This is part one of a two-part *SMSG Programed Algebra Text for high school students. The general plan of the course is to build upon the student's experience with arithmetic. The student is initially led to extract from his or her experience the fundamental properties of addition and multiplication. The text then introduces negative real numbers and extends the fundamental operations to develop the real number system. Chapter topics include: sets and the number line; numerals and variables; sentences; properties of operations; open sentences and English sentences; the real numbers; properties of addition; properties of multiplication; multiplicative inverse; properties of order; and subtraction and division. (MP)
PROGRAMED FIRST COURSE IN ALGEBRA
(REVISED FORM H)
PART I

BEST COPY AVAILABLE
Programed First Course in Algebra
Revised Form H

Student's Text, Part I

Prepared under the supervision of the
Panel on Programed Learning
of the School Mathematics Study Group:

R. Creighton Buck University of Wisconsin
E. E. Hammond, Jr. Phillips Academy, Andover, Massachusetts
Lawrence D. Hawkinson George Washington High School, San Francisco, California
James G. Holland Harvard University
William J. McKeachie University of Michigan
Holbrook M. MacNeille Case Institute of Technology
Henry O. Pollak Bell Telephone Laboratories, Murray Hill, New Jersey
Donald W. Taylor Yale University
TO THE STUDENT:

This text is written for you. It is not just a collection of problems, and it is not quite the same as other texts that you use. It is written so that you may study and learn algebra without too much outside help; it is called a programmed text. It presents mathematics in an orderly way, asking questions along the way to be sure that you are following.

Mathematics is a pencil and paper subject, and as you read mathematics you should be prepared to work out details and examples to aid you in understanding. With this text, response sheets are provided for each section except for some of the review sections. In addition to the appropriate response sheet for the section on which you are working, provide yourself with paper for the purpose of doing necessary figuring as you go along.

For each item, you will record your response in the space provided on the response sheet, and then verify it. Most of the correct responses are in the shaded zones on the pages of your text. At some places, however, you will be told to refer to the Answer Key in the back of your book for the correct answer.

You will probably find it helpful to cover the shaded zone with a piece of paper or card while you make your response. Then you can check to see whether you were correct or not. In any case, you should write your response before you compare it with that provided. If you merely copy the given response, you will not be making the best use of the text.

Items which call for responses are of three general types. Those which occur most frequently are constructed response items like Items 1, 2, and 3 below.

1. The sum of 5 and 6 is ______.

In some cases you will be given a clue to record the entire answer indicated by the underline, as shown below:

2. The product of 6 and 5 can be written 6 x ______.

3. $\frac{1}{3} + \frac{1}{2} = \frac{5}{6}$.

...
Notice in Item 3 that a box has been used to show that the numerator of the fraction is missing, but that the entire fraction should be recorded on your response sheet. In Item 2 the underline is used to indicate that your response should include everything above the line.

A second type of item is a multiple choice question like Items 4 and 5. For each of these you will circle on the response sheet the letter of the response that you choose, and then read the appropriate part in the shaded zone which follows the item. In some cases, the shaded zone includes only a single discussion for all choices, as in 4 below.

4 In which of the following is there an error in addition?

[A] $5 + 7 + 13 = 29$
[B] $\frac{2}{3} + \frac{8}{13} = 4$
[C] $3.2 + 1 + .7 - 4.0$

In [C], $3.2 + 1 + .7$ may be written $3.2 + 1.0 + 0.7$, which equals 4.9, so this contains an error. [A] and [B] contain no errors, so [C] is the correct choice.

In other cases, there is a separate discussion for each choice as in 5 below.

5 In which of the following is the multiplication done correctly?

[A] $\frac{3}{5} \times \frac{2}{10} = .6$
[B] $\frac{53}{15} \times 945$
[C] $\frac{2}{3} \times \frac{1}{7} = \frac{2}{21}$

[A] $\frac{3}{5} \times \frac{2}{10}$ could be written $\frac{3}{10} \times \frac{2}{10}$, which equals $\frac{6}{100}$, or .06. This is not .6.

[B] Yes, this is done correctly.

[C] $\frac{2}{3} \times \frac{1}{7} = \frac{2}{21}$, $\frac{53}{15} \times 945$, so the multiplication was not done correctly.

If you are not really sure why a certain choice is correct, you will find it worthwhile to read the discussions for the other responses.
Other items are found in the form of practice sets of exercises. For these, spaces are provided on the response sheet, while the correct answers are given in the Answer Key at the back of each volume.

In most chapters, the final section includes a set of review problems. Some of these problems will serve to provide you with more practice on the topics of the chapter. Others have been written to challenge you with the opportunity of applying what you have learned to new situations. In some cases review problems have been designed to help you begin thinking about what is to come in succeeding chapters. Response sheets have been provided for those review sets which are in programmed form. For others, answers will be found in the Answer Key.

Items marked with an asterisk (*) are considered optional—either they are more difficult, or they consist of material at a somewhat more advanced level. Omitting these items will not interrupt the continuity of what is to follow. However, if you are having no difficulty with the regular work of the text, you will find that the starred items provide better understanding and a sound background for further work in mathematics.

Your mathematical growth and the satisfaction and enjoyment you derive from your study of algebra will depend largely on reading and following directions carefully. You have a new and enriching experience ahead of you. We hope that you will make the most of it.

SUGGESTED REFERENCES

The following list of references is offered if you wish additional reading material on some of the topics mentioned in the text. The list draws on the volumes of the NEW MATHEMATICAL LIBRARY (NML), which is a series of monographs written for secondary school students and published by the School Mathematics Study Group. The references are by no means complete, but we hope that they will be helpful in directing your attention to available literature at the appropriate level. In the teachers' commentary is an additional list of references. These cover topics which are not necessarily included in this course but which may be of interest to you.
VOLUMES OF THE NEW MATHEMATICAL LIBRARY TO DATE:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Author and Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Niven, Ivan</td>
</tr>
<tr>
<td></td>
<td>NUMBERS: RATIONAL AND IRRATIONAL</td>
</tr>
<tr>
<td>2</td>
<td>Sawyer, W. W.</td>
</tr>
<tr>
<td></td>
<td>WHAT IS CALCULUS ABOUT?</td>
</tr>
<tr>
<td>3</td>
<td>Beckenbach, E. and R. Bellman</td>
</tr>
<tr>
<td></td>
<td>AN INTRODUCTION TO INEQUALITIES</td>
</tr>
<tr>
<td>4</td>
<td>Kazarinoff, N. D.</td>
</tr>
<tr>
<td></td>
<td>GEOMETRIC INEQUALITIES</td>
</tr>
<tr>
<td>5</td>
<td>Salkind, C. T.</td>
</tr>
<tr>
<td></td>
<td>THE CONTEST PROBLEM BOOK</td>
</tr>
<tr>
<td>6</td>
<td>Davis, P. J.</td>
</tr>
<tr>
<td></td>
<td>THE LORE OF LARGE NUMBERS</td>
</tr>
<tr>
<td>7</td>
<td>Zippin, Leo</td>
</tr>
<tr>
<td></td>
<td>USES OF INFINITY</td>
</tr>
<tr>
<td>8</td>
<td>Yaglom, I. M.</td>
</tr>
<tr>
<td></td>
<td>GEOMETRIC TRANSFORMATIONS</td>
</tr>
<tr>
<td>9</td>
<td>Olds, C. D.</td>
</tr>
<tr>
<td></td>
<td>CONTINUED FRACTIONS</td>
</tr>
<tr>
<td>10</td>
<td>Ore, Cystein</td>
</tr>
<tr>
<td></td>
<td>GRAPHS AND THEIR USES</td>
</tr>
<tr>
<td>11</td>
<td>HUNGARIAN PROBLEM BOOK I</td>
</tr>
<tr>
<td>12</td>
<td>HUNGARIAN PROBLEM BOOK II</td>
</tr>
<tr>
<td>13</td>
<td>Asboe, Asger</td>
</tr>
<tr>
<td></td>
<td>EPISODES FROM THE EARLY HISTORY OF MATHEMATICS</td>
</tr>
<tr>
<td>14</td>
<td>Grossman, I. and W. Magnus</td>
</tr>
<tr>
<td></td>
<td>GROUPS AND THEIR GRAPHS</td>
</tr>
</tbody>
</table>
Following each topic listed below is a set of number pairs such as
(1, 3). The first numeral refers to the volume in the series, and the second,
in most cases, to the chapter in that volume. Thus, (1, 3) refers to
Volume 1, Chapter 3. In the case of Volume 6, which is divided by section
instead of by chapter, the second numeral refers to the section specified.
Volumes 11 and 12 are collections of problems of the Eötvös Competitions for
the years 1894 through 1928. These are printed in chronological order. For
these, the reference (11, 1899/3), for example, indicates Volume 11, Problem 3
of the 1899 competition. Those references which we consider to be challenging
have an asterisk to the left of the reference designation.

<table>
<thead>
<tr>
<th>Topic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximations to (\sqrt{2})</td>
<td>(7, 2)</td>
</tr>
<tr>
<td>Composite numbers</td>
<td>(6, 20)</td>
</tr>
<tr>
<td>Decimal representation</td>
<td>(1, 2), (1, 3), (12, 1907/3),</td>
</tr>
<tr>
<td></td>
<td>(12, 1917/2), (12, 1925/2),</td>
</tr>
<tr>
<td></td>
<td>(12, 1927/2)</td>
</tr>
<tr>
<td>Divisibility</td>
<td>*(11, 1899/3), (12, 1925/1), (6, 20)</td>
</tr>
<tr>
<td>Equivalence relation</td>
<td>*(10, 7)</td>
</tr>
<tr>
<td>Identity element</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>Inequalities</td>
<td>(1, 3), (3, 1), (3, 2); (3, 3)</td>
</tr>
<tr>
<td></td>
<td>(3, 3)</td>
</tr>
<tr>
<td>Graphs of inequalities</td>
<td></td>
</tr>
<tr>
<td>Linear equations</td>
<td>(6, 22)</td>
</tr>
<tr>
<td>Natural numbers and integers</td>
<td>(1, 1), (12, 1906/3),</td>
</tr>
<tr>
<td></td>
<td>(12, 1913/1), (12, 1926/2)</td>
</tr>
<tr>
<td>Periodic decimals</td>
<td>(1, 2)</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(6, 19)</td>
</tr>
<tr>
<td>Primes</td>
<td>(1, 1), (1, Append A),</td>
</tr>
<tr>
<td></td>
<td>(6, 20), (15', 2)</td>
</tr>
<tr>
<td>Proofs</td>
<td>(1, 2)</td>
</tr>
</tbody>
</table>
Properties of numbers

- Associative property
- Closure
- Commutative property
- Distributive property

Quadratic equations

Real numbers:
- Irrational numbers
- Rational numbers
- Real numbers

Unique factorization
CONTENTS

Chapter 1.
SETS AND THE NUMBER LINE

- 1-1. Sets and Subsets ... 1
- 1-2. The Number Line ... 9
- 1-3. Addition and Multiplication on the Number Line 23

Chapter 2.
NUMERALS AND VARIABLES

- 2-1. Numerals and Numerical Phrases' 31
- 2-2. Some Properties of Addition and Multiplication 38
- 2-3. The Distributive Property 47
- 2-4. Variables .. 58

Chapter 3.
SENTENCES

- 3-1. Open Sentences ... 67
- 3-2. Truth Sets of Open Sentences 74
- 3-3. Sentences Involving Inequalities 81
- 3-4. Compound Sentences .. 87
- 3-5. Summary and Review 97

Chapter 4.
PROPERTIES OF OPERATIONS

- 4-1. Identity Elements ... 99
- 4-2. Closure .. 106
- 4-3. Associative and Commutative Properties of Addition and Multiplication 110
- 4-4. The Distributive Property 120
- 4-5. The Number of Arithmetic 130
- 4-6. Review .. 132

Chapter 5.
OPEN SENTENCES AND ENGLISH SENTENCES

- 5-1. English and Mathematical Language 137
- 5-2. English Phrases and Open Phrases 144
- 5-3. Interpreting Open Sentences 152
- 5-4. Writing Open Sentences 156
- 5-5. Review .. 167

Chapter 6.
THE REAL NUMBERS

- 6-1. The Real Number Line 177
- 6-2. Order on the Real Number Line 186
- 6-3. Opposites .. 197
- 6-4. Absolute Value .. 205
- 6-5. Summary and Review 215
Chapter 7: PROPERTIES OF ADDITION

7-1. Addition of Real Numbers .. 219
7-2. Definition of Addition .. 226
7-3. Properties of Addition .. 235
7-4. Addition and Equality .. 242
7-5. The Additive Inverse .. 252
7-6. Summary and Review ... 261

Chapter 8: PROPERTIES OF MULTIPLICATION

8-1. Multiplication of Real Numbers 267
8-2. The Commutative Property and the Multiplication Properties of 1 and 0 280
8-3. The Associative and Distributive Properties 289
8-4. Use of the Multiplication Properties 299
8-5. Summary and Review ... 308

Chapter 9: MULTIPLICATIVE INVERSE

9-1. Multiplicative Inverse ... 311
9-2. Reciprocals ... 318
9-3. Solution of Equations ... 328
9-4. Summary and Review .. 343

Chapter 10: PROPERTIES OF ORDER

10-1. The Fundamental Properties of Order 347
10-2. Further Properties of Order 355
10-3. Solving Inequalities .. 361
10-4. Review ... 367
10-5. The Real Numbers--Summary 370

Chapter 11: SUBTRACTION AND DIVISION

11-1. Definition of Subtraction 373
11-2. Properties of Subtraction 377
11-3. Subtraction and Distance 385
11-4. Division .. 393
11-5. Summary and Review ... 399

INDEX
1-1. Sets and Subsets

We often wish to refer to collections of things, such as a herd of cows, a flock of sheep, a band of thieves, a set of dishes, the collection of numbers 1, 2, 3, 4, 5. Each of these collections is an example of a set. The things in a set we will call members or elements of the set. We can say that the elements of a set belong to the set.

1. We shall use the word _set_ whenever we wish to talk about a collection of things.

2. The _set_ of states of the United States has 50 members.

3. The _set_ \{1, 3, 5, 7\} has four _members_ or members.

4. \{2, 4, 6\} is the _set_ of even counting numbers less than 7.

Above, we have introduced the use of braces, \{\}, to indicate that we are forming or displaying a set, such as \{1, 3, 5, 7\}. In this method of indicating a set, the order in which the elements are listed is not important, and no element is listed more than once. Notice that we use commas to separate the elements listed within the braces.

5. Use braces to write the set consisting of the last three letters of the alphabet. _______.

6. \{1, 2, 3\} is a list of numbers, but \{1, 2, 3\} is a _set_ which has three members.

Often the elements of a given set share some characteristic. If they do, we may be able to use this characteristic to describe the set in words. On the other hand, we are free to form sets whose members have no simple relation to one another. An example might be the set, \{a star, a pair of eyeglasses, a penny, the number 6\}.

In California, Colorado, Connecticut the elements are states whose names begin with the letter _.

In Monday, Tuesday, Wednesday the --- are days of the week.

In a, b, c, d, e the elements are the first five letters of the alphabet.

Although a set may be described in words, it is sometimes easier to use braces and to list all the elements of a set:

"{1, 2, 3, 4, 5}" is simpler than "the set of counting numbers less than five".

On the other hand, "the set of names of all citizens of the United States" is simpler than an actual listing of all names.

A capital letter is usually used to name a set. For example, we can write "F = {1, 2, 3, 4}" or "F is the set of all counting numbers less than five".

We have referred several times to counting numbers. The set of counting numbers is the set of all the numbers you would use in counting: 1, 2, 3, and so forth. Thus, 1, 0, 7, 519 is an example of a counting number, but 157 is not. Since the set of counting numbers cannot be listed completely, we might write {1, 2, ...}. Here we have written the set with enough elements to show the pattern and then have used three dots to mean "and so forth".

As we see here, sometimes we do list elements of a set in some chosen order to show a pattern that we have in mind. Thus, {1, 3, 5, 7, ...} indicates the set of odd counting numbers.

10 Which of the following is "the set of all counting numbers greater than six"?

[A] {6, 7, 8, ...}
[B] {8, 10, 12, ...}
[C] {7, 8, 9, ...}

[A] Is 6 greater than six? No.

[B] {8, 10, 12, ...} is the set of all even counting numbers greater than 6, but not of all counting numbers greater than six.

[C] Yes, {7, 8, 9, ...} is another way of writing "the set of all counting numbers greater than six." It might be read, "The set whose elements are 7, 8, 9, and so forth."
Another name that is used in referring to the counting numbers is the natural numbers. If we use the letter \(N \) to name this set, then
\[
N = \{1, 2, 3, \ldots \}.
\]

If we include the number 0 together with the counting (or natural) numbers, we obtain a new set, the set of whole numbers. If we use the letter \(W \) to name this set, then
\[
W = \{0, 1, 2, 3, \ldots \}.
\]

What number is an element of \(W \), the set of whole numbers, but not of \(N \), the set of natural numbers? \(\text{0} \)

If \(A \neq \{4, 5, 6, 7\} \), then \(A \) is the set of counting numbers which are greater than 3 and less than 8. \(A = \{4, 5, 6, 7\} \)

Is every element of \(N \) also an element of \(W \)? \(\text{yes} \)

Write the set \(B \) consisting of all two-digit whole numbers each of whose units digit is twice its tens digit. \(B = \{12, 24, 36, 48\} \)

If \(C \) is the set of numbers less than 10 which are the squares of whole numbers, then \(C = \{0, 1, 4, 9\} \)

An interesting question now arises. How shall we describe the set of whole numbers which are greater than 9 but less than 10? You may not wish to call this a set, since it has no elements. However, in mathematics we say that a set which contains no elements is the empty set or null set. We use the special symbol \(\emptyset \) to denote the empty set. (Note: no braces are used when writing the empty set, \(\emptyset \).)

How many elements does each of the following sets contain?
16. \(\{0, 1, 2\} \)
17. \(\{0, 1\} \)
18. \(\{0\} \)
19. \(\emptyset \)

A symbol for the set of whole numbers between \(\frac{1}{3} \) and \(\frac{5}{3} \) is \(\emptyset \)
21. The set of whole numbers less than 1 is ________.
22. The set of counting numbers less than 1 is ________.

Are {0} and ∅ names for the same set? (If you are in doubt, look back at items 16-19.)

{yes, no}

When the elements of a set can be counted with the counting coming to an end, the set is called a finite set. It will not always be desirable to list the elements of a finite set; the citizens of the United States form a finite set, but it would be quite a job to list them. The numbers from 1 to 1,000,000 form a finite set, too; again, it would be quite a job to list these.

When describing finite sets, it is also convenient to use three dots. For example, the set of counting numbers less than 10 could be written 1, 2, 3, ..., 9. This is read "the set consisting of one, two, three, and so forth, up to and including nine". Note the use of the comma after the three dots.

24. How would we write: E is the set of even numbers between 5 and 20?

[A] E = [6, 8, 10, 12, 14, 16, 18]
[B] E = [6, 8, 10, ..., 18]
[C] E = (6, 8, 10, ..., 20]

Either [A] or [B] is a correct selection: the three dots in [B] enable us to omit some members of the set, [C] is incorrect because 20 is not between 5 and 20.

25. Which of the following represent the same set of numbers?

M = {11, 13, 15, 17, 19, 21, 23}
N = {1, 11, 21, 1, 23, 5, 15, 7, 17, 19}
P = {1, 11, 21, ..., 23}

[A] M and P only
[B] M and N only
[C] all three

The correct selection is [C]. The three dots in set (P) indicate that all the odd numbers from 7 through 21 are to be included. Set (N) is the same set with the elements listed in different order.
If it is not possible to count, (even if we had unlimited time), all the elements of a set with the counting coming to an end, the set is called an infinite set. As we mentioned earlier, a complete listing of the counting numbers is not possible. Thus, we say that the set of counting numbers is an infinite set.

26. If \(R = \{0, 1, 2, \ldots, 100\} \),
\(S = \{0, 10, 20, \ldots\} \),
and \(T \) is the set of even numbers, which of these are infinite sets?

[A] \(R \) and \(S \), \([B] S \) only \([C] S \) and \(T \)

The correct choice is \([C] \); both \(S \) and \(T \) are infinite sets.

\(\{0, 1, 2, \ldots, 100\} \) is a finite set having 101 members.

Given the set \(M = \{0, 2, 4, 6, 8\} \), and the set \(L = \{0, 3, 6, 9\} \), we can now form a set \(Q \) of numbers which are elements of either \(M \) or \(L \) or both. Then \(Q = \{0, 2, 3, 4, 6, 9\} \). Note that although 0 and 6 are elements of both \(M \) and \(L \), each is listed only once in \(Q \). Given two sets \(A \) and \(B \), the set whose members are elements of either \(A \) or \(B \), or both \(A \) and \(B \), is called the union of \(A \) and \(B \). Thus, in our example above, \(Q \) is the union of \(M \) and \(L \). The symbol for the union of sets is "\(\cup \)." For example, we write "\(Q = M \cup L \)."

27. Give the set of numbers which are elements of either
\(S = \{0, 5, 10, 15, 20, 25\} \) or of \(T \), the set of multiples of 10 which are less than 50, or of both \(S \) and \(T \).

[A] \(\{0, 5, 10, 15, 20, 25, 0, 40\} \)
[B] \(\{0, 10, 20\} \)
[C] \(\{0, 5, 10, 15, 20, 25, 10, 20, 30, 40\} \)

[A] is the correct selection. [B] listed only the numbers which are elements both of \(S = \{0, 5, 10, 15, 20, 25\} \) and of \(T \), the set of multiples of 10 which are less than 50. [C] is not a proper choice because no element should be repeated in the listing.
If \(M = \{1, 2, \ldots, 19\} \) and \(N = \{17, 18, 19\} \), then which of the following is the union of \(M \) and \(N \)?

- [A] \(\{17, 18, 19\} \)
- [B] \(\{1, 2, \ldots, 30\} \)
- [C] \(\{20, 21, 22, \ldots, 30\} \)

Either [B] or [C] is a correct choice.

If \(M = \{1, 2, 3, \ldots, 19\} \), \(N = \{17, 18, \ldots, 30\} \), and \(R = \{1, 2, 3, \ldots, 30\} \), then which of the following is true?

- [A] \(R \) is the set whose members are elements of either \(M \) or \(N \) or both \(M \) and \(N \).
- [B] \(R \) is the union of \(M \) and \(N \).
- [C] \(R = M \cup N \).

All three choices are correct.

If \(R = \{0, 1, 2, 3, 4\} \) and \(T = \{0, 3, 4\} \), then every element of \(T \) is also an element of \(R \). In this case, we say that \(T \) is a subset of \(R \).

Definition. If every element of a set \(A \) belongs to a set \(B \), then \(A \) is a subset of \(B \).

There is one thing about the set \(\emptyset \) which is important to remember: \(\emptyset \) is a subset of every set. For example, suppose \(A = \{1, 2, 3, 4\} \). Now consider the set \(\emptyset \). Is there an element of \(\emptyset \) which does not belong to \(A \)? Since \(\emptyset \) does not have any elements, the answer is "no". Thus, \(\emptyset \) is a subset of \(A \).

If \(P = \{0, 1, 2, 3, 4\} \), determine whether each of the following sets is a subset of \(P \).

<table>
<thead>
<tr>
<th>Set</th>
<th>Is it a subset of (P)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>yes</td>
</tr>
</tbody>
</table>
Notice that P is a subset of P, since every element of P surely belongs to P. In fact, every set is a subset of itself.

Given the following sets:

- X: the set of all whole numbers greater than 7 and less than 17.
- Y: the set of whole numbers less than 10.
- Z: the set $\{1, 2, 3, 4, 5\}$.

Which of the following statements is not true?

[A] X and Z are the same set.
[B] X is a subset of both Y and Z.
[C] Y is a subset of X.
[D] Z is a subset of X.

The correct selection is [C]; you were asked for the statement which is not true. Notice that the same set may be described in many ways.

Item 35 above summarizes four points that had been mentioned previously. These are as follows:

1. A set may be described in many ways.

2. X is a subset of Y if every element of X is an element of Y.

3. If X and Z are the same set, then X is a subset of Z and Z is a subset of X.

4. A set is always a subset of itself.

Now let's see how many different subsets a certain finite set has. If $S = \{0, 1\}$, the different subsets of S listed are:

[A] \emptyset, $\{0\}$, $\{1\}$, $\{0, 1\}$
[B] \emptyset, $\{0\}$, $\{1\}$, $\{0, 1\}$

The correct selection is [A]. Since $\{0, 1\}$ and $\{1, 0\}$ are two ways of listing the same set, these are not different subsets of S.

\[\text{1-1}\]
The following starred items are optional, as explained in the Preface.

37. \(\emptyset \) has only one subset. What is this subset? __________

38. \(\{0\} \) has two subsets: \(\emptyset \) and __________.

39. \(\{0, 1\} \) has four subsets: \(\{0, 1\}, \{0\}, \{1\} \) and __________.

40. \(\{0, 1, 2\} \) has __________ subsets.

These eight subsets are:

\[
\{0, 1, 2\}, \{0, 1\}, \{0, 2\}, \{1\}, \{0\}, \{1, 2\}, \{0, 1, 2\}, \emptyset
\]

41. \(\{0, 1, 2\}, \{0, 1\}, \{0, 2\}, \{1\}, \{0\}, \{1, 2\}, \{0, 1, 2\} \) has __________ subsets? __________

42. \(\{0, 1, 2, 3\} \) has __________ subsets?

Here we have the start of a pattern for discovering the number of subsets in a finite set with any given number of elements.

43. See if you can complete the following table and discover a rule for finding the number of subsets in any finite set:

number of elements	1	2	3	4	5	6	\ldots	m, a counting number
-------------------	---	---	---	---	---	---	\ldots	
number of subsets	2	4	8	\ldots				
in exponent form	\(2^1 \)	\(2^2 \)	\(2^3 \)	\ldots				

also written: \(2^1 = 2 \), \(2^2 = 2 \cdot 2 \), \(2^3 = 2 \cdot 2 \cdot 2 \), etc.

When you finish, compare your table with the one on page 1.
1-2. The Number Line

In this section we shall make a connection between numbers and points on a line. You have already had some experience with this idea when you used rulers, thermometers, etc. The scales on these instruments associate numbers with certain points on a line.

Let us begin by drawing a line.

On this line choose a point and label this point 0.

Next choose a second point to the right of the first and label it 1.

Using the Distance between these two points as a unit of measure, mark off another point which is one unit to the right of the point labeled 1. Label this point 2.

If we were to continue this process by marking off three more points, our line would look like

We can think of this process as continuing without end, even though we cannot show the process beyond the margin of the page.

The use of three dots at the right of the line indicates that the process can be continued without end. This endless process associates each whole number with a point. A matching of points and numbers like this is an example of a correspondence. Since the set of whole numbers is an infinite set, this correspondence makes it clear that there are infinitely many points on the line.
return now to the line, one of whose points we have labeled with the whole numbers. The labeled points divide the part of the line to the right of the point labeled by 0 into intervals of unit length:

\[0 \quad 1 \quad 2 \quad 3 \]

By dividing intervals into halves, thirds, fourths, etc., we can label other points, making use of numerals other than 0, 1, ..., ...

\[0 \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \]

Here again we are to imagine that this process of division and labeling is continued without end. Now, if we take all the lines so obtained and put them together on one line in such a way that points labeled by the same number coincide, we have a labeling that looks like this:

\[0 \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{6} \quad \frac{1}{7} \quad \frac{1}{8} \quad \frac{1}{9} \quad \frac{1}{10} \quad \frac{1}{11} \quad \frac{1}{12} \quad \frac{1}{13} \quad \frac{1}{14} \\]

2
The use of three dots below the diagram indicates an endless process.
In the preceding figure you will notice that many different names have been used to label the same point.

Notice that the point which corresponds to 2 has many labels:

\[\frac{6}{2}, \frac{6}{3}, \frac{8}{4}, \text{ etc.} \]

Similarly, the point associated with \(\frac{3}{5} \) has the labels:

\[\frac{\frac{3}{5}}{\frac{2}{5}}, \frac{\frac{6}{5}}{\frac{2}{5}}, \frac{\frac{9}{5}}{\frac{2}{5}}, \text{ etc.} \]

All the names which label a given point are different names for the same number.
Names such as \(\frac{5}{2}, \frac{4}{3}, \frac{2}{4} \) are called fractions.

Definition: We shall mean by a fraction a name of a symbol which indicates the division of one number by a second number (different from zero) where the name of the first number is written above a horizontal bar, and the name of the second is written below. The upper name is called the numerator and the lower name, the denominator.

The insistence in the definition that the second number must be different from zero comes from the fact that division by zero is not defined.

Which of the following are fractions?

\[\frac{2}{2}, \frac{3}{2}, \frac{2\cdot 2}{2}, \frac{3}{3} \]

[A] \(\frac{2}{2} \) and \(\frac{3}{3} \)
[B] \(\frac{2}{2} \) and \(\frac{3}{3} \)
[C] \(\frac{2}{2} \), \(\frac{3}{3} \), and \(\frac{2\cdot 2}{2} \)
[D] \(\frac{2}{2} \), \(\frac{2\cdot 2}{2} \), and \(\frac{3}{3} \)

[D] is the correct choice. In [A], \(\frac{3}{3} \) is an abbreviation of \(3 \cdot \frac{1}{3} \) and is not written in the form of an indicated division of one number by another. The symbol \(\frac{2\cdot 2}{2} \), which is in the proper form, has been omitted in [B]. [C] not only included \(\frac{3}{3} \), which should not have been included, it has omitted \(\frac{2}{2} \) which meets the definition.
A number which can be represented by a fraction indicating the quotient of two whole numbers, excluding division by zero, is called a *rational number*.

The number 15 is a whole number.

It may be written \(\frac{15}{1} \).

\(\frac{15}{1} \) is a fraction indicating the quotient of two whole numbers.

Therefore, the whole number 15 is a **rational number**.

In a similar way, each whole number can be written as an indicated quotient of itself and 1.

Thus, every whole number is a **rational number**.

A number which can be represented by a fraction indicating the quotient of two whole numbers, excluding division by zero, is called a **rational number**.

\(\frac{15}{1} \) is a whole number.

\(\frac{15}{1} \) is a rational number since it can be written as the fraction \(\frac{15}{1} \).

\(\frac{15}{1} \) may be written \(\frac{15}{1} \); hence,

\(\frac{15}{1} \) is a rational number.

\(\frac{3}{1} \) may be written \(\frac{3}{1} \); hence,

\(\frac{3}{1} \) is a rational number.

Look again at the line:

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{3} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{4} \\
\end{array}
\]
19.

The "number names" that label a given point on the line are different names for the same number.

Every point which we have labeled corresponds to a rational number(s).

Every number which can be represented as the indicated quotient of two whole numbers corresponds to one point on the line.

Thus, we have a correspondence between a line and rational numbers.

Notice that, as expected, \(\frac{1}{2} \) and \(\frac{2}{4} \) are labels for the same point. Similarly, if we had made more divisions on the line, \(\frac{3}{6}, \frac{6}{12}, \ldots \), also would be labels for the same point. If the numerator and denominator of \(\frac{1}{2} \) is multiplied by the same number (other than 0), then the resulting fraction is a name for \(\frac{1}{2} \).

22. In which of the following sets may all of the numbers be used as labels for the same point?

[A] \(\left(\frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{8}{12}\right) \)
[B] \(\left(\frac{2}{3}, \frac{6}{12}\right) \)
[C] \(\left(\frac{2 \times 3}{3 \times 3}, \frac{2 \times 2}{3 \times 2}, \frac{2 \times 3}{3 \times 3}, \frac{2 \times 5}{3 \times 5}\right) \)
[D] \(\left(\frac{2 \times 0}{3 \times 0}, \frac{2 \times 1}{3 \times 1}, \frac{2 \times 2}{3 \times 2}, \frac{2 \times 3}{3 \times 3}\right) \)

[B] and [C] are correct selections. In [A], \(\frac{9}{6} \) does not belong in the list. In [D], \(\frac{2 \times 0}{3 \times 0} \) does not belong.

We shall call a line on which we associate points with numbers as we did above, a number line.

The number corresponding to a given point is called the coordinate of the point.

At the beginning of this section when we constructed the line, the first point which we chose was assigned the coordinate 0.

The second point which we chose was assigned the coordinate 1.
The point halfway between the point whose coordinate is $\frac{1}{2}$ and the point whose coordinate is $\frac{1}{2}$ has the coordinate $\frac{1}{2}$.

The number $\frac{3}{4}$ is greater than the number $\frac{1}{4}$.

The point with coordinate $\frac{3}{4}$ is to the right of the point with coordinate $\frac{1}{4}$.

Since $\frac{3}{4}$ is greater than $\frac{1}{4}$, the point whose coordinate is $\frac{3}{4}$ lies to the right of the point whose coordinate is $\frac{1}{4}$.

The number $\frac{3}{4}$ is greater than the number $\frac{1}{4}$ and less than the number $\frac{5}{4}$; therefore, the point with coordinate $\frac{3}{4}$ lies between the points with coordinates $\frac{1}{4}$ and $\frac{5}{4}$.

The number line strongly influences our way of thinking about numbers. It would not be unusual for a mathematician to use such language as, "$\frac{1}{2}$ lies between $\frac{1}{4}$ and $\frac{3}{4}$". When he talks like this he associates points on the number line so closely with the coordinates of the points that he does not even attend to this distinction every time. In such the same way, for example, when we say, "the point h", we mean the point with coordinate h.

Suppose we are given two points whose coordinates are rational numbers. (Picture them as close together as you please.) Can we find a third point between the two given points? Using the idea of associating numbers with points, we shall try to answer this question by working with numbers. Let us begin by considering the numbers $\frac{1}{2}$ and $\frac{1}{12}$.

The number $\frac{1}{2}$ has many names such as $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, $\frac{4}{8}$, $\frac{5}{10}$, etc.

The number $\frac{1}{12}$ also has many names such as $\frac{1}{12}$, $\frac{2}{24}$, $\frac{3}{36}$, $\frac{4}{48}$, etc.

Using the names $\frac{2}{4}$ for the number $\frac{1}{2}$ and $\frac{1}{12}$ for the number $\frac{1}{12}$, it is now easy to see that there is a number between $\frac{2}{4}$ and $\frac{1}{12}$.
For example: \(\frac{7}{12} \) is one such number.

Since the number \(\frac{7}{12} \) is greater than \(\frac{1}{3} \) and less than \(\frac{1}{2} \), the point \(\frac{7}{12} \) must lie _____ the points with coordinates \(\frac{1}{3} \) and \(\frac{1}{2} \).

The answer to our question, "Can we find a third point between the two given points?" is _____ for yes

the points whose coordinates are \(\frac{1}{3} \) and \(\frac{1}{2} \).

The process for finding a number between \(\frac{1}{3} \) and \(\frac{1}{2} \) and locating the point on a number line which has this coordinate is illustrated below.

![Number Line Illustration]

Although we have used a special case by choosing \(\frac{1}{3} \) and \(\frac{1}{2} \), a similar process can be used with any two rational numbers. Using this process we can show that between any two points with rational coordinates there is a third point.

Two rational numbers between \(\frac{7}{10,000} \) and \(\frac{5}{7,000} \).

Return to our example using \(\frac{1}{3} \) and \(\frac{1}{2} \).

Now that we have found the number \(\frac{7}{12} \) between \(\frac{1}{3} \) and \(\frac{1}{2} \), let us find another between \(\frac{1}{3} \) and \(\frac{5}{12} \).

Another name for \(\frac{1}{3} \) is \(\frac{1}{3} \).

Another name for \(\frac{1}{2} \) is \(\frac{1}{2} \).

Certainly, _____ is between \(\frac{1}{3} \) and \(\frac{10}{27} \).

It is (is, is not) possible to continue this process by finding a number between \(\frac{1}{3} \) and \(\frac{2}{3} \).
Since the above process can be continued indefinitely,
there are infinitely many points between the points with coordinates \(\frac{1}{3} \) and \(\frac{1}{2} \).

From this example we should see that, in general, between any two points having rational numbers as coordinates there are infinitely many points.

We have a process for associating rational numbers with points on the number line. Does our process assign a rational number to every point to the right of the point with coordinate zero? Surprisingly, the answer is no. Later, in this course we shall prove this to you. Meanwhile, we assume that every point to the right of the point with coordinate 0 has a number coordinate, although some of these numbers are not rational.

In Chapters 1 through 5 we shall be concerned with the set of numbers consisting of the number 0 and the numbers corresponding to all points to the right of the point 0. When we speak of "numbers of arithmetic" we shall mean numbers of this set.

The following statement is a statement.

Every number of arithmetic may be associated either with the point on the number line whose coordinate is 0 or with a point to the right of the point with coordinate 0.

Every point of a number line to the right of the point whose coordinate is zero may be associated with a number of arithmetic.

Now that we have the number line, let us show a use of it which will form the basis for many important applications later on.
Consider the set of whole numbers between 4 and 8.

Let us call the set F. Then, $F = \{4, 5, 6, 7\}$.

We can associate every element of F with a point on a number line.

Each element of F is the coordinate of exactly one point.

Examine the number line:

```
0 1 2 3 4 5 6 7
```

We have marked the points whose coordinates are 4, 5, 6, and 7, with heavy dots.

The set of points with coordinates 4, 5, 6, and 7 is called the graph of the set of numbers, $\{4, 5, 6, 7\}$. Indicating the points of the graph of a set by means of heavy dots as we have done above will be called "drawing the graph of the set" or "graphing the set".

Draw the graph of the set $\{0, 3, \frac{9}{2}, 2\}$.

The graph of a set B has been drawn as follows:

```
0 1 2 3 4 5 6 7 8
```

$B = \{0, 5, 6\}$

The following figure appears on your response sheet:

```
N 0 1 2 3 4 5 6 7 8 ...
```

```
W 0 1 2 3 4 5 6 7 8 ...
```

On the upper line we have drawn the graph of the set N of counting numbers (natural numbers).

In your response sheet on the lower line, draw the graph of the set W, of whole numbers.

Compare the graphs of set N and set W. For every heavy dot on the upper line there is, is not a heavy dot directly below on the lower line.
Thus, every point in the graph of the set \(W \)
is also in the graph of the set \(M \).
Of the two sets, \(W \) and \(M \), we can see that \(W \) is a subset of \(M \).

Given \(S = \{1, 3, 4, 7\} \) and \(T = \{0, 2, 4, 6, 8, 10\} \).

The response for each of the following appears directly below the item.

60. Draw the graph of set \(S \).

61. Draw the graph of set \(T \).

62. Draw the graph of the set, \(M = S \cup T \).

63. Draw the graph of the set, \(K \), of all numbers belonging to both \(S \) and \(T \).

As you did this problem did you notice a scheme for drawing the graphs of set \(M \) and set \(K \)? If you did, you observed that for every dot on the graph of \(M \) (see p. 19) there is a dot directly below on one or both graphs of \(S \) and \(T \).

You also observed that for every dot on the graph of \(K \) there is a dot directly above on both graphs of \(S \) and \(T \).
Given two sets A and B, we can form a set consisting of all those elements which are members of both A and B. This set which we have formed from A and B is called the intersection of A and B. Thus in our example above, K is the intersection of S and T. The symbol for the intersection of sets is \cap. For example, we write $K = S \cap T$.

If $M = \{1,2,\ldots,19\}$ and $N = \{17,18,19,\ldots,30\}$, then which of the following is the intersection of M and N?

- [A] $\{17,18,19\}$
- [B] $\{1,2,\ldots,30\}$
- [C] $\{30,29,28,\ldots,2,1\}$

[A] is the correct choice; [B] and [C] are both $M \cup N$.

If $M = \{1,2,3,\ldots,21\}$ and $N = \{17,18,19,\ldots,30\}$ then which of the following is $M \cap N$?

- [A] $\{17,18,19,20,21\}$
- [B] $\{17,18,19\}$
- [C] $\{1,2,3,\ldots,30\}$

[A] is correct. Although each element in [B] is a member of both M and N, these are not all the elements of both M and N; the set [C] is the union, not the intersection of M and N.

If M is the set of all elements each of which belongs to both set S and set T, then M is the intersection of S and T.

\emptyset
If \(S = \{1, 2, 4, 8, 9\} \), \(T = \{0, 1, 2, 5, 7, 8\} \), and
\(M = \{1, 2, 8\} \), then \(M \subseteq S \cup T \).

If \(S = \{1, 2, 4\} \) and \(T = \{0, 1, 3\} \), then the
union of \(S \) and \(T \) is \(\{0, 1, 2, 3, 4\} \).

If \(S = \{1, 2, 4\} \) and \(T = \{0, 1, 3\} \), then
\(S \cap T = \{1, 2\} \).

If \(S = \{1, 2, 4, 8, 9\} \) and \(T = \{0, 1, 2, 5, 7, 8\} \),
then \(S \cap T = \{1, 2\} \).

Consider the sets \(A = \{0, 2, 5\} \) and \(B = \{1, 2, 3, 4\} \).

Draw two numbers lines, one below the other, and
don these lines draw the graphs of \(A \) and \(B \).

If set \(C \) is the set of numbers which are
elements of both \(A \) and \(B \), what can you say
about set \(C \) from looking at the graphs of \(A \)
and \(B \)?

What is the usual symbol for the set \(C \)?

Given finite set \(A = \{a, b, c, d, e\} \) and the finite
set \(B = \{3, 4, 5\} \), each having \(\text{how many} \) elements.

We can pair off, one-to-one, the elements of \(A \)
and \(B \) in many ways.

For example: \(1, 2, 3, 4, 5 \)
\(a, b, c, d, e \)

and
\(1, 2, 3, 4, 5 \)
\(d, b, e, c \)

The letters of the alphabet, in their usual order, can
be paired with the first \(\text{how many} \) counting numbers
in their usual order as follows:

\(1, 2, 3, 4, 5, \ldots, 25, 26 \)

\(a, b, c, d, e, f, g, \ldots, z \)
Consider \(E = \{1, 2, 3, 4, \ldots\} \) and \(C = \{r, s\} \). \(E \) and \(C \) are both subsets of \(\mathbb{R} \).

However, \(C \) does not contain all the elements of \(B \). \(C \) is said to be a proper subset of \(B \).

\(G = \{1, 2, 3, \ldots\} \) is a proper subset of \(H = \{0, 1, 2, 3\} \).

\(E = \{2, 4, 6, 8, \ldots\} \) is a proper subset of \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\} \).

If we start with a finite set \(S \), then a proper subset must have fewer elements than the original set. We cannot pair off, one-to-one, the elements of a finite set \(S \) with the elements of a proper subset of \(S \).

The following starred items are optional.

A startling development occurs if we consider an original set which is an infinite set.

\(N = \{1, 2, 3, \ldots\} \) is an infinite subset.

\(E = \{2, 4, 6, 8, \ldots\} \) is also an infinite subset, and it is a proper subset of \(N \).

By means of the diagrams:

- We pair off, one-to-one, the members of \(E \) with the members of a proper subset of \(N \).

In fact, our rather vague description of an infinite set can now be made quite precise.

Definition: An infinite set, \(S \), is a set whose elements may be paired off, one-to-one, with the elements of a proper subset of \(S \).
The set of multiples of 5 is an infinite set since (0, 10, 20, 30, ...) is a proper subset of (0, 5, 10, 15, ...) and we can pair the elements of these two sets one-to-one as below.

\[
\begin{array}{ccccccc}
0 & 5 & 10 & 15 & 20 & 25 & \ldots \\
0 & 10 & 20 & 30 & 40 & 50 & \ldots \\
\end{array}
\]

Classify the following sets as finite or infinite.

1. All rational numbers between 1 and 2 whose numerators are whole numbers and whose denominators are whole numbers between 1 and 10. \text{ infinite}

2. All rational numbers between 1 and 4. \text{ finite}

3. All rational numbers between 1 and 10. \text{ infinite}

For the whole numbers, 0, 1, 2, ..., we notice that after each whole number there is a next whole number. For example, the next whole number after 3 is 4, and 3 is called the successor of 3.

Each whole number is followed by its successor.

The successor of 5 is 6.

The successor of the number six hundred seventeen is the number six hundred eighteen.

To find the successor of any whole number, the number 1 is added to the whole number. The successor of 22 is 23.

The numbers, 5, 6, 7, ..., all follow the number 4.

Of these, the closest one is 5.

The closest whole number following another is its successor.

Let's look at the rational numbers with the idea of successor in mind. Would adding 1 to say, 2, give us the next rational number after 2? Is there a rational number closer to 2?
100 How should you complete the following statement?

There ___ a next rational number after the number 2.

[A] is

[B] is not

101 Suppose there were a next rational number after 2. Between that number and 2 we know we can find a third number. (This process is shown in Items 32-36.) This third number is closer to 2 than the supposed "next" number. Thus no rational number can be next to 2, and the correct answer is [B].

101 Since there is no "next" rational number following a given rational number, the given rational does not have a ___.

[A] numerator
[B] denominator
[C] successor

[C] is the correct selection.

1-3. Addition and Multiplication on the Number Line

We have seen how to graph sets of numbers on the number line. Now let us use the number line to visualize addition and multiplication of numbers.

At the beginning we recall that

\[5 + 3 \]

is a symbol for the number obtained by adding 3 to 5, namely, 8. This can be interpreted as moving from the point 0 to the point 5 and then moving from this point three units to the right, thereby locating a point with coordinate 5 + 3, or 8.

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccc}
5 & 3 \uparrow \downarrow & \text{point 5} & \text{point 5 + 3, or 8} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
\]
As a different example, let us find

\[3 + 5 \]

on the number line:

1. We move from the \[_ \] with coordinate 0 to the point with coordinate \[_ \], and then move 5 units to the \[(\text{right}, \text{left}) \] coordinate \[3 + 5 \].

Thus:

\[_ \]

Although the indicated additions "\[5 + 3 \]" and "\[3 + 5 \]" on the number line are different, we see by diagrams that they terminate at the same point.

This emphasizes the fact that \[5 + 3 \] and \[3 + 5 \] are different symbols for the same number, namely, \[_ \].

Notice that although the number line continues indefinitely here, for convenience, we have omitted the three dots to the right of the line in the graph with an understanding that the line continues.

Indicate each of the following sums on the number lines provided on the response sheet.

5. \[_ \]

Authors to 5 unit are on page 1.

By this may be shown on the number line as follows:

\[_ \]

4. Indicate the addition \[_ \] on the number line provided on the response sheet. Answer on page 1.
We may wonder whether addition on the number line is always possible. In other words, is the sum of any two rational numbers always a rational number? This question needs careful thought. We shall return to this question (and to similar ones) in later chapters.

Look at the example $5 + 3 = 8$. Notice that we can find a rational number so that when we add this number to 5, the result will be 8; we can also find a rational number so that when we add this to 3, the result will be 8. Recall that, in looking for the answer to the question, we find this number by subtraction. That is, the same number, 3, is the answer to each of the questions

$5 + \text{what number} = 8$?

and

$\text{What number} = 8 - 3$?

Closely tied to this, is the procedure for indicating the subtraction of numbers on the number line. This procedure is not difficult.

5 - 3 may be interpreted as a symbol for the number obtained by subtracting 3 from 5. This may be shown on the number line as

\[
\begin{array}{c}
\text{5} \\
\hline
\text{3} \\
\hline
5 \\
\end{array}
\]

Notice that we moved from the point with coordinate 0 to the point with coordinate 5 and then moved 3 units to the left, thereby locating the point with coordinate 5 - 3; that is, 2. Notice that the coordinate 5 - 3 is 2 since 2 + 3 is 5.

Answer: to 3 and - are on page 10. Answer to 30 is on page 11.

The procedure for visualizing the multiplication of two rational numbers is similar to that of addition if we recall that, for example,
3 \times 2

is a symbol for the number obtained by adding three 2's. Thus

\[\begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0 & 2 & 4 & 6 & 8 & & & & & \\
\end{array} \]

As a different example consider 2 \times 3.

2 \times 3 is a symbol for the number obtained by adding three 3's. Thus

\[\begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \ \\
\hline
0 & 3 & 6 & & & & & & \\
\end{array} \]

Although the indicated multiplications "3 \times 2" and "2 \times 3" on the number line are different, we see by the diagrams that they terminate at the same point. This emphasizes the fact that 3 \times 2 and 2 \times 3 are different symbols for the same number, namely, \(\frac{3}{3} \) or 1.

Show the process of multiplication on the number line for each of the following.

\begin{align*}
10. & \quad \frac{1}{2} \times 2 \\
11. & \quad \frac{1}{2} \times 1 \\
12. & \quad \frac{1}{2} \times 3 \\
\end{align*}

Answers to 10, 11, and 12 are on page 11.

We may visualize the multiplication of rational numbers as follows: Consider "\(\frac{1}{2} \times \frac{1}{3} \)", which is a symbol representing two-thirds of three-fourths. Since we are concerned with thirds, on the number line we divide the interval from 0 to \(\frac{1}{3} \) into three equal intervals.
You will have noticed that when we add or multiply two whole numbers we always obtain a single number. Further, in all our examples using the number line, we end at a point which is either at the point 0 or to the right of that point. If we tried to apply our method of indicating "subtraction" to 5 - 7, we would find ourselves moving to the left of the point with coordinate 0, whereas (as yet) we have not labeled any points. We shall learn about the possibility of labeling such points in Chapter 6.

Suppose we start with the set $T = \{1, 2\}$. If we decide to add together two elements of T, we find that there are three possible sums, namely,

\[1 + 1, \quad 1 + 2, \quad 2 + 2,\]

and $1 + 2$.

Thus the set S, whose elements are all possible sums of two elements of T, is $\{2, 3, 4\}$.

Let U be the set of all possible sums of two elements of $V = \{1, 2, 3, 4\}$.

Then $U = \{3, 4, 5, 6, 7, 8\}$.

U contains \(\{16, \text{is not} \} \) elements.

U is not a subset of V.

Answers to 18, 19, 20, are on page 117.
Let us consider $Q = \{0,1\}$.

If we form a new set P, whose elements consist of all possible products of two elements of Q, then $P = \{0,1\}$.

Notice that P is not a subset of Q.

(Actually, in this case, the set P is the same set as Q. Our attention, however, is directed to the fact that P is a subset of Q: every element of P is an element of Q.)

Here is another example:

Given the set of whole numbers, $W = \{0,1,2,3,...\}$.

The sum of two whole numbers is itself a whole number.

The set of possible sums of two whole numbers is a subset of W.

We shall say: If the sum of any two elements of a certain set is itself an element of the same set, then the set is closed under the operation of addition.

The set of whole numbers is closed under addition.

The sum of two even whole numbers is an even whole number.

Therefore, the set of all even whole numbers is closed under the operation of addition.

On the other hand, the sum of two odd whole numbers is not even, odd), so the set of all odd whole numbers is not closed under the operation of addition.

Is $B = \{0,1\}$ closed under addition? [1 + 1 = 2]
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is (\mathbb{Z}) ((0,1,2,3,\ldots)) closed under addition?</td>
<td>yes</td>
</tr>
<tr>
<td>If (\mathbb{Z}) is a finite set of whole numbers that is</td>
<td></td>
</tr>
<tr>
<td>yes closed under addition, then (\mathbb{Z} = { _ _ _ }).</td>
<td></td>
</tr>
</tbody>
</table>

This last response was a hard one. If you answered it correctly, or if you may see that \(\{0\} \) is the only answer, we hope you have gained understanding of what is meant by a set being "closed under the operation of addition."

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are (\mathbb{Z}) and (\mathbb{Q}) a generalization of (\mathbb{N})?</td>
<td>is not</td>
</tr>
<tr>
<td>If (\mathbb{N}) is a set, then (\mathbb{Z}) closed under the</td>
<td></td>
</tr>
<tr>
<td>operation of addition, and if (\mathbb{Q}) closed</td>
<td></td>
</tr>
<tr>
<td>under the operation of multiplication.</td>
<td></td>
</tr>
</tbody>
</table>

If you answered the last response, remember that \(0, 1, 2, 3, 4, \ldots \) are the only closed under addition.

The set of all even whole numbers is \(_ _ _ \) under the operation of multiplication.

The set of all whole numbers is \(_ _ _ \) under the operation of multiplication.

In particular, we have seen that the set of whole numbers is closed under addition and under multiplication.
\[W = \{0, 1, 2, 3, \ldots\} \]
\[E = \{0, 2, 4, 6, \ldots\} \]
\[Q = \{0, 1\} \]
\[Z = \{0, 6, 12, 18, \ldots\} \]
\[T = \{1, 3, 5, 7, \ldots\} \]
\[I = \{0\} \]

Which of the above are closed under the operation of addition?

Which of the above are closed under the operation of multiplication?

Which of the above are closed under the operation of subtraction?
Chapter 2
NUMERALS AND VARIABLES

2-1. Numerals and Numerical Phrases

The symbols 6, VI, 5 + 1, and \(\frac{12}{2} \) are all names for the same number.
All of them name the coordinate of the same point on the number line.

Usually it is more convenient to use the name 6 than VI, 5 + 1, or \(\frac{12}{2} \), because 6 is simpler. The simplest, or generally preferred, name of a number is called its common name. The common name for the numeral \(2 \times 7 \) is 14.

\[
8 \times 1, \ 6 + 2, \ \frac{12}{2}, \ 10 - 2 \text{ are all names for the same number. The common name of this number is } 8.
\]

\[
\text{The } \frac{15}{3} \text{ name for } \frac{15}{3} \text{ is 5.}
\]

\[
\text{The common name for } 32 \times 15 \text{ is } 480.
\]

You are a person. You have a name. When people want to talk about you, they have to use your name, but you are not the same as your name. In the same way, the name of a number is not the same as the number. "2 is an even number" is a shorthand way of saying, "The number named by 2 is even."

A symbol which names a number is called a numeral. Thus, 8, 7 + 4, \(\frac{17}{3} \), and 693 - 47 are all numerals. We use the word "numeral" when we want to emphasize the fact that a certain symbol names a number. In general, we shall continue to use phrases like "the number 2" instead of "the number named by 2" when there is no good reason for doing otherwise.

Consider the statement \(5 + 7 = 2 \times 6 \). This use of the equal sign illustrates its general use with numerals: An equal sign standing between two numerals asserts that the numerals name the same number. "\(5 + 7 = 2 \times 6 \)" is an assertion which is true, since \(5 + 7 \) and \(2 \times 6 \) are numerals which represent (or name) the same number. On the other hand, "\(5 + 7 \neq 5 \)" is an assertion which is false, since \(5 + 7 \) and \(5 \) do not name the same number.

\[
\frac{10}{2} \text{ is a numeral for the number we usually call } 5.
\]
12. \((h + 1) \times 2 = _\), since \(h + 1 = 1\).
13. \(x + 1\) \(________.\), since \(-x + 1 = 1\).

Give the common name for each of the following:

14. \((x^2) + (1 - x^2) _______.\)
15. \((x^2) - (1 - x^2) _______.\)
16. \((-x^2) + (1) ______.\)
17. \((-x^2) - (1 - x^2) ______.\)

The symbol \(\times\) for multiplication is often replaced by \(\cdot\). Note that \(\times\) and \(\cdot\) are used to indicate an indicated product. For example, \((x + 1)^2\) means \(x \times (x + 1)^2\). Notice, however, that \(\frac{x}{3}\) is already simplified as the common name for the common fraction \(1 \div x\). It cannot be interpreted as the indicated product \(x \times \frac{1}{3}\). A similar exception is \(\frac{1}{x}\), which means \(1 \div x\) rather than \(x \div \frac{1}{x}\). We may, however, write \(\frac{1}{x}\) or \((1)(x)\) in place of \(x \div \frac{1}{x}\). Similarly, \(x^2\) might be replaced by \(x \times x\) or \(x(x)\).

Give the common name for each of the following:

18. \((x) _______.\)
19. \((x) _______.\)
20. \((x) _______.\)
21. \((-x) _______.\)
22. \((-x)^2 _______.\)
23. \((-x) _______.\)
24. \((-x)(x) _______.\)
25. \((-x)(-x) _______.\)
26. \((-x)(x) _______.\)
27. \((-x)(-x) _______.\)

Theorem 1:

If \(x\) is a positive number, then \(\frac{1}{x}\) is a positive number.

If \(x\) is a negative number, then \(-\frac{1}{x}\) is a positive number.

If \(x\) is a zero, then \(-\frac{1}{x}\) is undefined.
We are to teach our children to write. Very often we have to write something like "the sum of a and the product of b and 5." We have seen that the expression above written conveniently as:

\[(a \times b) \times 5\].

A rule necessary about the meaning of \(a \times b\) is by the use of parentheses. We must be familiar with this sort of making the agreement that when we write an expression, the multiplication is done first, before the addition. Using this agreement:

\[(a + b) \times c\] means \((a + b) \times c\).

However, we must pay particular attention to the application procedure systematically.

\[a \times c\] means \((a \times c)\), or \(a \times c\), or \(c\).

You will see that the agreement stated above is the same. However, when in doubt you should always insert parentheses to make sure that the meaning is clear.
An expression such as \(\frac{b(a - 2)}{a - 2} \) is understood to be an indicated quotient of two numbers. Thus
\[
\frac{b(a - 2)}{a - 2} = b.
\]

One pair of parentheses may lie within another. For example, what do you think is the correct common name for
\[
((a + 2)(x + 1)) \times y
\]

[A]: 35
[B]: 34
[C]: 33
[D]: none of these

The correct choice is [C]. If you chose [C] and are certain of your method, you may skip Items 43-48.

In \(((a + 2)(x + 1)) \times y \),

A numerical answer is a statement of numbers. For example,

in

\[
(a + 2)(x + 1)
\]

we have:

A numerical answer is a statement of numbers. For example,
In this sentence we have two numerals, \(2(3 + 7) \) and \(2 - 2 \), connected by "=". Each numeral plays the role of a phrase in English.

When we want to emphasize this role of a numeral in a sentence we speak of a numerical phrase. \(2(3 + 7) \) and \(2 - 2 \) are examples of numerical phrases.

The sentence
\[
2(3 + 7) - 2 - 2
\]
is a true sentence, as you can readily check.

Now consider the numerals, or numerical phrases, \((x + 1)(5 - 2)\) and \(10\). We can make of them the sentence
\[
(x + 1)(5 - 2) = 10.
\]
This happens to be a false sentence. (Check to be sure.)

False sentences, as well as true ones, will turn out to be important in your later work. A numerical sentence can be true or false, but not both.

Determine which of the following sentences are true and which are false.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>((5 + 2)2 = 5 + 2(2))</td>
<td>(50)</td>
<td>((4 + \frac{1}{2}) = 3(4) + 3(\frac{1}{2}))</td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td>(\text{false})</td>
<td></td>
<td>(\text{true})</td>
<td></td>
</tr>
</tbody>
</table>

Which of the following represent(s) \(72\) as an indicated product?

- X. \(12 \times 5 + 12\)
- Y. \(3 \times 2\)
- Z. \(30 + 42\)

[A] X and Y
[B] Y only
[C] Y and Z

\(12 \times 5 + 12\) contains an indicated product, but the numeral is not an indicated product. \(30 + 42\) is an indicated sum. Your choice should have been [B].
55. Which of the following correctly translates the numerical sentence 3(5 + 7) = 36 into an English sentence?

[A] Three times five plus seven is thirty-six.

[B] Three times the sum of five and seven is thirty-six.

The correct choice is [B]. Choice [A] fails to show that we first form the sum of 5 and 7. It could mean \((3 \times 5) + 7 = 36\), which is a false sentence.

56. Which of the following numerical sentences are true and which are false?

56. True or false: \(4(5) + 4(8) = 4(13)\)

57. \((3 + 7)4 = 3 + 7(4)\)

58. \(3(8 + 2) = 3 \times 5\)

59. \(2(5 + \frac{1}{2}) = 2(5) + 2(\frac{1}{2})\)

60. \(\frac{16}{3} + 4 - 5 = \frac{16}{3} + (4 - 5)\)

61. \(23 - 5(2) = 16\)

62. \(\frac{7 + 5}{2} - 7 + \frac{3}{2}\)

Some of the important ideas of this section are reviewed in Items 63-73 below.

63. The names of numbers, as distinguished from numbers themselves, are called ______.

In \((3 + 5) \times 7\), the numeral \(8 + 5\) is enclosed in ______.

65. The numeral \(8 + 5\) is an indicated ______.

66. While \(12 \times 7\) is an ______.

A numerical sentence may be true or false but ______.

68. Which of the following is true or false: \(2(5 + 7) - (2 + \frac{1}{3})(\frac{5}{3} - 0)\)?
Exercises

Insert parentheses in each of the following expressions so that the resulting sentence is true. For example:

<table>
<thead>
<tr>
<th>Given</th>
<th>We Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 3 + 4 + 5 = 15</td>
<td>(2 + 3) + (4 + 5) = 15</td>
</tr>
<tr>
<td>2 + 3 + 4 + 5 = 20</td>
<td>2 + 3 + (4 + 5) = 20</td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2 + 3 + 4 + 5 = 25</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2 + 3 + 4 + 5 = 19</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>3 + 4 + 6 + 1 = 143</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
<tr>
<td>3 + 4 + 6 + 1 = 28</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
</tr>
<tr>
<td>3 + 5 + 7 = 36</td>
<td></td>
</tr>
</tbody>
</table>

2-2. Some Properties of Addition and Multiplication

Here is a problem: Find the common name for 0.8 + 7 + 3.2. How would you proceed?

Perhaps you would think: 0.8 + 7 = 7.8, and 7.8 + 3.2 = 11. Your work might be written this way:

\[(0.8 + 7) + 3.2 = 7.8 + 3.2 = 11,\]

or you might notice first that 7 + 3.2 = 10.2. In this case you would think:

\[0.8 + (7 + 3.2) = 0.8 + 10.2 = 11.\]

Both methods lead to the same result.

Let us compare carefully the two numerals:

\[(0.8 + 7) + 3.2 = 11,\]

\[0.8 + (7 + 3.2) = 11.\]
Both use only the numerals 0.8, 7, and . In both, the order of the numerals is the same.

Each involves only one kind of operation, namely . However, the two numerals differ as to the way in which 0.8, 7, and 3.2 are grouped.

The grouping is shown by . But in spite of the different grouping, the two numerals name the same .

We can use these two numerals to make a true sentence:

\[(0.8 + 7) + 3.2 = 0.8 + (7 + 3.2)\]

Let's try some more examples of this sort:

\[(5 + \frac{3}{2}) + \frac{1}{2} = \frac{5}{2} + \frac{1}{2}\]

\[5 + (\frac{1}{2} + \frac{1}{2}) = 5 + \]

\[= \]

Thus the sentence \[(5 + \frac{3}{2}) + \frac{1}{2} = \frac{5}{2} + \frac{1}{2}\]

is a sentence.

The sentence \[(1.2 + 1.3) + 2.6 = 1.2 + (1.3 + 2.6)\]

is a sentence. We can check this by noting that:

\[(1.2 + 1.3) + 2.6 = 3 + 2.6\]

while \[1.2 + (1.3 + 2.6) = 1.2 + \]

\[= \]

The sentence \[(\frac{1}{2} + \frac{1}{2}) + \frac{2}{3} = \frac{1}{2} + (\frac{1}{2} + \frac{2}{3})\] is a sentence. We can verify this by showing that

\[(\frac{1}{2} + \frac{1}{2}) + \frac{2}{3} = \frac{1}{2} + \]

and that \[\frac{1}{3} + (\frac{1}{2} + \frac{2}{3}) = \]
From the previous true sentences, it appears that we have discovered:
If we have any three numbers, the sum
\[
\begin{align*}
\text{(first number + second number) + third number} \\
\text{and} \\
\text{first number + (second number + third number)}
\end{align*}
\]
are equal.

We can say this as follows:
"If you add a second number to a first number, and
then add a third number to their sum, the result
is the same as if you add the second and third numbers and then add their sum to the first number."

You have been computing sums like
\[0.8 + 7 + 3.2\]
for many years. Usually you compute such a sum in two steps. You think
\[0.8 + 7 + 3.2 = 7.5 + 3.2\] or \[0.8 + 7 + 3.2 = 0.8 + 10.2\]

In other words, you usually add several numbers in steps. At each step you add two numbers.

Addition is an example of what mathematicians call a binary operation. When we have a way of assigning a single number to each pair of numbers we are dealing with a binary operation.

1. Addition is a binary operation, because we can find exactly one number which is the sum of two given numbers.
2. Another binary operation is multiplication, because for two numbers we can find a number which is their product.

Now let us go back. We concluded: If we have any three numbers, the sum indicated by
\[
\text{(first number + second number) + third number}
\]
is the same as
\[
\text{first number + (second number + third number)}.
\]
We have discovered a relationship involving addition which holds for all the numbers of arithmetic. This kind of general statement about addition is called a **property of addition**. (The use of the word "property" here is similar to its use in the sentence: "Sweetness is a property of sugar.")

The particular property of addition we have discovered is called the **associative property of addition**.

You will discover that in all the algebra which follows, in both theory and applications, our main concern will be with those properties which hold for all numbers with which we work. In these first few chapters, we will be considering the set of numbers of arithmetic. Therefore, we may omit the phrase "for numbers of arithmetic" when writing the properties.

The word **association** suggests some sort of group. The associative property of addition has to do with the grouping of numbers in an indicated sum.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>(3 + (2 + 6) = (8 + 2) + _) illustrates the associative property of addition.</td>
</tr>
<tr>
<td>22</td>
<td>(8 + 9) + 6</td>
</tr>
<tr>
<td>23</td>
<td>((15 + 18) + 23 = 15 + (_ + _))</td>
</tr>
<tr>
<td>24</td>
<td>(9 + 25) + 2</td>
</tr>
<tr>
<td>25</td>
<td>The preceding items provided practice in applying the associative property of addition.</td>
</tr>
<tr>
<td>26</td>
<td>"((5 + 3) + (2 + 3) + 5)" is an example of the associative property of addition.</td>
</tr>
<tr>
<td>27</td>
<td>"((7 + 5) + 2 + (1 + 3))" is another example of the associative property of addition.</td>
</tr>
</tbody>
</table>

The associative property eliminates the need for any parentheses in a phrase like \(a + b + c\), since the grouping does not affect the sum.
Which of the following sentences do you know to be true by using only the associative property of addition?

W. \(6 + 4 + 8 = (6 + 4) + 8 = 6 + (4 + 8)\)

X. \((6 + 4) + 8 = 6 + (8 + 4)\)

Y. \((6 + 8) + 4 = 6 + (8 + 4)\)

Z. \((4 + 8) + 6 = 6 + (8 + 4)\)

[A] W \& Y only [C] X and Y
[B] all of them [D] Y and Z

The only correct selection is [A]. The associative property of addition does not allow us to change the order of the numbers, as is done in (X) and (Z).

Suppose you wished to find the sum \((5 + \frac{1}{2}) + \frac{1}{2}\). Can the associative property of addition be used to make the addition simpler? Yes, you would certainly suggest writing \(5 + \left(\frac{1}{2} + \frac{1}{2}\right)\) to represent the same sum.

So there are cases, such as this one, where regrouping, by moving the parentheses in accordance with the associative property of addition will lead to a simpler way to find the sum.

Which of the following additions cannot be done in a simpler way by using only the associative property of addition?

E. \(\left(\frac{49}{7} + 6\right) + \frac{101}{7}\)

G. \(\frac{2}{4} + \frac{3}{4}\)

F. \(\frac{3}{5} + \left(\frac{7}{5} + 8\right)\)

H. \(5 + \left(\frac{1}{4} + \frac{3}{4}\right)\)

[A] E only [C] E and G
[B] G only [D] E, F and H

The correct choice is [C]. In (E), \(\left(\frac{49}{7} + 6\right) + \frac{101}{7} = \frac{32}{7} + (6 + \frac{101}{7})\) by the associative property of addition, and the new expression is not simpler than the old. In (G), \(\frac{2}{4} + \frac{3}{4}\) is not a situation in which the associative property of addition applies, since only two numbers are added.

If you earn $5 today and $5 tomorrow, will you earn the same amount as you would if you earn $10 today and $0 tomorrow? __________ yes
Does walking 3 miles before lunch and 5 miles after lunch cover the same distance as walking 5 miles before lunch and 3 miles after lunch? __________ yes

If two numbers are added in different orders, the sum is the same. 4 + 9 = 13 and 9 + 4 = __________. 13

6 + 0 = ____ and 0 + 6 = ____. Thus we see: 6, 6
34 6 + 0 = ____ + 6

The exercises which you have just completed suggest another property of addition: For any two numbers, first number + second number = second number + first number. This property of addition is called the commutative property of addition.

We can state the commutative property of addition as follows:

If two numbers are added in different orders, the results are the ______. 35

36 The true sentence 9 + 8 = 8 + ____ illustrates the commutative property of addition. 8 + 9

37 5 + 6 = 6 + 5 by the ______ property of addition. commutative

The associative property of addition is concerned with the grouping of numbers.

38 (6 + 7) + 4 = 6 + (____) illustrates the associative property. 6 + (7 + 4)

On the other hand, the commutative property of addition is concerned with the order in which we add two numbers.

39 (6 + 7) + 4 = 4 + (6 + 7) illustrates the ______ property of addition. commutative

It might help you to remember the word commutative and its meaning if you recall that a commuter goes back and forth.
Let us review what we have learned.

We say that addition is a binary ______.

Two properties of addition are the associative and ______ properties.

\((4 + 9) + 3 = 3 + (4 + 9)\) is a true sentence which illustrates the ______ property. (Did you notice how we used \((4 + 9)\)?)

\(4 + (9 + 3) = (4 + 9) + 3\) illustrates the ______ property of addition.

\((4 + 9) + 3 = (3 + 4) + 3\) illustrates the ______ property of addition.

Multiplication is also a binary operation. It might occur to you at this point to ask whether multiplication also has the associative and commutative properties. Make a guess. Then go on.

Let us consider the indicated product

\[7 \times (8 \times 3) \].

\(7 \times (8 \times 3)\) is the product of 7 and ______.

The common name for \(7 \times (8 \times 3)\) is ______.

If we are interested in seeing whether or not multiplication has the associative property, we can compare the indicated products \(7 \times (8 \times 3)\) and \((7 \times 8) \times 3\).

\((7 \times 8) \times 3 = \frac{24}{2} \times \frac{3}{2}\).

We have found that \(\frac{(7 \times 8) \times 3}{24, \text{ or } 8 \times 3} - \frac{7 \times (8 \times 3)}{168} = \frac{56 \times 3}{168}\) is a ______ sentence.

Another true sentence illustrating the same pattern is \((5 \times 3) \times 7 = \frac{5 \times (3 \times 7)}{true}\).

These and similar examples suggest to us that multiplication has the ______ property, as does addition.
The associative property of multiplication may be stated as follows:

Given any three numbers, the products

\[(\text{first number} \times \text{second number}) \times \text{third number}\]

and

\[\text{first number} \times (\text{second number} \times \text{third number})\]

are equal.

Thus multiplication, like addition, is an operation that has the \textit{associative} property.

We could describe it by saying:

If you multiply a second number by a first number, and then multiply a third number by their another, the result is the same as if you multiply the third number by the another number and then multiply their product by the another number.

The meaning of \(7 \times 9 \times 3\) is clear, since the way the three numbers are grouped does not matter.

Now let us ask whether or not multiplication, like addition, also has the \textit{commutative} property.

\[
\begin{array}{l}
5 \times 4 = 4 \times 5, \text{ since } 5 \times 4 = 20 \text{ and } 4 \times 5 = 20 \text{.} \\
3 \times 4 = 4 \times 3.
\end{array}
\]

\[
\begin{array}{l}
241 \times 3 = 3 \times 241, \text{ since } 241 \times 3 = 723 \text{ and } 3 \times 241 = 723. \\
The \textit{indicated product} \frac{2}{3} \times \frac{1}{5} \text{ and } \frac{1}{2} \times \frac{3}{4} \text{ are both names for } \frac{1}{4}. \\
If \text{ two numbers are multiplied in different orders, the results are the same. For example, } \frac{4}{5} \times \frac{2}{3} \text{ and } \frac{2}{3} \times \frac{4}{5} \text{ are equal.}
\end{array}
\]
The pattern illustrates this general property of multiplication:

Given two numbers,

first number \times second number = second number \times first number.

This property of multiplication is called, of course, the **commutative property of multiplication**.

We can summarize the results of this section: Addition and multiplication are two different binary operations both of which have the associative and commutative properties. Later, we shall see that not all binary operations have these properties.

For each of the following true sentences, tell what property of numbers is illustrated.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Property of Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 (\frac{3}{2} + \frac{3}{2} = \frac{3}{2} + \frac{3}{2})</td>
<td>Addition</td>
</tr>
<tr>
<td>65 (\frac{3}{2} \times \frac{3}{2} \times \frac{1}{2} = \frac{3}{2} \times \frac{3}{2} \times \frac{1}{2})</td>
<td>Multiplication</td>
</tr>
<tr>
<td>66 221 + (17 + 19) = (221 + 17) + 19</td>
<td>Addition</td>
</tr>
<tr>
<td>67 6 + (8 + 4) = 6 + (4 + 8)</td>
<td>Addition</td>
</tr>
<tr>
<td>68 (31 \times 13) \times 17 = 31 \times (13 \times 17)</td>
<td>Multiplication</td>
</tr>
<tr>
<td>69 (31 \times 13) \times 17 = 17 \times (31 \times 13)</td>
<td>Multiplication</td>
</tr>
</tbody>
</table>

The following example shows how properties of multiplication can be used to simplify a computation. Tell what property of multiplication is illustrated by each step.

1. \(\frac{1}{2} \times (26 \times 5) = \frac{1}{2} \times (5 \times 26) \) (Commutative)
2. \(= \left(\frac{1}{2} \times 5 \right) \times 26 \) (Associative)
3. \(= 1 \times 26 \) (since \(\frac{1}{2} \times 5 = 1 \))
4. \(= 26 \)
In the example, the work was made easier by rearranging and regrouping terms. We could do this because of the commutative and associative properties of multiplication.

In each exercise, you are to find the common name. Look for the easiest method; rearrange and regroup the numbers if it is helpful.

73 \(4 \times 7 \times 25 = \)

74 \(\frac{1}{2} \times \frac{23}{7} \times 5 = \)

75 \(73 + 62 + 27 = \)

76 \((3 \times 4) \times (7 \times 25) = \)

Here is a true sentence.

\(15(7) + 15(3) = 15(7 + 3) \).

Does it illustrate any property we have studied? Think a moment; then read on.

The sentence does not illustrate a property of this section. An easy way to see this is to recognize that it involves both addition and multiplication, which leads us to suspect that there may be number properties other than those in this section.

2-3. **Distributive Property**

Problem: Suppose there were 15 toys in a stamp club and each brought 7 British stamps and 5 French stamps to an exhibit. How many stamps were brought in all?

In order to find how many stamps were brought, you might think: \(15(7) \), or \(15(5) \), British stamps were brought.

Also, \(15(__) \), or French stamps were brought.

105

3, 45
For the total number of stamps, we find:

\[15(___) + 15(___) = 105 + 45 \]

=

On the other hand, you might solve this problem in a different way. You might think:

The total number of boys was

each brought \(7 + ___ \) stamps.

Thus the total number of stamps which were brought can be written: \(15(___) = 15(___) \)

Since \(15(7) + 15(3) = \)

and \(15(7 + 3) = \)

we see that we obtain the same result, whether we use the first method or the second.

\[15(7) + 15(3) = 15(___) \]

The problem we have just discussed can be solved in two different ways. Let us look at another example, which will illustrate the same pattern.

Problem: A candy store sells 150 boxes of candy, each containing \(\frac{1}{2} \) pound of chocolates and \(\frac{1}{3} \) pound of caramels. How many pounds of candy are sold?

Try to find two ways to do the problem above, following the pattern used in Items 1-11. Test to see whether or not the two methods lead to the same result. Then check your work by doing Items 12-22.

One method: The number of pounds in each box is

\[\frac{1}{2} + \frac{1}{3} = \frac{5}{6} \]

hence, there are \(\frac{150}{\frac{5}{6}} \) pounds in all.

And in all, there are \(150(___) \) pounds of chocolates

\[150(\frac{1}{2}) \]

and \(_______ \) pounds of caramels.

Hence, there are \(150(___) + ________ \) pounds in all.

\[150(\frac{1}{2}) + 150(\frac{1}{3}) \]
Since $150\left(\frac{1}{2}\right) + 150\left(\frac{1}{3}\right)$ is 150, we observe that the two methods give the same result.

Thus, we see that the sentence

$$150\left(\frac{1}{2}\right) + 150\left(\frac{1}{3}\right) = 150\left(\frac{1}{2} + \frac{1}{3}\right)$$

is a true sentence.

The sentence

$$150\left(\frac{1}{2}\right) + 150\left(\frac{1}{2}\right) = 150\left(\frac{1}{2}\right) + 150\left(\frac{1}{2}\right)$$

is also a true sentence.

We have found that

$$150\left(\frac{1}{2}\right) + 150\left(\frac{1}{3}\right) \quad \text{and} \quad 150\left(\frac{1}{2} + \frac{1}{3}\right)$$

are two names for the same number. How would we write the number $12\left(\frac{2}{3} + \frac{3}{4}\right)$ in a second way following the pattern of this discussion?

[A] $12\left(\frac{2}{3}\right) + 12\left(\frac{3}{4}\right)$

[B] $\left(\frac{2}{3} + \frac{3}{4}\right)12$

In both cases, the numeral names the same number as $12\left(\frac{2}{3} + \frac{3}{4}\right)$. However, [A] is the correct choice, since this follows the pattern of the discussion.
Problem: Mr. Jones owns a city lot of rectangular shape, 150 feet deep, with a front of 162.5 feet. Adjacent to his lot, and separated from it by a fence, is another lot with the same depth, but with a front of only 37.5 feet.

What are the areas, in square feet, of each of these two lots and what is the sum of their areas?

The area of Mr. Jones' lot in square feet is $150(162.5)$, or $24,375$ square feet.

The total area of the two separate lots, in square feet, can be written as

$$150(162.5) + 150(37.5) = 24,375 + 5,625 = 30,000$$

The total area of the two separate lots is $30,000$ square feet.

Suppose that Mr. Jones buys the second lot and removes the fence. What is the area of the entire lot Mr. Jones now owns?
After Mr. Joncs buys the neighboring lot, the area of his property, in square feet, can be written as

\[150(162.5 + 37.5) \]

Therefore the area of the entire lot Mr. Jones now owns is ______ square feet.

Our results lead us to conclude that

\[150(162.5 + 37.5) = 150(______) + 150(______) \]

is a ______ sentence.

If we examine the diagram showing the lots, we can see that

\[150(162.5 + 37.5) \] is the number of square feet in the area of the largest rectangle.

\[150(162.5) \] and \[150(37.5) \] are, respectively, the number of square feet in the areas of the two smaller rectangles.

Since the largest rectangle is composed of the two smaller ones, the number of square feet in the area of the largest also corresponds to

\[150(162.5 + 37.5) \] . Thus, each of the numerals \[150(162.5 + 37.5) \] and \[150(162.5) + 150(37.5) \] represents the number of square feet in the same area, and without computing we may assert the truth of the sentence:

\[150(162.5 + 37.5) = 150(______) + 150(______) \].

\[1075 \]

\[1000 \]

\[1075 \]
Decide which of the following sentences are true and which are false.

1. \(13(19 + 1) = 13(19) + 13(1)\) (true, false) \(\checkmark\) true

2. \(2(\frac{1}{3} + \frac{1}{4}) = \frac{2}{3} + \frac{2}{4}\) (true, false) \(\checkmark\) false

3. \(3(2.5) + 3(1.5) = 3(2.5 + 1.5)\) (true, false) \(\checkmark\) true

4. \(4 \cdot 2 + 4 \cdot 5 = 4 \cdot 7\) (true, false) \(\checkmark\) true

5. \(3(2) + 6(3) = 9(6)\) (true, false) \(\checkmark\) false

6. \(15 \cdot 2 = 7 \cdot 2 + 8 \cdot 2\) (true, false) \(\checkmark\) true

The items above reveal a number pattern which can be stated as follows:

Given any three numbers of arithmetic,

\[(\text{first number} \times (\text{second number} + \text{third number}))\]

and

\[(\text{first number} \times \text{second number}) + (\text{first number} \times \text{third number})\]

are equal.

This property of numbers is called the distributive property of multiplication over addition, or, as we shall frequently say, the distributive property.

The distributive property can be described by saying:

If the sum of the second and third of three numbers is multiplied by the first number, the result is the same as if the second of the first and third is added to the product of the first and second.

Complete each of the following illustrations of the distributive property:

48. \(20(\frac{5}{4} + \frac{1}{2}) = 20(\underline{\quad}) + 20(\underline{\quad})\)

49. \((2 + 1) - 20 + 30\)

50. \(15(\underline{\quad}) = 15(\frac{2}{5}) + 15(\frac{1}{2})\)
The true sentence

\[13(19 + 1) = 13(19) + 13(1) \]

illustrates the distributive property.

Of course

\[13(19) + 13(1) = 13(19 + 1) \]

also illustrates the _______ property.

13(19 + 1) is an indicated product of two numbers, 13 and ______.

13(19) + 13(1) is an indicated _______ of two numbers, 13(19) and ______.

In the sentence

\[13(19) + 13(1) = 13(19 + 1) \]

the same number, ______, has been expressed in two ways: as an indicated sum and as an indicated ______.

If you are asked to compute 13(19) + 13(1) you may, if you wish, compute 13(______) instead. Since 13(20) is easier to compute than 13(19) + 13(1), the ______ property helps us here to simplify a computation.

Which is easier to compute, 150(162.5 + 37.5) or 150(162.5) + 150(37.5)? ______ is easier.

150(162.5 + 37.5) is an indicated ______.

If we compare \(12(\frac{3}{5} + \frac{2}{5})\) and \(12(\frac{3}{5}) + 12(\frac{2}{5})\), we note that both name the same number. The common name for this number is ______.

It is easier to compute this common name by using the indicated ______, \(12(\frac{3}{5}) + 12(\frac{2}{5})\).
Remember, the **distributive** property tells us something about a certain indicated sum and a certain indicated product.

The distributive property is the basic number property that involves operations, addition and multiplication.

Which of the following statements is correct by use of the distributive property of multiplication over addition? (Try to answer *without any computation*, so that you can see whether or not you recognize the pattern.)

- **A** \(15 \times (12 + 7) = (15 + 12) \times (15 + 7)\)
- **B** \(4(2.5 + 4.5) = 4(2.5) + 4.5\)
- **C** \(24\left(\frac{1}{3} + \frac{1}{2}\right) = 24\left(\frac{1}{3}\right) + 24\left(\frac{1}{2}\right)\)

The sentence \(15 \times (12 \times 7) = (15 + 12) \times (15 + 7)\) is false, which proves that addition is not distributive over multiplication. The sentence \(4(2.5 + 4.5) = 4(2.5) + 4.5\) is also false; application of the distributive property would give the true sentence \(4(2.5 + 4.5) = 4(2.5) + 4(4.5)\). The correct choice is **[C]**.

Look at the sentence
\[(h + j)k = h(k) + j(k)\]
It is clear that this sentence is true, since \((h + j)k = 56\) and \(4(5) + 3(8) = 56\).

Moreover, this sentence resembles in some respects those which we have used to illustrate the distributive property. It does, in fact, state that a certain indicated product, \((h + j)k\), and a certain indicated sum,
\(h(k) + j(k)\), name the same number.

Let us compare our sentence with one which illustrates the distributive property as we have stated it.

Our sentence: \((h + j)k = h(k) + j(k)\)
Distributive property is illustrated by: \(d(h + j) = d(h) + d(j)\)
Look at the pair of sentences above. \((4 + 3)8\) and \(8(4 + 3)\) are equal by the commutative property of multiplication. In the same way, \(4(8) = 8(4)\) and \(3(8) = 8(3)\) illustrate the commutative property of multiplication. Thus without any computation at all we could be sure that
\[
(4 + 3)8 = 4(8) + 3(8)
\]
is a true sentence. Our conclusion would be based on the fact that this sentence can be obtained from an illustration of the distributive property by applying the commutative property of multiplication three times.

Here is another example.

We are sure, without computing, that
\[
6(8 + 2) = 6(8) + 6(2)
\]
by the _____ property.

We are also sure, without computing, that
\[
6(8 + 2) = (8 + 2)
\]
\[
6(8) = 8(____)
\]
\[
6(____) = 2(6)
\]
All these equalities follow from the _____ property of _____.

Hence, we can be sure that
\[
(8 + 2)6 = 8(6) + 2(____)
\]

The two examples just completed suggest an alternate pattern for the distributive property. It can be stated as follows: For any three numbers of arithmetic, the indicated product
\[
(first\ number + second\ number) \times third\ number
\]
names the same number as the indicated sum
\[
(first\ number \times third\ number) + (second\ number \times third\ number)\]

We now have several patterns. Complete the following, to illustrate the various patterns.

We first observed this pattern:
\[
3(9 + 11) = 3(9) + (____)
\]
The fact that \(3(9 + 11)\) and \(3(9) + 3(11)\) name the same number can also be written:

\[
3(9) + 3(11) = 3(9 + 11)
\]

In the sentence

\[
3(9 + 11) = 3(9) + 3(11)
\]

we apply the ______ property of multiplication to each of the indicated products to obtain \(9(11 + 3) = 9(3) + ___\).

And finally, we also see that

\[
9(3) + 11(3) = (___)3.
\]

The four patterns are summarized below. You will need to become familiar with all of them.

\[
\begin{align*}
3(9 + 11) &= 3(9) + 3(11) \\
3(9) + 3(11) &= 3(9 + 11) \\
(9 + 11)3 &= 9(3) + 11(3) \\
9(3) + 11(3) &= (9 + 11)3
\end{align*}
\]

Follow the pattern of any convenient form of the distributive property to complete each example.

81 \(12(3 + 4) = 12(____) + 12(____)\)

82 \(3(____) + (7) = 3(5 + 7)\)

83 \((3 + 11)2 = (____) + (____)\)

84 \(7 \cdot 8 + 6 \cdot 8 = (____) \cdot 8\)

85 \(27(\frac{2}{3}) + 27(\frac{1}{3}) = 27(____)\)

Just as the associative and commutative properties of addition and multiplication often make computations simpler, we also the distributive property sometimes helps us to compute more easily.
Write the common name for each number. Use the distributive property to help you solve quickly.

56. $(x)(x) + (x)(x)$

57. $(\frac{1}{2} + \frac{1}{2})$

58. $x(\frac{3}{4}) - x(\frac{1}{4})$

59. $(x + \frac{1}{2})$

In order to compute quickly $(\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2})$, we may first note that

$(\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2}) = (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2})$

Since it is easy to see that $rac{1}{2}(4)$

and $rac{1}{2}(2) = \frac{1}{2}(2)$, we find that

$(\frac{1}{2} + \frac{1}{2}) + (\frac{1}{2} + \frac{1}{2})$.

More important than there aims to mental manipulation is the role of the distributive property in much of our arithmetic technique. For example, consider the computation of the product.

\[
\begin{align*}
\frac{2}{3} \times \frac{3}{4} \\
\frac{1}{2} \\
\frac{1}{2}
\end{align*}
\]

Here we are applying the distributive property as follows:

7. $(\frac{1}{2})(2) = (_ \times _)$

Hence $(\frac{1}{2})(2) = (_ \times _)$

$(\frac{1}{2})(2) + (_ \times _)$

3

$20 + 3$

$(20)(2) + (_ \times _)$

62
As you understand better the structure of the number system, as shown by the properties of numbers, you can see the ideas behind the computational processes you learned in the elementary grades.

Here are some numerical phrases. Write the common name for each. Try to use the number properties discussed in this chapter to make your calculations easy.

103. \((5 \times 2) \times (3 + 4) = \) __________
104. \(2 \times (3 + 4) = \) __________
105. \(9 \times (4 + 2) = \) __________
106. \((4 \times 3) + 2 = \) __________
107. \(1 \times (2 + 3) + (1 + 2) = \) __________
108. \((2 \times 4) \times (3 + 1) = \) __________

2-4. Variations

The patterns on items 1-4 problem is often of primary importance.

Consider this simple exercise in mental arithmetic:
"Take a number, multiply by 4, and divide by 2.

The mental shift you think of in connection as you do the mental exercise: __________

Consider further this same exercise. The numerical elements which indicate the pattern for the thinking are:
Instructions: General

Take 1
Add 2
Multiply by 7
Divide by 4

\[\frac{2(9 + 3)}{3} \]

Let us try another exercise:

"Take 1, add 2, multiply by 7, and divide by 4."

Instructions: General

Take 1
Add 2
Multiply by 7
Divide by 4

\[\frac{6 + 2}{7(6 + 2)} \]

The numerical phrase, \(\frac{2(9 + 3)}{3} \), although a general for the number 14, has an advantage over 14 in that it preserves the pattern of form of an exercise.

Compute the numerical phrase which gives the pattern for the mental exercise, "Take 1, multiply by 7, add 2, multiply by 7, and divide by 4."

\[\frac{2(7 + 3)}{12} \]

Let us now try an exercise of this sort with the added feature that we choose in the last decimal member of the next 12, where

10, 12, 14, ..., 100.

The instructions this time are:

"Take 1, multiply by 7, add 2, multiply by 7, and divide by 4."
Notice that there are 1000 possible exercises, one for each choice of an element from the set S.
If we start with the number 17, which is in S, we have:

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Numerical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply by 3</td>
<td>(17)</td>
</tr>
<tr>
<td>Add 12</td>
<td>(17) + 12</td>
</tr>
<tr>
<td>Divide by 3</td>
<td>(17)</td>
</tr>
<tr>
<td>Subtract 4</td>
<td>(17) - 4</td>
</tr>
</tbody>
</table>

Here is how we might find the common name for

\[3(17) + 12 - 4\]

Since 12 = 24,

\[3(17) + 12 - 4\]

By use of the distributive property,

\[3(17 + 12) - 4\]

For this exercise we selected the number 17 from S, and after following the instructions, we obtained the same number, 17. What would have happened if we had selected some other number from S? Would our result have been the same number as that with which we started? One way to find out would be to select each number of S. In turn, thus working 1000 problems.

But let us look for a simpler way. Instead of writing down the particular number selected, let us just represent it by the letter a, which is the first letter of the word "number".
Instructions:

1. Take a number from set A.
3. Add 12.
4. Divide by 3.

Result:

\[\frac{3n + 4}{3} \]

\[n + 4 = 4 \]

Remember that a can represent any element of the set A. In this example, if we select any number from A and follow the instructions, we shall always obtain the same result or the same of the start. If a letter is used, as in this example, to denote one of a given set of numbers, it is called a variable. In a given equation or involving a variable, the variable is a letter, which represents a definite single unmodified number from a given set of numbers.

20. If a number, denoted by \(a \), is selected from set A and the instructions are "multiply by 3, and add 12", the number which results can be written as \[3(n + 4) \text{ or } 3n + 12 \].

In Dem 4-14, we consider the case for which the variable had the value 17. Notice the use of the word "variable". In general, when we wish to make a statement such as "let \(a = 17 \)", we often use the word "let a have the value 17" or "let the value of \(a \) be 17".
The set from which we chose \(-1\) was \(S = \{1, 2, 3, \ldots, 1000\}\). We could have chosen different values for the variable.

The set of numbers from which the values of the variable may be chosen is called the domain of the variable.

Thus, in the problem "Select a number from \(S\), multiply by 3, add 16, divide by 4, and subtract 10", we were told that \(v\) was to be selected from set \(S\), which is \(\{1, 2, 3, \ldots, 1000\}\).

The set \(S\) is the domain of the variable.

If the domain of a variable is not explicitly stated then the possible values for the variable are the numbers corresponding to points on the number line.

Unless otherwise stated, for the present we will assume \(S\) to be the set of all positive real numbers.

When a phrase contains at least one variable, it is called an open phrase.

\(x + 5\) is an open phrase which is an example of a value of the open phrase equals \(x\). The value of the open phrase depends on the value of \(x\).

Suppose the value of \(x\) is 2. Then the open phrase for \(x + 5\) is 7.

If \(x = 3\) then the value of \(x + 5\) is 8.

Graphically speaking, \(x + 5\) is the result of adding 5 to the number \(x\).

In the context of \(x\) the domain of \(x + 5\) is the set \(\{0, 1, 2, 3, 4, 5, 6, \ldots\}\).
Given the variable \(n \) whose domain is \((8, 12, 18)\), the only possible values for the given open phrases are:

<table>
<thead>
<tr>
<th>Open Phrase</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n - 8)</td>
<td>0, 4, 10</td>
</tr>
<tr>
<td>(6n)</td>
<td>48, 72, 108</td>
</tr>
<tr>
<td>(\frac{n}{12})</td>
<td>(\frac{2}{3}, 1, \frac{5}{6})</td>
</tr>
</tbody>
</table>

Find the possible values of these phrases if the domain of \(n \) is \((2,5,10)\):

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2(n+1)}{3})</td>
<td>2, 4, (\frac{20}{3})</td>
</tr>
<tr>
<td>(\frac{3(n+2)}{n})</td>
<td>1, (\frac{13}{4}), 7</td>
</tr>
<tr>
<td>(\frac{(n-1)(n+1)}{n+1})</td>
<td>3, (\frac{16}{3}), 11</td>
</tr>
<tr>
<td>(\frac{3n(n+2)}{2n+4})</td>
<td>3, (\frac{15}{2}), 15</td>
</tr>
</tbody>
</table>

"Twice the sum of \(t \) and 3" is indicated by which of these phrases:

- \(2t + 3 \) or \(\frac{3(t+3)}{2} \)

In the phrase \(2(t+3) \), we call "t" a variable number of arithmetic.

Its domain is understood to be the numbers of arithmetic, since a domain was not otherwise stated.

If 5 is added to twice \(n \), and the sum is divided by 3, the result is represented by which of the following two phrases:

- \(\frac{2n+5}{3} \) or \(\frac{2n+5}{3} \)

The domain of the variable in the phrase \(\frac{2n+5}{3} \) is understood to be the numbers of arithmetic.

A phrase may contain more than one variable. In this case, the number represented by the phrase depends upon the value assigned to each variable.
If \(n \) is 5, \(m \) is 3, \(m \) is \(\frac{1}{6} \), \(m \) is 1, and \(n \) is 4, find the value of each of the following:

1. \(1 + m \)
2. \((n + m)(n - m) \)
3. \(m \cdot n \)
4. \(\frac{n + m}{n - m} \)

15. \(\frac{3}{2} \) or \(1\frac{1}{2} \)
16. \(\frac{39}{2} \) or \(19\frac{1}{2} \)
17. \(2 \)
18. \(3 \)
19. \(0 \)
20. \(7 \)
21. \(10 \)

1. Each of the first three. After you finish, be sure to turn over the page to change your answer.
4. Let \(a \), \(b \), and \(c \) be real numbers, and let \(e = h \). The values are:

8. \(\frac{ca + 3d}{2} = \frac{c}{2} \)

9. \(\frac{ca - 4d}{3} \cdot \frac{5c}{2} \)

10. \(\frac{3a + \frac{1}{b}}{-2} \)

11. \(\frac{1.5a + 2c}{7} \)
Chapter 7

SENTENCES

I-1. Open Sentences

When we make assertions or statements about numbers, we write sentences, such as:

\((7 + 4)(7 + 4) = 0\) (which is a false sentence)

and

\(8 + 8 = 8\) (which is a true sentence).

Sentences involve the use of verbs. In the examples above we have used the verb symbol "\(=\)" which means "equals" or "is the same as." Other verb forms may also be used. In particular, the symbol "\(/\)" means "does not equal" or "is not equal to."

Thus, \(8 + 8 / 2 = 5\) is a true sentence, and \(8 + 8 / 2 = 4\) is a false sentence. Do you see why?

Match each of the following sentences as true or false:

1. \(4 + 4 \quad \text{______}\)

2. \(4 \div 4 \quad \text{______}\)

3. \(4 \div 4 = 4 \quad \text{______}\)

4. \(4 \times 4 \div 4 = 4 \quad \text{______}\)

5. \((4 \times 4 \div 4) = 4 \quad \text{______}\)

Insert the symbol "\(=\)" or "\(/\)" to make each of the following sentences true:

6. \(\text{______} \div \text{______} = \text{______}\)

7. \(\text{______} \div \text{______} = \text{______}\)

8. \(\text{______} \div \text{______} = \text{______}\)

9. \(\text{______} \div \text{______} = \text{______}\)

10. \(\text{______} \div \text{______} = \text{______}\)

11. \(\text{______} \div \text{______} = \text{______}\)
We can verify that $a + b = b + a$ is a true sentence by noticing that it is an instance of the commutative property of addition.

$$a + b = b + a$$

This sentence is true.

A. A statement that is true.

B. A statement that is false.

C. An application of the commutative property of addition.

D. A sentence containing an error.

E. A true statement about numbers.

If you chose [A] you are correct; go to Item 25. If you made any other choice, continue with Item 17.
Although the instruction, "Write a question on the blackboard" is a sentence containing numbers, it is not a numerical sentence since it does not make an assertion about a numerical sentence. Thus, [B] is incorrect.

The statement is ______. Thus, [B] is incorrect.

You should review Items 1-22 unless you chose [B], which is the correct response.

We have no trouble writing whether or not a numerical sentence such as

is true. (Is it?)

However, consider the sentence

In this sentence, true? We may say that you don't know the number "x" represented and without prior information, you cannot decide.

If the sentence, "x + 3 = 5", is true or false?

True

False

I don't know

If you chose [C] or [B] you are not thinking carefully. You cannot decide the truth of the sentence until "x" is identified. The variable "x" may be used in much the same way as a pronoun in English. [C] is correct.
We say that sentences such as
\[x + x = 7 \]
and
\[x + 5 / 9 \]
which contain variables, are open sentences. The word "open" is suggested by the fact that we cannot decide whether they are true since we do not know what number \(x \) represents.

In the same way, a phrase like \(3x + 2 \) or \(\pi p + q \) involving one or more variables, is called an open phrase since we do not know what number is represented by such a phrase.

The following is a list of sentences and phrases.
Identify which are open sentences, (OS), open phrases; (OP), numerical sentences, (NS), or numerical phrases, (NP), by writing OS, OP, NS or NP in the spaces provided:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>7x = 12</td>
</tr>
<tr>
<td>26</td>
<td>x + 7 / 15</td>
</tr>
<tr>
<td>27</td>
<td>4x + 3 = 2y</td>
</tr>
<tr>
<td>28</td>
<td>hy + q</td>
</tr>
<tr>
<td>29</td>
<td>37 + 12</td>
</tr>
<tr>
<td>30</td>
<td>28 + 6z - 2x</td>
</tr>
<tr>
<td>31</td>
<td>37 / 12 + 22 / 5z</td>
</tr>
<tr>
<td>32</td>
<td>a + b = 7x</td>
</tr>
<tr>
<td>33</td>
<td>a + (b + c) - (a + b) + c</td>
</tr>
</tbody>
</table>

In each of the following open sentences, the variables have given values. Tell whether each sentence is true or false for the given values of the variables:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>(7 + x = 12); let (x) be (4)</td>
</tr>
<tr>
<td>35</td>
<td>(7 + x / 12); let (x) be (10)</td>
</tr>
<tr>
<td>36</td>
<td>(y + 3 / 11); let (y) be (6)</td>
</tr>
<tr>
<td>37</td>
<td>(t + 7 / 11); let (t) be (10)</td>
</tr>
</tbody>
</table>
Suppose we are given an open sentence and the domain of the variable. How shall we determine the values, if any, of the variable that will make the sentence true? One way would be to guess various numbers until we hit on a "truth" value. However, after a first guess, a bit of thinking could guide us.

Consider the open sentence "2x + 11 = 23." We will try to "guess" a value of x large enough so that 2x + 11 is greater than 23.

If we let x = 9, then 2x + 11 is the same as 2(9) + 11, or 29.

But 29 is greater than 23. If we try 8

It is clear that 8 is too small.

The next step would be to try a number between 8 and 9. Suppose we try 9. Then

2x + 11 = (9) + 11,

or

Now we have the sentence

2(9) + 11 = 23

true
We can say that the open sentence \(2x + 11 = 28\) is true if \(x\) is what number.

Do you think there are other values of \(x\) which would make the open sentence \(2x + 11 = 28\) true?

[A] Yes
[B] No

If you try numbers greater than \(8\frac{1}{2}\), you will always get a number greater than \(2(8\frac{1}{2}) + 11\). But \(2(8\frac{1}{2}) + 11\) is another name for \(28\).

If you try numbers less than \(8\frac{1}{2}\), you will always get a number less than \(2(8\frac{1}{2}) + 11\) or less than \(28\). There can be only one "truth" number for this open sentence. [B] is correct.

For some special open sentences we may be able to avoid the guessing process. Recall that we know that

\[(234)(478) = (478)(234)\]

is a true sentence without multiplying, since this is an instance of the of the commutative property of multiplication.

In the same way,

\[3(m + 4) = 3m + 12\]

is a true sentence, no matter what number \(m\) represents, since this is an instance of the distributive property.

In the following set of exercises, determine what numbers, if any, will make each of the following open sentences true. You may work these on practice paper by the method used above, but record only the "truth numbers" on your response sheet.

<table>
<thead>
<tr>
<th>Open Sentence</th>
<th>Value(s) of the variable for which the sentence is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 12</td>
<td></td>
</tr>
<tr>
<td>51 4</td>
<td></td>
</tr>
<tr>
<td>52 x - 2 = 10</td>
<td></td>
</tr>
<tr>
<td>53 3x - 2 = 12</td>
<td></td>
</tr>
<tr>
<td>54 4x + 3x = 14</td>
<td>(\frac{3}{2})</td>
</tr>
<tr>
<td>55 4x - 3x = 14</td>
<td></td>
</tr>
</tbody>
</table>

\[8 \lor 72\]
56. \(s + 3 = s + 2 \) (careful!)
 - no numbers

57. \(t + 3 = 3 + t \)
 - all numbers

58. \(t + 2t = 2t + 2t \)
 - all numbers

59. \((x + 1)^2 = 2x + 2 \)
 - no numbers

Which of the following is a true statement?

[A] Every open sentence has only one value of the variable which makes it true.

[B] Every open sentence has many values of the variable which make it true.

[C] An open sentence may have one value of the variable, no values of the variable, or many values of the variable which make it true.

Examine Items 55, 56, and 57. You will see that [C] is the correct response.

Recall that \(x^2 \) means "\(x \) multiplied by \(x \)" or "\(x \cdot x \)" and is read as "\(x \) squared". \(x^2 \) may also occur in an open sentence.

From the set of numbers of arithmetic find values of the variable which make the following open sentences true. Again record only the truth numbers on your answer sheet.

<table>
<thead>
<tr>
<th>Open Sentence</th>
<th>Value(s) of the variable for which the sentence is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 (x^2)</td>
<td>3</td>
</tr>
<tr>
<td>62 (4 - x^2 = 0)</td>
<td>2</td>
</tr>
<tr>
<td>63 (x^2 = x)</td>
<td>1; 0</td>
</tr>
<tr>
<td>64 (x^2 - 4x = 0)</td>
<td>5; 0</td>
</tr>
<tr>
<td>65 (x + 2 = 2)</td>
<td>7</td>
</tr>
<tr>
<td>66 ((x - 1)^2 = 4)</td>
<td>7</td>
</tr>
<tr>
<td>67 (h + x^2 = 4)</td>
<td>no numbers of arithmetic</td>
</tr>
<tr>
<td>68 (x^2 + 7 = 7)</td>
<td>0</td>
</tr>
<tr>
<td>69 (x^2 = \frac{1}{16})</td>
<td>3</td>
</tr>
<tr>
<td>70 (7 + x = 5)</td>
<td>no numbers of arithmetic</td>
</tr>
</tbody>
</table>
3-1.

You may have been tempted to respond "-4" to It. Remember that we are considering only numbers of arithmetic. In Chapter 3, we shall see how we may extend our notion of "numbers" to include such numbers as "-4".

A number of interest to us later is a value of \(x \) for which \(x^2 = 2 \) is a true sentence. We call this number the square root of 2, and write it \(\sqrt{2} \). Later you will find that \(\sqrt{2} \) is the coordinate of a point on the number line. Approximately where on the number line would it lie?

Let us try to guess a "truth number" for the open sentence \(x^2 = 2 \). Since \((1)^2 \) is less than 2, and \((2)^2 \) is greater than 2, we might try 1.5.

\[
(1.5)^2 = 2.25
\]

Since \((1.5)^2 \) is greater than 2, suppose we next try 1.4 for \(x \).

\[
(1.4)^2 = 1.96
\]

which is less than 2.

\((1.4)^2 \) is very close to 2, however, so the point corresponding to \(\sqrt{2} \) would be very near the point corresponding to 1.4 on the number line.

3-2. Truth Sets of Open Sentences.

Let the domain of the variable in the open sentence

\[
x + 3 = 7
\]

be the set of all numbers of arithmetic. If we specify that \(x \) has a particular value, then the resulting sentence will be a numerical sentence which is either true or false.
Complete the following table based on the open sentence $3 + x = 7$. (This is similar to the exercises in 3.1.)

<table>
<thead>
<tr>
<th>If x is</th>
<th>the sentence</th>
<th>is</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$3 + 0 = 7$</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>$3 + 1 = 7$</td>
<td>false</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$3 + \frac{1}{2} = 7$</td>
<td>true</td>
</tr>
<tr>
<td>3</td>
<td>$3 + 2 = 7$</td>
<td>false</td>
</tr>
<tr>
<td>4</td>
<td>$3 + 4 = 7$</td>
<td>true</td>
</tr>
<tr>
<td>5</td>
<td>$3 + 5 = 7$</td>
<td>false</td>
</tr>
</tbody>
</table>

We can see that the open sentence "$3 + x = 7$" can be thought of as a "sorter": the elements of the domain are sorted into two subsets. One of these subsets is the set of all numbers of the domain which make the resulting numerical sentence true. The other subset is the set of all those numbers of the domain which make the sentence false. In the example we are considering, 4 is a member of the first subset and $0, 1, \frac{1}{2}, 2, 6$ all belong to the second subset.

If we start with any open sentence and any given domain, the open sentence will always act as a sorter, sorting the domain into two subsets.

Definition. The truth set of an open sentence in one variable is the set of all numbers from the domain of the variable which make the sentence true.

Test whether or not the given number is a member of the truth set of the given open sentence.

<table>
<thead>
<tr>
<th>For the sentence</th>
<th>the number belongs to the truth set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 + x = 12$</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>$3x + 1 = 2(x + 1)$</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>yes</td>
</tr>
<tr>
<td>$n + 2m / n(n + 2)$</td>
<td>no</td>
</tr>
</tbody>
</table>
We see that 4 is the only number which makes \(\frac{3}{2} + x = 7 \) true. Hence, the truth set of \(\frac{3}{2} + x = 7 \) is \([4]\).

It may happen that the truth set may contain more than one member; in fact, every element of the domain may be in the truth set. For example, we have seen that \((n + 1) \times n + 12 \) is true for all numbers of arithmetic.

<table>
<thead>
<tr>
<th>Open sentence</th>
<th>Domain</th>
<th>Truth set</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (\frac{3}{2} + x = 17)</td>
<td>({0, \frac{1}{2}, 2, 1})</td>
<td>({0, \frac{1}{2}, 2, 1})</td>
</tr>
<tr>
<td>13 (x^2 - (4x - 1) \leq 0)</td>
<td>({1, 2, 3, 4})</td>
<td>({1, 3})</td>
</tr>
<tr>
<td>14 (4y + y + xy)</td>
<td>({1, 2, 3, 4})</td>
<td>({1, 2, 3, 4})</td>
</tr>
<tr>
<td>15 (x(x + 1) = yx)</td>
<td>({0, 1, 2})</td>
<td>({0, 2})</td>
</tr>
<tr>
<td>16 (\frac{3}{2} + x = 7)</td>
<td>({0, 1, 2})</td>
<td>({0, 1, 2})</td>
</tr>
</tbody>
</table>

In Item 16, the truth set was \(\emptyset \) because the domain of the variable did not include \(h \). It is not difficult to write an open sentence having \(\emptyset \) as its truth set even though the domain of the variable is the set of all numbers of arithmetic.

17 Fill in the blanks so that each of the following open sentences has \(\emptyset \) for its truth set.

\((\text{P}) \quad x + y = x + _ \)

\((\text{Q}) \quad x^2 + _ = 0 \)

Which of the alternatives below is correct? (Remember the domain is the set of numbers of arithmetic.)

[A] In (P) use any number except \(y \), and in (Q) any number except 0.

[B] In (P) use any number except \(y \), and in (Q) use 0.

[C] In (P) use any number and in (Q) use any number.

In (P), if we use any number except \(y \), the resulting sentence will have truth set \(\emptyset \). In (Q), if we use 0, we have \(x^2 + 0 = 0 \). The truth set of this sentence is \(\{0\} \). The only correct choice is [A].
Let the domain of the variable in each of the following be the set of all numbers of arithmetic. Find the truth set for each open sentence:

18. \(n - 5 = 7 \) \(\{12\} \)
19. \(2n - 5 = 7 \) \(\{6\} \)
20. \(3n - 5 = 7 \) \(\{\} \)
21. \(5n - 5 = 7 \) \(\{\} \)
22. \(2n + 14 = 2(n + 7) \) \(\{1/2\} \)
23. \(2n + 14 = n + 7 \) \(\{\} \)

Many formulas used in science and business are in the form of open sentences in several variables. For example, the formula \(V = \frac{1}{3} Bh \) is used to find the volume of a cone. The variable \(h \) represents the number of units in the height of a cone; \(B \) represents the number of square units in the base of this cone; \(V \) represents the number of cubic units in the volume.

When values are specified for all but one of the variables in such a formula, the resulting open sentence contains one remaining variable. Then the truth set of this sentence gives information about the value of this variable.

In the formula \(V = \frac{1}{3} Bh \), if we want an open sentence containing \(h \) as the only variable, for what variables must we specify values?

A. \(V \) and \(B \) B. \(V \), \(B \), and \(h \)

If \(V \), \(B \) and \(h \) were all specified, the resulting sentence would not be an open sentence. You should have selected [A].

Let us consider a particular cone whose volume is 66 cubic feet and the area of whose base is 13 square feet. We use this information to form the open sentence

\[66 = \frac{1}{3}(13)h. \]

It is not difficult to determine that the truth set of this sentence is \(\{6\} \). Thus we are able to conclude that the height of this particular cone is 6 feet.
Here are some more problems involving the use of formulas. For each problem write the appropriate open sentence, find the corresponding truth set, and then determine the answer to the question asked. The correct answers are on page iii.

25. The formula used to change a temperature F measured in degrees Fahrenheit to the corresponding temperature C in degrees Centigrade is

$$C = \frac{5}{9}(F - 32).$$

Find the value of C when F is 86.

26. The formula used to compute simple interest is

$$i = p \cdot r \cdot t,$$

where i is the number of dollars of interest, p is the number of dollars of principal, r is the interest rate, and t is the number of years. Find the value of t when i is 120, r is 0.04, and p is 1000.

27. A formula used in physics to relate pressure and volume of a given amount of a gas at constant temperature is

$$pv = PV,$$

where V is the number of cubic units of volume at P units of pressure and v is the number of cubic units of volume at p units of pressure. Find the value of V when v is 100, P is 15, and p is 15.

28. The formula for the area of a trapezoid is

$$A = \frac{1}{2}(B + b)h,$$

where A is the number of square units in the area, B is the number of units in the one base, b is the number of units in the other base, and h is the number of units in the height. Find the value of B when A is 50, b is 5, and h is 4.
The graph of a set S of numbers, it will be recalled, is the set of all points on the number line whose coordinates are the members of S, and only those points. Let us review some examples.

1. $A = \{0, 2, \frac{7}{2}\}$. Its graph is indicated by heavy dots at the points whose coordinates are 0, 2, and $\frac{7}{2}$.

2. B is the set of all numbers of arithmetic except 3. Its graph is shown by a heavy line which begins at the point whose coordinate is 0 with a heavy dot, omits the point with coordinate 3, and continues to the right with an arrow. The arrow indicates that all the points to the right are on the graph. We use an open circle at the point whose coordinate is 3 to indicate that 3 is not included in the set.

3. The set C is the null set, \emptyset. Its graph has no points marked on the number line as there are no elements in the null set.

Since we can graph any set of numbers, in particular we can graph the truth sets of open sentences.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Truth Set</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \neq 1$</td>
<td>all numbers of arithmetic except 1</td>
<td></td>
</tr>
<tr>
<td>$5+x=(7+x)-4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$y(y + 1) - xy$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2x + 1 = 2(x + 1)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Which graph is incorrect?

The truth set of \((x - 1)(x - 4) = 0\) is \([1, 4]\). The truth set of \(\frac{x}{4} = \frac{6}{8}\) is \(\{3\}\). The truth set of \(3x + 4 \neq 13\) is the set of all numbers of arithmetic except 3. The truth set of \((4 + x) + (x + 3) = 2x + 7\) is the set of all numbers of arithmetic. Therefore, the only incorrect graph is that of [C]. If you selected [C], you should begin Section 3-3 unless you desire more practice.

Here are some more practice problems.

State the truth set and draw its graph for each of the following open sentences. (Answers are given on page 111.)

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Truth Set</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>36. (x + 3 = 7)</td>
<td>({4})</td>
<td></td>
</tr>
<tr>
<td>37. (2x = x + 3)</td>
<td>({3})</td>
<td></td>
</tr>
<tr>
<td>38. (x + x \neq 2x)</td>
<td>(\mathbb{R} \setminus {x = 0})</td>
<td></td>
</tr>
<tr>
<td>39. (x + 3 = 3 + x)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
<tr>
<td>40. ((x)(0) = x)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
<tr>
<td>41. (x + x \neq 6)</td>
<td>(\mathbb{R} \setminus {x = 3})</td>
<td></td>
</tr>
<tr>
<td>42. (2x + 3 = 3)</td>
<td>(\mathbb{R} \setminus {x = 3})</td>
<td></td>
</tr>
<tr>
<td>43. (5 \neq 3n + 1)</td>
<td>(\mathbb{R} \setminus {n = 1})</td>
<td></td>
</tr>
<tr>
<td>44. (y(4) \neq y)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
<tr>
<td>45. (x^2 = 2x)</td>
<td>({0, 2})</td>
<td></td>
</tr>
</tbody>
</table>
3-3. **Sentences Involving Inequalities**

If we think of two different numbers of arithmetic, we are always able to say that one of the numbers is less than the other. Thus, of 4 and 9, 4 is less than 9; of \(\frac{3}{4}\) and \(\frac{7}{8}\), \(\frac{3}{4}\) is less than \(\frac{7}{8}\), etc.

For each of the following pairs of numbers, determine which is less than the other.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2, 2.1</td>
</tr>
<tr>
<td>2</td>
<td>0.4, .04</td>
</tr>
<tr>
<td>3</td>
<td>.001, .002</td>
</tr>
<tr>
<td>4</td>
<td>0.9, 1</td>
</tr>
<tr>
<td>5</td>
<td>(\frac{1}{11}, \frac{1}{12})</td>
</tr>
</tbody>
</table>

We have a mathematical symbol to express this relationship between different numbers: we write "\(1.1 < 1.2\)" and read this as "\(1.1\) is less than \(1.2\)". We may also write "\(1.2 > 1.1\)" and read this as "\(1.2\) is greater than \(1.1\)".

Note that in a true sentence the point of the symbol "\(>\)" (the small end) is directed toward the smaller of the two numbers.

1. \(\frac{1}{2} + 7 < 8\)
2. \(\frac{4}{5} + 7\) is a true sentence.
3. Since \(x \times 0 = 0\), the sentence \(x \times 0 = 1\) is **true**.
4. \(2 > (2 \times 0)\) is **true**.
5. \(\frac{1}{5} \times \frac{5}{1} = 1\) is **true**.
6. \(\frac{1}{2} \times \frac{1}{2} = 0\) is **false**.
7. Just as "\(\not{=}\)" is read "is not equal to".
8. "\(\not{<}\)" is read "is not less than."
9. "\(\not{>}\)" is read "is not greater than."
10. "\(\not{\geq}\)" is read "is not greater than or equal to."
11. "\(\not{\leq}\)" is read "is not less than or equal to."

...
State whether the following sentences are true or false.

<table>
<thead>
<tr>
<th>Number</th>
<th>Sentence</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>(i + j < i + h)</td>
<td>false</td>
</tr>
<tr>
<td>13</td>
<td>(5(2 + z) > 5(2) + z)</td>
<td>true</td>
</tr>
<tr>
<td>14</td>
<td>(5 + 0 + 5)</td>
<td>true</td>
</tr>
<tr>
<td>15</td>
<td>(0.7 + 1.1 > 0.7 + 0.9)</td>
<td>true</td>
</tr>
<tr>
<td>16</td>
<td>(2 + 1.3 >)</td>
<td>false</td>
</tr>
<tr>
<td>17</td>
<td>(z + 2) > (h + 2) + 2)</td>
<td>false</td>
</tr>
<tr>
<td>18</td>
<td>(\frac{2}{3}(8 + h) < (\frac{2}{3} \times 8) + (\frac{2}{3} \times h))</td>
<td>false</td>
</tr>
</tbody>
</table>

We know that \(8 < 12\). If we locate on a number line two points having coordinates 8 and 12, we notice that the point with coordinate 8 is to the left of the point with coordinate 12.

The point with coordinate 5 is to the _____ of the point with coordinate 9.

Locate points with coordinates \(\frac{5}{2}\) and 2.2. Which number corresponds to the point farther to the left?

In general, the lesser of two numbers will correspond to the point to the _____ of the other.

\(\frac{5}{2}\) is a true sentence.

The point 2.2 is to the _____ of the point \(\frac{5}{2}\).

We may interpret \(8 < 12\) as meaning that the point with coordinate 8 is to the left of the point with coordinate 12.

Recalling Section 1-1 we may indicate addition and subtraction on a number line.
The ideas suggested by Items 24-27 will be developed at greater length in later chapters.

Indicate which of the following sentences are true and which are false.

- \(5.2 - 3.9 < 4.6 \)
- \(\frac{1}{2} + \frac{1}{4} < 1 \)
- \(7.6 + (1.4 + 1.5)
 \frac{22}{5} \)
- \(1.1 \times \frac{5}{2} \)
- \(2 < \frac{1}{2} \)

Just as there are open sentences containing the verb symbols \(\times \) and \(\div \), there are open sentences containing the verb symbols \(< \) , \(> \), and \(\leq \).

The open sentence \(x + 2 > 4 \) is read, "the sum of the number \(x \) and the number \(2 \) is \(> \) than \(4 \)."
Consider the open sentence \(x + 2 > 6 \). Since
\[5 + 2 = 7, \quad \text{and} \quad 7 \text{ is greater than } 6, \text{ 5 is a} \]
member of the ________ set of the open sentence,
\[x + 2 > 6. \]

\[\text{(is, is not) } \]
because \(5 + 2 = 7 \) and \(5 \) is ________ than 6.

Which elements of the set \(\{0, 1, 3, 4, 6, 7\} \) are members
of the truth set of \(x + 2 > 6 \)? ________

0, 1, 3

Just as in English a sentence like "Bill caught the ball" is called a
simple sentence, in mathematics a sentence like \(x + 2 > 4 \) is called a simple
sentence. Simple sentences are sentences containing only one verb form.

A simple sentence involving the symbol "=" is often called an equation.
A simple sentence in which the verb form involves the idea of "is less than"
or "is greater than" is called an inequality.

State which of the following are inequalities and which
are equations.

42. \(2x + 5 = 1 \) ________

43. \(x + 1 < \) ________

44. \(x + 5 > 0 \) ________

The remainder of this section will be devoted chiefly to finding and
calculating the truth sets of open sentences involving inequalities.

How do we find the truth set of an open sentence such as \(x + 2 > 4 \)?

Suppose \(x \) is greater than 2. For example, if \(x \) is
3, then \(x + 2 \) becomes \(3 + 2 \), or 5.

\[\text{(is greater than, is less than)} \]

If \(x \) is 3, then \(x + 2 \) is \(3 + 2 \), or 5.

If \(x \) is 3, then \(x + 2 \) is ________, which is
greater than 4.

In general, if \(x \) is any number greater than 2,
then \(x + 2 > 4 \) is a ________ sentence.

\[\text{(true, false)} \]
Suppose x is less than 2. If x is 1, then $x + 2$ becomes 3, and 3 is true

If x is $\frac{3}{2}$, $x + 2 > 4$ is a sentence.

If x is 0, then $x + 2$ is 0 + 2 or 2. It is certainly true that 2 is true.

In general, if x is a number less than 2, then $x + 2 > 4$ is a sentence.

If x is 2, the sentence $x + 2 > 4$ is false.

Thus, 2 is not in the truth set of $x + 2 > 4$.

Every number greater than 2 makes the sentence "$x + 2 > 4$" true, while 2 or any number less than 2 makes it false. That is, the truth set of the sentence "$x + 2 > 4$" is the set of all numbers greater than 2.

The graph of this truth set is the set of all points on the number line whose coordinates are greater than 2. The graph would look like this:

\[\text{Graph: } \]

Recall that the open dot at the point with coordinate 2 indicates that 2 is not in the truth set, while the heavy line and the arrowhead indicate that the coordinates of all points to the right of this point are elements of the truth set.

As another example, consider the inequality $1 + x < 4$. When x is 3, or $\frac{5}{2}$, or 1, or 0, or 0.7, or 10, or any number equal to or greater than 3, then $1 + x$ is not less than 4. When x is any number less than 3, then $1 + x < 4$ is true. Do you agree? Test this for some numbers less than 3.

The truth set of $1 + x < 4$ is the set of all numbers of arithmetic from 0 to 3, including 0, but not including the numbers greater than 3.

The graph of the truth set of $1 + x < 4$ is drawn with an open dot at 3 since 3 is not in the truth set.
The graph of the truth set of \(1 + x < 4\) is

\[
\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 \\
\end{align*}
\]

In which of the following does the graph correctly represent the truth set of the open sentence?

- 56 \(2 + x < 4\)
- 57 \(3x = 5\)
- 58 \(2x - 1\)
- 59 \(x > 1\)
- 60 \(2x > 5\)

Which of the following open sentences correctly describes this graph?

\[
\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 \\
\end{align*}
\]

- 61 \(x > 4\), \(x \leq 4\), \(x \neq 4\)

Here are some practice problems in graphing truth sets of equations and inequalities. The correct answers are on page iii.
Thus far in this section the domain for x has been the set of all the numbers of arithmetic. Let us consider a problem where the domain is a finite set.

If the domain of x is $\{0,1,2,3,4,5\}$ which of the following is the correct graph of the truth set of $x + 3 < 6$?

A.

B.

Graph B is the graph of a finite set.

3-4. Compound Sentences

All the sentences discussed so far have been simple sentences. That is, they have contained only one verb form. Let us consider a sentence such as $4 + 2 = 5$ and $6 + 2 = 8$.

Your first impression may be that we have written two sentences. But actually the sentence is one compound sentence, with the connective and between two clauses. In mathematics, as well as in English, we encounter sentences which are compounded out of simple sentences.

Select the compound sentences from the following:

[A] M. $7(3 + 2)$ and $4(6 + 3)$

[B] N. $4 > 3$ and $5 < 4$

[C] P. $2 < 3$ and $4 > 3$

[D] all of them

The correct choice is [C]. (M) is not a sentence, since there is no verb form. (N) and (P) are compound sentences. (M) might be called a compound phrase.
The following are compound sentences:

The English sentence, "Mary carried an umbrella and John wore a raincoat," is true only if both clauses are true. That is, the compound sentence is true only if Mary actually carried an umbrella and John actually wore a raincoat. In other words, the sentence is false if either clause is false.

In the compound sentence "6 + 1 / 5 and 3 > 2 + 4" the second clause is false. In "3 + 1 + 6 and 3 + 1 / 5" both clauses are true, while in "6 - 5 / 1 and 3 + 2 + 4" both clauses are false. Hence, only the compound sentence in [B] is true.

In order to decide whether the compound sentence "2 + 3 and 4 + 7 > 10" is true, false, or only one of the two clauses is correct.

In fact, the compound sentence "true, false" is false, even though both clauses are true.

99
Remember, a compound sentence with the connective "and" is true if all or its clauses are true; otherwise, it is false.

Indicate which of the following compound sentences are true and which are false:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$x = 1$ and $11 - 2 = 9,$</td>
<td>true</td>
</tr>
<tr>
<td>2.</td>
<td>$5 - \frac{11}{2} - \frac{1}{2}$ and $6 < \frac{5}{2} x$</td>
<td>false</td>
</tr>
<tr>
<td>3.</td>
<td>$x + 1 + 2$ and $4 + 1 = 5$</td>
<td>false</td>
</tr>
<tr>
<td>4.</td>
<td>$x + \frac{7}{2} > \frac{1}{2}$ and $8 < 5$</td>
<td>true</td>
</tr>
<tr>
<td>5.</td>
<td>$\frac{11}{12}$ and $6.2 + \frac{11}{12}$</td>
<td>false</td>
</tr>
<tr>
<td>6.</td>
<td>$2 + 0.2 \sqrt{2}$ and $6.2 + 0.2 \sqrt{2}$</td>
<td>true</td>
</tr>
</tbody>
</table>

Now consider this sentence: $4 + 1 = 5$ or $x^2 = 5$. This is another type of compound sentence, one with the connective or. Here we must be very careful. While the meaning of "and" in English is clear, the word "or" in English may be used to show two different meanings. If we say, "The Yankee will win the pennant or the Indians will win the pennant," we mean that exactly one will win. If we say, "The new president must be a good student or he must play football," it is possible that he might be both a good student and a football player.

We eliminate this double meaning for the "or" in mathematics by requiring that, unless otherwise stated, a compound sentence with the connective "or" is true if one or more of its clauses are true.

A compound sentence with the connective "or" is true:

1. If one or more of its clauses is _______. otherwise.

20. True

If one or more of its clauses is true, or false, and then the connective "or" locates the resulting sentence.

Indicate which of the following compound sentences are true or false:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$x = 1$ or $x = 2$</td>
<td>true</td>
</tr>
<tr>
<td>2.</td>
<td>$x = 1 + 1$ or $x = 2$</td>
<td>true</td>
</tr>
</tbody>
</table>
A compound sentence with the connective "or" is true only if

[A] at least one clause is false.

[B] all the clauses are false.

Since the compound sentence with the connective or is true if one or more of its clauses is true; we cannot be sure that it is false if we know only that at least one of its clauses is false.

[B] is correct.

In the table that follows you are given (a) whether Clause 1 is true or false, (b) the connective to be used, and (c) whether Clause 2 is true or false. Determine whether each resulting compound sentence is true or false.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUE</td>
<td>and</td>
<td>TRUE</td>
<td>true</td>
</tr>
<tr>
<td>TRUE</td>
<td>and</td>
<td>FALSE</td>
<td>false</td>
</tr>
<tr>
<td>FALSE</td>
<td>and</td>
<td>TRUE</td>
<td>false</td>
</tr>
<tr>
<td>FALSE</td>
<td>and</td>
<td>FALSE</td>
<td>false</td>
</tr>
<tr>
<td>TRUE</td>
<td>or</td>
<td>TRUE</td>
<td>true</td>
</tr>
<tr>
<td>TRUE</td>
<td>or</td>
<td>FALSE</td>
<td>true</td>
</tr>
<tr>
<td>FALSE</td>
<td>or</td>
<td>TRUE</td>
<td>true</td>
</tr>
<tr>
<td>FALSE</td>
<td>or</td>
<td>FALSE</td>
<td>false</td>
</tr>
</tbody>
</table>

Let us summarize:

A compound sentence with the connective AND is true only if all of its clauses are true. It is false if any clause is false.

A compound sentence with the connective OR is false only if
all of its clauses are false. It is true if any clause is true.

Items 29 and 30, taken together, lead to the following observation, which is of importance later: if we know that the compound statement,

"Clause 1 or Clause 2"

is true, and if we also know that Clause 1 is false, we may conclude that Clause 2 must be true.

Consider the compound open sentence

\[x = 2 \text{ or } x > 2. \]

This sentence will be true if \(x \) has a value which makes either clause true.

Thus, the truth set of "\(x = 2 \) or \(x > 2 \)" is the union of the truth set of "\(x = 2 \)" and the truth set of "\(x > 2 \)."

The truth set of \(x = 2 \) is ______.

The truth set of \(x > 2 \) is the set of numbers ______.

Therefore, the truth set of "\(x = 2 \) and \(x > 2 \)" is the set consisting of the number ______ and all numbers ______ than 2.

The graph of the truth set of \(x = 2 \) is

\[\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

The graph of the truth set of \(x > 2 \) is

\[\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]

Since a graph of the truth set of an open sentence is a set of points, we may state that the graph of the truth set of "\(x = 2 \) or \(x > 2 \)" is the union of the graphs of the truth sets of the separate clauses. Thus, the graph of the truth set of "\(x = 2 \) or \(x > 2 \)" is

\[\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array} \]
The graph of the truth set of $x < 2$ is ____________.

Therefore, the graph of the truth set of $x < 2$ or $x > 3$ is ____________.

It has required many words, carefully chosen, to describe the various connections among open sentences, truth sets, and graphs. We have consistently referred to the "graph of the truth set of an open sentence". In the future, let us agree to shorten this phrase to the "graph of a sentence".

An open sentence for the graph is ____________ or $x > 3$.

The graph of the open sentence $x < 2$ or $x > 3$ is ____________.

The graph of the open sentence $x < 2$ or $x > 3$ is ____________.

The graph of the open sentence $x < 2$ or $x > 3$ is ____________.
Write an open sentence for each of the following graphs:

51

52

53

Instead of writing the compound open sentence, \(x > 2 \) or \(x = 2 \), we shall use an abbreviation: \(x \geq 2 \), which is read, "\(x \) is greater than or equal to 2". Similarly, the symbol \(\leq \) is read, "\(x \) is less than or equal to 2".

We may write \(x < 5 \) or \(x = 5 \) as \(x \leq 5 \), \(x \) is less than or equal to 5.

\(x \geq 3 \) is read, \(x \) is \(\geq 3 \).

We may write \(x = \frac{3}{2} \) or \(x > \frac{3}{2} \) as \(x \geq \frac{3}{2} \), \(x \) is greater than or equal to \(\frac{3}{2} \).

One further remark may be made. We have introduced the symbols \(\geq \), \(\leq \).

Do you see how these symbols are related to compound sentences involving inequality?

\(x \leq 7 \) means the same as \(x \leq 7 \).

\(x < 7 \) or \(x > 7 \) may be written as \(x \neq 7 \).

\(x \geq 7 \) means the same as \(x \neq 7 \).

Remember: \(x + \frac{1}{2} \geq \frac{1}{2} \) is a compound open sentence having two clauses.

\(x + \frac{1}{2} \geq \frac{1}{2} \) and \(x = 5 \) is a compound open sentence with three clauses.
Write an open sentence for each of the following graphs:

60
\[x \leq 2 \text{ or } x \geq 5 \]

61
\[x \leq 2 \text{ or } x > 5 \]

62
\[x < 2 \text{ or } x > 5 \]

So far we have considered only the graphs of truth sets of compound open sentences with the connective "or". Now we shall study the graphs of compound open sentences with the connective "and". Sentences such as \(x = 2 \) and \(x = 5 \) offer no difficulty.

We recall that if two phrases are joined by "and", the resulting compound sentence is true if both clauses are true, but false if either clause is false. Thus, a compound sentence with the connective "and" is true if and only if all of its clauses are true.

Since the two clauses \(x < 2 \) and \(x > 5 \) cannot both be true at the same time, the truth set of "\(x < 2 \) and \(x > 5 \)" is the empty set.

How many points are on the graph of the truth set of "\(x = 2 \) and \(x = 7 \)? (none, one, two)

How many points are on the graph of the truth set of "\(x < 2 \) and \(x > 5 \)?

Which of the following is the truth set of the sentence, "\(x < 2 \text{ or } x = 11 \)? \(\{2, 3, 4, 5, 11\} \), \(\{2, 3, 4, 5\} \), \(\emptyset \), \(\{11\} \), \(\{9, 11\} \).

Which of the following is the truth set of the sentence, "\(x \neq 2 \text{ and } x = 11 \)? \(\{2, 3, 4, 5, 11\} \), \(\{11\} \), \(\{9, 11\} \), \(\emptyset \).
We shall now turn our attention to compound sentences such as, "$x > 2$ and $x < 4$" in which the connective "and" joins two inequalities.

The graph of the truth set of $x > 2$ is

![Graph of $x > 2$]

The graph of the truth set of $x < 4$ is

![Graph of $x < 4$]

The compound sentence, "$x > 2$ and $x < 4$" is true only if both clauses are true. Therefore, the graph of the truth set consists of those points which are included in both the graphs of the truth sets of the separate clauses. Thus, the graph of the truth set of "$x > 2$ and $x < 4$" is

![Graph of the truth set of $x > 2$ and $x < 4$]

In short, the truth set of $x > 2$ and $x < 4$

is the intersection of the truth set of $x > 2$, and the truth set of $x < 4$. In words, we may say that the truth set of $x > 2$ and $x < 4$ is the set of numbers of arithmetic between 2 and 4.

71 The truth set of "$x > 1$ and $x < 6$" is the set of numbers of arithmetic between \underline{1} and \underline{6}.

72 An open sentence whose truth set is the set of numbers between 5 and 9 is \underline{x > 5} and \underline{x < 9}.

73 The graph of "$x > 2$ and $x < 4$" is the \underline{intersection} of the graph of $x > 2$ and the graph of $x < 4$.

74 The truth set of "$x < 2$ and $x > 4$" is the intersection of the truth set of \underline{x < 2} and the truth set of \underline{x > 4}.

75 The truth set of $x < 2$ and $x > 4$ is \underline{\emptyset}.
Graph each of the following:

77. \(x > 4 \) and \(x < 7 \)

78. \(x < 4 \) and \(x > 7 \)

79. \(x > 4 \) or \(x < 7 \)

80. \(x < 4 \) or \(x > 7 \)

Sometimes we write "\(x > 2 \) and \(x < 4 \)" as "\(2 < x < 4 \)". This can also be read: "\(x \) is between 2 and 4". Thus, we shall write "\(x > 1 \) and \(x < 5 \)" as \(1 < x < 5 \).

The compound sentence "\(x > 5 \) and \(x < 7 \)" written in this abbreviated form is ______. This sentence is often read, "\(5 \) is less than \(x \) and \(x \) is less than 7".

83. \(x \) is between 4 and 9 is written ______.

84. \(3 < x < 7 \) means that \(x \) is ______ between 3 and 7.

Using the abbreviated notation we would write "\(x \) is either 2, 4, or any number of arithmetic between 2 and 4" as

\[2 \leq x \leq 4. \]

Do you see what would be meant by

\[2 \leq x < 4? \]
We have examined some numerical sentences and have seen that each one can be classified either as true or false, but not both.

We have also established a set of symbols to indicate relations between numbers:

- "=" means "is" or "is equal to"
- "/" means "is not" or "is not equal to"
- ">

means "is less than"
- ">" means "is greater than"
- ">" means "is less than or is equal to"
- ">" means "is greater than or is equal to"

We have discussed compound sentences which have two clauses. If the clauses are connected by the word or, the sentence is true if at least one clause is true. Otherwise it is false. If the clauses are connected by and, the sentence is true if both clauses are true. Otherwise it is false.

An open sentence is a sentence containing one or more variables.

The truth set of an open sentence containing one variable is the set of all those numbers which make the sentence true. The open sentence acts as a sorter. It sorts the domain of the variable into two subsets: a subset of numbers which make the sentence true, and a subset of numbers which make the sentence false.

The graph of a sentence is the graph of the truth set of the sentence.

The following items provide further practice in working with open sentences, both simple and compound. For each open sentence that follows, state the truth set and construct its graph. Remember that the domain of the variable is the set of all numbers of arithmetic. Answers are on page iv.

Some examples of the form of your answers are:

<table>
<thead>
<tr>
<th>Open Sentence</th>
<th>Truth Set</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 3 = 5$</td>
<td>${7}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{x}{x+3}$</td>
<td>$\mathbb{R} \setminus {3}$</td>
<td></td>
</tr>
<tr>
<td>$x + 1 < 4$</td>
<td>${x \mid x < 3}$</td>
<td></td>
</tr>
<tr>
<td>$x > 3$</td>
<td>${x \mid x > 3}$</td>
<td></td>
</tr>
<tr>
<td>1. $x + 7 = 14$</td>
<td>18. $t + 6 \leq 7$ and $t + 6 \geq 7$</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2. $x + y < 13$</td>
<td>19. $(x + 2) + x + 6$</td>
<td></td>
</tr>
<tr>
<td>3. $3x = 12$</td>
<td>20. $1 + 7j$ and $3 + 2k$</td>
<td></td>
</tr>
<tr>
<td>4. $1 + k + m = x + t + l$</td>
<td>21. $x < 2$ or $x > 3$</td>
<td></td>
</tr>
<tr>
<td>5. $x + 1 = 1$ or $x + l = 1$</td>
<td>22. $x + \frac{4}{3}$ or $x + 2 = 5$</td>
<td></td>
</tr>
<tr>
<td>6. $x + 2l$ or $x + h = 1$</td>
<td>23. $x < 3$ and $x + 1 < 3$</td>
<td></td>
</tr>
<tr>
<td>7. $x \leq 2$ or $x + 1 < 3$</td>
<td>24. $x < 1$ and $x + 2 < 5$</td>
<td></td>
</tr>
<tr>
<td>8. $\frac{x}{2}$</td>
<td>25. $x > 2$ or $x < 3$</td>
<td></td>
</tr>
<tr>
<td>9. $x + 2$ or $3 + 3m$</td>
<td>26. $x > 3$ or $x < 3$</td>
<td></td>
</tr>
<tr>
<td>10. $x - y < 2$</td>
<td>27. $x > 3$ or $x < 1$</td>
<td></td>
</tr>
<tr>
<td>11. $x^2 = 12$</td>
<td>28. $x < x^2 < 6$</td>
<td></td>
</tr>
<tr>
<td>12. $(x - x)^2$</td>
<td>29. $x < 2$ or $x \geq 5$</td>
<td></td>
</tr>
<tr>
<td>13. $x + 12$ or $x + 1 \geq 6$</td>
<td>30. $x < 3$ or $x > 3$</td>
<td></td>
</tr>
<tr>
<td>14. $px + 3 < 10$</td>
<td>31. $x / 3$ and $x / 4$</td>
<td></td>
</tr>
<tr>
<td>15. $(x + 1)^2 + 3$</td>
<td>32. $x > 3$ or $x < 2$ or $x > 4$</td>
<td></td>
</tr>
<tr>
<td>16. $ax + (3 + x)^2 = 2$</td>
<td>33. $2 \leq x \leq 5$</td>
<td></td>
</tr>
<tr>
<td>17. $3 - x$</td>
<td>34. $x < 3$ and $x > 2$ and $x < 4$</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6

PROPERTIES OF OPERATIONS

11. Identity Elements

Consider the truth sets of the following sentences:

1. The truth set of each of these sentences is

2. What values of a make the sentence $a + 0 = a$ true?

3. The sum of any number and ______ is equal to the number.

Here we have an interesting property which we can state in words:

For every number of arithmetic a, $a + 0 = a$. By the commutative property of addition, we can see that $0 + a = a$ also true. Either of these forms will be referred to as the addition property of 0, and we state this property as follows:

For every number a, $a + 0 = a$ and $0 + a = a$.

(For the time being, by "number" we mean "number of arithmetic", unless stated otherwise.)

Since adding 0 to any number gives back exactly the same number, the number 0 is called the identity element for addition.

So far we have been concerned with the addition property of 0.

We shall find it useful at times to remember this:

In the identity element for addition.

Is there an identity element for multiplication? Consider the truth sets of the following open sentences:

$$a 	imes 1 = a$$

$$1 	imes a = a$$
The truth set of each of these sentences is: [1]

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Truth Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) The product of any number and 1 is equal to the number</td>
<td>1</td>
</tr>
<tr>
<td>b) The identity element for multiplication is 1</td>
<td>1</td>
</tr>
<tr>
<td>c) In general, for any number a, n(1) = n</td>
<td>1</td>
</tr>
<tr>
<td>d) The identity element for the operation of multiplication</td>
<td>1</td>
</tr>
</tbody>
</table>

Since a(1) = 1(a), by the commutative property of multiplication, we state the multiplication property of 1 as:

For every number a, a(1) = a and (1)a = a.

12. We can often use the multiplication property of 1 or the addition property of 0 to simplify the work of finding a common name of a number. In which of the following could neither of these properties be used?

<table>
<thead>
<tr>
<th>Option</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 27 + (\frac{17}{12} + \frac{7}{2}) = 18 - 18</td>
<td>27</td>
</tr>
<tr>
<td>B) 163((\frac{7}{12} + \frac{1}{6} + \frac{1}{2})) = 163((\frac{2}{12} + \frac{3}{12}))</td>
<td>163((\frac{7}{12} + \frac{1}{6} + \frac{1}{2}))</td>
</tr>
<tr>
<td>C) ((6 - 6)(46)) = 0(46)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) 27 + (\frac{17}{12} + \frac{7}{2}) = 18 - 18</td>
<td>27 + (18 - 18)</td>
</tr>
<tr>
<td>B) 163((\frac{7}{12} + \frac{1}{6} + \frac{1}{2})) = 163((\frac{2}{12} + \frac{3}{12}))</td>
<td>163((\frac{7}{12} + \frac{1}{6} + \frac{1}{2}))</td>
</tr>
<tr>
<td>C) ((6 - 6)(46)) = 0(46)</td>
<td>((6 - 6)(46))</td>
</tr>
</tbody>
</table>

The last step is true by the addition property of 0.

The last step is true by the multiplication property of 1.

Here we did not use either the multiplication property of 1 or the addition property of 0. The correct choice is [C].
Look at the following sentences:

\[\begin{align*}
7(0) &= 0 \\
3(0) &= 0 \\
0(0) &= 0 \\
\frac{17}{2}(0) &= 0 \\
m(0) &= 0
\end{align*} \]

Each time that we find the product of a number and 0, our result is 0.

Consider the open sentence, \(m(0) = 0 \). Can a number \(m \) be found that will make this sentence false? ___

Try different values for \(m \).

This sentence, \(m(0) = 0 \), is true for every number, ___.

This property of numbers is called the ___ of 0.

Simply stated: Any number times 0 equals 0.

Since \(a(0) = 0(a) \), by the commutative property of multiplication, we state the multiplication property of 0:

For every number \(a \), \(a(0) = 0 \) and \(0(a) = 0 \).

The multiplication property of 0 is very useful. No matter how many numbers are multiplied, as long as one of them is zero, the product is still zero. Don't ever be fooled by a problem such as

\[10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 0. \]

The answer is simply 0.

Find the common name for each of the following, and tell which of the three preceding properties was used:

17. \(\frac{1}{2}((3.7 + 0.3) - 4) = \)___
 The property used was the ___ property of ___.

18. \(\left(\frac{2}{3} - \frac{1}{3} \right) + 17 = \)___
 The property used was the ___ property of ___.

19. \(\left(\frac{16}{3} - 5 \right)(5260) = \)___
 The property used was the ___ property of ___.

20. \(\text{addition, 0} \)

21. \(\text{multiplication, 0} \)

22. \(\text{multiplication, 1} \)
If you missed any of Items 17, 19, or 21, turn to page vi where you will see how they can be done.

Remember that the number 1 has many names. For example, all of the following are names for 1:

\[\frac{1}{1}, \frac{3}{3}, \frac{6}{6}, \frac{11}{11}, \frac{101}{101} \]

For every value of \(n \), except 0, \(\frac{n}{n} = 1 \)

We shall often use names like these for 1. Note that no matter which name we use, the number 1 is the identity element for multiplication. For instance,

\[n \left(\frac{1}{n} \right) = n \]

is just another way of saying

\[n(1) = n \]

This multiplication property of 1 is useful in arithmetic in working with rational numbers. Suppose we wish to find a numeral for \(\frac{7}{9} \) in the form of a fraction with 18 as its denominator. Since \(\frac{7}{9} = \frac{7}{9}(1) \), we may use some other name for 1. Of the many possibilities, such as \(\frac{2}{3}, \frac{3}{3}, \frac{5}{7}, \ldots \), we choose \(\frac{4}{3} \) because \(3 \times 6 = 18 \).

We know that \(\frac{5}{6} = \frac{5}{6}(1) \)

which may be written \(\frac{5}{6} = \frac{5}{6} \left(\frac{4}{3} \right) \)

or \(\frac{5}{6} = \frac{5}{6} \left(\frac{3}{3} \right) \)

26) to show that \(\frac{5}{6} = \frac{15}{18} \).

Suppose we now wish to add \(\frac{7}{9} \) to \(\frac{5}{6} \). To do this we desire other names for \(\frac{7}{9} \) and \(\frac{5}{6} \), names which are fractions with the same denominator. What denominator should we choose?

The denominator we choose must be a multiple of

27) both \(9 \) and \(6 \).

But it cannot be 0 since division by 0 is not possible.

Non-zero multiples of 9 are members of the set,

29) \(\{9, 18, 27, 36, \ldots\} \).
Non-zero multiples of 6 are members of the set,

\[\{ 1, 6, 12, 18, \ldots \} \]

Possible choices for our denominator are the common non-zero multiples of both 9 and 6; namely, the elements of the set,

\[\{ 18, 36, 54, \ldots \} \]

Although we could choose as our denominator any number in the set \(\{ 18, 36, 54, \ldots \} \), if we choose the smallest of these numbers, we will find the computation to be easier.

This is called the least common multiple.

Return again to the problem of adding \(\frac{7}{9} \) and \(\frac{3}{6} \).

To change \(\frac{7}{9} \) to a fraction with denominator 18, we proceed as follows:

\[\frac{7}{9} = \frac{7}{9}(1) = \frac{7(2)}{9(2)} = \frac{7(2)}{18} \]

\[\frac{7}{9} = \frac{14}{18} \]

From Item 26 we know \(\frac{3}{6} = \frac{3}{6} \).

Then \(\frac{7}{9} + \frac{3}{6} = \frac{14}{18} + \frac{15}{18} \)

or \(\frac{29}{18} = \frac{29}{18} \).

Let us use the multiplication property of 1 to find a common name for:

\[\frac{29}{18} = \frac{1}{7} \]
Using the multiplication property of $\frac{1}{4}$:

$\frac{2}{3} \cdot \frac{5}{7} = \frac{2}{3} \cdot \frac{5}{7} \left(\frac{21}{21} \right)$

We chose $\frac{21}{21}$ because 21 is the least common multiple of $\frac{2}{3}$ and $\frac{5}{7}$.

We can write:

$\frac{2}{3} \cdot \frac{5}{7} = \frac{\left(\frac{2}{3} \cdot 5 \right)(21)}{\left(\frac{21}{21} \right)}.$

Using the distributive property:

$\frac{\left(\frac{2}{3} \cdot 5 \right)(21)}{\left(\frac{21}{21} \right)} = \frac{2(21) + 5(21)}{7(21)}$.

Multiplying:

$= \frac{42 + 70}{147}$

and adding:

$= \frac{112}{147}$.

In which of the following is the multiplication property of $\frac{1}{4}$ used correctly to find a common name for the number? If you use paper and pencil to follow these, you will find them quite simple.

- E. $\frac{1}{2} + \frac{1}{3} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$
- F. $\frac{7}{12} + \frac{5}{18} = \frac{7}{12} \left(\frac{3}{3} \right) + \frac{5}{18} \left(\frac{2}{2} \right) = \frac{21}{36} + \frac{10}{36} = \frac{31}{36}$
- G. $\frac{7}{5} + \frac{2}{3} = \frac{\left(7 + \frac{2}{3} \right)(6)}{5(6)} = \frac{42 + 4}{30} = \frac{46}{30}$
- H. $\frac{1}{2} + \frac{3}{5} = \frac{\left(\frac{1}{2} + \frac{3}{5} \right)(10)}{3(20)} = \frac{5 + 6}{30} = \frac{11}{30}$

[A] E and F
[C] F and G
[B] F, G, and H
[D] all four
In E no use is made of the multiplication property of 1, and the result is incorrect. Done correctly, it would be:

\[\frac{1}{2} + \frac{2}{3} = \frac{1(3)}{2(3)} + \frac{2(2)}{3(2)} = \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \]

The multiplication property of 1 is used correctly in (F) and (G).

The multiplication property of 1 is used incorrectly in (H), since the number is multiplied by \(\frac{10}{3} \), which is not a name for 1.

Done correctly, this would be:

\[\frac{1}{2} + \frac{3}{2} = \frac{1}{2} + \frac{3}{2} \cdot \frac{20}{20} = \frac{\left(\frac{1}{2} + \frac{3}{2}\right)20}{3} = \frac{10 + 12}{3} = \frac{22}{3} \]

The only correct choice is [C].

4.2. Closure

Let us develop further what we already know from Chapter 1 about a set of numbers being closed under the operation of addition.

If \(a \) and \(b \) are whole numbers (\(a \) and \(b \) may both be the same number), then we know that \(a + b \) is also a \underline{whole} number.

We also know that whenever \(a \) and \(b \) are whole numbers, there is exactly one number, \(a + b \), which is their sum.

2 That is, 4 + 3 is \underline{unique} and there is exactly one whole number, namely, 7, which is the sum of 4 and 3.

3 Another way of saying that \underline{unique} is the only whole number which is the sum of \(a \) and \(b \), is to say, "The sum of \(a \) and \(b \) is a unique whole number."

The only whole number which is the sum of 5 and 6 is \underline{4}: thus, we may say that the sum of 5 and 6 is a \underline{unique} whole number.

5 6 is a \underline{six-letter word}.
There is exactly one whole number which is more than the sum of 9 and 8, namely, the number 17.

The sum of 9 and 8 is a whole number.

We recognize that when we add whole numbers a and b, the unique (exactly one) number we obtain is an element of the set of whole numbers.

We may express the preceding statement by saying that the set of whole numbers is closed under the operation of addition.

Think of any two even numbers. Find their sum. Is it an even number?

If a and b are two even numbers, their sum, a + b, is an even number.

Just as the set of whole numbers is closed under the operation of addition, the set of even numbers is likewise closed under addition.

Is the set of all odd numbers closed under addition?

Let's check this.

1 + 1 = 2, 5 + 3 = 8, 17 + 15 = 32.

2, 8, and 32 are odd numbers; they are not even numbers.

The set of odd numbers is not closed under addition because we do not obtain an even number when we add two odd numbers.

Consider the set, S = {1, 4, 7, 9}. Since 9 is in S and 4 is in S, but 9 + 4 is not in S, S is not closed under addition.
Which of the following sets are closed under the operation of addition?

\[X = \{1, 2, 3, 4, 5, 6, 7, 8, \ldots\} \]
\[Y = \{1, 3, 5, 7, 9, 11, \ldots\} \]
\[Z = \{0, 2, 4, 6, 8, 10, 12, \ldots\} \]

[A] X and Y are closed under addition.
[B] X and Z are closed under addition.
[C] Y and Z are closed under addition.
[D] All three are closed under addition.

The only correct choice is [B]. \(X = \{1, 2, 3, 4, 5, 6, 7, 8, \ldots\} \) and \(Z = \{0, 2, 4, 6, 8, 10, 12, \ldots\} \) are closed under addition since the sum of any two counting numbers is a unique counting number and the sum of any two even numbers is always a unique even number.

The set \(Y = \{1, 3, 5, 7, 9, 11, \ldots\} \) is not closed under addition. Y is the set of odd counting numbers, and the sum of any two odd numbers is always an even number.

The set of all numbers of arithmetic is closed under addition because the sum of any two numbers of arithmetic is always a unique number of arithmetic. Remember - we use the word "unique" to mean exactly one. We state this property as follows:

Closure Property of the Set of Numbers of Arithmetic Under Addition: For all numbers of arithmetic \(a \) and \(b \), the number \(a + b \) is a unique number of arithmetic.

- All of the following numbers, \(\frac{2}{3}, \frac{1}{2}, 5, \frac{1}{10}, \frac{3}{100}, \frac{3}{5} \), are numbers of arithmetic.
- Find the following sums:
 - \(\frac{2}{3} + \frac{1}{2} = \frac{7}{6} \)
 - \(\frac{1}{10} + \frac{3}{10} = \frac{1}{2} \)
 - \(\frac{3}{100} + \frac{63}{100} = \frac{66}{100} \)
- Each of the above sums is a number of arithmetic.

Just as the set of the numbers of arithmetic is closed under addition, from our experience we are aware that the set of the numbers of arithmetic is closed under multiplication. The product of any two numbers of arithmetic is always exactly one number of arithmetic. We state this property as follows:
Closure Property of the Set of Numbers of Arithmetic under Multiplication: For all numbers of arithmetic a and b, the number \(ab\) is a unique number of arithmetic.

Note that we use the symbol \(ab\) to indicate \(a \times b\), \(a\times b\), \((a)b\), \((a)(b)\), \(a \cdot b\), and \(ab\)—name the same number.

Find the following products:

23. \(\frac{2}{3} \times \frac{1}{5} = \) __________

24. \(3 \times \frac{1}{10} = \) __________

25. \(\frac{3}{100} \times \frac{3}{5} = \) __________

The numbers \(\frac{2}{3}\), \(\frac{1}{5}\), \(3\), and \(\frac{1}{10}\), \(\frac{3}{100}\), and \(\frac{3}{5}\) are ______ of ______ as are their products.

From experience we are aware that the set of all numbers of arithmetic is ______ under multiplication.

Is the set of all whole numbers closed under multiplication? ______

The following two examples further illustrate the idea of closure.

29. Which of the following sets are closed under the operation of multiplication?

- \(K = \{1, 3, 5, 7, 9, 11, 13\}\)
- \(L = \{1, 3, 5, 7, 9, 11, 13, \ldots\}\)
- \(M = \{0, 3, 6, 9, 12, 15, 18, \ldots\}\)

[\(\text{[A]}\) \(K\) and \(L\)] [\(\text{[B]}\) \(K\) and \(M\)] [\(\text{[C]}\) all are closed] [\(\text{[D]}\) \(L\) and \(M\)]

The only correct choice is [\(\text{[D]}\). \(L = \{1, 3, 5, 7, 9, 11, 13, \ldots\}\) and \(M = \{0, 3, 6, 9, 12, 15, 18, \ldots\}\) are closed under the operation of multiplication. \(L\) is the set of odd counting numbers, and any element of \(L\) multiplied by any element of \(L\) is always an element of \(L\). For example, \(3 \times 5 = 15\), and \(15\) is an odd counting number. Also, \(9 \times 11 = 99\), and \(99\) is an odd counting number.
number. Set M is the set of multiples of three, which is closed under multiplication because the product of any two multiples of three is itself a multiple of three.

The set $K = \{1, 3, 5, 7, 11, 13\}$ is not closed under multiplication. For example, if we multiply 9×11 we obtain the unique number 99, but it is not an element of set K.

0 and 1 are two special numbers. They are the identity elements for addition and multiplication. 0 is chosen as identity and multiplier in $I = \{0, 1\}$. In order to be true easily, we shall take "addition" and "multiplication table" as shown below.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Which of the following statements is true for the set $I = \{0, 1\}$?

- [A] I is closed under addition but not under multiplication.
- [B] I is closed under multiplication but not under addition.
- [C] I is closed under addition and multiplication.

The correct selection is [B]. $I = \{0, 1\}$ is closed under multiplication but not under addition. All of the numbers in the multiplication table are elements of I, but the number 2, which is in the addition table, is not in I.

We have discussed a number of patterns for forming true sentences about numbers and have seen that these patterns are closely related to many of the techniques of arithmetic. For instance, we considered (in Section 2-2) sentences such as:

\[(7 + 3) + 2 = 7 + (3 + 2)\]

and

\[(1.2 + 1.3) + 2.6 = 1.2 + (1.3 + 2.6)\]

These sentences are true. Verify this fact!

These true sentences display the pattern known as the associative property of addition.

1. \[(7 + 3) + 2 = 7 + (3 + 2)\] is a true/false sentence.
 \[
 \begin{array}{c}
 \text{true} \\
 \text{false}
 \end{array}

2. It is an illustration of the property of addition.

 The numerical phrase, \((7 + 3) + 2\), is a number made up of three numbers: 7, 3, and 2. In the phrase the second number, \(3\), is grouped together with the \[
 \begin{array}{c}
 \text{first} \\
 \text{second} \\
 \text{third}
 \end{array}

 number, 7.

 In the phrase, \(7 + (3 + 2)\), the second and third numbers are \[
 \begin{array}{c}
 \text{grouped} \\
 \text{ungrouped}
 \end{array}

 together.

 Our sentence, \((7 + 3) + 2 = 7 + (3 + 2)\), is a statement involving the same set of numbers, \[
 \begin{array}{c}
 \text{true} \\
 \text{false}
 \end{array}

 grouped differently under addition.

We can describe this pattern about three numbers and the addition operation as follows:

"If you add a second number to a first number, and then add a third number to their sum, the result is the same as if you add the third number to the first and then add their sum to the second number."

Suppose we try to find a concise mathematical statement which generalizes the associative property of addition:
Since the first number can be any number of arithmetic, we can represent it by the variable \(a \).

We will not represent the second number by \(a \) since the second number may be different from the first number.

The second number will be represented by a different variable.

Let's represent the second number by the variable \(b \). Likewise, the third number will be represented by a variable other than \(a \) or \(b \), since the third number may be different from the first or second number.

Represent the third number by the variable \(c \).

Let's continue with our effort to state the associative property as a more brief mathematical statement.

Given any numbers of arithmetic \(a, b, \) and \(c \), the number obtained by adding the second to the first

\[a + b \]

Now consider adding the third number, \(c \), to the number \(a + b \).

An expression for this new is \((a + b) + c \).

However, the number obtained by adding the sum of the second and third numbers, \(b + c \), to the first number, \(a \), is \(a + (b + c) \).

The associative property of addition tells us that

\[a + b + c = a + (b + c) \]

The symbols \(a, b, \) and \(c \) are variables. Their domain is the set of numbers of arithmetic. Using these variables we may state the associative property of addition: For all values of the variables \(a, b, \) and \(c \) it is true that

\[(a + b) + c = a + (b + c) \].
This kind of statement is usually shortened by saying:

For any numbers of arithmetic, \((a + b) + c = a + (b + c)\).

Compare the brevity of this statement with the same statement written out in Items 6-9.

A precise mathematical statement of the associative property of addition is:

For any numbers of arithmetic \(a, b,\) and \(c\), \((a + b) + c = a + (b + c)\).

As a consequence of the associative property of addition, every sentence of the form or pattern

\[(a + b) + c = a + (b + c)\]

will be a true sentence if \(a, b,\) and \(c\) are numbers of arithmetic.

Consider the addition example, 1.2 + 8.8 + 8.8.

By the associative property, this example can be written two ways, either \((1.2 + 8.8) + 8.8\) or \((1.2 + 3.3) + 8.8\).

The sentence, \((1.2 + 3.3) + 8.8 = 1.2 + (8.8 + 8.8)\)

is true due to the property of addition.

Finding the common name from the phrase,

\[(1.2 + 3.3) + 8.8\]

is easier than finding it from \(1.2 + (8.8 + 8.8)\) since it is obvious that \(1.2 + 8.8 = 10.8\).

Another property developed in Chapter 2 was the commutative property of addition. In the language of algebra we state the commutative property of addition:

For any numbers of arithmetic \(a\) and \(b\)

\[a + b = b + a\]

Only two variables are needed to state this property.
To simplify the computation in the example \(\frac{1}{3} + \frac{1}{2} + \frac{2}{3} \), the commutative and associative properties of addition are both useful.

The _______ property of addition gives us the choice of how we group our numbers.

Grouping \(\frac{1}{3} \) and \(\frac{1}{2} \), we may write \(\frac{1}{3} + \frac{1}{2} + \frac{2}{3} \) as _______.

\(\left(\frac{1}{3} + \frac{1}{2} \right) + \frac{2}{3} \) may be written as \(\left(\frac{1}{2} + \frac{1}{3} \right) + \frac{2}{3} \) by making use of the _______ of addition to change the order in \(\left(\frac{1}{3} + \frac{1}{2} \right) \) to \(\left(\frac{2}{3} + \frac{1}{3} \right) \).

But \(\frac{1}{3} + \frac{1}{3} + \frac{2}{3} \) _______ because of the associative property of addition.

Now we can find a common name for \(\frac{1}{3} + \left(\frac{1}{2} + \frac{2}{3} \right) \).

\[
\frac{1}{3} + \left(\frac{1}{2} + \frac{2}{3} \right) = \frac{1}{3} + \frac{2}{3} = \frac{1}{2}
\]

The example above illustrates that using these properties intelligently will simplify your work at times. Later on you will find these properties applied to more fundamental mathematical investigations.

You have learned before that there are associative and commutative properties for multiplication, also. How would you write these in the language of algebra?

Since the associative property of multiplication involves three numbers, a statement of this property will contain _______ variables.

A statement of the associative property of multiplication is:

For any numbers of arithmetic, \(a \), \(b \), and \(c \),

\[
(ab)c = a(bc)
\]

A statement of the commutative property of multiplication involves _______ variables.

A statement of the commutative property of multiplication is:

For any numbers of arithmetic \(a \) and \(b \), \(ab \) _______.

\[
a b = b a
\]
Associative and Commutative Properties for Multiplication:

For any numbers of arithmetic a, b, and c

$$(ab)c = a(bc)$$

and

$$ab = ba.$$
(R) is an instance of the commutative property of multiplication.
(S) is an instance of the commutative property of addition.
Hence, both are true sentences. (T) is also a true sentence since
\[3 + \left(\frac{2m + 3n}{2} \right) = 3 + \frac{2m + 3n}{2} \]
commutative property of addition
\[= \left(3 + \frac{2m}{3} \right) + \frac{3n}{2} \]
associative property of addition.
Hence, the correct choice is [D].

Because of the associative and commutative properties of addition and multiplication for the numbers of arithmetic, you can reorder and regroup the terms in an indicated sum or the factors of an indicated product of several numbers.

Consider, for example, the product
\[4 \cdot a \cdot 3 \cdot b \]
We can write the numerals 4, a, 3, b in many orders. (There are 24 orders to be exact, as you can verify for yourself.) We may write, for example,
\[4 \cdot a \cdot b \cdot 3, \text{ or } \]
\[a \cdot b \cdot 4 \cdot 3, \text{ or } \]
\[b \cdot 4 \cdot 3 \cdot a, \text{ etc. } \]

Also, we may group the factors 3, 4, a, b in many ways.
So, we can form many true sentences, of which these are samples:
\[(4a)(3b) = (3a)(b)(4) \]
\[(4a)(3a)(b) = (4a)(3b) \]

If we want a short name for (4a)(3b), we can think:
\[(4a)(3b) = (4 \cdot 3)(ab) \]
\[= 12ab \]

In a similar way, we can write the product \(x \cdot y \cdot x \) in many ways. \(x y x \) and \(x y x \) are numerals for the same number. You will recall that \(x^2 y \) is another way to write \(x y x \). Thus, another name for \((xy)x \) is \(x^2 y \).
To write another name for \((2r)(5s)\), we might think:

\[
(2r)(5s) = (2 \cdot 5)(r \cdot s) = 10rs
\]

To write another name for \((17a)(3ab)\), we might think:

\[
(17a)(3ab) = (17 \cdot 3)(a \cdot b) = 51a^2b
\]

You remembered, of course, that \(a \cdot a = a^2\).

A short name for \((3x)(4)\) is \(12x\).

Read the following carefully and complete each statement:

44. \((3d)a = 3(d \cdot __) = 3d^2\)
45. \((5p)(3q) = (5 \cdot 3)(____) = ____\)
46. \((8m)(2n) = ____\)
47. \((2y)(7x) = ____\)
48. \((4c)(3abc) = ____\)

Were you bothered by the arrangement in the previous responses? What do you note about \(10rs, 12x, 15pq, 16mn, 63xy, \) and \(12abc^2\)?

In each case the variables in the above responses were written \((\text{first, last})\).

In the response \(12abc^2, 12\) is written before \(abc^2\).

In products we usually write variables last. You may also have observed that when several variables are involved in a product, we usually write them in alphabetical order. This is not a hard and fast convention, but "3ab" is usually written rather than "3ba" unless there is a special reason for not doing so. And, of course, you already know it is mathematically correct to do this since multiplication is commutative and associative.
In 51 through 56 above we made use of the associative and commutative properties of multiplication.

In the preceding item, the indicated product is not equal to $8ab^2$. The indicated product $(24ab)(\frac{1}{3}ab)$ is not equal to $8ab^2$. All indicated products equal to $8ab^2$ are not, are not.

As the properties with which we have been concerned are the commutative properties of addition and multiplication for the numbers of arithmetic. Why are we so concerned whether or not binary operations like addition and multiplication are commutative? Let us try division, for example. Recall that $6 \div 3$ means "6 divided by 3". How would you write this example to test commutativity? We want to ask:

Is "$6 \div 3 = 3 \div 6$" a true sentence?

Since $6 \div 3 = \frac{1}{3}$ and $3 \div 6 = \frac{1}{2}$, the above sentence is false.
Since $6 + 3 = 3 + 6$ is false, we can conclude that $a + b = b + a$ is not true for all numbers of arithmetic, and hence that division is not commutative.

Let us test the operation of division for associativity by using the following sentence:

$$(12 + 6) + 2 = 12 + (6 + 2).$$

If this sentence is true, then we can consider the possibility that division is associative. If this sentence is false, we can state that division is not associative.

To test associativity for division we want to ask:

- Is $(12 + 6) + 2 = 12 + (6 + 2)$ a true sentence?
- $(12 + 6) + 2$ is a name for ______.
- $12 + (6 + 2)$ is a name for ______.
- $(12 + 6) + 2 = 12 + (6 + 2)$ is a true sentence.

We can therefore conclude that division is not associative. It is neither commutative nor associative.

If you are interested in seeing some other binary operations, complete Items 68-76; otherwise, begin Section 4-4.

68. Let us define another binary operation as follows:

Let $a \ast b$ be defined to mean $(2)(2)(2)$, and $3 \ast 2$ to mean $(3)(3)$. In general, $a \ast b$ will be defined to mean a has been used as a factor b times, where a and b are counting numbers. Is the following sentence true?

$3 \ast 2 = 3 \ast 5$.

[A] yes [B] no

Since $5 \ast 2$ means $(5)(5)$ or 25 and $2 \ast 5$ means $(2)(2)(2)(2)(2)$ or 32, $3 \ast 2 = 3 \ast 5$ is a false sentence, and [B] was the correct choice.
Let us see if the operation "**" as defined in Item 68 is associative.

Is \((2 ** 3) ** 2 = 2 ** (3 ** 2)\) a true sentence?

\[(2 ** 3) = (2)(2)(2) \]
*69

\[(2 ** 3) ** 2 = (2)(2)(2) \]
*70

\[2 ** (3 ** 2) = 2 ** (3)(3) \]
*72

\[2 ** 3 * 2 = 2 ** (3 ** 2) \]
*73

We can conclude that the sentence

\[(2 ** 3) ** 2 = 2 ** (3 ** 2) \]
*74

is false and that the operation "**" is not associative.

We have found that there exist reasonable binary operations which are neither commutative nor associative. You may complain that such operations are artificial. On the contrary, the "**" operation is actually used in the language of certain digital computers. A machine is much happier if you give it all its instructions on a line, and so a horizontal notation which writes \(2^3\) as \(2 ** 3\) was devised for this operation and here the order of the numbers makes a great difference.

You may think that a binary operation must be both commutative and associative, or else that neither of these properties holds. This is not the case. Consider the following binary operation:

\[a \circ b = \frac{a + b}{2} \]

We define \(a \circ b\) to be \(\frac{a + b}{2}\) for all numbers of arithmetic, \(a\) and \(b\). We can easily check to see that this is a commutative operation since \(a \circ b = \frac{a + b}{2}\) and \(b \circ a = \frac{b + a}{2}\),

\[\frac{a + b}{2} = \frac{b + a}{2} \]

is true since \(a\) and \(b\) are numbers of arithmetic and \(a + b = b + a\) is true by the commutative property of addition for the numbers of arithmetic.
Now let us consider the associative property for this operation. Let \(a = 3, b = 2, \) and \(c = 4 \) and test to see if
\[
(3 \cdot 2) \cdot 4 = 3 \cdot (2 \cdot 4).
\]
Is this operation associative?

[A] yes [B] no

\[
(3 \cdot 2) \cdot 4 = \frac{3 + 2 + 4}{2} = \frac{3 + 2 + 8}{4} = \frac{13}{4}
\]
and
\[
3 \cdot (2 \cdot 4) = \frac{3 + 2 + 4}{2} = \frac{6 + 2 + 4}{4} = \frac{12}{4}.
\]

This is not an associative operation and [B] was the correct choice. As you go on with your study of mathematics, you will see other examples of binary operations that may be associative or commutative, or neither, or both.

4.4. The Distributive Property

Our previous work with numbers has shown us many illustrations of the distributive property of the numbers of arithmetic.
\[
15(7 + 3) = 15(7) + 15(3)
\]
and
\[
\frac{1}{3}(12) + \frac{1}{4}(12) = \left(\frac{1}{3} + \frac{1}{4}\right)12
\]
are both true sentences which illustrate the distributive property.

1. \((\frac{2}{5} + \frac{4}{1})20 = \frac{2}{5}(20) + \frac{4}{1}(20)\) also illustrates the ___ property.

2. The phrase \((\frac{2}{5} + \frac{4}{1})20\) is an indicated ___ of \((\frac{2}{5} + \frac{4}{1})\) and 20.

3. The phrase \(\frac{2}{5}(20) + \frac{4}{1}(20)\) is an indicated ___ of \(\frac{2}{5}(20)\) and \(\frac{4}{1}(20)\).
The true sentence \(\left(\frac{2}{3} + \frac{3}{4} \right) 20 = \frac{2}{3} (20) + \frac{3}{4} (20) \) states a relation between an indicated _____ and an _____.

The example above points out that the distributive property relates indicated sums and indicated products. As you continue your work in mathematics you will find what an important role this property plays.

You may find it difficult to decide whether a number is an indicated sum or an indicated product. You must look carefully at the numerals and the indicated operations. For example, \(3 + x \) is an indicated sum since the number \(x \) is added to 3. On the other hand, \(3x \) may be thought of as an indicated product since \(x \) is multiplied by 3.

\[
x + 12 \text{ is an indicated } \underline{\text{sum}}
\]

\[
ax(3 + x) \text{ is an indicated } \underline{\text{product}}
\]

\[
(a + b)n \text{ is an indicated } \underline{\text{product}}
\]

\[
an + bn \text{ is an indicated } \underline{\text{sum}}
\]

If you were correct on Items 6-9, you may skip to Item 13. If not, continue with Item 10.

The phrase \(y(x + b) \) is an

\[\begin{array}{l}
[A] \text{ indicated sum} \\
[B] \text{ indicated product}
\end{array}\]

Although \((x + b) \) is an indicated sum, the entire open phrase, \(y(x + b) \) is an indicated product. It is the product of \(y \) and \((x + b) \). [B] is correct.

The phrase \(yx + yb \) is an

\[\begin{array}{l}
[A] \text{ indicated sum} \\
[B] \text{ indicated product}
\end{array}\]

Although \(yx \) and \(yb \) are indicated products, the entire open phrase \(yx + yb \) is an indicated sum. It is the sum of \(yx \) and \(yb \). [A] is correct.
The phrase \((4a + b)p\) is an [A] indicated sum
[B] indicated product

\((4a + b)p\) is an indicated product. It is the product of \((4a + b)\) and \(p\). By now you surely observed further that \((4a + b)\) is the indicated sum of \(b\) and the indicated product, \(4a\). However, the entire open phrase \((4a + b)p\) is an indicated product. [B] is correct.

Let's look at some of our examples for indicated sums and indicated products again.

<table>
<thead>
<tr>
<th>Indicated Sums</th>
<th>Indicated Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xy + zw)</td>
<td>((x + y)(z + w))</td>
</tr>
<tr>
<td>(3x^2 + 4xy)</td>
<td>(x(3x + 4y))</td>
</tr>
</tbody>
</table>

Notice that \(xy + zw\) is the indicated sum of two products, namely, \(xy\) and \(zw\). On the other hand, \((x + y)(z + w)\) is the indicated product of two sums; namely, \((x + y)\) and \((z + w)\). Let us note also that the indicated sum \(3x^2 + 4xy\) and the indicated product \(x(3x + 4y)\) illustrate the distributive property since \(3x^2 + 4xy\) is the same number as \(x(3x + 4y)\).

The distributive property relates indicated sums and indicated [] products. Hence, it is used in two situations:

The indicated product \(3(x + y)\) may be written as the indicated [] \(3x + 3y\).

On the other hand, we may write the indicated sum \(3x + 3y\) as an indicated product:

\[3x + 3y = 3(\underline{\text{______}})\]

6 + \(x\), \(4a + 2\), \(\frac{5}{2} + \frac{3}{7}\) are all indicated []

\((3 + \underline{x})y\), \(3(x + y)\), \(4a(7x + 5y)\) are all indicated []

133
Complete each of the following:

<table>
<thead>
<tr>
<th>Indicated Product</th>
<th>=</th>
<th>Indicated Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3(x + y))</td>
<td>=</td>
<td>(3m + 3n)</td>
</tr>
<tr>
<td>(a(x + y))</td>
<td>=</td>
<td>(ax + ay)</td>
</tr>
<tr>
<td>(x(d + 1))</td>
<td>=</td>
<td>(x^2 + xz)</td>
</tr>
<tr>
<td>(b(d + 1))</td>
<td>=</td>
<td>(bd + b)</td>
</tr>
<tr>
<td>(x(y + 3))</td>
<td>=</td>
<td>(xy + 3x)</td>
</tr>
</tbody>
</table>

Notice in Item 22, that by using the distributive property, we get \(x(y + 3) = xy + x^3\). However, we have agreed to write \(x^3\) as \(3x\). The commutative property of multiplication makes this permissible.

The indicated sum \(15x + 25y\) can be written as an indicated product. To do so we proceed as follows:

\[
15x + 25y = 5(3x + 5y)
\]

Just as we have stated the associative and commutative properties in mathematical language, we can state the **distributive property**: For all numbers of arithmetic \(a, b,\) and \(c\), \(a(b + c) = ab + ac\), and \((b + c)a = ba + ca\).

Although there is only one distributive property, we shall learn to recognize it in any of the following patterns:

\[
\begin{align*}
\text{24} & : a(b + c) = ab + ac \\
\text{25} & : ab + ac = a(____) \\
\text{26} & : (b + c)a = ba + ca \\
\text{27} & : ba + ca = (b + c)a
\end{align*}
\]

In order to understand the patterns of the distributive property better, examine the following. If all of the variables used represent numbers of arithmetic, write indicated products as indicated sums and indicated sums as indicated products:

\[
\begin{align*}
\text{28} & : m(p + q) = mp + mq \\
\text{29} & : rs + rt = r(s + t)
\end{align*}
\]
Use the distributive property to write the following indicated products as indicated sums.

32. \[3(10 + 5) = 3(10) + \ldots\]
33. \[3(m + 2) = 3(m) + \ldots\]
34. \[(m + 3)2 = \ldots + 3(2)\]
35. \[\frac{1}{2}(6 + c) = \ldots + \frac{3}{2}(c)\]
36. \[(a + b)4 = \ldots\]
37. \[\ldots + \frac{1}{2}c\]
38. \[(x + y)b = \ldots + y(b)\]
39. \[\ldots\]
40. \[c(d + e) = \ldots\]
41. \[\ldots\]
42. \[a(a + 2) = a(a) + \ldots\]
43. \[\ldots\]
44. \[0.7(3 + n) = \ldots\]
47. \[c + d = \ldots\]
48. \[b(a + 1) = \ldots (\text{Remember: } b \cdot 1 = b)\]
49. \[2(x + v) = \ldots\]

Omit the middle step if you wish in the following.

2.1. \[0.7n + 4d\]
2.2. \[ab + b\]
2.3. \[x + \ldots\]
2.4. \[\ldots\]
2.5. \[\ldots\]
Use the distributive property to write these indicated sums as indicated products.

50 \[3(4) + 3(7) = 3(11) \]
51 \[3a + 3b = \]
52 \[3c + 3d = \]
53 \[3(5) + 7(5) = 10(5) \]
54 \[ma + na = \]
55 \[ab + a(4) = \]
56 \[ab + 4a = \]
57 \[2a + a^2 = \]
Recall: \(a^2 = a(a) \) or \(a \cdot a \)
58 \[x^2 + xy = \]
59 \[4c + 3e = \]

Complete each of the following:
60 \[ay + y = a \cdot y + 1 \cdot \]
61 \[= (a + 1)y \]
62 \[y + y^2 = (____)y + (____)y \]
63 \[= (____)y \]
64 \[y + y^2 = y(____) + y(____) \]
65 \[= y(____) \]

Write the indicated sum, \(2rs + 2rt \), as an indicated product.

We can write the indicated sum, \(2rs + 2rt \), as an indicated product in three ways:

66 \[1) \quad 2rs + 2rt = 2(____) + 2(____) \]
67 \[= 2(____) \]
68 \[2) \quad 2rs + 2rt = r(____) + r(____) \]
69 \[= (____) \]
70 \[3) \quad 2rs + 2rt = 2r(____) + 2r(____) \]
71 \[= 2r(____) \]

Although all three ways are correct, the third is
74 \quad 30x^2 + yx^2 = 13(xy) + 13(xy)

or several other ways; however, the following is usually preferred since 13 is the largest number which fits the pattern:

75 \quad 30x^2 + yx^2 = 13(xy) + 13(xy)

Write each open phrase as an indicated product, if possible:

76 \quad x + x = (1 + 1)a

77 \quad 17b + 3b = (17 + 3)b

78 \quad ox + x = (1 + 1)x

79 \quad ay + \frac{a}{y} = (\frac{1}{y} + \frac{a}{y})y

80 \quad 5c + 5c = \frac{5}{5}c

81 \quad \frac{m}{m} + \frac{3m}{m} = \frac{m}{m} + \frac{3m}{m}

82 \quad a + b = a + b

The commutative and associative properties of addition, together with the distributive property, make it possible to write open phrases in simpler form. For example:

(1) \quad 2x + y + 3x + y = (2x + 3x) + (y + y)

(2) \quad \frac{a}{a} + (\frac{a}{a} + 1) = (\frac{a}{a} + 1)

The properties used in the work shown above were:

83 \quad In step (1), the _______ and _______ properties of addition.

84 \quad In step (12), the _______ property.
Where possible, use the associative, commutative, and distributive properties to write the following in simpler form:

86 \[\frac{2}{3}a + \frac{3}{4}b + \frac{1}{3}a = \left(\frac{2}{3} + \frac{1}{3} \right)a + \frac{3}{4}b \]

87 \[= \left(\frac{3}{3} \right)a + \frac{3}{4}b \]

88 \[= \left(1 \right)a + \frac{3}{4}b \]

89 \[\]

90 \[5m + 2n + 5m = \]

91 \[4a + 3b + 2b + 3a = (4a + 8a) + (_ _ _) \]

92 \[= (_ _ _)a + (_ _ _) \]

93 \[\]

94 \[7x + 13y + 2x + 3y = \]

95 \[4x + 2y + 3 + 3x = \]

96 \[1.3x + 3.7y + 6.2 + 7.7x = \]

97 \[2a + \frac{1}{3}b + 5 = \]

How might we write \(3(x + y + z) \) as in indicated sum? By the associative property we might group the \(x \) and the \(y \), to write

98 \[3(x + y + z) \text{ as } 3((x + y) + z) \]

99 Then, by the _____ property,

100 \[3((x + y) + z) = 3(x + y) + \]

Once more, using the distributive property,

101 \[3(x + y) + nz - (4x + 3y + z) = \]

Prom Items 98-101 we arrive at the statement

\[(y + z) - 3x + 3y + z = \]

which is true for all values of the variable. By a similar process we could extend the pattern of the distributive property to the sum of three or more numbers.
Write each of the following as an indicated sum:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>((c + f + g)h = ch + fh + gh)</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>(3a(a + b + e) = a^2 + 3ab + 3ac)</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>(6(2s + 3r + 7q + a) = 3a^2 + 18r + 42q + 6a)</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>((2x + 3y + 4z)7z = 14xz + 21yz + 28z^2)</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>((\frac{3a + 2b + 1}{3c})3 = 4a + 6b + \frac{8}{3})</td>
<td></td>
</tr>
</tbody>
</table>

Another important application of the distributive property is illustrated by the following example:

Write \((x + 2)(x + 3)\) as an indicated sum without parentheses.

Before looking into this matter more closely, let's look at another similar example,

\((x + 2)(b + c)\).

The closure property of addition assures us that if \(x\) is a number, \((x + 2)\) is a number. Then \((x + 2)(b + c)\) may be thought of as

\[a(b + c), \text{ thus} \]

\[(x + 2)(b + c) \]

In the same way, \((x + 2)(x + 3)\) may also be thought of as

\[a(b + c) \]

\[(x + 2)(x + 3) \]

We can now apply the distributive property,

\[a(b + c) = ab + ac, \text{ as follows:} \]

\[x^2 + 2x + 3x + 6 \]

\[(x + 2)(3) \]
The remaining steps are displayed below.

\[
(x + 2)(x + 3) = (x + 2)(x) + (x + 2)(3) \\
= (x(x) + 2(x)) + (x(3) + 2(3)) \\
= x^2 + 2x + 3x + 6 \\
= x^2 + (2x + 3x) + 6 \\
= x^2 + (5x + 6) \\
= x^2 + (2+3)x + 6
\]

In going from step (i) to (ii), the distributive property was used two times.

In going from step (iv) to (v), the _____ property was used again.

The property used from (iii) to (iv) was the _____ property of addition.

From the items above we have arrived at the sentence

\[(x + 2)(x + 3) = x^2 + 5x + 6, \text{ which is true for all values of the variable } x.\]

Write the phrase \((a + 5)(a + 8)\) as an indicated sum.

[A] \(40 + a^2\)

[B] \(a^2 + 5a + 8a + 40\)

[C] \(a^2 + 13a + 40\)

Your work might look somewhat like this:

\[(a + 5)(a + 8) = (a + 5)a + (a + 5)8 \\
= a^2 + 5a + a(8) + 40 \\
= a^2 + 5a + 8a + 40 \\
= a^2 + (5 + 8)a + 40 \\
= a^2 + 13a + 40\]

Although on the third line of the work shown we have the same indicated sum as in [B], a better choice is [C].
Use the distributive property to write each given phrase as an indicated sum following the pattern used in Items 111-114.

116.

117.

118.

119.

120.

After you have completed all of Items 116-120, turn to page vi and compare your work with that given there.

4-5

The Numbers of Arithmetic

Let us summarize our conclusions about the operations of addition and multiplication in the set of numbers of arithmetic. In the statements that follow, we are concerned only with numbers of arithmetic.

1. Closure Property under Addition: For all numbers a and b, there is exactly one number \(a + b \).

2. Closure Property under Multiplication: For all numbers a and b, there is exactly one number \(ab \).

3. Commutative Property of Addition: For all numbers a and b,
\[a + b = b + a. \]

4. Commutative Property of Multiplication: For all numbers a and b,
\[ab = ba. \]

5. Associative Property of Addition: For all numbers a, b, and c,
\[(a + b) + c = a + (b + c). \]

6. Associative Property of Multiplication: For all numbers a, b, and c,
\[(ab)c = a(bc). \]

7. Distributive Property: For all numbers a, b, and c,
\[a(b + c) = ab + ac \] and \[(b + c)a = ba + ca. \]

8. Addition Property of 0: For every number a,
\[a + 0 = a \] and \[0 + a = a. \]

9. Multiplication Property of 1: For every number a,
\[a(1) = a \] and \[(1)a = a. \]

10. Multiplication Property of 0: For every number a,
\[a(0) = 0 \] and \[0(a) = 0. \]
Although this chapter has dealt largely with the operations of multiplication and addition, you also are familiar with division and subtraction. We will discuss division and subtraction briefly here, but a more complete treatment will be encountered in a later chapter.

Given two numbers of arithmetic (different from 1) we may divide each by the other. If a and b are non-zero numbers of arithmetic, then

\[
\frac{a}{b} \quad \text{and} \quad \frac{b}{a}
\]

are both numbers of arithmetic.

For example, $\frac{12}{3}$ and $\frac{3}{12}$ are both numbers of arithmetic. Notice that if $\frac{a}{b} = c$ is a true sentence, then $\frac{b}{a} = \frac{1}{c}$ is also a true sentence. For example, $\frac{12}{3} = 4$ and $\frac{3}{12} = \frac{1}{4}$ are both true sentences. We notice that division is closely related to multiplication.

In particular, we may "divide" the identity element for multiplication by any non-zero number of arithmetic. If a is any number of arithmetic, except zero, then $\frac{1}{a}$ is a number of arithmetic and

\[
2 \cdot \frac{1}{2} = 1
\]

Finally, you remember that if a is any number of arithmetic, except 0, then $\frac{0}{a} = 0$. Of course, we never divide by 0.

In the set of numbers of arithmetic, subtraction presents a somewhat different situation. If $a \neq b$, then one of the symbols "$a - b$" and "$b - a$" names exactly one number of arithmetic; the other symbol does not name a number of arithmetic. For example, "$12 - 4$" names a number of arithmetic, but "$4 - 12$" does not.

If $a < b$, then $b - a$ is a number of arithmetic. If this number is c, then $a + c = b$ is a true sentence. For example, $10 - 5 = 5$ and $10 + 5 = 15$ are both true sentences. We notice that subtraction is closely related to addition.

In particular, if a is any number of arithmetic other than 0, then "$a - a$" does not name a number of arithmetic.

If the domain of a is the set of numbers of arithmetic, then the truth set of $a + x = a$ is \emptyset.

Eventually we shall extend our idea of "number" in such a way that "$1 - 1$" and "$1 - 1$" will both name "numbers", etc. Further, the truth set of $x + x = 0$ will not be the empty set.
4.6. Review

This set of review problems is included to provide an opportunity for reviewing the mathematical ideas learned to date. For this section, and for review sections at the close of other chapters, no response sheets are provided. If more practice is desired with the distributive property, Problems 17-37 may be done. The answers to the problems in this section will be found on page vii.

1. (a) Write a description of the set \(H \) if

\[
H = \{21, 23, 25, \ldots, 49\}.
\]

(b) Consider the set \(A \) of all whole numbers greater than 20. Is \(H \) a subset of \(A \)?

(c) Classify sets \(H \) and \(A \) as finite or infinite.

2. (a) Find the coordinate of a point which lies on the number line between the two points with coordinates \(\frac{5}{3} \) and \(\frac{7}{4} \).

(b) How many points are between these two?

3. Consider the set

\[
T = \{0, 3, 6, 9, 12, \ldots\}.
\]

Is \(T \) closed

(a) under the operation of addition?

(b) under the operation of "averaging"?

4. Let the domain of the variable \(t \) be the set \(R \) of all numbers between 3 and 5, inclusive.

(a) Draw the graph of the set \(R \).

(b) Decide whether each of the following numbers is in the domain of the variable \(t \).

\[
\frac{5}{2}, \pi, \frac{17}{4}, \frac{11}{3}, \frac{11}{5}, \sqrt{2}
\]

5. In which of the following does the sentence have the same truth set as the sentence "\(x \leq 9 \)?

(a) \(x > 9 \) or \(x = 9 \)

(b) \(x < 9 \) and \(x = 9 \)

(c) \(x \neq 9 \)

(d) \(x \neq 9 \)

(e) \(x \neq 9 \)
6. Find the truth set for each of the following sentences.
 (a) \(n - 5 = 7 \)
 (b) \(2n - 5 = 7 \)
 (c) \(3n - 5 = 7 \)
 (d) \(4n - 5 = 7 \)
 (e) \(6n - 5 = 7 \)
 (f) \(12n - 5 = 7 \)

7. If \(m \) is a number of arithmetic, find the truth set of
 (a) \(m + m = 2 \)
 (b) \(m + m = 2m \)
 (c) \(m > 2m \)
 (d) \(m + 3 < m \)

8. If the domain of \(m \) is the set of counting numbers, find the truth set of the open sentences in (a) through (d) in Problem 7.

9. Let \(T \) be the truth set of
 "\(x + 3 = 5 \) or \(x + 1 = 4 \)."
 (a) Is \(3 \) an element of \(T \)?
 (b) Is \(2 \) an element of \(T \)?
 (c) Is \(\emptyset \) a subset of \(T \)?

10. If \(S \) is the truth set of
 "\(x + 1 < 5 \) and \(x - 1 \geq 2 \)
 draw the graph of \(S \).

11. Consider the open sentence
 \(2x \leq 1 \).
 What is the truth set if the domain is the set of
 (a) all counting numbers?
 (b) all whole numbers?
 (c) all numbers of arithmetic?

12. (a) Is the following sentence true?
 \(\frac{17(3 + 1)}{2} = \frac{17(4 + 5)}{2} \)
 (b) Do you have to perform any multiplication to answer part (a)?
 Explain.
13. Which of the following sentences are true?

(a) \(5(4 + 2) = (4 + 2)5\)

(b) \(10\left(\frac{1}{2} + \frac{1}{3}\right) = \frac{21}{2} + \frac{21}{3}\)

(c) \(10\left(\frac{1}{2} + \frac{1}{3}\right) = 5 + \frac{10}{3}\)

(d) \(4 + 7 + 1.817 = 5 + 1.817 + 6\)

(e) \(12 \times 8 + 12 \times 92 = 1200\)

(f) \((5 \times \frac{22}{7})16 = 500\)

14. Explain how the property of \(\frac{4}{5}\) is used in performing the calculation

\[\frac{4}{5} \cdot \frac{2}{3} \cdot \frac{3}{4} \]

15. Explain why

\[3x + y \cdot 2x + 3y = 9x + 4y\]

is true for all values of \(x\) and \(y\).

16. Write these indicated products as indicated sums without parentheses.

(a) \((x + 1)(x + 1)\)

(b) \((x + 2)(x + 2)\)

In the remainder of the non-starred problems use the distributive property to state indicated products as indicated sums, and indicated sums as indicated products.

17. \((1 + x)5 = \) ______

18. \(\frac{3}{4}a + \frac{2}{3}b = \) ______

19. \(33 + 15(11) = \) ______

20. \(c \times 2c = \) ______

21. \(\left(\frac{1}{2} + \frac{1}{3}\right)y = \) ______

22. \(x(y + 1) = \) ______

23. \(xy + x = \) ______

24. \(3ax + 2ay = \) ______

25. \((y + z)y + 2y = \) ______

26. \(u + 3ub = \) ______

27. \(2u(a + b + c) = \) ______

28. \((u + 2v)(u + v) = \) ______

29. \((n + 1)^2 = \) ______

Remember: \((n+1)^2 = (n+1)(n+1)\)
Use the properties to write the following in simpler form:

30. $17x + x = \underline{18x}$
33. $1.6a + .7 + .4a + .3b = \underline{2a + .7 + .3b}$
32. $2x + y + 3x + y = \underline{5x + 2y}$
34. $by + 2by = \underline{3by}$
35. $9x + 3x + 2 + 11x = \underline{15x + 2}$

36. Here you are going to see how to test whether a whole number is exactly divisible by 9. Keep a record, as you go, of the properties of addition and multiplication which are used. Try the following:

$\begin{align*}
2357 &= 2(1000) + 3(100) + 5(10) + 7(1) \\
&= 2(999 + 1) + 3(99 + 1) + 5(9 + 1) + 7(1) \\
&= 2(999) + 2(1) + 3(99) + 3(1) + 5(9) + 5(1) + 7(1) \\
&= (2(999) + 3(99) + 5(9)) + (2(1) + 3(1) + 5(1) + 7(1)) \\
&= (2(111) + 3(11) + 5(1)) + (2 + 3 + 5 + 7) \\
&= (222 + 33 + 5)9 + (2 + 3 + 5 + 7)
\end{align*}$

Is 2357 divisible by 9? Try the same procedure with 35874. Can you formulate a general rule to tell when a whole number is divisible by 9?

37. Look for the pattern in the following calculation:

$\begin{align*}
19 \times 13 &= 19(10 + 3) \\
&= 19(10) + 19(3) \\
&= 19(10) + (10 + 9)3 \\
&= 19(10) + ((10 + 9)3) \\
&= (19(10) + 10(3)) + 9(3) \\
&= (19 + 3)10 + 9(3)
\end{align*}$

The final result indicates a method for "multiplying teens" (whole numbers from 11 through 19): Add to the first number the units digit of the second, and multiply by 10; then add to this the product of the units digits of the two numbers.

Use the method to find:

$\begin{align*}
15 \times 14 &= \underline{210 + 5} \\
13 \times 17 &= \underline{221} \\
11 \times 12 &= \underline{132}
\end{align*}$
5-1. **English and Mathematical Language**

Problem: Henry and Charles were opposing candidates in a class election. Henry received 30 more votes than Charles, and 516 members of the class voted. Find the number of votes that Charles received.

In this problem you know that Charles and Henry together received ______ votes.

You know that Henry won, lost ______ more votes than Charles.

You want to find the number of ______ that Charles received.

One way to solve this problem is to use trial and error. We can simply guess until we obtain the correct result.

For example, we might test whether 200 is the number of votes Charles received.

We would reason: If Charles had received 200 votes, then Henry would have received 200 + ______ votes.

But 200 + 230 = ______.

This would mean only 430 votes were cast.

But we know that 516 votes were cast.

We see that 200 is not the number of votes Charles received.

Did Charles receive exactly 300 votes?

[A] Yes

[B] No
If Charles had received 300 votes, then Henry would have received 330 votes. But this would mean that 630 votes were cast. 300 is not the number of votes Charles received. [B] is the correct choice.

9. Did Charles receive exactly 243 votes?

[A] Yes
[B] No

If Charles received 243 votes, Henry received 273 votes. Together, they received 516 votes, which is indeed the number of votes cast. [A] is correct.

Trial and error is a tedious way of solving problems like this. Do you notice that for each guess you are repeating the same pattern?

The pattern is: "Choose a whole number. Add to the number you chose the sum of the number and 30. Test whether the result is 516." Think back. Does this remind you of a game described in an earlier section?

In dealing with a somewhat similar pattern in Section 2-4 we found it helpful to represent the number chosen by a symbol n. We can now summarize the pattern we have followed in our problem about votes.

Choose a number \(n \)

Add to the number you chose the sum of the number and 30 \(n + (n + 30) \)

Compare your result with 516 \(\text{Compare } n + (n + 30) \text{ with } 516 \)

Consider \(n + (n + 30) = 516 \).

We have called such a mathematical sentence an open sentence.

We have learned that an open sentence "sorts" the elements of the domain of the variable into two subsets—those elements which make the resulting numerical sentence true, and those which make it false.
The set of elements which make the resulting numerical sentence true is the truth set.

The pattern followed above leads us to conclude: The number of votes Charles received is an element of the truth set of the open sentence

\[n + (n + 30) = 516. \]

Suppose that you know that the truth set of this sentence is \(\{243\} \). Then you can check that 243 is indeed the number of votes Charles received. You can be sure that 243 is the only possible answer to the given problem, because the truth set contains no other numbers.

This example illustrates a general procedure that can be used in solving "word problems" such as the one given. In such problems you are often looking for a certain number (here, the number of votes Charles received). There are three major steps:

1. We find an open sentence such that the number we are looking for belongs to the truth set of the sentence.
2. We find the truth set of the open sentence.
3. We test the elements of the truth set in the given problem.

Step (1) is illustrated in the box before Item 10. Steps (1) and (3) really involve translating the problem into the instructions: Find the truth set of

\[n + (n + 30) = 516 \]

and test each element of the truth set in the original problem.

It takes practice to become skillful at finding open sentences that fit word problems. In this chapter we are going to concentrate on this step—finding open sentences.

In later chapters we will give much attention to finding the truth sets of open sentences, that is, to Step (2).

Our aim in this chapter is to learn to translate word problems into instructions about finding truth sets of open sentences. It will help you to do this if you practice thinking about what problem situations might fit certain mathematical expressions.
In the example, we saw that if the variable \(n \) represents the number of votes Charles received, then the phrase \(n \) represents the number of votes Henry received.

How might a problem involve the phrase \("n + 5" \)? In a problem, \("n" \) might represent "the number of students in your class" or "the number of dollars in your allowance", or "the number of years in your age".

In the following table, you are told what \(n \) represents in a problem. Give an appropriate meaning that \(n + 5 \) might have.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n + 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a certain number</td>
<td>the (sum,difference) of the number and 5.</td>
</tr>
<tr>
<td>the number of students in your class</td>
<td>the number of students if 5 (more,fewer) enrolled in the class.</td>
</tr>
<tr>
<td>number of years in your age</td>
<td>the number of years in the age of your sister who is older years younger than you.</td>
</tr>
</tbody>
</table>

You can see from these examples that the same open phrase may be related to many situations. The meaning you choose for a phrase depends on the interpretation you have chosen for the variable. However, remember that a value of a variable is always a number. Likewise, the corresponding value of an open phrase is a number.
Let us consider the open phrase \(7w\). Which of the following meanings might \(w\) and \(7w\) have in a problem?

[A] \(w\) is the water in the well and \(7w\) is seven times the water in the well.

[B] \(w\) is the number of wolves in a zoo, and \(7w\) is the number of wolves in seven zoos.

[C] \(w\) is the number of dollars I paid for one bushel of wheat and \(7w\) is the number of dollars I paid for 7 bushels of wheat.

[A] Don't you mean the number of gallons of water or the number of pounds of water? Remember that the variable must always represent a number. Go back to Item 23 and read the choices again.

[B] This is a possible choice, but would be a correct one only if you knew that each zoo had the same number of wolves. Is there a better selection?

[C] You are correct. The interpretation about the wolves in a zoo would also be correct, provided you know that each of the seven zoos has the same number of wolves. It is more reasonable to expect each of several bushels of wheat to cost the same amount than to expect each of several zoos to contain the same number of wolves.

The interpretation you use for the variable, and hence for the open phrase, should be sensible. You are not likely to find a situation in which \(y\) represents the number of pencils on your desk and \(2,500,000 + y\) is a phrase related to a reasonable problem. On the other hand, the phrase "2,500,000 + y" might occur in connection with a problem about populations.

Suppose there were 2,500,000 persons in the city of Detroit in 1950. Then the open phrase "2,500,000 + y" could represent:

[A] the number of persons living in Detroit in 1960 if \(y\) is the number by which the population increased in 10 years.

[B] the population of Detroit \(y\) years after 1950.

[C] the increase in population if the population is \(y\) more than 2,500,000.
[A] You are correct.

[B] You have not been careful in translating the open phrase. If \(y \) is the number of years after 1950, what would we say about the population in 1950 + \(y \)? We don't have enough information to write an open phrase for the population. [A] is the correct choice.

[C] The "increase in population" suggests that something is added to 2,500,000, but the open phrase would not indicate the increase. [A] is the correct choice.

25 Choose the sensible meaning for the variable in the open phrase, \(.05 + k \).

R. \(k \) is the number of cows in the barn.
S. The rate of interest is increased by \(k \) per cent.
T. \(k \) is the number of dollars in my purse.

[A] R only [B] S only [C] S and T

S is sensible, and T is also good. I might have \(k \) dollars and \(.05 \) in my purse so that the open phrase \(.05 + k \) represents the number of dollars in my purse. Thus, [C] is the correct choice. Don't you agree that we would not usually add the number of cows and the number \(.05 \)?

Before we consider other open phrases we will review some of the ideas that we will need as we go along.

In the open phrase "3x + 25" the symbol "+" indicates the operation of _______.

The symbol "+" in the open phrase \(x + 25 \) indicates that we are forming the _______ of the two numbers, \(x \) and 5.

The open phrase \(2w + 3 \) might be read:

"3 more than \(2w \)."

The phrase \(2w + 3 \) may also be read:

"\(2w \) increased by _______ ."

\[\frac{15}{2} \]
The phrase \(6t + 7\) may be read: "\(6t \quad \) by \(7\)".

The symbol "\(-\)" indicates that the open phrase \(x - 5\) might be translated: "\(x \quad \) by \(5\)".

Other translations of the phrase \(x - 5\) might be:

\[\frac{5}{x} \text{ than } x \] or "\(5\) is subtracted from \(x\)".

Note: We must be sure in each case that our variable represents a number. We are perfectly correct in saying: "John is \(n\) years old," or "I have \(t\) dollars." In each case, if we substitute a number for the variable, we have a sensible statement. On the other hand, we must avoid saying: "\(d\) is dimes" since that does not indicate whether \(d\) is the number of dimes or the number of cents in the value of the dimes.

In the following table you are given open phrases and you are to complete the table as suggested by the first example. There are many possibilities in each case. Choose a sensible one!

<table>
<thead>
<tr>
<th>Open Phrase</th>
<th>Meaning of Variable</th>
<th>English Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x + 25)</td>
<td>(x) is the number of cents Tom earns in one hour.</td>
<td>The number of cents Tom earned in three hours if he gets a bonus of 25 cents.</td>
</tr>
<tr>
<td>(n + 7)</td>
<td>(n) is John's age now, in years.</td>
<td>Joan's weight in pounds after she lost seven pounds.</td>
</tr>
<tr>
<td>(n - 7)</td>
<td></td>
<td>Larry's wages in dollars for one week.</td>
</tr>
<tr>
<td>(\frac{r}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2r + 5)</td>
<td>(r) is the cost in cents of one bunch of rhubarb.</td>
<td></td>
</tr>
<tr>
<td>(a + b)</td>
<td>(a) is my age in years and (b) is my sister's age in years.</td>
<td></td>
</tr>
</tbody>
</table>
After completing your table, turn to page \(x_{\frac{2}{3}} \) and read the completions suggested there. Although the answers you gave may be different, they should represent numbers. The ideas expressed should be similar.

Of course, the indicated interpretations are just suggestions. It would be fun for you to write others for the given open phrases. Therefore, in the space below we have written only the open phrases— you are to find for each a good English interpretation. Be sure to specify the meaning of the variable first, so that it represents a number, and then to find a corresponding meaning for the open phrase. You must be very alert, since we shall not record these answers and you will have to find your own errors. Keep your results. We shall use them again in the next section.

<table>
<thead>
<tr>
<th>Open Phrase</th>
<th>Interpretation of Variable</th>
<th>English Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x + 25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n + 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n - 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{x}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2x + 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a + b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Go on to Section 5-2 when you have looked over your work and feel it is correctly done. If this program is being used under a teacher's supervision, have your teacher read your interpretations.

5-2. English Phrases and Open Phrases

In the section which you have just completed, you practiced finding interpretations for open mathematical phrases. In this section you will learn to translate English phrases into mathematical language. Once you have learned to do this with ease, you will be able to solve "word problems".

Suppose you were asked to write an open phrase indicating the number of feet in \(y \) yards. Recall that there are 3 feet in 1 yard. Hence

\[
\frac{3y}{1} = \frac{144}{4}.
\]
would be an open phrase for the number of feet in y yards.

Write an open phrase for each of the following English phrases.

1. The number of pints in k quarts is _____.
2. The number of inches in f feet is _____.
3. The successor of the whole number n is _____.
 (For example; 5 is the successor of 4.)
4. If n is an even number the next even number is _____.

5. In one pound there are _____ ounces.
 An open phrase for the number of ounces in k pounds
6. and t ounces is _____.
7. In one quarter there are _____ cents, and in one dollar there are _____ cents. Then an open phrase representing the total number of cents in d dollars and k quarters is _____.
8. An open phrase for the number of cents in d dollars, k quarters, m dimes and n nickels
9. is _____.
10. An open phrase for the number of cents in t dimes and t nickels is _____.

An open phrase for the number of coins in a stack of coins containing d dimes and n nickels
11. is _____.

An open phrase for the number of cents in d dimes and n nickels
* 13. is _____.
Jack has only dimes and quarters. If \(m \) represents the number of quarters he has, and if \(n \) represents the number of dimes he has, then \(m + n \) represents:

- \([A]\) the number of cents Jack has.
- \([B]\) the number of coins Jack has.

The number of coins Jack has is \(m + n \). Hence \([B]\) is correct. Notice that the value of Jack's coins, in cents, is \(25m + 10n \).

In the above examples you were told the number represented by each variable. You probably noticed that, having chosen an interpretation for certain variables, you represented other numbers by phrases involving these variables. In order to do this it was necessary to look carefully at the relationships expressed in the English phrases.

In many problems, you will need to use only a single variable. It will be necessary for you to choose the number you wish to represent by a variable. (There are often two or more possibilities.) You will usually want to express other numbers in the problem as phrases involving the single variable you have chosen.

Write an open phrase for the number of years in John's age if John is seven years older than Dick.

The number of years in John's age is expressed in terms of the number of years in _____ age.

The relationship "older than" can be expressed by

\((\text{addition}, \text{multiplication})\)

We can choose the variable \(n \) to represent the number of years in Dick's age.

Then the number of years in John's age is represented by the phrase _____.

Many problems involve geometric figures. For such problems it helps to draw a diagram.
Suppose a represents the number of units in the length of a rectangle and b represents the number of units in the width.

The number of square units in the area of this rectangle is ab.

The number of units in the perimeter of the rectangle is \(2a + 2b\), or \(2(a + b)\).

The length of a rectangle is 5 feet less than twice the width. Write open phrases for the number of feet in the perimeter and the number of square feet in the area.

Since the length is given in terms of the width, we might choose w as the number of feet in the width. Then an open phrase for the number of feet in the length, expressed in terms of the variable "w", would be $2w - 5$.

The rectangle might be represented by the following figure on which the length and width are expressed in terms of the variable w.

An open phrase for the perimeter of the rectangle is $2(2w - 5) + 2w$, or $2((2w-5)+w)$.

An open phrase for the area of the rectangle is $(w)(2w - 5)$.
The number of feet in the height of a triangle is six more than the number of feet in the base. If \(b \) is the variable representing the number of feet in the base, then \(b + 6 \) is an open phrase for the number of feet in the height.

Indicate on the following figure how this might be shown.

How shall we write an open phrase for the part of the house a man can paint in one day, if he can paint the entire house in \(d \) days?

Suppose that he painted a house in 8 days. How much of the house did he paint in one day?

Similarly, if he can paint the house in \(d \) days, an open phrase for the part of the house he can paint in one day is \(\frac{1}{d} \).

29-34. In Section 5-1 you were asked to write English interpretations of open phrases and to keep these interpretations. Now take your English phrases, cover the mathematical phrases, and look for open phrases to fit. Write these open phrases on your response sheet for Items 29-34. Now uncover the open phrases and check to see if they are the same as the open phrases which you have just written.

If they are not, you have not translated correctly in both directions. Review from the beginning of this chapter, and then continue with Item 35. If you have written the open phrases correctly, go to Item 35.
If a pipe fills $\frac{1}{5}$ of a swimming pool in one hour, the part filled in 3 hours would be $3 \left(\frac{1}{5} \right)$, or $\frac{3}{5}$.

The part filled in x hours would be $\frac{x}{5}$, or $(\frac{1}{5})x$.

The width of a rectangle is 4 inches less than the length. Let the variable y represent the number of inches in the length of the rectangle.

An open phrase for the number of inches in the width is $y - 4$.

In many problems you need facts you have learned in earlier mathematics courses. In working with such problems, it helps to think first about the relationships that you know apply. Remember, drawing a figure is often helpful.

For example, in a problem about a square you might need to remember:

The number of square units in the area of this square is s^2. (s is the number of units in the side.)

The number of units in the perimeter of the square is $4s$.

In a problem about a triangle you may need to remember:

The number of units in the perimeter of this triangle is $a + b + c$. (a, b, and c are the numbers of units in the respective sides.)
The number of square units in the area of this triangle is \(\frac{1}{2}bh \). (\(b \) is the number of units in the base and \(h \) the number of units in the altitude.)

Similarly, the number of square units in the area of this triangle is \(\frac{1}{2}bh \).

We should also look at some basic formulas which are frequently used in everyday problems.

The distance \(d \) in feet traveled by an object which moves at the rate of \(r \) feet per hour for \(t \) hours is given by the sentence \(d = \) __________.

If \(d \) is a distance in miles, \(r \) is the rate in miles per hour, and \(t \) is the number of hours traveled at this rate, the sentence is again __________.

The simple interest \(i \) earned in \(t \) years by \(p \) dollars at \(r \) per year can be stated \(i = \) __________.

The total amount \(A \) after \(t \) years is written __________.

For each of the following write an English interpretation of the given open phrase. In each case, identify the variable explicitly. Some possible interpretations for these are given on page xi.

46. \(n + 7n \)
47. \((2r - 5) \cdot 7 \)
48. \(3x + (2x + 1) + x \)
49. \(5000 + 4y \)
50. \(y + 0.02y \)
51. \(x(x + 2) \) (Hint: This phrase might be interpreted as the expression for the number of square units in an area.)
52. \(\frac{1}{2}y(y - 9) \)
In the following items, identify the variable explicitly and write the open phrase requested. Check your phrases with those on page xi.

55. Write a phrase for the number of inches in the length of a second side of a triangle, if it is three inches longer than the first side.

56. The admission price to a performance of "The Mikado" is $2.00 per person. Write a phrase for the total number of dollars received in terms of the number of people who bought tickets.

57. When a tree grows it increases its radius each year by adding a ring of new wood. If a tree has \(r \) rings now, write an open phrase for the number of growth rings in the tree twelve years from now.

58. Three sons share in an inheritance. Let \(x \) represent the number of dollars in the inheritance.

(a) Write an open phrase for the number of dollars in one son's share which is one-half of the inheritance.

(b) Write an open phrase for the number of dollars of the second son's share, which is fifty dollars more than one-tenth of the inheritance.

(c) Write an open phrase for the third son's share.

(d) Write an open phrase for the sum of the three sons' shares.

Remember to draw a figure for this geometric problem:

59. One side of a triangle is \(x \) inches long and a second side is \(y \) inches long. The length of the third side is one-half the sum of the lengths of the first two sides.

(a) Write an open phrase for the number of inches in the length of the third side.

(b) Write an open phrase for the number of inches in the perimeter of the triangle.

60. A plant grows a certain number of inches per week. It is now 20 inches tall. Write an open phrase giving the number of inches in its height five weeks from now.

61. Suppose that when a man immerses his arms in hot water, the temperature of his feet will rise one degree per minute, beginning at 10 minutes after his arms are put in the water. Write an open phrase for the rise in temperature of the man's feet at any time (more than ten minutes) after his arms are immersed.
5-3. **Interpreting Open Sentences.**

In many "word problems" you are concerned with finding a quantity by the use of certain given conditions. The conditions are stated in English sentences. As we have seen, one step in solving a word problem is to find an open sentence which has in its truth set the number (or numbers) we wish to find. We have already seen how an open phrase can have many interpretations. Now let us examine how we can relate open sentences to problems.

We first review the meanings of some of the verb forms used in mathematics.

<table>
<thead>
<tr>
<th>Verb Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>"is" or "is equal to"</td>
<td>"= "</td>
</tr>
<tr>
<td>"is not equal to"</td>
<td>"\neq "</td>
</tr>
<tr>
<td>"is less than"</td>
<td>"< "</td>
</tr>
<tr>
<td>"is greater than or is equal to"</td>
<td>"\geq "</td>
</tr>
<tr>
<td>"is greater than or is equal to"</td>
<td>"\leq "</td>
</tr>
</tbody>
</table>

Consider the open sentence

$$2x = 500,000$$

We could translate this as "two times x is five hundred thousand". But in using mathematics we often arrive at open sentences like

$$2x = 500,000$$

from more concrete situations. For example, we might know: Twice the number of soldiers in the army is 500,000. Then if x represents the number of soldiers in the army, we have:

$$2x = 500,000$$

One step in finding the number of soldiers in the army is to write the open sentence $2x = 500,000$. (The second step is to find the truth set, which in this case is easy. However, we are not interested here in actually finding truth sets.)

In the following table we have specified an interpretation either for the variable or for the open sentence. Complete the table. Then turn
Consider the open sentence \(45 + 3x = 108 \). If \(x \) is the number of sets of books, this sentence would be suggested by the following situation:

"A book salesman is paid $45 a week, plus $3 for each set of books he sells. In one week he was paid $108."

Another situation, if \(x \) is the number of small cartons, might be:

"A freight shipment consisted of a box weighing 45 pounds and a number of small cartons weighing 3 pounds each. The whole shipment weighed 108 pounds."

10. Which of the following is not a situation that would lead to the open sentence \(45 + 3x = 108 \)?

[A] Mary bought 3 bunches of carrots and a 45-cent box of berries. Her bill came to $1.02.

[B] Jane had a piece of cloth 108 inches long. She used 45 inches for a tablecloth, and divided the rest into three equal lengths for place mats.

[C] John worked the same number of hours each day for three days. He had previously worked 45 hours on the same job. His total pay was $108.

You should have selected [C], which does not lead to the open sentence. The open phrase \(45 + 3x \) concerns the number of hours John worked, but $108 is the total pay.
Let us consider the open sentence

\[t(t+2) = 425. \]

An appropriate situation is the following:

\[
\begin{array}{ccc}
\text{number of feet} & \text{the number of feet in} & \text{A rectangle whose length} \\
in the width of & \text{a rectangle.} & \text{is 2 feet more than} \\
a rectangle. & & \text{its width has an area} \\
& & \text{of 425 square feet.}
\end{array}
\]

Below is a set of open sentences. Write your own English interpretations for each of these. Then turn to page xii for other suggestions.

<table>
<thead>
<tr>
<th>Number</th>
<th>Open Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>(2n = 500)</td>
</tr>
<tr>
<td>12.</td>
<td>(a + (2a + 3a) = (a + 2a) + 3a)</td>
</tr>
<tr>
<td>13.</td>
<td>(5n + 8n = 65)</td>
</tr>
<tr>
<td>14.</td>
<td>(4x = 100)</td>
</tr>
<tr>
<td>15.</td>
<td>(y + 5 = 5 + y)</td>
</tr>
<tr>
<td>16.</td>
<td>(\frac{1}{4}a + \frac{1}{2}b = 6)</td>
</tr>
</tbody>
</table>

We have also worked with sentences such as

\[x + 30 < 40. \]

We could read this as "\(x\) plus 30 is less than 40." Again let us consider where we might have obtained this sentence. Put in the format used before we have

\[
\begin{array}{ccc}
\text{Variable} & \text{Open Sentence} \\
x & x + 30 < 40 \\
\text{number of dollars} & \text{If you give me 30 dollars, I shall still have less than 40 dollars in my wallet.} \\
in my wallet & \\
\text{number of points made} & \text{If the team makes 30 points in the last half, they will still have less than 40 points.} \\
by a football team during the first half. & \\
\end{array}
\]
There are two proposed interpretations of the open sentence:

\[\text{Variable } p \text{ represents the distance of the second-star from the earth, then the first star is } p + 10,000 \text{ light years from the earth. But then the total distance would be } (p + 10,000) \cdot p. \text{ The open phrase } (p + 10,000) + p \text{ does not appear in the original open sentence.} \]

\([A] \) is not correct. If the variable \(p \) represents the distance of the second star from the earth, then the first star is \(p + 10,000 \) light years from the earth. But then the total distance would be \((p + 10,000) \cdot p \). The open phrase \((p + 10,000) + p \) does not appear in the original open sentence.

\([B] \) is the correct choice.

Consider the open sentence:

\[\text{Variable } p \text{ represents the number of quarters in my pocket.} \]

12. \[p \text{ is the number of quarters in my pocket. I have no more} \]

13. \[p \text{ is the number of quarters in my pocket. I have no more than } 5 \cdot p. \]
5-1. **Writing Open Sentences**

By now you should be ready to write open sentences for some problems.

A board 44 inches long is to be cut into two pieces in such a way that one piece will be three inches longer than the other. How long should the shorter piece be?

Since one piece is to be 3 inches longer than the other, we might let \(k \) represent the number of inches in the length of the shorter piece.

The number of inches in the length of the longer piece is given by the phrase \(k + 3 \).

A phrase for the sum of the two lengths is \(k + (k + 3) \).

Since the board is 44 inches long, the sum of the two lengths must be \(44 \) inches.

We thus arrive at the open sentence \(k + (k + 3) = 44 \).

Here is what you should notice in the above example: We have gone from an English sentence about a board to an open sentence about numbers.

English sentence:

Length of shorter piece plus length of longer piece is 44 inches.

Open sentence: \(k + (k + 3) = 44 \)

Since at this time we are not concerned with finding the truth set of the open sentence, we shall not actually answer the question, "How long should the shorter piece be?" It should be clear to you, however, that there probably is a value of \(k \) for which the sentence is true.

A man left $100 for his wife, a son and a daughter. The wife received \(k \) dollars; the daughter received twice as much as the son. If woman did the son receive?

We have: Total three plus total two equals total \(100 \); phrase plus phrase plus $100 = $100.

150
If we let the variable
represent the amount of money the
father received, then the daughter received

A little more money is given to

So the total amount of money given is

This is an appropriate result. However, we might have proceeded in a different way.

If we suppose that we let
represent the variable
represent the larger inheritance,

The daughter received

A phrase for the entire inheritance is

An open sentence for the problem would be

Each of the problems are in form that fits the word problem.

Notice that the sentences we obtain depend upon the meaning of the variable.

If we were to take the first set of each sentence and complete the problem, we would arrive at the same answer for the larger inheritance. In other words, there would be a choice among the possible in the problem, regardless of the method used. In this case, since the question asked is, "How much did the daughter receive?", we would probably prefer the first open sentence, in which the variable represents the amount received by the son.

A square field contains three sides, one of which is 100 feet longer than either of the other two, which are of equal length. How long is each shorter span?

The question asks, "How many of each shorter span?"

A square is cut from each corner of a square piece of paper. The distance from the corner of the square paper to the corner of the new square is

An English sentence associated with the first answer is: "The sum of the lengths of the sides of the square is feet."

If the number of feet in the width of one of the smaller squares is 5, then the number of feet in the
length of the square is

10 + 100
An open sentence for the total amount of the surface area is

$$S = (T + 100) + 2r$$

An open sentence which results from the fact that the volume is 250 cubic inches is

$$V = (T + 100) + 2r = 250$$

In some problems we will find that in stating the given facts and relationships, some verbal details are merely implicit. The nature of the problem requires the implied restrictions. For example, if a man and a woman sail at the same speed in different ships, and the woman overtakes the man, the implied relationship is that we have traveled the same distance. After we have determined that a ship reaches a point in the process, we cover very much the distance at the same time as any other things. Later statements involve

The problem asks for the number of ______

I rowed an hour more than he rowed.

We say "an hour more." In the problem, the amount of the same pace and the explanation that 3 hours is 1 hour more than we both rowed, the answer is ______. The distance I rowed equals ______. Therefore, you traveled ______.

If 3 is the number of hours you traveled, then the distance I rowed is represented by the equation ______.

We row in ______ at ______ times the regular speed.

A man has the same ______. That the distance I rowed is equal to ______. Thus, the equation ______, can be represented by the open.

Distance ______

$$x + 1$$

50

$$d = rt$$

$$50x$$
The distance that you traveled can be represented by the open phrase _____.

Since the number of miles that each of us traveled is the same, we can write the open sentence _____.

A set of 43 students was separated into two classes. One class was assigned to Mr. Smith and the other to Miss Jones. If Mr. Smith had 5 more students than Miss Jones, how many students did Miss Jones have?

A stated relationship is that the number of students in Mr. Smith's class is _____ more than the number in Miss Jones' class.

Using this relationship, if Miss Jones had y students, we can express the number Mr. Smith had as _____.

The English sentence implied is that the number of students in the two classes was _____.

From this, we get the open sentence _____.

Let us consider a different approach to the problem about the number of students assigned to Miss Jones and Mr. Smith. Suppose we decide to write an open phrase using the fact that there were in all 43 students.

If Miss Jones had y students, the number Mr. Smith had can be expressed by the open phrase _____.

Then the English sentence from which we get an open sentence is:

"Mr. Smith had _____ more students than Miss Jones."

An open sentence following from this relationship would be _____.

Notice that these are not the only possible open sentences for this problem. For example, we might have chosen to represent the number of students
assigned to Mr. Smith by n. Then we could use the relationships expressed by the sentence, "Mr. Smith had 9 more students than Miss Jones," to represent the number in Miss Jones' class by the phrase ______.

In this case, the fact that there were 43 students in all would lead us to the open sentence ______.

n + (n-5) = 43

"Jane has $1.00 in her pocket, all in nickels, dimes, and quarters. She has one more quarter than she has dimes, and the number of nickels she has is one more than twice the number of dimes. How many dimes has she?"

Let x represent the number of dimes Jane has in her pocket. Then an appropriate open sentence is ______.

Your result should have had the terms 10x, 5(1 + 1), and 25d + 5 in some order. If your result was incorrect, or if you had trouble, complete pages 2-4. If not, go on to page 5.

In the variable n, represents the number of dimes in the pocket, then the number of quarters is ______.

We can record the number of nickels by the phrasel ______.

Pace said that the only thing about this problem are the values in sets of dimes, nickels, and quarters.

The value in cents of the dimes in her pocket is given by the open phrase ______.

The value in cents of the quarters in her pocket is ______.

The value in cents of the (n + 1) nickels is ______.

The result is a whole number of cents of the dimes, quarters, and nickels, ______.

Now we can fill the open sentence ______.

10d + 25(d + 1) + 5(2d + 1) = 165
For the following problem, which is an appropriate open sentence?

I bought 10 postage stamps, some of them 5-cent stamps and some of the 23-cent stamps. If the total cost was $1.16, how many of each kind did I buy?

[A] \(x \) is the number of 5-cent stamps. \(5x + 8(23 - x) = 116 \).

[B] \(x \) is the number of 5-cent stamps. \(6x - 8(23 - x) = 116 \).

You should note that if \(x \) is the number of 5-cent stamps, \(5x \) is the number of cents spent for the 5-cent stamps. Likewise \(8(23 - x) \) is the number of cents spent for 23-cent stamps. Hence [A] is not correct, since 1.18 is the number of dollars spent.

The number of cents spent is 116, so [B] is correct.

If you have difficulty in finding an appropriate open sentence for a "word problem", it may be helpful to guess at an answer to the question asked.

(This was our method in the first example in this chapter.)

Two cars start from the same point at the same time and travel in the same direction at constant speeds of \(\frac{3}{4} \) and \(\frac{3}{4} \) miles per hour, respectively. In how many hours will they be \(\frac{3}{4} \) miles apart?

If each car travels for \(\frac{3}{4} \) hours, the faster car goes \(\frac{3}{4}(___) \) miles and the slower car goes \(\frac{3}{4}(___) \) miles.

By the conditions of the problem, the faster car has gone \(____ \) miles farther from the starting point than the slower car.

We thus consider the sentence:

\[\frac{3}{4}(___) - \frac{3}{4}(___) \]

This sentence is \(____ \) \(\text{(true}} \)\(\text{false}) \).

However, the sentence

\[\frac{3}{4}(x) - \frac{3}{4}(x) \]

suggests a pattern for the open sentence we are seeking.
If each car travels for \(k \) hours, then an appropriate open sentence would be \(65k - 34k = 35 \).
The number of hours they actually drove is an element of the truth set of this sentence.

Now try your hand at writing open sentences. In each problem state what the variable will represent. Then write an open sentence, using this variable, which sets the problem. When you have finished, check your result with the one given below the problem. It is possible that your answer, while different from the one given, may be correct. If you are not completely sure that you are correct, or if you had difficulty, complete the items in the box following the problem. If you are sure, go on to the next problem.

A rectangle is \(\times \) times as long as it is wide. Its perimeter is \(\times \) inches. How wide is the rectangle?

Let \(w \) be the number of inches in the width. Open sentence: \(2(w) + 2(6w) = 144 \), or \(2(2w + 6w) = 144 \).

If \(w \) is the width in inches of the rectangle, then ______ is the length in inches.

\(w \)

Given the perimeter of a rectangle is the \(\times \) of the length of the four sides, an open phrase for the perimeter is \(2(___) \times ____ \).

The perimeter is ______.

We can write the open sentence

\[2(____) + 2(____) = 144 \]

The measure of the largest angle of a triangle is \(20^\circ \) more than \(2 \times \) the measure of the smallest angle, and the measure of the third angle is \(150^\circ \). What is the measure of the smallest angle? (Remember, the sum of the measures of the angles of a triangle is always \(180^\circ \).)
Let a be the number of degrees in the measure of the smallest angle. Open sentence:

\[s + (2s + 20) + 70 = 180. \]

Let w be the number of inches in the width. Open sentence: $w(w + 5) = 524$.

or

Let a be the number of inches in the length. Open sentence: $a(a - 5) = 524$.

A passenger train travels 50 miles per hour faster than the freight train. At the end of t hours the passenger train has traveled 10 miles farther than the freight train. How fast does the freight train travel?

Let r be the rate, in miles per hour, at which the freight train travels.

Open sentence: $5(r + 20) = 5r + 100$ or

$5(r + 20) = 5r + 100$.

173
If the number of miles per hour the freight train travels is \(r \), then the rate in miles per hour of the passenger train can be represented by the open phrase ______.

At the end of 5 hours, the distance the passenger train has gone is ______ miles.

The freight train has gone ______ miles in the 5 hours.

The distance the passenger train has gone equals the distance the freight train has gone plus ______ miles.

The open sentence is: \((r + 20) \) ______.

\[r + 20 \]

\[5(r + 20) \]

\[5r \]

\[100 \]

\[5(r+20)=5r+100 \]

Word problems about inequalities may also lead to open sentences:

In six months, Mr. Adams earned more than \(\$7000 \). How much did he earn per month?

If \(x \) represents the number of dollars that

Mr. Adams earns per month, then he earns ______ dollars in six months.

An open sentence for this problem is ______.

\[6d \]

\[6d > 7000, \text{ or} \]

\[7000 < 6d \]

A boat traveling downstream goes 13 miles per hour faster than the rate of the current. The boat's velocity downstream is less than \(c \) miles per hour. What is the rate of the current?

When the rate of the current is ______ miles per hour, the boat travels downstream ______ miles per hour.

An open sentence for this problem is ______.

\[c + 12 \]

\[c + 12 < 50 \]

A teacher said, "If I had three times as many students in my class as I now have, I would have at least 5 more than I now have." He wrote a correct open sentence ______ written in the blank card reads the sentence: "\(s \) is the number of students you have in your class."

\[s \geq 8 + 26 \]
Word problems sometimes require compound open sentences.

Two sides of a triangle have lengths of 5 inches and 6 inches. What is the length of the third side?

Recall that the length of any side of a triangle must be less than the sum of the lengths of the other two sides. If \(n \) represents the number of inches in the length of the third side, this condition is expressed by the open sentence:

\[n < 5 + 6 \]

At the same time, the length of the six-inch side must be less than the sum of the lengths of the other two sides:

\[6 < n + 5 \]

Since both of these conditions must be true, a compound English sentence with the connective \(\text{and} \) is implied:

An open sentence which fits the problem is:

\[n < 5 + 6 \quad \text{and} \quad 6 < n + 5 \]

Note that there is a third condition: namely,

\[5 + 6 < n \]

But this is true for all positive values of \(n \). Thus, \(5 + 6 \) adds nothing to the information about the sides of the triangle.

We have said previously that, unless otherwise specified, the domain of the variable will be the set of numbers of arithmetic. However, in statements which refer to people, points, tickets, and the like, it is clear that the domain of the variable is the set of whole numbers. We cannot have two-thirds of a person, one-half of a coin, or .078 tickets. You will find that common sense will help indicate the domain for a given problem.
If \(y \) is the number of boys who are now members of a club, the sentence "\(y + 3 < 10 \) and \(y + 5 > 5 \)" can be used to state the relationship, "If three more boys join the club, we shall have more than 5 and fewer than ______ members."

The domain of the variable \(y \) is the set of ______ counting numbers.

For which of the following word problems is the open sentence not adequate?

[A] The amount of $205 is to be divided among Tom, Dick and Harry. Dick is to have $15 more than Harry, and Tom is to have twice as much as Dick. How must the money be divided?

If Harry has \(n \) dollars, then Dick has \((n + 15) \) dollars and Tom has \(2(n + 15) \) dollars. The open sentence is \(n + (n + 15) + 2(n + 15) = 205 \).

[B] John said, "It will take me more than 2 hours to mow the lawn and I must not spend more than \(h \) hours on the job or I won't be able to go swimming." How much time can be expected to spend on the job?

If John can spend \(x \) hours on the job, an open sentence is \(x > 2 \) and \(x \leq h \).

[C] Bill is 5 years older than Norman, and the sum of their ages is less than 23. How old is Norman?

If \(n \) is Norman's age, then an open sentence is \((n + 5) + n < 23 \).

You should have selected [C] as the problem for which the suggested open sentence was not correct. An open sentence for the problem in [C] might be \(n + (n + 5) < 23 \).
31. One-third of a number added to three-fourths of the same number is equal to or greater than 26. What is the number?

32. A square and an equilateral triangle have equal perimeters. A side of the triangle is five inches longer than a side of the square. What is the length of the side of the square? (Draw a figure.)

33. A student has test grades of 75 and 82. What must he score on a third test to have an average of 83 or higher? If 100 is the highest score possible on the third test, how high an average can he achieve? What is the lowest average he can achieve?

5.5

Review

In some problems we have made such statements as "the width is \(x \) feet." This is to be understood to mean "\(x \) is the number of feet in the width." The value that we assign to a variable is always a number.

A variable may be used to represent the number of feet, pounds, people, coins, etc.

Phrases such as \(x + 3 \), \(x + 10 \), etc., also represent numbers.

A boat starts on a trip of 60 miles. If it travels \(10 \) miles per hour for \(t \) hours, then \(60 - 10t \) is the phrase which represents the number of miles remaining to be traveled.

The base of a triangle is \(b \) inches in length. The altitude to the same base has \(h \) less than \(5 \) times the number of inches in the base. Then \(\frac{1}{3}h(b - h) \) is the phrase representing the number of square inches, area.
Jeff earns $15 this week and deposits it with the bank, the phrase \(x + 15 \) will represent the total \(x \) of dollars in his account.

If one side of a rectangle is \(p \) inches long and the other side is three inches longer, then a phrase for the area of the rectangle in square inches is \(S(p + 3) \).

If four dollars more than twice Betty's allowance is represented by the phrase \(2x + 4 \), then the number of dollars in Betty's allowance is \(x \).

If \(n \) is the number of years in Sam's age now, "Sam is seven years from now" may be expressed by the phrase \(n + 7 \).

If the number of years in Mary's age now is \(m \), ten years ago she was \(m - 10 \) years old.

If at 8 a.m. the temperature is \(t \) degrees and at noon it is 20 degrees warmer, the temperature at noon is \(t + 20 \) degrees.

The cost in cents of \(n \) pencils at \(t \) cents each may be written \(10n + 5y + 6 \).

If \(n \) is a certain number, then a phrase for "this number increased by half the same number" is \(n + \frac{n}{2} \).

"One number \(n \) increased by a second number twice as large as \(n \) may be written \(n + 2n \).

\(7w \) is the number of days in \(w \) weeks.

\(P \) is the population of Lakeside, Kansas. A city with one million more than twice the population of Lakeside has \(2P + 1,000,000 \) people.
If the number of dollars earned each month by Mr. Kincaid is \(x \), in one year he earns \(12x \) dollars.

If Jake travels for \(h \) hours at 40 miles per hour, then he travels \(40h \) miles.

Mr. Brown's taxes are computed at the rate of \(\$25 \) per \(\$1000 \) valuation. If \(y \) is the value of Mr. Brown's property, his tax is \(\frac{y}{1000} \times 25 \) dollars.

If Earl's weight in pounds is \(p \), then a phrase representing the weight of an object weighing forty pounds more than Earl is \(p + 40 \).

If \(u \), \(v \), and \(w \) are the number of degrees in each angle of a triangle, then \(u + v + w = 180 \) can be interpreted as a statement that the sum of the number of degrees in the angles of a triangle is \(180 \) degrees.

\(2(z + 13) = 360 \) is a sentence relating the area and the dimensions of a certain rectangle. If the width of this rectangle is \(z \) feet and its area is 360 square feet, then the length must be \(\frac{360}{z} \) feet more than the width.

If \(x \) is Mr. Jones' age in years, then \(x < 80 \) is an open sentence for the statement, "Mr. Jones is \(x \) years old."

"Bill bought \(b \) bananas at 9 cents each and paid 54 cents" may be translated into the sentence \(9b = 54 \).

If \(b \) is the number of dollars in Cheryl's allowance, the statement, "Janice's allowance is one dollar more than twice Cheryl's and is also two dollars less than three times Cheryl's", may be written as \(2b + 1 = 3b - 2 \).

If \(z \) is the population of Spillville, which is less than one million in population, we can write: \(z < 1,000,000 \).
Two million is more than twice the population of any city in Colorado. If \(p \) is the number of people in a city in Colorado, then \(2,000,000 > 2p \).

The length of the side of a certain square is \(x \) feet. The length of a rectangle is \(x + 1 \) feet and its width is \(x - 1 \) feet. A sentence stating that the square has a larger area than the rectangle is:

\[x^2 > (x+1)(x-1) \]

The tax on real estate is calculated at \$34.00 per \$1000 valuation. The tax assessment on property valued at \(y \) dollars is \$348.00. Translating this into a sentence would give:

\[\frac{y}{1000} = 348 \]

If John added \(40 \) pounds to his weight, he would still not weigh more than \(152 \) pounds. If John weighs \(w \) pounds, translating the foregoing into a sentence would give:

\[w + 40 \leq 152 \]

"The distance from Dodge City to Oklahoma City, 260 miles, was traveled in \(t \) hours at an average speed of 40 miles per hour on July 4." In order to find the number of hours traveled, we may write the sentence:

\[40t = 260 \]

\(h > 14,000 \)

A book 1.4 inches thick has \(n \) sheets; each sheet is 0.003 inches thick, and each cover is \(\frac{1}{10} \) inches thick and is blue. An open sentence we might use to find the number of sheets is:

\[1.4 = 0.003(n) + 2(\frac{1}{10}) \]

Carol, who is 16 years old and has two brothers, is \(s \) years older than her sister. If her sister is \(4 \) years older than her, an open sentence which may be used to find her sister's age is:

\[s + 4 = 16 \]
Sometimes there is information in a word problem that is not needed to answer the question asked. In Item 36, the fact that the cover is blue has nothing to do with the thickness of the book. The fact that Carol has two brothers is not needed in Item 35 to write an open sentence representing her sister's age.

37 If a whole number is n, then its successor is _______.

38 "The sum of a whole number and its successor is 576" could be stated: _______.

39 Of two successive whole numbers one must be even and the other odd. Hence their sum _______.

40 It follows that n + (n + 1) = 576 is _______.

for all whole numbers n.

7 is an odd number. The next consecutive odd number is 7 + 2, or 9. If n is an odd number, the next consecutive odd number is _______.

The sum of two consecutive odd numbers is 75. If n is an odd number, the open sentence corresponding to the given information is _______ = 75. Note that this sentence is false for all whole number values of n, because the sum of two odd numbers always is _______.

A board 16 feet long is cut in two pieces such that one piece is one foot longer than twice the other. If the shortest piece of the board is r feet long, then the other piece is _______ feet long. A sentence for the problem is _______.

Polly earns $2.25 babysitting for 3 hours at x cents an hour. A sentence for this would be: _______.

Ann has 16 more books than Beth. If Beth has k books, a sentence showing that together they have more than 28 books would be: _______.

The phrase _______ represents the number of books Ann has.
The sum of two numbers is 42. If the first number is represented by \(n \), then a phrase for the second number would be _____.

A number is increased by 17 and the sum is multiplied by 3. If \(n \) represents the number, we could write a sentence stating that the resulting product equals 192 as _____.

If 17 is added to a number and the sum is multiplied by 3; the resulting product is less than 192. To restate this as an open sentence, if \(n \) represents the number, we would have: _____.

One number is 5 times another. The sum of these two numbers is 15 more than 4 times the smaller. If the smaller number is \(n \), then an open sentence is _____.

Mr. Barton paid $176 for a freezer which was sold at a discount of 12% of the marked price. To restate this by a sentence, with the marked price as \(m \) dollars, we would write: 176 = m - _____.

A man's paycheck for a work week of 48 hours was $166.40. He is paid at the rate of \(\frac{3}{2} \) times his normal rate for all hours worked in excess of 40 hours. If the rate of pay for one hour's work is \(x \) dollars, then _____ is the number of dollars for one hour's work at the overtime rate.

An open sentence corresponding to the given information would be: \((\frac{3}{2}x \) • 8) = 166.40.

A farmer can plow a field in 7 hours with one tractor and in 5 hours with another tractor. Let us find out how long it would take him to plow the field using both tractors.

If he uses the first tractor, in one hour he can plow _____ of the field.
Using the first tractor, in two hours he can plow \(\frac{2}{5} \) of the field.

But using the second tractor for two hours, he can plow \(\frac{2}{7} \) of the field.

If he has both tractors going for 2 hours, he can plow \(\frac{2}{5} + \frac{2}{7} \) of the field.

If both tractors are used for \(x \) hours, the part of the field that is plowed can be represented by the phrase \(\frac{x}{5} + \frac{x}{7} \).

The entire field can be indicated by "1". Hence if \(x \) is the number of hours it takes to plow the entire field, we can write: \(\frac{x}{5} + \frac{x}{7} = 1 \).

Test your common sense. Then look on page xiii for the answer.

A man with five dollars in his pocket stops at a candy store on his way home with the intention of taking his wife two pounds of candy. He finds candy by the pound box selling for $1.69, $1.95, $2.65, and $3.15. He leaves the store with two one-pound boxes of candy.

a) What is the smallest amount of change he can have?

b) What is the largest amount?

It is a good idea to think back over what you have learned in earlier chapters. In Chapter 6 we will be using the number line a great deal.

If you feel that you need review, do Items 63 to 79. If not, go to Chapter 6.

Graph these open sentences:

63 \(x = \frac{2}{7} \)

64 \(x \neq \frac{2}{7} \)

65 \(x < \frac{2}{7} \)
Given the compound open sentence: "\(x = 2 \) or \(x > 5 \)", we would graph this as in the following steps:

- the graph of \(x = 2 \),
- the graph of \(x > 5 \),
- the graph of \(x = 2 \) or \(x > 5 \),

Given the compound open sentence: "\(x = 2 \) and \(x > 5 \)", we would graph this as follows:

Given the compound open sentence: "\(x > 2 \) or \(x < 5 \)", we would graph this as in the following steps:

- the graph of \(x > 2 \),
- the graph of \(x < 5 \),
- the graph of \(x > 2 \) or \(x < 5 \),

Given the compound open sentence: "\(x > 2 \) and \(x < 5 \)", we would graph this as follows:
Determine an open sentence for each of the following graphs:

77 An open sentence is _______.

78 An open sentence is _______.

79 An open sentence is _______.

"x ≤ 6", or "x ≥ 6" or "0 ≤ x ≤ 6"
"2 < x ≤ 6", or "x < 6 and x ≥ 6" or "x > 2"
Chapter 6
THE REAL NUMBERS

6-1. The Real Number Line

The number line above reminds us that we have associated numbers with
the points to the right of the point represented by zero. In this chapter
we shall associate numbers with points to the left of zero and begin the
study of the set of numbers corresponding to all of the points on the number
line.

The point B is one unit to the right of zero and
is associated with the number ______.

The point A is one unit to the left of zero. We
shall associate the number -1 with this point.
"-1" is read "negative 1". (Notice how high the dash
in the numeral "1 is written.)

"-1" is read "______", and represents a new number
which we shall soon find to be very useful;

"-2" is read "______".

"Negative 3" would be written "______".

"Negative 53" is _______ written "53".

(correctly, incorrectly)

Point C is located two units to the left of zero and
is associated with the number ______. Point D is
associated with the number ______.
The point ten units to the left of zero is associated with the number ______, which is called the coordinate of that point.

"10" is read "______".

"1000" is the coordinate of the point which is ______ units to the ______ of zero.

"8" is the ______ of a point which lies ______ units to the left of zero.

This process of locating points to the left of 0 continues without end. We may indicate this by writing these numbers as members of the set \{..., -3, -2, -1\}. This set may also be written \{ -1, -2, -3, ... \}.

If we form the union of this set with the set of whole numbers \{0, 1, 2, 3, ... \} we obtain the set of integers:

\{..., -3, -2, -1, 0, 1, 2, 3, ... \}.

Note that the counting numbers are elements of the set of integers. These are called the positive integers. The elements -1, -2, -3, ..., are also integers and are called the negative integers. 0 is an integer but is neither positive nor negative.

This is indicated in the following diagram:

The positive integers are associated with points to the ______ of 0.

The negative integers are associated with points to the ______ of 0.

0 is an ______ which is neither ______ nor ______.
If \(W \) is the set of whole numbers, then
\[W = \{0, 1, 2, 3, \ldots\}. \]

If \(P \) is the set of positive integers, then
\[P = \{1, 2, 3, \ldots\}. \]

If \(I \) is the set of integers, then
\[I = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}. \]

If \(L \) is the set of non-negative integers, then
\[L = \{0, 1, 2, 3, \ldots\} \]
and \(L \) is the same as the set of
positive numbers.

If \(N \) is the set of counting numbers, then
\[N = \{1, 2, 3, \ldots\} \]
and \(N \) is the same as the set of
integers.

If \(Q \) is the set of non-positive integers, then
\[Q = \{0, -1, -2, -3, \ldots\} \]

If \(S \) is the set of negative integers, then
\[S = \{-1, -2, -3, \ldots\}. \]

Draw the graphs of the following sets.

29. \(\{0, 3, 5, 7, 11\} \)

30. The set of positive integers less than 7.

Let us recall some of the things which we have learned about rational numbers:

\(\frac{1}{2} \) and \(0.8 \) are examples of rational numbers which

are whole numbers.

(are, are not)

But \(13 \) is a whole number which is not a rational number.
If a number can be named by the indicated division of a whole number by a counting number, the number is a **rational** number.

On the number line, the point \(\frac{12}{5} \) is located \(\frac{2}{5} \) of a unit to the right of the point 2.

Proceeding as we did when we associated rational numbers with points to the right of zero, we can subdivide the intervals to the left of zero and label points within the intervals.

Thus, the point which lies \(\frac{2}{5} \) of a unit to the left of \(-2\) is labeled \(-\left(\frac{12}{5}\right)\). \(-\left(\frac{12}{5}\right)\) is read "negative twelve-fifths". In this way \(-\left(\frac{12}{5}\right)\) is the same distance to the left of 0 as \(\frac{12}{5}\) is to the right of 0.

\[
\begin{array}{cccccc}
\ldots & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\ldots & \left(-\frac{12}{5}\right) & \left(-\frac{2}{5}\right) & \left(\frac{2}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right) & \left(\frac{12}{5}\right)
\end{array}
\]

In general, if the rational number \(r \) is the coordinate of a point to the right of zero, \(-r\) will be the coordinate of a point which lies exactly as far to the left of zero as the point with coordinate \(r \) lies to the right of 0. This number \(-r\) is called a **negative rational number**. The union of the set of rational numbers of arithmetic and the set of negative rational numbers is the set of rational numbers. By the **positive rational numbers** we mean those rational numbers which correspond to points to the right of zero.

Some other rational numbers are graphed on the number line below:

\[
\begin{array}{cccccc}
\ldots & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 \\
\ldots & \left(-\frac{7}{2}\right) & \left(\frac{1}{4}\right) & \left(\frac{2}{3}\right) & \left(\frac{3}{5}\right) & \left(\frac{4}{7}\right) & \left(\frac{5}{8}\right) & \left(\frac{6}{9}\right) & \left(\frac{7}{10}\right) & \left(\frac{8}{11}\right) & \left(\frac{9}{12}\right)
\end{array}
\]

35 The number \(-\left(\frac{7}{2}\right)\) is read "______".

36 Negative eleven-fourths is written ______.

37 We note that \(-\left(\frac{3}{2}\right)\) is to the ______ of \(-\left(\frac{1}{4}\right)\).
The rational numbers to the right of zero are called positive rational numbers.

The rational numbers to the left of zero are called negative rational numbers.

Among the rational numbers are numbers like \(-6, -1, 12, 17\). These numbers are also called integers.

We have seen that every integer is a rational number, but numbers like \(\frac{1}{2}, \sqrt{16}, 1.9\) are rational numbers which are not integers.

Thus, we can say that the set of integers is a subset of the set of rational numbers.

You recall that there are points to the right of zero with coordinates that are not rational numbers. Similarly, there are points to the left of zero with coordinates that are not rational numbers.

Let \(P\) be a point to the left of \(0\) which is not labeled by a negative rational number. We can locate a point \(Q\) which is the same distance from \(0\), but to the right of \(0\).

Let \(x\) be the coordinate of the point \(Q\). To follow the scheme that we used for negative rational numbers, we must label the point \(P\) with the symbol \(-x\).

Since the coordinate of \(P\) is not a rational number, \(x\) is a positive rational number, but \(x\) is a number of arithmetic.

\(-x\) is a rational number and \(x\) is a number of arithmetic.
In this manner we can associate every point on the number line with some number. The set of all numbers associated with points on the number line is called the set of real numbers. The numbers to the left of zero are called the negative real numbers and those to the right are called the positive real numbers. Remember that zero is a real number, but is neither positive nor negative. Another name for the set of numbers of arithmetic is the set of non-negative real numbers.

We emphasize the fact that now every point on the number line has a real number as coordinate by calling the number line the real number line.

A real number which is not a rational number is called an irrational number. We have not as yet shown how to locate a point on the number line whose coordinate is not a rational number.

Let us consider the positive real number whose square is equal to 2. It is customary to represent this number by the symbol \(\sqrt{2} \). How can we locate the point on the number line which corresponds to \(\sqrt{2} \)? Consider the square of side 1.

![Diagram](image)

You may recall the Pythagorean Theorem, which says that in any right triangle the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs. In our case this would tell us that

\[
d^2 = 1^2 + 1^2
\]

or

\[
d^2 = \sqrt{2}
\]

Hence, the length of the diagonal of the square is \(\sqrt{2} \).

In order to locate the point with coordinate \(\sqrt{2} \), all we have to do is to transfer the length of the diagonal to our number line. This we can do by drawing a circle with center at the point 0 on the number line and with radius equal to the length of the diagonal of the square. This circle cuts the number line in two points, whose coordinates are the real numbers \(\sqrt{2} \) and \(-\sqrt{2} \).
Study the discussion above. What is its main purpose?

[A] To show that in any right triangle, \(c^2 = a^2 + b^2 \).

[B] To show how the point on the number line corresponding to the irrational number \(\sqrt{2} \) can be determined.

[C] To show that \(\sqrt{2} \) is the length of the diagonal of a square of side 1.

We stated earlier that there are points on the number line corresponding to irrational numbers. The purpose of the preceding discussion is to demonstrate how to locate the point on the number line corresponding to the irrational number \(\sqrt{2} \). [B] is the correct answer.

The number 1.4 is sometimes used as an approximation for \(\sqrt{2} \). Do you think 1.4 is actually equal to \(\sqrt{2} \)?

\[
\begin{align*}
1.4 \times 1.4 &= ______ \\
\text{Perhaps } 1.41 &= \sqrt{2} ! \\
1.41 \times 1.41 &= ______ \\
(1.41)^2 &= (1.4)^2 \\
\text{is } (1.4)^2 &\text{ or } (1.41)^2 ? \\
1.41^2 &= 2 \\
1.999396 &= ______ \\
\text{Although we could find rational numbers with squares which are near to } 2, \text{ we are never able to find a number whose square is equal to } 2. \text{ Later, you will see a proof that } \sqrt{2} \text{ is irrational.}
\end{align*}
\]

Of course there are many other irrational numbers. It can be shown that numbers like \(6 + 3\sqrt{2} \) are irrational. Also if a whole number is not the square of another whole number its square root is irrational. For example, \(\sqrt{5}, \sqrt{6}, \text{ etc.} \), are irrational numbers.

Another type of irrational number is the number \(\pi \).
The irrational number π is the ratio of the circumference of a circle to its diameter. Thus, a circle whose diameter is of length 1 has a circumference of length π. Imagine such a circle resting on the number line at the point 0. If the circle is rolled on the line, without slipping, one complete revolution to the right it will stop on a point. What is the coordinate of this point?

- [A] 1
- [B] -1
- [C] π
- [D] $-\pi$

As the circle rolls one revolution, it will roll a distance of one complete circumference of the circle. Since the circumference of the circle with diameter 1, i.e., π, the point on which it stops is π units to the right of zero. Thus, the point on which the circle stops has coordinate π. [C] is the correct choice.

The following diagram may help to review the sets of numbers we have discussed.

```
REAL NUMBERS
Rational Numbers
like $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{5}$, $\sqrt{7}$

Integers
Negative  Zero  Positive
like $-\frac{12}{3}$, 0, $\frac{3}{2}$

Rational Numbers Which are not Integers
like $\frac{1}{2}$, $\frac{3}{2}$, $\sqrt{3}$, $\pi$

Refer to the diagram above to answer the following:

- All of the sets of numbers we have studied are subsets of the set of _______ numbers.
- The set of integers is a subset of the set of _______ as well as a subset of the set of real numbers.
- The set of positive integers is a _______ of the set of integers.
```
We could think of our work so far as successive stages of extending our idea of "numbers" until we finally obtain the set of real numbers. Now every point on the number line can be named by a real number, and every real number names a point on the number line.

After you have worked Items 61-80, turn to page 1 to check your work.

Draw the graphs of the following sets:

61. \((0, 3), 5, \left(\frac{1}{2}\right)\) \hspace{1cm} 65. \((\sqrt{2}, \sqrt{3}, 3, -3)\)
62. \(\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}, -\frac{1}{3}\right)\) \hspace{1cm} 66. \((1, 1 + \frac{1}{2}, 1 + \frac{1}{2})\)
63. \(\left(\frac{3}{2}, 5, 7, -\left(\frac{11}{3}\right)\right)\) \hspace{1cm} 67. \((\frac{1}{2}), (\frac{1}{2})^2, (\frac{5}{4}), (3 - 3))\)
64. \(\left(-\frac{12}{7}, -\left(\frac{5}{2}\right), \frac{6}{7}, \frac{7}{12}\right)\) \hspace{1cm}

Of the two points whose coordinates are given in the pairs below, which is to the right of the other?

68. \(3, -4\) \hspace{1cm} 73. \(-\left(\frac{5}{2}\right), \left(\frac{10}{4}\right)\)
69. \(5, -4\) \hspace{1cm} 74. \(0, 3\)
70. \(-2, -4\) \hspace{1cm} 75. \(-4, \sqrt{2}\)
71. \(-\sqrt{2}, 1\) \hspace{1cm} 76. \(-\left(\frac{16}{3}\right), -\left(\frac{21}{6}\right)\)
72. \(-\left(\frac{5}{2}\right), 0\) \hspace{1cm} 77. \(-\left(\frac{1}{2}\right), \frac{1}{2}\)

78. Is \(\sqrt{2}\), a whole number? An integer? A rational number? A real number?
79. Is \(-\left(\frac{10}{3}\right)\), a whole number? An integer? A rational number? A real number?
80. Is \(-\sqrt{2}\), a whole number? An integer? A rational number? A real number?
6-2. **Order on the Real Number Line**

How did we describe order for the positive real numbers? Let us review, using the numbers 5 and 6.

We agree that the two sentences:

1. "5 is to the left of 6 on the number line," and
2. "5 is less than 6" say the same thing about 5 and 6.

"5 is less than 6" means that 5 is to the left of 6 on the real number line.

"5 is less than 6" may be written \(5 < 6\).

"5 is to the left of 6" may also be written \(5 (<,=,>) 6\).

5 \(5 < 6\) is a true sentence.

Thus for a pair of positive real numbers, "is to the left of on the number line" and "is less than" both describe order.

What shall we mean by "is less than" for any two real numbers, whether they are positive, negative or 0? We agree that "is less than" will mean "is to the left of on the real number line".

Let us look for a justification in common experience. All of us are familiar with thermometers and are aware that scales on thermometers use numbers above 0 and numbers below 0, as well as 0 itself. We know that the colder the weather, the lower on the scale we read the temperature. If we place a thermometer in a horizontal position as shown, we see that it resembles part of our real number line. When we say "is less than" ("is a lower temperature than"), we mean "is to the left of" on the thermometer placed in a horizontal position, as shown.

![Thermometer diagram]

5 \(15\)

186
Refer to the diagram of the thermometer and find which numerical sentence below describes the order of the temperatures, \(5^\circ\) and \(10^\circ\).

- [A] \(5 < 10\)
- [B] \(10 < 5\)

10 is to the left of 5. Since "<" means "is less than" which can be interpreted as "is to the left of", \(10 < 5\) is correct.

Thus we extend our former meaning of "is less than" to the set of all real numbers. We agree that:

"is less than" for real numbers means "is to the left of on the real number line". If \(a\) and \(b\) are real numbers, "\(a\) is less than \(b\)" is written

\[a < b.\]

(Now and in the future a variable is understood to have as its domain the set of real numbers, unless otherwise stated.)

Since "is less than" for real numbers means "is to the left of on the real number line", then "is greater than" should mean "is to the right of on the real number line".

If \(a\) and \(b\) are real numbers, "\(a\) is greater than \(b\)" will be written as

\[a > b.\]

\(4 > 3\) is \(\text{true, false}\) \(\left(\langle, \rangle\right)\)

\(3 \in \langle , , \rangle\) is true.

Since 0 is \(\text{less than}\) \(4\), 0 is to the right of \(4\).

Since 0 is \(\text{less than}\) any negative real number, 0 is to the \(\text{left}\) of all negative real numbers.

Since 0 is \(\text{less than}\) any positive real number, 0 is to the \(\text{left}\) of all positive real numbers.
Let us extend the meaning of the other verb forms to the set of all real numbers.

If \(a \) and \(b \) are real numbers, "\(a \) is less than or equal to \(b \)" is written "\(a \leq b \)" and "\(a \) is greater than or equal to \(b \)" is written "\(a \geq b \)".

\[
-\left(\frac{3}{5}\right) \leq -\left(\frac{3 + 0}{5}\right) \quad \text{is} \quad \text{true, false}
\]

\[
\frac{3}{(\leq, \geq)} - 1 \quad \text{is true.}
\]

We have seen that the symbol "\(< \)" can be used to mean "is to the left of" or "is the same point as". We may conclude that the symbol "\(\geq \)" means "is to the right of" or "is the same point as".

"Is not to the left of", or "is not less than", is written "\(\not< \)" or "\(\not\leq \)". The symbol used for "is not to the right of", or "is not greater than", is written ___.

\[
\not< 8 \quad \text{is} \quad \text{true, false}
\]

\[
\not\leq 3.5 \quad \text{is} \quad \text{true, false}
\]

\[
\not> 3.5 \quad \text{is} \quad \text{true, false}
\]
If you found it difficult to answer the questions in Items 19-26, complete Items 27-35; otherwise, continue with Item 36.

Is the sentence \(-4 \leq -3.5\) true or false? Let us locate these points on the number line.

Since \(-4\) is to the left of \(-3.5\) on the number line, then \(-4 \leq -3.5\). We can conclude that the sentence \(-4 \leq -3.5\) is true.

For each of the following sentences determine which are true and which are false.

1. \(-2 \leq -7\)
 - false
2. \(7 > -3\)
 - true
3. \(-1 \leq -4\)
 - true
4. \(-4 > -5\)
 - false
5. \(-3 < -4\)
 - true
6. \((-4) / (-2) = 2\)
 - false

Consider a positive real number, \(p\), and a negative real number, \(n\). Are all of the following sentences true?

\(n < p\), \(n < 0\), \(1 / n < 0\)

All of these sentences are true sentences. Clearly if \(n\) is any negative number and \(p\) is any positive number then \(n < p\) and \(1 / n < 0\). Remember that \(p \geq n\) and \(p \leq n\) are just other ways of writing \(n < p\).
Previously we have graphed inequalities with the domain of the variable the set of numbers of arithmetic. In the same manner, we can graph the inequalities with domain of the variable the set of real numbers.

For example:

Open sentence:

- Graph: (the domain is the set of real numbers)

\[x < -1 \]
\[x = -2 \]
\[x < 2 \]

Graph the truth set of each of the following open sentences.

- 27. \(y < -2 \) and \(c > -2 \)
- 28. \(u \neq 0 \) and \(a \leq 3 \)
- 29. \(v \geq 2 \)
- 30. \(y > 2 \) and \(u < -3 \)

The correct graphs are to be found on page 42.

Which two of the open sentences below have as their truth set the set of all real numbers not equal.

- \(x \leq -2 \)
- \(x \neq -2 \)
- \(x = -2 \)
- \(x > -2 \)

Which two of the open sentences below have as their truth set the set of all real numbers less than or equal to.

- \(v \geq 0 \)
- \(v = 0 \) and \(v = -2 \)
- \(v < 0 \)
- \(v < -2 \)
Find the truth set for each of the following open sentences if the domain of the variable is the set of integers.

49 \(-2 < p\) and \(p < 3\) \(\{1, 0, 1, 2\}\)

50 \(p \leq -2\) and \(-4 < p\) \(\{-2, -3\}\)

51 \(p = 2\) or \(p = -5\) \(\{-5, 2\}\)

In Items 52-55 we shall examine pairs of real numbers. See whether you can discover the property of order suggested by these examples. It may help to use the number line to answer these questions. In each of the following groups of three sentences, select the true sentence.

52 \(-2 < -1.6\); \((-2 = -1.6); \(-1.6 < -2\) \(-2 < -1.6\)

53 \(0 < -2\); \(0 = -2\); \(-2 < 0\) \(-2 < 0\)

54 \(-2 < 2\); \(-2 = 2\); \(2 < -2\) \(-2 < 2\)

55 \(.01 < \left(\frac{1}{100}\right)\); \(.01 = \left(\frac{1}{100}\right); \left(\frac{1}{100}\right) < .01\) \(.01 = \left(\frac{1}{100}\right)\)

Observe that in each of the three groups of sentences one and only one sentence is true. This illustrates a simple but highly important fact about order for the real numbers. For any real numbers, \(a\) and \(b\), either they are the same number, or the first is less than the second or the second is less than the first. (Only one of these is true.)

This is called the comparison property, which may be stated:

If \(a\) and \(b\) are real numbers, then exactly one of the following is true:

\(a < b, \ a = b, \ b < a\).

The comparison property is true in the set of numbers of arithmetic as well as in the set of real numbers. While we did not actually state this property in so many words, we have assumed it.
Another way we may state the comparison property is:
If \(m \neq n \) then either \(m < n \) or \(n < m \).

Suppose the value of \(x \) is such that we know that \(x = 4 \) is false and that \(4 < x \) is also false, we may conclude: \(x < 4 \) is true.

For any two real numbers, the comparison property is stated in terms of "<". Can we state this property in terms of ">"?

Think of a point with coordinate 5 on the number line. Let \(x \) be any other real number. Then exactly one of the following is true:
- 5 is to the right of \(x \),
- \(x \) is to the right of 5.

The comparison property may also be stated:

If \(a \) and \(b \) are real numbers, then exactly one of the following is true:
- \(a \), \(b \), \(a > b \), \(a = b \), \(b > a \).

Which of the following is correctly stated?

I. If \(a \) and \(b \) are real numbers, then exactly one of the following is true:
 - \(a \leq b \), \(b \leq a \).

II. If \(a \) and \(b \) are real numbers, then exactly one of the following is true:
 - \(a \geq b \), \(b > a \).

[A] I [B] II [C] I and II

If \(a = 3 \) and \(b = 3 \) we see that \(a \leq b \) and \(b \leq a \) are both true sentences. Thus I should read:
- If \(a \) and \(b \) are real numbers then exactly one of the following is true:
 - \(a \leq b \), \(b < a \).

II is correctly stated. Thus, the correct choice is [B].
If \(a \) and \(b \) are real numbers, and both \(a \leq b \) and \(b \leq a \) are true, we may conclude \(a = b \).

Another property of order is suggested by the following argument. Suppose \(a \), \(b \), and \(c \) are real numbers such that, on the number line, \(a \) is to the left of \(b \) and \(b \) is to the left of \(c \). Then we see that \(a \) is to the left of \(c \). This is an instance of the transitive property.

We can state the transitive property using the verb form "<":

If \(a \), \(b \), and \(c \) are real numbers and

\[a < b \text{ and } b < c, \]

then \(a < c \).

Although this property has not been formally stated for the numbers of arithmetic, we know from the number line and the definition of "less than" that this property is true in the set of numbers of arithmetic.

Since \(\frac{14}{5} < 3 \), and \(3 < \frac{12}{5} \), we may conclude that \(\frac{14}{5} < \frac{12}{5} \), using the \(<\) property.

\[\frac{14}{5} \quad \frac{12}{5}, \quad \text{using the } \langle \rangle \text{ property.} \]

If \(x \) is a negative number, then \(x \langle 0 \);

if \(y \) is a positive number, then \(0 \langle y \);

hence, \(x \langle y \).

Suppose we know that \(m \) is less than \(\frac{1}{4} \) and that \(\frac{1}{4} \) is less than \(n \), it follows from the \(<\) property

that \(m \langle n \).

Which is true, \(\frac{1}{5} \langle \frac{1}{4} \) or \(\frac{1}{5} \langle \frac{1}{5} \)?

One way to answer this question is to apply the multiplication property of \(<\) to each number to get

\[\frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20} \]

\[\text{and} \quad \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \]

Then \(\frac{1}{5} \langle \frac{1}{8} \langle \frac{1}{4} \langle \frac{1}{5} \), since \(\frac{1}{8} \), \(\frac{1}{4} \), \(\frac{1}{5} \) is to the left

or \(\langle \langle \).

\[\langle, \langle, \langle, \langle, \langle \]

\[x \langle 0 \quad 0 \langle y \quad x \langle y \]

\[\text{transitive} \quad 1 < x \]

\[m \langle n \]

\[\frac{15}{20} \]

\[\frac{16}{20} \]

\[\langle \]

\[2y. \]

\[2y. \]
Suppose you wanted to compare \(\frac{137}{113} \) and \(\frac{167}{55} \).

Could the above method be used? The answer, of course, is "yes". However, perhaps there is a simpler way of doing this.

Recall that we can always find a number between any two given numbers. Thus we can find some number \(n \) which lies between the numbers \(\frac{167}{55} \) and \(\frac{437}{113} \).

If we can compare \(\frac{337}{113} \) and this number \(n \), and also \(\frac{167}{55} \) and the same number \(n \), then we can say one of the following:

\[
\frac{337}{113} < n \quad \text{and} \quad n < \frac{167}{55}
\]

or

\[
\frac{167}{55} < n \quad \text{and} \quad n < \frac{337}{113}
\]

One of these must be true by the property of order.

If \(\frac{337}{113} < n \) and \(n < \frac{167}{55} \) is true, then we can conclude that \(\frac{337}{113} < \frac{167}{55} \) by the property of transitive order.

If \(\frac{167}{55} < n \) and \(n < \frac{337}{113} \), then we can conclude that \(\frac{167}{55} < \frac{337}{113} \) by the property of transitive order.

Try to find some number which will make either Item 74 or Item 75 true, and then answer the question:

Which is the lesser of the numbers \(\frac{167}{55} \) and \(\frac{337}{113} \)?

If you had trouble completing Item 74, do Items 80-89. If not, continue with Item 77.
Clearly \(\frac{167}{55} \) is "near to" the integer \(3 \) since

\[
3 = \frac{167}{55}
\]

On the other hand, if we write \(3 \) as \(\frac{337}{113} \)

we can conclude that

\[
\frac{337}{113} < 3
\]

Which of the following is a true statement?

\[
\frac{337}{113} < 3 < \frac{167}{55} \quad \text{or} \quad \frac{167}{55} < 3 < \frac{337}{113}
\]

Finally, we can conclude

\[
\frac{337}{113} = \frac{167}{55}
\]

Compare the following pairs of real numbers:

1. \(1.9 \) and \(\frac{364}{197} \)

2. \(\frac{5}{4} \) and \(\frac{3}{2} \)

3. \(\frac{2}{3} + \frac{7}{9} \) and \(\frac{1}{2} + \frac{3}{4} \)

4. \(\frac{2}{7} + \frac{3}{7} \) and \(\frac{1}{2} + \frac{1}{3} \)

5. \(\frac{2}{5} \) and \(\frac{5}{7} \)

6. \(\frac{3}{7} \) and \(\frac{3}{7} \)

7. \(\frac{5}{8} \) and \(\frac{4}{7} \)

8. \(\frac{7}{12} \) and \(\frac{1}{2} \)

9. \(\frac{1}{4} \) and \(\frac{9}{20} \)

10. \(\frac{3}{4} \) and \(\frac{3}{4} \)

11. \(\frac{3}{5} \) and \(\frac{5}{7} \)

12. \(\frac{4}{7} \) and \(\frac{3}{7} \)

13. \(\frac{6}{7} \) and \(\frac{6}{7} \)

14. \(\frac{8}{9} \) and \(\frac{8}{9} \)

15. \(\frac{9}{10} \) and \(\frac{9}{10} \)

16. \(\frac{10}{11} \) and \(\frac{10}{11} \)

17. \(\frac{11}{12} \) and \(\frac{11}{12} \)

18. \(\frac{12}{13} \) and \(\frac{12}{13} \)

19. \(\frac{13}{14} \) and \(\frac{13}{14} \)

20. \(\frac{14}{15} \) and \(\frac{14}{15} \)

21. \(\frac{15}{16} \) and \(\frac{15}{16} \)

22. \(\frac{16}{17} \) and \(\frac{16}{17} \)

23. \(\frac{17}{18} \) and \(\frac{17}{18} \)

24. \(\frac{18}{19} \) and \(\frac{18}{19} \)

25. \(\frac{19}{20} \) and \(\frac{19}{20} \)

26. \(\frac{20}{21} \) and \(\frac{20}{21} \)

27. \(\frac{21}{22} \) and \(\frac{21}{22} \)

28. \(\frac{22}{23} \) and \(\frac{22}{23} \)

29. \(\frac{23}{24} \) and \(\frac{23}{24} \)

30. \(\frac{24}{25} \) and \(\frac{24}{25} \)

31. \(\frac{25}{26} \) and \(\frac{25}{26} \)

32. \(\frac{26}{27} \) and \(\frac{26}{27} \)

33. \(\frac{27}{28} \) and \(\frac{27}{28} \)

34. \(\frac{28}{29} \) and \(\frac{28}{29} \)

35. \(\frac{29}{30} \) and \(\frac{29}{30} \)

36. \(\frac{30}{31} \) and \(\frac{30}{31} \)

37. \(\frac{31}{32} \) and \(\frac{31}{32} \)

38. \(\frac{32}{33} \) and \(\frac{32}{33} \)

39. \(\frac{33}{34} \) and \(\frac{33}{34} \)

40. \(\frac{34}{35} \) and \(\frac{34}{35} \)

41. \(\frac{35}{36} \) and \(\frac{35}{36} \)

42. \(\frac{36}{37} \) and \(\frac{36}{37} \)

43. \(\frac{37}{38} \) and \(\frac{37}{38} \)

44. \(\frac{38}{39} \) and \(\frac{38}{39} \)

45. \(\frac{39}{40} \) and \(\frac{39}{40} \)

46. \(\frac{40}{41} \) and \(\frac{40}{41} \)

47. \(\frac{41}{42} \) and \(\frac{41}{42} \)

48. \(\frac{42}{43} \) and \(\frac{42}{43} \)

49. \(\frac{43}{44} \) and \(\frac{43}{44} \)

50. \(\frac{44}{45} \) and \(\frac{44}{45} \)
Art and Bob are seated in opposite ends of a seesaw (teeter-totter), and Art's end of the seesaw comes slowly down to the ground. Cal gets on and Art gets off, after which both end of the seesaw comes to the ground. Who is heavier, Art or Cal?

You should have selected [A]. Art in heavier than Bob and Bob is heavier than Cal, so by the transitive property, Art is heavier than Cal.

In comparison to consumption, where the set of beer are cheaper than hamburgers, we may conclude that the

A man has $100 dollars and wants to buy an item costing $80 dollars, one of the following items: a new book he has to borrow $20 dollars by taking a loan, the purchase and receive an amount of $20 dollars after the purchase is made. The property involved in this situation is the

[Comparison] property

Consider the real number 2 and the real number 3 such that we can only one of the following is true:

$2 < 3, 3 < 2, 2 = 3$

In the

[Comparison] property

Thus the set of real numbers consists of the set of

100 real numbers (the set of all the number greater than 0), the number 0, and the set of

[Positive] real numbers (the set of real numbers less than 0).

A discussion of items 13 and 14 will be found on page 11.

13. But to write "<" after the phrase "is larger to be or than," as the real number times, is to the real number system have the comparison property and a value exceeds of every in order words, it is and more different real numbers, to 100 that means if we look for

[Comparison] property

14. If we define either for the numbers of varieties of the 114 in Dem 10, 11, comparison and transitive property hold?
6.7. **Opposites.**

The number line above shows pairs of points at the same distance from the point 0. For example, the point 1 is paired with the point 0. It can be said that the numbers 1 and -1 are at the same distance from 0.

6.8. On the number line, 1 and -1 are the same distance from 0 but are on opposite sides of 0.

Because 1 and -1 are the same distance from 0 but are on opposite sides of it, the numbers 1 and -1 are called **opposites**. That is, 1 is the **opposite** of -1.

Also, -1 is the opposite of 1.

The diagram shows that 3 is the opposite of -3 and that 2 is the opposite of -2.

3 and -3 are opposites.

-3 is the opposite of 3.

The opposite of \(-\frac{1}{2}\) is \(\frac{1}{2}\).

\(-\frac{1}{2}\) and \(\frac{1}{2}\) are opposites.

The opposite of \(\frac{1}{2}\) is \(-\frac{1}{2}\).

\(-\frac{1}{2}\) and \(\frac{1}{2}\) are opposites.

The opposite of a number is not a number on the opposite side of the number.

The number which is at an equal distance from 0 on the number line.

The opposite of \(-10\) is 10. That is, the number 0 is its own opposite.
If \(x \) is 0, the opposite of \(x \) is __________.

The opposite of a positive number is a ________ number.

The opposite of a negative number is a ________ number.

The opposite of 0 is ________.

To summarize:

1. By the opposite of a non-zero real number we mean the other real number which is at an equal distance from 0 on the real number line.
2. The opposite of 0 is 0.
3. The opposite of a positive number is negative, and the opposite of a negative number is positive.

It is awkward to write "the opposite of." We will use a lower dash to mean the "opposite of."

Thus, when we write \(-\frac{1}{2} \), we would read this as:

the opposite of \(-\frac{1}{2} \)

\(-0 \)

the opposite of 2

negative 2

2

\(-2 = \frac{1}{2} \)

\(-0 = 0 \)
With this new symbolism, we recognize that -2 and -2 are both names for the same number. Hence, it makes no difference at what height the dash is drawn. There is no need to retain both symbols. Since the upper dash refers only to negative numbers while every real number has an opposite, we shall retain the lower dash.

What would we mean by the notation "-x"?

We must understand first that x is a variable representing a real number.

30 Since x is a
31 x may be a positive, or the real number, 0.
32 a
By "-x" we mean the "opposite of the real number x".
33 If x is a negative real number, -x is a
34 If x is a positive real number, -x is a
35 If x is 0, -x is

If we attach a dash to a variable x, obtaining -x, we are indicating that we have performed the operation of "determining the opposite" of x. We read "-x" as "opposite of x".

Do not confuse this with subtraction, which always involves two numbers.

Here is some practice in determining opposites. Notice that we can find the opposite of any real number.

<table>
<thead>
<tr>
<th>x</th>
<th>-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>2.3</td>
</tr>
<tr>
<td>37</td>
<td>-2.3</td>
</tr>
<tr>
<td>38</td>
<td>-1.4</td>
</tr>
<tr>
<td>39</td>
<td>1.4</td>
</tr>
<tr>
<td>40</td>
<td>-1.2</td>
</tr>
<tr>
<td>41</td>
<td>1.2</td>
</tr>
</tbody>
</table>
The diagram shows that the opposite of \(-x\) is \(x\).

That is, \(-(-x)\) is \(x\).

\[\text{That is, } -(-x) = x \]

\[-(-x) = x \]

\[-(-\frac{1}{2}) \]

\[-(-3.5) = \]

\[(-5.2) \]

From the above examples we can see that \(-x\) may be positive, negative, or 0, depending on the value of \(x\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-x)</th>
<th>(-(-x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>3.5</td>
<td>-3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.2</td>
<td>-(-1.2)</td>
<td>-1.2</td>
</tr>
<tr>
<td>-2</td>
<td>-(-2)</td>
<td>2</td>
</tr>
</tbody>
</table>

In words, we have:

\(-(-x) = x\), or in words, "the opposite of the opposite of a real number is the number itself."

51. Which of the following are true statements about real numbers?

- Every number is the opposite of some number.
- The opposite of a positive number is a negative number.
- The opposite of a negative number is a positive number.
- The real numbers are closed under the operation "determine the opposite".

[A] all except one [B] all

200
If you believe that any of these statements is false, you should review Section 6-3 to this point. \([B]\) is correct.

On the number line, \(-2\) is to the left of \(2\). That is, \(-2 < 2\) is true. Is \(-(-2) < -2\) also true? Since \(-(-2)\) is another name for \(2\), we see that \(-(-2) < -2\) is false. In fact \(-a < a\) is true only if \(a\) is positive.

Suppose we start with a pair of real numbers, say, \(a\) and \(b\) such that \(a < b\). What can we conclude about the order of \(-a\) and \(-b\)? Let's try some examples:

1. \(-7 < 7\), but \(-7 > -7\).
2. \(-7 > 7\), but \(-7 < -7\).
3. \(-7 < 7\), but \(-7 > -7\).

Experiment with other examples. It is helpful to use a number line. You will see that there is a general order property for opposites:

For real numbers \(a\) and \(b\), if \(a < b\), then \(-a > -b\).

52. The lesser of \(\pi / 7\) and \(-1 / 2\) is _______.

-2.97

53. Which number has the lesser opposite, \(\pi / 7\) or \(-2.77\) _______.

2.97

54. Of the two numbers \(\pi / 7\) and \(-1\), which has the greater opposite? _______.

3

55. Of the two numbers \(-\pi / 7\) and \(-(-\pi)\), which has the greater opposite? _______.

-762

56. Of two different numbers, the larger number will have _______.

lesser

Use each of the following pairs of numbers in a true sentence with the relation "<".

57. \(\pi / 7\), \(-\pi / 7\): \(\pi / 7 < \pi / 7\) _______.

58. \(\sqrt{2}\), \(-\pi\): \(\sqrt{2} < -\pi\) _______.

60. \((3 + 2 + 1)\), \((-1 + 1 + 0)\): \((3 + 2 + 1) < (-1 + 1 + 0)\) _______.

Turn to page 111 to check your work.
We can use the order property of opposites to help in finding the truth sets and the graphs of certain open sentences.

Suppose we start with the open sentence

\[-x < 2.\]

Then it follows from the order property of opposites that

\[-2 < -(x).\]

But \(-(x) < x,\) hence we can rewrite this last sentence as:

\[-2 < x.\]

Thus, the truth set of \(-x < 2\) is the same as the truth set of \(\frac{-2}{x} < \text{ }\).

This truth set is the set of real numbers which are \(\frac{-2}{x}\) than \(-2\).

(-greater, lesser)

\(-2 < x\) may also be written \(x > \text{ }\).

The graph of the sentence \(x > -2\) is _______.

\[\text{This is also the graph of the sentence } x < \text{.}\]

The truth set of \(-x < \frac{1}{2}\) is the set of real numbers which are \(\frac{-1}{2}\) than \(-\frac{1}{2}\).

The truth set of \(-x > \frac{1}{2}\) is the same as the truth set of \(x > \text{ }\).

The truth set of \(-x < 1\) is the same as the truth set of \(x < 1\).

An open sentence corresponding to the graph

\[x < 1,\]

(or \(1 > x\)).
Graph \(-x > 3\). [Hint: See Item 70.]

Graph \(-x < -3\). [Think: "-3 < -x, hence, x < 3".]

Graph \(-x < 3\).

Graph \(-x < -3\).

Complete the description of the truth set of each of the following:

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Description of truth set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-x \neq 3)</td>
<td>set of all real numbers except (3)</td>
</tr>
<tr>
<td>(-x < 0)</td>
<td>set of all ((\text{positive, negative})) real numbers.</td>
</tr>
<tr>
<td>(-x \geq 0)</td>
<td>set of all ((\text{non-positive, non-negative})) real numbers.</td>
</tr>
<tr>
<td>(-x = 0)</td>
<td>set of all ((\text{non-positive, non-negative})) real numbers.</td>
</tr>
</tbody>
</table>

Consider the graphs of the two open sentences:

\(x < 2\), \(-x > 3\)

Which of the following is a correct statement?

[A] The graphs have no points in common.

[B] The graph of \(-x > 3\) is a subset of the graph of \(x < 2\).

[C] The graphs have only the points between \(-3\) and 2 in common.

[D] The graphs have only the points between \(-3\) and 3 in common.

If you chose [B] you are correct; go to Item 85.

If you chose any other statement, continue with Item 81.
The graph of \(y = x^2 \) is ________.

The graph of \(y = x^2 \) is the same as the graph of \(y = ax^2 + bx + c \) when \(a = 1 \), \(b = 0 \), and \(c = 0 \).

Graph: \(y = -x^2 \) (y = -). ________

Comparing the graphs of \(y = x^2 \) and \(y = -x^2 \), we see that every point on the graph of \(y = x^2 \) is reflected along the x-axis to the graph of \(y = -x^2 \), hence the term "reflection" in the second statement.

For example: \(y = \frac{2}{3} \), then ________

depart \(\frac{2}{3} \), then \(\frac{2}{3} \), and \(\frac{2}{3} \).

Since \(\frac{2}{3} \) is the same for both, then ________

With \(\frac{2}{3} \) as the number of the second, then ________

Thus, ________

The final result for \(\frac{2}{3} \) is ________

Find the answer suggested by the following word problems:

1. Joe's score is negative. How much is his score?
2. I know that I don't owe any money, but I am still more than $200 in debt. What is my financial condition?
3. Paul has paid $200 of his bill, but still owes more than $20. What was the amount of Paul's bill?

End to page 111 to check what you have written.
6-4. Absolute Value

For each of the following numbers write its opposite and then choose the lesser of the number and its opposite.

<table>
<thead>
<tr>
<th>Number</th>
<th>Opposite</th>
<th>Lesser is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-7.2</td>
<td>-7.2</td>
</tr>
<tr>
<td>3</td>
<td>-√2</td>
<td>√2</td>
</tr>
<tr>
<td>4</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>-(1/2)</td>
<td>-1/2</td>
</tr>
<tr>
<td>6</td>
<td>(1 - 1/2)^2</td>
<td>-(1 - 1/2)^2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We know that the statement: If -3 is less than 3, then 3 is greater than -3 is (true, false)

Using the symbols "<" and ">", we can rewrite the above sentence as: If -3 < 3, then 3 > -3.

If -3 is the lesser of -1 and 3, then 3 is the greater of -1 and -3.

Just as "-3 < 3" and "3 > -3" mean the same thing, so "-3 is the lesser of -1 and 3" and "3 is the greater of -1 and -3" mean the same thing.

We may rewrite Items 1-7 by putting the greater of the number and its opposite in the third column:

<table>
<thead>
<tr>
<th>Number</th>
<th>Opposite</th>
<th>Greater of the Number and its Opposite</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>-7.2</td>
<td>-7.2</td>
</tr>
<tr>
<td>14</td>
<td>√2</td>
<td>√2</td>
</tr>
<tr>
<td>15</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

205
From items 12-13 we are led to certain conclusions. Which of the following statements are true?

1. In items 12-13, the numbers in the third column are always positive.
2. The greater of a non-zero number and its opposite is always positive.
3. The opposite of 0 is 0, hence neither is greater.

[A] I, II and III [B] I and II [C] none are true

[A]. Is correct. Don't forget that -(-2) is the number 2, and is a positive number! All of the statements are true.

From the definition of "opposites" and "greater than" we are able to make the following general statement:

The greater of a number and its opposite is always positive or zero.

In Section 6-2 we considered the operation of "taking opposites" which meant that for every real number, we could find another number an equal distance from 0 on the number line. Now we are ready to define another operation on a single real number. This operation will relate a unique real number to every real number.

The absolute value of a non-zero real number is defined to be the greater of that number and its opposite. The absolute value of 0 is 0.
Complete the following table:

<table>
<thead>
<tr>
<th>Number</th>
<th>Opposite of Number</th>
<th>Greater of Number and its Opposite</th>
<th>Absolute Value of Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>21</td>
<td>-25</td>
<td>-25</td>
<td>-25</td>
</tr>
<tr>
<td>22</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
<td>(\frac{3}{2})</td>
</tr>
<tr>
<td>23</td>
<td>-5.06</td>
<td>5.06</td>
<td>5.06</td>
</tr>
<tr>
<td>24</td>
<td>((6 - 4))</td>
<td>((6 - 4))</td>
<td>((6 - 4)) or 2</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>neither</td>
<td>0</td>
</tr>
</tbody>
</table>

Since the absolute value of a non-zero number is defined to be the greater of the number and its opposite, we can say that the absolute value of a non-zero number is always positive.

The absolute value of 0 is 0.

As usual, we find that it is convenient to agree on a symbol to indicate the operation. We write \(|n|\) to mean the absolute value of \(n\).

The symbol \(|4|\) is read the absolute value of 4.

\(|4| = \square\)

Write "the absolute value of \(-4\)" using absolute value symbols. \(\square\)

\(|-4| = \square\)

\(|1.5| = \square\)

\(|-3| = \square\)

\(|-(-3)| = \square\)

\(|0| = \square\)

<table>
<thead>
<tr>
<th>absolute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>-4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>-3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
6-4

36 \[|-(14 \cdot 0)| = \quad \]
37 \[|-1.2 + .3| = \quad \]
38 \[|\frac{2}{3}| = \quad \]

Remember that "\[|\frac{2}{3}|\]" is read:

"The absolute value of \[\frac{2}{3}\]."

40 Graph \(-4\), \(0\), and \(4\).

41 What is the distance between \(-4\) and \(0\)?

42 What is the distance between \(4\) and \(0\)?

43 Graph \(-\frac{3}{2}\), \(0\), and \(\frac{3}{2}\).

The distances between \(-\frac{3}{2}\) and \(0\), and between \(\frac{3}{2}\) and \(0\) are both ___.

45 The absolute value of \(-\frac{3}{2}\) is ___.

46 and the absolute value of \(\frac{3}{2}\) is ___.

The distance between \(\frac{3}{2}\) and \(0\) is the same number as the ___ of \(\frac{3}{2}\).

48 The ___ between \(-\frac{3}{2}\) and \(0\) is the same number as the absolute value of \(-\frac{3}{2}\).

You have noticed in these examples that the distance between a real number and ___ is equal to the ___ of the number.

In fact, we could have defined absolute value for every real number \(n\) as
"\[|n|\] is the absolute value of \(n\) and \(0\)."

Keep in mind that the distance between two points on a number line is a non-negative real number. Therefore, we can say:

The distance between a real number and \(0\) on the real number line is the absolute value of that real number.

There is still another way that we could have defined the absolute value of a real number. Let us try to develop this alternate definition.
First we examine the absolute value of some non-negative numbers:

52 \[\left| \frac{1}{3} \right| = \frac{1}{3} \]
53 \[\left| \frac{1}{2} \right| = \frac{1}{2} \]
54 \[|10| = 10 \]
55 \[|0| = 0 \]

We conclude that the absolute value of a non-negative number is the number itself. In symbols,

56 \[|x| = x, \text{ if } x \text{ is non-negative.} \]

Now let us consider the absolute value of some negative numbers.

58 \[|-\frac{1}{3}| = \frac{1}{3} \]
59 \[|-\frac{1}{2}| = \frac{1}{2} \]
60 \[|-10| = 10 \]

The absolute value of a negative number is the opposite of the number. In symbols:

61 \[|x| = -x, \text{ if } x \text{ is negative.} \]

If we combine the statements which we made in Items 57 and 61, we have a statement that could be used as the definition for the absolute value of a real number. We can state:

\[|x| = x, \text{ if } x \text{ is non-negative, that is, } x \geq 0. \]
\[|x| = -x, \text{ if } x \text{ is negative, that is } x < 0. \]
For any real number, it is always true that

\[
\begin{align*}
\text{[A]} & \quad |x| = x & \quad \text{[B]} & \quad x \geq 0 & \quad \text{[C]} & \quad |x| > 0
\end{align*}
\]

If \(x = -7 \), \(|x| = 7 \). Thus \(|x| = x \) is not always true.
If \(x = 0 \), \(|x| = 0 \). Thus \(|x| > 0 \) is not always true.
The correct choice is [B].

Let us summarize:

(a) The absolute value of a number is the greater of that number and its ______.
(b) The distance between 0 and \(n \) on the number line is equal to the ______ of \(n \).
(c) For every real number \(a \), \(|a| \geq 0 \).
(d) If \(y \geq 0 \), \(|y| = y \).
(e) If \(y < 0 \), \(|y| = -y \).

Let \(S = \{-2,-1,0,1,2\} \). Let \(A \) be the set of the absolute values of the elements of \(S \), then

\[A = \{\; \} \] .

Is \(A \) a subset of \(S ? \quad \text{(yes, no)} \)

Hence \(S \) is closed under the operation of taking the absolute value.
Is the set of all real numbers closed under the operation of taking the absolute value? \(\text{(yes, no)} \)
Here is some practice. Write a common numeral for each of the following.

72 \(|2| + |3| = 2 + 3 = \) (The sum of the absolute values)
73 \(|2 + 3| = |5| = \) (The absolute value of the sum)
74 \(|-2| + |3| = \)
75 \(|-2| + |-3| = \)

Write a common numeral for each of the following:

76 \(|-5|2 = \)
77 \(|-5|-2 = \)
78 \(-((-2|-5|) = -(2)(_)) = \)
79 \(-(-|5|-2|) = \)
80 \(3 - |3 - 2| = \)
81 \(-(|-7| - 6) = \)

Judge each of the following as true or false.

82 \(|-7| < 3 \) (Remember \(|-7| = 7 \))
83 \(|-2| \leq |-3| \)
84 \(2 \leq |-3| \)
85 \(|-5| \leq |2| \)
86 \(-2 < |-3| \)
87 \(|-2|^2 = 4 \)

We may have open sentences involving the absolute value of a variable.

For example, consider the open sentence \(|x| \leq 2 \).
88 Since \(|2| = 2 \), \(\frac{2}{(is, is not)} \) in the truth set of \(|x| < 2 \).
89 The truth set \(\frac{(can, cannot)}{include numbers greater than 2} \) cannot be

2 \(0 \)
Since \(|-2| = 2\), \(-2\) is not in the truth set of \(|x| \leq 2\).

The absolute value of a number less than \(-2\) is 2. (Remember that, \(-3\) is less than, greater than for example \(|-3| = 3\).)

Therefore the truth set include numbers less than \(-2\).

The absolute value of a number between 0 and 2 is less than 2.

The absolute value of 0 is ________.

The absolute value of a number between \(-2\) and 0 is less than 2.

The truth set of \(|x| < 2\) consists of all numbers between \(-2\) and ________.

The graph of \(|x| < 2\) is ________.

The graph of \(x < 2\) is ________.

The graph of \(x > -2\) is ________.

Another way to describe the truth set of \(|x| < 2\) is the set of elements in the truth set of ________ and in the truth set of ________.

The truth set of \(|x| < 2\) is the (intersection, union) of the truth sets of \(x < 2\) and \(x > -2\).
103 Graph \(|x| > 2\).

If you were unable to graph \(|x| > 2\) or if you are not sure of how to find the truth set of \(|x| > 2\), continue with Item 104. If you are sure of these ideas, go on to Item 106.

104 \(|3| = 3, therefore \ |3| > 2\).

105 If \(x > 2, \ |x| > 2\).

106 Therefore, the truth set of \(|x| > 2\) include all numbers greater than 2.

107 The graph of \(x > 2\) is ______.

108 \(|-3| = 3, therefore \ |3| = 2\).

109 If \(x < -2, \ |x| < -2\).

110 Therefore, the truth set of \(|x| < 2\) include all numbers less than -2.

111 The graph of \(x < -2\) is ______.

The truth set of \(|x| < 2\) is the set of numbers greater than -2 and the set of numbers less than -2.

Another way of saying this is:

The truth set of \(|x| < 2\) is the union of the truth sets of \(x > 2\) and ______.

112 The graph of \(|x| < 2\) is ______.

see answer below
Find the truth set of:

114 \(|x| = 0\)
115 \(|x| = 2\)
116 \(|x| = -1\)
117 \(|x| < 0\)

Did you respond correctly to Items 116 or 117? Remember that the absolute value of any number can never be less than 0.

118 \(|x| \leq 8\) has the same truth set as

[A] \(x \leq -8\) or \(x \geq 8\)
[B] \(x \leq -8\) and \(x \geq 8\)
[C] \(x \geq -8\) and \(x \leq 8\)
[D] \(x \geq -8\) or \(x \leq 8\)

If \(x = 9\), \(|x| > 8\); if \(x = -9\), \(|x| > 8\).
[C] is the correct choice.

119 Using the absolute value symbol write an open sentence whose graph is:

\(|x| \leq 4\), or
\(|x| > 4\)

120 Using the absolute value symbol write an open sentence whose graph is:

\(|x| \geq 1\), or
\(|x| < 1\)

121 Which of the following open sentences is suggested by the English sentence, "The temperature stayed within 5 degrees of 0 today"?

[A] \(x < 5\)
[B] \(x < 5\) and \(x > -5\)
[C] \(x < 5\) or \(x > -5\)
[D] \(|x| < 5\)
[E] \(|x| > 5\)
You are correct if you selected either [B] or [D]; they have the same truth set. [C] is true for all real numbers x. The truth sets of [A] and [B] both contain, for example, -15, and 15 degrees below zero is not within five degrees of zero.

Are the sentences: $x \leq |x|$

$-x \leq |x|$

$-|x| \leq x$

all true for all real values of x?

[A] yes [B] no

All three sentences are true. Notice:

If $x \geq 0$, then $x = |x|$; if $x < 0$, then $x < |x|$;

Hence, $x \leq |x|$ is true for all real values of x.

If $x \geq 0$, then $-x \leq |x|$; if $x < 0$, then $-x = |x|$;

hence, $-x \leq |x|$ is true for all real values of x.

If $x \geq 0$, then $-|x| \leq x$; if $x < 0$, then $-|x| = x$;

hence, $-|x| \leq x$ is true for all real values of x.

6-5. **Summary and Review**

1. Points to the left of 0 on the number line are labeled with negative numbers; the set of real numbers consists of all numbers of arithmetic and their opposites.

2. Many points on the number line are not assigned rational number coordinates. These points are labeled with irrational numbers. The set of real numbers consists of all rational and irrational numbers.

3. "Is less than" for real numbers means "to the left of" on the number line.

4. **Comparison Property.** If a is a real number and b is a real number, then exactly one of the following is true:

 $a < b, \quad a = b, \quad b < a.$
5. **Transitive Property.** If \(a, b, c \) are real numbers and if \(a < b \) and \(b < c \), then \(a < c \).

6. The **opposite** of 0 is 0 and the opposite of any other real number is the other number which is at an equal distance from 0 on the real number line.

 If \(x \) is a positive number, then \(-x\) is a negative number.
 If \(x \) is a negative number, then \(-x\) is a positive number.

7. The **absolute value** of a non-zero number is the greater of that number and its opposite. The **absolute value** of 0 is 0.

 The absolute value of the real number \(n \) is denoted by \(|n|\).
 Also, \(|n|\) is a non-negative number which is the distance between 0 and \(n \) on the number line.

 If \(n \geq 0 \), then \(|n| = n\);
 If \(n < 0 \), then \(|n| = -n\).

8. If \(a > 0 \),

 the truth set of \(|x| < a\) is the same as the truth set of the compound sentence \(-a < x < a\).
 the truth set of \(|x| > a\) is the same as the truth set of the compound sentence \(x < -a\) or \(x > a\).

The correct answers for the following review problems will be found on page iii.

1. Which of the following sentences are true?

 (a) \(-2 < -5\)
 (d) \(-\frac{1}{2} \geq -\frac{5}{14}\)
 (b) \(-(5 - 3) = -(2)\)
 (e) \(-2 < |-5|\)
 (c) \(-(5 - 3) < -|-2|\)
 (f) \(|-2| < |-5|\)

2. Which of the following sentences are false?

 (a) \(-(x) + 7 > -(2) + 6\)
 (d) \(\frac{2}{2} < \frac{5}{5}\) and \(-\frac{1}{2} < -\frac{5}{6}\)
 (b) \(x \neq -3\) or \(x > -3\)
 (e) \(|\frac{5}{4}| < -|-1|\)
 (c) \(x \neq -3\), and \(x > -3\)
 (f) \(-|-3| \cdot 2 > -(|-5| - |3|).\)
3. Draw the graph of each of the following sentences.
 (a) \(v \geq 1 \) and \(v < 3 \)
 (b) \(|x| = 2 \)
 (c) \(x < 4 \) or \(x > 2 \)
 (d) \(|x| = x \)

4. Describe the truth set of each sentence.
 (a) \(x \leq 3 \) and \(y > 4 \)
 (b) \(-|u| < 2 \)
 (c) \(-3 < x < 2 \)
 (d) \(x > -2 \)

5. Consider the open sentence \(|x| < 3 \). Draw the graph of its truth set if the domain of \(x \) is the set of:
 (a) real numbers
 (b) integers
 (c) non-negative real numbers
 (d) negative integers

6. Describe the variable used and write an open sentence suggested by the following:

 On Sunday the temperature remained within \(6^\circ \) or \(-5^\circ \).

7. If \(R \) is the set of all real numbers, \(P \) the set of all positive real numbers, \(F \) the set of all rational numbers, \(I \) the set of all integers, which of the following are true statements?
 (a) \(F \) is a subset of \(R \)
 (b) Every element of \(I \) is an element of \(P \).
 (c) There are elements of \(I \) which are not elements of \(R \).
 (d) Every element of \(I \) is an element of \(F \).
 (e) There are elements of \(R \) which are not elements of \(F \).

8. Draw the graph of the set of integers less than 6 whose absolute values are greater than 3. Is -5 an element of this set?

9. When a certain integer and its successor are added, the result is the successor itself.
 (a) Write an open sentence suggested by the English sentence above.
 (b) Find the truth set of this sentence.

10. The perimeter of a square is less than 10 inches.
 (a) What do you know about the number of units, \(n \), in the side of this square? Graph this set.
 (b) What do you know about the number of units, \(A \), in the area of this square? Graph this set.
7-1. **Addition of Real Numbers**

You have known for a long time what it means to add numbers of arithmetic; that is, non-negative, real numbers. Now we are dealing with the set of real numbers, of which the set of numbers of arithmetic is a proper subset. Your experience in adding non-negative numbers, both in arithmetic and on the number line, should give you clues about the addition of real numbers.

Let us consider the daily profits and losses of an imaginary ice cream vendor during his 10 days in business. These profits and losses are summarized in the left-hand column of Panel 7-1, which you find on the response sheet for this section.

We could use positive numbers to represent gains. Since a loss is the opposite of a gain, we would use ______ numbers to represent losses.

During his first two days of business, the ice cream vendor recorded profits of $7 and $_____. See Panel 7-1.

For this period, a sentence expressing the net gain in dollars is: ______ + ______.

He had a net gain of $____.

To show on the number line a gain of $7 followed by a gain of $5, we use our usual idea of addition on the number line. We first draw an arrow of length 7, starting at 0 and extending to the ____________.

We then draw a second arrow of length ______, starting at 7 and also extending to the right. Thus we have

The second arrow ends at the point ________.

Look at the first entries in Column 2 and in Column 5 of Panel 7-1. Note how they exhibit your responses to Items 3, 6 and 7.
During the next two days of business, the vendor recorded a profit of $6 (on Wednesday) and a _____ of $4 (on Thursday).

During this two-day period he made in all a ______ __________ (gain, loss)

In fact, his net gain was ______.

A loss of $4 is represented by the number ______.

Moreover, the net income for two days is the sum of each day's income. Hence, it is reasonable to write:

$$6 + (-4) = 2$$

Note to the student: The correct responses to certain items are underlined with a wavy line: ~~~~~~~~~~~. This wavy line is a signal to you that you are to record your response in the appropriate space on the panel.

Consider the number line illustration of these two days of business.

To show a gain of $6, we draw an arrow of length _____ starting at _____ and extending to the right. Then, to indicate a loss of $4, we draw a second arrow of length _____, starting at 6 and extending to the left. We have:

(Enter this diagram in the panel)

The second arrow ends at the point _____.

For the next two-day period (Friday and Saturday) the vendor reported a loss of ______ and then a profit of $4.

For these two days, he had a net ______ (gain, loss) of ______.

We thus write the sentence: ______.
To illustrate on the number line the results of Friday's and Saturday's business, we first show the $7 loss by an arrow of length 7 which starts at 0 and extends to the left.

We then complete the drawing. It looks like this:

\[
\begin{align*}
\text{-7} & \quad \text{1} & \quad \text{2} & \quad \text{3} & \quad \text{4} & \quad \text{5} & \quad \text{6} & \quad \text{7} \\
\end{align*}
\]

(Enter in the panel)

Can you complete the rest of Panel 7-1? If you can, do so and skip Items 21-24. If not, review Items 8-20 and continue.

On the next line of the panel, referring to Sunday and Monday, you should enter, in Column 2, the sentence:

-10

Draw the diagram for this line of the panel.

Corresponding to the net income for the last two days, we write

\((-4) + (-6) = -10\)

Draw the appropriate number line diagram.

Now that you have finished Panel 7-1, compare your results with the completed panel on page 125. You will see that these accounts illustrate almost every possible sum of real numbers: a positive plus a positive, a positive plus a negative, a negative plus a positive, 0 plus a negative, and a negative plus a negative.

Notice how our experience with adding non-negative numbers has given us a clue as to how to add real numbers.

We were able, just as before, to illustrate addition on the number line. We used arrows extending to the right to represent positive numbers, while negative numbers were represented by arrows extending to the left.
The number line illustration agreed with our common sense ideas about combining gains and losses.

We used positive numbers to represent gains, losses by negative numbers.

To add two real numbers a and b on the number line, we first go to the point corresponding to a. We move from a to the right if b is positive. If b is negative, we move to the left.

No motion from point a occurs if b is 0.

Item 31 illustrates the fact that for any real number a, $a + 0 = a$.

Let us consider some further illustrations.

If a football team lost 6 yards on the first play and gained 8 yards on the second play, its net yardage gained for the two plays is _____ yards.

Draw the appropriate number line diagram.

Write the appropriate numerical sentence.

Suppose John paid Jim the 60 cents he owed, and then John collected the 50 cents that Al owed him. After these transactions, John had _____ cents less than the amount he started with.

Draw the appropriate number line diagram.

Write the appropriate numerical sentence.

At sunset on a wintry day the temperature is zero degrees. By midnight it has fallen to -15 degrees. Then, between midnight and sunrise, the temperature rises 10°. The temperature at sunrise is _____ degrees above, below zero.

Draw the appropriate number line diagram.

Write the appropriate numerical sentence.
Suppose the temperature was zero degrees at sunset, dropped to \(-10^\circ\) at midnight, and rose \(15^\circ\) by sunrise. The temperature at sunrise was __________ degrees. (above, below)

Draw the appropriate number line diagram:

Write the appropriate numerical sentence.

Miss Jones lost 6 pounds during the first week of her dieting, lost 3 pounds the second week, gained 4 pounds the third week, and gained 5 pounds the last week. Her net gain (or loss) was ________ pounds.

Draw the appropriate number line diagram.

Write the appropriate numerical sentence.

In performing the indicated operations on real numbers, thinking about the number line may help you.

\[(4 + (-6)) + (-5) = \] __________ __________

\[4 + ((-6) + (-5)) = \] ______

\[-(4 + (-6)) = \] ______

\[-(2) + 2 = \] ______

The sum of the number 2 and its opposite is ________. 2,

\[3 + ((-2) + 2) = \] ______

\[2 + (0 + (-2)) = \] ______

\[(1 - 3 + 0) + (-2.5) = \] ______

\[|-2| + (-2) = \] ______, since \(|-2| = 2\).

\[(-3) + (|{-3}| + 5) = \] ______
To go from a to $a + b$ on the number line, we move b units to the right if b is positive. If b is negative, we move to the left.

How far do we move if b is negative?

[A] We go b units to the left.
[B] We go $-b$ units to the left.

The number of units is a number of arithmetic; that is, a non-negative number. If b is negative, then $-b$ is positive. [B] is the correct choice.

We can summarize our process of adding real numbers: To find $a + b$ on the number line,

- start at point a, and
 - if b is positive, go b units to the right,
 - if b is negative, go $-b$ units to the left,
 - if b is 0, go 0 units.

Let us see whether we have a notation that will state this more concisely.

When b is added to a on the number line, if b is non-zero, the direction from point a depends upon whether b is positive or non-negative. For every b, the distance from point a is a non-negative number.

We saw in Chapter 6 that for every real number n, the distance between n and 0 is $|n|$. We can use $|b|$ to describe the distance we go from a in adding b.

Let us verify that this says the same thing about b as the last three lines in the summary of the process of adding real numbers:

- if b is positive, $|b| = b$,
- if b is negative, $|b| = -b$,
- if b is 0, $|b| = 0$.
Now we can restate the process of adding real numbers in terms of absolute value: If \(a \) and \(b \) are any real numbers, then to find \(a + b \) on the number line:

start at point \(a \), and

- if \(b \) is non-negative, go \(|b| \) units to the right;
- if \(b \) is negative, go \(|b| \) units to the left.

To find \(7 + (-10) \) on the number line, we begin at 7 and move \(|-10| \) units to the left.

To find \(-10 + 7 \) on the number line, we begin at -10 and move \(|7| \) units to the right.

To find \(-5 + 0 \) on the number line we begin at \(-5 \) and move 0 units.

Here are several numerals involving 0, 7, 10 and their opposites:

\[
\begin{align*}
P. \quad 7 + 10 & \quad \text{U.} \quad (-7) + (-10) \\
Q. \quad 7 + (-10) & \quad \text{V.} \quad (-7) + 10 \\
R. \quad 10 + (-7) & \quad \text{W.} \quad (-10) + 7 \\
S. \quad (-10) + (-7) & \quad \text{X.} \quad (-10) + 0 \\
T. \quad 10 + 7 & \quad \text{Y.} \quad 0 + 7
\end{align*}
\]

Which of the following statements is not true?

[A] The process of addition in \(P, T, \) and \(Y \) is exactly the same as for the numbers of arithmetic.

[B] In \(S, U, \) and \(X \) you can do the addition by finding the sum of two numbers of arithmetic and then taking the opposite of that sum.

[C] The numbers represented in \(Q, R, V, \) and \(W \) are negative.

The numbers represented by \(Q \) and \(W \) are negative, but those represented by \(R \) and \(V \) are positive, hence, [C] is the only false statement. [A] is true. Notice that [B] is also true. For example, \((-10) + (-7)\) and \((-10 + 7)\) both name the number -17. We shall return to this point.

In this section we have illustrated the addition of real numbers on the number line. Now we are ready for an algebraic definition of real numbers.
7.2 Definition of Addition

Use these problems to test yourself.

1. \((-7) + 4 = \)
2. \((-6) + 0 = \)
3. \(1 + (-2) = \)
4. \((-8) + (-7) = \)

(If you missed any of Items 1-4, review Section 7-1, Items 6-7.)

In computing sums like these you can use the number line. You have learned:
- to find \(a + b\) on the number line
 - first, move to \(a\) on the number line
 - second, from \(a\), move \(|b|\) units to the right if \(b\) is positive,
 - \(|b|\) units to the left if \(b\) is negative,
 - \(|b|\) units if \(b\) is 0.

For example, to find \(5 + (-3)\) on the number line we move to 5 and, from 5, move \(|-3|\) units to the left.

In other words, you know how to translate the sum \(a + b\) into addition on the number line when \(a\) and \(b\) are given. In this section we are going to restate the process of addition on the number line in algebraic language. When we have finished, we shall have an algebraic definition for the sum of two real numbers.

We want to express distances and directions on the number line in algebraic symbols. It will help you if you remember: The distance between a number and zero is the absolute value of the number.

- 10. Where is \(-5\) on the number line? It is to the left of 0.
We are now ready to proceed with our task of studying in algebraic language precisely what we mean by $a + b$, when a and b are any real numbers.

First of all, if a and b are non-negative, then we know the meaning of $a + b$. From our experience with the number $-|a|$, next, we examine some cases where both numbers are negative.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The distance between $-h$ and 0 is $</td>
<td>-h</td>
</tr>
<tr>
<td>12</td>
<td>We realize that $</td>
<td>-h</td>
</tr>
<tr>
<td>13</td>
<td>In general, for any real number n, the distance between n and 0 is $</td>
<td>n</td>
</tr>
</tbody>
</table>

We are now ready to proceed with our task of studying in algebraic language precisely what we mean by $a + b$, when a and b are any real numbers.

First of all, if a and b are non-negative, then we know the meaning of $a + b$. From our experience with the number $-|a|$, next, we examine some cases where both numbers are negative.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>$(+h) + (-h) = 0$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$(-h) + (-h) = -2h$</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$(-h) + (+h) = 0$</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$(+h) + (-h) = 0$</td>
<td></td>
</tr>
</tbody>
</table>

The sentences above have certain things in common: Each has to do with the sum of two numbers. In each, the result is a number. In each, we can find the result by first adding two numbers of different signs and then taking the opposite of the result.

When you were performing the indicated addition,

$(+h) + (-h)$

you noted the number of arithmetic signs and took the opposite of the sign that the positive value of $-h$ had. However, $| -h | = h$.

We noted that $(+h) + (-h) = (| -h | + | -h |)$.

Since $-h = | -h | - h$, then

$(+h) + (-h) = (| -h | - h)$

$= (-| -h | + | -h |)$

$= 0$
Can you see a general rule for adding two negative numbers? Try to state it in words for yourself, then compare your statement with this one:

The sum of two negative numbers is negative. The absolute value of this sum is the sum of the absolute values of the numbers.

An algebraic statement of this fact is:

\[a + b = -(|a| + |b|) \]

Now go to Panel 7-2 on the response sheet. Part 1 has already been completed; you are now ready to complete Part 2.

In Items 2 through 4, use the definitions in Panel 7-1 to find a common name for each sum:

21. \((-2) + (-7) = (-2 + 7) = 5\)

22. \((-4) + (-1.4) = (-4 + 1.4) = -2.6\)

23. \((-8.5) + (-7.5) = (-8.5 + 7.5) = -1\)

24. \((-10) + (-2) = (-10 + 2) = -8\)

Look at Part 1 of the definition on Paper 7-2.1.

25. \[|1| + |-6| = 7\]

26. \[|5| + |-4| = 9\]

The \(\text{numbers of arithmetic}\)

are
All of the following statements are true. Which one best illustrates Part 2 of Panel 7-2?

[A] \((-6) + (-4) = -(6 + 4)\)
[B] \((-6) + 4 = -2\)
[C] \((-6) + (-4) = -(6 + 4)\)

[C] is the best illustration. Note that [B], though a true statement, cannot illustrate Part 2, which begins, "If \(a < 0\) and \(b < 0\). [A] is really a consequence of [C].

Now that we have completed and discussed Part 2 of Panel 7-2, let us go on to consider the sum of two real numbers: when one number is non-negative and the other is negative. In Part 2 of the panel we have, "If \(a > 0\) and \(b < 0\)," while in Part 3 we have, "If \(b > 0\) and \(a < 0\).

Suppose one of the numbers is 0 and the other number is negative. Using the number line, we can see that:

1. \(0 + (-1)\) \(= -1\), for any negative number \(b\).
2. \(a + 0\) \(= a\), for any negative number \(a\).
3. \((-\frac{a}{2}) + 0\) \(= -\frac{a}{2}\), for any negative number \(a\).
4. (Of course, \(0 + b = b\) and \(a + 0 = a\) are also true if \(a\) and \(b\) are non-negative; but these cases are included in Part 1.)

Consequently, in considering Parts 2 and 3 of Panel 7-2, we may concentrate our attention on those cases where either \(a\) or \(b\) is negative and the other is positive.

Consider the following examples of profits and losses:

40. Profit of \(\frac{7}{2}\) and loss of \(\frac{7}{2}\): \(\frac{7}{2} + (-\frac{7}{2})\)
41. Profit of \(\frac{7}{2}\) and loss of \(\frac{7}{2}\): \((\frac{7}{2}) + (-\frac{7}{2})\)
42. Loss of \(\frac{7}{2}\) and profit of \(\frac{7}{2}\): \((-\frac{7}{2}) + \frac{7}{2}\)
43. Loss of \(\frac{7}{2}\) and profit of \(\frac{7}{2}\): \((-\frac{7}{2}) + \frac{7}{2}\)

The four examples above suggest the following statements.
Each has to do with the sum of two numbers, one positive and one negative.

In each, the absolute value of the result is ________.

In each, we find the absolute value of the result by subtracting ________ from ________.

In fact, in each the absolute value of the sum is the difference of the absolute values of the numbers.

The sum is positive if the positive number has the greater ________ value.

The sum is negative if the negative number has the greater ________ value.

Find the sum of the following pairs of real numbers. Notice that each pair includes one positive and one negative number. If you have difficulty, you may wish to refer to Items 40-42, where you will find examples and suggestions.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>(-4) + 6</td>
</tr>
<tr>
<td>50</td>
<td>0 + (-4)</td>
</tr>
<tr>
<td>51</td>
<td>(-6) + 4</td>
</tr>
<tr>
<td>52</td>
<td>4 + (-6)</td>
</tr>
<tr>
<td>53</td>
<td>(-6) + 0</td>
</tr>
<tr>
<td>54</td>
<td>0 + (-6)</td>
</tr>
<tr>
<td>55</td>
<td>(-3) + (-3)</td>
</tr>
<tr>
<td>56</td>
<td>3 + (-3)</td>
</tr>
<tr>
<td>57</td>
<td>(\frac{1}{2} + (-\frac{3}{2}))</td>
</tr>
<tr>
<td>58</td>
<td>(-1.7) + (3.7)</td>
</tr>
<tr>
<td>59</td>
<td>13 + (-13)</td>
</tr>
<tr>
<td>60</td>
<td>(-\frac{5}{2}) + (-\frac{5}{2})</td>
</tr>
<tr>
<td>61</td>
<td>-1 + (-\frac{3}{2})</td>
</tr>
<tr>
<td>62</td>
<td>(-1) + 2</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>-2</td>
</tr>
<tr>
<td>66</td>
<td>-2</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>-3</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>71</td>
<td>-\frac{1}{3}</td>
</tr>
<tr>
<td>72</td>
<td>-1.5</td>
</tr>
<tr>
<td>73</td>
<td>13</td>
</tr>
<tr>
<td>74</td>
<td>-9</td>
</tr>
<tr>
<td>75</td>
<td>-11</td>
</tr>
</tbody>
</table>
Now that we have gained some skill in adding two real numbers, we shall think about how to complete Panel 7-2. This panel, when completed, will provide a precise statement of the definition of addition for real numbers.

\[a + (-b) = \begin{cases} a & \text{if } a > 0 \text{ and } (-b) < 0, \\ (-a) & \text{if } (-a) > 0 \text{ and } b < 0, \end{cases} \]

The sum \(a + (-b) \) has the form \(a + b \), where

\[\frac{a}{(a, b)} > 0 \text{ and } \frac{b}{(a, b)} < 0, \text{ and } |a| \geq |b|. \]

In general, if \(a > 0 \) and \(b < 0 \), and if \(|a| \geq |b| \), then \(a + b = |a| - |b| \).

Notice that \(|a| \) and \(|b| \) are numbers of arithmetic. If \(|a| \geq |b| \), we are sure from our knowledge of subtraction for the numbers of arithmetic that \(|a| - |b| \) names exactly one number of arithmetic.

You should determine the following sums at a glance.

\[a + (-b) = |a| - |b| \]

Let us, however, use the definition in Item 67 in order to convince ourselves that the definition gives the results that we feel sure are correct.

\[
\begin{array}{cccc}
18 + (-14) & |18| - |-14| & 2 \\
3 + (-3) & |3| - |3| & 0 \\
0 & 0 & 0 \\
1 & -1 & -2 \\
\frac{1}{2} + \left(-\frac{1}{4}\right) & \left|\frac{1}{2}\right| - \left|-\frac{1}{4}\right| & 1 \\
7 & -\frac{1}{2} & -\frac{5}{2} \\
6 & -4 & -2 \\
4 & -3 & -7 \\
1 & 3 & 4 \\
5 & 1 & 6 \\
\frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\
6 & -4 & 2 \\
\end{array}
\]
We have a definition of addition which we can use when we add a negative to a non-negative number in cases such as \(7 + (-3) \), where the non-negative number has the greater absolute value.

Now suppose that the negative number has the greater absolute value.

\[
78 \quad 3 + (-7) = \\
79 \quad \text{Similarly, } 5 + (-11) = \\
80 \quad \text{and } 2 + (-3) = \\
81 \quad \text{In these examples the sum is} \quad \text{(positive, negative)}
\]

\[
82 \quad \text{its absolute value is equal to the} \quad \text{(sum, difference)}
\]

\[
\frac{\text{the absolute values of the numbers being added.}}{\text{Hence, Part 3 in Panel 7-2 should read:}}
\]

\[
\text{If } a > 0 \text{ and } b < 0, \text{ and}
\]

\[
83 \quad \text{(a) if } |a| > |b|, \text{ then } a + b = \\
84 \quad \text{(b) if } |b| > |a|, \text{ then } a + b =
\]

By now we have a pattern for completing the definition in the panel.

\[
85 \quad \text{Part 4, in the panel, should read:}
\]

\[
\text{If } b \geq 0 \text{ and } a < 0, \text{ and}
\]

\[
86 \quad \text{(a) if } |b| > |a|, \text{ then } a + b = \\
(b) \text{ if } |a| > |b|, \text{ then } a + b =
\]

Compare your completed panel with the one below. Your panel should be exactly like this one.

\[
\text{PANEL 7-2}
\]

\[
\text{Definition of Addition for Real Numbers:}
\]

Part 1. If \(a > 0 \) and \(b > 0 \), then \(a \) and \(b \) are numbers of arithmetic and \(a + b \) has its usual meaning.

Part 2. If \(a < 0 \) and \(b < 0 \), then \(a + b = -(|a| + |b|) \)

Part 3. If \(a \geq 0 \) and \(b < 0 \), and

\[
\text{(a) if } |a| > |b|, \text{ then } a + b = |a| - |b| \\
\text{(b) if } |b| > |a|, \text{ then } a + b = |b| - |a|
\]

Part 4. If \(b \geq 0 \) and \(a < 0 \), and

\[
\text{(a) if } |b| > |a|, \text{ then } a + b = |b| - |a| \\
\text{(b) if } |a| > |b|, \text{ then } a + b = - (|a| - |b|)
\]
You are not expected to memorize this definition. Given two real numbers, you should be able to add them without referring to the definition. On the other hand, we hope you understand what has been accomplished in this definition of addition. If a and b are any real numbers, then we can compute $a + b$ by applying the appropriate part of Panel 7-2. In order to do it you need know only:

1) how to find the sum of two numbers of arithmetic, for Parts 1 and 2;
2) how to subtract one number of arithmetic from another which is at least as large, for Parts 3 and 4;
3) how to form the absolute value and the opposite of a real number.

Let us summarize Parts (a), (b), (c), (d) of the definition. The sum of a negative and a non-negative number:

37 is equal in absolute value to the difference of the absolute values:

35 is non-negative if the non-negative number has the greater absolute value:

37 is negative if the negative number has the greater absolute value:

If a and b are particular real numbers, we can find exactly one part of Panel 7-2 that applies. From the appropriate part, we find exactly one number $a + b$. Thus, we have succeeded in giving a complete definition of the binary operation of addition in the set of real numbers.

38 Since the sum of any two real numbers is a unique real number, the set of all real numbers is closed under the operation of addition.

For each of the following open sentences, find a real number which will make the sentence true. If you have trouble, you may find it helpful to think about the number line.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + y = 7$</td>
<td>5</td>
</tr>
<tr>
<td>$x + y = 7$</td>
<td>-10</td>
</tr>
<tr>
<td>$x + y = 7$</td>
<td>-2</td>
</tr>
<tr>
<td>Question Number</td>
<td>Expression</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>95</td>
<td>a + 5 = 0</td>
</tr>
<tr>
<td>96</td>
<td>b + (-7) = 3</td>
</tr>
<tr>
<td>97</td>
<td>(-2/6) + x = 2/6</td>
</tr>
<tr>
<td>98</td>
<td>c + (-3) = -7</td>
</tr>
<tr>
<td>99</td>
<td>7 = (7)(-5) + a</td>
</tr>
<tr>
<td>100</td>
<td>y + 2/3 = -5/6</td>
</tr>
<tr>
<td>101</td>
<td>3 = 1/2 + x</td>
</tr>
<tr>
<td>102</td>
<td>x + (-4) = 6</td>
</tr>
<tr>
<td>103</td>
<td>(y + (-2)) + 2 = 3</td>
</tr>
<tr>
<td>104</td>
<td>(3 + x) + (-3) = -1</td>
</tr>
</tbody>
</table>

Bill earned 40¢ on Tuesday, spent 60¢ on Wednesday, but doesn't remember how much he had on Monday. He had 30¢ left Wednesday night. To determine what amount he had on Monday, we can write an open sentence with the variable x representing the money he had Monday.

The open sentence is:

\[x + 40 + (-60) = \]

Bill began with \(x \) on Monday.

If you drive 40 miles north and then 55 miles south, you are then \(15 \) miles (how many) miles (north, south) of your starting point.

For each sentence below, tell whether it is true or is false. After you have recorded all of your responses, turn to page 235 and check your answers.

109. \(-4\) + 0 = 4
110. \(-((-1.5) - |6|) = -1.5\)
111. \(-3\) + 5 = 5 + (-3)
112. \((h + (-6)) + 6 = h + (h - 6) + 6\)
113. \((-5) + (-(-5)) = -10\)

Look at Items 111, 112, and 116, and see if you can guess some of the ideas that will be discussed in the following sections.
Properties of Addition

In Chapters 2 and 4 we described in detail and then listed the properties of addition for the numbers of arithmetic.

We now have a definition for addition that we can use to add any two real numbers. (Remember, the set of real numbers includes the negative numbers as well as the numbers of arithmetic.)

We want to see whether the properties of addition already discussed for the numbers of arithmetic are also true in the set of real numbers. Further, we want to see whether there are any new properties of addition for this set.

Complete the following statements. They will help you to recall the property of addition we have studied.

1. \(7 + 3 = 3 + 7\) is a true sentence that illustrates the ____________ property of addition.
2. \(5 + 0 = 5\) is a true sentence that illustrates the ____________ property of ____________.
3. The true sentence
 \[(7 + 5) + 4 = 7 + (5 + 4)\]
 illustrates the ____________ property of addition.

We have seen that the properties of addition can often be used to simplify computation. Here is a detailed illustration. Tell which property of addition is used in each step.

4. \[\left(\frac{2}{3} + \frac{7}{5}\right) + \frac{2}{3} = \frac{2}{3} + \left(\frac{7}{5} + \frac{2}{3}\right)\]
 ________ property
5. \[\frac{2}{3} + \left(\frac{2}{3} + \frac{7}{5}\right)\]
 ________ property
6. \[\left(\frac{2}{3} + \frac{7}{5}\right) + \frac{7}{5}\]
 ________ property

Hence,

\[
\left(\frac{2}{3} + \frac{7}{5}\right) + \frac{7}{5} = \frac{2}{3} + \frac{7}{5}.
\]

Often, we do not think through each step in such detail. We simply think:

\[
\left(\frac{2}{3} + \frac{7}{5}\right) + \frac{2}{3} = \left(\frac{2}{3} + \frac{7}{5}\right) + \frac{7}{5}.
\]
In other words, we have convinced ourselves, by many examples, that the associative and commutative properties of addition for the numbers of arithmetic permit us to regroup and reorder the numbers in a sum in any way that we like.

Compute each sum, by any method that you like,

<table>
<thead>
<tr>
<th>Sum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4 + (-3) = _____, and</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(-3) + 4 = _____</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(-1) + 5 = _____, and</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5 + (-1) = _____</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(-2) + (-3) = _____, and</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(-3) + (-2) = _____</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(-18) + 4 = _____, and</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4 + (-18) = _____</td>
<td></td>
</tr>
</tbody>
</table>

It appears that when we find the sum of any two real numbers, the sum is the same regardless of the order in which we add.

This is the **Commutative Property of Addition**:

For any two real numbers \(a\) and \(b\),

\[a + b = b + a. \]

Since \((4 + (-3))\) and \(7\) are both real numbers, the commutative property of addition shows us that

\[(4 + (-3)) + 7 = 4 + (-3) + 7.\]

If \(x\) is any real number, then

\[x + (-x) = (-x) + x. \]

Let us now consider whether or not, in a sum involving three real numbers, we can group (or associate) the numbers to suit our convenience.

We know that if \(a, b, \) and \(c\) are any numbers of arithmetic, then

\[(a + b) + c = a + (b + c). \]

This is the **associative property of addition**.

Note also the what happens when one or more of the numbers \(a, b, \) or \(c\) is negative.
If

are

the same number?

are, are not

is

We have seen that the following sentences are all true:

We could look at many examples of sums of three real numbers involving different combinations of negative and non-negative numbers. Such examples would indicate that addition is associative for all real numbers.

This is the Associative Property of Addition:

For all real numbers \(a, b, \) and \(c \),

\[
(a + b) + c = a + (b + c).
\]

Of course, the fact that the associative and commutative properties hold true in several instances is not enough to guarantee that they hold true in every instance. In mathematics, this guarantee is achieved by giving a proof that the properties always hold. The commutative and associative properties could be proved to hold for the real numbers as a consequence of two things: the way in which we defined addition for real numbers, and the familiar properties of the numbers of arithmetic. However, because these proofs are...
very detailed and very lengthy, they will be omitted here. At this point, we shall simply take for granted that the properties in question do hold in the set of real numbers.

Very soon—in Section 7-5—you will begin to learn how we can prove that certain relationships must follow from others. As you become familiar with the idea of proof, you will gain a better understanding of the real number system and of how its properties are related to those of the numbers of arithmetic.

Let us now investigate another property of addition.

32 \(4 + (-4)\) ________ \(0\) opposite

33 We note that \(-4\) is the _____ of \(4\).

\((-4)\) is the opposite of \((-4)\).

34 \((-4) + (-(-4))\) ________ \(0\)

35 What is the opposite of \(5\)? ________ \(-5\)

36 \(5 + (-5)\) ________ \(0\)

37 \(\frac{1}{2} + (\frac{1}{2})\) ________ \(0\)

38 \((-1) + (-(-1))\) ________ \(0\)

The preceding responses indicate that the following statement is true: "The sum of a number and its _____ is zero."

39 opposite 0

40 \(0 + \square\) \(0\)

41 \(8 + \square\) \(0\)

42 \(\frac{1}{2} + \square\) \(0\)

43 \(\square + (-(-1))\) \(0\)

The preceding examples lead us to state the **Addition Property of Opposites.**

For every real number \(a\),

\[a + (-a) = 0\] and \((-(-a)) + a = 0\).

The addition property of opposites is of special interest because it is a property of real numbers, but it is not a property of numbers of arithmetic. When we consider the set of numbers of arithmetic, the idea of opposite does not occur.
As in the case of the associative and commutative properties of addition, the addition property of opposites for real numbers follows from our definition of addition and from properties of the numbers of arithmetic.

Let us now investigate still another property of addition.

Refer to the definition of addition to complete the following:

\[
\begin{align*}
44 \quad (-5) + 0 &= -5 \\
45 \quad _____ + 0 &= 4 \\
46 \quad (-9) + _____ &= -9 \\
47 \quad 0 + (-7) &= -7 \\
48 \quad _____ + 6 &= 6 \\
\end{align*}
\]

We observe: adding 0 to any number gives, as the sum, that same number. Likewise, adding any number to 0 gives the number.

We may state our conclusion as the Addition Property of 0:

For every real number \(a \),

\[a + 0 = a \]

and

\[0 + a = a. \]

This property for real numbers follows from our definition of addition and from the addition property of 0 for numbers of arithmetic.

We can use the properties of addition to simplify phrases and sentences.

In order to simplify the phrase \((7 + (-7)) + 6\), we note:

\[
\begin{align*}
49 \quad 7 + (-7) &= 0 \quad \text{because of the addition property of opposites} \\
50 \quad 0 + 6 &= 6 \quad \text{because of the addition property} \\
51 \quad 0 + 6 &= 6 \\
\end{align*}
\]

Thus, we see that \((7 + (-7)) + 6 = 6\).
Here is another example:

\[3 + (\text{-}3 + 4) = (\quad) \quad \] by the associative property of addition

\[= 0 + 4 \quad \] by the addition property of 0

\[= 4 \quad \] by the addition property of 0

Hence, \[3 + (\text{-}3 + 4) = \quad \]

\[5 + (3 + \text{-}5) = 5 + (\text{-}5 + 3) \quad \] by the commutative property of addition

\[= (5 + \text{-}5) + 3 \quad \] by the associative property of addition

\[= 0 + 3 \quad \] by the addition property of opposites

\[= 3 \quad \] by the addition property of 0

Thus, \[5 + (3 + \text{-}5) = \quad \]

Consider the open sentence

\[x = x + (\text{-}x) + 3 \]

Let us look at the right side of the equation. We know that if \(x \) is any real number, then

\[x + (\text{-}x) + 3 = (x + \text{-}x) + 3 \quad \] by the commutative property of addition

\[= \quad + 3 \quad \] by the addition property of 0

\[= 3 \quad \] by the addition property of 0

We have found: If \(x \) is any real number, then a simpler name for \((x + \text{-}x) + 3 \) is \(3 \). Now suppose that the open sentence

\[x = x + (\text{-}x) + 3 \]

is true for some \(x \). Then the sentence

\[x = \quad \]

is true for this same \(x \), since 3 is another name for \(x + (\text{-}x) + 3 \)
But the truth set of the sentence \(x = 3 \) is seen to be the set containing only the number 3.

We can easily verify that 3 is also an element of the truth set of the original equation. Hence, the truth set of \(x = x + ((-x) + 3) \) is 3.

Consider the open sentence: \(m + (7 + (-m)) = m \).

We can apply some of the properties of addition to obtain the simpler sentence:

\[7 = m \]

What is the truth set of \(m + (7 + (-m)) = m \)?

Find the truth set of each sentence:

1. \((-7) + (-4) = (y + 4) + (-4)\)
2. \(n + (n + 2) + (-n) = 0\)

The associative property of addition guarantees that \((4 + (-1)) + 3 = 4 + ((-1) + 3) \).

Thus, we can write the sum

\[4 + (-1) + 3 \]

without indicating how the numbers are to be grouped for addition, since the way they are grouped does not affect the final sum.

The commutative property of addition enables us to change the order of adding two numbers if we wish.

In computing \(4 + (-1) + 3 \), we may think, if we like:

\[4 + (-1) + : - 4 + : + (-1) , \]

since \((-1) + : + (-1) \) by the \underline{commutative} property of addition.

Since \((-1) + : + (-1) \) by the \underline{commutative} property of addition.

\[4 + (-1) + : - 4 + : + (-1) \]

\[7 + (-1) \]
As the previous example suggests, the associative and commutative properties of addition, taken together, mean that the sum of several numbers is independent both of the order in which the numbers are written and of the way in which they are grouped.

This general conclusion is exactly like the one we have already used in many examples with the numbers of arithmetic. Just as we found for the numbers of arithmetic that reordering and regrouping numbers in a sum helped in computing, so we find for real numbers that reordering and regrouping is often helpful.

In each of the following items, consider various ways of doing the computation and then perform the addition in the easiest way:

77 $\frac{5}{16} + 28 + (-\frac{9}{16}) = ___

78 0.27 + (-18) + .73 + 3 = ___

79 $(-\frac{3}{2}) + 7 + (-2) + (-\frac{3}{2}) + 2 = ___

80 $w + (w + 2) + (-w) + 1 + (-3) = ___

81 $|\frac{3}{2}| + \frac{5}{2} + (-7) + |-4| = ___

82 253 + (-67) + (-82) + (-133) = ___

Find the truth set of each open sentence.

83 $x + 5 + (-x) = 12 + x + (-12) = ___ [5]

84 $n + (n + 2) + (-n) + 1 + (-3) = 0 = ___ [6]

7-4. Addition and Equality

Consider the true numerical sentence

$6 + 2 = 8$.

In this sentence, the symbol "=" signifies that 6 + 2 and 8 are names for the same number. Suppose we add -2 to this number. Then

$6 + 2 + (-2)$ and $8 + (-2)$

are again names for one number, which has the common name 6.
Here is another example.

4 + (-5) = (-1) is a **true** sentence.

4 + (-5) and (-1) are two names for the same **true** number.

Let us add 3 to this number. Then the phrases 4 + (-5) + 3 and (-1) + 3 are again names for one number, whose common name is _____.

Hence, we may write the true sentence

4 + (-5) + 3 = (-1) + _____.

In a similar way,

4 + (-5) + 5 = (-1) + 5
4 + (-5) + (-2) = (-1) + (-2)
4 + (-5) + \(\frac{1}{2}\) = (-1) + \(\frac{1}{2}\)

are all **true** sentences.

In fact, if \(c\) is any real number, we can conclude that 4 + (-5) + \(c\) = (-1) + ____ is a true sentence, since we began with the true sentence

4 + (-5) = (-1).

Let us generalize from these examples.

Suppose \(a\) and \(b\) are names for the same real number.

Then \(a + 4\) and \(b + ____\) are also names for one number. Hence, if \(a = b\), then

\[a + 4 = b + 4.\]

In fact, if \(c\) is any real number, we can conclude from \(a = b\) that

\[a + ____ = b + c.\]

We restate this as follows:

For any real numbers \(a\), \(b\), and \(c\),

if \(a = b\)

then \(a + ____ = b + ____\).

Similarly, for any real numbers \(a\), \(b\), and \(c\)

if \(a = b\)

then \(c + a = c + b\).
This generalization is an important fact about addition. It is a consequence of the fact that if \(a \) and \(c \) are two numbers, there is exactly one number which is their sum. This number does not depend on the particular numeral we choose as a name for \(a \). (Remember "\(a = b \)" means "\(a \) and \(b \) name the same number".)

We shall use this generalization so often that it is useful to have a special name for it. We will call it the addition property of equality.

For any real numbers \(a \), \(b \), and \(c \),

\[
\text{if } a = b \quad \text{then } a + c = b + c \quad \text{and } c + a = c + b.
\]

11. Which of the following expresses the idea of the addition property of equality?

[A] If \(a \) and \(b \) are names of numbers, then \(a + c \) and \(b + c \) are also names of numbers.

[B] If \(a \) and \(b \) name the same number, then the number named by \(a + c \) is the same as the number named by \(b + c \).

[B] is the correct choice. Although [A] is a correct sentence, it is not the generalization which we have called the addition property of equality.

12. If \(x = y \), then \(x + a = y + \underline{} \).

13. If \(m = \underline{} \), then \(m + p = n + p \).

14. If \(v = w \), then \(\underline{} + v = 5 + 8 \).

15. If \(m = 6 \), then \(\underline{} + 2 = 8 \).

16. If \(x + 4 = 7 \), then \((x + 4) + (\underline{}) = \underline{} + (-4) \).

Item 11 leads us to wonder if the addition property of equality might be useful in finding truth sets of open sentences. Up to now we have found truth sets by intelligent "guesswork". Using the addition property of equality we can determine the truth sets of certain open sentences in a more systematic way.

Since we are dealing with a property of equality, we shall examine open sentences such as \(x + 4 = 7 \) where the verb symbol is "\(= \)". Open sentences having this verb form are often called equations. In the equation \(x + 4 = 7 \) we call \(x + 4 \) the left side and 7 the right side.
Let us return to the equation

\[x + 4 = 7. \]

Since this is an open sentence, it is neither true nor false as it stands. In order to find the truth set of this equation, we can reason as in the following items:

If (the "if" is important) there is some number, \(x \), that makes \(x + 4 = 7 \) a true sentence, then that same number also makes \((x + 4) + (-4) = 7 + \) (___) a true sentence.

We are able to make this conclusion by using the _____ addition property of equality.

[Can you guess why we chose \(-4\) as the number to add?]

Now we can proceed as follows:

If \((x + 4) + (-4) = 7 + (-4) \) is true for some \(x \), then \(x + \) (___) = 7 is true for that same \(x \).

and \(x + \) (___) = 3 is true for that same \(x \).

The truth set of \(x + 3 \) is obvious. It is (___)

Hence, if there is some number \(x \) which makes \(x + 4 = 7 \) true, this number must be (___)

Does 3 make the original sentence true?

Yes, since (___) + 4 = 7.
We have shown that if there is a number making \(x + 4 = 7 \) true, then the only number which \(x \) can be is 3. After we check and find that 3 does make the sentence true, we have found the one and only number which belongs to the truth set.

Let us simplify our language a bit by agreeing to the following:

Instead of "determine the truth set of the open sentence" we shall often say "solve the equation".

Instead of "truth set" we may say "solution set".

Instead of "a member of the truth set of the open sentence" we shall often say "a solution of the equation".

30. The solution set of \(x + 4 = 7 \) is ______.

31. The only solution of \(x + 4 = 7 \) is ______.

32. 3 is a ______ of the equation \(x + 4 = 7 \).

33. (3) is the ______ set or truth set of \(x + 4 = 7 \).

In solving an equation, as in Items 22-29, we may use many different properties. The first one that was used here was the addition property of equality. We were very careful to say "If \(x + 4 = 7 \) is true for some \(x \), etc. In our next example we shall continue to make this statement and at the same time we shall examine the use of the various properties.

| Solve the equation \(5 + \frac{3}{2} = x + \left(\frac{1}{2} \right) \). |
|---|---|
| If \(5 + \frac{3}{2} = x + \left(\frac{1}{2} \right) \) is true for some \(x \), then \(\left(5 + \frac{3}{2} \right) + \frac{1}{2} = \left(x + \left(\frac{1}{2} \right) \right) + \underline{\text{ ______ }} \) is true for the same \(x \), using the addition property of ______. |
| \(5 + \left(\frac{3}{2} + \frac{1}{2} \right) \) is true for the same \(x \), using the ______ property of addition. |
| \(7 + x \) is true for the same \(x \), using \(5 + 2 = 7 \) and the ______ property of 0. |

234
If x is 7, then in the original equation

the left side is $5 + \frac{3}{2}$

and $5 + \frac{3}{2} = \frac{13}{2}$.

The right side is $\left(-\frac{1}{2}\right)$

and $7 + \left(-\frac{1}{2}\right) = \frac{13}{2}$.

Hence, the solution set is $\left\{7\right\}$.

In solving $x + 4 = 7$ we began by adding -4 to each side of the equation. Of course, we could have added some other number, such as 5, to each side. If we had added 5 we would have obtained the equation $x + 9 = 12$. By adding -4 we obtain $x = 3$, in which the left side contains x alone.

$x = 3$ has an obvious solution set.

In solving $5 + \frac{3}{2} = x + \left(-\frac{1}{2}\right)$ we began by adding $\frac{1}{2}$ to each side of the equation, obtaining $7 = x$. The truth set of $7 = x$ is obviously $\left\{7\right\}$.

<table>
<thead>
<tr>
<th>In solving $x + 9 = -11$ we begin by adding to both sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 9 = -11$</td>
</tr>
<tr>
<td>$x + \left(-2\right) = 5$</td>
</tr>
<tr>
<td>$-3 + x = -1$</td>
</tr>
<tr>
<td>$5 = 6 + x$</td>
</tr>
</tbody>
</table>

Consider the following example:

Solve the equation $x + \frac{3}{5} = (-2)$.

If,

then $(x + \frac{3}{5}) + \left(-\frac{3}{5}\right) = (-2) + \left(-\frac{3}{5}\right)$ is true for the same x,

$x + 0 = \frac{13}{5}$ is true for the same x.

y, $x = -\frac{13}{5}$ is true for the same x.

$2 \frac{3}{5}$
Check: If \(x = -\frac{13}{2} \), then in the original equation

the left side is \((\frac{-13}{2}) + \frac{3}{2} \)

and \((\frac{-13}{2}) + \frac{3}{2} = -2 \)

and the right side is \(-2\).

Hence, the truth set of \(x + \frac{3}{2} = -2 \) is \(-\frac{13}{2} \).

Which property was not used in the above example?

[A] Commutative property of addition
[B] Addition property of equality
[C] Associative property of addition
[D] Addition property of opposites
[E] Addition property of \(0 \)

All of the properties except [A] were used. Review each step
in the example and note that the properties [B] to [E] are
listed in the order in which they were used.

It is important in studying mathematics to learn how to organize written
work. Well organized and neat work helps in two ways. First, the chance of
making careless errors is reduced. Second, good organization is an aid to
understanding and reasoning.

Examine Item 45. Notice that we have not stated the properties used to
obtain each successive equation. In solving equations, it is not necessary
to write down each reason but it is essential that you understand each reason
and that you are prepared to explain each step.

The first line of your written work should begin: "If ... is true for
some \(x \), and the second line should begin: "then ...". By writing this
we emphasize the logic of our argument. You may wish to omit writing "is true
for the same \(x \)" at the end of each line.

As you gain experience, you may be able to do certain steps mentally.
For example, you may wish to proceed from \((x + \frac{3}{2}) + (-\frac{3}{2}) = -2 + (-\frac{3}{2}) \) to
\(x = -\frac{13}{2} \) in one step.

Finally, in simple equations, the "checking" may be done mentally, but
it is important to understand that the "check" is essential.
Solve and check each of the following. Organize and show your work on the response sheet in a form similar to that shown in Item 45. Since we wish to become familiar with the use of the addition property of equality, be sure to show each step that makes use of this property. Compare with pages v and vi.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46. $x + 5 = 13$</td>
<td></td>
</tr>
<tr>
<td>47. $(-6) + 7 = (-8) + x$</td>
<td>[Hint: Begin by finding a simple numeral for the left side.]</td>
</tr>
<tr>
<td>48. $(-1) + 2 + (-3) = 4 + x + (-5)$</td>
<td></td>
</tr>
<tr>
<td>49. $(x + 2) + x = (-3) + x$</td>
<td>[Hint: Nothing prevents us from adding $(-x)$ to both sides.]</td>
</tr>
</tbody>
</table>

Here are two easy examples of how the properties we have developed can help us to solve problems. For each we shall write a related open sentence, find its truth set, and then answer the question in the problem.

1. After Bill added six books to those on his desk, he had 24 books in all. How many did he have at first?

 If b represents the number of books he had at first, then $b + 6$ represents the number on the desk after 6 are added.

 A related open sentence is $b + 6 = 24$.

 The truth set is $b = 18$.

 Bill had 18 books.

 To verify: If Bill had 18 books on his desk and then added 6, he would have 24 books in all.

2. Two numbers differ by 2. The sum of the numbers is 10 more than the smaller number. What are the numbers?

 If n represents the smaller number, then $n + 2$ represents the larger number.

 Their sum can be represented by $n + (n + 2)$.

 An open sentence which says that the sum of the two numbers is 10 more than the smaller number is $n + (n + 2) = n + 10$.

 Solution: $n = 4$. The numbers are 4 and 6.
If \(n + (n + 2) = n + 10 \) is true for some \(n \),
then \((-n) + n + (n + 2) = \left(\frac{-n}{2}\right) + n + 10\)
is true for the same \(n \).

and \(0 + (n + 2) = n + 10 \)
is true for the same \(n \),

\(n + 2 = 10 \)
is true for the same \(n \).

The truth set is \(\{8\} \).

The smaller number is \(8 \) and the other number is \(10 \).
To verify: \(10 - 8 = 2 \), and
\(10 + 8 \) is \(10 \) more than \(8 \).

In this problem we reasoned: If there is a number which fits the conditions of the problem, then that number is an element of the truth set of \(n + (n + 2) = n + 10 \).

In solving the open sentence, we concluded: If there is a number in the truth set of the equation, then it is \(8 \). Since we are interested in solving the word problem, we checked \(8 \) in the original problem.

Suppose we try to solve the equation
\[(-2) + x + (-3) = x + \left(\frac{-5}{2}\right). \]

If \((-2) + x + (-3) = x + \left(\frac{-5}{2}\right)\) is true for some \(x \),
then \(x + (-2) + (-3) = x + \left(\frac{-5}{2}\right)\) is true for the same \(x \),
and \(x + (-5) = x + \left(\frac{-5}{2}\right)\) is true for the same \(x \).

\((-x) + x + (-5) = (-x) + x + \left(\frac{5}{2}\right)\) is true for the same \(x \).

\((-5) = \left(\frac{5}{2}\right)\)
is true for the same \(x \).

Remember, our method depends on the assumption that there are numbers for which the given equation is true. But there is no real number \(x \) which will make this last sentence true. Therefore, our assumption is false and the solution set of the original sentence is \(\emptyset \). We also express this by saying that the equation has no solution.
Here is a slightly different example.

Solve \((-2) + |x| = 5\).

If
\((-2) + |x| = 5\) is true for some \(x\),

then using the _____ property of _____ we have

\[2 + (-2) + |x| = _____ + 5. \]

By using the appropriate properties of addition,

\(|x| = 7\) is true for the same \(x\).

The solution set of this last equation is _____.

Do both solutions of \(|x| = 7\) make the original sentence true? _____

Hence, the truth set of \((-2) + |x| = 5\) is _____.

Solve the following equations.

70. \(|x| + (-3) = |-2| + 5\)
71. \((-\frac{3}{8}) + |x| = (-\frac{2}{8}) + (-1)\) (Careful!)
72. \(x + (-3) = |-\frac{1}{4}| + (-3)\)
73. \((-\frac{1}{3}) + (x + \frac{1}{2}) = x + (x + \frac{1}{2})\)
74. \((-1) + \frac{1}{4} = 3 + |x|\)

In this section we have stated the addition property of equality and have discussed briefly how this property together with properties already familiar to us may be used to find the truth sets ("solution sets") of certain open sentences. In the process of finding the truth sets of ("solving") these sentences ("equations") we have laid stress on the logic of replacing one open sentence with another until we obtain a sentence whose truth set is obvious. You will encounter this same pattern of procedure many more times. Later on we shall examine more carefully the need for checking whether or not the solutions of the final equation are also solutions of the original equation.
7-5. The Additive Inverse

We have pointed out that 0 is the identity element for addition. This is simply another way of expressing the addition property of 0: the sum of any number and 0 is equal to the number.

Suppose we have two numbers whose sum is 0. These two numbers are related in a special way.

<table>
<thead>
<tr>
<th>Number</th>
<th>Equation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

In general, if \(x \) and \(y \) are real numbers and if \(x + y = 0 \), we say that \(y \) is an additive inverse of \(x \) and that \(x \) is an additive inverse of \(y \).

Since \((-2) + 2 = 0\), 2 is an additive inverse of \(-2\).

An additive inverse of \(\frac{1}{2} \) is \(-\frac{1}{2} \).

If \(y \) is an additive inverse of \(x \), then \(x + y = 0 \).

An additive inverse of \(\frac{5}{3} \) is \(-\frac{5}{3} \).

If \(t \) is an additive inverse of \(s \), is it also true that \(s \) is an additive inverse of \(t \)?

Given two real numbers, each is the additive inverse of the other if their sum is 0.

Consider the following pairs of real numbers. Which pairs are pairs of additive inverses?

-7 and \(\left| -\frac{1}{7} \right| \)
\(\frac{1}{2} \) and \(-\frac{1}{2} \)
0 and 0
\(h \) and \(-h \)
\(-5 \) and \(-(-5) \)

[A] all but one [B] all [C] all but two

Since for each pair we can verify that the sum is 0, [B] is the correct choice. If you answered incorrectly, convince yourself that the sum of each pair is 0.
Perhaps you have noticed that we have carefully referred to an additive inverse of a number rather than the additive inverse. If we think of some particular number, say 3, we quickly recall that \(-3\) + \(3\) = 0 and, therefore, \(-3\) is an additive inverse of \(3\). All our experience with numbers suggests that \(-3\) is the only additive inverse.

Previously in this course, whenever our experience strongly suggested a property, we have assumed the truth of that property. This was the case with the various properties of the numbers of arithmetic which we have asserted. Mathematicians have found, however, that many properties need not be assumed because they can be shown to be logical consequences of properties which have already been assumed.

Let us try to show ("prove") that \(-3\) is the only additive inverse.

We wish to show that \(-3\) has a unique (meaning: "one") additive inverse.

First of all, we know one additive inverse of \(3\).

If any number is an additive inverse of \(3\), it must be a solution of the equation \(3 + x = 0\). (Refer to the meaning of additive inverse given in Item 2.)

We need to show that the number \(-3\) is the only solution of \(3 + x = 0\).

If \(3 + x = 0\) is true for some \(x\),

then \((-3) + (x + 3) = (3) + 0\) by the of equality

and \((x + (-3)) + 0 = (x) + 0\) by the property of addition.

Hence, \(x + (-3) + 0 = (x) + 0\) by the property of addition.

Finally, \(x = 0\) by the property of and also be true for the first case.

Any number \(x\) which makes \(3 + x = 0\) true must also make \(-3 + x = 0\), true. But there is just one number in the truth set of \(-3 + x = 0\), namely \(-3\).

Therefore, \(-3\) is not just an additive inverse of \(3\),

But, \(-3\) is the additive inverse of \(3\).
Thus we did not need to assume that the number 3 has only one additive inverse--we were able to reach that conclusion by a logical argument that depended only on facts which we already knew.

Surely, there is nothing special about 3. Do you think that 5 has a unique additive inverse? Does 0? Does (-6.3)? We suspect that the answer is yes in each case. Perhaps you see that we could check by repeating the reasoning of Items 11-19. We certainly do not wish to check all numbers. What we need is a result which is true for any real number x. We know that -x is one additive inverse of x. We would like to state: any real number x has exactly one additive inverse, namely -x.

When we say that 3 has a unique additive inverse we really imply two ideas.

12 First, 3 has an additive inverse.
Second, 3 has only one additive inverse.

20 3 has a unique additive inverse means:
There is exactly one number which is the additive inverse of 3.

21 That is, unique conveys the idea of exactly one

We have already stated, in the addition property of opposites, that for every real number a,

\[a + (-a) = 0. \]

The addition property of opposites then states that every number has one additive inverse.

Now we are going to prove: Any real number has exactly one additive inverse. Statements of new facts or properties which can be shown to follow from previously established facts are frequently called "theorems". The argument by which a theorem is shown to be a consequence of other facts or theorems is called a proof of the theorem.

Let us, then, state and prove a theorem. For this proof, we shall parallel the argument of Items 11-19.
Theorem 7-5a. Any real number x has exactly one additive inverse, namely $-x$.

Proof:

First, we already know that $-x$ is an additive inverse of x, since $x + (-x) = 0$.

Suppose z is any additive inverse of x, then $x + z = 0$, by the definition of additive inverse.

We wish to show that $z = -x$.

If $x + z = 0$ is true for some z, then

$(-x) + (x + z) = (-x) + 0$, by the addition property of equality.

$(-x) + z = 0$, by the associative property.

$z = -x$, by the addition property of opposites.

Therefore, $-x$ is the only additive inverse.

We have completed the proof of Theorem 7-5a. It would be natural for you to ask, "Why bother with a proof of something which we strongly expected to be true all along?"

The answer to this question, for the present, is that we wish you to become familiar with the idea of a mathematical proof. From time to time we shall prove more theorems in order to help you to become more accustomed to mathematical reasoning. Eventually we hope you will be able to prove statements whose truth is not obvious.

Note that in the proof of Theorem 7-5a we added $(-x)$ to each side of the equation $x + z = 0$. Why did we select $(-x)$ to add? If you recall your work with solving equations, you will see that adding $(-x)$ to each side enabled us to obtain z alone on the left-hand side. We often need to "rip" the proof of a theorem in this way by using previous knowledge in a manner which leads toward our goal.
Theorem 7-5a may be used to solve some equations. You should be able to find the solution sets of the following at a glance.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solution Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-2) + a = 0)</td>
<td>({-8})</td>
</tr>
<tr>
<td>(3 + \frac{1}{2} + y = 0)</td>
<td>({\frac{1}{2}})</td>
</tr>
<tr>
<td>(x + (-\frac{2}{3}) = 0)</td>
<td>({-\frac{2}{3}})</td>
</tr>
<tr>
<td>(x + (-\frac{5}{2}) = y - 0)</td>
<td>({3})</td>
</tr>
<tr>
<td>(2 + x + (-\frac{3}{4}) = 0)</td>
<td>({-3})</td>
</tr>
<tr>
<td>(3 + (-x) = 0) (Be careful!)</td>
<td>({-3})</td>
</tr>
<tr>
<td>(</td>
<td>-4</td>
</tr>
</tbody>
</table>

On two successive plays the Redskins gained 5 yards and 3 yards, respectively. After the next play the ball was back where it started at the beginning of the succession of plays. What happened on the third down? If the number of yards the ball moved on the third down is represented by \(y\), then an appropriate open sentence is

\[\frac{x + 5}{7} + y = 0\]

The solution set is ______.

On the third down there were a _____ or _____ loss.

To verify: Gain of ______ yards, followed by a loss of ______ yards brings the ball back where it started.
Mary had $2 in her purse before Mrs. Jones paid her for baby-sitting. After she got paid she went shopping and bought a sweater for $5, which took all the money she had. How much was she paid for baby-sitting?

If x is the number of dollars she received for baby-sitting, an appropriate open sentence is

$$2 + x + (_____) = 0$$

Then

$$x + 2 + (____) = 0,$$

or

$$x + (___) = 0.$$

The truth set is

Mary was paid $___$ for baby-sitting.

To verify: After she added the $4 for baby-sitting to the $2 she had, the $___$ for the sweater took all her money.

Now we shall try to discover another general property and then to prove that this property is valid for all real numbers. We can't prove a theorem until we suspect one; let us first one to suspect.

Compare $-(2 + 3) = 1$ and

$$(-3) + (___) = 0.$$

Have we discovered a general property?

Try some more examples:

The common name for $-(2 + 3)$ is

The common name for $(-2) + (___)$ is

$$-(a + (___)) - (___) = \text{true}, \text{False}$$

$$-((___) + (___))$$

and 1 + 2 both equal the same number.

In each of the examples we have seen that the opposite of the sum of two numbers is equal to the sum of the

In summary: $-(a + b) _____.$

286
We now state our suspected property as a theorem.

Theorem 7.5. For any real numbers \(a\) and \(b\),

\[-(a + b) = (-a) + (-b).\]

Before we begin the proof of this theorem, let us think about what we already know and what we must prove.

How may we prove that \(-(a + b) = (-a) + (-b)\)?

We need to show that \((-a) + (-b)\) names the same number as \(-(a + b)\).

\(-(a + b)\) names the opposite of \((a + b)\).

We have just seen that the opposite of a number is the unique additive inverse of that number.

That is, if \((a + b) + x = 0\), then \(x\) names the same number as \(-((a + b))\).

Thus, if we can show that

\[
(a + b) + (-a) + (-b)
\]

then we will know that \((-a) + (-b)\) and \(-a + b\) both name the additive inverse of \((a + b)\).

Theorem 7.5. For any real numbers \(a\) and \(b\)

\[-(a + b) = (-a) + (-b).\]

Proof: Consider \((a + b) + ((-a) + (-b))\). We shall show that this is equal to zero.

\[
(a + b) + ((-a) + (-b)) = a + b + (-a) + (-b) = (a + (-a)) + (b + (-b))
\]

using the associative and commutative properties of addition.

\[
0 + 0 = 0
\]

using the addition property of opposites.

Therefore, \((-a) + (-b)\) names the additive inverse of \((a + b)\).
But \(-(a + b) \) also names the additive inverse of \(a + b \) since it is the opposite of \((a + b) \).

However, by Theorem 7.2a, we know that \((a + b) \) has only one additive inverse.

It follows that \((-a) + (-b) \) and \(-(a + b) \) name the same number.

Therefore, \(-(a + b) = (-a) + (-b) \).

Did you notice that we used Theorem 7.2a in the proof of Theorem 7.2b?

It is quite usual to prove one result by using another result which has already been proved.

We can use Theorem 7.2b to decide whether or not the following open sentences are true for all real numbers.

Respond true or false to each.

65. \((-a) + (-b) = (a + b)\) \hspace{1cm} \text{true}
66. \((-a) + (-b) = (a + b)\) \hspace{1cm} \text{false}
67. \((-a) + (-b) = (a + b)\) \hspace{1cm} \text{true}
68. \((-a) + (-b) = (a + b)\) \hspace{1cm} \text{true}
69. \((-a) + (-b) = (a + b)\) \hspace{1cm} \text{true}

Since \(-a + (-b)\), it seems reasonable to suspect that

\(-a + (-b) = (a + b) + (-a + (-b)),\)

It is in fact true that the opposite of any finite sum of real numbers equals the sum of the opposites. We will not prove this extension of Theorem 7.2a, but we will use it whenever it helps us write numerals in a different form.

Thus, \((-a) + (-b) = (a + b) + (-a + (-b))\).

Similarly,

71. \((-2 + 3) = (-2) + (-3) = (-5)\)
72. \((-2x + (-2)) = \((-2x) + 3y\)
73. \((-x + (-y) + (-1)) = (-x) + y + 1\)
74. \((-a + (-b)) = \((-a) + b + 3c\)

In this section we have introduced the idea of the additive inverse of a real number and have used additive inverses together with the addition.
property of equality to solve some equations. Equally important, we have stated and proved two theorems. We are not going to prove rigorously everything we assert from now on—we cannot at this stage—but we are trying to give you a little experience with the kind of thinking we call "proof." Don't be discouraged if you did not follow every detail of the arguments. We hope that by the end of the course you will have some feeling for the nature of proof, and hence a better idea of algebra and a greater interest in mathematics. Then you will be able, not only to use algebra in solving problems, but also to understand something about its logical development.

Complete the following proof of the statement:

For any real number \(a \), and any real number \(b \), and any real number \(c \), if \(a + b = c \), then \(a = b \).

Proof:

\[
\begin{align*}
7. \quad (a + b) + (-c) & \quad \text{Addition property of equality} \\
8. \quad a + (b + (-c)) & \quad \text{property of addition} \\
9. \quad a + 0 & \quad \text{Addition property of opposite} \\
10. \quad a = b & \quad \text{property of zero}
\end{align*}
\]

Which of the following statements is the better description of what we mean by a theorem?

A: A theorem is an assertion which, from experience, we know to be true, but since we can "prove" it, we do so.

B: A theorem is an assertion which, from experience, we suspect to be true and which may be proven on the basis of facts already established.

[B] is not a precise definition, but it serves to give some "feel" for what a theorem is, and [B] is the better choice.
Do you agree or disagree with the following statement?

A proof of an assertion is an argument which proceeds step by step, each step being justified by previously established facts, until the desired conclusion is reached.

[A] agree [B] disagree

Again, this statement is not a formal definition but it at least presents the idea of what we mean by "proof". If you disagree, perhaps you should reread some of the proofs of this section before proceeding to Section 7-6. You should have chosen [A].

7-6. Summary and Review Problems

We have defined addition of real numbers as follows:

The sum of two non-negative numbers is familiar from arithmetic.

The sum of two negative numbers is negative; the absolute value of this sum is the sum of the absolute values of the numbers.

The sum of two numbers, of which one is positive (or 0) and the other is negative, is obtained as follows:

The absolute value of the sum is the difference of the absolute values of the numbers.

The sum is positive if the positive number has the greater absolute value.

The sum is negative if the negative number has the greater absolute value.

The sum is 0 if the positive and negative numbers have the same absolute value.
We have satisfied ourselves that the following properties hold for addition of real numbers:

Commutative Property of Addition: For any two real numbers a and b, $a + b = b + a$.

Associative Property of Addition: For any real numbers a, b, and c, $(a + b) + c = a + (b + c)$.

Addition Property of Opposites: For every real number a, $a + (\neg a) = 0$ and $(\neg a) + a = 0$.

Addition Property of 0: For every real number a, $a + 0 = a$ and $0 + a = a$.

We also stated a fact, already clear from our earlier ideas, which we called the **addition property of equality:**

For any real numbers a, b, and c, if $a = b$, then $a + c = b + c$ and $c + a = c + b$.

This idea supplied us with a useful procedure for determining the truth sets of open sentences.

We have proved that the additive inverse is unique—that is, that each number has exactly one additive inverse, which we call its opposite.

We have discovered and proved the fact that the opposite of the sum of two numbers is the same as the sum of their opposites.

Review Problems

The correct answers for these Review Problems are on page vii.

1. Find a common name for each of the following:

 (a) $3(5 + (-4))$
 (b) $(a - 3) - 2 \times 3$
 (c) $2 \times 7 + (-14)$
 (d) $(-3) + (-4)$

2. Which of the following sentences are true?

 (a) $(-3) + (-3) + 3$
 (b) $10 - 7| + 3 \times 3 \times 2$
 (c) $2 + (-3) + (-4) + c$
 (d) $2 + (-3) + (-4) + a$
3. Show how the properties of addition can be used to explain why the following sentence is true:

\[\frac{2}{3} + (7 + (-\frac{2}{3})) = 7 \]

4. Find the truth set of each of the following:

(a) \(\frac{5}{9} + 32 = x + \frac{2}{9} \)
(b) \(x + 5 + (-x) = 12 + (-x) + (-3) \)
(c) \(x + \frac{15}{2} + x = 10 + x + (\frac{-7}{2}) \)
(d) \(|x| + 3 = 5 + |x| \)

5. For what set of numbers is each of the following sentences true?

(a) \(|3| + |a| > |3| \)
(b) \(|3| + |a| = |3| \)
(c) \(|3| + |a| < |3| \)

6. Two numbers are added. What do you know about these numbers if

(a) their sum is negative?
(b) their sum is 0?
(c) their sum is positive?

7. A salesman earned a basic salary of $80 a week. In addition, he received a commission of 3% of his total sales. During one week he earned $116. What was the amount of his sales for the week? Write an open sentence for this problem. (If you had trouble writing an open sentence for this problem, do the following steps:)

\[\text{If } n \text{ is the number of dollars in his sales for the week, then his commission on the sales, at 3\%, would be } (.03n) \text{ dollars.} \]

Since his earnings of $116 include his basic salary of $\underline{\text{80}}$ and his commission of $.03n$ dollars, an appropriate open sentence is $80 + (.03n) = 116$.

\[80 + (.03n) = 116 \]

274
8. A figure has four sides. Three of them are 8 feet, 10 feet, and 5 feet, respectively. How long is the fourth side?

(a) Write a compound open sentence for this problem.

(b) Graph the truth set of the open sentence.

(If you need help in writing this compound open sentence, here are some things to think about:)

Since each of the four sides must have some length, if \(x \) is the length of the fourth side, we know that \(x > 0 \).

Is there any positive number \(x \) that would be too great? If \(x > 8 + 10 + 5 \), the figure would look like this:

![Figure](image)

In other words, the figure would be a line segment, instead of a figure of _____ sides.

Can the length of the fourth side be greater than 23? (yes, no)

Hence, we see that for this problem \(x < 23 \).

These two restrictions on \(x \) are stated in the compound open sentence

\[x > 0 \quad \text{and} \quad x < 23, \]

or \(0 < x < 23 \).

9. If \(a, b, \) and \(x \) are numbers of arithmetic, write each of the indicated sum as an indicated product, and each of the indicated products as an indicated sum:

(a) \((2b + c)a\)
(b) \(x^2 + xy\)

(c) \(2a(1 + x)\)
(d) \(|a + b|^2\)

(e) \(3a + 2b\)
(f) \(ab(a + b)\)

(g) \(2x + 10ax\)
(h) \(a(a + 2b + 5c)\)
10. Given the set \([-5, 0, \frac{5}{3}, \ldots, 7, 9]\)

(a) Is this set closed under the operation of taking the opposite of each element of the set?

(b) Is this set closed under the operation of taking the absolute value of each element?

(c) If a set is closed under the operation of taking the opposite, is it closed under the operation of taking the absolute value? Why?

11. Given the set \([-5, 0, \frac{5}{3}, \ldots, 7]\)

(a) Is this set closed under the operation of taking the absolute value of each element of the set?

(b) Is this set closed under the operation of taking the opposite of each element?

(c) If a set is closed under the operation of taking the absolute value, is it closed under the operation of taking the opposite? Why?
Chapter 8

PROPERTIES OF MULTIPLICATION

8-1. Multiplication of Real Numbers

Until we were introduced to the negative numbers, all our work was with numbers of arithmetic. However, quite often we are faced with problems which call for the use of negative as well as non-negative numbers. For example, in the launching of a missile, the upward force of the missile is counteracted by the force of gravity. If one of the forces is considered positive, the other would be considered negative. Problems involving such concepts sometimes require operations with negative numbers as well as with numbers of arithmetic.

As another illustration, let's consider the case of a merchant who is offering weekly "leaders". These are items which are sometimes offered at a loss to attract customers. Let's say the merchant is handling record albums.

Suppose the merchant makes a $3 profit on each album of brand X and a $2 profit on each of brand Y. If he sells 15 albums of brand X and 20 of brand Y, then his net profit may be represented by

\[(15)(3) + (20)(2)\]

On the other hand, suppose the merchant makes a $3 profit on brand X and takes a $2 loss on brand Y. What were his proceeds from the sale of 15 sets of brand X and 20 sets of brand Y?

If we represent the $3 profit as (3) and the $2 loss as (-2), then the result of the sale may be represented by

\[(15)(3) + (20)(-2)\]

Furthermore, if the dealer has to accept some returned merchandise, say I of brand X and 7 of brand Y, then the resulting expression may look still more involved:

\[(15)(3) + (20)(-2) + (I)(-3) + (7)(+2)\]

We may need to know how to handle the multiplication of two real numbers. All that we can say at present is that we know how to multiply non-negative numbers (that is, numbers of arithmetic). We want to give meaning to products which involve negative numbers.
Let us recall some of the things we know about multiplication for the numbers of arithmetic.

We noted that among the properties of multiplication that hold for non-negative real numbers, that is, for the numbers of arithmetic, are:

- The commutative property of multiplication,
- The associative property of multiplication,
- The multiplication property of 0,
- The multiplication property of 1.

Moreover, for the numbers of arithmetic, the distributive property connects the operations of addition and multiplication.

We use these properties repeatedly when we use the numbers of arithmetic.

Furthermore, in Chapter 7 we found that for real numbers, just as for the numbers of arithmetic, we have the commutative and associative properties of addition.

We found that we were able to define addition of real numbers in such a way that certain properties holding for non-negative numbers were maintained for the real numbers. We shall find that we can also define multiplication of real numbers so that the properties in Items 3-5 are preserved. To be useful, the definition should be such that when it is applied to actual problems, the interpretation is realistic. We will see that our definition will fulfill this requirement. In particular, since all numbers of arithmetic are real numbers, the definition of multiplication should give the familiar results when we multiply numbers of arithmetic. Thus, the definition applied to (2)(2) must give 4 to agree with our knowledge of the numbers of arithmetic.

However, at this point the symbols (-2)(0), (0)(-2), (3)(-2), (-2)(3) and (-2)(-2) are meaningless to us. Each has the form of an indicated product and each has at least one negative number. We are going to define such products in a way that preserves the basic properties mentioned above.

We know that if \(a \) is any non-negative real number, then \(a \cdot 0 = 0 \) by the property of zero.
As we extend the set of numbers from the non-negative real numbers to all real numbers, we shall want the multiplication property of zero to hold. That is, our definition of multiplication must insure that \(a \cdot 0 = 0\), and \(0 : a = 0\) for every real number \(a\).

10. If the multiplication property of zero is to hold, then \((-2)(0) = ____________.\)
11. \(0)(-2) = ___________.\)
12. \((-\sqrt{2})(0) = __________.\)
13. \((0)(-\pi) = __________.\)

Now let us consider \((-3)(-2)\). What real number shall this represent?

15. \(-2\) is the additive inverse of \(2\), that is:
16. \(2 + (-2) = ______.\)

Examine \(3(2 + (-2))\).
17. If the multiplication property of zero is to hold, then \(3(2 + (-2)) = __________.\)

But we also want to define multiplication so that the distributive property holds true.

Hence, we want:
19. \[3(2 + (-2)) = 3 \cdot 2 + 3(______) = 0\]

Now we are getting somewhere. If multiplication of real numbers is to have both the distributive property and the multiplication property of zero, then:
20. \(3 \cdot 2 + 3(-2) = __________________. \) must be true.
21. Now \(3 \cdot 2 = ______.\) so we see that
22. \(6 + 3(-2) = _______________.\) must be true.

Hence, to be consistent, \(3(-2)\) must be the additive inverse of \(6\).
24. But \(______________________.\) is the additive inverse of \(6\) and a real number has only one \(_______.\)

Therefore, our definition of \(___________________.\) must guarantee that \(3(-2) = -6\).
Note to the student: Be careful in your thinking! We did prove that 3(-2) must be -6. We showed only that if we want to define multiplication in a way that preserves certain properties, then we must define 3(-2) as -6. Note, also, that this agrees with our intuitive notion of 3(-2).

If record albums are sold at a loss of $2 each, then the sale of 3 albums results in a __________ of $6 loss to the dealer.

Observe that if we define multiplication so that the distributive property is to hold, then

\[3x = (1 + 1 + 1)x = x + x + x.\]

If \(x\) is -2, then

\[3(-2) = (-2) + (-2) + (-2) = -6.\]

It should be clear that when we state our definition of multiplication, it must guarantee not only that 3(-2) = -6 but that

\[
\begin{align*}
7(-8) &= -56 \\
5(-\frac{1}{2}) &= -\frac{5}{2} \\
\left(\frac{1}{2}\right)(-\frac{7}{10}) &= -\frac{7}{20}
\end{align*}
\]

We are ready now to consider the product (-3)(-2).

Let us proceed in this manner:

\[0 = (0)(-2)\] for the multiplication property of 0 is to hold for real numbers.

\[0 = (3 + (-3))(-2)\] We write \(3 + (-3)\) for 0, using the addition property of opposites.

\[0 = ____ + (-3)(-2)\] If the distributive property is to hold for real numbers.

\[0 = ____ + (3)(-2)\] We have previously found that our definition of multiplication had to guarantee that (3)(-2) = -6.

Now (-3)(-2) must be the additive inverse of _____.

Hence, the only possibility is that (-3)(-2) is ____.
The same line of reasoning would lead to the true sentence \((\frac{1}{2})(-\frac{7}{3}) = \frac{7}{6}\).

It would appear that we should define multiplication for all real numbers in such a way that the product of two negative numbers is positive.

So far we have been concerned with preserving the multiplication property of 0 and the distributive property. We also want to preserve the commutative property of multiplication.

We desire that for any real numbers \(a\) and \(b\)
\[a \cdot b = ___. \]
Thus, if \((-2)(-2) = -6\), then we must have also
\[(-2)(3) = ___. \]
The product of a positive number and a negative number should be (positive, negative).

The product of 3 and the opposite of 2 is the opposite of the product of 3 and 2.

We have now covered all the possible cases of multiplication of real numbers:
- one or both of the numbers are zero,
- both numbers are positive,
- one number is positive and one is negative,
- both numbers are negative.

We have reasoned as to what the products must be, if certain properties are to hold. How should we formulate our definition of the product of two real numbers? Let's look at the various products we obtained above:

\[
\begin{align*}
(2)(3) &= 6 \\
(-2)(-3) &= 6 \\
(2)(-3) &= -6 \\
(-2)(3) &= -6
\end{align*}
\]

Each result is 6 or its opposite, -6. Both 6 and -6 have the same absolute value. This absolute value can be obtained by multiplying the absolute values of the numbers on the left. These examples suggest that we might think of formulating our definition in terms of absolute value. We must notice,
however, that the product is -6 when one of the numbers is positive and the other is negative.

First we review some facts about absolute value. If the real number \(a\) is non-negative, it is either positive or 0, or zero.

42 If \(a\) is 0, then \(|a| = _____.\)

43 If \(a\) is non-negative, then \(|a| = \frac{a}{-a}\).

44 If \(a\) is negative, then \(|a| = _____.\)

Applying the definition of absolute value, we have

45 \(|7| = \underline{_____.}\)

46 \(|-7| = -(-7) = \underline{_____.}\)

47 \(|0| = \underline{_____.}\)

48 Also, \(|0| = -(-0) = \underline{_____.}\)

Let us now try to express our definition of products of real numbers in terms of absolute value.

It follows at once from the definition of absolute value that \((2)(3) = |2||3|\).

Thus, if we formally define:

\[
ab = |a||b|
\]

for positive numbers \(a\) and \(b\), we shall not conflict with what we already know about the product of numbers of arithmetic.

Now consider \((-2)(-3)\). The preservation of basic properties requires that \((-2)(-3) = \underline{_____.}\).

Notice that \(|-2||-3| = (\underline{(______)})(\underline{(_____)})\).

Hence, \((-2)(-3) = \underline{|-2||-3|}\).

It would appear that for any pair, \(a, b\), of negative real numbers we want it to be true that

\[
ab = |a||b|
\]
Let us now try the same approach on the product \((-2)(3)\). We found that our definition had to give the result \((-2)(3) = \).

However, \(|-2||3| = (\) (\) = \)

Thus, \((-2)(3) = -(|-2||3|)\).

From this example it appears that for a pair of real numbers of which one is positive and the other is negative, we want it to be true that

\[ab = -(|a||b|) \]

Finally, consider the product \((0)b\), where \(b\) is any real number. We have said that our definition of multiplication must insure that

\[(0)b = \]

Since \(|b|\) is a number of arithmetic, and since

\[|0| = 0, \]

we can state

\[|0||b| = \]

and

\[-(|0||b|) = \]

Remember that for every real number \(a\), \(|a|\) is a number of arithmetic.

The principal achievement of the above discussion is that every possible product of real numbers has been expressed in terms of a product of numbers of arithmetic, This enables us to define the new operation in terms of one which is already known.

Definition: Let \(a\) and \(b\) be any two real numbers. In case \(a\) and \(b\) are both negative or are both non-negative,

\[ab = |a||b|. \]

In case one of the numbers is negative and the other is non-negative,

\[ab = -(|a||b|). \]

The second statement of this definition may appear awkward. Let's pause to analyze what it means. We are given any two real numbers, \(a, b\), of which one is negative and the other non-negative. First, the definition tells us to find the absolute value of these numbers. Having done this for each of two
real numbers, \(a, b\), we now have numbers of arithmetic corresponding to them, and we can form the product \(|a| \cdot |b|\). Finally, \(-(|a| \cdot |b|)\) tells us to find the opposite of the product.

From the definition and from Items 58 and 59, we see that for a pair \(a, b\), of real numbers of which at least one is zero, both

\[
ab = |a| \cdot |b| \quad \text{and} \quad ab = -(|a| \cdot |b|).
\]

You should convince yourself that the above definition properly handles all of the cases which were discussed above.

Examples:

\[
\begin{align*}
(5)(-3) &= -(|5| \cdot |-3|) = -15 \\
(-5)(-3) &= (|-5| \cdot |-3|) = 15 \\
(-5)(3) &= -(|5| \cdot |3|) = -15 \\
(-7)(0) &= -(|7| \cdot |0|) = -0 = 0
\end{align*}
\]

Using the definition, find the simplest names for the following products:

\[
\begin{align*}
(-8)(4) &= -(|8| \cdot |4|) = -32 \\
\left(\frac{1}{2}\right)(\frac{3}{2}) &= \left(|\frac{1}{2}| \cdot \left|\frac{3}{2}\right|\right) = \frac{3}{4} \\
(-\frac{1}{3})(\sqrt{5}) &= -(|\frac{1}{3}| \cdot \sqrt{5}) = -\frac{\sqrt{5}}{3} \\
\left(\frac{1}{6}\right)(-\sqrt{2}) &= -(|\frac{1}{6}| \cdot |\sqrt{2}|) = -\frac{\sqrt{2}}{6} \\
(-1.1)(-3) &= \left(|-1.1| \cdot |-3|\right) = 3.3
\end{align*}
\]

You should make very sure that you understand the method of computing products which involve negative numbers. Here are some questions to help you.

For all real numbers \(a\) and \(b\), \(|a|\) and \(|b|\) are non-negative: Consequently, \(|a| \cdot |b|\) is a non-negative number. This non-negative number can be computed from what we know about the numbers of arithmetic. To compute the product of any two real numbers you need to know:

- how to compute products of numbers of arithmetic
- how to decide whether the product is negative or non-negative.
From the first part of the definition, we see that:

- The product of two positive numbers is a positive number, and that
- The product of two negative numbers is a negative number.

From the second part of the definition, we see that:

- The product of a positive and a negative number is a negative number.

We can also tell from the definition that:

- The product of a real number and 0 is 0
- The product of two non-negative numbers is a non-negative number.

If \(w \) is positive, \(w \) is \((\text{positive, negative, 0}) \)

If \((-9)t \) is positive, \(t \) is \(\text{positive} \)

If \(8u \) is negative, \(u \) is \(\text{negative} \)

If \((-2)s \) is negative, \(s \) is \(\text{negative} \)

If \((-117)q \) is zero, \(q \) is \(0 \)

From Items 68 and 69 we get a simple but important fact about \(x^2 \) for all real numbers \(x \).

By the comparison property, if \(x \) is a real number, exactly one of the following is true.

- \(x > 0 \), \(x = 0 \), or \(x < 0 \).

 If \(x \neq 0 \), then either

 \[x > 0 \quad \text{or} \quad x < 0. \]

Since \(x^2 \) means \(x \cdot x \), if \(x > 0 \), \(x^2 \) is the product of a positive number and a positive number, and this product is a positive number.

If \(x < 0 \), \(x^2 \) is the product of a negative number and a positive number, and this product is a negative number.
From Items 79-84, we have the following:

If \(x \) is a real number and \(x \neq 0 \), then

\[
x^2 > 0
\]

Consider the products:

\[
\begin{align*}
J. & \quad (-7)(-3) \\
M. & \quad \left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right) \\
K. & \quad \left(\frac{2}{3}\right)(-12) \\
N. & \quad (-3)(0) \\
L. & \quad (-18)(\frac{3}{4})
\end{align*}
\]

Which of these statements about the products is correct?

- [A] Only \(J \) and \(M \) are non-negative real numbers.
- [B] Only \(N \) is a non-negative real number.
- [C] Only \(K \) and \(L \) are negative real numbers.

If you selected [C], you made the correct choice. \((-7)(-3)\) and \(\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)\) are non-negative, and so is \((-3)(0)\).

Calculate the following. The answers are on page viii.

\[
\begin{align*}
88. & \quad \left(-\frac{1}{2}\right)\left(2\right)(-5) & 92. & \quad |-3|(-4) + 7 \\
89. & \quad (-3)(-4) + (-3)(7) & 93. & \quad |3||-2| + (-6) \\
90. & \quad (-3)(-4) + 7 & 94. & \quad (-3)||-2| + (-6) \\
91. & \quad (-3)(-4) + 7 & 95. & \quad (-3)(|2| + (-6))
\end{align*}
\]

Which of the following sentences are not true when \(x = -2 \), \(y = 3 \), \(f = -10 \), \(m = 2 \), and \(a = -4 \)?

- [P] \(2x + 7y = 17 \)
- [Q] \(x^2 + (3|a| + (-4)y) = h \)
- [R] \(2y + 8 = -12 \)
- [S] \(|m + 3| + (-2)(|m + (-4)|) \geq 1 \)
- [T] \(x + y + f = 15 \)

- [A] P and Q are not true sentences.
- [B] Only R is not a true sentence.
- [C] Only S is not a true sentence.
- [D] Only T is not a true sentence.
You should have selected [D] as your choice, since they are all true except [T]. \(x + y + f = 15\) becomes \((-2) + 3 + (-10) = 15\), or \(-9 = 15\), which is a false sentence.

Items 97-100 give you additional practice in using the definition of multiplication of real numbers.

Label each of the following true or false.

97	\(2(-y) + 8 = 28, \) if \(y\) is \(-10\).	true		
98	\((-3)((-2)(-x)) + 3 = 0, \) if \(x\) is \(2\).	false		
99	\((-2)((-b)(-4)) + 30 < 0, \) if \(b\) is \(2\).	true		
100	\(x + 2	+ (-5)(-3) + 2x > (-40), \) if \(x\) is \(-2\).	true

Recall the procedure which was developed in Section 7-h to find the truth sets of open sentences. Let us apply this procedure to open sentences which have products, involving negative numbers. In working through the first example, we shall supply all the reasoning, in order to refresh your memory. As you work on through these problems you may wish to drop some of the explanatory words, following the pattern of work suggested in Section 7-h.

Example: Find and graph the truth set of

\[(3)(-3) + y = 3(-4)\]

We can proceed as follows:

If \((3)(-3) + y = 3(-4)\) is true for some \(y\), then \(-9 + y = -12\) is true for that same \(y\).
Likewise, \(x + y = -12 + y\) is true for that same \(y\).
Also, \(y + (-5) = -12 + 3\) is true for that same \(y\).
Finally, \(y = -3\) is true for that same \(y\).

But \(y = -3\) is true only if \(y = -3\). Note that from above, we have only claimed that \((3)(-3) + y = 3(-4)\) is true for some \(y\), then after a chain of reasoning, finally, \(y = -3\) is true for the same \(y\). There has been no point during this process where we have determined whether the original sentence is true if \(y = -3\), and this must be verified if \(-3\) is to be in the truth set. If \(y = -3\), then the left side is \((3)(-3) + (-3)\), or \(-12\), and the right side is \(3(-4), -12\). When we say that if the first statement is true for some \(y\), then the final statement is true for the same \(y\), we mean...
that no other y will do. Hence, the truth set is $\{-3\}$.

The graph of the truth set of $3(-3) + y = 3(-4)$ is $\{-3\}$.

Find the truth set of $x + (-3)(-4) = 8$ and draw its graph. The truth set is $\{-4\}$ and the graph

Omitting words which show the reasoning, the work for Item 101 might appear like this:

If $x + (-3)(-4) = 8$ is true for some x

$x + 12 = 8$
$x + 12 + (-12) = 8 + (-12)$
$x = -4$ is true for the same x.

Check: The left side is $(-4) + (-3)(-4) = 8$.
The right side is 8.

Thus, since the original statement is true if x is -4,
the truth set is $\{-4\}$.

Find the truth sets of each of the following open sentences. Then draw their graphs. When you have finished, turn to page viii for the correct results.

103. $x + (-\frac{3}{2})(-2) = 3$
104. $2(-2) + y = 3(-2)$
105. $x + 2 = 3(-3) + (-4)(-5)$
106. $x + (-2)(4) = |-(2)|(-3)$
107. $|x| = (-\frac{2}{3})7 + (-1)(-5)$

Let us examine some products of real numbers, giving our attention to the absolute values of the numbers and of their products.

$108 \ |7| - 3| = __
109 \ |(7)(-3)| = __
110 \ |7| - 3| > |(7)(-3)|$
The examples above might lead us to wonder whether it is true for all real numbers a and b:

$$|ab| = |a||b|.$$

As a matter of fact, the statement is true for all real numbers, and can be stated as a property of multiplication:

For all real numbers a and b,

$$|ab| = |a||b|.$$

When we take many numerical examples and arrive at the same conclusion each time, we still do not have a proof that our conclusion is true for all real numbers. However, the property stated above can be proved as a theorem.

Items 115-119 are starred, but we hope that you are curious about the proof and will work through the starred items.

Theorem 8.1. For all real numbers a and b,

$$|ab| = |a||b|.$$

*Proof: Suppose a and b are any two real numbers.

Case I: If a and b are either both negative or both non-negative, then

$$ab = _____.$$

Thus, $|ab| = |a||b|$.

The absolute value of a non-negative number is the number itself.

Case II: If one of the numbers a and b is negative and the other is non-negative, then

$$ab = _____.$$

Thus, $|ab| = -(|a||b|)$ since ab is a negative number, or 0, and its absolute value is the opposite of the number.

$$|ab| = |a||b|.$$

Hence, in either case, $|ab| = _____$.

279
8-2. The Commutative Property and the Multiplication Properties of 1 and 0

In the last section we defined the operation of multiplication in the set of real numbers.

If \(a \) and \(b \) are any two real numbers, the product \(ab \) is defined as follows:

1. \(ab = |a||b| \) if \(a \) and \(b \) are both non-negative or both negative.
2. \(ab = -(|a||b|) \) if one of the numbers \(a \) and \(b \) is non-negative and the other is negative.

Thus, for any two real numbers \(a \) and \(b \):

- either \(ab \) is equal to the product of \(|a| \) and \(|b| \), or \(ab \) is equal to the opposite of the product of \(|a| \) and \(|b| \).

In the last section we saw that if multiplication for the set of real numbers is to have certain properties, then the definition given is the only possible one.

Now you should understand the task which lies before us. Beginning with our definition of multiplication, we shall investigate whether or not certain familiar properties that hold for the set of non-negative real numbers also hold for the set of all real numbers.

To accomplish this, we shall first test a given property by trying out some examples. Doing this will enable us to suspect that a certain theorem is true; at times we shall also see that the reasoning used in each of a given group of examples fits into a certain pattern. In some instances we shall organize this reasoning into a careful, step-by-step proof.

In this chapter you will see many proofs. Do your best to understand the main ideas of each one, but do not try to memorize proofs. This is a waste of time. Eventually you will learn how to construct some proofs for yourself. This is an important skill, and one that takes time and patience to achieve. Fortunately, the idea of proof sets earlier as you go along.
We are familiar with the following properties of non-negative real numbers.

If \(a, b, \) and \(c \) are non-negative real numbers, then

- \(ab = ba \) Commutative property of multiplication
- \((ab)c = a(bc)\) Associative property of multiplication
- \(a \cdot 1 = a\) and \(1 \cdot a = a\) Multiplication property of \(1\)
- \(a \cdot 0 = 0\) and \(0 \cdot a = 0\) Multiplication property of \(0\)
- \(a(b + c) = ab + ac\) and \((b + c)a = ba + ca\) Distributive property

We are going to find out that these five properties hold true in the set of all real, non-negative numbers.

In the proofs which follow, notice how we use the fact that the properties stated above hold for all non-negative real numbers.

Here are several products involving the numbers \(\frac{18}{2} \) and \(-17 \) and their opposites. The first product has been computed for you. Compute the other products as quickly as you can.

\[
\begin{align*}
(\frac{18}{2})(17) &= \frac{206}{2} \\
(17)(\frac{-18}{2}) &= \frac{306}{2} \\
(-17)(\frac{18}{2}) &= \frac{306}{2} \\
(-17)(\frac{-18}{2}) &= \frac{306}{2}
\end{align*}
\]

Did you use paper and pencil, or did you do some intelligent guessing?

If you guessed intelligently, then you must suspect that the commutative property of multiplication holds for all real numbers.

We know that this property holds for all non-negative numbers.
The fact that the commutative property holds for non-negative real numbers guarantees that $|-17| \frac{18}{5} = \frac{18}{5} |-17|$, because $|-17|$ and $\frac{18}{5}$ are non-negative numbers.

Can we conclude without using pencil and paper that the following numerical sentence is true?

$$ (-53)(-47) = (-47)(-53) $$

In fact, we can reason:

$$ (-53)(-47) = |-53||-47| $$

Definition of multiplication

$$ = |-47||-53| $$

Property of multiplication for non-negative real numbers

$$ = (-47)(-53) $$

Definition of multiplication

Can we conclude without actually carrying out the multiplication that the sentence

$$ (-53)(47) = (47)(-53) $$

is true?

Yes, no

The first step in the reasoning is to note that

$$ (-53)(47) = -(-53)(47) $$. from the definition of multiplication. Try to complete the reasoning.

We can now organize the reasoning needed in the preceding examples to construct a step-by-step proof that the commutative property holds for all real numbers.

Theorem. For all real numbers a and b,

$$ ab = ba $$

Proof.

Case I. Suppose a and b are both non-negative or both negative.

$$ 2^3 \cdot 2^2 = 2^{3+2} $$
Case II. Suppose one of the numbers a and b is non-negative and the other is negative.

$ab = -(|a||b|)$

Definition of multiplication

$= -(|b||a|)$

Commutative property of multiplication for real numbers

$= ba$

Definition of multiplication

Read the proof carefully. Try to see how it translates the reasoning you used in Items 11-16.

Another way of proving this theorem is to recall first that at the end of the preceding section, we proved that for all real numbers a and b, $|ab| = |a||b|$. A similar statement can be made for $|ba|$. Next, we consider and compare the products ab and ba for the various cases of a and b:

- if a and b are both positive,
- if they are both negative,
- if one is positive and the other is negative,
- if one or both of these are zero.

Try to construct a proof along these lines and compare your results with those on page ix.

The reasoning in both of these proofs is similar. In both ways of reasoning, the essential ideas we need are:

- the fact that the commutative property is known to hold for the non-negative real numbers; and
- the definition of multiplication.

The moral is: A theorem can sometimes be proved in more than one way.
Before we take up the multiplication property of 1, try these examples.

- $4 \cdot 1 = \underline{4}$
- $3 \cdot \frac{11}{3} = \underline{11}$
- $(-3) \times 1 = \underline{-3}$
- $1 \times (-\sqrt{7}) = \underline{-\sqrt{7}}$

We suspect: If a is any real number,

$$a \cdot 1 = \underline{a} \quad \text{and} \quad 1 \cdot a = \underline{a}.$$

Let us see the pattern we would follow in working out these examples.

The first two examples (items 12 and 13) involve only non-negative numbers. We already know that the multiplication property of 1 holds for non-negative real numbers.

What about $(-3) \times 1$? We find a simpler name for this product by using our definition of multiplication:

$$(-3) \times 1 = -|(-3)\cdot|1||.$$

We know that $|-3| = \underline{3}$.

Since $3 \times 1 =$ (multiplication property of 1), and since the opposite of 3 is -3, we have:

$$(-3) \times 1 = \underline{-3}.$$

There is a point to considering $(-3) \times 1$ in so much detail. We could have used exactly the same reasoning with any other negative number. For instance, we could use it to explain why $(-\frac{1}{2}) \times 1 = -\frac{1}{2}$. Likewise, the example $4 \times 1 = 4$ illustrates a general property of non-negative numbers. In other words, the reasoning we have used in talking about these examples can be used in a proof that if a is any real number, $a \cdot 1 = a$ and $1 \cdot a = a$.

On Panel 8-2 on your response sheet, try to complete for yourself the proof of the theorem:

If a is any real number,

$$a \cdot 1 = \underline{a},$$

then $1 \cdot a = \underline{a}$.

Do not refer to Items 1-10 below unless you find blanks in the proof which you cannot complete. In such a case, refer to that item below which is numbered to correspond to the one which gave you trouble.
In Case I, we use at once the fact that the property of \(\) holds for all non-\(\) real numbers.

In Case II, we assume that \(a\) is ___

Since \(a\) is a negative real number, the fact that \(a \cdot 1 = -(|a|)\) is an application of the definition of multiplication for real numbers.

Since the absolute value of a non-negative number is the number itself, \(|1| = \).

Since \(|a|\) is non-negative, we know that \(|a| \cdot 1 = |a|\), hence, \(-(|a|)\).

Since \(a\) is negative and the absolute value of any negative number is the opposite of the number, \(|a| = \).

Since the opposite of the opposite of a real number is the number itself, we see that \(-|a|\), which is \(-(-a)\).

We have shown that \(a \cdot 1 = |a|\), and \(a\) are all names for the same number. Hence, \(a = \).

The proof of the theorem is now complete. Because each real number is either non-negative or negative and in both cases we have shown that \(a = a\). Check your completed proof with that above on the following page.
Theorem. If \(a \) is any real number, then \(a \cdot 1 = a \).

Proof.

Case I: \(a \) is non-negative.

If \(a \) is non-negative, then \(a \cdot 1 = a \), because the multiplication property of \(1 \) holds for all non-negative real numbers.

Case II: \(a \) is negative.

Since \(a \) is negative and \(1 \) is non-negative,

\[
 a \cdot 1 = -(|a| \cdot 1) \\
 = -(|a| \cdot 1) \\
 = -|a|.
\]

But, since \(a \) is negative,

\[
|a| = -a.
\]

Hence, \(-|a| = \frac{1}{a} \cdot a \)

Since \(a \cdot 1 = -|a| \) [Item 47]
and \(-|a| = -a \) [Item 50]

We could prove, by exactly the same steps, that for any real number \(a \) we have \(1 \cdot a = a \). You should be able to see how this proof would look.

However, we have already proved that the commutative property of multiplication holds for the real numbers. Then it follows at once that since \(a \cdot 1 = a \), it is also true that \(1 \cdot a = a \). This again illustrates the fact that a proof can sometimes be given in more than one way.

The proof of a mathematical statement helps us see why the statement is true. In studying a proof, the goal is to understand the ideas and the reasoning, not simply to commit the proof to memory. It is useless to memorize a proof that you don't understand; and if you really understand a proof, there is no need to memorize it.
One important idea used in the proof in Panel 8-2 is that the multiplication property of \(a \cdot 0 = \) holds for all non-negative real numbers.

This property is used in each of the two cases.

If \(a \) is non-negative (Case I) \(a \cdot 1 = \) from this property.

In Case II, where \(a \) is negative, we need this property to explain why \(|a| \cdot 1 = \).

Now you can try your hand at constructing a proof.

Try to prove the multiplication property of \(0 \). Do your best to write a complete proof for yourself. If you are successful you can use Items 55-63 as a check of your work. If you have trouble, use these items to help you complete the proof.

We want to construct the proof that if \(a \) is any real number, then \(a \cdot 0 = \).

As in the previous proof, we can separate this proof into cases.

We first suppose that \(a \) is non-negative, and then that \(a \) is non-negative.

Case I. If \(a \) is non-negative, then \(a \cdot 0 = 0 \) because the multiplication property of \(0 \) holds for \(a \) real numbers.

Case II. If \(a \) is negative, then \(a \cdot 0 = -(|a| \cdot 0) \) from the definition of multiplication.

The next step is to note that \(|a| \cdot 0 = 0 \).

Since \(|a| \) is a non-negative real number, \(|a| \cdot 0 = 0 \) because of the multiplication property of \(0 \).

So we have, from Items 60 and 62, \(a \cdot 0 = -(|a| \cdot 0) = 0 \).

The proof is complete, since we know that \(0 = \).
We proved that if \(a \) is any real number, then \(a \cdot 0 = 0 \).

We could prove in exactly the same way:

If \(a \) is any real number, then \(0 \cdot a = 0 \).

However, we could also prove this at once, since

\[a \cdot 0 = 0 = a \cdot 0 \text{ because of the _____ property of _____} \]

Thus, we have both:

\[a \cdot 0 = 0 \quad \text{and} \quad 0 \cdot a = 0. \]

We speak of the multiplication property of \(0 \) whenever we want to refer to either of these statements.

In this and in the next section, the starred items are designed to give you more practice in thinking about proofs.

In proving that the multiplication property of \(0 \) holds for all real numbers, which, if any, of the following ideas were not used?

[A] The multiplication property of \(0 \) for non-negative real numbers.

[B] The definition of multiplication in the set of all real numbers.

[C] The multiplication property of \(1 \).

[D] The property that \(-0 = 0\).

Look carefully at [C]. We proved the multiplication property of \(0 \) in the same way as we proved the multiplication property of \(1 \). However, we did not use the multiplication property of \(1 \) in our proof. We could prove the multiplication property of \(0 \) even if we did not know the multiplication property of \(1 \). Thus, [C] was not used in the proof, but [A], [B] and [D] were used. (Look again at Items 65 to 67, if you weren't sure.)
Apply the multiplication properties of 1 and 0 (which we have just shown to be true in the set of all real numbers) to compute the following products:

68 \((-2) \cdot 0 = \)
69 \((-\sqrt{3})((-7) + \theta) = \)
70 \((-\sqrt{3})((-8) + \theta) = \)
71 \((-3\sqrt{6}) \cdot 1 = \)
72 \((7 + (-9))(\theta + (-\sqrt{6})) = \)
73 \((x + (-y))(y + (-y)) = \)

8.3. The Associative and Distributive Properties

Since the associative property of multiplication holds for the numbers of arithmetic, we are led to ask whether this property holds for the real numbers.

If the associative property for multiplication holds for real numbers a, b, and c,

\[(ab)c = a(bc)\]

First, we can argue that if a is 0, and b is a real number, then ab = 0, and hence, \((ab)c = 0\). Similarly, we can show that if one or more of the numbers a, b, c, is 0, then \((ab)c = 0\) and also a(bc) = 0. Thus, \((ab)c = a(bc)\) if one or more of the numbers a, b, c is 0.

To prove that the associative property holds for non-zero real numbers, we might show that \((ab)c = a(bc)\) is true if all of the numbers a, b, c are positive, and also true if one or more of them is negative. There are eight different cases, three of which are listed below:

- a is positive, b is positive, and c is positive;
- a is positive, b is positive, and c is negative;
- a is positive, b is negative, and c is positive.

The detailed proof of one such case, namely, if a and b are positive and c is negative, is given in the starred items 91-100 at the end of this section.
You may want to try constructing this proof for yourself and compare it with the one given there.

Instead of proceeding with the proof by considering each of the eight cases separately, we are going to indicate a more condensed version in which several cases are sometimes combined in one. As usual, the consideration of a few examples will help.

<table>
<thead>
<tr>
<th>Compute the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ((-7)(4)(-3)) = _____</td>
</tr>
<tr>
<td>3 ((4)(-3)) = _____</td>
</tr>
<tr>
<td>4 ((c7)(4)(-3)) = _____</td>
</tr>
<tr>
<td>5 ((-7)(-4)(-3)) = _____</td>
</tr>
</tbody>
</table>

Not all of your answers were equal, but all had the same _____ value.

This suggests that it might be helpful in comparing the products \((ab)c\) and \(a(bc)\), to compute \(|(ab)c|\) and _____.

In doing this, remember that if \(x\) and \(y\) are any real numbers, \(|xy| = |x||y|\).

Applying this to \(|(ab)c|\),

\[|(ab)c| = |ab||c| = |a||b||c|, \]

which we can write without parentheses because \(|a|, |b|, |c|\), are numbers of arithmetic, and the _____ property of multiplication holds for non-_____ real numbers.

In the same way, we can write

\[|a(bc)| = |a||b||c|, \]

Combining Items 10 and 13, since \(|(ab)c|\) and _____ are both equal to \(|a||b||c|\), we can conclude that \(|(ab)c| = _____

Having shown that \((ab)c\) and \(a(bc)\) have the same absolute value for all real numbers \(a, b, c\), we will be sure that \((ab)c = a(bc)\) if we can prove that--whatever the numbers \(a, b,\) and \(c\) represent--(ab)c and \(a(bc)\) are either both positive, both negative, or both 0. If you tried the second
proof for the commutative property in the last section, you noticed that the line of reasoning followed there parallels the reasoning outlined here.

We shall not have to consider the case if all of the numbers are positive since the associative property holds for all numbers of arithmetic.

If one of the numbers a, b, c, is negative and the others are positive, either ab or c is negative and the other is positive. So the product $(ab)c$ is

\[
\text{negative} \quad \text{(positive, negative)}
\]

Similarly, either a or b is negative, and the other is positive.

So the product $ab(c)$ is

Hence, in this case, $(ab)c$ and $a(bc)$ are both negative.

Thus, we have proved: If one of the numbers a, b, c, is negative and the others are positive, $(ab)c$ and $a(bc)$ are both negative. Moreover, we have proved that the absolute value of $(ab)c$ is the same as the absolute value of $a(bc)$. Hence, in this case $(ab)c = a(bc)$.

For the other cases, we can proceed in the same way.

*If two of the numbers a, b, c, are negative and the other positive, either c is positive and both a and b are negative, or c is negative, one of the numbers a, b, is negative, and the other is positive.

In the first case, ab is

\[
\text{positive} \quad \text{since both } a \text{ and } b \text{ are negative.}
\]

Then $(ab)c$ is

\[
\text{positive} \quad \text{(positive, negative)}
\]

In the second case, ab is

\[
\text{positive} \quad \text{(positive, negative)}
\]

$(ab)c$ is

\[
\text{positive}
\]

In either case, $(ab)c$ is

\[
\text{positive}
\]

Continuing in the same way, we can show that if two of the numbers a, b, c, are negative and the other is positive, then $(ab)c$ and $a(bc)$ are both positive. Finally, if a, b, c, are all negative, then $(ab)c$ and $a(bc)$ are both positive.
Since we are now sure that the associative property holds for all real numbers, we can write the product of the numbers a, b, and c as abc, omitting parentheses, without fear of confusion.

The commutative and associative properties of multiplication permit us to compute the product of three or more numbers in any convenient order and grouping.

It is convenient to find $(-5)(17)(-20)$ as follows:

\[(-5)(-20)(17) = (\quad)(17) \]

Perform the computations in the easiest way. In each indicate the grouping.

\[\frac{2}{3} \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) = \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) = \left(\frac{2}{3} \right) \]

\[(-7)(+20)(3)(-4) = (\quad)(100) = \]

\[\frac{2}{3} \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) = \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) = \left(\frac{2}{3} \right) \]

\[\frac{1}{3} (-12)(-3)(50) = (\quad)(\quad) = \]

\[(-1500)(\frac{1}{12})(\frac{1}{12})(52) = (\quad)(\quad) = \]

Recall that for any real number a, $1 \cdot a = a$. We may also ask: "What is the product $(-1)a$ for any real number a?" It will turn out that the answer to this question will be very useful in our later work.

Complete, using the simplest name:

33. The opposite of 6 is _______.
34. The opposite of -3 is _______.

Find the values of the following:

35. $(-1): = \quad$ _______.
36. $(-1)(-2) = \quad$ _______.
37. $(-1)(-2) = \quad$ _______.
38. $(-1)(-3) = \quad$ _______.

The last item can be read:

39. The product of -1 and 8 is the _______ of 3, opposite.
Similarly, the product of \(-1\) and \(-3\) is the \[
\] of \(-3\).

If \(a\) is any real number, \(-a\) is the \[
\] of \(a\).

The preceding responses should help you suspect a useful theorem: for every real number \(a\)

\[
(-1)a = \boxed{a}
\]

Theorem 8.3. For every real number \(a\),

\[
(-1)a = -a.
\]

After we have discussed the distributive property for real numbers we shall give an interesting proof of this theorem. However, you may want to prove it now using methods similar to those of the other proofs we have studied. We can start by expressing the absolute value of \((-1)a\) as a product of two absolute values. Try the proof if you are curious. If you try it, use Items 43 to 48 as a help or a check. Otherwise, proceed to Item 49.

Although your proof need not be exactly like this, it probably uses the same main ideas.

\[
|-1||a| \quad \text{Theorem 8.1.}
\]

\[
-1 \cdot |a|, \quad \text{since } |1| = 1
\]

Moreover, \((-1)a\) and \(-a\) are either both positive, both negative, or both negative. In fact, if \(a\) is positive, then \((-1)a\) and \(-a\) are both positive, while if \(a\) is negative, then \((-1)a\) and \(-a\) are both negative.

Hence, for all \(a\) we have: \((-1)a\) and \(-a\) have the same absolute value and are either both positive, both negative, or both 0. Hence, they are equal.

Use Theorem 8.2 to rewrite the following expressions as indicated:

\[
(-1)r
\]

\[
(-1)(-7) = (-7)
\]

\[
-t = (-1)
\]
Here are some examples that suggest another theorem.

\[(-3)(8) = \quad \text{and} \quad -(3 \cdot 8) = \quad \]
\[(-5)(-6) = \quad \text{and} \quad 5(-6) = \quad \]
\[74 = \quad \text{and} \quad -(7)(4) = \quad \]

We might guess that for all real numbers \(a \) and \(b \)
\[(-a)b = -ab \]

We could prove this in the same way as we proved Theorem 8-3. But we can also prove it in a different way, using Theorem 8-3. Try to construct the proof, using this method. Then read on.

We would like to prove: For any real numbers \(a \) and \(b \)
\[(-a)b = -(ab) \]

From Theorem 8-3, we know that \(-a = (-1)a\).

Hence, \((-a)b = \quad \text{b} \quad \)
\[= (-1)(ab) \quad \text{by the property of multiplication} \]
\[= -(ab) \quad \text{from Theorem 8-3} \]

By the commutative and associative properties and Theorem 8-3, we can similarly show that
\[a(-b) = -(ab) \]

In practice, the expression \(-(ab)\) is frequently written as \(-ab\). In summary, we may state that for any real numbers \(a \) and \(b \),
\[-ab = -(ab) \quad \text{and} \quad (-a)b = a(-b) \]

Write each product without parentheses.

\[(3x)(-7y) = \quad \]
\[(2x)(-4) = \quad \]
\[(-3a)(5bc) = \quad \]
Let us now consider the product \((-a)(-b)\).

If \(a\) is 5 and \(b\) is 3, then

\[ab\] is ______ and \((-a)(-b)\) is ______.

If \(a\) is 5 and \(b\) is 3, then

\[ab\] is ______ and \((-a)(-b)\) is ______.

If \(a\) is \(-5\) and \(b\) is \(-3\), then

\[ab\] is ______ and \((-a)(-b)\) is ______.

Even from these few examples, you probably suspect that \((-a)(-b) = ab\).

You can easily show that you are correct that

\[(-a)(-b) = ab\]

Try to construct the proof for yourself and compare your proof with the one shown on page ix.

From the statement

\[(-a)(-b) = ab\],

can we say that if \(a\) and \(b\) are real numbers, then the product of their opposites is positive?

Write each product without parentheses.

\[
\begin{align*}
(\text{-2a})(\text{-5c}) &= \\
(\text{-xy})(\text{-z}) &= \\
(\text{-x})^2 &= (\text{-x})(\text{-x}) &= \\
(\text{-5c})(\text{-d}) &= \\
(\text{-b})(\text{-a}) &= \\
(\text{-3x})^2 &= \\
\end{align*}
\]

Let's look into the distributive property. This property holds in the set of all real numbers. The proof, however, requires many cases. A few examples will show you why.
The distributive property is: For all real numbers \(a, b,\) and \(c\),
\[a(b + c) = ab + ac\] and \((b + c)a = ba + ca\).

We know already that this property holds for all non-negative real numbers. For example,

\[7 \cdot 9 + 7 \cdot 11 - 7(100) = 700\]

Here are a few examples that suggest that the distributive property holds for all real numbers.

\[(-3)(5 + 6) = (23) \cdot 11 = \boxed{233} \quad \text{and} \quad (-3) \cdot 5 + (-3) \cdot 6 = \boxed{-33}\]

\[(-5) + (-3) + (-2) + 15 + (-3) = \boxed{-23} \quad \text{and} \quad (-5) + (-3) = \boxed{-8}\]

\[(-5)(-4) + (-3)(-6) - 12 + 18 = \boxed{-3}\]

\[(-3)(-24) + (-9)(-7) - 4(\boxed{1}) = \boxed{-90} \quad \text{and} \quad (-3)(3) + (-9)(1) = \boxed{-6}\]

The distributive property is also illustrated by these examples:

\[3((-2) + 3) = 3 \cdot 3 = \boxed{9} \quad \text{and} \quad 3(-5) + 3(2) = \boxed{1}\]

\[(-5)(-3) + (-3)(-2) = \boxed{-15} \quad \text{and} \quad (-3)(-3) + (-3)(1) \cdot 12 + (\boxed{-4}) = \boxed{8}\]

In order to give a formal proof that the distributive property holds in all cases it is necessary to examine certain familiar properties of subtraction of the numbers of arithmetic. These properties have not been dealt with so far. (The whole matter of subtraction will be explored in Chapter 11.) However, it is a fact that the distributive property does hold true for all possible cases. We shall use this property of the set of all real numbers from now on without further justification.

Use the distributive property where helpful to perform the indicated operations with the minimum amount of work.

\[(-5)(-2) + (-5)(-1) = \boxed{15}\]

\[6 + (-5)(6) + (-1)(-2) = \boxed{-6}\]

\[(-4)(-1) + (-3) = \boxed{-3}\]
We have made frequent use of Theorem 3.1:

For every real number \(a\),

\[(-1)a = -a. \]

It is interesting to see how we can use the distributive property in proving this theorem.

We want to prove that \((-1)a = -a\); that is, that the product of \(-1\) and \(a\) is the additive inverse of \(a\).

If we can show that \(a + (-1)a = 0\), then we will know that \(-a\) is the additive inverse of \(a\).

Then since \(-a\) is the only additive inverse of \(a\), we shall be able to conclude:

\[(-1)a = -a. \]

Following these suggestions, try to give a complete proof of the theorem. Compare your completed proof with the one below.

Theorem 3.1. For every real number \(a\),

\[(-1)a = -a. \]

Proof:

\[
\begin{align*}
 a + (-1)a &= a + (-1)a \\
 (1 + (-1))a &= \text{Multiplication property of 1} \\
 0 \cdot a &= \text{Distributive property} \\
 0 &= \text{Since } 1 + (-1) = 0 \\
 0 &= \text{Multiplication property of 0}
\end{align*}
\]

Hence, \((-1)a\) is a name for

the additive inverse of \(a\).

But \(-a\) is the only additive inverse of \(a\).

Hence, \((-1)a = -a\).

From the preceding two statements:

Notice that in this proof it is not necessary to write separate lines.

Notice, too, how the proof demonstrates the fact that the distributive property holds for both addition and multiplication.
The following items suggest a proof for one case of the associative property that uses the same method of proof as was used in Section 8-2. It is a clumsy proof compared to that carried out in Items 2-25. It is included, however, to show you how you might have proceeded in working out the proof for yourself. When you come to a proof it is always a good idea to think about how you would construct it. Don't worry, though, if sometimes you don't succeed.

We want to consider the products \((ab)c\) and \(a(bc)\), where \(a\) and \(b\) are positive and \(c\) is negative.

For example, if \(a = 7\), \(b = 4\), and \(c = -3\), we have:

\[
\begin{align*}
(ab)c &= (7 \cdot 4)(-3) = 28(-3) = -84 \\
a(bc) &= 7(4(-3)) = 7(-12) = -84
\end{align*}
\]

If \(a\) and \(b\) are positive, then \(ab\) is also positive.

Since \(c\) is negative, \((ab)c = -(||||||)\) from the definition of multiplication.

Since \(b\) is non-negative and \(c\) is negative, we have, again from the definition of multiplication,

\[
bc = -(|b|c).
\]

\(|b||c|\), of course, is non-negative, and \(|b||c| = |b||c|\).

Consequently, once more using the definition of multiplication,

\[
a(bc) = -(|a||b||c|).
\]
Let us compare our last result,

\[a(bc) = -\left(|a||b||c| \right) \]

with our result in Item 99:

\[(ab)c = -\left(|ab||c| \right) \]

We see that we can replace \(|ab| \) by \(|a||b| \), and that when we do this we have:

\[(ab)c = -\left(|a||b||c| \right) \]

Now we are almost finished. \(|a|, |b|, \) and \(|c| \) are absolute values of numbers. Hence, they are all non-negative. We know that

\[\left(|a||b||c| \right) = |a||b||c| \]

since the **property** of multiplication holds for **real numbers**.

Thus, \((ab)c \) and \(a(bc) \) are equal; because they are **opposites** of equal numbers.

8.4. Use of the Multiplication Properties

Recall that in Section 4-3 we mentioned some conventions of writing products. We want to emphasize that these are not hard and fast rules, but another convention that we might mention here is that we prefer to write \(ab \) instead of \((-a)(-b)\).

1. The expression \((11 + (-x))(-c) \) is an indicated **product**.
 By the use of the distributive property,
 \[(11 + (-x))(-c) = \]

2. \(11(-c) + (-x)(-c) \) is an indicated **sum**.
3. \(11(-c) + (-x)(-c) \) can also be written \(11 + c \), which is the preferred way of writing the indicated sum.
In arithmetic, of course, you do hot think of the reason for each step in a computation. You could find \(5 \cdot 21\) by thinking:
\[
5 \cdot (2 \cdot 10 + 1)
\]
\[
= (2 \cdot 10) \cdot 5 + 5 \cdot 1
\]
\[
= (2 \cdot 10) + 5
\]

If you are asked to write the indicated product or the indicated sum, often you can perform the manipulation without stopping to supply the reason. For example, you may merely write:
\[
(11 + (-x))(10 - c) = 110 - cx.
\]

While you are learning the technique, however, it is wise to refer back frequently to the properties of real numbers. This will help you to avoid errors.

Which of the following sentences is true for all real numbers \(x\)? (Copy the true sentence.)

1. \(3x(x + 1) = x^2 + 1\)
2. \(3x(x + 1) = x^2 + 3x\)
3. \(3x(x + 1) = 3x^2 + 2x\)

What two properties of the real numbers make you sure it is true?

(1) The ______ property and ______
(2) the ______ property of ______

Now you will have a chance to practice more manipulations. Try to write your answers in the preferred form. Do not become discouraged at once if your results are written differently from the responses given. Perhaps your result is correct but it is not in the same form. Some of these will be applications of the distributive property and some will be applications of the associative and commutative properties.

Give the simplest name for

3. \(-2a(2a) = \) ______
4. \(-a(-3) = \) ______
5. \(-a(-a) = \) ______
Write these as indicated sums:

11 \((x + a)\) ______
12 \((a + (-7))(-8)\) ______
13 \(-2 \times (-7)(-8)\) ______
14 \((-x)(-x)(-x)\) ______
15 \(2(a + 1 + 1)\) ______
16 \(-1 \times (a + (-8))\) ______
17 \(-1 \times (a + (-8))\) ______
18 \(-1 \times (a + (-8))\) ______
19 \(-1 \times (a + (-8))\) ______
20 \(-1 \times (a + (-8))\) ______

21 The ______ product rule is well as in the preceding item, to express an indicated product show.
22 Indicator ______.

Then, we use the distributive property when we write the indicated product \((a + x)\) as an indicated sum ______.

But we can in the reverse. The indicated sum \(-a + x\) can be written as the indicated product \((x + a)\).

Whether we prefer to use \((x + a)\) or \((a + x)\) depends on the particular situation.

Use the distributive property to write the following indicated sums as indicated products.

23 \((x + y)\) ______
24 \((y + x)\) ______
25 \((y + x)\) ______
26 \((a + b)(x + y)\) ______
27 \((b + a)(x + y)\) ______

(Hint: Think of \((x + a)\) as a single number.)

Note: 3.93
Consider the indicated sum $7x + 14y$. We can express it as an indicated product. To do so, we need to notice that $14 = 7 \cdot 2$.

$$7x + 14y = 7x + 7 \cdot 2y + 7(x + 2y)$$

Use the distributive property to write the following indicated sums as indicated products:

31. $2a + 6b = 2(\quad)$
32. $6x + 12y = \quad$
33. $4x^2 + 10y = \quad$
34. $2m^2 + 39(-n) = \quad$
35. Since $a = a \cdot 1$, $ax + a = ax + a \cdot 1 = a(\quad)$.

Write the following indicated sums as indicated products:

36. $rx + r = \quad$
37. $5x + 5 = \quad$
38. $ac + bc + c = \quad$

Consider the following ways of writing $6x + 30y$ as an indicated product:

39. $6x + 30y = 2(3x + \quad)$
40. $6x + 30y = 3(2x + \quad)$
41. $6x + 30y = 6(\quad)$

The ways listed are all correct; $1(6x + 30y)$, $30(\frac{1}{3}x + y)$, ..., are also correct ways of writing $6x + 30y$ as an indicated product. Usually we prefer the form in Item 41. This form, $6(x + 5y)$, has the advantage that the numbers used are all integers, and the indicated sum $x + 5y$ cannot be expressed as a product, without the use of fractions.

Let's try writing $3x + (-6y)$ as an indicated product.

We see:

42. $3x + (-6y) = 3x + (\frac{3}{3})(-2y) = 3(x + (-2y)).$

We might also have written for the same indicated sum:

43. $3x + (-6y) = (-3)(-x) + (-3)(2y) = (-3)(\quad)$.
The indicated products in the last two items are $3(x - 2y)$ and $-3(-x + 2y)$. In both of these indicated products, the numbers used are all integers, and the indicated sums, $(x + 2y)$ and $(-x + 2y)$, cannot be expressed as a product without the use of fractions. Here, the indicated product which would usually be preferred is $3(x - 2y)$. Express the following indicated sums as indicated products:

- $2x + 2x + (3y - 2y) - 3(3x + 1)$
- $2a + b + (-3c)$

In the example above, the indicated product is simpler in form than the indicated sum. In general, we simplify the expression $3x + 2x$ as an indicated product by using the distributive property to write each indicated product in simpler form.

We simplify $x + (2x)$ when we write it as:

$$x + (2x) = 3x$$

We simplify $x + (2x) + (3x)$ when we write it as:

$$x + (2x) + (3x) = 5x$$

The last two items are $3(x - 2y)$ and $-3(-x + 2y)$. Express the following indicated sums as indicated products:

- $2x + 2x + (3y - 2y) - 3(3x + 1)$
- $2a + b + (-3c)$

In the example above, the indicated product is simpler in form than the indicated sum. In general, we simplify the expression $3x + 2x$ as an indicated product by using the distributive property to write each indicated product in simpler form.
The word "simplify" is used quite generally in mathematics to refer to the process of rearranging an expression to a more compact or preferred form. We can simplify \(2x + x\) by using the distributive property. In fact, \(2x + x = 3x\).

Can we simplify \(2x + y\)? No, there is no way to apply the distributive property to the problem of simplifying \(2x + y\). Hence, it is customary to say that \(2x + y\) is in its simplest form.

Simplify each of the following, if this is possible. If it is not possible, copy the given expression on the response sheet.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Simplified Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 ((1,6)b + (2,4)b)</td>
<td>4b</td>
</tr>
<tr>
<td>62 (-2x + 2x + 11x)</td>
<td>8x</td>
</tr>
<tr>
<td>63 (3x + (-14x) + 6y)</td>
<td>0</td>
</tr>
<tr>
<td>64 (-2y + (y))</td>
<td>(-3y)</td>
</tr>
<tr>
<td>65 ((x + y) + (-3)(x + y))</td>
<td>(4(x + y))</td>
</tr>
<tr>
<td>66 (7x + 3y)</td>
<td>(35a)</td>
</tr>
<tr>
<td>67 (-3a + 9a + 35a)</td>
<td>(3x + 5y + 7z)</td>
</tr>
</tbody>
</table>

In the indicated sum \(a + b\), "\(a\)" and "\(b\)" are called terms; in a phrase of the form \(a + b + c\), "\(a\)" "\(b\)" and "\(c\)" are called terms, etc. The terms in \(xy + z\) are "\(xy\)" and "\(z\)". The terms in the phrase \(3a + 2b\) are "\(3a\)" and "\(2b\)".

The expression \(4x + (-1y) + \frac{1}{2}y\) has three terms; these terms are: \(4x\), \(-1y\), and \(\frac{1}{2}y\).

The terms in the phrase, \((-3a) + 2a\) are \(-3a\) and \(2a\).

To simplify this phrase, we might note that \(-3a\) is \((-3)\) \(a\), so that \((-3a) + 2a = \(-3\) \(a\) + \(2a\).

We then use the \underline{distributive} \underline{property} to find that \((-3a) + 2a = \underline{(-3)\ a + 2a}\).

We can, in this example, that we have collected or \underline{combined} terms.
Collect terms in the following indicated sums:

<table>
<thead>
<tr>
<th>#</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>$3x + 10x$</td>
</tr>
<tr>
<td>73</td>
<td>$11x + (-2x)$</td>
</tr>
<tr>
<td>74</td>
<td>$-5a + (4a)$</td>
</tr>
<tr>
<td>75</td>
<td>$17n + (10n)$</td>
</tr>
<tr>
<td>76</td>
<td>$x + 3x$</td>
</tr>
<tr>
<td>77</td>
<td>$2x + 3x + (\frac{1}{2}nx)$</td>
</tr>
<tr>
<td>78</td>
<td>$\frac{b}{a} + \frac{1}{a}$</td>
</tr>
</tbody>
</table>

Sometimes we can apply the distributive property to part of an indicated sum. For example,

$$2x + 3x - 2y = (3 + \frac{3}{2})x + 11x + 2y$$

Since the last expression cannot be written in simpler form, $11x + 2y$ is the simplest form of $3x + 3x + 2y$.

Simplify the following expressions:

<table>
<thead>
<tr>
<th>#</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>$3a + 3a + (-7a)$</td>
</tr>
<tr>
<td>80</td>
<td>$2a + (-4a) + 12x + 2b$</td>
</tr>
<tr>
<td>81</td>
<td>$(x + n) + x + (-n)$</td>
</tr>
<tr>
<td>82</td>
<td>$x + 4x + 3x + 1$</td>
</tr>
<tr>
<td>83</td>
<td>$x + (-10n) + 3x$</td>
</tr>
<tr>
<td>84</td>
<td>$7x + (-10x) + 2x$</td>
</tr>
<tr>
<td>85</td>
<td>$6a + 1b$</td>
</tr>
</tbody>
</table>

In the example,

$$x^2 + 1x + 7x^2 - (x^2 + 7x^2) + 5x$$

we can go a step further and write $x^2 + 1x$ as an indicated product:

$$x(3x + 5).$$

There will be times in our work when we shall prefer the form $3x^2 + 5x$ to $x(3x + 5)$. Furthermore, an expression such as $3x^2 + 5x + 3$ would usually be left as it is and not rewritten as $x(3x + 5) + 3$.

$$306 \quad 312$$
Collect terms (where possible) in the following indicated sums:

87. \[12a + 5c + (-2c) + 3c^2\] = __________
88. \[6a + 5b + c\] = __________
89. \[9p + 4q + (-3)p + 7q\] = __________
90. \[4x + (-2x^2) + (-5x) + 2x^2 + 1\] = __________
91. \[x + y + y + x\] = __________

The process of collecting terms is often useful in solving open sentences. For example, consider the open sentence: \[6x + 9x = 30\]. If we collect terms in the expression \(6x + 9x\), we can simplify the open sentence to: \(15x = 30\).

Now consider the open sentence:

\[2x + 5 + 6x + (-5) + 11x = 38\].

By combining terms, we can simplify the open sentence to:

\[19x = 38\].

Both of these sentences can be solved by intelligent guesswork at this time. You will see more equations of this form in Chapter 9. There you will learn how to solve such sentences without guessing. Moreover, the method given there can be applied to sentences that may not be as easily obtained by guesswork.

Although multiplication is originally defined for two real numbers, we have seen how the commutative and associative properties of multiplication can be used to simplify certain expressions in the form of indicated products. For example, we can use these properties to express \((3xy)(7x)\) in the following simpler form:

\[(3xy)(7x) = (3\cdot7)(x)(xy) = 21x^2y\].

In an earlier section we saw how the distributive property could be used to write indicated products as indicated sums.

92. One form of the ______ property is: For all real numbers \(a\), \(b\), \(c\):

\[(a + b)c = ______

If we apply this form of the distributive property to the indicated product \((x + 3)(x + 2)\) we have:

\[(x + 3)(x + 2) = x(x + 2) + ______\]
We can apply the property three more times:

Twice here: \(x^2 + 2x\) + _______ + _______

Once here: \(x^2 + (_______ + _______)x + 6\),

and obtain \(x^2 + 5x + 6\).

Let's try another indicated product,

\[(a + 7)(a + (-3))\]

\[= a(a + (-3)) + _______
\]

\[= a^2 + a(-3) + 7a + 7(-3)
\]

\[= a^2 + 4a + (-21)\]

Write as indicated sums in the simplest form possible:

100. \((x + 8)(x + 2) = _______
\]
101. \((y + (-3))(y + (-5)) = _______
\]
102. \((6a + (-5))(a + (-2)) = _______
\]
103. \((a + 2)(a + 2) = _______
\]
104. \((x + 6)(x + (x)) = _______
\]
105. \((3m + 2)(3m + (-2)) = _______
\]
106. \((2x + 5)(3x - 7) = _______
\]

The items below will give you more practice. The answers are to be found on page ix.

Write as indicated sums in the simplest form possible:

107. \((y + (-1))(3y + (-2)) = _______
\]
108. \((m + (-3))(m + (-3)) = _______
\]
109. \((a + (-c))(b + a) = _______
\]
110. \((a + b)(a + b) = _______
\]
111. \((3a + (-2))(a + 1) = _______
\]
112. \((x + (-5))(4x + (-3)) = _______
\]

Write in the simplest form that you can:

113. \((c + (-3))(5 + c) = _______
\]
114. \((-2 + y)(6y + (-3)) = _______
\]
115. \((1 + (-n))(3 + (-5n)) = _______
\]
116. \((x + 3)(x^2 + 2x + 1) = _______
\]
117. \((2pq + (-8))(3pq + 7) = _______
\]
118. \((2y + (-2x))(3y + (-x)) = _______
\]

119. \((-3xy)(2x^2) = _______
\]
120. \(100(-ab^2)(-\frac{1}{100}a^2b) = _______
\]
8-5. Summary and Review

We have defined the product of two real numbers \(a\) and \(b\) as follows:

If \(a\) and \(b\) are both negative or both non-negative, then \(ab = |a||b|\).

If one of the numbers \(a\) and \(b\) is positive or zero, and the other is negative, then \(ab = -(|a||b|)\).

From this definition and the properties of operations upon numbers of arithmetic, the following properties of operations can be proved:

1. **Multiplication property of 0**: For any real number \(a\),
 \[(a)(0) = 0\] and \[(0)(a) = 0\].

2. **Multiplication property of 1**: For any real number \(a\),
 \[(a)(1) = a\] and \[(1)(a) = a\].

3. **Commutative property of multiplication**: For any real numbers \(a\) and \(b\),
 \[ab = ba\].

4. **Associative property of multiplication**: For any real numbers \(a\), \(b\), and \(c\),
 \[(ab)c = a(bc)\].

5. **Distributive property**: For any real numbers, \(a\), \(b\), and \(c\),
 \[a(b + c) = ab + ac\],
 and \[(b + c)a = ba + ca\].

Review Problems

The answers for these review problems are on page x.

1. Change to indicated sums:
 \[(a)\ 3a(a + (-2))\] \[(d)\ (m + (-5))^2\]
 \[(b)\ (x + 1)(x + 6)\] \[(e)\ (x + (-4))(2x + 3)\]
 \[(c)\ (a + b)(a + (-b))\]

2. Write each of the following as an indicated product:
 \[(a)\ 2ax + 2ay\] \[(c)\ c(a + b)x + (a + b)y\]
 \[(b)\ ac + (abc) + c\] \[(d)\ 10x^2 + (-15x) + (-5)\]
3. Collect terms in the following phrases:

(a) \(3a + b + a + (-2b) + 4b\)
(b) \(7x + b + (-3x) + (-3b)\)
(c) \(6a + (-7a) + 13, 2 + (-5)a + (-8, 6)\)
(d) \(|x| + |2| \cdot |x| + (-2)|-x|\)

4. A record dealer makes a $3 profit on records of brand X and takes a $2 loss on brand Y. He sold 15 of brand X and 20 of brand Y; he also accepted 5 returned records of brand X and 7 of brand Y. What were his proceeds?

5. A mutual fund corporation has the following assets in companies A, B, C, D, E, and F:

- 500 shares in A
- 300 shares in B
- 125 shares in C
- 500 shares in D
- 400 shares in E
- 175 shares in F

At the end of the year, the gain or loss in points (dollars) per share for each of the companies were as follows:

- A: \(\frac{3}{4}\)
- B: \(-\frac{2}{3}\)
- C: \(\frac{3}{5}\)
- D: \(\frac{1}{7}\)
- E: \(-\frac{7}{8}\)
- F: \(\frac{2}{3}\)

What was the profit or gain from this investment program?

6. A man's paycheck for a work week of 48 hours was $166.40. He is paid at the rate of \(\frac{3}{4}\) times his normal rate for all hours worked in excess of 40 hours. If the rate of pay for one hour's work is \(x\) dollars, write an open sentence corresponding to the given information.
9-1. Multiplicative Inverse

1. $3 + 0 = 3$
2. $3 + (__) = 0$
3. $3(__) = 3$
4. $3(__) = 1$
5. $3 \div 0 = 3$ is true by the ___ property of 0.
 For any real number a,
 \[a + 0 = a \]
 and $0 + a = a$.
 The number 0 is called the identity element for addition.
 Another way of saying this is that 0 is the additive identity.
 Since 0 is the only real number such that $a + 0 = a$
 and $0 + a = a$, we can say that 0 is the only additive identity.

9. $3 + (-3) = 0$ is true by the ___ property of opposite.
10. For any real number a, there exists exactly one real number (-a) such that
 \[a + (-a) = 0 \]
 and \[(-a) + a = 0 \].
 The number $-a$, the opposite of a, is also called
 the additive inverse of a.
 The number a, the opposite of $-a$, is the
 additive inverse of $-a$.
3 \cdot 1 = 3 \text{ is true by the } \underline{\text{multiplication}} \text{ property of } 1.

For any real number \(a \),

\[a \cdot 1 = a \]

and,

\[1 \cdot a = a \]

The number 1 is called the \underline{identity element} for multiplication, or the \underline{multiplicative identity}.

\[3 \left(\frac{1}{3} \right) = 1 \]

The product of 3 and \(\frac{1}{3} \) is the \underline{multiplicative identity}.

We called 3 and \(-3\) additive \underline{inverses}, since

\[3 + (-3) = 0 \]

In the same way, we call 3 and \(\frac{1}{3} \) \underline{multiplicative inverses}, since \[3 \cdot \frac{1}{3} = 1 \]

\[\frac{1}{4} \text{ and } 4 \text{ are } \underline{multiplicative inverses}, \text{ since } \frac{1}{4} \cdot 4 = 1. \]

\[(1)(__) = 1. \] Therefore, 1 is its own \underline{multiplicative inverse}.

The sum of a number and its \underline{additive inverse} is the \underline{identity}.

The product of a number and its \underline{multiplicative inverse} is the \underline{multiplicative identity}.

If \(a \) and \(b \) are real numbers such that

\[ab = 1 \]

then \(b \) is called the \underline{multiplicative inverse} of \(a \). \(a \) is also called the \underline{multiplicative inverse} of \(b \).

Does every real number have a \underline{multiplicative inverse}? At this point, you do not know the answer to this question. However, we do know that every non-zero number of arithmetic has a \underline{multiplicative inverse}. This inverse is also a non-zero number of arithmetic.

Let us try to discover something about the existence of \underline{multiplicative inverses} for negative numbers.
Locate the numbers 3 and \(\frac{1}{3} \) on the number line.

\[\begin{array}{cccccc}
0 & 1 & 2 & 3 & & \\
\end{array} \]

30

3 \(\frac{1}{3} \), that is, 3 and \(\frac{1}{3} \) are multiplicative inverses.

Now locate the opposite of 3, and the opposite of \(\frac{1}{3} \).

\[\begin{array}{cccccc}
-3 & -2 & -1 & \frac{1}{3} & 1 & 2 & 3 \\
\end{array} \]

33

We know that

\[(-3)(-\frac{1}{3}) = (\cdot)(\cdot) = 1. \]

Since \((-3)(-\frac{1}{3}) = 1\), we can say that -3 and -\(\frac{1}{3} \) are multiplicative inverses.

From the fact that 3 and \(\frac{1}{3} \) are multiplicative inverses, we could conclude that -3 and -\(\frac{1}{3} \) are also multiplicative inverses. This suggests a general theorem about negative numbers and multiplicative inverses.

36

Every positive number has a multiplicative inverse.

We would like to prove that every negative number has a multiplicative inverse.

37

Indeed, every negative number is the opposite of a positive number.

If we can show that the opposite of every positive number has a multiplicative inverse, then we can conclude that every negative number has a multiplicative inverse.
In order to show that every negative number has a multiplicative inverse, we first prove the following theorem.

Theorem 9-1. If a is a positive number and $ab = 1$, then $(-a)(-b) = 1$.

$$(-a)(-b) = (a)(b),$$
(for all real numbers $(-a)(-b) = (a)(b)$).

since $(a)(b) = 1$ by assumption.

We have proved that if a and b are positive real numbers and a and b are inverses, then $(-a)$ and $(-b)$ are also multiplicative inverses.

Now let us consider any non-zero negative number. Every negative number is the opposite of some positive number a.

Since every positive number a has a multiplicative inverse, there is a positive number b such that $ab = 1$.

By Theorem 9-1, if $ab = 1$, then $(-a)(-b) = 1$.

Therefore, a multiplicative inverse for $(-a)$ is $-b$.

We can conclude that every negative number has a multiplicative inverse.

<table>
<thead>
<tr>
<th>Number</th>
<th>Multiplicative Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>-4</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>$\frac{1}{3}$</td>
<td>3</td>
</tr>
<tr>
<td>$-\frac{1}{3}$</td>
<td>-3</td>
</tr>
<tr>
<td>$\frac{10}{3}$</td>
<td>$\frac{3}{10}$</td>
</tr>
<tr>
<td>$-\frac{10}{3}$</td>
<td>$-\frac{3}{10}$</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>5</td>
</tr>
<tr>
<td>$-\frac{2}{1}$</td>
<td>5</td>
</tr>
</tbody>
</table>
Are we sure that every negative number has a multiplicative inverse?

[A] yes [B] no

For any negative number, such as \(-0.25\), we find the multiplicative inverse by finding the inverse of \(-0.25\) and taking its opposite. Thus, since \((0.25)(40) = 1\), the inverse of \(-0.25\) is \(-40\).

Any negative number has a multiplicative inverse. The correct choice is [A].

We have been careful to consider inverses of positive numbers and negative numbers. What about the number \(0\)? Does \(0\) have an inverse?

If \(0\) is to have an inverse, then there must be a number \(b\) such that \(0 \cdot b = _\).

But, by the multiplication property of \(0\), \(0 \cdot b = _\) for every real number \(b\).

Therefore, for any real number \(b\), \(0 \cdot b \neq 1\).

\(0\) cannot have a multiplicative inverse.

Decide whether or not each of the following numbers has a multiplicative inverse: \(\frac{1}{2}, \left(\frac{3}{4}\right), 10, 0, 1\).

[A] Each has a multiplicative inverse.

[B] Each of the numbers listed, except \(0\), has a multiplicative inverse.

[B] is correct. Each number listed except \(0\) has a multiplicative inverse. \(\frac{1}{2} \cdot 2 = 1; \left(\frac{3}{4}\right) \cdot \left(\frac{4}{3}\right) = 1; 10 \cdot \left(\frac{1}{10}\right) = 1;\) and \(1 \cdot 1 = 1\).

But does \(0\) have a multiplicative inverse? In other words, is there a number \(b\) such that \(0 \cdot b = 1\)? No!

Consider the following example:

\((-2)(-3) = 6.\)

\((-2)\) and \((-3)\) and 6 are different names for the same number.

Let us multiply \((-2)(-3)\) by 4 and also multiply 6 by 4. We have \(4 \left(\frac{1}{2}\right) \left(\frac{3}{4}\right) = 4 \cdot 6\) \(\frac{24}{24} = _\).
Since \((-2)(-3)\) and \(6\) are different names for the same number, when we multiply this number by \(4\), we obtain
\[4((-2)(-3)) \text{ and } (4)(6)\]
as different names for the same new number.

\((-5)(-3)\) and \(-15\) are different names for the same number.

Therefore, if we multiply this number by \((-\frac{1}{2})\), we can write
\[\left((-3)(-5)\right)(-\frac{1}{2}) = (-15)(-\frac{1}{2})\]
\[\left((-3)(-5)\right)(-\frac{1}{2}) \text{ and } (-15)(-\frac{1}{2})\]are different names for the same new number since
\[\left((-3)(-5)\right)(-\frac{1}{2}) = (-15)(-\frac{1}{2})\]
\[3 = 3\].

These examples illustrate a very useful property of multiplication and equality. Since we shall use this property a great deal, let us call this the multiplication property of equality which we state as follows:

For any real numbers \(a\), \(b\) and \(c\),
if \(a = b\) then \(ac = bc\) and \(ca = cb\).

The multiplication property of equality follows, as did the addition property of equality, from the idea that "\(a - b\) means "\(a\) and \(b\) are names for the same number".

Which of the following statements is not an illustration of the multiplication property of equality?

(A) If \(2x = 6\) then \(2x(\frac{1}{2}) = 6(\frac{1}{2})\) is true for some \(x\),

(B) If \(\frac{a}{b} = c\) then \(\frac{(\frac{a}{b})}{b} = c(\frac{1}{b})\) is true for some \(a\),

(C) If \(\frac{n}{m} = \frac{10}{1}\) then \(\frac{n}{m}(\frac{1}{1}) = 10(\frac{1}{1})\) is true for some \(n\),

(D) If \(\frac{2m}{2m} = \frac{m}{m}\) then \((\frac{2}{2})2m = (\frac{m}{m})2m\) is true for some \(m\).
If \(\frac{1}{n} = 12 \) is true for some \(n \), is \(\frac{1}{n} \cdot \frac{1}{12} = \frac{1}{12} \cdot \frac{1}{n} \) also true? We must multiply \(\frac{1}{n} \) and \(12 \) by the same number to be sure we obtain the same new number. [C] is not an illustration of the multiplication property of equality.

In Chapter 7 we found the addition property of equality of great importance in solving equations. Later in this chapter we shall learn more about the solution of equations.

The multiplication property of equality will help us prove an important theorem about multiplicative inverses.

66. If \(a \) is a real number, then there is exactly one additive inverse.

67. What is a multiplicative inverse of \(\frac{3}{5} \)?

Write the multiplicative inverse for each of the following:

- \(\frac{3}{5} \)
- \(\frac{2}{3} \)
- \(\frac{3}{7} \)

From our experience we would guess that each non-zero real number has exactly one multiplicative inverse.

Let us prove that each non-zero real number has exactly one multiplicative inverse.

If \(a \neq 0 \), then \(a \) has at least one multiplicative inverse, that is, there is a real \(b \) such that \(ab = 1 \) and \(ba = 1 \).

Assume there is also a number \(c \) such that \(ac = 1 \) and \(ca = 1 \).

We shall prove that \(b = c \).

Write: \(ab = 1 \)

\[
\begin{align*}
(ab) \cdot (bc) & = (ab) \\
& \quad \text{by multiplicative property of equality} \\
& = c(ab) \\
& \quad \text{by associative property of multiplication} \\
& = (ca)b
\end{align*}
\]
We have proved that the multiplicative inverse is unique; that is, every non-zero real number has exactly one multiplicative inverse.

9-2. Reciprocals

We know that every non-zero negative number has a unique multiplicative inverse. That is, there is exactly one real number \(b \) such that \(ab = 1 \) and \(ba = 1 \).

We shall find it convenient to use a shorter name for the multiplicative inverse. We use the name reciprocal. This parallels the use of the name opposite for the additive inverse.

The additive inverse of the number \(a \) is written \((-a)\).

Another name for the additive inverse of \(a \) is the ______ of \(a \).

The reciprocal of the number \(a \) is the ______ inverse of \(a \).

We agree to write the reciprocal of \(a \) as \(\frac{1}{a} \).

Thus if \(a \) is a non-zero real number, its multiplicative inverse may be written ______.

For example, \(\frac{1}{5} \) is the reciprocal of ______.

\(\frac{1}{3} \) is the ______ of 3.

_______ is the reciprocal of 7.

The number \(\frac{1}{5} \) is also a rational number. From our experience we know that

\[
5 \cdot \frac{1}{5} = 1
\]
The definition of $\frac{1}{a}$ as the "multiplicative inverse of a" agrees with our experience from arithmetic. What about other real numbers?

9. Can we say that every non-zero real number a has a reciprocal?

[A] yes [B] no

Every non-zero real number a, has exactly one multiplicative inverse. We have called this multiplicative inverse of a "the reciprocal of a". The number a must have a reciprocal which we can write as $\frac{1}{a}$. The correct answer is yes!

10. Does 0 have a reciprocal?

[A] yes [B] no

Does 0 have a multiplicative inverse? Since we have proved that 0 does not have a multiplicative inverse, we know it does not have a reciprocal. Remember that "reciprocal" is a simpler name for the multiplicative inverse. The correct answer is no.

Since 0 has no reciprocal, the symbol $\frac{1}{0}$ has no meaning.

11. If a is (-1), which of the following numbers have no reciprocals?

R. $a + 1$ S. $(a + (-1))a$ T. $a^2 + (-1)$

[A] R and S
[B] R and T
[C] S and T

[B] is the correct choice. R and T have no reciprocals if a is (-1). For if $a = (-1)$, then $a + 1$ and $a^2 + (-1)$ are both 0, and 0 has no reciprocal. However $(a + (-1))a$ is not 0 if $a = -1$, and hence, it has a reciprocal.
12 If \(a \) is _____ then \(\frac{a}{a+1} \) is meaningless.

13 When \(a \) is 0, \(\frac{a}{a+1} = \) _____.

14 Hence \(\frac{a}{a+1} \) (has, does not have) a reciprocal when \(a \) is 0.

The set of values for which \(a^2 + (-1) \) has no reciprocal is _____.

Since \(a^2 + 1 \) is different from 0 for all values of \(a \), the set of values for which \(a^2 + 1 \) has no reciprocal is _____.

17 \(\frac{1}{a^2 + 1} \) has a reciprocal for (all, no) values of \(a \).

We saw that every real number except 0 has exactly one multiplicative inverse.

We can restate this: Every real number except 0 has exactly one reciprocal(s).

20 \(\frac{1}{3} \) is the _____ of \(\frac{1}{3} \).

21 We know that \(\frac{1}{3} \cdot 3 = 1 \), so that 3 is also the reciprocal of \(\frac{1}{3} \).

Since \(\frac{1}{3} \) has only (how many) reciprocal(s), this means that \(\frac{1}{3} = 3 \).

We can use the same reasoning to find a simpler name for \(\frac{-1}{4} \).

By definition, \(\frac{1}{-3} \) means the _____ of \(-\frac{1}{3} \).

24 Since \(\left(\frac{-3}{4}\right)\left(-\frac{1}{3}\right) = -\frac{1}{4} \), \(-\frac{1}{3} \) is the _____ of \(-\frac{1}{4} \).

25 Since \(-\frac{2}{3} \) has only (one) reciprocal(s), \(-\frac{2}{3} \) = (one) reciprocal.
The reciprocal of 0.25 can be written \(\frac{1}{0.25} \). This is true since 0.25 = \(\frac{1}{4} \), and \(4(\frac{1}{4}) = 1 \). Hence, \(\frac{1}{4} \) is the reciprocal of 0.25.

Try this problem:

What number is equal to its reciprocal? If \(n \) represents the number, we may write its reciprocal as \(\frac{1}{n} \).

An open sentence suggested by this problem is \(n = \frac{1}{n} \).

The truth set of this sentence is \(-1, 1\).

The reciprocal of -9 is \(\frac{1}{-9} \). However, \((-9)(-\frac{1}{9}) = (9)(\frac{1}{9}) = 1 \). Thus, \(\frac{1}{9} \) is the multiplicative inverse of -9. That is, \(\frac{1}{9} \) is the reciprocal of -9.

Since the reciprocal is unique, \(\frac{1}{9} = \frac{1}{9} \). Similarly, we could show that \(\frac{1}{-6} = -\frac{1}{6} \), or \(\frac{1}{-9} = -\frac{1}{9} \). We suspect that for any non-zero number \(a \), \(\frac{1}{-a} = -\frac{1}{a} \).

Let us prove that for every real number \(a \) except 0,

\[\frac{1}{-a} = -\frac{1}{a} \.
\]

Since \((-\frac{1}{a})(-a) = (\frac{1}{a})(a) = 1 \), \(\frac{1}{-a} \) is the reciprocal of \(-a\).

But \(-a\) has exactly one reciprocal, \(\frac{1}{-a} \).

Therefore: \(\frac{1}{-a} = -\frac{1}{a} \).
The fact that every number except 0 has exactly one reciprocal was used to prove $\frac{1}{-a} = -\frac{1}{a}$.

A number of other useful theorems can be proved easily in a similar way. Suppose we wish to find a simpler expression for $\frac{1}{\frac{1}{a}}$, where a is any real number except 0. As usual, trying a few examples helps us to state the theorem we would like to prove.

39	$\frac{1}{9}$ is the reciprocal of _____	9
40	$\frac{1}{\frac{1}{9}}$ is the reciprocal of _____	9
41	Since $\frac{1}{9} \cdot 1$, we see that _____ is also the reciprocal of $\frac{1}{9}$. But $\frac{1}{9}$ has only one reciprocal, hence, $\frac{1}{\frac{1}{9}} = 9$.	
42	Since $\frac{1}{\frac{1}{9}}$ is the _____ of $\frac{1}{9}$, which is the reciprocal of 9; $\frac{1}{\frac{1}{9}} = 9$ can be read:	
43	"the reciprocal of the reciprocal of 9 is ____"	

Is it true that for any a except 0, $\frac{1}{\frac{1}{a}} = _____$?

Is the reciprocal of the _____ of a the number a?

Of course, we must be sure that $\frac{1}{\frac{1}{a}}$ if $\frac{1}{a}$ is to have a reciprocal.

Since $a \neq 0$, $\frac{1}{a}$ cannot be 0. Thus, for any real number a except 0, $\frac{1}{\frac{1}{a}}$ is a real number.

We are ready to prove that the reciprocal of the reciprocal of a non-zero number is the number itself.

47	For $a \neq 0$, $a \cdot \frac{1}{a} = _____$, $\frac{1}{a}$ is the reciprocal of _____ and a is the reciprocal (multiplicative inverse) of $\frac{1}{a}$.
48	1
49	By definition, the reciprocal of $\frac{1}{a}$ is written $\frac{1}{\frac{1}{a}}$
Since \(\frac{1}{a} \) has only one reciprocal, we have proved that the reciprocal of a number is the number itself.

From arithmetic we know: \(\frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12} \).

How shall we compute \(\frac{1}{3} \cdot \frac{1}{4} \) ?

Remember, \(\frac{1}{3} \) means "the reciprocal of -3".

Can we be sure that a rule which works for the numbers of arithmetic holds for numbers such as \(\frac{1}{3} \) and \(\frac{1}{4} \)?

\(\frac{1}{3} \) ?

(Yes, no)

In computing \(\frac{1}{3} \cdot \frac{1}{4} \) we note that \(\frac{1}{3} \cdot -\frac{1}{3} = -\frac{1}{3} \).

and \(\frac{1}{4} = \frac{1}{4} \).

\(\frac{1}{3} \cdot \frac{1}{4} = (-\frac{1}{3})(-\frac{1}{3}) \).

\(\frac{1}{3} \cdot \frac{1}{3} = (-\frac{1}{3})(\frac{1}{3}) \).

From the previous theorem we know that \(-\frac{1}{3} : \frac{1}{3} \).

Therefore \(\frac{1}{3} \cdot \frac{1}{4} = -\frac{1}{4} \).

In general, for all numbers \(a \) and \(b \) different from 0, \(\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab} \).

Let us prove that, for all real numbers \(a \) and \(b \) different from 0, \(\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab} \).

We remember that \(\frac{1}{ab} \) is the reciprocal of \(ab \).

We shall again use our knowledge that any number except 0 has exactly one reciprocal.
We see that \((\frac{1}{a} \cdot \frac{1}{b})(ab) = (\frac{1}{a} \cdot a)(\frac{1}{b} \cdot b)\) from the
associative and __________ properties of multiplication.

But, \(\frac{1}{a} \cdot a = 1\) and \(\frac{1}{b} \cdot b = 1\).

Hence, \((\frac{1}{a} \cdot \frac{1}{b})(ab) = 1\).

Hence, \(\frac{1}{a} \cdot \frac{1}{b}\) is the _____ of \(ab\).

But \(\frac{1}{ab}\) is the _____ of \(ab\), and we know that \(ab\)
has only _____ reciprocal.

Hence \(\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}\).

Express the following indicated products in their
simplest form (assume all variables are different
from 0).

\[
\left(\frac{1}{a}\right) \left(\frac{1}{b}\right) \quad ________
\]

\[
\left(\frac{1}{a}\right) \left(\frac{1}{c}\right) \quad ________
\]

(Remember that we have across to write \(\frac{1}{abc}\) rather
than \(\frac{1}{abc}\) or \(\frac{1}{abc}\).)

\[
\left(\frac{1}{x} \cdot \frac{1}{y}\right) \quad ________
\]

\[
\left(\frac{1}{x} \cdot \frac{1}{z}\right) \quad ________
\]

\[
\left(\frac{1}{m} \cdot \frac{1}{n}\right) \quad ________
\]

\[
\left(\frac{1}{x} \cdot \frac{1}{y}\right) \quad ________
\]

\[
\left(\frac{1}{x} \cdot \frac{1}{y}\right) \quad ________
\]

\[
\frac{1}{x^2} \quad ________
\]

\[
\frac{1}{2lyz} \quad ________
\]

\[
\frac{1}{3w^4} \quad ________
\]

\[
\frac{1}{n^4h} \quad ________
\]

\[
\frac{1}{v^3} \quad ________
\]

\[
\frac{1}{v} \quad ________
\]

\[
\frac{1}{b} \quad ________
\]
We know that if \(a = 0 \) or \(b = 0 \), \(ab = 0 \). If \(ab = 0 \), what can we say about \(a \) or \(b \)? Items 73–76 suggest the following.

Theorem: For real numbers \(a \) and \(b \), if \(ab = 0 \) then \(a = 0 \) or \(b = 0 \).

Proof: For any number \(a \), \(a = 0 \) or \(a \not= 0 \) but not ______.

- If \(a = 0 \), then "\(a = 0 \) or \(b = 0 \)" is ______ and the theorem is proved.

- If \(a \not= 0 \), then \(a \) has a ______.

\[
\frac{1}{a}(ab) = \frac{1}{a} : 0
\]

by the multiplication property of equality.

\[
\frac{1}{a}(ab) = \frac{1}{a} \cdot b
\]

by the associative property and multiplication property of 0.

\[
1 \cdot b = 0
\]

by the definition of ______.

\[
b = 0
\]

by the multiplication property of 1.

Thus, if \(ab = 0 \), "\(a = 0 \) or \(b = 0 \)" is true and the theorem is proved. If \(a \not= 0 \), \(b \) must be 0 and "\(a = 0 \) or \(b = 0 \)" is true and the theorem is proved.
Look carefully at the wording of the theorem we have just proved:

If \(ab = 0 \) then \(a = 0 \) or \(b = 0 \).

When is "\(n \cdot 10 = 0 \)" true? Only if \(n = \) __________.

Similarly \(5 \cdot x = 0 \) only if \(x = \) __________.

\(xy = 0 \) only if \(x = 0 \) or \(y = 0 \).

And in fact we could state the theorem this way:

\[ab = 0 \quad a = 0 \text{ or } b = 0. \]

We already know the multiplication property of 0; that is, that:

\[ab = 0 \text{ if } a = 0 \text{ or } b = 0. \]

We have proved:

\[ab = 0 \text{ only if } a = 0 \text{ or } b = 0. \]

A quick way of combining these two statements is:

\[ab = 0 \text{ if and only if } a = 0 \text{ or } b = 0. \]

To be sure that \(ab = 0 \) if and only if \(a = 0 \) or \(b = 0 \) we had to know two things:

\[\text{if } a = 0 \text{ or } b = 0 \text{ then } \] __________.

\[\text{if } ab = 0 \text{ then } \] __________ or __________.

In proving our "if and only if" statement we had to prove two parts.

We have proved: \(ab = 0 \) __________ __________ __________ __________

\[a = 0 \text{ or } b = 0. \]

The statement that \(ab = 0 \) only if \(a = 0 \) or \(b = 0 \) is useful in finding truth sets of certain equations.

The truth set of \(p \cdot 50 = 0 \) is __________.

The truth set of \(7 \cdot (-3) = 0 \) is __________.

The truth set of \(9 \cdot y \cdot 17 \cdot 13 = 0 \) is __________.

(0)
Consider the equation \((x + (-3))(x + (-1)) = 0\).

The left side of this equation is a product.

The truth set of \(x + (-3) = 0\) is \(\{-3\}\).

The truth set of \(x + (-8) = 0\) is \(\{-8\}\).

Hence, the truth set of \((x + (-3))(x + (-8)) = 0\) is the union of \(\{-3\}\) and \(\{-8\}\), or \(\{-3, -8\}\).

The open sentence \((x + (-26))(x + (-100)) = 0\) has the same truth set as the compound sentence: \(x + (-26) = 0\) or \(x + (-100) = 0\).

The truth set is \(\{26, 100\}\).

The open sentence \((x + 6)(x + 9) = 0\) is equivalent to \"\(x + 6 = 0\) or \(x + 9 = 0\)."

The truth set is \(\{-6, -9\}\).

Find the truth set for each equation: Turn to page x for the correct answers.

1. \((x + (-1))(x + (-2))(x + (-3)) = 0\)
2. \(2(x + \frac{1}{2})(x + (-2)) = 0\)
3. \(x(x + 4) = 0\)
4. \(x^2/(x + (-1))^2 = 0\)
5. \(9|x + (-6)| = 0\)
6. \(x(x + 4) = x^2 + 8\)

Try to construct a proof of the following theorem:

If \(a, b, c\) are real numbers, and if \(ac = bc\), \(c \not= 0\), then \(a = b\).

Compare your proof with the proof on page x.
9-3. Solution of Equations

Consider the equation

\[\frac{1}{2}x = 5. \]

If there is a number x for which \(\frac{1}{2}x = 5 \) is true, then, using the multiplication property of equality,

1. \(2 \cdot \frac{1}{2}x = 2 \cdot 5 \) is a true for the same x,

2. \(2 \cdot \frac{1}{2}x = 10 \) and \(x = 10 \) are also true for the same x.

The reasoning used in Items 1 and 2 above is similar to that developed in Section 7-4, where we used the addition property of equality to solve some equations.

Suppose we consider another example showing in detail the steps in solving the equation.

Find the truth set of \(\frac{3}{5}x = 60 \).

If \(\frac{3}{5}x = 60 \) is true for some x, then

\[\frac{3}{5}(2x) = \frac{3}{5}(60) \]

\[(\frac{3}{5} \cdot \frac{2}{1})x = (\frac{3}{5})(40) \]

\[1 \cdot x = 24 \]

\(x = 24 \) is true for that same x.

Check: If \(x = 24 \),

the left side is \((\frac{3}{5})(24) = 60 \).

The right side is 60.

Hence, the truth set of \(\frac{3}{5}x = 60 \) is \(\{24\} \).

Look carefully at the steps in the example, then answer the following items.

In the first part, we suppose that there is some number x such that the sentence \(\frac{1}{2}x = 5 \) is true.
We want to obtain a simpler sentence in which the left side is \(x \). Hence, we choose to multiply both sides of the equation by \(\frac{1}{2} \) because \(\frac{1}{2} \) is the multiplicative inverse of \(\frac{4}{3} \). That is,

\[
\frac{1}{2} \cdot \frac{4}{3} = \frac{1}{2} \cdot \frac{4}{3}
\]

Furthermore, \(\frac{4}{3} \cdot \frac{1}{2} \) because of the **associative** property of multiplication.

Once you understand the proof you might write:

- If \(\frac{2}{3} \cdot x \) is \(\frac{2}{3} \) for some \(x \),
- \(x \) is true for the same \(x \).

Similarly, you may wish to write:

- Check. If \(x \) is \(\frac{2}{3} \), the left side is \(\frac{2}{3} \),
- and the right side is \(\frac{2}{3} \).

Hence, the truth set of \(\frac{4}{3} \cdot \frac{1}{2} \) is \(\{24\} \).

Of course, you should show all the additional steps you need, and in more difficult problems there may be several steps.

The first part shows that if a number is an element of the truth set, then the number is \(24 \).

The first part **does** show that \(24 \) is an element of the truth set.

The first part **does not** show that the only number that can belong to the truth set is \(24 \).

The check shows that if a number is in the truth set of \(\frac{4}{3} \cdot \frac{1}{2} \), then it is also in the truth set.
(Of course, it is obvious that is the only element in the truth set of .)

Remember, both parts are necessary.

How would we solve

We know that if there is some number such that is true, then perhaps we can obtain a simpler sentence that is true for the same number .

Let us consider the following approach to this problem:

Find the truth set of

By the addition property of equality we may add \(-7\) to both sides to get

\[(2x + 7) + (____) = 15 + (____) \]

Since \(7 + (-7) = _
and \(15 + (-7) = _
we obtain \[\]

The equations

and \(2x = 8\)

have \(\) truth sets.

Now, by the multiplication property of equality, we may multiply both sides of \(2x = 8\) by \(\frac{1}{2}\) to get

\[\frac{1}{2}(___) = \frac{1}{2} \cdot 8 \]

or \(x = 4\).

Thus, if there is a number such that \(2x + 7 = 15\), then the sentence \(x = 4\) is true for the same .

The truth set of \(x = 4\) is \[\]
We must check to be sure that if \(x \) is 4 then
\[
2x + 7 = 15 \quad \text{is} \quad \text{true}.
\]

If \(x \) is 4, then the left side of \(2x + 4 \) is
\[
2(\quad) + 7 \quad \text{or} \quad 15.
\]
The right side is
\[
\text{Hence, the truth set of } -2x + 7 = 15 \quad \text{is} \quad \{4\}.
\]
We have used both the addition property of equality and the multiplication property of equality to find a simple sentence which has the same truth set as \(2x + 7 = 15 \).

Suppose, instead of beginning by adding the opposite of 7, we begin by multiplying by the reciprocal of 2.

Find the truth set of
\[
2x + 7 = 15.
\]
By the multiplication property of equality we may multiply both sides to get
\[
\frac{1}{2}(2x + 7) = \frac{1}{2} \cdot 15
\]
or
\[
\left(\frac{1}{2} \cdot 2x \right) + \left(\frac{1}{2} \cdot 7 \right) = \frac{1}{2} \cdot 15
\]
or
\[
x + \frac{7}{2} = \frac{15}{2}.
\]
This is true by the __________ property and the definition of reciprocal.

By the addition property of equality we may add \(-\frac{7}{2}\) to both sides to get
\[
\left(x + \frac{7}{2} \right) + \left(\quad \right) = \frac{15}{2} + \left(\quad \right)
\]
or
\[
x = \frac{8}{2}
\]
or
\[
x = \quad
\]
Using this method, we again get the sentence \(x = 4 \).

From the check shown in Items 27-30 we know that
\(x = 4 \) and \(2x + 7 = 15 \) have the same truth sets.
Clearly, both of these methods are correct. Which you should use depends on the equation you wish to solve. A "rule of thumb" that might be helpful would be to try to keep the "arithmetic" as simple as possible.

In the course of finding the truth set of
\[2x + 7 = 15, \] we found a simpler equation which has \(\frac{1}{2} \) as its truth set. This simpler equation is \(x = \frac{1}{2} \).

Thus, although the equations \(2x + 7 = 15 \) and \(x = \frac{1}{2} \) look quite different, they have the same truth set.

Note that throughout this discussion we have assumed that the domain of the variable is the same for both open sentences.

Definition. Two open sentences which have the same truth set are called equivalent open sentences. In particular, the equations which have the same truth set are called equivalent equations.

For \(x \) in a chain of three equivalent equations:

1. \(x + 7 = 15 \)
2. \(2x = 8 \)
3. \(x = 4 \)

Let us review the way in which we constructed this chain of equivalent equations.

- We began by applying the **addition** property of equality to add the same number to both sides of the equation. We now have
 \[x + 7 = 15. \]

- We continued by applying the **multiplication** property of equality. We then multiplied each side of the equation by \(\frac{1}{2} \). We then arrived at the equation \(x = \frac{1}{2} \).
Through this chain of steps we have shown that if \(2x + 7 = 15 \) is true for some \(x \), then \(x = 4 \) is true for the same \(x \).

1. If \(x = 4 \) is true for some \(x \), then \(x \) is true for the same \(x \) by the ______ property of equality.

2. If \(2x + 7 \) is true, then we can use the property of equality to conclude that \(2x + 7 = 15 \) is true for the same \(x \).

Then we post: If \(x = 4 \) is true for some \(x \),
then \(2x + 7 = 15 \) is true for the ______ \(x \).

Our last statement tells us: If a number is in the truth set of \(x = 4 \), then it is in the ______ of \(2x + 7 = 15 \).

On the other hand, our earlier steps told us: If a number is in the truth set of \(2x + 7 = 15 \), then it is in the truth set of \(x = 4 \).

The two parts, considered together, tell us: The equations \(2x + 7 = 15 \) and \(x = 4 \) have the same truth set.

In other words, \(2x + 7 = 15 \) and \(x = 4 \) are ______ equivalent equations.

But let us stop and think: Suppose we knew that

\[
2x + 7 = 15
\]

and

\[
x = 4
\]

are equivalent equations. \((3) \) is obviously the truth set of the equation \(x = 4 \). Hence, we can be sure that \((4) \) is the truth set of \(2x + 7 = 15 \), since equivalent equations have the same truth sets.

In constructing the equivalent chain,

\[
\begin{align*}
2x + 7 & = 15 \\
2x & = 8 \\
x & = 4
\end{align*}
\]

the multiplier on the right side of \(2x = 8 \) by ______.
On the other hand, to go from
\[x = 4 \]

\[\text{to} \quad 2x = 8 \]

we multiplied both sides of \(x = 4 \) by \(\frac{1}{2} \).

We note that 2 and \(\frac{1}{2} \) are multiplicative inverses of each other.

To go from
\[2x + 7 = 15 \]

\[\text{to} \quad 2x = 8 \]

we add \((-7)\) to both sides of \(2x + 7 = 15 \).

The corresponding step in the chain of equivalent equations
\[x = 4 \]
\[2x = 8 \]
\[2x + 7 = 15 \]

is to add \(7 \) to both sides of \(2x = 8 \).

7 is the additive inverse of \((-7)\).

We can summarize.

In the first case we "climbed down", by steps involving the addition and multiplication properties of \(\frac{1}{2} \), from the equation \(2x + 7 = 15 \) to the simpler equation \(x = 4 \).

In the second case we "climbed up" from the simpler equation to the original one, by steps that were the reverse of those in the first part.

The reverse step to multiplying both sides of \(2x = 8 \) by \(\frac{1}{2} \) was \(-1 \) both sides of \(x = 4 \) by \(\frac{1}{2} \).

We could have saved the actual work of the last part by recognizing at each step, as we "climbed down" in the first part, that the steps could be reversed. By reasoning alone, without going through the actual work, we could have convinced ourselves that we could "climb" back from the equation \(x = 4 \) to the equation \(2x + 7 = 15 \).
Let us summarize the kinds of (reversible) steps we used in going from our first equation to \(x = 4 \). The major steps were adding the same number to both sides of the equation and multiplying both sides of the equation by the same (non-zero) number. Adding the same number to both sides of an equation can be reversed by adding the additive inverse of the number. Multiplying both sides by a non-zero number can be reversed by multiplying by the multiplicative inverse of the number.

We also applied various properties of the real numbers which are true for all real numbers. The application of these properties is obviously reversible: for example, we can replace \(1 \cdot a \) by \(a \) or \(a \) by \(1 \cdot a \) whenever we like. For any real number \(a \), we know that \(a \) and \(1 \cdot a \) name the same number.

Thus, we could have concluded from our first steps alone that \(2x + 7 = 15 \) and \(x = 4 \) have the same truth set.

We could have concluded without checking that \(2x + 7 = 15 \) and \(x = 4 \) are equivalent equations.

Our conclusion is based on the fact that each step used in obtaining \(x = 4 \) from \(2x + 7 = 15 \) is reversible.

The foregoing discussion was long. Once you have understood the reasoning, however, you can apply it quickly.

Example. Find the truth set of \(5y - 2 + (-18) \).

\[
egin{align*}
5y - 2 & + (-18) \\
5y - 2y & + (-18) + (-2y) \\
3y & = -16 \\
y & = -\frac{16}{3}
\end{align*}
\]

The truth set is \(\{-6\} \).

In this example, we began by adding \(\) to both sides of the equation.

We then simplified, applying properties which hold for all real numbers, and obtained the equation \(3y = -16 \).

We multiplied both sides of this equation by \(\), obtaining the still simpler equation \(y = -\frac{16}{3} \).
Since our steps were all reversible, we are sure that all the equations $2y = 2y + (15)$, $2y + (-18y) = 2y + (-18) + (-2y)$, $y = -6$, and $y = -6$ are equivalent.

Because they are equivalent, their truth sets must be the same.

Since (-6) is obviously the truth set of $y = -6$, it is also the truth set of the original equation.

We can see this reason, without further checking, that we have found the truth set. This should not convince you that checking is a waste of time. People make mistakes in arithmetic, and a check is a good way to catch such mistakes. Keep on checking for accuracy!

The check for the example just completed is:

If y is -6, the left side is $2(-6) = -12$ and the right side is $2(-6) + (-18) = -30$.

Remember,

Two open sentences are equivalent if they have the same truth set.

If we multiply each side of an equation by the same non-zero number,

we obtain an equivalent equation.

If we add the same number to each side of an equation,

we obtain an equivalent equation.

The reason is that both of these steps are reversible.

Suppose we have the open sentence $x = 2y$.

This sentence is true for all real values of x.

If we add $(-x)$ to both sides, we obtain:

$x + (-x) = 2y + (-x)$

$0 = 0$
By adding \((-x)\) to both sides of our open sentence we obtain the sentence \(0 = 0\). This is \(\text{true}\) for all values of \(x\).

We shall never get into logical inconsistencies if we regard this as an open sentence which is true for all values of \(x\).

Consider the equation \(x = 1 + x\).

Adding \(-x\) to both sides, we have:

\[0 = 0\]

\(0 = 1\) and \(x = 1 + x\) are equivalent open sentences.

The truth set of \(0 = 1\) is \(\varnothing\).

This may be thought of as an open sentence which is \(\text{false}\) for all values of \(x\).

The truth set of \(x = 1 + x\) is \(\varnothing\).

Sometimes we use the terms right member and left member of an equation instead of right side and left side.

"The right member of an equation" is another way of saying "the right _____ of an equation".

The left side of an equation is also called the left _____.

In which of the following are the two equations not equivalent?

- \([A]\) \(x + (-x) = 0\) and \(x = 0\)
- \([B]\) \(x = 3\) and \(x = 10\)
- \([C]\) \(2 + (-3) = -2 + 0\) and \(2x = 10\)
- \([D]\) \((-x) = 0\), and \((6x)0 = (7)0\)
The sentences in [B],

\[6x = 7 \text{ and } (6x)0 = (7)0 \]

are not equivalent.

\[(6x)0 = (7)0 \text{ is the same as } 0 = 0\]

which has as truth set all real numbers. Clearly, we do not have equivalent sentences because we have multiplied by 0 and 0 does not have a reciprocal—we cannot reverse our steps.

78	\[4y + (-6) = 5y + (-6) \text{ and } 0 = y\] equivalent.				
79	\[-3a = -6 \text{ and } a = 2\] equivalent.				
80	\[5m + 5 = -m + (-7)\text{ and } 12 = -6m\] equivalent.				
81	\[x = 3 \text{ and }	x	=	3	\] equivalent.
82	The truth set of \(x = 3\) is ______.				
83	The truth set of \(x	=	3	\) is ______.

Find the truth set of

\[6x + 12 = 2y + (-8).\]

There are several approaches to this. Here is one approach.

\[6y + 12 + (-12) = 2y + (-8) + (-12)\]

\[6y = 2y + (-20)\]

\[6y + (-2y) = 2y + (-20) + (-2y)\]

\[4y = -20\]

\[y = -5\]

Check: If \(y = -5\), the left side is \(6(-5) + 12 = -18\).

The right side is \(2(-5) + (-8) = -18\).

Remember that there are other approaches to this problem that are equally correct.
Find the truth set of each of the following equations:

84. \(2a + 5 = 17\)
85. \(4y + 3 = 3y + 5 + y + -2\) (Collect terms first)
86. \(12x + (-6) = 7x + 2k\)
87. \(8x + (-3x) + 2 = 7x + 8\)
88. \(6y + 9 + (-4y) = 18 + 2y\)
89. \(12n + 5n + (-k) = 3n + (-4) + 2n\)
90. \(15 = 6x + (-8) + 17x\)
91. \(5y + 8 = 7y + 3 + (-2y) + 5\)

Find the truth set of each of the following equations.

Answers are on page xi.

92. \(-6a + (-4) + 2a = 3 + (-a)\)
93. \(0.5 + 1.5x + (-1.5) = 2.5x + 2\)
94. \(\frac{1}{2} + (-\frac{1}{2}) + (-\frac{5}{2}) = 4c + (-2) + (-\frac{7}{2}c)\)
95. \(2y + (-6) + 7y = 8 + (-9y) + (-10) + 18y\)
96. \((x + 1)(x + 2) = x(x + 2) + 3\)

Equations arise in the study of physics, chemistry, engineering, etc. As you saw in Chapter 5, many everyday situations also give rise to open sentences. In that chapter we learned how to find the open sentence suggested by a given word problem. Now we are able to find the truth set of the open sentence.

Example. The perimeter of a triangle is 44 inches. The length of the second side is 3 inches more than twice the length of the third side, and the first side is 5 inches longer than the third side. Find the lengths of the three sides of this triangle.

If \(x\) is the length of the third side in inches
then _____ is the length of the second side in inches \(2x + 3\)
and _____ is the length of the first side in inches. \(x + 5\)

The open sentence suggested by this problem is

\[x + (2x + 3) + (x + 5) = 44.\]
We now find the truth set of this equation.
\[x + (2x + 3) + (x + 5) = 44 \]
\[x + 3x + 8 = 44 \]
\[4x = 36 \]
\[x = 9 \]

The truth set is \(\{9\} \).

The solution of this equation corresponds to the length of the third side.

If \(9 \) is the length of the third side, then
t \(\boxed{9} \) is the length of the second side.

\(\boxed{9} \) is the length of the first side.

The lengths of the sides are 9 inches, 21 inches, and 14 inches.

Check: \(9 + 21 + 14 = 44 \)

(Note that we go back to the original problem, not the equation, and check our solution with the conditions of the problem.)

You will find it much easier to do these problems if you use good form in setting up the problems and in your solutions.

Now try your hand at solving some word problems. For each of the following problems, write your work carefully, using the general form of the preceding example. When you have finished, check your answer with the one given. If your answer is not correct, or if you are not sure that you understand, complete the items below the problem.

104. Plant A grows 2 inches each week and it is now 20 inches tall. Plant B grows 3 inches each week and it is now 12 inches tall. How many weeks from now will they be equally tall? __________

In 8 weeks.

Let \(x \) = number of weeks from now until the plants are equally tall.

105. In \(x \) weeks plant A grows _____ inches. __________

\(2x \)
Plant B grows \textbf{________} inches.

At the end of x weeks, plant A is \textbf{________} inches tall.

Plant B is \textbf{________} inches tall.

An open sentence which states that at the end of x weeks the plants are equally tall is $2x + 20 = 3x + 12$.

The truth set of this open sentence is $\textbf{________}$.

If a counting number and its successor are added, the result is one more than twice the number. What is the number? (Remember to specify the domain of the variable in this open sentence. The statement of the problem will usually indicate the domain of the variable.)

Any counting number.

If n is a counting number, its successor is \textbf{________}.

The number that is 1 more than $2n$ is \textbf{________}.

An open sentence which fits the problem is: $n + (n + 1) = 2n + 1$.

The domain of the variable is the set of \textbf{________} numbers.

Since $n + (n + 1) = 2n + 1$, true for all (is, is not) numbers in the domain, the number may be any counting number.

The sum of two consecutive odd integers is \textbf{11}. What are the integers?

The set of pairs of consecutive odd integers that fit this problem is the null set.

$1, 3, 5, 7, \ldots$ are consecutive odd integers.

If n stands for an odd integer, the next odd integer is \textbf{________}.
An open sentence which fits the problem is
\[n + (n + 2) = 11. \]
The domain of the variable is the set of integers.

An open sentence equivalent to \(n + (n + 2) = 11 \) is \(2n = \ldots \).

This sentence has truth set \(\ldots \).

Since \(\frac{9}{2} \) is not an integer, the truth set of the open sentence, \(n + (n + 2) = 11 \) is the null, or empty set.

A radiator contains only water. Two quarts of alcohol are added. The mixture then contains 20 per cent alcohol. How many quarts of water were in the radiator?

Let \(x \) be the number of quarts of \(\ldots \) in the radiator.

After the alcohol is added, the radiator contains \(\ldots \) quarts of liquid.

Of this, \(\ldots \) quarts is alcohol.

We know that 20 per cent of the liquid is alcohol.

We may find 20 per cent of the number \(x + 2 \) by computing either \(0.2(\ldots) \) or \(\frac{1}{5}(\ldots) \).

An open sentence appropriate to this problem is \(\frac{1}{5}(x + 2) = \ldots \).

An equivalent open sentence is: \(x + 2 = \ldots \).
130. One number is 5 times another and their sum is 15 more than 4 times the smaller. What is the smaller number?

131. A number is increased by 17 and the sum is multiplied by 3. If the resulting product is 192, what is the number?

132. In an automobile race, one driver, starting with the first group of cars, drove for 5 hours at a certain speed and was then 120 miles from the finish line. Another driver, who set out with a later heat, had traveled at the same rate as the first driver for \(\frac{3}{4} \) hours, and was 250 miles from the finish. How fast were these men driving?

133. Four times a counting number is 10 more than twice the successor of that number. What is the number?

134. "Jake has \$1.65 in his pocket, all in nickels, dimes and quarters. He has one more quarter than he has dimes, and the number of nickels he has is one more than twice the number of dimes. How many dimes has he?"

9-4. Summary and Review

We have defined multiplicative inverse as follows:

For each real number \(c \) different from 0, there exists a real number \(d \) such that \(cd = 1 \) and \(dc = 1 \).

We have proved that for each non-zero real number \(c \) there is exactly one multiplicative inverse.

We have agreed to use the name reciprocal for the multiplicative inverse, and to represent the reciprocal of any number \(a \) by \(\frac{1}{a} \).

We have also proved the following theorems:

1. The number 0 has no reciprocal.
2. The reciprocal of the reciprocal of a non-zero real number \(a \) is \(a \).

3. For any non-zero real numbers \(a \) and \(b \),
\[
\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}.
\]

4. For any non-zero real number, \(a \),
\[
\frac{1}{-a} = -\frac{1}{a}.
\]

5. For real numbers \(a \) and \(b \), if \(ab = 0 \) if and only if \(a = 0 \) or \(b = 0 \).

Review Problems

The answers to these review problems are on page xiii.

1. Find the truth set of each of the following equations:
 (a) \(4a + 7 = 2a + 11 \)
 (b) \(6x + (-18) = 3x + 17 \)
 (c) \(7x + 2 + (-5x) = 3 + 2x + (-1) \)
 (d) \(|x| + 2x = (-3) + 3x + 5 \)
 (e) \(3x^2 + (-2)x = x^2 + 2 + 2x^2 \)

2. Find the truth set of each of the following:
 (a) \((x)(x + 1)(x + 6) = 0 \)
 (b) \((x + (-4))(2x + 3) = 0 \)
 (c) \((3x + (-9))(2x + (-1)) = 0 \)

3. We have proved that the opposite of the sum is the sum of the opposites. That is, for any real numbers \(a \) and \(b \), \(-(a + b) = (-a) + (-b) \). Is it true that for non-zero real numbers \(a \) and \(b \), the sum of the reciprocals is the reciprocal of the sum?

4. For what values of \(b \) does each of the following have no reciprocal?
 (a) \(2b + 6 \)
 (b) \(b(b + (-1)) \)
 (c) \(b^2 \cdot 1 \)
5. For each of the following problems, write an open sentence, find its truth set, and answer the question asked in the problem.

(a) Jim and I plan to buy a basketball. Jim is working, so he agrees to pay $2 more than I pay. If the basketball costs $11, how much does Jim pay?

(b) The sum of two consecutive odd integers is 40. What are the integers?

(c) The length of a rectangle is 27 yards more than the width. The perimeter is 396 yards. Find the length and the width.

(d) Mary and Jim added their grades on a test and found the sum to be 170. Mary's grade was 14 points higher than Jim's. What were their grades?

(e) A man worked \(\frac{3}{4} \) days on a job and his son worked half as long. The son's daily wage was \(\frac{2}{5} \) that of his father. If they earned a total of $96, what were their daily wages?

(f) In a farmer's yard were some pigs and chickens, and no other creatures except the farmer himself. There were, in fact, sixteen more chickens than pigs. Observing this fact, and further observing that there were 74 feet in the yard, not counting his own, the farmer exclaimed happily to himself--for he was a mathematician as well as a farmer, and was given to talking to himself--"Now I can tell how many of each kind of creature there are in my yard." How many were there? (Hint: Pigs have 4 feet, chickens 2 feet.)

(g) At the target shooting booth at a fair, Montmorency was paid 10¢ for each time he hit the target, and was charged 5¢ each time he missed. If he lost 25¢ at the booth and made ten more misses than hits, how many hits did he make?
10.1. The Fundamental Properties of Order

We have used the concept of order to make certain statements about numbers. In Chapter 3, when we were considering only numbers of arithmetic, we used "is less than" to mean "is to the left of" on the number line. In Chapter 6, we extended this meaning to the set of real numbers. The statement "a is less than b" is written in symbols as "a < b".

If we are given a first number a, and a second number b, then the statement a < b is either true or false. In this sense, "<" is called a relation in the set of real numbers.

We have discovered two fundamental properties of the relation "<". Let us review these properties.

1. If a and b are real numbers and if a < b is false, then either
 a = b is true
 or b < a is true.

2. The above is a statement of the _______ property.

3. If a, b, c are real numbers and if a < b and b < c, then a _______.

4. The above is a statement of the _______ property of the relation "<".

Recall that we have called this the "transitive property of order".

5. If x < -6 and -6 < -5, which of the following relations is a consequence of the transitive property of order?

"If x < -6 and -6 < -5, then x < -5" is a direct application of the transitive property. Thus, [B] is correct.

There is one other property of the relation "<" that we shall develop in this section.
To find the truth set of \(3 + x = 3 \), we use the property of equality to write:

\[
\text{If } (-3) + (3 + x) = (-3) + 3 \text{ is true for some } x, \text{ then } x = \boxed{0} \text{ is true for the same } x.
\]

Thus, we determine that the truth set of \(3 + x = 3 \) is \(\{0\} \).

The sentences "\(3 + x = 3 \)" and "\(x = 0 \)" are equivalent sentences, since they have the same truth set.

Now let us consider the open sentence \(3 + x < 3 \).

-1 in the truth set of \(3 + x < 3 \), since \(3 + (-1) < 3 \) is true, hence all real numbers.

In fact, the truth set of \(3 + x < 3 \) must include all real numbers.

\(0 \) in the truth set of \(3 + x < 3 \), since \(3 + 0 < 3 \) is a true sentence.

In fact, no real number is in the truth set of \(3 + x < 3 \).

Hence, the truth set of \(3 + x < 3 \) is the set of all negative real numbers.

A simple open sentence having this truth set is \(x < 0 \).

The sentences "\(3 + x < 3 \)" and "\(x < 0 \)" are equivalent sentences, since they have the same truth set.

Perhaps you suspect the property of "\(<" which we wish to discuss.

It is helpful to use the number line. Let us fix two points \(a \) and \(b \) on the number line with \(a < b \).
On the number line above, a is to the left of b.

We note also that if we add a positive number to a and to b, a + c is to the right of b + c.

Now let us look at the same sentence if c = 0.

On the number line below, a is to the left of b.

We also note that if a negative number has been added to a and to b.

1. a + c is to the right of b + c.
2. a - c is to the left of b - c.
3. a - c is to the left of b - c.

If we then consider the reciprocal of a number, the reciprocal of a negative number has the sign of the positive number.

-

354
It is true that $2 < 5$.

If 4 is added to 2 and also to 5, the resulting sentence will be $2 + 4 < 5 + 4$ or $6 < ____$, which is a ______ sentence.

Again, starting with the true sentence $2 < 5$, if -4 is added to 2 and also to 5, the resulting sentence will be $2 + (-4) < 5 + (-4)$ or $____ < 1$, which is a ______ sentence.

Since $(-7) < (-2)$, then $(-7) + 2 < (-2) + 2$, or $____ < ____$, which is to the left of (-1).

Since $(-7) < (-1)$, then $(-7) + (-3) < (-1) + (-3)$, or $____ < ____$.

We can now state another fundamental property of order.

Addition property of order: If a, b, c are real numbers and if $a < b$, then

$$a + c < b + c$$

and $c + a < c + b$.

Use the addition property of order to determine which of the following sentences are true and which are false.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>True/False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\frac{2}{3}) + 4 < (-\frac{2}{3}) + 6$</td>
<td>true</td>
</tr>
<tr>
<td>$(-\frac{2}{3}) + (-2) < (-\frac{2}{3}) + (-2)$</td>
<td>true</td>
</tr>
<tr>
<td>$(-\frac{2}{3}) + (-2) < (-\frac{2}{3}) + (-2)$</td>
<td>true</td>
</tr>
<tr>
<td>$(-\frac{2}{3}) + 2 < (-\frac{2}{3}) + 2$</td>
<td>false</td>
</tr>
</tbody>
</table>

Recall the addition property of equality:

For any real numbers a, b, c, if $a = b$, then $a + c = b + c$ and $c + a = c + b$.
How would we write an addition property which combines the addition property of equality with the addition property of order?

[A] If \(a = b \) or \(a < b \), then \(a + c = b + c \) or \(a + c < b + c \).

[B] If \(a = b \) or \(a < b \), then \(a + c = b + c \) and \(a + c < b + c \).

[C] If \(a < b \), then \(a + c < b + c \).

Since \(a + c = b + c \) and \(a + c < b + c \) is always false, [B] is incorrect. While either [A] or [C] is a correct choice, [C] is the more concise form.

Is \(\frac{68}{19} < \frac{65}{19} \) a true sentence? Let us use the addition property of order to decide.

\[
\begin{align*}
\frac{68}{19} &= 3 + \frac{11}{19} \\
\frac{65}{19} &= 3 + \frac{11}{19} \\
\end{align*}
\]

Now, \(\frac{11}{19} < \frac{11}{19} \). Hence, we may conclude that \(\frac{68}{19} < \frac{65}{19} \) is a true sentence.

Here is a harder one. Let us determine whether \(\frac{5}{3} + \frac{11}{3} \) is less than \(\frac{7}{4} + \frac{11}{4} \).

First, we see that \(\frac{5}{3} = \frac{7}{4} \) (We would use the argument of Items 40-43, if necessary.)

So \(\frac{5}{3} + \frac{11}{3} < \frac{7}{4} + \frac{11}{4} \), using the _____ property of order.

Now, \(\frac{11}{3} < \frac{11}{4} \), using the addition property of order.

Therefore, \(\frac{5}{3} + \frac{11}{3} < \frac{7}{4} + \frac{11}{4} \), using the _____ property of order.

We have \(\frac{5}{3} + \frac{11}{3} < \frac{7}{4} + \frac{11}{4} \) and \(\frac{5}{3} + \frac{11}{3} < \frac{7}{4} + \frac{11}{4} \).

Hence, we may conclude that \(\frac{5}{3} + \frac{11}{3} < \frac{7}{4} + \frac{11}{4} \) is a true statement, using the _____ property of order.
The series are in some sense equivalent. For the series 2, one
positive portion of the series for each part to zero.
Let us summarize the three fundamental properties of "<" which we are assuming to be true.

Comparison Property: If \(a \) and \(b \) are real numbers then exactly one of the following is true:
\[a < b, \quad a = b, \quad b < a. \]

Transitive Property of Order: If \(a, b, c \) are real numbers and
\[a < b \text{ and } b < c, \]
then \(a < c. \)

Addition Property of Order: If \(a, b, c \) are real numbers and
\[a < b, \]
then \(a + c < b + c. \)

There are, of course, other "properties" of order. These, however, can be shown to be consequences of our fundamental properties. We have already stated the order property of opposites:
\[\text{if } a \text{ and } b \text{ are real numbers and } a = b, \text{ then } a = -b. \]

We can prove this property, using the addition property of order.

Before we start the proof, let us see how we will proceed. We start with the inequality \(a = b \) and wish to obtain an inequality having \(-a \) to the right of the symbol "<". This requires that we add \(-a \) to both sides of \(a = b. \)

Proof: If \(a = b \), then \(-a = -b \).

Complete the statement using the reasons, as indicated.

<table>
<thead>
<tr>
<th>Step</th>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a = b)</td>
<td>Given</td>
</tr>
<tr>
<td>2</td>
<td>(a + (-a) = b + (-a))</td>
<td>Addition Property of Opposites</td>
</tr>
<tr>
<td>3</td>
<td>(a = -b)</td>
<td>Transitive Property of Order</td>
</tr>
<tr>
<td>4</td>
<td>(a = -b)</td>
<td>Addition Property of Opposite</td>
</tr>
</tbody>
</table>

Ex. 1: If \(a < b \), then \[b > a. \]

Using the text, the answer is completed as follows:

- **Ex. 1:** If \(a < b \), then \[b > a. \]

Ex. 2: If \(a = b \), then \[a - b = 0. \]

Using the text, the answer is completed as follows:

- **Ex. 2:** If \(a = b \), then \[a - b = 0. \]

\[35 \text{ th} \]
10.2. Further Properties of Order

In Section 7-1 we began our discussion of addition of real numbers by considering addition in terms of the number line. We found that to add a positive number, we move to the right on the number line. Thus, the diagram

\[X \quad Y \quad Z \]

may be interpreted as \(x + y = z \) and \(y \) is positive.

Position on the number line has been interpreted in terms of order. In our diagram \(x \) is to the left of \(z \), or \(x < z \).

Notice that we have two statements

1. \[x + y = z \quad \text{and} \quad y \text{ positive} \]
2. \[x < z \]

The first statement says that if a positive number is added to \(x \), we obtain \(z \).

The second statement is an order statement that \(x \) is less than \(z \).

If we know that \(a = b \), then we know that \(a < b \).

Let us state and prove the theorem which we have illustrated by the number line.

Theorem 10.2a. If \(x, y, \) and \(z \) are real numbers such that \(x + y = z \) and \(y \) is positive, then \(x < z \).

Proof:

1. \[x + y = z \quad \text{Given} \]
2. \[x + y = z \quad \text{by the addition property of order} \]
3. \[x = x + y \quad \text{by the addition property of order} \]

Hence \(x + y \) = \(z \) and the proof is complete.
positive

$q < -h$

order

$r < 1$

$(q + r) < p$
The preceding examples show that for each two different numbers with which we started we found a positive number which added to the smaller yielded the larger. This is what Theorem 10-2b states we should be able to do.

Theorems 10-2a and 10-2b taken together might be stated as follows: \(x < z \) is true if and only if there is a positive number \(y \) such that \(x + y = z \). If we had chosen to do so, we could have used this statement as a "definition" of \("<" \). This would have been consistent with our knowledge of the numbers of arithmetic. Refer to our brief discussion in Section 4-5. Had we adopted this definition, we could have proved the comparison, transitive, and addition properties of \("<" \).

Let us turn to another theorem. In solving equations such as

\[3x + 100 = 1000 \]

we make use of what we have referred to as the addition and multiplication property of equality.

If Jake had $100 more than three times the amount he now has, he would still have less than $1000 dollars. How much money does he now have?

This situation leads to the open sentence

\[3x + 100 < 1000 \]

An equivalent sentence is

\[3x < ________. \]

We may guess that Jake now has $300.

Is it true that if \(a \neq 0 \) then "\(ax < b \)" and "\(x < b (\frac{1}{a}) \)" are equivalent open sentences? (yes, no)

Were you surprised by the answer to Item 39? Let's discover the reason for that answer.

Consider the true sentence \(y < z \).

If each member of this inequality is multiplied by \(y \), we get \((y)(____) < (z)(____) \).

Is this new sentence true? (yes, no)

\[33 \]
41. 7 < 10 is true; (7)(6) < (10)(6) is also ______.
42. 2 < 4 and (-9)(5) < (4)(5) are both sentences.
 Given that, -7 < -2. If we multiply each member of this inequality by 2,
 we get the inequality ______ < which is a true sentence.
 Did you notice that in each example we started with a true
 inequality and ______ both numbers by a positive number?
43. If a < b is true, then (a)(3) < (b)(3) is also ______.
 It appears that if a < b, then ______.
44. If we multiply each member of this inequality by 2, we get the inequality ______ <
 which is a true sentence.
 Did you notice that in each example we started with a true inequality
 and ______ both numbers by a positive number?

Still, the answer to item 33 was "no". Can you guess why?

47. 2 < 6 is true. Which of the following numbers cannot be inserted in
 the parentheses so that the resulting sentence is true?
 (2)(_____ < (6)(_____)
 [A] -4
 [B] 6
 [C] -2
 [D] Each will make the sentence true.

 (2)(3) < (6)(3) and (2)(68) < (6)(68) are both true sentences,
 but (2)(-2) < (6)(-2) is false. [C] is the correct choice.

48. 2(-4) = ______.
49. 3(-4) = ______.
50. So 3(-4) < 2(-4) is a true sentence.

 -1 < 2 is a true sentence. Write a true sentence using "<" that shows the order of
 (-1)(4) and 3(-4).

 -8
 -12
 3(-4) < 2(-4)
 8(-3) < (-1)(-3)

 0(-1) < (-5)(-1)
 -2b < -2a
Try to construct a proof for yourself.

If $a < -1$, then $a - b < 0$.

no [Try $a = -5$, $b = 3$]

no [Try $a = -5$, $b = -3$]

If $-1 < a$, then what can we say?

If $x > y$, and $y > z$, then $x > z$.

$x > x$ $x > a$ $x + a > y + z$
If we assume the truth of the properties stated in Items 1-3, we could proceed to prove a number of theorems about "<". Fortunately, this is not really necessary.

When we are dealing with two different real numbers it really does not matter whether we assert, for example, \(\frac{1}{2} < \frac{3}{4} \) or \(\frac{3}{4} > \frac{1}{2} \). We may move, with complete freedom, from one order relation to the other.

In particular, we may state the order property of opposites as follows:

If \(a < b \), then \(-a > -b \).

Similarly, if \(a < b \) and \(c \) is negative,

\(a < b \), then \(ac > bc \).

\(-\frac{3}{2} < 2 \), and \(\frac{3}{2} \).

\(\frac{7}{2} < \frac{3}{2} \), and \((-15)(\frac{3}{2}) > (-15)(\frac{1}{2}) \).

\(-x < 3 \) is equivalent to \(x > -3 \).

Examine the following inequalities:

\(P. \ y < 5 \)
\(Q. \ y < -5 \)
\(R. \ y > 5 \)
\(S. \ y > -5 \)

Which two are equivalent open sentences?

- [A] \(P \) and \(R \)
- [B] \(P \) and \(S \)
- [C] \(Q \) and \(R \)
- [D] \(Q \) and \(S \)

The truth sets of these sentences are:

- \(P. \) the set of real numbers less than 5
- \(Q. \) the set of real numbers less than -5
- \(R. \) the set of real numbers greater than 5
- \(S. \) the set of real numbers greater than 5 (if \(-y > -5 \) is true, it follows that \(y < 5 \) is true)

The correct response is [B].

\(5 < 7 \) is true, hence \(-5 > -7 \) is also true.

If \(x < y \), then \(-x > -y \).

If \(x < 5 \), what is the order of \(-5\) and \(-x\)?

If \(-x < 2 \), then \(x \).
Here is some practice in finding truth sets and in drawing graphs.
Determine the truth set and graph each of the following open sentences.
The answers are on page xvi.

14. $y < 3$
15. $-y < 3$
16. $y < -3$
17. $-y < -3$

18. $|y| < 3$ [Recall that $|y|$ means the distance between 0 and y.]
19. $-|y| < 3$
20. $|y| < -3$
21. $-|y| < -3$

Here are some practice exercises in finding truth sets of inequalities.
Answers are on page xvii.

22. $x + (-2) > -3$
23. $(-\frac{3}{2}) + x < (-\frac{5}{2}) + \frac{3}{2}$
24. $2x < (-5) + x$
25. $3x > \frac{9}{5} + \frac{3}{2}x$
26. $(-\frac{2}{3}) + \frac{5}{6} \geq x + |\frac{-2}{3}|$

The multiplication property of order can be used to help find truth sets of open sentences. We shall apply this property in the form which is the more helpful.

27. Which of the following pairs of sentences are equivalent?

[A] $-\frac{2}{3}x > -\frac{1}{4}$ and $x > \frac{3}{2}$

[B] $-7x < -\frac{3}{2}$ and $x > \frac{3}{7}$

If we multiply both sides of $-\frac{2}{3}x > -\frac{1}{4}$ by $-\frac{3}{2}$ we obtain the equivalent sentence $x < 6$. So [A] does not contain two equivalent sentences. We obtain $x > \frac{3}{7}$ by multiplying both sides of $-7x < -\frac{3}{2}$ by $-\frac{1}{7}$, hence [B] is the correct choice.

If we use the addition and multiplication properties of order, we can find the truth set of an open sentence such as the following:

1: $(-\frac{1}{2}) + h < -5$
2: $(-\frac{1}{2}) + h < (-\frac{1}{2}) + (-5)$ (addition property of order)
3: $(-\frac{1}{2}) < (-5)$
4: $(-h) < (-\frac{1}{2})$ (multiplication property of order)
5: $x > 5$.

363 382
Therefore the truth set of the given open sentence is the set of real numbers greater than 1, since \((-x) + \frac{1}{2} (-x)\) and \(x > 1\) are equivalent open sentences. Notice that all of the operations are reversible.

Of course, the order in which the steps are made may be changed. For example, our work might appear as:

\[
(-x) + \frac{1}{2} (-x) = x > 1
\]

Find the truth set for the inequality:

\[
x + x + x > \frac{1}{2}
\]

Graph the truth set for the inequality.

\[
x + \frac{1}{2} \quad (x > 1)
\]

10. Solve the inequality: \(-2 < 3\)

If it holds,

\[
-(\frac{1}{2}) + (-x + (-1)) = x > \frac{1}{2}
\]

and the set of all numbers greater than \(\frac{1}{2}\).

The set of all numbers greater than \(\frac{1}{2}\).
Again, starting with \((-2x) + 1 < 5\) one might first write \(2x + (-1) > -5\) then \(2x > -4\) finally, \(x > -2\).

Perhaps, starting with \((-2x) + 1 < 5\) one might first write \(2x + (-1) > -5\) then \(x + (\frac{-1}{2}) > \frac{-5}{2}\) finally, \(x > -2\).

The truth set of \((-2) + 5 + (-3x) < 4x + 7 + (\cdot)\) set of real numbers which are:

- [A] less than \(\frac{4}{5}\)
- [B] greater than \(-\frac{1}{5}\)
- [C] less than \(-\frac{2}{5}\)
- [D] greater than \(\frac{5}{4}\)

The proper choice is [B]. If you had difficulty in determining the truth set, continue with Items 37-41, otherwise go to Item 42.

If \((-2) + 5 + (-3x) < 4x + 7 + (-2x)\)
then \(3 + (-3x) < \frac{5x}{4} + 7\)
\(3 < \frac{5x}{4} + 7\)
\(\frac{3}{4} < x\)
\(x > -\frac{5}{4}\)

Find the truth set of \(2x < 3 + |\cdot-2| - \frac{1}{2}|\).

Find the truth set of \(\frac{1}{2}x + (-2) < (-5) + \frac{5}{2}x\).
[As a first step you might write: \(3 < 2x\)]

Find the truth set of \(\frac{3}{2}(x + (-3)) > 5\).
[As a first step you might either multiply both sides by \(\frac{1}{2}\) or apply the distributive property.]

Find the truth set of \(2x + 1 \geq -3x + 2\).
[Be careful!]
Let us construct an open sentence for the following problem:

Carol has 16 more books than Patricia.
Together they have more than 28 books.
How many books does Patricia have?

Open sentence: _____ and \(x \) is a whole number.

Find the truth set: _____

Patricia has at least _____ books?

If a number of flower bulbs of a certain type are planted, it is known that fewer than \(\frac{5}{8} \) of them will grow. However, with proper care, more than \(\frac{3}{8} \) of them will do well. If a careful gardener grows 15 of these bulbs, how many did he probably plant?

He must have planted more than _____ and less than _____.

If you did not see how to do the question above, do Items 50-57. If the problem gave you no trouble, go on with Section 10.4.

If the number he planted is represented by the variable \(b \),

then \(\frac{5}{8} \) of them can be represented by _____, and

\(\frac{3}{8} \) of them can be represented by _____.

Since less than \(\frac{5}{8} \) will grow, and we are told that 15 do grow, we can write the open sentence

\[< \frac{5}{8} b \]

The truth set of this open sentence is the set of all numbers greater than _____.

Since with proper care more than \(\frac{3}{8} \) grow, we can write the open sentence

\[15 > \frac{3}{8} b \]

The truth set of this is the set of all numbers less than 40.

So we know that the gardener planted more than _____ bulbs and fewer than _____.
10.4. Review

Here is a list of problems which will give you more practice in using the ideas developed in this chapter. Answers are on page xvii.

1. For each pair of numbers, determine their order.
 (a) -100, -99
 (b) 0.2, -0.1
 (c) |-3|, |-7|
 (d) \(\frac{6}{5} \), \(\frac{7}{5} \)
 (e) \(3(4) + (-4) \), \(\frac{3}{4}(-4) \)
 (f) \(x^2 + 1 \), 0

2. If \(p \geq 0 \) and \(n < 0 \), determine which sentences are true and which are false.
 (a) If \(5 > 3 \), then \(5n < 3n \).
 (b) If \(a > 0 \), then \(a + p < 0 \).
 (c) If \(3x > x \), then \(3px > px \).
 (d) If \(\frac{1}{n}x > 1 \), then \(x > n \).
 (e) If \(p > n \), then \(\frac{1}{p} < \frac{1}{n} \).
 (f) If \(\frac{1}{p} > \frac{1}{x} \) and \(\frac{1}{x} > 0 \), then \(p < x \) and \(x > 0 \).

3. Which of the following pairs of sentences are equivalent?
 (a) \(3a > 2 \), \(-3a > (-2) \)
 (b) \(3x > 2 + x \), \(2x > 2 \)
 (c) \(3y + 5 = y + (-1) \), \(2y = (-6) \)
 (d) \(x < 3 \), \(x > (-3) \)
 (e) \(-p + 5 < p + (-1) \), \(6 > 2p \)
 (f) \(\frac{1}{m} < \frac{1}{2} \) and \(m > 0 \), \(m < 2 \)

4. If \(p > 0 \) and \(n < 0 \), determine which represent positive numbers, which represent negative numbers.
 (a) \(-n \)
 (b) \(n^2 \)
 (c) \(-n^2 \)
 (d) \(pn \)
 (e) \((-p + (-n))^2 \)
 (f) \(|n| \)

5. Solve each of the following inequalities.
 (a) \(-x > 5\)
 (b) \((-1) + 2y < 3y\)
 (c) \(\left(\frac{1}{2}\right)x < 3\)
 (d) \((-4) + (-x) > 3x + 8\)
 (e) \(b + b + 5 + 2b + 12 \leq 36\)
 (f) \(x(x + 1) < x\)
6. Find the truth set of each of the following sentences.
 (a) \(\frac{1}{x} < \frac{1}{2} \) and \(x > 0 \)
 (b) \(\frac{1}{x} = \frac{1}{2} \)
 (c) \(\frac{1}{x} < \frac{1}{2} \) and \(x < 0 \)
 (d) \(\frac{\pi}{x} > 0 \), and \(x \neq 0 \)
 (e) \(0 \leq 2x < 180 \)
 (f) \(x^2 + 1 = 0 \)

7. If the domain of the variable is the set of integers, find the truth sets of the following sentences.
 (a) \(3x + 2x = 10 \)
 (b) \(x + (-1) = 5x + 1 \)
 (c) \(2x + 1 = -3x + (-9) \)
 (d) \(2(x + (-3)) = 5 \)
 (e) \(3x + 5 < 2x + 3 \)
 (f) \(\frac{1}{2} + (-x) > \frac{1}{2} + (-2x) \)

8. Solve the following equations.
 (a) \(3x = 5 \)
 (b) \(3 + x = 5 \)
 (c) \(2n + n + (-2) = 0 \)
 (d) \(7y + 3 = y + (-3) \)
 (e) \(3x = 7x + (-2)x \)
 (f) \(3q + (-q) + 5 + q = (-2) \)

9. Solve the following equations.
 (a) \(3(x + 5) = (x + 3) + x \)
 (b) \(3x + 3 = (x + (-4))(x + 3) \)
 (c) \(\frac{1}{2}y + (-\frac{1}{3}) = (-\frac{1}{2})y + (-\frac{1}{3}) \)
 (d) \(a^2 = a(a + 1) \)
 (e) \((x + 2)(x + 3) = x(x + 5) + 6 \)
 (f) \(2q^2 + 2q + q^2 = (3q + 5)(q + 1) \)

10. The length of a rectangle is known to be greater than or equal to 6 units and less than 7 units. The width is known to be 4 units. Find the area of the rectangle.

11. The length of a rectangle is known to be at least 6 units and less than 7 units. The width is known to be at least 4 units and less than 5 units. Find the area of the rectangle.

12. The length of a rectangle is known to be greater than or equal to 6.15 inches and less than 6.25 inches. The width is known to be greater than or equal to 4.15 inches and less than 4.25 inches. Find the area of the rectangle.
13. (a) A certain variety of Iowa corn plant yields 240 seeds per plant. Not all the seeds will grow into new plants when planted. Between \(\frac{3}{4} \) and \(\frac{5}{6} \) of the seeds will produce new plants. Each new plant will also yield 240 seeds. From a single corn plant whose seeds are harvested in 1964 how many seeds can be expected in 1965?

(b) Suppose instead that a corn plant did not yield exactly 240 seeds, but between 230 and 250 seeds. Under this condition how many seeds can be expected in 1965 from the 240 seeds planted at the beginning of the season?

14. Write open sentences and find the solution to each of the questions which follow.

(a) A square and an equilateral triangle have equal perimeters. A side of the triangle is 3.5 inches longer than a side of the square. What is the length of the side of the square?

(b) A boat traveling downstream goes 10 miles per hour faster than the rate of the current. Its velocity downstream is not more than 25 miles per hour. What is the rate of the current?

(c) Mary has typing to do which will take her at least 3 hours. If she starts at 1 P.M. and must finish by 6 P.M., how much time can she expect to spend on the job?

(d) Jim receives $1.75 per hour for work which he does in his spare time, and is saving his money to buy a car. If the car will cost him at least $75, how many hours must he work?
Let us summarize the material of Chapters 6-10.

We began by introducing the set of negative numbers, as suggested by our knowledge of the numbers of arithmetic and the number line. We called the union of the set of negative numbers and the set of numbers of arithmetic the set of real numbers.

Addition and multiplication of real numbers were then defined in such a way that

(1) the usual meanings of addition and multiplication in the set of numbers of arithmetic were preserved,

and

(2) many of the properties of these operations, which were true for the set of numbers of arithmetic, were also true in the set of real numbers.

We discussed an order relation in the set of real numbers, again based on our ideas of order in the set of numbers of arithmetic.

In the course of this development we stated many properties of addition, multiplication, and order.

Here is a list of certain basic properties which we considered:

For any real numbers \(a, b,\) and \(c,\)

1. \(a + b\) is a unique real number. 1'. \(ab\) is a unique real number.

2. \(a + b = b + a\) 2'. \(ab = ba\)

3. \((a + b) + c = a + (b + c)\) 3'. \((ab)c = a(bc)\)

4. There is a special real number \(0\) such that \(a + 0 = a\) and \(0 + a = a.\)

5. For each \(a\) there is a unique real number \((-a)\) such that \(a + (-a) = 0\) and \((-a) + a = 0.\)

6. \(a(b + c) = ab + ac\)

7. For \(a\) and \(b,\) exactly one of the following is true:

\[a < b, \quad a = b, \quad b < a. \]

8. If \(a < b\) and \(b < c,\) then \(a < c.\)

9. If \(a < b,\) then \(a + c < b + c.\)
These are by no means all of the properties we discovered, but we will interrupt our listing at this point to make the following remark. If we add just one more basic property, we have a list of basic properties that could be used to prove everything about the real numbers. Unfortunately, this additional property would involve us in mathematics beyond the scope of this course.

Practically all the algebra of this course may be developed from the fourteen properties listed above. Let us now list some of the more important properties which may be proved as consequences of the basic properties. All of these have been discussed in the text. As you study more mathematics you will learn much more about the real numbers.

1. For real numbers \(a, b, \) and \(c, \) if \(a + c = b + c, \) then \(a = b. \)

2. For real numbers \(a, b, \) and \(c, \) with \(c \neq 0, \) if \(ac = bc, \) then \(a = b. \)

3. For real numbers \(a \) and \(b, \) \(ab = 0 \) if and only if \(a = 0 \) or \(b = 0. \)

4. For any real number \(a, \) \((-1)a = -a. \)

5. For any real numbers \(a \) and \(b, \) \(-(a + b) = (-a) + (-b). \)

6. For any real numbers \(a \) and \(b, \) \((-a)b = -(ab) \) and \((-a)(-b) = ab. \)

7. The opposite of the opposite of a real number \(a \) is \(a. \)

8. The reciprocal of the reciprocal of a non-zero real number \(a \) is \(a. \)

9. For any non-zero real numbers \(a \) and \(b, \) \(\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}. \)

10. If \(a \) and \(b \) are real numbers, then \(a < b, \) if and only if there is a positive number \(c \) such that \(b = a + c. \)

11. For any real numbers \(a, b, \) and \(c, \)

if \(a < b \) and \(0 < c, \) then \(ac < bc. \)

if \(a < b \) and \(c < 0, \) then \(bc < ac. \)
12. For any real numbers a and b, if a < b, then -b < -a.

13. If 0 < a < b, then \(\frac{1}{b} < \frac{1}{a} \).

14. If \(x \neq 0 \), then \(x^2 \) is positive.

15. If 0 < a < b, then \(a^2 < b^2 \).

If we consider the set of real numbers together with the operations "\(+ \)" and "\(\cdot \)" and the relation "\(< \)" and the basic properties we may call this the **real number system**.
Chapter 11

SUBTRACTION AND DIVISION

In the preceding chapters we have succeeded in extending the order relation and the operations of addition and multiplication from the numbers of arithmetic to the set of all real numbers. We were then able to state certain fundamental properties of the real number system.

However, in stating these fundamental properties we have never mentioned subtraction and division. We remember from arithmetic that subtraction is closely related to addition and that division is closely related to multiplication. It is therefore natural to define subtraction of real numbers in terms of addition and to define division of real numbers in terms of multiplication.

11-1. Definition of Subtraction

Suppose you make a purchase which amounts to 83 cents, and give the cashier one dollar. How does she count out your change? She might hand you 2 cents and say "85", one nickel and say "90", and one dime and say "one dollar".

The clerk wants to find the difference between 83 and 100. But in subtracting 83 from 100, she has found what she has to add to 83 to obtain 100. She has mentally changed the wording of the problem from "One hundred minus eighty-three equals what?" to "Eighty-three plus what equals one hundred?"

The open sentence \(100 - 83 = x \)

1 has become \(83 + \frac{1}{x} = 100 \).

Recall how we have solved the equation

\(83 + x = 100 \).

In order to find the truth set, we add the opposite of \(-83\) to get

\((83 + x) + (-83) = 100 + (-83) \).

Using the properties of addition, we get

\(x = 100 + (-83) \).

\[x = 100 + (-83) \]

\[x = 100 - 83 \]

\[x = 373 \]
Thus, "100 - 83" and "_____ + (____)" are names for the same number. In this case, the number is _____.

In the same way,

\[27 - 8 = 19 \]
and \[8 + ____ = 27 \] are both true sentences.

\[6 - 1 = ____ \]
and \[1 + ____ = 6 \] are both true sentences.

In the set of numbers of arithmetic, if \(a - b \) names the number \(n \), then \(b + n = a \). In the set of real numbers, we are able to solve the equation \(b + n = a \) no matter what number \(a \) and \(b \) represent. We are led to state the following definition:

In the set of real numbers, the sentence

\[a - b = n \]

means exactly the same thing as the sentence

\[b + n = a. \]

Given two real numbers, \(a \) and \(b \), we use the definition to find "\(a - b \)" by solving the equation \(b + n = a \).

If \(b - n = a \),
then \(b + n + (-b) = a + (-b) \),
and \(n = a + (-b) \).

Therefore, "\(a - b \)" and "\(a + (-b) \)" name the same number. Furthermore, the closure property of addition assures us that "\(a + (-b) \)" names exactly one number.

"\(a - b \)" and "\(a + ____ \)" name the same number.

"\(a \) minus \(b \)" and "\(a \) plus the _____ of \(b \)" have the same meaning.

In order to subtract a real number, we _____ its opposite.

In order to subtract 2, we would add _____.

\[a + (-b) \]

opposite
add

\[-2 \]
In order to subtract 0, we would add _____.
In order to subtract -2, we would add _____.

\[
\begin{array}{c}
5 - 2 = \underline{5} + \underline{-2} = \underline{3} \\
5 - 0 = \underline{5} + \underline{0} = \underline{5} \\
5 - (-2) = \underline{5} + \underline{2} = \underline{7} \\
-5 - 2 = -\underline{5} + (-\underline{2}) = -\underline{7} \\
-5 - 0 = \underline{-5} + \underline{0} = \underline{-5} \\
-5 - (-2) = \underline{-5} + \underline{2} = \underline{-3}
\end{array}
\]

5 + (-2) = 3 \\
5 + 0 = 5 \\
5 + 2 = 7 \\
-5 + (-2) = -7 \\
-5 + 0 = -5 \\
-5 + 2 = -3

How do we read the expression 5 - (-2)?
We read this as 5 minus the opposite of 2.

In the expression 5 - (-2), the symbol "-" is used in two different ways.
The first "-" indicated the operation of subtraction.
The second "-" indicates the opposite of 2.

To help keep these uses of the symbol clear, we make the following parallel statements about them.
In "a - b", "-" stands between two numerals and indicates the operation of subtraction. We read the above as "a minus b".
In "a + (-b)", "-" is part of one numeral and indicates the opposite of. We read the above as "a plus the opposite of b".

Here is some more practice. The answers are on page xviii.

24. 15 - (-8) = _____ 31. (-5000) - (-2000) = _____
25. (-7) - 2 = _____ 32. \(\frac{3}{4} - (\frac{1}{2}) = \) _____
26. 0 - 5 = _____ 33. (-\(\frac{2}{3} \)) - (-6) = _____
27. 3 - 0 = _____ 34. (-0.631) - (0.631) = _____
28. -9 - (-7) = _____ 35. (-1.79) - (-1.22) = _____
29. 8 - (-8) = _____ 36. 75 - (-85) = _____
Instead of saying "to subtract b, add the opposite of b", we could say, "to subtract b, add the additive inverse of b". The language is somewhat awkward but it indicates why mathematicians sometimes speak of subtraction as being an operation which is the inverse of the operation of addition.

To find the truth set of \(y - 725 = 25 \) we might use our definition of subtraction to write

\[y = _ + 25. \]

The truth set is \(_ \).

Solve:

37. \(x = _ + 25 \) \[\text{(750)} \]
38. \(x + 3 = 16 \) \[\text{(-12)} \]
39. \(x - 5 = -15 \) \[\text{(-10)} \]
40. \(x + 2 = 10 \) \[\text{(-2)} \]
41. \(x + (-\frac{2}{3}) = \frac{1}{2} \) \[\text{(-2)} \]
42. \(x + 2 = 7 \)

The operation of subtraction can be used to answer questions which may be stated in several ways.

46. The question "What number is 5 less than -3?" is answered by writing \((-3) - 5 = _ \) \[(-3) - 5 = -8 \]
47. "How much greater is 5 than -3?" is answered by writing \(5 - (-3) = _ \) \[5 - (-3) = 8 \]
48. "Is how much greater than -5?" We can find the answer by writing \((-3) - (-5) = _ \) \[(-3) - (-5) = 2 \]
49. The question: "How much less than 5 is -10?" has as its answer \(5 - (-10), 18 \)

45. Subtract -3 from 15. \(15 - (-3) = _ \) \[23 \]
49. From -5, subtract -4. \[-21 \]
51. What number is 6 less than -9? \[-15 \]
11-2. Properties of Subtraction

Included in the list of properties for the real number system were the commutative and associative properties for addition and multiplication.

Is subtraction commutative or associative? If we look at some examples we might find the answer to this question.

Examine

1. \((-8) - (-3) = \) ______
2. \((-3) - (-8) = \) ______

This one example is sufficient evidence to enable us to conclude that subtraction [is, is not] commutative.

On the other hand, we must remember that addition is commutative.

\[x - y = x + (-y) \]
\[(-y) + (x) \] by the commutative property

- \(-y + x\)

5. \(a - b \) may be written as \(-b + \) ______.
6. \(-7 + x = \) ______
7. \(-5 - x = -x\)

In each of these examples we made use of the ______ property of ______.

addition [not subtraction]

- \(-b + a\)
\(x - 7\)
\(-x - 3\)

commutative, addition
Examine
8 - (2 - 7) = 8 - (-5) =
and (8 + 2) - 7 = 6 - 7 =
Again, this one example is enough to allow us to assert that subtraction is not associative.

Let us recall that addition is an operation involving two numbers. Hence, 8 + (2 + 7) and (8 + 2) + 7 are both meaningful expressions. The associative property of addition assures us that these numerals name the same number. Therefore, we may omit the parentheses and write 8 + 2 + 7 without confusion as to its meaning.

Since subtraction does not have some of the properties to which we have become accustomed, we need to be careful in handling expressions involving subtraction. For example, since subtraction is an operation involving two numbers, both 8 - (2 - 7) and (8 - 2) - 7 are meaningful. 8 - 2 - 7 does not name a specific number, hence is not a numeral. However, it is convenient to agree on a single meaning for this expression.

We must decide whether it is to mean
8 - (2 - 7) = 13
or (8 - 2) - 7 = -1.

The second of these is the meaning we decide upon. That is, we agree that, for any real numbers a, b, and c
a - b - c means (a - b) - c.

By our agreement,

\[a - b - c = (a - b) - c \]
\[= (a - b) + (-c), \]
\[= (a + (-b)) + (-c), \] since addition has the _____ property.

a - b - c means a + (-b) + (-c). Since addition is commutative, we notice that a + (-c) + (-b), (-b) + a + (-c), etc., all name the same number.
Express each of the following in terms of addition and taking of opposites.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(x - y =)</td>
</tr>
<tr>
<td>16</td>
<td>(x - y - z =)</td>
</tr>
<tr>
<td>17</td>
<td>(3x + 4y - 2 =)</td>
</tr>
<tr>
<td>18</td>
<td>(x^2 - x + 1 =)</td>
</tr>
<tr>
<td>19</td>
<td>(2a - b - c - 5d =)</td>
</tr>
</tbody>
</table>

Express each of the following in terms of subtraction.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>(a + (-b) =)</td>
</tr>
<tr>
<td>21</td>
<td>(x + (-y) + (-3) =)</td>
</tr>
<tr>
<td>22</td>
<td>((-3x) + y + (-4) =)</td>
</tr>
</tbody>
</table>

Multiplication is distributive over addition. We are able to write, for example, \(3(x + 2) = 3x + 6 \) and \(5x + 3x = (5 + 3)x = 8x \). We now ask, is multiplication distributive over subtraction? Is it true that \(3(x - 2) = 3x - 6 \) and that \(5x - 3x = (5 - 3)x = 2x \)?

\[
3(x - 2) \text{ may be written as } 3(x + (-2)).
\]

\[
3(x + (-2)) = 3x + 3(-2), \text{ by the distributive property of }\]

\[
= 3x + (-6) = 3x - 6
\]

\[
5x - 3x \text{ may be written as } 5x + (-3)x.
\]

\[
5x + (-3)x = 5x + (-3)x = (5 + (-3))x = (5 - 3)x = 2x
\]
Since our method (in Items 23-27) is entirely general, we are able to state:

If a, b, c are real numbers, then

$$a(b - c) = ab - ac$$

and

$$(b - c)a = ba - ca$$

Multiplication is distributive over subtraction. This is not a new basic property. It is a consequence of our definition of subtraction in terms of addition and of the distributive property of multiplication over addition.

Apply the distributive property.

28. \[5(x - 1) = ____] \hspace{2cm} 5x - 5 \\
29. \[x(x - 2) = ____] \hspace{2cm} x^2 - 2x \\
30. \[-5(x - 1) = -5x ____] \hspace{2cm} -5x + 5 \\
31. \[-7(-m + n) = ____] \hspace{2cm} 7m - 7n \\
32. \[-3(2x - 5y) = ____] \hspace{2cm} -6x + 15y \\
33. \[4(x^2 - 2x - 1) = ____] \hspace{2cm} 4x^2 - 8x - 4 \\

Apply the distributive property.

34. \[6x - 2x = (6 - 2)x = ____] \hspace{2cm} 4x \\
35. \[2x - 6x = (____)x = -4x \hspace{2cm} (2 - 6)x \\
36. \[-7x - x = ____] \hspace{2cm} \text{[Recall } -x = (-1)x\text{]} \\
37. \[x^2 - 2x = ____] \hspace{2cm} x(x - 2) \text{ or } (x - 2)x \\
38. \[x^2 - x = ____] \hspace{2cm} x(x - 1) \hspace{2cm } \text{[since } -x = (-1)x\text{]} \\
39. \[3y - 3x = ____] \hspace{2cm} 3(y - x)
We already know that the opposite of a sum of two real numbers equals the sum of the opposites:

\[-(a + b) = (-a) + (-b).

Using the notation of subtraction, we see that

\[-(a + b) = -a - b.

Let us see how \(-(a - b)\) might be written.

41. \(a - b\) means \(a - (-b)\).

42. So \(- (a - b)\) means \(- (a + (-b))\).

Since \(- (a + (-b))\) is the opposite of a sum,

\[-(a + (-b)) = (-a) + (-(-b))

\[= -a + b.

\[\]

44. \(-(x - y) = _

45. \(-(x - 5) = _

46. \(-(b - a) = _

47. \(x - (x - y) = x - x + y = _

48. \(5 - (a - 2) = _

49. \((x - 1) + (x - 2) = _\)

50. \((x - 1) - (x - 2) = _

51. \(3(x + 1) - 2(x - 1) = 3x + 3 - 2x + 2 = _

52. \((3a + 2b - c) - (a - b + 2c) = _

If you were able to respond correctly to Item 12, you have developed a great deal of skill in working with subtraction. Although you should be able to take many steps mentally, you should also be able to explain each step. Can you explain each step below?

\[\]
(x - 3) - (x - 2) = \((x + (-3)) + ((-x) + 2)\)
= \((x + (-3)) + (-x) + 2\)
= \(x + (-3) - x + 2\)
= \(0 + (-1)\)
= \(-1\)

If you wish to check your reasons, see page xix.

53 A simpler numeral for \((5x - 3y) - (2 + 5x) + (3y - 2)\) is

[A] 0
[B] 10x - 4
[C] -4
[D] 10x - 6y - 4
[E] none of these

The correct choice is [C]. If you feel that you need more practice, or if you responded incorrectly, continue with Item 54. If you had no difficulty, proceed to Item 61.

Simplify each of the following.

54 \((3x - 6) + (7 - 4x) = \) _____

55 \((3x - 6) + (6 - 3x) = \) _____

56 \((5a - 17b) - (4a - 6b) = \) _____

57 \(-(3x - 4y) = \) _____

58 \(-(7 - x) = \) _____

59 \((3a + 2b - 4c) - (5a - 3b + c) = \) _____

60 \(-(7x + 5) + (-3 + 2x) = \) _____

\(-x + 1\)
0
\(-3x + 4y\)
\(-7 + x\)
\(-2a + 5b - 5c\)
\(-5x - 8\)
From $11a + 13b - 7c$ subtract $8a - 5b - 4c$. What is the result of subtracting $-3x^2 + 5x - 7$ from $3x + 12$? What must be added to $3a - 4t + 7u$ to obtain $-12a + 4t - 10u$?

A simpler expression for $3x(1 - x) - x(x - 2)$ is

- [A] $-4x^2 + x$
- [B] $-4x^2 + 5x$
- [C] $2x^2 + 5x$
- [D] $2x^2 - x$

The correct response is [B]. If you had difficulty continue with Item 75, otherwise go to Item 79.
For open sentences we have been careful to write, for example,

\[3x + (-4) = 5 \]

We are now able to write this as \(3x - 4 = 5 \).

Our method of solving, of course, remains the same: we add the opposite of \(-4\) to both sides. Since \(-(-4) = 4\), we have

\[3x - 4 + 4 = 5 + 4 \]
\[3x = \]
\[x = \]

The truth set is \(\{1\} \).

Solve

\[5x - 1 = x + 1 \]
\[-3y = 2 - y - 1 \]
\[12 + 3 = 7a - 4 - a - 1 \]
\[2y + 1 = -5n - 1 \]
\[2x - 6y < 1/2 - 0 \]

The width of a rectangle is 5 inches less than its length. What is its length if its perimeter is 39 inches? _____

If 17 is subtracted from a number, and the result is multiplied by 5, the product is 105. What is the number? _____

The width of a rectangle is 5 inches less than its length. What is its length if its perimeter is 39 inches? _____

If 17 is subtracted from a number, and the result is multiplied by 5, the product is 105. What is the number? _____
A teacher says, "If I had 3 times as many students in my class as I do have, I would have less than 46 more than I now have." What is the largest number of students that he could have in his class?

If you had trouble finding an open sentence for any of these, you will find suggestions on page xix.

11:3. Subtraction and Distance

We already know how to illustrate the addition of two real numbers on the number line. Remember that to add a positive number y to a real number x, we start at x and move |y| units to the right. Similarly, to add a negative number y, we move |y| units to the left. Since subtraction is defined in terms of addition, we therefore know how to illustrate subtraction:

If \(y > 0 \):

\[
\begin{align*}
\text{x-y} & \quad y \\
\hline
\text{x} & \quad \text{x-y}
\end{align*}
\]

If \(y < 0 \):

\[
\begin{align*}
\text{x} & \quad y \\
\hline
\text{x} & \quad \text{x-y}
\end{align*}
\]

Although "subtraction on the number line" as shown above offers us nothing new, we might try a somewhat different approach.

We begin by noticing that, since \((a - b) = -(b - a) \),

\[
|a - b| = |-b - a|.
\]

Now, for any real number x, \(|-x| = |x|\).

It follows that

\[
|-(i - a)| = |i - a|.
\]
Therefore, \(|a - b| = |b - a|\).

Whatever statement we make about \(|a - b|\) will also apply to \(|b - a|\).

Next, we recall that the absolute value of any real number represents a distance on the number line.

\(|a|\) represents the distance between \(a\) and ___.

The truth set of \(|x| = 3\) is ___, and its graph is ___.

\(|x|\) does not seem to indicate subtraction, but we could write \(|x| = |x - 0| = ____ - x|.

That is, \(|x - 0|\) and \(|0 - x|\) each represents the distance between \(x\) and 0.

Given any two real numbers, it is reasonable to ask: "May we interpret \(|a - b|\) in terms of distance on the number line?" We start by examining some particular pairs of numbers.

\(|5 - 1| = |1 - 5| = ____

On the number line, \(-3 - 1 0 1 2 3 4\)

\(|4 - 2| = |2 - 4| = ____

On the number line, \(-3 -1 0 1 2 3 4\)

\(|2 - (-1)| = |(-1) - 2| = ____

On the number line, \(-3 -1 0 1 2 3 4\)

\(|(-1) - (-3)| = |(-3) - (-1)| = ____

On the number line, \(-3 -1 0 1 2 3 4\)
Our examples lead us to the general statement:

If \(a \) and \(b \) are any real numbers, then the distance between \(a \) and \(b \) is given by \(|a - b| \). (Of course, \(|a - b| = |b - a| \).)

The distance between 5 and 1 is \(|5 - 1| = 4 \).

The distance between 7 and 0 is \(|7 - 0| = 7 \).

The distance between -3 and 5 is \(|-3 - 5| = 8 \).

The distance between 6 and -2 is \(|6 - (-2)| = 8 \).

The distance between -1 and -3 is \(|-1 - (-3)| = 2 \).

For any real number \(x \), the distance between 2 and \(x \) may be written either \(|2 - x| \) or \(|x - 2| \). We usually prefer the form \(|x - 2| \).

The distance between \(x \) and 5 may be written as \(|x - 5| \).

The distance between 2 and \(x \) may be written as \(|x - 2| \).

The distance between \(x \) and -2 may be written as \(|x + 2| \).

The distance between 0 and \(x \) may be written as \(|x - 0| \).

\(|x - 1| \) may be interpreted as the distance between \(x \) and 1.

\(|x + 1| \) may be interpreted as the distance between \(x \) and -1.

We have seen that "distance between" is related to subtraction and absolute value. An understanding of this relationship will help us one way of finding truth sets of equations such as \(|x - 4| = 1 \).
The expression \(|x - 4| \) may be interpreted as "the distance between \(x \) and 4".

The sentence \(|x - 4| = 1 \), therefore, may be interpreted as "the distance between \(x \) and 4 is 1".

The distance between 4 and each of the points indicated by heavy dots on the number line is ___.

The distance between 4 and 4, and between ___ and 4 is 1.

The truth set of the sentence \(|x - 4| = 1 \) is ___.

\(|x - 6| = 8 \) may be interpreted as, "the distance between \(x \) and 6 is ___".

The distance between 6 and each of the points indicated on the number line is ___.

The distance between ___ and 6, and between ___ and 6 is ___.

The truth set of \(|x - 6| = 8 \) is ___.

\(|10 - a| = 2 \) may be interpreted as, "the distance between ___ and ___ is 2".

The distance between 12 and 10 is 2, also the distance between ___ and 10 is 2.

The truth set of \(|10 - a| = 2 \) is ___.

Since \(|10 - 12| = 2 \) and \(|2| = 2 \), and since \(|10 - 12| = |2| \) and \(|2| = 2 \), we are certain that 5 and 12 are members of the truth set of \(|10 - a| = 2 \).
Draw the graph of $|10 - a| = 2$.

In graphing $|x| < 3$ it may be convenient to think of $|x| < 3$ as $|x - 0| < 3$.

This may be interpreted as: "the distance between x and 0 is less than 3".

Since the distance between x and 0 is less than 3, the graph of $|x| < 3$ includes all points to the right of -3 and to the right of 3.

Graph the truth set $|x| < 3$.

Which of the following sentences is not equivalent to the other three?

- [A] $|x| < 3$
- [B] $-3 < x$ and $x < 3$
- [C] $-3 < x$ or $x < 3$
- [D] $-3 < x < 3$

The truth sets of [A], [B], and [D] are all the same: the set of real numbers between -3 and 3. The truth set of [C] is the set of all real numbers. Thus, [C] is the correct choice.

Graph the truth set of $|x| \geq 3$.

(This may be read, "the distance between x and 0 is greater than or equal to ".)

Graph the truth set of $x \leq -3$ or $x \geq 3$.

The graphs of "$|x| \geq 3$", and of "$x \leq -3$ or $x \geq 3$" are the same, different.

$|x - 4| < 1$ may be interpreted as "the distance between x and 4 is less than ".

Draw the graph of the truth set of $|x - 4| < 1$.

Graph the truth set of $x > 3$ and $x < 5$.

3}
"x > 3 and x < 5" is usually written "3 < x < 5."

Graph the truth set of 3 < x < 5.

The graph of the truth set of |x - 4| < 1 is the same as the graph of the truth set of x < 5.

The truth set of |x - 4| > 1 is the set of all numbers x such that the distance between x and 4 is greater than 1.

Graph the truth set x < 3.

Graph the truth set x > 5.

Graph the truth set of x < 3 or x > 5.

Graph the truth set of |x - 4| > 1.

Notice that the truth set of x < 3 or x > 5 is the same as the truth set of |x - 4| > 1.

"|y - 8| < 4" may be read: "The distance between y and 8 is less than 4."

The truth set of |y - 8| < 4 is all real numbers y such that 4 < y < 12.

Graph |y - 8| < 4.

"|x - (-9)| = 3" may be read, "The distance between x and -9 is 3."

The truth set of |x - (-9)| = 3 is (-12, -6).

Graph |x - (-9)| = 3.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We might guess that

If a and b are positive or both negative, then

$$|a + b| = |a| + |b|$$

If one of a or b is positive and the other negative then

$$|a + b| < |a| + |b|$$

Combining Items 8 and 9, our conclusion is:

For any real numbers a and b

$$|a + b| \leq |a| + |b|$$

A similar, although somewhat less important, result may be discovered by requiring $|a - b|$ with $|a| - |b|$.

$$|7 - 5| = |7| - |5| = 2$$

$$|1 - (-5)| = |7| - |-5| = 12$$

$$|2 - 5| = |-3| - |3| = 2$$

$$|1 - (-5)| = |-6| - |-5| = 2$$

Our conclusion:

$$|a - b| \leq |a| - |b|$$

You may wish to verify for yourself that it is also true that

$$|a - b| \leq |b| - |a|$$

In fact, since $|a| - |b|$ and $|b| - |a|$ are opposites, and since $|a - b|$ is greater than or equal to both of these, we have

$$|a - b| \geq |a| - |b|$$

The result

$$|a - b| \geq |a| - |b|$$

may be interpreted as: "The distance between any two real numbers a and b is at least as great as the distance between their absolute values." This is apparent if you recall that $|a|$ and $|b|$ are both numbers of arithmetic, while one of a or b may be to the right of 0, the other to the left.
11-4. Division

In arithmetic, we often refer to the four "fundamental" operations of addition, multiplication, subtraction, and division. We have developed a set of properties for addition and multiplication. Having these properties, we then defined subtraction in terms of addition. No really "new" properties were needed, since our definition allowed us to apply all the previously developed properties of addition.

It would seem reasonable that we could define the fourth operation, division, in terms of multiplication.

\[a - b = a \cdot (-b) \] implies: "to subtract means to add the opposite" or "to subtract means to add the additive inverse."

Let us develop the definition of division in a parallel manner.

First of all, let us agree to write "a divided by b" as \(\frac{a}{b} \), rather than as \(a + b \) or \(b \).

Those examples, taken from our knowledge of arithmetic, illustrate the relationship between division and multiplication. We are led to state the following definition:

In the set of real numbers, if \(b \neq 0 \), the sentence

\[\frac{a}{b} = a \]

means exactly the same thing as the sentence

\[a = b \cdot c. \]

If we start with two real numbers a and b, \(b \neq 0 \), we may find the number that solves \(\frac{a}{b} = c \) by solving the equation \(a = b \cdot c \). Since \(\frac{a}{b} \neq 0 \), there is a unique solution to this equation (multiplicative inverse).

\[\frac{a}{b} \cdot \frac{b}{b} = \frac{c}{b} \]

Thus, we have

\[\frac{a}{b} = \frac{c}{b} \]

and

\[\frac{c}{b} = \frac{a}{b} \]
Therefore \(\frac{a}{b} \) and \(a \cdot \frac{1}{b} \) name the same number. Furthermore, the closure property of multiplication assures us that \(a(b) \) names exactly one number, remembering that \(b \neq 0 \).

\[
\begin{align*}
\text{a divided by b} & \quad \text{and} \quad a \cdot \frac{1}{b} \\
\text{of b} & \quad \text{have the same meaning.}
\end{align*}
\]

In order to divide by a real non-zero number we multiply by its reciprocal.

- In order to divide by \(\frac{1}{5} \), we would multiply by \(5 \).
- In order to divide by \(-\frac{1}{5} \), we would multiply by \(\frac{1}{5} \).
- In order to divide by \(-3 \), we would multiply by \(\frac{1}{3} \).
- In order to divide by \(\frac{1}{3} \), we would multiply by \(-3 \).

In the statement of the definition of division it is important to recognize that division is not defined for all pairs of numbers \(a \) and \(b \).

\[
\begin{align*}
[A] & \quad x \text{ is not defined if}, \quad \frac{x}{y} \text{ is not defined if} \\
[B] & \quad y \text{ is 0}. \quad \text{[B] y is 0.} \\
[C] & \quad \text{either } x \text{ or } y \text{ is 0.} \quad \text{[C] either } x \text{ or } y \text{ is 0.}
\end{align*}
\]

To determine \(\frac{x}{y} \) we multiply \(x \) times the reciprocal of \(y \) if \(y \) is not zero. Since \(0 \) has no reciprocal, \(y \) cannot be zero. On the other hand, \(\frac{0}{2} \), for example, means \(0 \cdot \frac{1}{2} \) which is the name for a number. \(0 \cdot \frac{1}{2} = 0 \). Thus \([B] \) is correct.

As in arithmetic, we shall call \(a \) the numerator and \(b \) the denominator. When there is no possibility of confusion we shall call the number named by \(a \) the numerator, and the number named by \(b \) the denominator.
In an indicated quotient, the _____ must not be a name for the number 0.

13. In \(\frac{6}{2+1} \), the denominator is _____

and the numerator is _____.

15. If \(y = \frac{1}{y} \), then \(\frac{1}{y} \) does not name a number.

16. \(\frac{4x}{2x} = 2 \), provided _____.

17. \(\frac{4x}{2} = _____ \), for any number \(x \).

Write the common name for each indicated quotient. Answers are on page 32.

18. \(\frac{75}{5} = _____ \)

24. \(\frac{2}{3} \times \left(\frac{1}{6} \right) = \left(\frac{2}{3} \right) \times 6 = _____ \)

19. \(\frac{270}{270} = _____ \)

25. \(\frac{4}{2} = _____ \)

20. \(\frac{2500}{1} = _____ \)

26. \(\frac{78}{2} = _____ \)

21. \(\frac{-30}{5} = (-30)(\frac{1}{5}) = _____ \)

27. \(\frac{-2}{3} \times \left(-\frac{1}{3} \right) = _____ \)

22. \(\frac{30}{-5} = (30)(-\frac{1}{5}) = _____ \)

23. \(\frac{-30}{-2} = _____ \)

28. \(\frac{0}{7} = _____ \)

Two special cases of division are immediate consequences of our definition:

29. For any real number \(x \), \(\frac{x}{1} = _____ \), since \(x = x \cdot 1 \).

30. For any non-zero real number \(x \), \(\frac{x}{x} = _____ \), since \(x \cdot x = 1 \cdot x \).

If you need more practice, complete Items 31-37. Otherwise, go to Item 38.
Notice that, since division by a real number is defined as multiplication by the reciprocal of that number,

- If a positive number is divided by a negative number the result is negative.
- If a negative number is divided by a positive number the result is negative.
- If a negative number is divided by a negative number the result is positive.

Instead of saying

"to divide by \(\frac{1}{x} \), multiply by the reciprocal of \(x \),"

we could say

"to divide by \(x \), multiply by the multiplicative inverse of \(x \)."

As was the case for subtraction, this language is awkward but it indicates why division is referred to as an operation which is the inverse operation of multiplication.
Noting particularly that \(\frac{1}{0} \) is only possible if \(\frac{1}{0} \) has a reciprocal, every real number except \(0 \) has a reciprocal. If \(0 \) has no reciprocal, hence division by \(0 \) is not defined. In an indicated division such as \(\frac{1}{0} \), we must be careful that the domain of \(x \) does not include 0.

We have solved equations such as:

\[
y - 4 = 0
\]

\[
\left(\frac{1}{2} \right) y = (\frac{2}{3}) 6
\]

\[
y = 7.
\]

We may now solve such equations by applying our definition of division.

Thus, \(\frac{y}{x} = k \) is true for some \(y \), if and only if \(\frac{1}{y} \) is true for some \(y \), \(y = 7 \).

By either method, we obtain the truth set \(\{ 7 \} \).

<table>
<thead>
<tr>
<th>Find the truth set of</th>
<th>(-7)</th>
<th>(-7)</th>
<th>(7)</th>
<th>(\frac{1}{7})</th>
<th>(1)</th>
<th>(100)</th>
<th>(75)</th>
<th>(12)</th>
<th>(0)</th>
<th>(\frac{5}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-y = 9)</td>
<td></td>
</tr>
<tr>
<td>(y = 9)</td>
<td></td>
</tr>
<tr>
<td>(-y = -9)</td>
<td></td>
</tr>
<tr>
<td>(y = -9)</td>
<td></td>
</tr>
<tr>
<td>(-y = -9)</td>
<td></td>
</tr>
<tr>
<td>(y = 9)</td>
<td></td>
</tr>
<tr>
<td>(-y = 9)</td>
<td></td>
</tr>
<tr>
<td>(y = 9)</td>
<td></td>
</tr>
<tr>
<td>(-y = 9)</td>
<td></td>
</tr>
<tr>
<td>(y = 9)</td>
<td></td>
</tr>
</tbody>
</table>
Find the truth set of:

51. \(5a - 8 = -53\)
\((-9)\)

52. \(\frac{3}{4}y + 13 = 25\)
\((16)\)

53. \(x + .30x = 6.50\)
\((5)\)

54. \(n + (n + 2) = 58\)
\((28)\)

55. \(\frac{1}{3}a = \frac{1}{9}a + 4\)
\((18)\)

Solve:

56. \(\frac{1}{x} = 3\), \(x \neq 0\)
\(\frac{1}{x} = 3\) implies \(1 = 3x\)
\(\frac{1}{3}\)

57. \(\frac{2}{y} = 4\), \(y \neq 0\)
\(\frac{2}{y} = 4\)
\(\frac{1}{2}\)

58. \(-\frac{2}{x} = \frac{9}{4}\), \(x \neq 0\)
\(-\frac{2}{x} = \frac{9}{4}\)
\(\frac{1}{2}\)

59. \(-\frac{2}{y} = \frac{7}{a}\), \(a \neq 0\)
\(\frac{1}{2}\)

If six times a number is decreased by 5, the result is 37. Find the number.

If two-thirds of a number is added to 32, the result is 38. What is the number?

Find two consecutive even integers whose sum is 46.

Find two consecutive odd positive integers whose sum is less than or equal to 83.

On a 20% discount sale, a chair cost $30. What was the price of the chair before the sale?

Mary bought 17 four-cent stamps and some five-cent stamps. She paid $1.86. Was she charged the correct amount?

A syrup manufacturer made 160 gallons of syrup worth $608 by mixing maple syrup worth $2 per quart with corn syrup worth 60 cents per quart. How many gallons of maple syrup did he use?

"In case you had difficulty solving any of the problems in Items 60-66 you will find open sentences and suggestions on page xx."
11-5. **Summary and Review**

Subtraction

For real numbers \(a, b, n \)

\[a - b = n \]

has the same meaning as \(b + n = a \).

To subtract a real number \(b \) from a real number \(a \),
we add the opposite of \(b \) to \(a \).

We agree that \(a - b - c = a + (-b) + (-c) \).

\[|a - b| = c \]

may be interpreted on the number line as

"the distance between points with coordinates \(a \) and \(b \) is \(c \) units".

Division

For real numbers \(a, b, n \) \((b \neq 0) \)

\[\frac{a}{b} = n \]

has the same meaning as \(a = nb \).

To divide a real number \(a \) by a non-zero real number \(b \),
we multiply \(a \) by the reciprocal of \(b \).

Review Problems

Answers are on page xxii.

1. Which of the following name real numbers?
 (a) \((6 - 6) \cdot 7\) (d) \(3 \cdot \frac{7}{8}\)
 (b) \(\frac{0}{-3}\) (e) \(3 \cdot 1\)
 (c) \(\frac{10}{0}\) (f) \(3 \cdot 0\)

2. Find the value of the phrase \(b^2 - 4ac \) if
 (a) \(a = 2, \ b = -1, \ c = 5\)
 (b) \(a = 1, \ b = -3, \ c = -2\)
 (c) \(a = -9, \ b = 6, \ c = 1\)

3. Solve the following open sentences.
 (a) \(7x + 4 - x = 3x - 8\)
 (b) \(2a - 3 < a + 4\)
 (c) \(3|x| \leq 6\)
 (d) \(|x - 1| = 1\)
 (e) \(|x + 2| < 3\)
4. Apply the distributive property to each of the following.
 \(a(x - y) \)
 (a) \(-2(x - 1) \)
 (b) \(\frac{1}{2}(x - 1) \)
 (c) \(-3(x - 1) \)

5. Write each phrase as an indicated product.
 (a) \(Y + 14y - 7 \)
 (b) \(Y - 14y - 7 \)
 (c) \(-r + 14y - 7 \)
 (d) \(+1 - 14y - 7 \)

6. Find simpler expressions for each of the following.
 (a) \((x - y) + (x + y) \)
 (b) \((x - 1) - (2x + 1) \)
 (c) \((3x - 2) - 3(2x + 1) \)
 (d) \(-\frac{1}{2}(6x + 7) - 3(\frac{1}{2}x + 2) \)

7. Graph the truth set of:
 (a) \(|x - 5| = -2 \)
 (b) \(|x - 5| = 2 \)
 (c) \(|x - 5| < 2 \)
 (d) \(|x - 5| > 2 \)

8. An airplane which flies at an average speed of 400 m.p.h. (when no wind is blowing) is held back by a head wind and takes \(\frac{3}{2} \) hours to fly 600 miles. What is the average speed of the wind?

9. A clothing store owner sold two shirts for \$10.75 each. On the first shirt, he made \(10\% \) of the cost and on the second he gained \(15\% \) of the cost. How much did he gain or lose, or did he break even on the two sales?

10. The temperature in a certain manmade satellite must be kept within a range less than \(5^\circ \) from \(70^\circ \) F. Write an open sentence, using absolute values. Find the truth set.
ANSWER KEY

Answers for Chapter 1: THE NUMBER LINE

<table>
<thead>
<tr>
<th>Operation</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>...</th>
<th>n, a counting number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 1

- **4 + 2**:
 - 0 1 2 3 4 5 6 7 8
- **2 + 4**: 0 1 2 3 4 5 6 7 8 9
- **15 + 23**: 0 1 2 ... 14 15 16 ... 37 38 39
- **7 - 4**: 0 1 2 3 4 5 6 7 8
- **2 - 2**: 0 1 2 3 4 5 6 7
Answers for Chapter 2
NUMERALS AND VARIABLES

Section 2-4

54. 135 55. 16 56. 560 57. 92 58. 1080
59. 3 60. 6 61. \(\frac{7}{11} \) 62. .5 or \(\frac{1}{2} \)
Answers for Chapter 3

Section 3-2

25. \(c = \frac{5}{3}(86 - 52) \); truth set is \([30] \); temperature is 30 degrees Centigrade.

26. \(120 = (1000)(.04)t \); truth set is \([3] \); time is 3 years.

27. \((15)(600) = (75)V \); truth set is \([120] \); volume is 120 cubic units.

28. \(20 = \frac{1}{3}(8 + 4)(4) \); truth set is \([6] \); missing base has a length of 6 units.

36. \((4) \)

37. \([3] \)

38. \(\emptyset \)

39. the set of all numbers of arithmetic

40. \([0] \)

41. the set of all numbers except 4

42. \((\frac{1}{2}) \)

43. the set of all numbers except \(\frac{4}{3} \)

44. \(\emptyset \)

45. \([0, 2] \)

Section 3-3

62. \(\emptyset \)

63. \(\emptyset \)

64. \(\emptyset \)

65. \(\emptyset \)

66. 0 1 2 3 4 5 6

67. 0 1 2 3 4 5 6

68. 0 1 2 3 4 5 6

69. 0 1 2 3 4 5 6
Section 1.5

1. \((\emptyset) \)

2. the set of all numbers less than 7

3. \(\emptyset \) (empty set)

4. the set of all numbers of arithmetic

5. \(\{0, 1 \} \)

6. \(\{0, 1, 2, 3 \} \)

7. all numbers greater than 5

8. the set of all numbers except 0

9. the set of all numbers except \(\emptyset \)

10. \(\{0, 1, 2, 3, 4, 5, 6\} \)

11. \(\{0, 1, 2, 3, 4, 5, 6, 7\} \)

12. \(\{0, 1, 2, 3, 4, 5, 6, 7, 8\} \)

13. all numbers less than 0

14. the set of all numbers less than 5
18. (1)

19. the set of all numbers

20. \(\emptyset \)

21. \(\{2,3\} \)

22. \(\{\frac{1}{2},3\} \)

23. \(\emptyset \)

24. \(\{\} \)

25. the set of all numbers

26. the set consisting of \(3 \) and all numbers greater than \(3 \)

27. the set consisting of 1 and all numbers greater than 1

28. the set of numbers between 3 and 6

29. the set consisting of all numbers less than 2, the number 3, and all numbers greater than 3

30. the set consisting of 1 and all numbers less than 1

31. the set of all numbers except 1 and 4

32. the set consisting of all numbers less than 2, the number 3, and all numbers greater than 4

33. the set consisting of the number 2 and 3 and all numbers between 3 and 6

34. the set of all numbers between 2 and 6
Answers for Chapter 4

Section 4-1

17. \(\frac{7}{8} \left((3.7 + 0.3) - 4 \right) = \frac{7}{8} (4 - 4) \)

 = \left(\frac{7}{8} \right) (0)

 = 0 \text{ by the multiplication property of zero}

19. \(\left(\frac{2}{3} - \frac{1}{3} \right) + 17 = \frac{2}{3} - \frac{1}{3} + 17 \)

 = 0 + 17

 = 17 \text{ by the addition property of zero}

21. \(\left(\frac{16}{3} - 5 \right) (3)^2 = \left(\frac{1}{3} \right) (5280) \)

 = (1)(5280)

 = (5280)(1)

 = 5280 \text{ by the multiplication property of one}

Section 4-4

116. \((y + 2)(y + 9) = (y + 2)y + (y + 2)9\)

 = \(y^2 + 2y + 9y + 18\)

 = \(y^2 + (2 + 9)y + 18\)

 = \(y^2 + 11y + 18\)

117. \((x + 1)(x + 5) = (x + 1)x + (x + 1)5\)

 = \(x^2 + x + 5x + 5\)

 = \(x^2 + (1 + 5)x + 5\)

 = \(x^2 + 6x + 5\)

118. \((2x + a)(x + a) = (2x + a)x + (2x + a)a\)

 = \(2x^2 + ax + 2ax + a^2\)

 = \(2x^2 + (a + 2a)x + a^2\)

 = \(2x^2 + ((1 + 2)a)x + a^2\)

 = \(2x^2 + 3ax + a^2\)

119. \((3x + 4)(4x + 3) = (3x + 4)4x + (3x + 4)3\)

 = \(12x^2 + 16x + 9x + 12\)

 = \(12x^2 + (16 + 9)x + 12\)

 = \(12x^2 + 25x + 12\)

120. \((x + y)(x + y) = (x + y)x + (x + y)y\)

 = \(x^2 + xy + xy + y^2\)

 = \(x^2 + (1 + 1)xy + y^2\)

 = \(x^2 + 2xy + y^2\)
Section 4-6, Review - Chapters 1-4

1. (a) H is the set of odd integers greater than 19 and less than 51, or the set of odd integers from 21 to 49 inclusive.
 (b) H is a subset of A.
 (c) Set H is finite. Set A is infinite.

2. Since $\frac{3}{4}$ is $\frac{18}{24}$ and $\frac{5}{6}$ is $\frac{20}{24}$, the coordinate of one point between the two is $\frac{19}{24}$. There are infinitely many points between $\frac{3}{4}$ and $\frac{5}{6}$.

3. (a) Set T is closed under addition, since the sum of two elements gives an integral multiple of 3.
 (b) Set T is not closed under averaging since the average of two elements (such as 3 and 6) is not necessarily an integer.

4. (a) $3, 5, 7, 17, \frac{11}{2}$ are in the domain of the variable t.
 (b) $\pi, \frac{17}{4}, \frac{11}{3}$ are not in the domain of the variable t.

5. In (c).

6. (a) {12} (c) {4} (e) {2}
 (b) {6} (d) {3} (f) {1}

7. If m is a number of arithmetic, the truth sets are
 (a) {1} (c) {0}
 (b) the set of all numbers of arithmetic (d) \emptyset
 (f) \emptyset

8. If the domain of m is the set of counting numbers, the truth sets are
 (a) {1} (c) \emptyset
 (b) the set of all counting numbers (d) \emptyset
 (f) \emptyset

9. (a) 3 is an element of T.
 (b) 2 is an element of T.
 (c) \emptyset is a subset of T. (Note: \emptyset is a subset of every set.)
11. (a) \emptyset (b) {0} (c) The set consisting of 0, $\frac{1}{2}$, and all numbers between 0 and $\frac{1}{2}$.

12. (a) The sentence is true.
(b) That is needed is to note that $(8+1)$ and $(4+5)$ are names of the same number.

13. (a) true (b) false (c) true (d) true (e) true (f) true

14. $\frac{\frac{3}{4} + \frac{2}{5}}{\frac{3}{4}} = \frac{\frac{3}{4} + \frac{2}{5} \cdot \frac{60}{60}}{\frac{3}{4} \cdot \frac{60}{60}} = \frac{\frac{15}{20} + \frac{12}{20}}{\frac{3}{5}} = \frac{27}{15} = \frac{9}{5}$

15. $3x + y + 2x + 3y = (3x + 2x) + (y + 3y)$ by the associative and commutative properties of addition
 $= (5 + 2)x + (1 + 3)y$ by the distributive property
 Since the associative, commutative, and distributive properties are true for all numbers, $3x + y + 2x + 3y = 5x + y$ is true for all numbers.

16. (a) $(x + 1)(x + 1) = (x + 1)x + (x + 1)1$
 $= x^2 + x + x + 1$
 $= x^2 + (1 + 1)x + 1$
 $= x^2 + 2x + 1$
 (distributive property)

 (b) $(x+2)(x+2) = x^2 + 4x + 4$ as above
17. \(5 + 5x\)

18. \(\frac{1}{6}a(3 + 2) \text{ or } \frac{a(3 + 2)}{6}\)

19. \(3(11) + 15(11) = (3 + 15)11 = (18)(11)\)

or

\(11(3) + 11(15) = 11(3 + 15) = 11(18)\)

20. \((1 + 2)c \text{ or } 3c\)

21. \(\frac{1}{2}y + \frac{1}{3}y\)

22. \(xy + x\)

23. \(x(y + 1)\)

30. \(17x + x = (17 + 1)x = 18x\)

31. \(2x + y + 3x + y = 2x + 3x + 1y + 1y = (2 + 3)x + (1 + 1)y = 5x + 2y\)

32. \(3(x + 1) + 2x + 7 = 3x + 3 + 2x + 7 = 3x + 2x + 3 + 7 = (3 + 2)x + 10 = 5x + 10\)

33. \(1.6a + .7 + .4a + .3b = 1.6a + .4a + .7 + .3b = (1.6 + .4)a + .7 + .3b = 2.0a + .7 + .3b\)

34. \(by + 2by = (1 + 2)by = 3by\)

35. \(9x + 3 + x + 2 + 11x = 9x + 1x + 11x + 3 + 2 = (9 + 1 + 11)x + 5 = 21x + 5\)
36. Since $2 + 3 + 5 + 7$ is not divisible by 9, we cannot use the distributive property to write 2357 as the product of 9 and a whole number, so we find that 2357 is not divisible by 9.

$$35874 = 3(10,000) + 5(1000) + 8(100) + 7(10) + 4(1)$$
$$= 3(9999 + 1) + 5(999 + 1) + 8(99 + 1) + 7(9 + 1) + 4(1)$$
$$= 3(9999) + 3(1) + 5(999) + 5(1) + 8(99) + 8(1) + 7(9) + 7(1) + 4(1)$$
$$= (3(9999) + 3(1) + 5(999) + 8(99) + 7(9)) + 3(1) + 5(1) + 8(1) + 7(1) + 4(1)$$
$$= (3(1111) + 3(111) + 8(11) + 7(1))9 + (3 + 5 + 8 + 7 + 4)$$
$$= (3333 + 333 + 88 + 7)9 + (27)$$
$$= (3333 + 355 + 88 + 7 + 3)9$$

Hence, 35874 is divisible by 9.

The rule which becomes apparent is that if the sum of the digits of a number is divisible by 9, the number is divisible by 9.

37. distributive property; distributive property; associative property of addition; commutative property of multiplication and distributive property.

$15 \times 14 = (15 + 4)10 + 20 = 210$

$13 \times 17 = (13 + 7)10 + 21 = 221$

$11 \times 12 = (11 + 2)10 + 2 = 132$

Answers for Chapter 5

ENGLISH AND MATHEMATICAL SENTENCES

Section 5-1

<table>
<thead>
<tr>
<th>Open Phrase</th>
<th>Meaning of Variable</th>
<th>English Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x + 25$</td>
<td>x is number of cents Tom earns in one hour.</td>
<td>The number of cents Tom earned in three hours if he gets a bonus of 25 cents.</td>
</tr>
<tr>
<td>$n + 7$</td>
<td>n is John's age now, in years.</td>
<td>Mary's age in years if she is seven years older than John; or John's age in years seven years from now.</td>
</tr>
<tr>
<td>$n - 7$</td>
<td>n is Joan's original weight in pounds.</td>
<td>Joan's weight in pounds after she lost seven pounds.</td>
</tr>
<tr>
<td>$\frac{y}{2}$</td>
<td>y is the number of dollars Larry earned in two weeks.</td>
<td>Larry's wages in dollars for one week.</td>
</tr>
<tr>
<td>$2r + 5$</td>
<td>r is the cost in cents of one bunch of rhubarb.</td>
<td>5 more than the cost in cents of 2 bunches of rhubarb.</td>
</tr>
<tr>
<td>$a + b$</td>
<td>a is my age in years and b is my sister's age in years.</td>
<td>The combined age in years of my sister and me.</td>
</tr>
</tbody>
</table>
Section 5-2

48. If I bought \(n \) bracelets, and the same number of necklaces, then the phrase is: The total cost in dollars if I bought some bracelets at \(\$1 \) each and the same number of necklaces at \(\$7 \) each.

49. If there are \(r \) paper clips in each box, then the phrase is: The number of paper clips I now have if I had two boxes of them and my roommate took away five paper clips and then brought back seven.

50. If the first side of a triangle is \(x \) inches long, then the phrase is: The number of inches in the perimeter of a triangle if the second side is three times the first one and the third side is one inch longer than twice the first side.

51. If \(y \) is the number of people in each of the new families, then the phrase is: The population of a village which originally had 5,000 people after four more families move in.

52. If \(y \) is the number of dollars I put in the bank, then the phrase is: The number of dollars in the bank after simple interest for one year at 4 percent has been added.

53. If a rectangular National Forest is \(x \) miles wide, then the phrase is: The number of square miles in the area of the forest if it is 3 miles longer than it is wide.

54. If the altitude of a triangle is \(y \) inches, then the phrase is: The number of square inches in the area of the triangle if its base is 5 inches longer than its altitude.

55. If the first side of a triangle is 5 inches long, then the phrase is \(5 + 3 \).

56. If \(a \) people bought tickets, then the phrase is \(2a \).

57. \(r + 12 \)

58. (a) \(\frac{1}{2}x \) or \(\frac{x}{2} \)

(b) \(\frac{1}{10}x + 50 \) or \(\frac{x}{10} + 50 \)

(c) \(x - \left(\frac{1}{2}x + \frac{1}{10}x + 50 \right) \) or \(x - \left(\frac{5}{10} + \frac{x}{10} + 50 \right) \)

(d) \(x \). Of course, you might write \(\left(\frac{1}{2}x \right) + \left(\frac{1}{10}x + 50 \right) + \left(x - \left(\frac{1}{2}x + \frac{1}{10}x + 50 \right) \right) \)

You might find it interesting to show that this phrase represents the same number as \(x \).
69. (a) \(\frac{1}{2}(x + y) \)

(b) \(x + y + \frac{1}{2}(x + y) \)

60. If the plant grows \(g \) inches per week, then the height in 5 weeks is \(20 + 5g \).

61. If \(t \) is the number of minutes after his arms are immersed, and \(t > 10 \), then the phrase is \(t - 10 \).

Section 5.3

<table>
<thead>
<tr>
<th>Open Sentence</th>
<th>Meaning of Variable</th>
<th>English Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x - 2 = 784)</td>
<td>(x) is the number of books in the library.</td>
<td>The number of books in the library is tripled. Two books are lost. There are 784 books left.</td>
</tr>
<tr>
<td>(n + 7 = 82)</td>
<td>Jonathan weighs (n) pounds.</td>
<td>Sammy, who is 7 pounds heavier than Jonathan, weighs 82 pounds. (Or a similar sentence.)</td>
</tr>
<tr>
<td>(\frac{c}{2} = 17)</td>
<td>(c) is the number of students in the class which consists of the same number of boys as girls.</td>
<td>A class that has the same number of boys as girls has 17 boys (girls).</td>
</tr>
</tbody>
</table>

11. In order to buy 500 envelopes, I had to buy two boxes of envelopes.

12. I have three pieces of chain. The second piece has twice as many links as the first and the third piece has three times as many links as the first. I get a single chain with the same number of links whether I fasten the second and third pieces together and then fasten them to the first, or whether I fasten the first and second pieces together and then fasten the third to them.

13. James bought some 5 cent stamps and the same number of 8 cent stamps. The total cost was 65 cents.

14. The perimeter of a square is 100 feet.

15. I have to travel just as far whether I go from here to Fairwood and then the five miles to Middlebury, or whether I go first from Middlebury to Fairwood and then back here.

16. We received 6 gallons of milk, some in quart bottles and some in half-gallon bottles.
Section 5-4

83. If the number is \(n \), then \(\frac{3}{4}n + \frac{1}{3}n \geq 26 \).

84. If a side of the square is \(x \) inches long, then a side of the triangle is \(x + 5 \) inches long.
 Open sentence: \(4x = 3(x + 5) \)

85. If his score on the third test is \(t \), then
 \[
 \frac{75 + 82 + t}{3} \geq 88
 \]
 \[
 \frac{75 + 82 + 100}{3} = \frac{257}{3} = 85\frac{2}{3}
 \]
 \[
 \frac{75 + 82 + 0}{3} = \frac{157}{3} = 52\frac{1}{3}
 \]

Section 5-5

62. (a) The smallest amount of change the man could have is $1.16.
 (b) The largest possible amount of change is $1.52.
Section 6-1. THE REAL NUMBERS

61. [Diagram showing a number line with points marked for numbers 8 to 9, and fractions listed below the line.]

62. [Diagram showing a number line with points marked for numbers -3 to 2, and fractions listed below the line.]

63. [Diagram showing a number line with points marked for numbers -8 to 8, and fractions listed below the line.]

64. [Diagram showing a number line with points marked for numbers -3 to 2, and fractions listed below the line.]

65. [Diagram showing a number line with points marked for numbers -3 to 2, and fractions listed below the line.]

66. [Diagram showing a number line with points marked for numbers -3 to 2, and fractions listed below the line.]

67. [Diagram showing a number line with points marked for numbers -3 to 2, and fractions listed below the line.]

68. 3 is to the right of \(-\frac{1}{4}\).

69. 5 is to the right of \(-\frac{1}{4}\).

70. \(\frac{1}{2}\) is to the right of \(-\frac{1}{4}\).

71. 1 is to the right of \(-\sqrt{2}\).

72. 0 is to the right of \(-\frac{5}{2}\).

73. \(\frac{5}{2}\) and \((-\frac{10}{4})\) are names for the same number and so name the same point on the number line.

74. 3 is to the right of 0.

75. \(\sqrt{2}\) is to the right of \(-4\).

76. \((-\frac{21}{4})\) is to the right of \((-\frac{16}{3})\). \((-\frac{21}{4}) \times \frac{2}{3} = \frac{-63}{12}\) and \((-\frac{16}{3} \times \frac{4}{1}) = \frac{-64}{12}\).

77. \(\frac{1}{2}\) is to the right of \((-\frac{1}{2})\).

78. \(\sqrt{2}\) is an integer, a rational number, a real number. It is not a whole number.
79. \(\frac{10}{3} \) is a rational number and a real number. It is neither a whole number nor an integer.

80. \(\sqrt{2} \) is a real number. It is neither a whole number, nor an integer, nor a rational number.

Section 6-2

37. \(y < 2 \)

38. \(u \neq 3 \)

39. \(v \geq \frac{3}{2} \)

40. \(r \neq 2 \)

41. \(x = 3 \) or \(x < 1 \)

42. \(c < 2 \) and \(c > \frac{3}{2} \)

43. \(a \leq -3 \) and \(a \geq 3 \)

44. \(d \leq -1 \) or \(d > 2 \)

45. \(a < 6 \) and \(a < -2 \)

46. \(u > 2 \) and \(u < -3 \). The truth set in this case is the empty set, \(\emptyset \), and hence has no graph. You should observe that there is no number both less than \(-3 \) and greater than 2.

102. and 103.

Under the ordering "<", \(3 \not< -3 \) and \(-3 \not> 3 \). Since \(3 \not< -3 \) we see that the comparison property does not hold. Clearly the transitive property is true for the real numbers. This would not be a useful extension of order although in the set of numbers of arithmetic, "<" and "<" actually do have the same meaning.
Section 6-3

57. \(-\frac{1}{6} < \frac{2}{7}\)

58. \(-\pi < \sqrt{2}\)

59. \(\pi < \frac{22}{7}\) (The value of \(\pi\), to 4 decimal places, is 3.1416.)

60. \(3\left(\frac{4}{3} + 2\right) < \frac{\pi}{2}(20 + 8)\)

61. \(-2.1 < \left(\frac{3 + 6}{7}\right)\)

62. \(-\left(3 + 0\right)^{2} < \left(\frac{1}{3} + 17\right)\)

90. If \(s\) is the number representing John's score, the open sentence is \(s > -100\).

91. If \(n\) is the number representing my financial condition in dollars, the open sentence is \(n \leq 0\) and \(n \geq -200\) or \(-200 \leq n \leq 0\).

92. If \(d\) is the number of dollars in Paul's original debt, the open sentence is \(d > 10 > 2\), or \(d > 35\).

Section 6-5

1. Sentences (b), (d), (e), (f) are true.

2. Sentences (a), (f) are false.

3. (a) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(b) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(c) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(d) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

4. (a) \(\varnothing\) (No numbers are in the intersection of the truth sets of \(y \leq 3\) and \(y > 4\).)

(b) The set of all real numbers. (-\(|u| < 2\) is the same as \(|u| > -2\).

Since \(|u|\) is always non-negative, \(|u|\) is always greater than \(-2\).)

(c) The set of all real numbers greater than \(-3\) and less than \(2\).

(d) The set of all non-positive numbers. (Look at the sentence \(|x| = -x\).

\(|x|\) is always non-negative. "\(-x\)" is read the opposite of \(x\). What is the set of numbers whose opposites are positive?)

(e) \(\varnothing\) (\(|x|\) is never negative.)

(f) The set of all real numbers.

5. (a) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(b) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(c) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]

(d) \[\begin{array}{ccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\end{array}\]
6. If we let "t" represent the number degrees of the temperature on Sunday, and if we interpret "within" to mean a variation up to 6° but not including 6°, then the open sentence can be written: \(t > -11 \) and \(t < 1 \), or \(-11 < t < 1\).

You might look at the number line. If you go 6 to the left, you are at -11 and if you go 6 to the right, you are at 1.

7. (a), (b), and (e) are true statements.

8.

\[\begin{array}{cccccccc}
-9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array} \]

Yes, -8 is an element of this set. \(|-8| = 8\) and 8 is greater than 3.

9. (a) If \(n \) is the integer, \(n + 1 \) is its successor and \(n + (n + 1) = n + 1 \).

(b) The truth set of this sentence is \([0]\).

10. (a) If \(s \) is the number of units in the side of this square, \(s \) is positive, \(4s \) is the perimeter of the square. A sentence for this is \(s > 0 \) and \(4s < 10 \).

(b) If \(A \) is the number of units in the area of the square, then \(A = s^2 \), where \(s > 0 \) and \(4s < 10 \), as in part (a). Since \(A \) is \(s^2 \), and \(s \) is a number from the set of numbers between 0 and 2.5, the truth set of \(A \) is the set of numbers between \((0)^2\) and \((2.5)^2\) or between 0 and 6.25.
Section 7.4

Properties of Addition

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>Net Income (by arithmetic)</td>
<td>Net Income (number line)</td>
</tr>
<tr>
<td>Mon.: Profit of $7</td>
<td>$7 + 5 = 12</td>
<td>0 → 7 → 12</td>
</tr>
<tr>
<td>Tues.: Profit of $5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed.: Profit of $6</td>
<td>6 + (-4) = 2</td>
<td>0 → 2 → 6</td>
</tr>
<tr>
<td>Thurs.: Loss of $4 (Tire trouble)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fri.: Loss of $7 (Another tire)</td>
<td>(-7) + 4 = -3</td>
<td>0 → -3 → 7</td>
</tr>
<tr>
<td>Sat.: Profit of $4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun.: Day of rest</td>
<td>0 + (-3) = -3</td>
<td>0 → -3</td>
</tr>
<tr>
<td>Mon.: Loss of $3 (cold day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tues.: Loss of $4 (colder)</td>
<td>(-4) + (-6) = -10</td>
<td>0 → -10 → -4</td>
</tr>
<tr>
<td>Wed.: Loss of $6 (gave up)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 7.2

109. false

110. true

111. true

Section 7.4

46. If \(x + 5 = 13 \) is true for some \(x \), then \((x + 5) + (-5) = 13 + (-5) \) is true for the same \(x \).

Check: If \(x = 8 \), in the original question:
- the left side is: \(8 + 5 \)
- and: \(8 + 5 = 13 \)
- the right side is: \(13 \)

Hence, the truth set is \(\{8\} \).
47. If \((-6) + 7 = (-8) + x\) is true for some \(x\), then \(1 = (-8) + x\).
\[8 + 1 = 8 + ((-8) + x)\]
\[9 = x\] is true for the same \(x\).

Check: if \(x\) is 9, the left side is: \((-6) + 7\) and \((-6) + 7 = 1\). The right side is: \((-8) + 9\) and \((-8) + 9 = 1\).

Hence, the truth set is \([9]\).

48. If \((-1) + 2 + (-3) = 4 + x + (-5)\) is true for some \(x\), then \(-2 = x + (-1)\).
\[(-2) + 1 = (x + (-1)) + 1\]
\[-1 = x\] is true for the same \(x\).

Check: the left side is: \((-1) + 2 + (-3)\) and \((-1) + 2 + (-3) = -2 = x + (-1) =\). The right side is: \(4 + (-1) + (-5)\) and \(4 + (-1) + (-5) = -2\).

Hence, the truth set is \([-1]\).

Unacceptable:
\[(-1) + (2) + (-3) = 4 + x + (-5)\]
\[(-1) + 2 + (-3) = -2 = x + (-1) =\]
\[(-2) + 1 = (x + (-1)) + 1\]
\[-1 = x\]

49. If \((x + 2) + x = (-3) + x\) is true for some \(x\), then \((x + 2) + x - x = ((-3) + x) + (-x)\)
\[x + 2 = -3\]
\[(x + 2) + (-2) = (-3) + (-2)\]
\[x = -5\] is true for the same \(x\).

Check: if \(x\) is -5, the left side is: \((-5) + 2 + (-5)\) and \((-5) + 2 + (-5) = -8\). The right side is: \((-3) + (-5)\) and \((-3) + (-5) = -8\).

Hence, the truth set is \([-5]\).
Section 7-6

1. (a) \(\frac{1}{2} \)
 (b) 3
 (c) 0
 (d) 5
 (e) 15

2. All the sentences are true except for 2(c).

3. The left numeral is:
 \[
 \frac{2}{3} + \left(\frac{7}{3} + \left(\frac{-2}{3} \right) \right) - \left(\frac{2}{3} + \left(\frac{-2}{3} \right) \right) + 7
 \]
 Commutative property of addition
 Associative property of addition
 Addition property of opposites
 Addition property of 0

 The right numeral is also 7; hence, the sentence is true.

4. (a) \(\{32\} \)
 (b) \(\{a\} \)
 (c) \(\{-1\} \)
 (d) \(\emptyset \)
 (e) \(\emptyset \)

5. (a) Set of all numbers except 0
 (b) \(\{0\} \)
 (c) \(\emptyset \)

6. (a) Either both are negative; or one is negative and the other is either positive or 0, and the negative number has the greater absolute value.
 (b) One is the opposite of the other.
 (c) Either both are positive; or one is positive and the other is either negative or 0, and the positive number has the greater absolute value.

7. If \(x \) is the number of dollars in the week's salary, \(30 + .03x = 110 \).

8. (a) If \(x \) is the length of the fourth side, \(x > 0 \) and \(x < 25 \), or \(0 < x < 25 \).

9. (a) \(x + x \)
 (b) \(2x + x \)
 (c) \(x(x + 1) \)
 (d) \(x^2 + (x + 1) \)
 (e) \(x(x + 1) \)
 (f) \(x + (x + 1) \)
 (g) \(x^2 + x + 1 \)
 (h) \(x^2 + x + 1 \)

10. (a) Yes, the set is closed under the operation of "opposite".
 (b) Yes, the set is closed under the operation of "absolute value".
 (c) Yes. If a set is closed under "opposite" it is closed under "absolute value", since either the number or its opposite is the absolute value of the number.

11. (a) Yes, the set is closed under "absolute value".
 (b) No, the set is not closed under the operation of "opposite".
 (c) No. If a set is closed under "absolute value", it is not necessarily closed under "opposite," since even if the absolute value of a number is in the set, the opposite of the number may not be.
Section 3.1

33. \((-\frac{3}{2})(3)(-5)\) \((-3)(-5)\) = \(-15\)
35. \((-3)(-6)\) \((-5)(7)\) = \(-21\) \(-21\) = \(-42\)
36. \((-3)(-2)(-4)\) \((-3)(-2)(-4)\) = \(-24\)
38. \((-3)(-2)\) \((-3)(3)\) \((-3)(3)\) = \(-9\)

10. \(x + \left(-\frac{2}{3}\right)(-2) = 3\)
 \(x + \frac{4}{3} = 3\)
 \(x = \frac{5}{3}\)

Check: \(0 + \left(-\frac{2}{3}\right)(-2) = \frac{4}{3}\). Hence, the truth set is \(\{\frac{5}{3}\}\).

12. \((-4) + 2 = (-2)\) \((-2)\) = \((-2)\)

Check: \((-4) + 2\) \((-2)\) = \((-2)\)

14. \((-3)\) \((-3)\) \((-3)\) \((-3)\) = \((-3)\)

Check: \((-3)\) \((-3)\) \((-3)\) \((-3)\) = \((-3)\)

16. \((-2)\) \((-2)\) \((-2)\) \((-2)\) \((-2)\) = \((-2)\)

Check: \((-2)\) \((-2)\) \((-2)\) \((-2)\) \((-2)\) = \((-2)\)
Section 8.2

Theorem. For all real numbers \(a \) and \(b \), \(ab = ba \).

Proof. By Theorem 8.1, for all real numbers \(a \) and \(b \),

\[|ab| = |a||b| \quad \text{and} \quad |ba| = |b||a|. \]

\(|a||b|\) and \(|b||a|\) are equal because the commutative property of multiplication holds for non-negative numbers. Consequently, \(ab \) and \(ba \) have the same absolute value. Moreover, \(ab \) and \(ba \) are both positive if \(a \) and \(b \) are both positive or both negative.

Also, if one of the numbers \(a \) and \(b \) is positive and the other negative, then both \(ab \) and \(ba \) are negative by the definition of multiplication of real numbers.

And if one or both of the numbers \(a \) and \(b \) are zero, \(ab \) and \(ba \) are both 0.

In short, if \(a \) and \(b \) are any real numbers, \(ab \) and \(ba \) have the same absolute value and they are either both positive, both negative, or both 0. Hence, \(ab = ba \).

Section 8.3

Proof. \((-a)(-b) = ((-1)a)((-1)b) = ((-1)(-1))(ab) = 1(ab) = ab \)

Theorem 8.3.

Associative and commutative property of multiplication

Definition of multiplication of two negative numbers

Multiplication property of 1

Section 8.4

107. \(3y^2 + (-14x) + 3 \)
108. \(x^2 + (-6m) + 2 \)
109. \(ab + (-bc) + ad + (-cd) \)
110. \(a^2 + 2ab + b^2 \)
111. \(3a^2 + a + (-2) \)
112. \(4x^2 + (-23x) + 15 \)
113. \(c^2 + 2c + (-15) \), or \((-15) + 2c + c^2 \)
114. \(2y^2 + (-7y) + 6 \) or \(6 + (-7y) + 2y^2 \)
115. \(3 + (-13n) + 5n^2 \)
116. \(x^3 + 5x^2 + 7x + 3 \)
117. \(6p^2 + (-10pq) + (-56) \)
118. \(13y^2 + (-11xy) + 2x^2 \)
119. \(-6x^3 \)
120. \(a^3 \)
Section 5-5

1. (a) $3a^2 + (-6a)$
 (b) $x^2 + 7x + 6$
 (c) $a^2 + (-5a)$
 (d) $m^2 + (-10m) + 25$
 (e) $2x^2 + (-5x) + (-12)$
 (f) $a^2 + (-3a)$

2. (a) $2a(x + y)$
 (b) $c(a + (-1) + 1)$
 (c) $5(2x^2 + (-3x) + (-1))$

3. (a) $4a + 3b$
 (b) $4x + (-28)$
 (c) $-5a + 4.6$
 (d) $|x| + |-x|$, or $2|x|$

4. The dealer made 5 on the transactions,

 $15(3) + 20(-2) + (-5)(3) + (-7)(-2) = 30 + (-40) + (14) + (14) = 14 = h$.

 Notice that the commutative and associative properties of addition and the distributive property,

 $15(3) + 20(-2) + (-5)(3) + (-7)(-2)$
 $= (15 + (-5))(3) + (20 + (-7))(2)$
 $= 10(3) + 13(-2) = h$.

5. 150

 $500(\frac{2}{3}) + 300(-\frac{1}{2}) + 125(\frac{1}{5}) + 500(\frac{1}{5}) + 100(-\frac{1}{2}) + 175(\frac{1}{5})$
 $= 500(\frac{2}{3}) + 300(-\frac{1}{2}) + (125 + 175)(\frac{1}{5}) + 100(-\frac{1}{2})$
 $= 500(1) + 300(-\frac{1}{2}) + 500(\frac{1}{5}) + 100(-\frac{1}{2})$
 $= 500 + 300(-\frac{1}{2}) + \frac{1}{2}(-\frac{1}{2}) + (-100)$
 $= 150$

6. If the rate of pay for one hour's work is x dollars, then $\frac{3}{2}x$ is the number of dollars for one hour's work at the overtime rate. Since he worked 40 hours, he was paid at the normal rate for 40 hours and at overtime rate for 4 hours.

 $40x + \frac{3}{2}(2x) = 166.40$
 or
 $52x = 166.40$

Section 2-2

101. (1, 2, 3)
104. (0, 1)
107. (6)
109. (0, -1)
110. (2)

103. Theorem: If a, b, c are real numbers, and if $ac = bc$ and $c \neq 0$, then $a = b$.

 Proof:
 $ac = bc$
 $ac \cdot \frac{1}{c} = bc \cdot \frac{1}{c}$, Multiplication property of equality
 $a = b$, Associative property

 $a = b$
Section 2.4.

1. \((\text{-a} + \text{-b} + \text{-c}) + \text{-d} = \text{-a}\)

 \((-\text{a}) + \text{-b} + \text{-c}) = \text{-a}\)

 \text{so}

 \(-\text{a} = \text{-} \frac{1}{2}\)

 \(\text{The solution set is}\ \{\text{-} \frac{1}{2}\}\).

2. \(0.3 + 1.2x + (\text{-}0.2) = 0.8x + 0.5\)

 \(1.2x + (\text{-}0.2) = 0.8x + 0.5\)

 \(1.2x - 0.8x = 0.5 + 0.2\)

 \(0.4x = 0.7\)

 \(x = \text{1.75}\)

 \(\text{The solution set is}\ \{1.75\}\).

3. \(\frac{1}{2} - (\text{-}0.3) - (\text{-}0.3) = (\text{-}0.3) + (\text{-}1.2)\)

 \((-\text{a}) - (\text{-}b) - (\text{-}b) = (\text{-}a) + (\text{-}b)\)

 \(\text{-a} - b - (\text{-}b) = \text{-a}\)

 \(\text{The solution set is}\ \{\text{-a}\}\).

4. \((-\text{a}) + \text{-b} + \text{-c}) = \text{-}0.4\)

 \((-\text{a}) + \text{-c} + \text{-d}) = \text{-}0.4\)

 \(C = \text{-}0.4\)

 \(\text{The solution set is}\ \{C\}\).

5. \((x + 1)(x + 1) = (x + 1) + y\)

 \((x + 1)(x + 1) = x + x + x + 1\)

 \(x^2 + x + x + 1\)

 \(x^2 + 2x + 1 = y\)

 \(\text{The solution set is}\ \{x\}\).

6. (a) A polynomial in one variable.
 (b) A polynomial in two variables.

\[(\text{-a} + \text{-b} + \text{-c}) + \text{-d} = \text{-a}\]
13. Let \(r \) represent the rate of each car.
Then, \(4r \) is the number of miles the first man went,
\(5r + 3 \text{ mi} \) is the total length of the course.
\(3r \) is the number of miles the second man went,
\(6r + 3 \text{ mi} \) is another expression for the total length of the course.
\(r + 3 \text{ mi} \) or \(3r \).

Guess: \(\frac{r}{4} = 10 \text{ mi} \)

Why: \(r = 20 \text{ mi/h} \)

13. Let \(x \) be the number.
\(x \) is the rate of the runner.
The open sentence is:
\[x = 3(x - 1) \]
\[x = 3x - 3 \]
\[x = 3 \]

The numeral is \(3 \text{ mi/h} \).
The answer is \(3 \text{ mi/h} \).
Cheek: \(3(3) = 9 \text{ mi} \)

14. If \(x \) is the number of miles, then \(x + 1 \) is the number of additional
miles. \(x \) is the number of miles.

Guess: \(x = 10 \text{ mi} \)

\(x + 1 \) is the first 10 miles.
\(x + 2 \) is the second 10 miles.
\(x + 3 \) is the third 10 miles.

Add the three: \((x + 1) + (x + 2) + (x + 3) \)
\[= 3x + 6 \]

The total is \(3x + 6 \text{ mi} \).
The answer is \(3x + 6 \text{ mi} \).
Cheek: \(x = 10 \text{ mi} \)

\(3x + 6 \) is the total.

Cheek: \(3(10) + 6 = 36 \text{ mi} \)

xx. 423
Section 9-4

1. (a) [2] (d) (0)
 (b) (7) (e) [-1]
 (c) set of all real numbers

2. (a) [-6, -1, 0]
 (b) [-2, 4]
 (c) [1/2, 1]

3. No. \(\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{a+b} \) for non-zero real numbers \(a \) and \(b \). For example, if \(a = 2 \) and \(b = 3 \),
 \(\frac{1}{2} \cdot \frac{1}{3} = \frac{6}{5} \)

Remember that if a statement is false in a single instance, it is not a true statement for all numbers.

4. (a) \(b = -3 \)
 (b) \(b = 0, \quad b = 1 \)
 (c) \(b^2 + 1 \) is never equal to 0 since \(b^2 > 0 \) for all non-zero values of \(b \). Thus, \(b^2 + 1 \) always has a reciprocal.

5. (a) If \(x \) is the number of dollars I pay,
 then \(x + 2 \) is the number of dollars Jim pays.
 \(x + (x + 2) = 11 \)
 The truth set is \(\{1, 2\} \). Jim pays $6.50.

 (b) If \(x \) is the first odd integer,
 then \(x + 2 \) is the next odd integer.
 \(x + (x + 2) = 10 \)
 The truth set is \(\{5\} \).
 The integers are 19 and 21.

 (c) If \(w \) is the width of the rectangle in yards,
 then \(w + 27 \) is the length of the rectangle in yards.
 \(2w + 2(w + 27) = 350 \)
 The truth set is \(\{35\} \). The rectangle is 35 yards wide and 113 yards long.

 (d) If \(x \) is Jim's grade,
 then \(x + 14 \) is Mary's grade.
 \(x + (x + 14) = 170 \)
 The truth set is \(\{78\} \). Jim's grade was 78, and Mary's grade was 92.
5. (continued)

(e) If \(x \) is the father's wage in dollars per day, then \(\frac{3}{2}x \) is the son's wage in dollars per day.

\[4x + 2\left(\frac{3}{2}x\right) = 96. \]

The truth set is \(\{20\} \). The father earned $20 per day and the son earned $8 per day.

(f) If \(x \) is the number of pigs, then \(x + 16 \) is the number of chickens.

\[4x + 2(x + 16) = 74. \]

The truth set is \(\{7\} \). There were 7 pigs and 23 chickens.

(g) If \(x \) is the number of hits, then \(x + 10 \) is the number of misses.

\[10x + (-5)(x + 10) = -25. \]

The truth set is \(\{5\} \). He made 5 hits.

Section 10-1

65. \(x + 5 < -1 \)

\((x + 5) + (-5) < -1 + (-5)\)

\(x < -6 \)

Truth set: the set of all numbers less than -6.

66. Truth set: set of numbers less than -1.

67. Truth set: set of numbers less than 1.2.

68. Truth set: set of numbers greater than 5.

69. \(3x < 5 \)

\(3x + (-2x) < (5 + 2x) + (-2x)\)

\(x < 5 \)

Truth set: set of all numbers less than 5.

70. \(\left(\frac{2}{3}\right) + 2x < \frac{5}{3} + x \)

\(\left(\frac{2}{3} + 2x\right) + (-x) < \left(\frac{5}{3} + x\right) + (-x)\)

\(\left(\frac{2}{3}\right) + x < \frac{5}{3} + \frac{5}{3} \)

\(\frac{2}{3} + \left(\frac{-2}{3}\right) + x < \frac{5}{3} + \frac{5}{3} \)

\(x < \frac{1}{3} \)

Since each of the steps is reversible, we conclude that the truth set of the original sentence is the set of all numbers less than \(\frac{4}{3} \). Can you explain which properties you used in each step?
71. Truth set: the set of all numbers less than 1.
72. Truth set: the set of all numbers less than 2.
73. Truth set: the set of all numbers greater than -1.
74. Truth set: the set of all numbers greater than 1.

Section 10-2

*22.

Theorem 10-21. If *x* and *z* are two real numbers such that *x < z*, then there is a positive real number *y* such that *x + y = z*.

Proof: Let *x* and *z* be two real numbers such that *x < z*, as is assumed in the statement of the theorem. We then must show that there is a real number *y*, which satisfies two conditions, namely:

1. \[x + y = z \]
2. *y* is positive.

We choose *y = z - (-x)* in order to lead us toward our goal, then *y* is a real number by the closure property of addition, and

1. \[x + y = x + z + (-x) \]
 by the way we have chosen *y*,
 \[= x + (z + (-x)) \]
 by the commutative property of addition,
 \[= (x + (-x)) + z \]
 by the associative property of addition,
 \[= 0 + z \]
 by the addition property of opposites,
 \[= z \]
 by the addition property of zero; and

2. *y* is positive.

Further, of course, *x < z* is assumed, thus

\[x + (-x) < z + (-x) \]
by the addition property of order

\[0 < z + (-x) \]
by the addition property of opposites.

Recall, however, that *y = z - (-x)*; thus, we have *0 < y*, or in other words, *y* is positive.

*64. Since *0 < a < b*, we know that both *a* and *b* are positive.

From *a < b*, we have \[a^2 < ab \] (multiplying by *a*).

And also \[ab < b^2 \] (multiplying by *b*).

Since \[a^2 < ab \] and \[ab < b^2 \], we may conclude that \[a^2 < b^2 \] using the transitive property of order.

*67. Given: *a / 0, b > 0*, and \[a < b \].

Case 1. If *a* and *b* are either both positive or both negative, then \[\frac{1}{a} \] and \[\frac{1}{b} \] are both positive or both negative. In either event, \[\frac{1}{a} \cdot \frac{1}{b} \] is positive. Since *a < b*, we have \[\frac{a}{b} < \frac{b}{b} \]

and the conclusion is \[\frac{1}{b} < \frac{1}{a} \].
Case 2. If \(a \) is negative, \(b \) positive, then \(\frac{1}{a} \cdot \frac{1}{b} \) is negative.

Since \(a < b \), we have \(b(\frac{1}{a} \cdot \frac{1}{b}) < a(\frac{1}{a} \cdot \frac{1}{b}) \) and the conclusion is \(\frac{1}{a} < \frac{1}{b} \).

Note: Is it possible that \(a \) is positive, \(b \) negative? Why not?

Section 10.2

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Truth Set.</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. (y < 3)</td>
<td>Set of numbers less than 3</td>
<td></td>
</tr>
<tr>
<td>15. (-y < 3)</td>
<td>Set of numbers greater than -3</td>
<td></td>
</tr>
<tr>
<td>16. (y < -3)</td>
<td>Set of numbers less than -3</td>
<td></td>
</tr>
<tr>
<td>17. (-y < -3)</td>
<td>Set of numbers greater than -3</td>
<td></td>
</tr>
<tr>
<td>18. (</td>
<td>y</td>
<td>< 3)</td>
</tr>
<tr>
<td>19. (</td>
<td>y</td>
<td>< -3)</td>
</tr>
<tr>
<td>20. (</td>
<td>y</td>
<td>< -3)</td>
</tr>
<tr>
<td>21. (-</td>
<td>y</td>
<td>< -3)</td>
</tr>
</tbody>
</table>

Notes for Item 15: \(y < 3 \) may be written as either \(-3 < y \) or \(y > -3 \).

Item 17: \(-y < -3\) may be written as \(y > 3 \).

Item 19: \(-|y| < -3\) may be written as \(|y| > -3 \). Since \(|y| \geq 0\) for all real numbers \(y \), surely \(|y| > -3 \) is true for all real numbers \(y \).

Item 20: \(|y| \) cannot be negative.

Item 21: \(-|y| < -3\) may be written \(|y| > 3 \). Compare the graph of \(|y| < 3 \) in Item 18.
22. The set of all numbers greater than -1.
23. The set of all numbers less than -2.
24. The set of all numbers less than -5.
25. The set of all numbers greater than \(-\frac{4}{3}\).
26. The set of all numbers less than or equal to -1.

Section 10-4

1. (a) \(-100 < -99\)
 (b) \(0.2 > -0.1\)
 (c) \(|-3| < |-7|\)
 (d) \(\frac{6}{7} > \frac{2}{3}\)
 (e) \(3(4) + (-4) > 3(4 + (-4))\)
 (f) \(x^2 + 1 > 0\)

2. (a) true
 (b) false
 (c) true
 (d) false
 (e) false
 (f) true

3. (a) not equivalent
 (b) equivalent
 (c) equivalent
 (d) equivalent
 (e) not equivalent
 (f) not equivalent

4. (a) positive
 (b) positive
 (c) negative
 (d) negative
 (e) positive, or 0 if \(n = p\)
 (f) positive

5. (a) The set of all numbers less than (-5)
 (b) The set of all numbers greater than (-1)
 (c) The set of all numbers greater than (-6)
 (d) The set of all numbers less than (-3)
 (e) The set of all numbers less than or equal to 91
 (f) \(\emptyset\)

6. (a) The set of all numbers greater than 2
 (b) \(\{2\}\)
 (c) The set of all negative real numbers
 (d) The set of all real numbers except zero
 (e) The set of all non-negative numbers less than 90
 (f) \(\emptyset\)

7. (a) \(\{2\}\)
 (b) \([-1]\)
 (c) \([-2]\)
 (d) \(\emptyset\)
 (e) The set of integers less than -2
 (f) The set of integers greater than -1
8. (a) $\frac{2}{3}$, (b) 2, (c) $\frac{2}{3}$, (d) -1, (e) 0, (f) $-\frac{7}{3}$

9. (a) -12, (b) -3, (c) 0, (d) 0, (e) The set of real numbers, (f) $-\frac{5}{6}$

10. If A is the number of square units in the area, $24 < A < 28$.

11. If A is the number of square units in the area, $24 < A < 35$.

12. If A is the number of square units in the area, $25.5225 < A < 26.5625$.

13. (a) If p is the number of plants at the beginning of the second year, $p > \frac{3}{5}(240)$ and $p < \frac{5}{6}(240)$; that is, $180 < p < 200$.

If n is the number of seeds at the end of the second year, $n > (180)(240)$ and $n < (200)(240)$; that is, $43,200 < n < 48,000$.

(b) If s is the number of seeds at the end of the second year, $s > (180)(230)$ and $s < (200)(250)$; that is, $41,400 < s < 50,000$.

14. (a) If the side of a square is x inches long, then the side of the triangle is $x + 3.5$ inches long, and $4x = 3(x + 3.5)$. The length of the side of the square is 10.5 inches.

(b) If the rate of the current is x miles per hour, then the rate of the boat downstream is $x + 10$ miles per hour and $x + 10 < 25$. The rate of the current is equal to or less than 15 miles per hour.

(c) If x is the number of hours spent on the job, then $3 < x < 5$. Mary can expect to spend from 3 to 5 hours on the job.

(d) If x is the number of hours Jim must work, $1.75x \geq 75$. Jim must work at least $\frac{43}{3}$ hours, to the nearest hour.

Section 11-1

24. 23
25. -9
26. -5
27. 3
28. -2
29. 16
30. 0
31. -3000
32. $\frac{9}{4}$
33. $\frac{3}{2}$
34. -1.262
35. -0.57
36. 160

xxx1 435
Section 11-2

(x - 3) - (x - 2) = \((x + (-3)) + ((-x + 2)) \), definition of subtraction
= \((x + (-3)) + ((-x) + 2) \), opposite of sum equals sum of opposites
= \(x + (-3) + (-x) + 2 \), associative property of addition
= \(x + (-x) + (-3) + 2 \), commutative property of addition
= 0 + (-1) \quad \text{addition property of opposites}
= -1 \quad \text{addition property of 0}.

88. If the length of the rectangle is \(y \) inches, the width is \(y - 5 \) inches. \(y + (y - 5) \) is an open phrase for one-half of its perimeter. If the perimeter is 36 inches, an open sentence for the problem is \(y + (y - 5) = 19 \).

89. If the number is \(n \), an open sentence for the problem is \(3n(n + 1) = 102 \).

90. If \(x \) is the number of students in the class now, an open sentence for the problem is \(3x < x + \frac{4}{3} \).

Section 11-2

74. Truth set: \(\{4\} \)
 Graph: \([-4, -3, -2, -1, 0, 1, 2, 3, 4] \)

75. \(|y| < 1\)
 Truth set: \((-1, 1)\)
 Graph: \([-4, -3, -2, -1, 0, 1, 2, 3, 4] \)

76. \(|z| = 6\)
 Truth set: \(\emptyset\)
 Graph: \([-3, -2, -1, 0, 1, 2, 3, 4, 5] \)

77. Truth set: \((-1, 4)\)
 Graph: \([-7, -6, -5, -4, -3, -2, -1, 0, 1] \)

78. Truth set: Set of all real numbers such that \(-2 < x < 3\).
 Graph: \([-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8] \)
30. Truth set: The set of all real numbers less than -1 or greater than 5.

Graph:

31. \[|x + 3| < 4 \]
\[|x - (-3)| < 4 \]
Truth set: The set of all real numbers such that -7 < x < 1.

Graph:

Section 12-5

13. \[\frac{1}{x} \]
14. \[\frac{1}{x} \]
15. \[\frac{1}{x} \]
16. \[\frac{1}{x} \]
17. \[\frac{1}{x} \]
18. \[\frac{1}{x} \]
19. \[\frac{1}{x} \]
20. \[\frac{1}{x} \]
21. \[\frac{x}{x} \]
22. \[\frac{x}{x} \]
23. \[\frac{x}{x} \]
24. \[\frac{x}{x} \]

25. If the number is a, an open sentence is \(x = a \), -6, 7.
26. If the number is 7, an open sentence is \(x = a \), 5.
27. If \(x \) is the smaller even integer, then \(x + 2 \) is the next larger even integer. An open sentence is \(x = (n + 2) \), 4.
28. If \(x \) is the smaller odd integer, then \(x + 1 \) is the next larger odd integer. An open sentence is \(x = (n + 1) \), 5.
29. If \(x \) is the length of one side of a square, then \(.5x \) is the amount of the perimeter. An open sentence is \(x = .5x \), 10 or .50x = 50.
30. If \(x \) is the number of five-cent stamps, then an open sentence which says the total cost of the stamps is \(.05x \), 15 cents, \(.05x = 15c \).
31. If \(x \) is the number of two-cent stamps, then an open sentence which says the total cost of the stamps is \(.02x \), 10 cents, \(.02x = 10c \).
32. If \(x \) is the number of miles, and \(y \) is the number of gallons of gas used, then \(\frac{y}{x} \) is the number of miles per gallon. The gas tank was empty at 5:00, and \(\frac{y}{x} \) is the number of miles per gallon. Since the gas tank was empty at 5:00, and \(\frac{y}{x} \) is the number of miles per gallon. Since the gas tank was empty at 5:00, and \(\frac{y}{x} \) is the number of miles per gallon.
Section 11-5

1. (a), (b), (d), (f)

2. (a) \((-1)^2 - 4(2)(5) = -39\)
 (b) \((-3)^2 - 4(1)(-2) = 17\)
 (c) \((6)^2 - 4(-9)(-1) = 0\)

3. (a) \((-4)\)
 (b) Set of real numbers
 less than 7
 (c) If \(3|x| \leq 6\) is true for some \(x\),
 then \(|x| \leq 2\) is true for the same \(x\).
 Truth set: Set of real numbers consisting of -2, 2, and the real
 numbers between -2 and 2.
 (d) \([0,2]\)

4. (a) \(5x - 15\)
 (b) \(-2b + 2\)
 (c) \(-\frac{1}{4} - \frac{1}{2}x\)
 (d) \(ab - ac\)

5. (a) \(7(1 + 2y)\)
 (b) \(7(1 - 2y)\)
 (c) \(-7(1 - 2y)\)
 (d) \(-7(1 + 2y)\)

6. (a) \(2x\)
 (b) \(-x + 2\)
 (c) \(5x - 8\)
 (d) \(-x - 5\) or \(-(x + 5)\)

7. (a) No graph. The truth set is \(\emptyset\) since no matter what number \(x\)
 represents, \(|x - 2|\) is non-negative.
 (b) The truth set is the set of all real numbers.
 (c) The truth set is the set of all real numbers.
 (d) The truth set is the set of all real numbers.
8. If \(w \) represents the average wind speed, then \(200 - w \) represents the average airplane speed. An open sentence is
\[
\frac{7}{2}(200 - w) = 630
\]
\[
-7(200 - w) = 1260
\]
\[
200 - w = 180
\]
\[
-w = -20
\]
\[
w = 20
\]
The average wind speed is 20 mph.

9. If the first shirt cost \(x \) dollars, then
\[
x - .25x = 3.75
\]
\[
.75x = 3.75
\]
\[
x = 5.00
\]
Hence, the first shirt cost $5.00. Since he sold it for $3.75, he lost $.25 on it.

If the second shirt cost \(y \) dollars, then
\[
y + .25y = 3.75
\]
\[
1.25y = 3.75
\]
\[
y = 3.00
\]
Hence, the second shirt cost $3.00. Since he sold it for $3.75, he gained $.75 on it.

\[
(-.25) + .75 = .50
\]
Thus, he lost $.50 on the two sales.

10. \(|t - 70| < 15\), where \(t \) is the temperature in degrees.
Truth set: The set of real numbers between 55 and 85.
Index. Part I

absolute value 205-214, 216, 385-392
addition
definition 226-232, 261
identity element 99, 252, 311
of real numbers 219-225, 261
on the number line 23-24, 219-225
properties of 235-242, 262
addition property
of equality 242-251, 262
of opposites 238, 262
of order 350, 352, 354
of zero 99, 130, 239, 262
additive identity 99, 252, 311
additive inverse 252-260, 311
uniqueness of 254-255, 311
associative property
of addition 41-42, 110-113, 130, 237, 262
of multiplication 44-45, 113-114, 130, 289-292, 308
binary operation 40, 117-120
clause 87-91
closure property 28-30, 105-109
under addition 105-107, 130
under multiplication 108-109, 130
collecting terms 304-305
common name 31, 38, 113
commutative property
of addition 43, 112-113, 130, 236, 262
of multiplication 45-46, 113-114, 130, 281-283, 308
comparison property 191-192, 215, 347, 354
compound sentence
with connective and 87-89, 97
with connective or 89-90, 97
coordinate 13-17
correspondence 9
counting numbers 2
denominator 11, 394
difference 230, 373
direction 224
distance 206, 224, 389-392
division 11, 117-118, 131
definition 303-308, 399
by zero 11, 131, 394, 397
domain 62-63, 88, 165-166, 187
equality
addition property of 242-251, 262
multiplication property of 316-318
equal sign 67
equation 84, 244
equivalent sentences 332, 305, 362
formula 77-79, 150
fraction 11
fundamental properties of real numbers 370-372
graphs 17-20, 91-96, 17
of compound open sentences 91-96
of sets of numbers 17
of truth sets 50
greater than 81, 187
greater than or equal to 93, 188
identity element 99-105
 for addition 99, 252, 311
 for multiplication 100, 312
if and only if 326, 358
indicated product 30, 53-55, 121-123, 303, 324
indicated quotient 395
indicated sum 32, 53-55, 121-123, 303
inequality 81-86, 353, 361-366
integers 178
intersection 19
inverse
 additive 252-260, 34
 multiplicative 311-318, 343
irrational numbers 182, 215
least common multiple 103
less than 81, 187, 347
less than or equal to 93, 188
mathematical language 137-144
mathematical proof 254-260
multiple, least common 103
multiplication
 definition 273, 308
 identity element 100, 312
 of real numbers 267-279
 of a real number by "1" 293, 297
 on the number line 26-27
multiplication property
 of equality 316-318
 of one 100, 101, 103-104, 130, 284-286, 308
 of order 360
 of zero 101, 130, 287, 308
multiplicative inverse 311-318, 312, 343
names for "1" 102
natural numbers 3
negative integers 178
negative real numbers 182, 215
number
 counting 2
 irrational 182, 184, 215
 negative 200, 215
 negative real 182
 of arithmetic 17, 73, 190
 natural 3
 positive 200
 rational 12, 180, 184
 real 177-214, 182, 184, 215
 whole 3, 29
number line 9-23, 177
numbers of arithmetic 16, 73
numerals 31-38
numerical phrase 31-38
numerical sentence 35-37, 68, 88-90
numerator 11, 394
one, multiplication property of 100, 101, 103-104, 284-286, 308
one-to-one 20-21
open phrase 62, 70, 140-155
open sentence 67-74, 97
 involving inequalities 83-86
term 304
th period 254
transitive property 193-194, 216, 347, 354
truth number 71-73
truth set 74-80, 97, 246, 353, 353-356
graph of 79-80
union 1
unique 253, 318
value 61-62
variable 58-65, 70, 77, 111
domain of 62-63, 165-166, 187
value of 61-62, 70, 71
whole number 3, 29
word problems 137-175
with inequalities 154-155, 164-166
zero 43
addition property of 99, 130, 239, 262
division by 11, 131, 394, 397
has no reciprocal 319
multiplication property of 101, 130, 287

SYMBOLS

() brackets—indicating a set
∅ the empty set, the null set
= equals, names the same number as
≠ does not equal, is different from
> is greater than
< is less than

≥ is greater than or equal to
≤ is less than or equal to
≠ is not greater than
≠ is not less than
∪ union
∩ intersection
... and so forth
() parentheses
| | absolute value
The following is a list of all of those who participated in the preparation of this volume:

David W. Blakeslee, San Francisco State College
M. Philbrick Bridgess, Roxbury Latin School, West Roxbury, Massachusetts
Florence Elder, West Hempstead High School, West Hempstead, New York
Joseph C. Hamrick, University of Georgia
Florence Jacobson, Albertus Magnus College
Margaret Matchett, University of Chicago Laboratory School, Chicago, Illinois
William W. Matson, Portland Public Schools, Portland, Oregon
Persis O. Redgrave, Norwich Free Academy, Norwich, Connecticut
Leander W. Smith, SMSG, Stanford University
William W. Storer, East High School, Des Moines, Iowa
Martin Wechsler, Wayne State University
Martha Zelinka, Weston High School, Weston, Massachusetts