to you. This is because we will often be questioning you over information that has just been discussed. But your answer to the question is important. You will be reinforcing that particular bit of knowledge by thinking of the answer or making a response.

D. Quick Quizzes

In addition to the question and answer procedure just described, you will be taking a quiz at the end of each tape. The quiz is always preceded by a sign that says "Quick Quiz." The major difference between this quiz and the questions we just mentioned is that you'll only have five seconds to choose and enter an answer. A number of questions will be asked consecutively. After each question, the computer will take your answer for only five seconds and then the tape will move on. If you aren't sure of an answer, select your best guess or don't answer. There will be no "can't decide" option on quick quizzes. Since you'll have only five seconds to answer, you'll have to perform more quickly on quick quizzes. At the end of the "quick quiz," the percentage each group answered correctly will be printed out by the computer and character generator. At the completion of each training tape, the computer will print out the percentage each group got correct of all the interactive questions asked. This record will then be kept to monitor your performance throughout the training. No one outside the Rockford Fire Department and the research group will see the results since only the fire stations are able to receive the special training channel.

At the end of each session, you'll have to do two things to put the system back in its program entertainment mode. First, turn the mode button counterclockwise into its first position. Then, place the bank-select switch in its top position so that it corresponds with the numbers on your television dial. This will enable you to select channels on Cablevision by using the terminal.

F. Summary of Terminal Procedures

Let's repeat the procedures briefly.

To set the terminal up for two-way communication, put the upper right hand "mode" switch in its third position. Put the bank-select switch on the left side of the terminal in its middle position.

Next, to log-in, look at your code letters, then press the button corresponding to the first letter of your code, let's say "A." Then, press the transmit button. After the transmit light goes off, enter the second letter, let's say "B," and the transmit button. Repeat this same procedure for the last letter of your personal identification code. Then log in the next man. Only one of you will hold the terminal and make the responses during a lesson. This assignment will be rotated by a notice on your bulletin board. If the chosen person is not available for a particular lesson, the person who held the terminal at the last training session should substitute.
answer multiple choice questions, ask the others what they think the answer should be, then press the button corresponding to the majority answer and the transmit button. Don't take any more than 30 seconds to answer. Answering the multiple choice questions asked in "Quick Quizzes" proceeds in the same manner. The major difference is that you'll have to work faster when taking a "Quick Quiz" since you'll only have five seconds to choose and enter an answer.

To log-out, turn the mode button counter-clockwise into its first position and place the bank-select switch in its top position.
Appendix VII-5
(Special treatment group instructions)

III. One-Way, Paper-Pencil Response

You are in the one-way paper-pencil response experimental group.

Each training tape will begin promptly at two minutes after the half hour. You should therefore, plan to be ready for viewing a few minutes before this. Should you arrive at a training session after the video tape has begun, do not view the training tape or participate in the session for which you are late. Each training tape will be replayed at a later date to take care of such problems.

A. Regular Video Tape Questions

As you are viewing the tapes you will have the opportunity to answer questions about the material. Answer sheets will be given to you before each lesson. They are in an envelope marked with the lesson number in a location that your officer will decide upon. Each of you will be given a set of code letters for identification. These will be posted on your bulletin board and on the front of your personal booklet. As soon as you have received your answer sheet write your code letters on the paper in the space provided. This must be done for each training session.

The answer sheets consist of “key words” followed by letters. The letters after the key words correspond to the choices you’ll have when answering each question. Once you think you know the answer simply circle your choice. For most questions, the questions and answer options, or at least the answer options, will remain on the screen for 10 seconds.

On all of the questions, you will hear two beeps. When you hear the second beep circle your answer without delay. If you don’t know the answer circle the letter “E” for “can’t decide.”

For example, if asked, “Who was the first professional full-time chief of the Rockford Fire Department?” you might be given the following choices: A. James Cragan; B. Thomas Blake; C. John Lakin; or D. Wayne Swanson. The question and choices will remain on the screen for 10 seconds and then the moderator on the tape will discuss the correct answer. In this case, C was the correct choice. The first professional full-time chief of the Rockford Fire Department was John Lakin who was chief from 1880 to 1891. Once again if you were not able to choose an answer you should circle the letter “E.” Please do not look over the shoulder of the next guy to see what he is doing. Don’t discuss the answers with the others. It is critically important for us to know how well the training programs are working. Therefore we need every man’s individual answer.

In answering these questions, please make a final decision on the answer you want before you circle the letter. Likewise, be sure that you do not go back and insert the correct answer after it has been discussed by the moderator. Our major reason for asking the questions is to determine if the video tapes in their present form are doing an adequate job of training. Should any of you change your answers, we would not be able to properly evaluate the job done by the training tapes.

Some of the questions in the prefire planning series will seem fairly simple to you. This is because we will often be questioning you over information that has just been discussed. But your answer to the question is important. You will be reinforcing that particular bit of knowledge by thinking of the answer or making a response.

B. Quick Quizzes

In addition to the question and answer procedures just described, you’ll be taking a quiz at the end of each tape. The quiz is always preceded by a sign that says “Quick Quiz.” The major difference between this quiz and the questions we just mentioned is that you’ll only have five seconds to choose and circle an answer. A number of questions will be asked consecutively. After each question, you’ll have five seconds to circle your choice and then the tape will move on. If you don’t know the answer to a question simply leave it blank and go on to the next question. If you do fail to answer a question, check the key words on your answer sheet to be
sure that the next answer you enter is in the appropriate place. After the quiz has been completed the answers will be discussed by the narrator. Once again, be sure that you do not change your answers after the quiz has been completed. At the end of each lesson, your answer sheets will be collected by your officer and picked up by the project Field Director. The Fire Department itself will not keep track of your scores and nothing will be entered in your permanent file.

C. Summary of Procedures

Now we’ll repeat the process briefly. First, each training session will begin at two minutes after the half hour so plan to arrive at the viewing room a few minutes before this. As soon as you arrive, pick up an answer sheet and write your code letters in its upper right hand corner. To answer multiple choice questions, simply circle your choice. For regular questions, you’ll have approximately 10 seconds to answer. Answering the multiple choice questions asked in “Quick Quizzes” proceeds in the same manner. The major difference is that you’ll have to work faster when taking a “Quick Quiz” since you’ll only have five seconds to circle an answer. Once again be sure that you work independently in answering all questions.

After the session is completed, place your answer sheets in the envelope provided and leave the envelope with your officer for later pick-up.
Appendix VII-6
(Special treatment group instructions)

III. One-Way Covert Response

You are in the one-way, covert experimental group.

Each training tape will begin promptly at two minutes after the half hour. You should, therefore, plan to be ready for viewing a few minutes before this. Should you arrive at a training session after the video tape has begun, do not view the training tape during the session for which you are late. Each training tape will be replayed at a later date to take care of such problems. The company officer will make a record of those present at each viewing session so that we can arrange make-ups for those absent at the first showing.

A. Regular Video Tape Questions

As you are viewing the training tapes, questions will be asked about the material being covered. They are there to help you review the information. Answer the questions mentally.

For most questions, the question and answer options, or at least the answer options, will remain on the screen for a fairly long time so that everyone has an adequate amount of time to think of the answer. On all of the questions, you will hear two beeps. These are just to warn you that you should be thinking of an answer to the questions.

(Graphic #3 -- question)

For example, if asked, “Who was the first professional full-time chief of the Rockford Fire Department?”, you might be given the following choices: A. James Cragan; B. Thomas Blake; C. John Lakin; or D. Wayne Swanson. The question and choices will remain on the screen for a fairly long period of time and then the moderator will discuss the correct answer. In this case, C was the correct choice. The first professional full-time chief of the Rockford Fire Department was John Lakin who was chief from 1880 to 1891.

B. Quick Quizzes

In addition to the question and answer procedures just described, there will be times when you will only have five seconds to think about the answer. A number of questions will be asked consecutively. After each question, you will have five seconds to make a mental note of the answer and then the tape will move on. After the quiz has been completed the answers will be discussed by the narrator.

C. Summary of Procedures

Now we'll repeat the process briefly. Each training session will begin at two minutes after the half hour, so plan to arrive at the viewing room a few minutes before this. Be sure that your company officer records your attendance at the session. Once the training tape has begun, answer the questions asked, mentally without discussing them with others. For regular questions you will have 10 seconds to think about an answer. While during “Quick Quizzes” you will only have five seconds.
Appendix VII-7

(Same for all treatment groups)

IV. The Pretest

In addition to the procedures just described, you will be asked to take a couple of additional quizzes during your training. The first such quiz will be given before your training begins. Your responses on this test will let us know how much you already know about prefire planning. You will probably know the answers to some of the questions while others will ask for information you will learn from the training tapes.

Don't worry about your score, all we want is for you to try your best to answer all the questions. After you have seen the entire series of training tapes, you will be given another test similar to this one, which will let us know how well the training tapes worked in teaching prefire planning.

In addition to this test and the one you'll take at the completion of training, we will periodically ask you to fill out a questionnaire which will let us know how you feel about watching the programs, prefire planning, and your job in general.

One final note. Should you have any set tuning problems or set malfunctions let us know immediately. Call one of two numbers—either 965-7450 or 5689 on the Centrex system.

We appreciate your cooperation and hope this will be a worthwhile experience for you.
APPENDIX VII-8

Printout, "Lesson Summary"
| QUESTION NUMBER | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | TOTAL | PERCENT |
|-----------------|
APPENDIX VII-9

Printout, "Cumulative Scores and Averages"
MSU//NSF ROCKFORD CABLE PROJECT

APPENDIX VII-9

CUMULATIVE SCORES AND AVERAGES

TIME 8:37:2

DATE 5/27/77

<table>
<thead>
<tr>
<th>ID</th>
<th>LESSON:</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td></td>
<td>79</td>
<td>94</td>
<td>98</td>
<td>99</td>
<td>89</td>
<td>89</td>
<td>88</td>
<td>88</td>
<td>82</td>
<td>88</td>
</tr>
<tr>
<td>AHB</td>
<td></td>
<td>73</td>
<td>93</td>
<td>93</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>78</td>
<td>78</td>
<td>73</td>
<td>86</td>
</tr>
<tr>
<td>AAC</td>
<td></td>
<td>84</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>AAD</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>78</td>
<td>78</td>
<td>5</td>
<td>73</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>ABB</td>
<td></td>
<td>78</td>
<td>83</td>
<td>90</td>
<td>90</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>91</td>
</tr>
<tr>
<td>ACD</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>95</td>
</tr>
<tr>
<td>ADE</td>
<td></td>
<td>100</td>
<td>100</td>
<td>85</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>93</td>
</tr>
<tr>
<td>ADB</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AEE</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AFB</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AEC</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AED</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AAF</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AEF</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AAG</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AAR</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AAR</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AAA</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>ABB</td>
<td></td>
<td>78</td>
<td>83</td>
<td>90</td>
<td>90</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>91</td>
</tr>
<tr>
<td>ACD</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AEE</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>AFD</td>
<td></td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
</tbody>
</table>

RETIRED SICK LEAVE

SICK LEAVE

TRANSferred

VACACIÓN
APPENDIX VIII-1

Assignment to Conditions
<table>
<thead>
<tr>
<th>STATION</th>
<th>SHIFT</th>
<th>(N)</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>13</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>12</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>11</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>8</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>8</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>8</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>5</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>5</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>5</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>9</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>9</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>9</td>
<td>Two Way Interactive (1)</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>9</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>9</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>9</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>6</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>6</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>6</td>
<td>Two Way Group (2)</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td></td>
<td>USED FOR PILOT TESTING Purposes Only</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>6</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>6</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>6</td>
<td>One Way Non Interactive (3)</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>4</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>8</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>8</td>
<td>One Way Covert (4)</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>8</td>
<td>One Way Covert (4)</td>
</tr>
</tbody>
</table>
APPENDIX VIII-2

Pretest and Behavioral Objectives
PRETEST

B.O. #3-2
1. This structure is located on a flat roof. And this is how it looks from below. Can this be described as
 A. a continuous gravity vent
 B. an automatic opening skylight
 C. a monitor vent with glass sides
 D. a power roof exhaust?

B.O. #2A-2
2. Let's assume that a fire has started in an industrial building and the annunciator panel shows this display. Look closely at this panel. What part of the building is involved in the fire?
 A. the second floor of the building
 B. room number 16
 C. first floor stockroom
 D. insufficient information to answer

B.O. #2-1
3. On a prefire plan survey, you find a room which contains the control valve for a sprinkler system. This gauge is above the clapper of the control valve and this gauge is attached below the clapper. What type of sprinkler system is used in this room?
 A. a wet system
 B. a dry system
 C. a deluge system

B.O. #2-7
4. How often should a return visit be made to a building that has been preplanned?
 A. every six months
 B. every year
 C. at least every two years

B.O. #5-2
5. You are now on a survey of a high-rise building which has up-to-date blueprints. On the blueprints, you see an area that is diagrammed like this. Notice the location of the elevators and the enclosed stairway. All of the apartments and the storeroom open onto the same hallway. While physically on a survey, what would you find in this area?
 A. a deadend corridor
 B. a vault
 C. an inaccessible area
 D. a pit

B.O. #6-1
6. These are the flammability limits for Ethyl Chloride – 3.8 to 15.4. Ethyl Mercapta's flammability limits are 2.8 to 18.0. And the flammability limits for Ethylene are 2.7 to 36.0. Of these three hazardous materials, which one presents the greatest danger from the standpoint of flammability limits?
 A. Ethyl Chloride
 B. Ethyl Mercapta
 C. Ethylene
7. What is the best way to find problem areas for communication in a building?

A. check the blueprints
B. attempt to use your fire department radio in the area
C. ask the building engineer
D. check the electronic equipment

8. Here is a look at a fire pump that serves all of the automatic sprinklers in an industrial facility. It's located in a pumphouse separated from the rest of the plant. This is how one side of the pump's engine looks. And here's a look at the other side. This tank is along one wall of the pumphouse. Which of the following is the correct description of this pump?

A. diesel pump serving all automatic sprinklers
B. gasoline pump serving all automatic sprinklers
C. steam turbine pump serving all automatic sprinklers
D. electrical pump serving all automatic sprinklers

9. This device is located in the engine room of an elevator. Is the elevator

A. hydraulic
B. cable-supported

10. Under the heading "fire flow," you would find information on which of the following:

A. automatic sprinkler systems
B. the quantity of water needed
C. the longest length of hose needed
D. the location of PIV's

11. Here are two Fire Hazard Diamonds. Which one displays the greatest flammability hazard? Is it

Choice A
Choice B

12. Which material in a building has priority consideration for salvage?

A. files
B. expensive equipment
C. material on skids
D. whatever the owner wants salvaged.
13. Here is a perimeter diagram of a high-rise building. Notice the scale and the north indicating arrow. A gas station is located near the high-rise. How far away is it?

A. 50 feet
B. 100 feet
C. 150 feet
D. 200 feet

Look closely at the diagram again.

14. Look at this picture of a roof. What style of roof is it? Is it

A. a flat roof
B. a gable roof
C. a mansard roof
D. a hip roof

15. Here is the information about potassium persulfate that is contained in NFPA code 49. Look closely at the information. Which of the following information would you include on the survey form about potassium persulfate?

A. Don't use water to extinguish a fire involving potassium persulfate.
B. Potassium persulfate is highly flammable.
C. It is a toxic oxidizing agent.
D. It is a combustible liquid.

16. Let's have a quick test of your perception. We'll show you several pictures of a building. Look for certain types of door and window construction. Select the choice which is not present in the building. Look at the building and see if you can find......

A. casement windows
B. factory-style windows
C. a single swinging door
D. double swinging doors

Remember, answer with the type of construction that is not present.

This type of window is on the first floor. These doors are in the rear of the building. And this door is also part of the building. This structure is located in one of the walls. And here's a look at the front entranceway. Now, which of these four types of construction was not present in the building?

A. casement windows
B. factory-style windows
C. single swinging door
D. double swinging doors
17. Identify the way this roof would look as a diagram. Your prefire plan survey information might describe the roof like this: Type - Arch-like. Description: Four skylights and three automatic-opening vents. Based upon the picture and the description, which diagram would best illustrate the roof?

Diagram A
Diagram B
Diagram C
Diagram D

18. You are now on a prefire plan survey and you find a liquid marked Pyrenone in a second floor storeroom. A look at the entry in the "Fire Protection Guide on Hazardous Materials" gives this information. How would you describe Pyrenone on your survey form?

A. a flammable liquid
B. a flammable solid
C. a combustible liquid
D. a non-hazardous liquid

19. There are several considerations you, as a prefire plan surveyor, must make concerning handicapped or bedridden people. What is your primary concern in dealing with the handicapped and bedridden while on your prefire plan survey?

A. evacuation routes
B. possible medication
C. their location
D. their illnesses

20. Which type of window is the easiest to open for forcible entry?

A. awning windows
B. casement windows
C. double-hung windows
D. jalousie windows

The rest of the questions all deal with the symbols that you'll use on your prefire plan diagrams.

21. What is the prefire planning symbol for a non-sprinklered area? Is it

Symbol A
Symbol B

22. What is the prefire planning symbol for a scuttle hole? Is it

Symbol A
Symbol B
23. What is the prefire planning symbol for an annunciator panel? Is it
 Symbol A
 Symbol B
 Symbol C
 Symbol D

24. What is the symbol you'll use on your prefire plans to mark hazardous materials?
 Is it
 Symbol A
 Symbol B

25. Is this the prefire planning symbol for
 A. an open elevator
 B. a closed elevator
 C. an electricity shutoff

26. Based upon this survey information, which symbol would you use in your finished
 prefire plan diagrams to represent the gas shutoff? Would you use
 Symbol A
 Symbol B
 Symbol C
 Symbol D

27. This symbol can be inserted into the diagram in one of the following locations. Where should it go?
 At location A where there is a water tower?
 At location B where there is a standpipe?
 At location C for the roof tank?
 At location D for the cistern?
BEHAVIORAL OBJECTIVES FOR PRETEST

B.O. #3-2 - Given a picture of a roof, the learner will correctly identify various structures which are found on the roof. These include:

a) power roof exhausters
b) continuous gravity vents
c) monitor vents
d) skylights
e) scuttle holes
f) chimneys
g) combinations or variations of these.

B.O. #2A-2 - The learner will identify the main characteristics of fire alarm systems.

a) the type of system (local or supervised)
b) the location of the annunciator panel and
c) the system coverage.

B.O. #2-1 - Given a sprinkler system that uses water as an extinguishing agent, the learner will identify the system as being:

a) a wet system
b) a dry system or
c) a deluge system.

B.O. #2-7 - The learner will identify administrative procedures of the prefire planning process:

a) filing procedures
b) revision procedures

B.O. #5-2 - The learner will identify areas in a given building which could cause problems in rescue attempts based upon:

a) their representation on blueprints
b) visual inspections of the area.

B.O. #6-1 - The learner will interpret terms expressing the properties of flammable, toxic and explosive materials that are hazardous.

B.O. #5-1 - The learner will identify the actions taken to locate areas in a given building which disrupt fire department communications.

B.O. #2A-1 - When presented with a series of pictures of a fire pump, the learner will correctly identify:

a) the type of pump
b) the power source
c) the type of operation and
d) the location of the pump.
B.O. #4-3 - The learner will **identify and differentiate** elevators and elevator components:

a) construction parts
b) emergency elevator apparatus
c) cable-supported vs. hydraulic elevators.

B.O. #7-2 - The learner will **compile** into finished prefire plans, information about:

a) perimeter survey
b) fire flow
c) laddering and
d) hoses.

B.O. #6-2 - The learner will **identify and interpret** codes used in marking flammable, toxic and explosive materials that are hazardous. (As used in the Fire Hazard Diamond of NFPA code 704M)

B.O. #5-4 - The learner will **identify** the actions taken to locate material in a building that should be given priority during salvage operations.

B.O. #7-4 - The learner will **interpret** diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building:

a) description
b) direction
c) distance and
d) height.

B.O. #3-1 - When presented with pictures of various roofs, the learner will **identify** the types of roof construction of each. These include:

a) flat
b) pitched
c) arch-like or
d) any variations of these.

B.O. #6-5 - The learner will **compile** into finished prefire plans, the location and important characteristics of flammable, toxic and explosive material that is hazardous.

B.O. #3A-1 - When presented with a series of pictures of windows, the learner will **identify** these types of windows:

a) double-hung windows
b) casement windows
c) factory-style windows and
d) jalousie windows.

B.O. #3A-2 - When presented with a series of pictures of doors, the learner will correctly **identify** these types of doors:

a) double swinging doors
b) single swinging doors
c) revolving doors
d) sliding doors and
e) overhead doors.
B.O. #3-4 - Given several pictures of a rooftop, the learner will diagram the rooftop using the appropriate prefire planning symbols for flat, pitched, arch-like surfaces and all roof structures.

B.O. #6-3 - The learner will interpret tables and entries from NFPA codes included in the "Fire Protection Guide on Hazardous Material."
 a) NFPA code #325A
 b) NFPA code #325M
 c) NFPA code #49
 d) NFPA code #491M.

B.O. #5-5 - The learner will compile into finished prefire plans for a given building, the location of:
 a) problem areas for fire department communication
 b) special rescue considerations
 c) material/equipment for priority salvage.

B.O. #3A-5 - Given several pictures of a selected building, the learner will compile into finished prefire plans:
 a) an estimate of the best points for forced ventilation and forced entry
 b) the location of the main gas and electrical shutoffs in the building.

B.O. #2-3 - The learner will, when presented with a series of prefire planning symbols, be able to identify the correct symbols for:
 a) an automatic sprinkler system
 b) an automatic chemical sprinkler system
 c) a non-sprinklered area
 d) an O.S. & Y.
 e) a gate valve
 f) a sprinkler riser
 g) fire department connections
 h) a P.I.V.

B.O. #3-3 - When presented with a series of prefire planning symbols, the learner will identify the symbol for:
 a) vents
 b) lightwells
 c) skylights
 d) scuttle holes and
 e) chimneys.

B.O. #2A-3 - Given a series of prefire planning symbols, the learner will identify the symbols for:
 a) fire pumps
 b) annunciator panels
 c) water towers
 d) cisterns
 e) roof tanks
 f) standpipes
 g) fire hydrants and
 h) water mains.
B.O. #6-4 - The learner will **identify** the prefire planning symbol for hazardous material.

B.O. #4-1 - The learner will **identify** the prefire planning symbols for:

a) elevators
b) open stairways
c) enclosed stairways and
d) smoke-proof towers (in a given building.)

B.O. #3A-4 - When presented with a series of prefire planning symbols, the learner will **identify** the symbols for:

a) gas shutoffs
b) electrical shutoffs
c) heating units
d) fire doors
e) basement doors
f) overhead doors and
g) fire escapes

B.O. #2A-4 - The learner will **compile** into finished prefire plans, all information concerning:

a) fire pumps
b) perimeter structures and
c) fire alarm systems
APPENDIX VIII-3

Posttest and Behavioral Objectives
POST TEST

B.O. #6-3
1. Here is an extract from NFPA code 491M. It contains information about silicon hydride. Look closely at the extract. Now answer this question. You are fighting a fire in a building. Silicon hydride is stored in a part of the building that is not involved in the fire. What could happen?
 A. The silicon hydride could ignite with a slight rise in temperature.
 B. The silicon hydride could ignite when it contacts water.
 C. The silicon hydride will only ignite if chlorine is present.
 D. Silicon hydride will not ignite.

B.O. #3-4
2. This is the diagram of a roof as it might appear on a finished prefire plan. Which of the following statements would be on the survey form?
 A. A hip roof with a chimney in the northeast corner.
 B. A mansard roof with a vent in the northeast corner.
 C. A flat roof with a skylight in the northeast corner.
 D. An arch-like roof with a chimney in the northeast corner.

B.O. #6-5
3. This is an extract from NFPA code 325M containing information about ethyl chloride. Look closely at the information. On your prefire plan survey form, you are asked to fill in the important information about ethyl chloride. Which of the following facts are true and should be included in this information?
 A. It has a high flash point and sinks in water. Water may be ineffective as an extinguishing agent.
 B. It has a high flash point and is water soluble.
 C. It floats on water and isn't soluble. Water may be ineffective as an extinguishing agent.
 D. It sinks in water and is not soluble. It has a high flash point.

B.O. #2-7
4. What should the complete set of prefire plans that is kept at the company-level be used for?
 A. In-house training.
 B. Fire alarms or fire academy training.

B.O. #5-5
5. The material in this warehouse is loaded on skids. Would you include information about this area under the heading
 A. location of valuables
 B. Other significant areas
 C. Dead-end corridors or
 D. Limited access/inaccessible areas.
6. What should be done if you come across a coded annunciator panel while on your prefire plan survey?

A. Set off the alarm to make sure that the panel works correctly.
B. Check the smoke detectors that are used to trigger the alarm.
C. Tell the owner to replace the panel with one that isn't coded, or.
D. Learn what the codes on the annunciator panel mean.

7. On a prefire plan survey, you come across this control valve to an automatic sprinkler system. This device, known as an accelerator, is attached to the system. What type of automatic sprinkler system is this?

A. A wet system
B. A dry system
C. A deluge system

8. Which of these prefire planning forms is kept on file in the fire vehicle?

A. The prefire plan survey form
B. The finalized diagrams
C. The company extract
D. The revision form.

9. This device is located in the engine room of an elevator. Is the elevator

A. Hydraulic or
B. Cable-supported?

10. Under the heading "fire flow," you would find information on which of the following

A. Automatic sprinkler systems
B. The quantity of water needed
C. The longest length of hose needed
D. The location of PIVs.

11. Here are two Fire Hazard Diamonds. Which one displays the greatest flammability hazard?

Choice A
Choice B

12. Which material in a building has priority consideration for salvage?

A. Files
B. Expensive equipment
C. Materials on skids
D. Whatever the owner wants salvaged.
Here is a perimeter diagram of a high-rise building. Notice the scale and the north indicating arrow. A gas station is located near the high-rise. How far away is it?

A. 50 feet
B. 100 feet
C. 150 feet
D. 200 feet

Look at this perimeter diagram again. Where is the gas station located in relation to the high-rise?

A. north of the high-rise.
B. south of the high-rise.
C. southeast of the high-rise.
D. northwest of the high-rise.

Is this the prefire planning symbol for

A. a heating unit
B. a fire hydrant
C. a hazardous area
D. a heat shutoff

How would you diagram an open stairway in a building with automatic wet sprinklers? Would you use

Diagram A
Diagram B
Diagram C
Diagram D

Based upon this survey information, which symbol would you use in your finished prefire plan diagrams to represent the electrical shutoff? Would you use

Symbol A
Symbol B
Symbol C
Symbol D
18. What is the prefire planning symbol for a sprinkler riser? Is it
 Symbol A
 Symbol B

19. Here's a look at a roof structure. It can be manually opened from the outside or automatically opened by this device. How would you diagram this structure on your finished prefire plan diagrams? Would you use
 Symbol A
 Symbol B
 Symbol C
 Symbol D

20. What is the prefire planning symbol for a standpipe? Is it
 Symbol A
 Symbol B
 Symbol C
 Symbol D

21. What is the prefire planning symbol for a non-sprinklered area? Is it
 Symbol A
 Symbol B

22. What is the prefire planning symbol for a scuttle hole? Is it
 Symbol A
 Symbol B

23. What is the prefire planning symbol for an annunciator panel? Is it
 Symbol A
 Symbol B

24. What is the symbol you'll use on your prefire plans to mark hazardous material? Is it
 Symbol A
 Symbol B

25. Is this the prefire planning symbol for
 A. an open elevator
 B. a closed elevator
 C. an electricity shutoff
26. Based upon this survey information, which symbol would you use in your finished prefire plan diagrams to represent the gas shutoff? Would you use

Symbol A
Symbol B
Symbol C
Symbol D

27. This symbol can be inserted into the diagram in one of the following locations. Where should it go?

At location A where there is a water tower?
At location B where there is a standpipe?
At location C for the roof tank?
At location D for the cistern?

28. This shed stores nitro-cellulose, a highly reactive and flammable material. Which symbol would you use to mark this shed on your finished prefire plans. Would you use

Symbol A
Symbol B
Symbol C
Symbol D

29. This is the diagram of a roof as it might appear on a finished prefire plan diagram. What type of roof is it?

A. a mansard roof
B. a gable roof
C. a hip roof
D. a gambrel roof

30. Which color in the fire hazard diamond indicates reactivity?

A. blue
B. red
C. yellow
D. white

31. You'll see several pictures of the doors and windows in this building. Identify the type of construction of each. This type of window is used on all sides of the building. And doors like this make up the main entrance ways. Which type of construction is used on the doors and windows of this building?

A. Sliding doors and casement windows,
B. Double swinging doors and factory-style windows,
C. Single-swinging doors and double-hung windows,
D. Double swinging doors and casement windows.
32. What type of roof does this church have? Does it have
 A. a gable roof
 B. a hip roof
 C. a mansard roof
 D. an arch-like roof?

33. One of the materials listed in the "Fire Protection Guide on Hazardous Materials" is called methyl chloride. We'll show you four facts about methyl chloride. Which one should be included in your prefire plan survey information?
 A. Methyl chloride has flammability limits of 10.7 to 17.4.
 B. Methyl chloride's ignition temperature is 1170°.
 C. Methyl chloride has flammability hazard code of "4".
 D. Methyl chloride has a health hazard code of "2".

34. On your inspection of blueprints for a particular building, you find an area that is diagrammed this way. Would you include information on this area under
 A. deadend corridors
 B. limited access and inaccessible areas
 C. other

35. At what location in the buildings you are surveying might you expect to find a transparent shatter-resistant material used in place of glass?
 A. in the first floor windows and doors
 B. in the front windows on all floors
 C. in all of the sliding doors on any floor
 D. in any windows enclosed by metal bars.

36. This diagram is drawn on grids similar to the ones on your survey form. Look closely at the diagram and the scale. Where is Black Manufacturing located from Rock Town Products?
 A. 100 feet west
 B. 100 feet south
 C. 50 feet east
 D. 50 feet north.

37. These three facts about Dodecane have been extracted from NFPA code 325M. Look at them closely. Which of the following statements about dodecane is true?
 A. Dodecane is highly toxic
 B. Dodecane will sink in water
 C. Dodecane's fumes are lighter than air.
 D. Dodecane will float on water.
B.O. #2A-1
38. This fire pump is in the basement of a high-rise apartment building. Here's a close look at the motor. What type of fire pump is this?

A. gasoline fire pump
B. an electric fire pump
C. a diesel fire pump
D. a steam turbine fire pump.

B.O. #3-2
1. This structure is located on a flat roof. And this is how it looks from below. Can this be described as

A. a continuous gravity vent
B. an automatic opening skylight
C. a monitor vent with glass sides
D. a power roof exhauster?

B.O. #2A-2
2. Let's assume that a fire has started in an industrial building and the annunciator panel shows this display. Look closely at this panel. What part of the building is involved in the fire?

A. the second floor of the building
B. room number 16
C. first floor stockroom
D. insufficient information to answer.

B.O. #2-1
3. On a prefire plan survey, you find a room which contains the control valve for a sprinkler system. This guage is above the clapper of the control valve, and this guage is attached below the clapper. What type of sprinkler system is used in this room?

A. a wet system
B. a dry system
C. a deluge system

B.O. #2-7
4. How often should a return visit be made to a building that has been preplanned?

A. every six months
B. every year
C. at least every two years.

B.O. #5-2
5. You are now on a survey of a high-rise building which has up-to-date blueprints. On the blueprints, you see an area that is diagrammed like this. Notice the location of the elevators and the enclosed stairway. All of the apartments and the storeroom open onto the same hallway. While physically on a survey, what would you find in this area?

A. a deadend corridor
B. a vault
C. an inaccessible area
D. a pit
B.O. #6-1
6. These are the flammability limits for Ethyl Chloride - 3.8 to 15.4. Butyl Chloride's flammability limits are 1.8 to 10.1. And the flammability limits for Butyl Acetate are 1.7 to 7.6. Of these three hazardous materials, which one presents the greatest danger from the standpoint of flammability limits?
 A. Ethyl Chloride
 B. Butyl Chloride
 C. Butyl Acetate

B.O. #5-1
7. What is the best way to find problem areas for communications in a building?
 A. check the blueprints
 B. attempt to use your fire department radio in the area
 C. ask the building engineer
 D. check for electronic equipment.

B.O. #2A-1
8. Here is a look at a fire pump that serves all of the automatic sprinklers in an industrial facility. It's located in a pumphouse separated from the rest of the plant. This is how one side of the pump's engine looks. And here's a look at the other side. This tank is along one wall of the pumphouse. Which of the following is the correct description of this pump?
 A. diesel pump serving all automatic sprinklers.
 B. gasoline pump serving all automatic sprinklers
 C. steam turbine pump serving all automatic sprinklers
 D. electrical pump serving all automatic sprinklers

B.O. #2A-1
9. This console controls the operation of the pump we just looked at. This panel of dials is on the controller and this switch is found above the "start" button. What type of operation does this pump have? Does it have
 A. manual operation
 B. automatic operation

B.O. #4-3
10. This elevator does not have an outside panel labeled "emergency service" or "fireman's service." However, on the panel in the cab, there is a key slot labeled "independent service." Which of the following statements is true?
 A. this elevator has fireman's service.
 B. this elevator was not designed for fire department operations.
 C. this elevator has a photo cell to detect fires.
 D. the firemen's service key will operate this elevator.

B.O. #6-2
11. You are now on a prefirrplan survey and find a piece of equipment that is marked this way. What would you say about the material inside?
 A. it is non-flammable, but highly toxic.
 B. it is moderately flammable, but highly toxic.
 C. it is highly flammable, but non-reactive.
 D. it is highly flammable and highly reactive.
12. After you've found out which equipment a building owner would like salvaged first, where would you mark down the information on your survey form? Would you mark it under

A. location of variables
B. other significant areas

13. Look at this picture of a roof. What style of roof is it? Is it

A. a flat roof
B. a gable roof
C. a mansard roof
D. a hip roof

14. Look at this picture of a roof. What style of roof is it? Is it

A. a flat roof
B. a gable roof
C. a mansard roof
D. a hip roof

15. Here is the information about potassium persulfate that is contained in NFPA code 49. Look closely at the information. Which of the following information would you include on the survey form about potassium persulfate?

A. don't use water to extinguish a fire involving potassium persulfate
B. potassium persulfate is highly flammable.
C. it is a mildly toxic oxidizing agent
D. it is a combustible liquid.

16. Let's have a quick text of your perception. We'll show you several pictures of a building. Look for certain types of door and window construction. Select the choice which is not present in the building. Look at the building and see if you can find......

A. casement windows
B. factory-style windows
C. a single swinging door
D. double swinging doors

Remember, answer with the type of construction that is not present. This type of window is on the first floor. These doors are in the rear of the building. And this door is also part of the building. This structure is located in one of the walls. And here's a look at the front entranceway. Now, which of these four types of construction was not present in the building?

A. casement windows
B. factory-style windows
C. single swinging door
D. double swinging doors
B.O. #3-4

17. Identify the way this roof would look as a diagram. Your prefire plan survey information might describe the roof like this. Type – Arch-like. Description: Four skylights and three automatic-opening vents. Based upon the picture and the description, which diagram would best illustrate the roof.

Diagram A
Diagram B
Diagram C
Diagram D

B.O. #6-3

18. You are now on a prefire plan survey and you find a liquid marked Pyrenone in a second floor storeroom. A look at the entry in the "Fire Protection Guide on Hazardous Materials" gives this information. How would you describe Pyrenone on your survey form?

A. a flammable liquid
B. a flammable solid
C. a combustible liquid
D. a non-hazardous liquid

B.O. #5-5

19. There are several considerations you, as a prefire plan surveyor, must make concerning handicapped or bedridden people. What is your primary concern in dealing with the handicapped and bedridden while on your prefire plan survey?

A. evacuation routes
B. possible medication
C. their location
D. their illnesses

B.O. #3A-5

20. Which type of window is the easiest to open for forcible entry?

A. awning windows
B. casement windows
C. double-hung windows
D. jalousie windows

B.O. #2-1

21. On a prefire plan survey, you come across this room which has a sprinkler system. The room is a storage area for lumber. Here’s a look at the sprinkler heads and this device is one all of the risers. What type of automatic sprinkler system is used in this room?

A. a wet system
B. a dry system
C. a deluge system
22. On a prefire plan survey, you come across a structure that looks like a scuttle hole. After further examination, you discover that it leads to a dead-end cavity over a freezer room. Where would you write down the information about this dead-end ceiling cavity? Would you use the blank marked...

A. dead-end corridors
B. limited access/inaccessible areas
C. other

23. Windows such as these made of lexan present unique problems for forcible entry. What type of instrument would you use to enter through this lexan window?

A. a portable saw
B. a blunt instrument
C. a pry-axe
D. a sharp pointed instrument made of hardened steel.

24. Assume that this railroad siding is next to the building you are surveying. Notice where the siding is located in relation to the building. Here's a look at the distance between the siding and the building. Under which heading would you include information about the siding?

A. exposures
B. combustible materials
C. ground obstructions
D. overhead obstructions

25. This structure is found on a roof. This device is attached to the hinged panels. Which of these descriptions fits this ventilation unit?

A. a monitor vent operated by a fusible link
B. a gravity vent which is continuously open
C. a skylight with a manual opening device
D. a monitor vent with louved sides.

26. This is the flash point for a material called Flexo. What do you know about the material?

A. Flexo can be ignited easily at room temperature
B. Flexo is very stable and presents no hazard
C. Flexo should be stored in a well-heated area
D. Flexo has a very high flash point.

27. What should your portable fire department radio be used for during your prefire planning survey?

A. To talk to other members of the prefire planning team
B. To ask for information from the alarm office
C. To relay information to the deputy chief
D. To check for possible communication problems
28. Look closely at these pictures of various roof structures. They operate from the movement of the air passing through them and have no mechanical operating parts. Are these structures called

A. scuttle holes
B. power roof exhausts
C. continuous gravity vents
D. monitor vents

29. This special coupling is needed to use certain hydrants in the city. Under which heading would you include information about this coupling in your survey form?

A. fire flow
B. hydrants and main sizes
C. other water supplies
D. hose information

30. Anything that will be given priority consideration for salvage should be

A. marked to indicate priority removal
B. loaded onto skids
C. removed before rescue operations
D. noted on fire inspection forms

31. What is it meant by vapor density of gas?

A. Its weight in relation to water
B. Its weight in relation to air
C. The percentage of its molecules in the air
D. The percentage of saturation needed in the air for ignition of the gas

32. According to the 1973 American National Standards Institute code on Emergency Elevator Operation, which of the following things should happen when emergency service is activated?

A. all power is shutoff to the elevators
B. the hoistway door key must be used when the desired floor is reached
C. the photo cells operating the cab doors and hoistway doors are deactivated
D. only elevator calls above the first floor will be answered

33. Information about the fire pumps in a building should be included in your survey form under which of the following headings?

A. building construction
B. perimeter survey
C. vertical structures
D. fire protection equipment
B.O. #3A-4
34. Which of these is the prefire planning symbol for a fire door? Is it
 Symbol A
 Symbol B
 Symbol C
 Symbol D

B.O. #4-1
35. Is this the prefire planning symbol for
 A. an open stairway
 B. an enclosed stairway
 C. a smoke-proof tower
 D. a fire escape

B.O. #2-3
36. What is the prefire planning symbol for a gate valve? Is it
 Symbol A
 Symbol B

B.O. #3-3
37. Which of these symbols represents a lightwell? Is it
 Symbol A
 Symbol B
 Symbol C
 Symbol D

B.O. #2A-3
38. Which of these symbols represents a cistern? Is it
 Symbol A
 Symbol B
 Symbol C
 Symbol D
BEHAVIORAL OBJECTIVES FOR POST-TEST

B.O. #6-3 - The learner will interpret tables and entries from NFPA codes included in the "Fire Protection Guide on Hazardous Material."

a) NFPA code #325A
b) NFPA code #325M
c) NFPA code #49
d) NFPA code #491M.

B.O. #3-4 - Given several pictures of a rooftop, the learner will diagram the rooftop using the appropriate prefire planning symbols for flat, pitched arch-like surfaces and all roof structures.

B.O. #6-5 - The learner will compile into finished prefire plans, the location and important characteristics of flammable, toxic and explosive material that is hazardous.

B.O. #2-7 - The learner will identify administrative procedures of the prefire planning process:

a) filing procedures
b) revision procedures

B.O. #5-5 - The learner will compile into finished prefire plans for a given building the location of:

a) problem areas for fire department communication
b) special rescue considerations
c) material/equipment for priority salvage.

B.O. #2A-2 - The learner will identify the main characteristics of fire alarm systems:

a) the type of system (local or supervised)
b) the location of the annunciator panel and
c) the system coverage.

B.O. #2-1 - Given a sprinkler system that uses water as an extinguishing agent, the learner will identify the system as being:

a) a wet system
b) a dry system or
c) a deluge system.

B.O. #2-7 - The learner will identify administrative procedures of the prefire planning process:

a) filing procedures
b) revision procedures

B.O. #4-3 - The learner will identify and differentiate elevators and elevator components:

a) construction parts
b) emergency elevator apparatus
c) cable-supported vs. hydraulic elevators.
B.O. #7-2 - The learner will **compile** into finished prefire plans, information about:

a) perimeter survey
b) fire flow
c) laddering and
d) hoses.

B.O. #6-2 - The learner will **identify** and **interpret** codes used in marking flammable, toxic and explosive materials that are hazardous. (As used in the Fire Hazard Diamond of NFPA co. 704M)

B.O. #5-4 - The learner will **identify** the actions taken to locate material in a building that should be given priority during salvage operations.

B.O. #7-4 - The learner will **interpret** diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building:

a) description
b) direction
c) distance and
d) height.

B.O. #7-4 - The learner will **interpret** diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building:

a) description
b) direction
c) distance and
d) height.

B.O. #6-6 - The learner will **identify** the prefire planning symbol for hazardous material.

B.O. #4-1 - The learner will **identify** the prefire planning symbols for:

a) elevators
b) open stairways
c) enclosed stairways and
d) smoke-proof towers

B.O. #3A-4 - When presented with a series of prefire planning symbols, the learner will **identify** the symbols for:

a) gas shutoffs
b) electrical shutoffs
c) heating units
d) fire doors
e) basement doors
f) overhead doors and
g) fire escapes
POST-TEST B.O. PAGE THREE

B.O. #2-3 - The learner will, when presented with a series of prefire planning symbols, be able to identify the correct symbols for:

- a) an automatic sprinkler system
- b) an automatic chemical sprinkler system
- c) a non-sprinklered area
- d) an O.S. & Y.
- e) a gate valve
- f) a sprinkler riser
- g) fire department connections
- h) a P.I.V.

B.O. #3-3 - When presented with a series of prefire planning symbols, the learner will identify the symbol for:

- a) vents
- b) lightwells
- c) skylights
- d) scuttle holes and
- e) chimneys

B.O. #2A-3 - Given a series of prefire planning symbols, the learner will identify the symbols for:

- a) fire pumps
- b) annunciator panels
- c) water towers
- d) cisterns
- e) roof tanks
- f) standpipes
- g) fire hydrants and
- h) water mains

B.O. #2-3 - The learner will, when presented with a series of prefire planning symbols, be able to identify the correct symbols for:

- a) an automatic sprinkler system
- b) an automatic chemical sprinkler system
- c) a non-sprinklered area
- d) an O.S. & Y.
- e) a gate valve
- f) a sprinkler riser
- g) fire department connections
- h) a P.I.V.

B.O. #3-3 - When presented with a series of prefire planning symbols, the learner will identify the symbol for:

- a) vents
- b) lightwells
- c) skylights
- d) scuttle holes and
- e) chimneys
B.O. #2A-3 - Given a series of prefire planning symbols, the learner will **identify** the symbols for:

 a) fire pumps
 b) annunciator panels
 c) water towers
 d) cisterns
 e) roof tanks
 f) standpipes
 g) fire hydrants and
 h) water mains

B.O. #6-4 - The learner will **identify** the prefire planning symbol for hazardous material.

B.O. #4-1 - The learner will **identify** the prefire planning symbols for:

 a) elevators
 b) open stairways
 c) enclosed stairways and
 d) smoke-proof towers

B.O. #3A-4 - When presented with a series of prefire planning symbols, the learner will **identify** the symbols for:

 a) gas shutoffs
 b) electrical shutoffs
 c) heating units
 d) fire doors
 e) basement doors
 f) overhead doors and
 g) fire escapes

B.O. #2A-4 - The learner will **compile** into finished prefire plans, all information concerning:

 a) fire pumps
 b) perimeter structures and
 c) fire alarm systems.

B.O. #6-4 - The learner will **identify** the prefire planning symbol for hazardous material.

B.O. #3-4 - Given several pictures of a rooftop, the learner will **diagram** the rooftop using the appropriate prefire planning symbols for flat, pitched, arch-like surfaces and all roof structures.

B.O. #6-2 - The learner will **identify** and interpret codes used in marking flammable, toxic and explosive materials that are hazardous. (As used in the Fire Hazard Diamond of NFPA code 704M)
POST-TEST B.O. PAGE FIVE

B.O. #3A-1 - When presented with a series of pictures of windows, the learner will identify these types of windows:

a) double-hung windows
b) casement windows
c) factory-style windows and
d) jalousie windows.

B.O. #3A-2 - When presented with a series of pictures of doors, the learner will correctly identify these types of doors:

a) double swinging doors
b) single swinging doors
c) revolving doors
d) sliding doors and
e) overhead doors.

B.O. #3-1 - When presented with pictures of various roofs, the learner will identify the types of roof construction of each. These include:

a) flat
b) pitched
c) arch-like or
d) any variations of these.

B.O. #6-5 - The learner will compile into finished prefire plans, the location and important characteristics of flammable, toxic and explosive material that is hazardous.

B.O. #5-2 - The learner will identify areas in a given building which could cause problems in rescue attempts based upon:

a) their representation on blueprints
b) visual inspections of the area.

B.O. #3A-5 - Given several pictures of a selected building, the learner will compile into finished prefire plans:

a) an estimate of the best points for forced ventilation and forced entry
b) the location of the main gas and electrical shutoffs in the building.

B.O. #7-4 - The learner will interpret diagrams which give the following information about obstructions, structures and materials in the perimeter area of a selected building:

a) description
b) direction
c) distance and
d) height.
B.O. #6-3 - The learner will interpret tables and entries from NFPA codes included in the "Fire Protection Guide on Hazardous Material."

a) NFPA code #325A
b) NFPA code #325M
c) NFPA code #49
d) NFPA code #491M.

B.O. #2A-1 - When presented with a series of pictures of a fire pump, the learner will correctly identify:

a) the type of pump
b) the power source
c) the type of operation and
d) the location of the pump.

B.O. #3-2 - Given a picture of a roof, the learner will correctly identify various structures which are found on the roof. These include:

a) power roof exhausters
b) continuous gravity vents
c) monitor vents
d) skylights
e) scuttle holes
f) chimneys
g) combinations or variations of these.

B.O. #2A-2 - The learner will identify the main characteristics of fire alarm systems:

a) the type of system (local or supervised)
b) the location of the annunciator panel and
c) the system coverage.

B.O. #2-1 - Given a sprinkler system that uses water as an extinguishing agent, the learner will identify the system as being:

a) a wet system
b) a dry system or
c) a deluge system

B.O. #2-7 - The learner will identify administrative procedures of the prefire planning process:

a) filing procedures
b) revision procedures

B.O. #5-2 - The learner will identify areas in a given building which could cause problems in rescue attempts based upon:

a) their representation on blueprints
b) visual inspections of the area.
POST-TEST B.O. PAGE SEVEN

B.O. #6-1 - The learner will interpret terms expressing the properties of flammable, toxic and explosive materials that are hazardous.

B.O. #5-1 - The learner will identify the actions taken to locate areas in a given building which disrupt fire department communications.

B.O. #2A-1 - When presented with a series of pictures of a fire pump, the learner will correctly identify:

a) the type of pump
b) the power source
c) the type of operation and
d) the location of the pump.

B.O. #2A-1 - When presented with a series of pictures of a fire pump; the learner will correctly identify:

a) the type of pump
b) the power source
c) the type of operation and
d) the location of the pump.

B.O. #4-3 - The learner will identify and differentiate elevators and elevator components:

a) construction parts
b) emergency elevator apparatus
c) cable-supported vs. hydraulic elevators.

B.O. #6-2 - The learner will identify and interpret codes used in marking flammable, toxic and explosive materials that are hazardous. (As used in the Fire Hazard Diamond of NFPA code 704M)

B.O. #5-5 - The learner will compile into finished prefire plans for a given building, the location of:

a) problem areas for fire department communication
b) special rescue considerations
c) material/equipment for priority salvage.

B.O. #3-1 - When presented with pictures of various roofs, the learner will identify the types of roof construction of each. These include:

a) flat
b) pitched
c) arch-like or
d) any variations of these.

B.O. #3-1 - When presented with pictures of various roofs, the learner will identify the types of roof construction of each. These include:

a) flat
b) pitched
c) arch-like or
d) any variations of these.
B.O. #6-5 - The learner will compile into finished prefire plans, the location and important characteristics of flammable, toxic and explosive material that is hazardous.

B.O. #3A-1 - When presented with a series of pictures of windows, the learner will identify these types of windows:
 a) double-hung windows
 b) casement windows
 c) factory-style windows and
 d) jalousie windows.

B.O. #3A-2 - When presented with a series of pictures of doors, the learner will correctly identify these types of doors:
 a) double swinging doors
 b) single swinging doors
 c) revolving doors
 d) sliding doors and
 e) overhead doors.

B.O. #3-4 - Given several pictures of a rooftop, the learner will diagram the rooftop using the appropriate prefire planning symbols for flat, pitched, arch-like surfaces and all roof structures.

B.O. #6-3 - The learner will interpret tables and entries from NFPA codes included in the "Fire Protection Guide on Hazardous Material."
 a) NFPA code #325A
 b) NFPA code #325M
 c) NFPA code #49
 d) NFPA code #491M.

B.O. #5-5 - The learner will compile into finished prefire plans for a given building, the location of:
 a) problem areas for fire department communication
 b) special rescue considerations
 c) material/equipment for priority salvage.

B.O. #3A-5 - Given several pictures of a selected building, the learner will compile into finished prefire plans:
 a) an estimate of the best points for forced ventilation and forced entry
 b) the location of the main gas and electrical shutoffs in the building.

B.O. #2-1 - Given a sprinkler system that uses water as an extinguishing agent, the learner will identify the system as being:
 a) a wet system
 b) a dry system or
 c) a deluge system.
B.O. #5-2 - The learner will identify areas in a given building which could cause problems in rescue attempts based upon:
 a) their representation on blueprints
 b) visual inspections of the area.

B.O. #3A-5 - Given several pictures of a selected building, the learner will compile into finished prefire plans:
 a) an estimate of the best points for forced ventilation and forced entry.
 b) the location of the main gas and electrical shutoffs in the building.

B.O. #7-2 - The learner will compile into finished prefire plans, information about:
 a) perimeter survey
 b) fire flow
 c) laddering and
 d) hoses.

B.O. #3-2 - Given a picture of a roof, the learner will correctly identify various structures which are found on the roof. These include:
 a) power roof exhausters
 b) continuous gravity vents
 c) monitor vents
 d) skylights
 e) scuttle holes
 f) chimneys
 g) combinations or variations of these.

B.O. #6-1 - The learner will interpret terms expressing the properties of flammable, toxic and explosive materials that are hazardous.

B.O. #5-1 - The learner will identify the actions taken to locate areas in a given building which disrupt fire department communications.

B.O. #3-2 - Given a picture of a roof, the learner will correctly identify various structures which are found on the roof. These include:
 a) power roof exhausters
 b) continuous gravity vents
 c) monitor vents
 d) skylights
 e) scuttle holes
 f) chimneys
 g) combinations or variations of these.

B.O. #7-2 - The learner will compile into finished prefire plans, information about:
 a) perimeter survey
 b) fire flow
 c) laddering and
 d) hoses.
POST-TEST B.O. PAGE TEN

B.O. #5-4 - The learner will **identify** the actions taken to locate material in a building that should be given priority during salvage operations.

B.O. #6-1 - The learner will **interpret** terms expressing the properties of flammable, toxic and explosive materials that are hazardous.

B.O. #4-3 - The learner will **identify** and **differentiate** elevators and elevator components:

a) construction parts
b) emergency elevator apparatus
c) cable-supported vs. hydraulic elevators.

B.O. #2A-4 - The learner will **compile** into finished prefire plans all information concerning:

a) fire pumps
b) perimeter structures and
c) fire alarm systems.

B.O. #3A-4 - When presented with a series of prefire planning symbols, the learner will **identify** the symbols for:

a) gas shutoffs
b) electrical shutoffs
c) heating units
d) fire doors
e) basement doors
f) overhead doors and
g) fire escapes.

B.O. #4-1 - The learner will **identify** the prefire planning symbols for:

a) elevators
b) open stairways
c) enclosed stairways and
d) smoke-proof towers.

B.O. #2-3 - The learner will, when presented with a series of prefire planning symbols, be able to **identify** the correct symbols for:

a) an automatic sprinkler system
b) an automatic chemical sprinkler system
c) a non-sprinklered area
d) an O.S.&Y.
e) a gate valve
f) a sprinkler riser
g) fire department connections
h) a P.I.V.
B.O. #3-3 - When presented with a series of prefire planning symbols, the learner will identify the symbol for:

a) vents
b) lightwells
c) skylights
d) scuttle holes and
e) chimneys

B.O. #2A-3 - Given a series of prefire planning symbols, the learner will identify the symbols for:

a) fire pumps
b) annunciator panels
c) water towers
d) cisterns
e) roof tanks
f) standpipes.
g) fire hydrants and
h) water mains
APPENDIX VIII-4

Sample Answer Sheets
MSU-NSF-ROCKFORD CABLE PROJECT

PROGRAM #1

Please circle the letter which indicates your answer. If you don't know the answer, you may leave it blank.

<table>
<thead>
<tr>
<th>EX. 1</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EX. 2</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(1)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(4)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(6)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(9)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(10)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(11)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(21)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(22)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(23)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(24)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(25)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(26)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(27)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Please go to the top of the next column for #15.

251
PLEASE CIRCLE THE LETTER WHICH INDICATES YOUR ANSWER. IF YOU DON'T KNOW THE ANSWER, YOU MAY LEAVE IT BLANK.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(4)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(6)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(9)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(10)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(11)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(21)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(22)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(23)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(24)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(25)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(26)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(27)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(28)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(29)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(30)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(31)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(32)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(33)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(34)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(35)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(36)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(37)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(38)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

PLEASE GO TO TOP OF NEXT COLUMN FOR #20
MSU-NSF-ROCKFORD CABLE PROJECT
PROGRAM #10, PART 2 - TEST

PLEASE CIRCLE THE LETTER WHICH INDICATES YOUR ANSWER. IF YOU DON'T KNOW THE ANSWER, YOU MAY LEAVE IT BLANK.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(21)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(22)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(4)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(23)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(24)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(6)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(25)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(26)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(27)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(9)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(28)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(10)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(29)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(11)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(30)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(31)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(32)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(33)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(34)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(35)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(36)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(37)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(38)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

PLEASE GO TO TOP OF NEXT COLUMN FOR #20
APPENDIX VIII-5

Follow-up Test
NSF/ROCKFORD CABLE PROJECT
PREFIRE PLANNING

This television test is to get an estimate of what you can recall from the subject matter of the videotapes in the prefire planning series. The results will be used to determine how well the training program worked. To get the most accurate evaluation of the training program, it is critical that you do your best on the tests, and that your answers are your own. Please don't discuss the questions with the other men as you watch the program. Thanks very much for your help in this project. After these results are complied we will give you a report that summarizes all the results for the experiment.
MSU-NSF-ROCKFORD CABLE PROJECT

FOLLOW UP - TEST

Please circle the letter which indicates your answers. If you don’t know the answer, you may leave it blank.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(4)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(6)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(9)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(10)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(21)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(11)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Please go to top of next column for #20

256

Please go on to next...
ISU-NSF-ROCKFORD CABLE PROJECT
FOLLOW UP - TEST

PLEASE CIRCLE THE LETTER WHICH INDICATES YOUR ANSWER. IF YOU DON'T KNOW THE ANSWER, YOU MAY LEAVE IT BLANK.

<table>
<thead>
<tr>
<th>(1)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>(20)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(21)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(4)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(22)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(5)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(23)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(6)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(24)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(25)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(8)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(26)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(9)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(27)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(10)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(28)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(11)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(29)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(12)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(30)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(13)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(31)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(14)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(32)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(33)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(16)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(34)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(17)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(35)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(18)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(36)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(19)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(37)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>(20)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>(38)</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

PLEASE GO TO TOP OF NEXT COLUMN FOR #20

PLEASE GO ON TO NEXT PAGE

257
PLEASE ANSWER THE FOLLOWING QUESTIONS BY CIRCLING THE CORRECT LETTER. THESE QUESTIONS ARE NOT ON THE VIDEO TAPE.

(1) Which guideline would you use to select a building that should be prefire planned?
(a) select because of potential fire hazard
(b) select because of proximity to the fire station
(c) select because of the size of the building
(d) select from a list compiled by the deputy chief

(2) How would you handle a building engineer who is worried that your tour of the plant during a prefire plan survey would cost the business money? Would you
(a) remind him that he has 30 days to correct any violations
(b) notify the deputy chief of the situation
(c) explain the difference between a prefire plan survey and a fire inspection
(d) get legal permission from the local justice to tour the building

(3) Imagine that you are on a prefire plan survey. You are touring a building where tools are manufactured. You come across a stockroom which stores many boxes of these tools on movable skids. Under which heading of the building survey report would you put information about the stock room?
(a) vertical structures
(b) perimeter survey
(c) salvage
(d) rescue

(4) A blue color code on the company extract indicates
(a) flammability hazards in the building
(b) toxicity hazards in the building
(c) health hazards in the building
(d) no hazards present in the building

(5) Prefire planning packets are always filed by:
(a) address
(b) company name
(c) proximity to the fire station
(d) the last time a fire occurred in the building

(6) Which of the following is not in the prefire planning packet:
(a) the company extract
(b) the finalized diagrams
(c) the reduced diagrams that are provided to each station house
(d) the building survey report

(7) A building already has been prefire planned. Where would you not find a prefire planning packet on that building?
(a) at the deputy chief's office
(b) at the alarm office
(c) at each fire station involved in the initial response
(d) at the building that was prefire planned
These questions give you the opportunity to share your opinions about the prefire planning series you saw on TV some six months ago. Please read each question carefully before answering.

1) If zero (0) means that you think the prefire planning series on TV was not at all interesting, and one hundred (100) means that you think the prefire planning series was as interesting as live instruction, how interesting would you now rate the prefire planning series? (For example, if you thought it was twice as interesting as live instruction, you would write 200; if you thought it was only half as interesting, you would write 50).

2) If zero (0) means that you think you learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have gained if you had received this information in a live instruction situation, how much do you think you learned from the prefire planning series? (For example, if you think that you learned twice as much from the prefire planning series as you would have from live instruction, you would write 200; if you think that you learned only half as much from the prefire planning series as you would have from live instruction, you would write 50).

3) If zero (0) means that you think the other men in your station did not like the prefire planning series at all, and one hundred (100) means that you think the other men in your station liked the prefire planning series about as much as live instruction, how much do you think the other men in your station liked the prefire planning series?

4) Do you think the other men at your station would like to have more series like the prefire planning series presented over television?

 ________ Definitely Yes ________ Probably No
 ________ Probably Yes ________ Definitely No

5) Which method do you think is the better way to learn about topics pertinent to your occupation, such as prefire planning?

 ________ live instruction or ________ televised instruction

6) Would you like to have more series like the prefire planning series presented over television?

 ________ Definitely Yes ________ Probably No
 ________ Probably Yes ________ Definitely No

PLEASE GO ON TO NEXT PAGE
(7) About how many times did you handle the terminal box during the course of the prefire planning series?

(times)

(8) If one hundred (100) represents the amount of satisfaction you got out of the prefire planning series when you were not handling the terminal, how much satisfaction would you say you got out of the prefire planning series when you did handle the terminal? (For example, if you got twice as much satisfaction when handling the terminal, you would write 200; if you only got half as much satisfaction you would write 50.)

(9) If one hundred (100) represents the amount of attention you paid to the material being presented when you were not handling the terminal, how much attention did you pay to the material when you were handling the terminal? (For example, if you paid twice as much attention, you would write 200; if half as much 50.)

PLEASE GO ON TO NEXT PAGE
Here is a series of scales. Please place a checkmark on each scale above the response you feel best completes the sentence. Please place only one mark on each scale.

I think prefire planning is:

<table>
<thead>
<tr>
<th>Extremely Essential</th>
<th>Somewhat Essential</th>
<th>Slightly Essential</th>
<th>Slightly Unnecessary</th>
<th>Somewhat Unnecessary</th>
<th>Extremely Unnecessary</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Useless</th>
<th>Somewhat Useless</th>
<th>Slightly Useless</th>
<th>Slightly Useful</th>
<th>Somewhat Useful</th>
<th>Extremely Useful</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Time Consuming</th>
<th>Somewhat Time Consuming</th>
<th>Slightly Time Consuming</th>
<th>Slightly Not Time Consuming</th>
<th>Somewhat Not Time Consuming</th>
<th>Extremely Not Time Consuming</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Poor Public Relations</th>
<th>Somewhat Poor Public Relations</th>
<th>Slightly Poor Public Relations</th>
<th>Slightly Professional</th>
<th>Somewhat Professional</th>
<th>Extremely Professional</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Professional</th>
<th>Somewhat Professional</th>
<th>Slightly Professional</th>
<th>Slightly Unprofessional</th>
<th>Somewhat Unprofessional</th>
<th>Extremely Unprofessional</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely My Job</th>
<th>Somewhat My Job</th>
<th>Slightly My Job</th>
<th>Slightly Not My Job</th>
<th>Somewhat Not My Job</th>
<th>Extremely Not My Job</th>
</tr>
</thead>
</table>

I think firefighting is:

<table>
<thead>
<tr>
<th>Extremely Unsafe</th>
<th>Somewhat Unsafe</th>
<th>Slightly Unsafe</th>
<th>Slightly Safe</th>
<th>Somewhat Safe</th>
<th>Extremely Safe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Inefficient</th>
<th>Somewhat Inefficient</th>
<th>Slightly Inefficient</th>
<th>Slightly Efficient</th>
<th>Somewhat Efficient</th>
<th>Extremely Efficient</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Unprofessional</th>
<th>Somewhat Unprofessional</th>
<th>Slightly Unprofessional</th>
<th>Slightly Professional</th>
<th>Somewhat Professional</th>
<th>Extremely Professional</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Unskilled</th>
<th>Somewhat Unskilled</th>
<th>Slightly Unskilled</th>
<th>Slightly Skilled</th>
<th>Somewhat Skilled</th>
<th>Extremely Skilled</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Extremely Individually Oriented</th>
<th>Somewhat Individually Oriented</th>
<th>Slightly Individually Oriented</th>
<th>Slightly Team Oriented</th>
<th>Somewhat Team Oriented</th>
<th>Extremely Team Oriented</th>
</tr>
</thead>
</table>

PLEASE GO ON TO NEXT PAGE
I think that learning about prefire planning from the TV training tapes was:

<table>
<thead>
<tr>
<th>Extremely Interesting</th>
<th>Somewhat Interesting</th>
<th>Slightly Interesting</th>
<th>Slightly Boring</th>
<th>Somewhat Boring</th>
<th>Extremely Boring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Ineffective</td>
<td>Somewhat Ineffective</td>
<td>Slightly Ineffective</td>
<td>Slightly Effective</td>
<td>Somewhat Effective</td>
<td>Extremely Effective</td>
</tr>
<tr>
<td>Extremely Easy</td>
<td>Somewhat Easy</td>
<td>Slightly Easy</td>
<td>Slightly Difficult</td>
<td>Somewhat Difficult</td>
<td>Extremely Difficult</td>
</tr>
<tr>
<td>Extremely Bad</td>
<td>Somewhat Bad</td>
<td>Slightly Bad</td>
<td>Slightly Good</td>
<td>Somewhat Good</td>
<td>Extremely Good</td>
</tr>
<tr>
<td>Extremely Involving</td>
<td>Somewhat Involving</td>
<td>Slightly Involving</td>
<td>Slightly Non-Involving</td>
<td>Somewhat Non-Involving</td>
<td>Extremely Non-Involving</td>
</tr>
</tbody>
</table>

What do you think would improve the kind of learning situation you were in during the prefire planning series?

__
__
__
__
__
__

PLEASE GO ON TO NEXT PAGE
THESE NEXT QUESTIONS RELATE TO THE FIRE DEPARTMENT TELEVISION BRIEFING PROGRAM "UPDATE".

1. Do you view the printed message portion of "Update"...
 _____ almost every duty day
 _____ about half the time
 _____ seldom

2. Does someone in your station watch the printed message portion of "Update"...
 _____ almost every duty day
 _____ about half the time
 _____ seldom

3. Sometimes "Update" includes a television program about some aspect of Fire Department activity. Below is a list of some of these programs. Please check each program that you definitely remember viewing.

 _____ Description of Television Briefing System
 _____ Manufacturer's Demonstration of Quint Apparatus
 _____ Arson Seminar
 _____ Q & A on Director of Community Services Officer Functions
 _____ Chief's Update
 _____ Recruit Program Update
 _____ Hydrant Survey Program
 _____ MSU Project
 _____ Fire Prevention Week Contest
 _____ Fire Prevention Week Plans
 _____ Illinois Firefighters Conference, Physical Fitness for Firefighters and Self-Contained Breathing Apparatus
 _____ Arthur Fiedler, Conductor of the Boston Pops, Fire Department Interview

4. What is the best time to run "Update"
 _______ 8:30 a.m. _______ 4:15 p.m. _______ Other

THE END. THANKS VERY MUCH!!!!!
APPENDIX VIII-6

First Affective Instrument

Metric Multidimensional
and
Semantic Differential Scales
Instructions

Thank you for helping us. This booklet is divided into two parts. The first part asks you to estimate how different one thing is from another. The second part asks some general questions about your attitudes toward the same things.

Directions for Part One

In this section you are asked to estimate how different various concepts are from one another. In most kinds of measurement of differences, some type of ruler or measurement instrument is used. To make it easy for you to perform the following measurements, we will give you a mental ruler to use in measuring the differences between each pair of concepts.

The mental ruler is **100 units** long. That distance, **100 units**, represents the difference in meaning between the concepts **USEFUL** and **ESSENTIAL**. That is, think of the concept **USEFUL** and the concept **ESSENTIAL** and let the difference between them be equal to **100 units**.

Therefore, **USEFUL** and **ESSENTIAL** are **100 units** apart.

The questions asked are of the following form:

"If USEFUL and ESSENTIAL are **100 units** apart, how far apart are (x) and (y) ?

Remember, the more different two concepts are from one another, the larger the number of units apart they are. If you think that two concepts are more different than USEFUL and ESSENTIAL, write a number larger than 100 that you think accurately describes the difference. If you think two concepts are not as different as USEFUL and ESSENTIAL, write a number smaller than 100 that you think accurately represents their difference. Remember, the more different the concepts are from each other,
the larger the number you write. For example, if two concepts are twice as different as USEFUL and ESSENTIAL, you would write 200 units. Similarly if two concepts are only half as different as USEFUL and ESSENTIAL, you would write 50 units.

You may write any number you wish (e.g. 1, 23, 76, 89, 154, etc.). Keep the mental ruler in mind as you make your estimates. Please write in numbers after you seriously think about the questions. Please answer all questions.
<table>
<thead>
<tr>
<th>Phrases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>firefighting and safe</td>
<td>_____</td>
</tr>
<tr>
<td>firefighting and efficient</td>
<td>_____</td>
</tr>
<tr>
<td>firefighting and professional</td>
<td>_____</td>
</tr>
<tr>
<td>firefighting and teamwork</td>
<td>_____</td>
</tr>
<tr>
<td>firefighting and skilled</td>
<td>_____</td>
</tr>
<tr>
<td>firefighting and me</td>
<td>_____</td>
</tr>
<tr>
<td>safe and efficient</td>
<td>_____</td>
</tr>
<tr>
<td>safe and professional</td>
<td>_____</td>
</tr>
<tr>
<td>safe and teamwork</td>
<td>_____</td>
</tr>
<tr>
<td>safe and skilled</td>
<td>_____</td>
</tr>
<tr>
<td>safe and me</td>
<td>_____</td>
</tr>
<tr>
<td>efficient and professional</td>
<td>_____</td>
</tr>
<tr>
<td>efficient and teamwork</td>
<td>_____</td>
</tr>
<tr>
<td>efficient and skilled</td>
<td>_____</td>
</tr>
<tr>
<td>efficient and me</td>
<td>_____</td>
</tr>
<tr>
<td>professional and teamwork</td>
<td>_____</td>
</tr>
</tbody>
</table>

If USEFUL and ESSNTIAL are 100 units apart, how far apart are:
If USEFUL and ESSENTIAL are 100 units apart, how far apart are:

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>professional and skilled</td>
<td></td>
</tr>
<tr>
<td>professional and me</td>
<td></td>
</tr>
<tr>
<td>teamwork and skilled</td>
<td></td>
</tr>
<tr>
<td>teamwork and me</td>
<td></td>
</tr>
<tr>
<td>skilled and me</td>
<td></td>
</tr>
</tbody>
</table>
If USEFUL and ESSENTIAL and 100 units apart, how far apart are:

<table>
<thead>
<tr>
<th>Prefire Planning and</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential</td>
<td></td>
</tr>
<tr>
<td>Useful</td>
<td></td>
</tr>
<tr>
<td>Time Consuming</td>
<td></td>
</tr>
<tr>
<td>Public Relations</td>
<td></td>
</tr>
<tr>
<td>Safe Community</td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td></td>
</tr>
<tr>
<td>Busy Work</td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefire Planning and</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td></td>
</tr>
<tr>
<td>Essential and Useful</td>
<td></td>
</tr>
<tr>
<td>Time Consuming</td>
<td></td>
</tr>
<tr>
<td>Public Relations</td>
<td></td>
</tr>
<tr>
<td>Safe Community</td>
<td></td>
</tr>
<tr>
<td>Professional</td>
<td></td>
</tr>
<tr>
<td>Busy Work</td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td></td>
</tr>
</tbody>
</table>
If USEFUL and ESSENTIAL are 100 units apart, how far apart are:

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>essential and me</td>
<td></td>
</tr>
<tr>
<td>useful and time consuming</td>
<td></td>
</tr>
<tr>
<td>useful and public relations</td>
<td></td>
</tr>
<tr>
<td>useful and safe community</td>
<td></td>
</tr>
<tr>
<td>useful and professional</td>
<td></td>
</tr>
<tr>
<td>useful and busy work</td>
<td></td>
</tr>
<tr>
<td>useful and inspection</td>
<td></td>
</tr>
<tr>
<td>useful and me</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time consuming and public relations</td>
<td></td>
</tr>
<tr>
<td>time consuming and safe community</td>
<td></td>
</tr>
<tr>
<td>time consuming and professional</td>
<td></td>
</tr>
<tr>
<td>time consuming and busy work</td>
<td></td>
</tr>
<tr>
<td>time consuming and inspection</td>
<td></td>
</tr>
<tr>
<td>time consuming and me</td>
<td></td>
</tr>
<tr>
<td>public relations and safe community</td>
<td></td>
</tr>
<tr>
<td>public relations and professional</td>
<td></td>
</tr>
</tbody>
</table>

2\cdot()
If USEFUL and ESSENTIAL are 100 units apart, how far apart are:

Public relations and busy work	_______ units
Public relations and inspection	_______ units
Public relations and me	_______ units
Safe community and professional	_______ units
Safe community and busy work	_______ units
Safe community and inspection	_______ units
Safe community and me	_______ units
Professional and busy work	_______ units
Professional and inspection	_______ units
Professional and me	_______ units
Busy work and inspection	_______ units
Busy work and me	_______ units
Inspection and me	_______ units
If USEFUL and ESSENTIAL are 100 units apart, how far apart are:

TV training and effective	______ units
TV training and interesting	______ units
TV training and difficult	______ units
TV training and good	______ units
TV training and involving	______ units
TV training and me	______ units
effective and involving	______ units
effective and difficult	______ units
effective and good	______ units
effective and involving	______ units
effective and me	______ units
interesting and difficult	______ units
interesting and good	______ units
interesting and involving	______ units
interesting and me	______ units
difficult and good	______ units
If USEFUL and ESSENTIAL are 100 units apart, how far apart are:

- difficult and involving
- difficult and me
- good and involving
- good and me
- involving and me
Directions for Part Two

In this part of the questionnaire you will be presented with a series of scales. Please place a checkmark on each scale above the response you feel best completes the sentence. Make sure you place only one checkmark on each scale.
I think firefighting is:

<table>
<thead>
<tr>
<th>Extremely Unsafe</th>
<th>Somewhat Unsafe</th>
<th>Slightly Unsafe</th>
<th>Slightly Safe</th>
<th>Somewhat Safe</th>
<th>Extremely Safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Inefficient</td>
<td>Somewhat Inefficient</td>
<td>Slightly Inefficient</td>
<td>Slightly Efficient</td>
<td>Somewhat Efficient</td>
<td>Extremely Efficient</td>
</tr>
<tr>
<td>Extremely Un-Professional</td>
<td>Somewhat Un-Professional</td>
<td>Slightly Un-Professional</td>
<td>Slightly Professional</td>
<td>Somewhat Professional</td>
<td>Extremely Professional</td>
</tr>
<tr>
<td>Extremely Unskilled</td>
<td>Somewhat Unskilled</td>
<td>Slightly Unskilled</td>
<td>Slightly Skilled</td>
<td>Somewhat Skilled</td>
<td>Extremely Skilled</td>
</tr>
<tr>
<td>Extremely Individually Oriented</td>
<td>Somewhat Individually Oriented</td>
<td>Slightly Individually Oriented</td>
<td>Slightly Team Oriented</td>
<td>Somewhat Team Oriented</td>
<td>Extremely Team Oriented</td>
</tr>
</tbody>
</table>

I think prefire planning is:

<table>
<thead>
<tr>
<th>Extremely Essential</th>
<th>Somewhat Essential</th>
<th>Slightly Essential</th>
<th>Slightly Unnecessary</th>
<th>Somewhat Unnecessary</th>
<th>Extremely Unnecessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Useless</td>
<td>Somewhat Useless</td>
<td>Slightly Useless</td>
<td>Slightly Useful</td>
<td>Somewhat Useful</td>
<td>Extremely Useful</td>
</tr>
<tr>
<td>Extremely Time Consuming</td>
<td>Somewhat Time Consuming</td>
<td>Slightly Time Consuming</td>
<td>Slightly Not Time Consuming</td>
<td>Somewhat Not Time Consuming</td>
<td>Extremely Not Time Consuming</td>
</tr>
<tr>
<td>Extremely Poor Public Relations</td>
<td>Somewhat Poor Public Relations</td>
<td>Slightly Poor Public Relations</td>
<td>Slightly Good Public Relations</td>
<td>Somewhat Good Public Relations</td>
<td>Extremely Good Public Relations</td>
</tr>
<tr>
<td>Extremely Professional</td>
<td>Somewhat Professional</td>
<td>Slightly Professional</td>
<td>Slightly Unprofessional</td>
<td>Somewhat Unprofessional</td>
<td>Extremely Unprofessional</td>
</tr>
<tr>
<td>Extremely Not My Job</td>
<td>Somewhat Not My Job</td>
<td>Slightly Not My Job</td>
<td>Slightly Not My Job</td>
<td>Somewhat Not My Job</td>
<td>Extremely Not My Job</td>
</tr>
</tbody>
</table>
I think learning via the training tape is:

<table>
<thead>
<tr>
<th>Extremely Interesting</th>
<th>Somewhat Interesting</th>
<th>Slightly Interesting</th>
<th>Slightly Boring</th>
<th>Somewhat Boring</th>
<th>Extremely Boring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Ineffective</td>
<td>Somewhat Ineffective</td>
<td>Slightly Ineffective</td>
<td>Slightly Effective</td>
<td>Somewhat Effective</td>
<td>Extremely Effective</td>
</tr>
<tr>
<td>Extremely Easy</td>
<td>Somewhat Easy</td>
<td>Slightly Easy</td>
<td>Slightly Difficult</td>
<td>Somewhat Difficult</td>
<td>Extremely Difficult</td>
</tr>
<tr>
<td>Extremely Bad</td>
<td>Somewhat Bad</td>
<td>Slightly Bad</td>
<td>Slightly Good</td>
<td>Somewhat Good</td>
<td>Extremely Good</td>
</tr>
<tr>
<td>Extremely Non-Involving</td>
<td>Somewhat Non-Involving</td>
<td>Slightly Non-Involving</td>
<td>Slightly Non-Involving</td>
<td>Somewhat Non-Involving</td>
<td>Extremely Non-Involving</td>
</tr>
</tbody>
</table>
The following questions are simply to let us know a little about you.

(1) Your position? (please check one):

- Captain
- Lieutenant
- Driver-Engineer
- Squad-Member
- Engineer (pipeman)
- Tillerman
- Ladderman

(2) How much education have you had? (please circle one):

- less than High School
- H.S. (# of years) 1 2 3 4
- College 1 2 3 4 More

(3) Your Age; _____ years _____ months

(4) Years of Service; _____ years _____ months

(5) Code Number ______________

277
APPENDIX VIII-7

Second Affective Instrument
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

(1) Was it important for you to know that you had been properly logged in to see your code letters on the screen?
 _______ YES _______ NO

(2) Did you compare your scores at the end of the lesson with the scores of others?
 _______ YES _______ NO

(3) Did you usually compare your answers to individual questions, with the answers by others?
 _______ YES _______ NO

(4) Did you get any satisfaction from getting questions right?
 _______ YES _______ NO

(5) Was it important to you to know your percentage score on the quick quizzes and overall?
 _______ YES _______ NO

(6) How many times per week would you estimate that you talk to the other firefighters at your station about the prefire planning series?
 _______ times per week.

(7) About what percentage of the conversations would you say is devoted to the following topics?

 _______ answers to interactive items
 _______ comments about the topics being presented
 _______ comments about the style in which the topics are being presented
 _______ other (please specify) _______

 TOTAL = 100%

(3) About what percentage of the communication which takes place is favorable toward the prefire planning series?
(9) If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

(10) If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as useful as being able to ask questions of an instructor during live instruction, how useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

(11) If zero (0) means that you think that you have learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you've learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would have in a live instruction situation you would write 50.)

(12) Would you like to have more training programs like the prefire planning series presented over the television?

_______ YES

_______ NO

(13) Given that you would have to have training on a particular topic, how would you like that training to be presented?

_______ live instruction

_______ one way television instruction

_______ two way television instruction

(14) What suggestions do you have that you think would improve the (prefire planning) learning situation you are presently in? (Write on back side of sheet, if you need more space.)

(15) How many times have you actually handled the terminal during a lesson so far?

_______ times
(16) If one hundred (100) represents the amount of satisfaction you get out of the prefire planning series when you were not handling the terminal, how much satisfaction would you say you got out of the prefire planning series when you did handle the terminal? (For example, if you got twice as much satisfaction when handling the terminal you would write 200, if you only got half as much satisfaction you would write 50.)

(17) If one hundred (100) represents the amount of attention you paid to the material being presented when you were not handling the terminal, how much attention did you pay to the material being presented when you were handling the terminal? (For example, if you paid half as much attention when you had the terminal, you would write 200.)
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

(1) If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

(2) If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as being able to ask questions of an instructor during live instruction. How useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

(3) If zero (0) means that you think that you have learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you've learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would have in a live instruction situation you would write 50.)

(4) How many times per week would you estimate that you talk to the other firefighters at your station about the prefire planning series?

_________ times per week.
(5) About what percentage of the conversations would you say is devoted to the following topics?

- _______ answers to interactive items
- _______ comments about the topics being presented
- _______ comments about the style in which the topics are being presented
- _______ other (please specify) ____________

TOTAL = 100%

(6) About what percentage of the communication which takes place is favorable toward the prefire planning series?

(7) Would you like to have more training programs like the prefire planning series presented over the television?

- _______ YES
- _______ NO

(8) What suggestions do you have that you think would improve the (prefire planning) learning situation you are presently in? (write on back side of sheet, if you need more space).
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

(1) If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

(2) If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as useful as being able to ask questions of an instructor during live instruction, how useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

(3) If zero (0) means that you think that you have learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you've learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would in a live instruction situation you would write 50.)

(4) How many times per week would you estimate that you talk to the other fire-fighters at your station about the prefire planning series?

_________ times per week.
(5) About what percentage of the conversations would you say is devoted to the following topics?

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>answers to interactive items</td>
<td></td>
</tr>
<tr>
<td>comments about the topics being presented</td>
<td></td>
</tr>
<tr>
<td>comments about the style in which the topics are being presented</td>
<td></td>
</tr>
<tr>
<td>other (please specify)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL = 100%

(6) About what percentage of the communication which takes place is favorable toward the prefire planning series?

(7) Would you like to have more training programs like the prefire planning series presented over the television?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

(8) Given that you would have to have training or a particular topic, how would you like that training to be presented?

| live instruction | one way television instruction | two way television instruction |

(9) What suggestions do you have that you think would improve the (prefire planning) learning situation you are presently in? (write on back side of sheet, if you need more space.)
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

(1) Was it important for you to know that you had been properly logged in to see your code letters on the screen?

______ YES ________ NO

(2) Did you compare your scores at the end of the lesson with the scores of others?

______ YES ________ NO

(3) Did you usually compare your answers to individual questions, with the answers by others?

______ YES ________ NO

(4) Did you get any satisfaction from getting questions right?

______ YES ________ NO

(5) Was it important to you to know your percentage score on the quick quizzes and overall?

______ YES ________ NO

(6) How many times per week would you estimate that you talk to the other firefighters at your station about the prefire planning series?

______ times per week.

(7) About what percentage of the conversations would you say is devoted to the following topics?

______ answers to interactive items

______ comments about the topics being presented

______ comments about the style in which the topics are being presented

______ other (please specify)__________________

TOTAL = 100%
(8) About what percentage of the communication which takes place is favorable toward the prefire planning series?

(9) If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

(10) If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as useful as being able to ask questions of an instructor during live instruction, how useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

(11) If zero (0) means that you think that you have learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you've learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would have in a live instruction situation you would write 50.)

(12) Would you like to have more training programs like the prefire planning series presented over the television?

________ YES __________ NO

(13) What suggestions do you have that you think would improve the (prefire planning) learning situation you are presently in? (Write on back side of sheet, if you need more space).
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

(1) Was it important for you to know that you had been properly logged in to see your code letters on the screen?

 __________ YES __________ NO

(2) Did you compare your scores at the end of the lesson with the scores of others?

 __________ YES __________ NO

(3) Did you usually compare your answers to individual questions, with the answers by others?

 __________ YES __________ NO

(4) Did you get any satisfaction from getting questions right?

 __________ YES __________ NO

(5) Was it important to you to know your percentage score on the quick quizzes and overall?

 __________ YES __________ NO

(6) How many times per week would you estimate that you talk to the other firefighters at your station about the prefire planning series?

 __________ times per week.

(7) About what percentage of the conversations would you say is devoted to the following topics?

 ________ answers to interactive items
 ________ comments about the topics being presented
 ________ comments about the style in which the topics are being presented
 ________ other (please specify)

 TOTAL = 100%
(8) About what percentage of the communication which takes place is favorable toward the prefire planning series?

(9) If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

(10) If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as useful as being able to ask questions of an instructor during live instruction, how useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

(11) If zero (0) means that you think that you have learned nothing at all from the prefire planning series; and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you've learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would have in a live instruction situation you would write 50.)

(12) Would you like to have more training programs like the prefire planning series presented over the television?

YES NO

(13) What suggestions do you have that you think would improve the (prefire planning) learning situation you are presently in? (Write on back side of sheet, if you need more space).
(14) How many times have you actually handled the terminal during a lesson so far?

_______ times

(15) If one hundred (100) represents the amount of satisfaction you got out of the prefire planning series when you were not handling the terminal, how much satisfaction would you say you got out of the prefire planning series when you did handle the terminal? (For example, if you got twice as much satisfaction when handling the terminal you would write 200, if you only got half as much satisfaction you would write 50.)

(16) If one hundred (100) represents the amount of attention you paid to the material being presented when you were not handling the terminal, how much attention did you pay to the material being presented when you were handling the terminal? (For example, if you paid half as much attention when you had the terminal, you would write 200.)

290
THANK YOU FOR HELPING US.

The following questions provide you with the opportunity to give us your opinions about the prefire planning series. Please try to answer all of the questions.

1) Was it important for you to know that you had been properly logged in to see your code letters on the screen?
 _______ YES _______ NO

2) Did you compare your scores at the end of the lesson with the scores of others?
 _______ YES _______ NO

3) Did you usually compare your answers to individual questions, with the answers by others?
 _______ YES _______ NO

4) Did you get any satisfaction from getting questions right?
 _______ YES _______ NO

5) Was it important to you to know your percentage score on the quick quizzes and overall?
 _______ YES _______ NO

6) How many times per week would you estimate that you talk to the other firefighters at your station about the prefire planning series?
 _______ times per week.

7) About what percentage of the conversations would you say is devoted to the following topics?
 _______ answers to interactive items
 _______ comments about the topics being presented
 _______ comments about the style in which the topics are being presented
 _______ other (please specify) _______

TOTAL = 100%
8. About what percentage of the communication which takes place is favorable toward the prefire planning series?

9. If zero (0) means that you think the prefire planning series is not at all interesting, and one hundred (100) means that you think the prefire planning series is as interesting as live instruction, how interesting would you rate the prefire planning series thus far? (For example, if you thought it was twice as interesting you would write 200, if you thought it was only half as interesting you would write 50.)

10. If zero (0) means that you think the interactive items (i.e., questions) are not at all useful, and one hundred (100) means that you think the interactive items are as useful as being able to ask questions of an instructor during live instruction, how useful would you rate the interactive items thus far? (For example, if you thought it was twice as useful you would write 200, if you thought it was only half as useful you would write 50.)

11. If zero (0) means that you think that you have learned nothing at all from the prefire planning series, and one hundred (100) represents the amount of learning you think you would have attained if you would have received this information in a live instruction situation, how much do you think you have learned from the prefire planning series thus far? (For example, if you think you have learned twice as much from the prefire planning series as you would have from live instruction you would write 200, if you think you have learned only half as much from the prefire planning series as you would have in a live instruction situation you would write 50.)

12. Would you like to have more training programs like the prefire planning series presented over the television?
 _______ YES _______ NO

13. Given that you would have to have training on a particular topic, how would you like that training to be presented?

 _______ live instruction
 _______ one way television instruction
 _______ two way television instruction

14. What suggestions do you have that you think would improve the (prefire planning learning situation you are presently in? (Write on back side of sheet; if you need more space.)
APPENDIX VIII-8

MDS Summary

Grand Means and Variances
Appendix VIII-8 reports data describing the overall configurations of each multidimensional space. Each cell has three entries. From top to bottom, the entries are:

1. **The grand mean for all pairs.** This figure is the average distance reported for all paired comparisons; i.e., the sum of the means for each paired comparison divided by the number of pairs. The greater the mean, the greater the perceived discrepancy among the set of concepts.

2. **The total variance in the space.** i.e., the sum of the square of each eigenroot yielded by the orthogonal decomposition of the scalar product matrix. The greater the variance, the more discrimination participants engaged in when making evaluative judgments between all paired concepts in the set.

3. **The cumulative percentage of total distance accounted for by the imaginary dimensions.** The extent to which this figure exceeds 100 indicates the degree to which participants reported distances between a triad of concepts which did not conform to Euclidean space. Since the MDS procedure is based on Riemann geometrical assumptions, the solutions obtained are not degenerate, i.e., there is no loss of information. The triangular inequality problem arises when a participant provides the following type of response:

 - FIREFIGHTING AND SAFE
 - FIREFIGHTING AND PROFESSIONAL
 - SAFE AND PROFESSIONAL
 - 10 units
 - 20 units
 - 90 units

As is evident when trying to preserve these distances in an MDS space a 1-2-9 triangle results, and the variance has to be accounted for by imaginary dimensions.

MMDS DATA

TV Training Set

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way Individual Treatment</td>
<td>66</td>
<td>43</td>
<td>57</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Individual Treatment</td>
<td>116</td>
<td>100</td>
<td>106</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Two-Way Group Treatment</td>
<td>82</td>
<td>66</td>
<td>78</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Group Treatment</td>
<td>22569</td>
<td>13677</td>
<td>18968</td>
<td>21459</td>
<td></td>
</tr>
<tr>
<td>One-Way Paper/Pencil Treatment</td>
<td>76</td>
<td>76</td>
<td>79</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Paper/Pencil Treatment</td>
<td>20678</td>
<td>19567</td>
<td>21377</td>
<td>14258</td>
<td></td>
</tr>
<tr>
<td>One-Way Covert Response Treatment</td>
<td>108</td>
<td>109</td>
<td>101</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Covert Response Treatment</td>
<td>12060</td>
<td>15862</td>
<td>9203</td>
<td>13144</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>107</td>
<td>107</td>
<td>116</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>

- Grand Mean
- Total Variance
- Cumulative Percent of Total Distance Accounted for by Imaginary Dimensions
MMDS DATA

Prefire Planning Set

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way</td>
<td>85</td>
<td>78</td>
<td>57</td>
<td>62</td>
<td>47</td>
</tr>
<tr>
<td>Individual</td>
<td>40403</td>
<td>-30363</td>
<td>15678</td>
<td>18764</td>
<td>10731</td>
</tr>
<tr>
<td>Treatment</td>
<td>132</td>
<td>122</td>
<td>120</td>
<td>119</td>
<td>121</td>
</tr>
<tr>
<td>Two-Way</td>
<td>74</td>
<td>84</td>
<td>78</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>Group</td>
<td>27974</td>
<td>35933</td>
<td>29631</td>
<td>44325</td>
<td>31874</td>
</tr>
<tr>
<td>Treatment</td>
<td>121</td>
<td>108</td>
<td>107</td>
<td>115</td>
<td>129</td>
</tr>
<tr>
<td>One-Way</td>
<td>85</td>
<td>85</td>
<td>80</td>
<td>102</td>
<td>95</td>
</tr>
<tr>
<td>Paper/Pencil</td>
<td>37361</td>
<td>35694</td>
<td>30783</td>
<td>52322</td>
<td>48221</td>
</tr>
<tr>
<td>Treatment</td>
<td>117</td>
<td>122</td>
<td>113</td>
<td>118</td>
<td>127</td>
</tr>
<tr>
<td>One-Way</td>
<td>62</td>
<td>69</td>
<td>64</td>
<td>66</td>
<td>58</td>
</tr>
<tr>
<td>No Response</td>
<td>20030</td>
<td>28978</td>
<td>24763</td>
<td>23448</td>
<td>18501</td>
</tr>
<tr>
<td>Treatment</td>
<td>123</td>
<td>124</td>
<td>104</td>
<td>130</td>
<td>107</td>
</tr>
</tbody>
</table>

Grand Mean

Total Variance

Cumulative Percent of Total Distance Accounted for by Imaginary Dimensions

MMDS DATA

Firefighting Set

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Way</td>
<td>33</td>
<td>54</td>
<td>52</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>Individual</td>
<td>7481</td>
<td>10277</td>
<td>10097</td>
<td>4994</td>
<td>3634</td>
</tr>
<tr>
<td>Treatment</td>
<td>267</td>
<td>146</td>
<td>147</td>
<td>132</td>
<td>166</td>
</tr>
<tr>
<td>Two-Way</td>
<td>54</td>
<td>44</td>
<td>53</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>Group</td>
<td>9697</td>
<td>6986</td>
<td>11307</td>
<td>12875</td>
<td>12915</td>
</tr>
<tr>
<td>Treatment</td>
<td>132</td>
<td>154</td>
<td>156</td>
<td>159</td>
<td>158</td>
</tr>
<tr>
<td>One-Way</td>
<td>46</td>
<td>57</td>
<td>54</td>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>Paper/Pencil</td>
<td>10994</td>
<td>11355</td>
<td>10732</td>
<td>10677</td>
<td>6161</td>
</tr>
<tr>
<td>Treatment</td>
<td>220</td>
<td>146</td>
<td>159</td>
<td>202</td>
<td>208</td>
</tr>
<tr>
<td>One-Way</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>No Response</td>
<td>4021</td>
<td>4332</td>
<td>4529</td>
<td>3447</td>
<td>3678</td>
</tr>
<tr>
<td>Treatment</td>
<td>147</td>
<td>181</td>
<td>209</td>
<td>171</td>
<td>120</td>
</tr>
</tbody>
</table>

Grand Mean

Total Variance

Cumulative Percent of Total Distance Accounted for by Imaginary Dimensions
APPENDIX VIII-9

MDS Tables
Table 1. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Safe</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>196</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>107</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>206</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>2.10</td>
<td>.11</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 2. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Efficient</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>72</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>86</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>1.29</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.28</td>
<td>.16</td>
<td>.17</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 3. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Professional</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>22</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>49</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>2.15</td>
<td>.12</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.10</td>
<td>.27</td>
<td>.29</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 4. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Teamwork</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>3.22</td>
<td>.48</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.03</td>
<td>.70</td>
<td>.34</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 5. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Skilled</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>.89</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.45</td>
<td>.29</td>
<td>.54</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 6. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Firefighting and Me</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>44</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>29</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>3.09</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.03</td>
<td>.16</td>
<td>.16</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 7. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Prefire Planning and Essential</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>35</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>1.14</td>
<td>.42</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.34</td>
<td>.74</td>
<td>.41</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 8. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Pair: Prefire Planning and Useful</th>
<th>Time</th>
<th>Treatment</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Two-way individual</td>
<td>27</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Two-way group</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>One-way paper/pencil</td>
<td>35</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>One-way covert</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>F</td>
<td>.52</td>
<td>.06</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>.67</td>
<td>.98</td>
<td>.84</td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.
Table 9. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Time Consuming

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 112 | 85 | 33 | 35 | 33 | 2.16 | 0.08 |
| Two-way group | 88 | 104 | 74 | 91 | 46 | 0.95 | 0.44 |
| One-way paper/pencil | 71 | 73 | 82 | 127 | 101 | 0.70 | 0.59 |
| One-way covert | 101 | 71 | 57 | 40 | 22.25 | 0.07 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 10. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Public Relations

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 97 | 63 | 38 | 43 | 38 | 0.78 | 0.54 |
| Two-way group | 99 | 64 | 95 | 62 | 125 | 0.70 |
| One-way paper/pencil | 79 | 137 | 92 | 123 | 79 | 0.55 | 0.70 |
| One-way covert | 46 | 44 | 45 | 19 | 79 | 0.73 | 0.56 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 11. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Safe Community

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 60 | 60 | 37 | 52 | 40 | 0.20 | 0.94 |
| Two-way group | 33 | 53 | 48 | 46 | 47 | 0.56 | 0.69 |
| One-way paper/pencil | 30 | 64 | 68 | 72 | 41 | 2.60 | 0.10 |
| One-way covert | 33 | 41 | 37 | 49 | 41 | 0.62 | 0.05 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 12. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Professional

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 68 | 49 | 31 | 50 | 28 | 0.53 | 0.71 |
| Two-way group | 52 | 50 | 53 | 54 | 44 | 0.15 | 0.56 |
| One-way paper/pencil | 48 | 80 | 91 | 73 | 55 | 1.4 | 0.23 |
| One-way covert | 38 | 33 | 33 | 46 | 36 | 0.52 | 0.72 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 13. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Busy Work

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 77 | 113 | 64 | 111 | 44 | 1.13 | 0.35 |
| Two-way group | 154 | 147 | 99 | 104 | 109 | 1.08 | 0.37 |
| One-way paper/pencil | 150 | 100 | 104 | 83 | 102 | 1.03 | 0.39 |
| One-way covert | 93 | 116 | 120 | 171 | 102 | 0.60 | 0.68 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 14. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Inspection

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 84 | 91 | 81 | 51 | 69 | 0.23 | 0.92 |
| Two-way group | 51 | 92 | 99 | 58 | 53 | 0.65 | 0.63 |
| One-way paper/pencil | 83 | 101 | 75 | 111 | 113 | 0.25 | 0.91 |
| One-way covert | 45 | 50 | 37 | 83 | 50 | 0.94 | 0.44 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 15. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: Prefire Planning and Me

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 85 | 69 | 50 | 56 | 43 | 0.47 | 0.76 |
| Two-way group | 48 | 68 | 74 | 106 | 122 | 0.97 | 0.43 |
| One-way paper/pencil | 82 | 75 | 58 | 96 | 75 | 0.34 | 0.85 |
| One-way covert | 55 | 41 | 39 | 59 | 49 | 1.07 | 0.47 |

The smaller the mean, the greater the perceived similarity between the pair.

Table 16. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS
Pair: TV Training and Effective

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
</table>
| Treatment
| Two-way individual | 80 | 79 | 93 | 32 | 29 | 0.82 | 0.49 |
| Two-way group | 53 | 57 | 68 | 67 | 61 | 0.28 | 0.84 |
| One-way paper/pencil | 56 | 44 | 66 | 57 | 92 | 0.92 | 0.43 |
| One-way covert | 53 | 76 | 58 | 90 | 40 | 0.60 | 0.75 |

The smaller the mean, the greater the perceived similarity between the pair.
Table 17. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way individual</td>
<td></td>
<td>.43</td>
<td>.31</td>
<td>.37</td>
<td>.34</td>
<td>.31</td>
<td>.82</td>
<td></td>
</tr>
<tr>
<td>Two-way group</td>
<td></td>
<td>.10</td>
<td>.60</td>
<td>.62</td>
<td>.65</td>
<td>.39</td>
<td>.63</td>
<td></td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td></td>
<td>.56</td>
<td>.53</td>
<td>.68</td>
<td>.68</td>
<td>.32</td>
<td>.81</td>
<td></td>
</tr>
<tr>
<td>One-way covert</td>
<td></td>
<td>.51</td>
<td>.93</td>
<td>.55</td>
<td>.95</td>
<td>.41</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1.41</td>
<td>1.90</td>
<td>1.45</td>
<td>.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.24</td>
<td>.15</td>
<td>.23</td>
<td>.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 18. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way individual</td>
<td></td>
<td>.14</td>
<td>.54</td>
<td>.62</td>
<td>.63</td>
<td>.25</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>Two-way group</td>
<td></td>
<td>.10</td>
<td>.105</td>
<td>.69</td>
<td>.76</td>
<td>.44</td>
<td>.73</td>
<td></td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td></td>
<td>.15</td>
<td>.92</td>
<td>.139</td>
<td>.89</td>
<td>1.08</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td>One-way covert</td>
<td></td>
<td>.80</td>
<td>.148</td>
<td>.72</td>
<td>.83</td>
<td>1.82</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>.98</td>
<td>2.41</td>
<td>1.97</td>
<td>.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.44</td>
<td>.07</td>
<td>.12</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 19. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way individual</td>
<td></td>
<td>.31</td>
<td>.27</td>
<td>.35</td>
<td>.35</td>
<td>.32</td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>Two-way group</td>
<td></td>
<td>.49</td>
<td>.50</td>
<td>.67</td>
<td>.53</td>
<td>.43</td>
<td>.73</td>
<td></td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td></td>
<td>.51</td>
<td>.56</td>
<td>.68</td>
<td>.66</td>
<td>.33</td>
<td>.81</td>
<td></td>
</tr>
<tr>
<td>One-way covert</td>
<td></td>
<td>.45</td>
<td>.76</td>
<td>.42</td>
<td>.62</td>
<td>.57</td>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1.14</td>
<td>1.11</td>
<td>1.60</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.34</td>
<td>.35</td>
<td>.19</td>
<td>.77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 20. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way individual</td>
<td></td>
<td>.50</td>
<td>.42</td>
<td>.37</td>
<td>.36</td>
<td>.35</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>Two-way group</td>
<td></td>
<td>.72</td>
<td>.60</td>
<td>.64</td>
<td>.89</td>
<td>.72</td>
<td>.54</td>
<td></td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td></td>
<td>.86</td>
<td>.94</td>
<td>.93</td>
<td>.69</td>
<td>.20</td>
<td>.90</td>
<td></td>
</tr>
<tr>
<td>One-way covert</td>
<td></td>
<td>.52</td>
<td>.93</td>
<td>.47</td>
<td>.65</td>
<td>.93</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>.98</td>
<td>.76</td>
<td>3.33</td>
<td>.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.40</td>
<td>.52</td>
<td>.02</td>
<td>.49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.

Table 21. ANALYSIS OF VARIANCE OF MEAN DISTANCES ACROSS TIME AND TREATMENTS FOR CONCEPT PAIRS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way individual</td>
<td></td>
<td>.86</td>
<td>.22</td>
<td>.34</td>
<td>.29</td>
<td>.30</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td>Two-way group</td>
<td></td>
<td>.66</td>
<td>.53</td>
<td>.70</td>
<td>.83</td>
<td>.56</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td></td>
<td>.45</td>
<td>.38</td>
<td>.52</td>
<td>.64</td>
<td>.37</td>
<td>.94</td>
<td></td>
</tr>
<tr>
<td>One-way covert</td>
<td></td>
<td>.52</td>
<td>.82</td>
<td>.87</td>
<td>.85</td>
<td>.33</td>
<td>.93</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1.38</td>
<td>1.68</td>
<td>1.07</td>
<td>.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>.25</td>
<td>.18</td>
<td>.36</td>
<td>.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smaller the mean, the greater the perceived similarity between the pair.
APPENDIX VIII-10

Unidimensional Scale Tables
The higher the mean, the more favorably the group evaluated the concept. The higher the mean, the more favorably the group evaluated the concept.

Table 1: Analysis of Variance of Mean Scores for Concept: prefire planning

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: not time consuming - time consuming</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.35</td>
<td>3.25</td>
<td>3.00</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.17</td>
<td>3.15</td>
<td>2.90</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 2: Analysis of Variance of Mean Scores for Concept: firefighting

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: unimportant - essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.18</td>
<td>4.97</td>
<td>4.80</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.14</td>
<td>4.65</td>
<td>5.09</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 3: Analysis of Variance of Mean Scores for Concept: training

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: inefficient - efficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.18</td>
<td>4.97</td>
<td>4.80</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.14</td>
<td>4.65</td>
<td>5.09</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 4: Analysis of Variance of Mean Scores for Concept: prefire planning

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: not time consuming - time consuming</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.18</td>
<td>4.97</td>
<td>4.80</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.14</td>
<td>4.65</td>
<td>5.09</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 5: Analysis of Variance of Mean Scores for Concept: firefighting

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: unimportant - essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.18</td>
<td>4.97</td>
<td>4.80</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.14</td>
<td>4.65</td>
<td>5.09</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 6: Analysis of Variance of Mean Scores for Concept: training

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concept</th>
<th>Time</th>
<th>Scale: inefficient - efficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way individual</td>
<td>5.18</td>
<td>4.97</td>
<td>4.80</td>
</tr>
<tr>
<td>Two-way group paper/pencil</td>
<td>5.14</td>
<td>4.65</td>
<td>5.09</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.00</td>
<td>2.80</td>
<td>2.60</td>
</tr>
</tbody>
</table>
Table 9. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: firefighting</th>
<th>Scale: unprofessional - professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.50</td>
</tr>
<tr>
<td>Two-way group</td>
<td>5.39</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>5.32</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.43</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 10. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: firefighting</th>
<th>Scale: unskilled - skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.49</td>
</tr>
<tr>
<td>Two-way group</td>
<td>5.74</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>5.39</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.67</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 11. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: firefighting</th>
<th>Scale: unskilled - skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.73</td>
</tr>
<tr>
<td>Two-way group</td>
<td>5.78</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>5.57</td>
</tr>
<tr>
<td>One-way covert</td>
<td>5.90</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 12. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: TV training</th>
<th>Scale: boring - interesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.05</td>
</tr>
<tr>
<td>One-way covert</td>
<td>4.67</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 13. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: TV training</th>
<th>Scale: unprofessional - professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.00</td>
</tr>
<tr>
<td>Two-way group</td>
<td>4.33</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>4.48</td>
</tr>
<tr>
<td>One-way covert</td>
<td>4.90</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 14. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: TV training</th>
<th>Scale: unskilled - skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>3.91</td>
</tr>
<tr>
<td>Two-way group</td>
<td>4.67</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>4.58</td>
</tr>
<tr>
<td>One-way covert</td>
<td>4.50</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 15. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: TV training</th>
<th>Scale: unskilled - skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>5.23</td>
</tr>
<tr>
<td>Two-way group</td>
<td>4.92</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>4.94</td>
</tr>
<tr>
<td>One-way covert</td>
<td>4.90</td>
</tr>
</tbody>
</table>

*The higher the mean, the more favorably the group evaluated the concept.

Table 16. ANALYSIS OF VARIANCE OF MEAN SCORES FOR UNIDIMENSIONAL SCALES ACROSS TIME AND TREATMENT *

<table>
<thead>
<tr>
<th>Concept: TV training</th>
<th>Scale: unskilled - skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Treatment</td>
<td>F p</td>
</tr>
<tr>
<td>Two-way individual</td>
<td>4.45</td>
</tr>
<tr>
<td>Two-way group</td>
<td>4.17</td>
</tr>
<tr>
<td>One-way paper/pencil</td>
<td>4.36</td>
</tr>
<tr>
<td>One-way covert</td>
<td>4.20</td>
</tr>
</tbody>
</table>

The higher the mean, the more favorably the group evaluated the concept.
APPENDIX X-1

Letters from Warner, Broadband Technologies
May 18, 1978

Dr. Charles Brownstein
Division of Social Systems and Human Resources
National Science Foundation
1800 G. Street N.W.
Washington, D.C. 20550

Dear Dr. Brownstein:

Since we have not spoken since the planning phase of Warner's two-way cable system in Columbus ("Qube", as it is now known), I thought you would be interested to know that we are almost six months old, and running along fairly smoothly.

We are still making a great number of additions and modifications, particularly in the computer software and the actual interactive video programs. The Michigan State group who worked on the Rockford project have been very helpful to us and we have just made arrangements to get copies of the firefighter training tapes, which we will find very useful here in Columbus. In addition, it appears that we will be able to use both the hardware and software specs developed as part of the Rockford project to develop our own interface for taped interactive programming.

Our thanks to N.S.F. as well as the Rockford crowd for saving us much time and many dollars.

Sincerely yours,

Vivian M. Horner, Ph.D.
Vice President, Educational and Children's Programming

cc: Dr. Tom Baldwin

VH/kn
October 4, 1977

Tom Baldwin
Department of Communication
322 Union Building
Michigan State University
East Lansing, MI 48824

Dear Tom,

This letter is in response to your request for additional information on the system to be installed in Syracuse, New York early next year. As you know, Canadian Cablesystems Ltd. through a local subsidiary, was a successful franchise applicant for the CATV system in Syracuse.

The Syracuse franchise requires that the successful applicant provide home security and smoke detector service to its subscribers at a relatively low cost. Canadian Cablesystems' proposal called for offering this service at a charge of $3.95 per month beginning in 1978.

None of the other applicants were in a position to offer this service at this low charge because each of them was dependent on more expensive technology. Canadian Cablesystems opted to use the Coaxial Scientific two-way system as is in use in Columbus, Ohio and Rockford, Illinois. This technology, as you know, allows two-way communications with home terminals at a very low cost.

A major factor in the decision of Canadian Cablesystems to use the CSC system was the success of the Rockford Experiment. Since system reliability was of great concern to them, they scrutinized quite carefully the results of the Columbus, Ohio pay per-program system and the Rockford/MSU fire fighter training experiment. In both cases they were satisfied that the reliability was more than adequate to meet their needs.

In addition to offering the home security and smoke detector services to residents in Syracuse, Canadian Cablesystems plans to use the system for educational purposes, using home terminal and computer software patterned after the Rockford/MSU experiment.

Canadian Cablesystems plans to begin service in 1978 to about 1,000 home security subscribers. If the service proves attractive to its subscribers, the service will be offered city wide.

I hope this provides you with the information you requested. Give me a call if there is anything else I can add.

Sincerely,

[Signature]

Di Stevens McVoy
President