Docenstr Essent.

tib 160 45

A UTHOR.
tithe
INSTITUTI ON
SPONS AGENCY
PUB DATE
HOTE
ED AS PRICE
DESCRIPTORS

IDENTIFIERS
Allen, Frank B. And Others
 Stanford Univ. Calif. School, Mathenatice Study Group.
$-$
National Science Poundation, Mashington, D.C. 65
314p.; For related docunents, see SE 025. foi-103
MF- \$0.83 HC- $\mathbf{\$ 1 6 . 7 3 \text { P10s Pcstage. }}$ *Analytic Geometry: Curriculua; *Geceetry; *Instruction: Hatheatics Bducation: "Secondar ${ }^{7} /$ Education: *Secondary school Hatheilatics; *Teachịng Guides * School Mathematicestudy Grcup

ABSTRACT
This is part two of a two-part anual for teachers using SMSG high school text materials. The ccmmentary is organized into four parts. The first part contains an introducticn and a short section on estimates of class time needed tc ccver each chapter. The second or main part consists of a chapter-by-chapter coneentary on the text. The third part is a collection of essays on topics that cannot conveniently te dealt with in the rain fart of the commentary in connection with a particular passage. The fourth part contains answers to Illustrative Test items and the scluticns to the problems. Chapter topics include: coordinates in a plane: perfendicularity. parallelisme and coordinates in space; directed segments and vectors: polyqons and polyhedrons; and circles and sfheres. (uN)
****************************中***

Financial support for School Mathematics Study Group has been provided by the : National Science Foundation.

- Petmistion to make verbatim use of matefial in this book must be secured from the Director of SMSG. Sjeh permission will be granted except in unusual circumstances Publications incorporating \$MSG materials must include both an acknowledgment of the SMSG copyright (Yale University or Stanford * University, as the case may be) and a disclaimer of SMSG endorsement. Exclusive license will not be granted save in exceptional circumstanges, and then only by spectic action of the Advisory Board of SMSG.

3 1965 by The Board of Trustees of the Leland Stanford Junior University. All rights reserved.
Printed in the United States of America.

qontents

Chapter 8. COORDINATES IN A PLANE 441
Chapter 9. PERPENDICULARITY, PARALLELISM, AMD COORDINATES IN SPACE 465
Chapter 10. DIRECTED SEGMENTS AND VECTORS 483
Note on Chapters 11 and 12 493
Chapter 11. POLYGONS AND POLYHEDRONS 495
Chapter 12. CIRCLES AND SPHERES 517
TALKS TO TEACHERS
7. LINEAR AND PARAMETRIC EQUATIONS 533.
ANSWERS TO ILLUSTRATIVE TEST ITEMS 553
ANSWERS TO PROBLEMS 571

In this chapter we develop coordinates as a tool for studying geometry in a plane. This development includes a sequence of basic theorems, the distance formula, midpoint formula, parametric equations for a line, the slope concept, perpendic̣ularity and parallelism conditions, and the use of coordinates in proving several theorems about triangles and quadrildterals.

We do not speak of synthetic geometry (or methods or proofs) versus coordinate geometry (or methods or proofs) in this course. We hope that the fstudents do not get the idea that synthetic geometry and coordinate geometry are two different kinds of geometry but see, Instead that they are ways of studying the same formal geometry. In this course we repeatedly recognize, two distinct brands of geometry: (1) the geometry of physical space developed through intuition, observation, measurement, and inductive reasoning, and "(2) formal, geometry developed as a mathematical system which is characterized by a list of undefined terms, definitions, postulates, and theorems; b and deductive reasoning. of course, coordinate methods are used in both kinds of geometry. The major objective of the chapter f fo make the student Bee that coordinates - are a useful tool in formal geometry.

We prefer not to think of this chapter as an intro= duction to analytic geometry. The traditional analytic geometry course includes various standard forms of equations for lines and conic sections. It emphasizes the plotting of graphs and the finding of equations of curves from. Information about their graphs. It places little emphasis upon the use of coordinates in the formal.
development of the elementary geometry of lines, friangles, and quadrilaterals. Why should it? The students have? aiready acquired this background before they enter the . analytic geometry course. However in this chapter the use of coordinates in the formal development of elementary geonetry is emphasized. This emphasis is made rather indirectiy. Students see coordinates used in the proofs of several theorems which are new and (we hope) interest:Ing to them. We try to impress the student with the idea that sometimes coordintes should be used because they make a proof easier and that sometimes they should not be used since a proof without them may be easier. "We do not give any general rules as to when it is advisable to use. coordinate methods. We do not give any because we do not 'have any. Our message is that the process of "finding a. proof" should include a consideration of the possible use of coordinates.

- Your geometry students have a background which provides them with a strong sense of relationships among numbers. This course takes advantage of that background y. and strengthens iff A coordinate sysțem on a line is an idea which evolve easily from the notion of a number line; a simple éxtension yields coordinates in a plane. The students' concepts of a line and of a plane are enhanced by the introduction and use of coordinate systems.

A review of coordinate systems on a line is important for the work of this chapter. "Your students should have no difficulty in seeing that the x-coordinate system and the y-coordinate system are examples of such systems. Later, in the development of parametric equations for a ilné, a clear understanding of the relationship between a point on a line and the value of k associated with the point depends upon a clear understanding of the concept of a coordinate system on a line.

- The introductory remarks in the firft paragraph are not meant to be a definition. Not all one-to-one correspondences which have the properties given here are coordinate systems on a line. The definition is, in. Chapter 3.

The purpose of Problem Set $8 \mathbb{F} 1$ is two-fold: to review the notion of a coordinate system on a l"ine and to motivate the desirability of having ordered pairs (or triples) of numbers as coordinatef.

The unit-pair of points need not, of course, lie in the given plane. In the last part of this chapter we - encourage the students to set up an xy-coordinate system which will fit the problem. This means that there is considerable freedom in locating the x-axis and the. y-axis. But for our work there seems to be no advantage in changing the unit of distance, and so we think of it as fixed throughout.

Some students may feel that our definitions of horizontal and vertical violate the usual meanings of these words. It is convenient to have two words hich have the precise technical meanings which we have given to the words horizontal and vertical. And it seems tivisable to use familiar words whose non-technical meanings have a relationship to the technical meanings we want.
dthough we usually label points in \rightarrow with their x-coprdinates and points in $\overrightarrow{\mathrm{OY}^{\prime}}$ with their y -coordinates, it should be made clear that every point in $\overrightarrow{\mathrm{OX}}$ has an x-coordinate in the x-coordinate system, and an \bar{x}-coordinate in the $x y$-coordinate system. of course these coordinates are the same. A similar statement applies to every point in $\widehat{\mathrm{OY}}$. When we speak of the coordinates of a point, we are referring to its "x-coordinate and its y-coordinate in the xy-coordinate. system. Some may prefer to label points on the x-axis and the y-axis with their x and y-coordinates written as ordered pairs.

The statement that there is exactiy one vertical line through P follows from the foklowing considerations.
 which is perpendicular to the $y=a x i s$ at point 0 . Its existence and uniqueness follows from Theorem 4-21. In the general case, Theorems $4-21$ and $5=11$ assure us of the existence and uniqueness of lines through P perpendicular to the axes.

Our definitions of the x-coordinate and the y-coordinate of a point P are ftated in terms of lines through P which are perpendicular to the y-axis and the $\mathcal{F}^{\text {fexis; }}$ irespectively. We could, of course, have worded these definitions in terms of the ines through P which are paraliel to the x - and the y-axis. For the purposes of this course neither wording has any obvious advantage over the other. In other courses where "oblique coordinates" are introfuced, the definition of the coordinates is most naturally given in terms of parallel lines.

In this course the concept of our ordered pair is not defined. Most of the students have been introduced to ordered pairs of numbers in their study of elementary algebra. 'Just' as the notion of a set is taken as a basic
term which we do not define, so ordered pair is taken as an undefined phrase. In this course parentheses, as in. . (5,8) ; are -used for "ordered pairs" of elements, while bfaces, as in $\{5,8\}$, are used for sets of elements. The order of the names within the braces is immaterial. We should like to emphasize here that ordered pairs of numbers need not involve two distinct numbers. Thus $(5,5)$ is an ordered pair of numbers?

Some student might ask whether $\{5,5\}$ is an acceptable symbol for some set of numbers. The answer is yes. Indeed, [5,5] and [5] are names for the same set. According $\not \subset 0$ the definition of equality in set theory, $A=B$ means that every element of A is an element of B, * and that every element of. B is an element of A. So if $A=\{5,5\}$ and $B=\{5\}$, then $A=B$, for the only number in A is 5 , and it is also in B. And the only . number in B is 5 , and it is in A.
-Ordered pair is not taken as undefined in some courses. Indeed, the ordered pair, (a, b), may be defined as the set $\{a,[a, b]\}$ in which the order of the members of the set may be altered without actually changing the set itself. We could just as well define it as $\{a,\{b, a\}\}$, or as $\{[a, b\}, a\}$, or as $\{[b, a\}, a\}$, since these are all names for the same set. Let us see. how this definition applies in an example. Suppose $A=(5,8), B=(8,5)$. Then by definition $A=\{5,\{5,8\}\}$; $B=\{8,\{8,5\})$. Since 5 is an element of A, but, not of B, it follows that $A \neq B$. In other words $(5,8)$. and $(8,5)$ are different ordered pairs. (Note that A. / and B, considered as sets, do have a common element, since $(5,8)=(8,5\}$.

For the purpose of this course, however, it is best to use the ordered pair symbol (a, b) without any reference to the definition in terms of sets. It is important to understand cleariy the concept of equality for ordered patrs. Thus, $(a, b)=(c, d)$ if and only if
,

445

10
$a^{\prime}=c$ and $b^{\prime}=d$. We could prove this as a theorem if we, defined ordered pair in terms of sets. Since we do, not define ordered pair, we accept it as a definition of equality for ordered number paips. According to this. (Cefinition $(3,5)=(3,5),(2,1,5)=(3,5)$, and $(x, y)=(3,5)$ if and only if $x=3$ and $y=5$.. Thus, $(a, b)=(c, d)$ if and only if a and c are names for the same number, and b and. d are names for the same number.

With regard to using ordeced pairs as names for points, it should be clear that any point could fave any ordered pair of real numbers for 1 is name--provided the xy-coordinate system 18 properly set up. Thus, $(0,0)$ is the name, of any point whatsoever-for any point can be chosen as the origin of a coordinate system. But once a coordinatè system is set up in a plane we may regard it as a "frame of reference," and every point in the plane has a unique ordered pair of real ntmbers as its, name.

Note our use of "plot" and "graph" in this text. We use plot as a verb and graph as a noun. In drawing a graph, if the set of points is unbounded, it is impossibie to "show" all of the pointsk Just as we use arrows- to indicate a line, we may use, arpows, jagged edges, or written notes to indicate the infinite extent of graph.

In the introductory work on plotting some teachers may prefer to use the chalkboard exclusively as a visual aid". Others may prefer to use a "pegboard" with elastic materials of several colors--say white for the axes and yellow for the graph.

446

The purpose of Problem Set $8-2$ is to help students leapn the concepts of oordinates and graphs. The number of problems assignêrd from this set will vary greatly according to the báckground of the class. Some students, for which this part of the course is largely review, should work

In connection with Theorems $8-1$ and $8-2$, a possible. teaching problem might arise in that some students might not see the "point" of these theorems. Our Ruler Postulate tells us that $A B=\left|y_{B}-y_{A}\right|$ but it does, not tell us that $P Q=\left|y_{P}-y_{Q}\right|$. The fact is that $P Q=\left|y_{P}-y_{Q}\right|$ depends upon (1) the definition of the y-coordinates of P and Q which implies that $y_{P}=y_{A}$ and $y_{Q}=y_{B}$, and (2) the property of parallelograms, which gives us $A B=P Q$.

The two examples used to introduce the Distance Formula involve finding the lengths of oblique segments. Thismight suggest that the Distance Formula is used only in such cases. However the formula can also be used for vertical and horizontal segments.

The properties of the y-coordinate system tell us that $\vec{y}_{C}=\frac{1}{2}\left(y_{A}+y_{B}\right)$. The fact that $y_{M}=\frac{1}{2}\left(y_{P}+y_{Q}\right)$ neeats proof. In the proof in the text we start with M as the midpoint of $\overline{P Q}$. The fact that $X_{M}=x_{P}$ follows immediately from the fact that M.. and P lie in the same vertical line. The fact that C is the midpoint of $\overline{A B}$ follows from a theorem on parallel lines cut by transversals, Theorem $7=2$.

Theorem 8-9 is, of course, a locus theorem. Although the word "locus" is not used in the text it is mentioned 1n'passing in the text in Section $8-6$ after the students have had sorne experience with the concept. To prove the theorem we first identify a particular vertical line, and call it m. We then show that m is the set of all points in the $x y$-plane each of which has x-coordinate a .

$$
44712
$$

We show that every point in m has x-coordinate a - (Part 1) and that every point which has x-coordinate a Is in m " part e). 'In other words, "every point in" m has the desired property, and every point which has the desired property is in m. In the last part of the . proof, we show that it is impossibie to have two vertical Ifnes containing A in view of the Paraliel postulate. , Symbols are used in mathematics because they facilitate communication. The statement $x \geq 3$ is a statement which is true if x is 38 . In elementary algebra we may want to find out how old Mary is. The available information may include the fact that she is at least 3 years old. If we let x denote her age, then w'e write $x \geq 3$ and, using other avaliable information; we may eventually jearn Mary's age. In this situation, x in the statement, $x \geq 3$, stands for one number. In another situation we may wish to consider the set/ of all. real numbers which are greater than or equal to $\$ 3$. We use the symbol $\{x: x \geq 3\}$ to denot'e this set. It is a good symbol in the sense that once we understand how the symbol is formed we know what it means without being told. What is the graph of the inequality $x \geq 3$? It depends. The setrbuilder symbol makes it definite. The graph of (x: $x \geq 3\}$ is a ray. The graph of $((x, y): x \geq 3)$ is -the union of a halfplane and its edge. The graph of $((x, y, z): x \geq 3)$ 1s the union of a plane and all the pointe which lie on the same side of it as does the point (4,0,0).

In connection with the subject of equivalent equations ' (. some teachers may desire to relate implication with set inclusion, and "reversible steps" with set equality as in the following examples. We state first an implication in three different ways.

In worव̃s: .
? If $2 x+3=4 x+13$, then $3=2 x+13$.
Using $" \mathrm{~A} \longrightarrow \mathrm{~B}$ " to mean "A implies B " :

$\Rightarrow((x, y): 2 x+3=4 x+13) \subset(x, y): 3=2 x+13)$
The "reverse step" is stated three different"ways as? If $3=2 x+13$, then $2 x+3=4 x+13$.
$1[3=2 x+13] \rightarrow[2 x+3=4 x<13]$.
$\{(x, y): \overline{3}=2 x+13) \subset\{(x, y): 2 x+3=4 x+13\}$.
$66 m b i n i n g$ the statement and its converse we can write the compound statement in three ways:

$$
2 x+3 \equiv 4 x+13 \text { if and only if } 3 \equiv 2 x p, 13 .
$$

$[2 x+3 \equiv 4 x+13] \longrightarrow[3 \cong 2 x+13]$.
$\{(x, y): 2 x+13=4 x+13\}=\{(x, y): 3=2 \bar{x}+13\}$.
Another way of saying that the five equations are equivalent is the following:

$$
\begin{aligned}
& \{x: 2 x+3=4 x+13\}=\{x: 3=2 x+13\} . \\
& \{x: 3=2 x+13\}=\{x:-10=2 x\}, \\
& \{x: 2 x \equiv-10\}=\{x: x=-5\}
\end{aligned}
$$

or briefly that
$\{x: 2 x+3=4 x+13\},\{x: 3=2 x+13\},\{x:-10=2 x\}$ ($\mathrm{x}: 2 \mathrm{x}=-10$), $[\mathrm{x}: \mathrm{x}=-5$) areftwe names for the same set of numbers. (Another name for this set is (-5]).

If we think of each of these five equations as a condition on (x, y), then the fact that these five equations are equivalent means that

$$
\begin{aligned}
& \{(x, y): \quad 2 x+3=4 x+13\},\{(x, y): 3=2 x+13\}, \\
& \{(x, y) ;=10 \equiv 2 x\},\{(x, y): 2 x=10\},\{(x, y): x=-5\}
\end{aligned}
$$

are five names for the same set of points in the $x y-p l a n e$. Thus two sets are equal if the conditions which define them are equivalent.

$$
14
$$

In Section $8-7$ we develop parametric equations for lines.. This is not the traditional approach to the study of lines using coordinate methods. But we believe it is a good approach. The traditional treatment emphasizes early in the eourse the relationship between linds and linear equations. The student "sees" a line as a single object of thought when he reads, $y \equiv 3 x+4$: The present treatment emphasizes the concept of a line as a. set of points. The symbol

$$
\left[(x, y): x=4+2 k, y^{\prime}=5+3 k, k \text { is real }\right\}
$$

1s, by virtue of the braces and (x, y) before the colon, first of all, a set of points. And the symbol tells us how to get the x and y, coordinates of any point on the line in terms of the number $k y$ which has an interesting geometrical significance. The relationship of x to y Is clearly revealed through the "middle man" k. Although the present treatment emphasizes parametric equations for a line, we do include a two-point form and point-slope form later in the chapter.

Just as $4 x+4 y=8,3 x+3 y=6,5 x+5 y=10$, are three equations for the same line, so a line may be represented by many different parametric equations. Consider, for example, the line
(1) $\mathrm{p} \equiv\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=1+4 \mathrm{k}, \mathrm{y}=2+3 \mathrm{k}, \mathrm{k}$ is real $\}$. Setting $k=0,1$ we get $(x, y)=(1,2),(5,5)$, the two points which yield the equations $x=1+4 k$ and $y=2+3 k$ if one applies Theorem 8-11, using $\left(x_{1}, y_{1}\right)=(1,2)$ and $\left(x_{2}, y_{2}\right)=(5,5)$. Using any two distinct values for k other than 0 and 11 , for example,, 2 and -1 , we get two more points on the line p, and king them in Theoren 8-11 we get another pair of parametric equations for p.

With $k=2$ we get $\left(x_{1}, y_{1}\right)=(9,8)$.
With $k=-1$ we get $\left(x_{2}, y_{2}\right)=(-3,-1)$.
Then p is the line through those two points. Thus,
(2) $p=\{(x, y): x=9-12 k, y=8-9 k$, in is real $\}$. In (1) k is the coordinate of the point (x, y) in the coordinate system on a in e which is determined by taking the coordinate of $(1,2)$ as 0_{9} and the coordinate of $(5,5)$ as 1 . In (2) $k .15$ the coordinate of the point (x, y) in the coordinate system on a line wien is determined by taking the coordinate of $(9,8)$ as 0 and the coordinate of $(-3,-1)$ as 1 .

- We have motivated Theorem 8-11 in the text by considering a particular line. The following proof for they , general case of an oblique line is included, here for those who may wish to see it.

THEOREM. If $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}^{\prime}\right)$ are any two points on an oblique line, then
$\stackrel{\vec{F}_{1} P_{2}}{P}=\left\{(x, y): \begin{array}{l}x=x_{1}+k\left(x_{2}-x_{1}\right), y=y_{1}+k\left(y_{2}-y_{1}\right), \\ k \text { is real }\} .\end{array}\right.$
Proof: on ${ }^{4}{ }_{P_{1}} \mathrm{P}_{2}$ there is a coordinate system on a ing in which the coordinate of P_{1} is 0 and the coordinate of P_{2} is 1 ; we call this the c-coordinate system. Lett $A B$ denote the measure of the distance between two points A; B. in ${ }^{4} \bar{P}_{1} P_{2}$ relative to the c-coordinate system, Let P be any point in, $\overrightarrow{P_{1}} \vec{P}_{2}$, let $P_{1}{ }^{\prime}, P_{2}{ }^{\prime}, P^{\prime}$, be the feet of the perpendiculars from P_{1}, P_{2}, P, respectively, to the $x-a x i s$, and $P_{1}{ }^{\prime}, P_{2}{ }^{\prime \prime}, P^{\prime \prime}$, be the feet of the perpendiculars from P_{1}, P_{2}, P, respectivel教 to the y-axis. Since perpendiculars. to the x-axis are parallel, it follows, if P is distinct from P_{1} and P_{2}, that the betweenness relations among $P_{1}{ }^{\prime}, P_{2}, P$ are preserved among $P_{1}{ }^{\prime}, P_{2}{ }^{\prime}, F^{\prime}$. For example, P_{2} is between P_{1} and. P. if and only if P_{2} ' is between P_{1} ' and P^{\prime}. Let k be the $c=c o o r d i n a t e$. of $\cdot \mathrm{P}$.

$$
\begin{aligned}
& \text { If }^{\prime}: x=x_{1} \neq 0 \text {, then one of the numbers, } x=x_{1} \text {, } \\
& X_{2}-x_{1} \text {, is positive and the other is negative F Hence } \\
& -k=\frac{\left(x-x_{1}\right)}{x_{2}-x_{1}} \text { and } x=x_{1}+k_{1}\left(x_{2}-x_{1}\right) \text {. } \\
& \text {. Similarly, } \quad \mathrm{y}=\mathrm{y}_{1}+\mathrm{k}_{\mathrm{L}}\left(\mathrm{y}_{\mathrm{e}}=\mathrm{y}_{\mathrm{I}}\right) \text {. }
\end{aligned}
$$

It might be helpful, in the oase of an oblique 1 ine, ${ }_{\mathrm{P}_{1} \mathrm{~F}_{2^{c}}}$, to think of three coordinate systerns on a ine. as foliows.
(1) The coordinate system in which the coordipete
 coordinate k of a point P telle ue wnetiner \bar{p} is in $\overline{\mathrm{P}}_{1} \mathrm{P}$ (when $k \geq 0$) or in the opposite ray (when $k \leq 0$).
/ And tie absolute vàlue of that coordinate k is equal to the quotient obtained by dividing the distance between ${ }^{P_{1}}$ and \bar{P} by the distance between P_{1} and P_{2} :
(2) The ooondinate gystem in which the coordinate of $\mathrm{F}_{1} 15 \mathrm{x}_{1}$ and the coordinate of P_{2} is x_{2}. The coordinate of an arbitrary point \bar{P} on $\overline{\mathrm{P}}_{\underline{1}} \overline{\mathrm{P}}_{\mathrm{L}}$ is $\gamma_{\overline{\mathrm{P}}}$, the $x=$ coordinate of \bar{P}.
(3) The coordinate system in which the coordinate. of \bar{P}_{1} is y_{1} and the coordinate of \vec{P}_{2} is y_{2}. The
 the y-coordinate of $\overline{\mathrm{P}}$.

453
10

It might be helpful to think of the parametric equations in this theorem in relation to the results of Chapter 3 as follows. Using the notation of the previous proof it follows from Theorem $3-6$ that if
$k \geq 0$, then $\frac{P_{1} '^{\prime \prime}}{P_{1} T_{?} P_{?}} \equiv k$ if and only if
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $\frac{P_{1}{ }^{H} P^{\prime \prime}}{P_{1}{ }^{\prime \prime} P_{\underline{2}}^{-\pi}}=k^{\prime \prime}$ if and only if
$y=y_{1}+k\left(y_{2}-y_{1}\right)$. From the present theoren. we see
that if $k \geq 0$, then $\frac{\mathrm{P}_{1} \mathrm{P}}{\mathrm{P}_{1} \mathrm{P}_{2}} \equiv \mathrm{k}$ if and only if
$x=x_{1}+k\left(x_{2}-x_{1}\right)$ and $y \equiv y_{1}+k\left(y_{2}-y_{1}\right)$. Similarly,
if $k \leq 0$, then $\frac{P_{1} \mid P^{\prime}}{\mathrm{P}_{1} \bar{P}_{2}} \equiv-k$ if and only if
$x=x_{1}+k\left(x_{2}-x_{1}\right), P_{1} P_{1} P_{1} P_{2}^{\prime \prime}=-k$ if and only if
$y=y_{1}+k\left(y_{2}=y_{1}\right), \quad$ and $\frac{P_{1} P}{P_{2} P_{1}}=-k$ if and only if $x=\bar{x}_{1}+k\left(x_{2}-\bar{x}_{1}\right)$ and $y=\bar{y}_{1}+k\left(\bar{y}_{2}-y_{1}\right)$.

In discussing the general case of a line it is important that we understand clearly the variables invelved. Thus the symbol

$$
((x, y): x \equiv a+k b, y=c+k d, k i s \text { real }\}
$$

involves the seven variables, $a \xi b, c, d, k, x, y$. For each set of numbers a, b, c, d, (with b and d not both zer̃o) ,

$$
\{(x, y): x=a+k b, y \equiv c+k d, k \text { is real }\}
$$

is a line. It should be clear that
$\begin{aligned} &((x, y): \bar{x}=a+k b, y= c+k d, \text { with } a, b, c, d, \\ &k \text { real }\}\end{aligned}$

* is the set of all points in the $x y-\bar{p} l a n e$. For if

$$
{ }^{454} 19{ }^{*}
$$

$\left(x_{1}, y_{1}\right)$ is any point there are real numbers $a, b, c, d ; k$. such that

$$
\dot{x}_{1}=a+k b \quad \text { and }, y_{1}=c+\dot{d} d .
$$

Just take $a=x_{1}, c=y_{1}, \quad b=d=k=0$.
Suppose next that a, b, c, d, k are real numbers. What is the set

$$
((x, y): x=a+k b, y=/ c+k d) ?
$$

It should be clear that this is a set whose only element is the point $(a+k b, c+k d)$.

When we think of

$$
\{(x, y): x=a+k b, y=c+k d, k \text { is real }\}
$$

as a line, we are thinking of $a, b, c, d \quad(b$ and d not both zero) as "fixed." That is the reason we say a, b, c, d are real numbers before we write the set-builder symbol. Also we are thinking of k as "taking on" real values. Each value "taken on" by k yields a point (x, y) on the iine. The line is the set af all points (x, y) each of which can be obtained from the equations a $x=a+b k, y=c+d k$ using some real number for k. (We cannot juggle the $a, b, c, d ;$ they are fixed fore a. given liṇe.)

There are situations where there are still more * "flavors" among the variables, specifically, in situations" involving sets, or families, of lines. For example, if x_{1} and y_{1} are real numbers, then

$$
\left\{(x, y): x=x_{1}+k b, y=y_{1}+k d, k \text { is real }\right\}
$$

might be thought of the family of all lines through $\left(x_{1}, y_{1}\right)$. Each choice of the parameters b and d (not both zero) yields a line in the family. Once, b and d are "pinned down," each value of k yields a point on that line.
for we might think of m as a real number, and then

* $\quad\{(x, y): x=a+k, y=p+k m, k$ is real $\}$
might be thought of as the family of all lines in the xy-plane with slope m. Each choice of values for a and b would yield a line of the family (the line with slope m - passing through (a, b)). Ortce a and b are fixed, each value of k Fields a point on that line.
\therefore In the text we have not defined parametric equations. Theorem 8-12 stands on its own Peet without such a . definition. But we do speal of the equations, $x=a+b k$, $y=c+d k$, which appear in the set-builder symbol as sparametric'equations. of course, parametric equations appear in many places in mathematics, and there are many curves in addition'to straight lines which can be represented by parametric equations. The parametric equatione which represent lines are precisely those descrived in Theorem 8-12. Thus, if x and y^{\prime} are Innear functions of k (not both constant), then the set of points (x, y) determined is a line. To repeat, if a, c, d are real numbers, with b and a not both 0 , then

$$
x=a+b k \quad \text { and } \quad y=c+d k
$$

are parametric equations for a.line; the variable k is the parameter and the set of all points (x, y) is the line. For further discussion of parametric equations and parameters see talks to Teachers, No. 7 .

In this treatment of slopes we avoid the use of - directed distance. We motivate the idea of slope using the "rise over mun" idea (which is a non-negative over positive situation $\frac{1 n}{1}$ the physical world). Then we define the slope of a line segmient in terms of the coordinates of the endpoints of the segment. We show; then, that all segments of a line have the same slope, and this permits us to define the sloppof a line as we do.

Our proof that all segments of a line have the same slope does not involve a tacit assumption that the "sign" of $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is the same for ali choices of two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on a given ine. It is not mathe * \quad. matically sound to prove this property by considering, three cased of non-vertical lines:
(1) Those parallel to the x-axis;
(2) Those which "run uphill," that is, those in *

which $\frac{y_{2}=y_{1}}{x_{2}=x_{1}}$ is positive for every choice of two points
in the line.
(3) Those which "run downhil," that is, those for which $\frac{y_{2}-y_{1}}{x_{2}=x_{1}}$ is negative for every choice of two points in the line. Such a classifigation into three classes omits, for example those linesfor which
$\frac{y_{2}=y_{1}}{x_{2}-x_{1}}$ ls positive for some choice of points; $\left(x_{1}, y_{1}\right)$
and $\left(x_{2}, y_{2}\right)$, and negative for some other choice. Of
6 course, a pieture "shows" that if a line is going uphiil between two of its points, then it is going uphill between every pair of its points. Fictures convince us that the three cases listed on the previous page do include all lines. Our proof avoids assuming this by capitalizing on the properties of coordinate systems on apline.

In the proof of Part (1) of Theorem 8-15, p and q are two parallel lines. Hence, Q_{1} and. Q_{2} are on the same side of line p. If they are above p, then h, and k are both positive; if they are below p, then h and k are both negative:
', In connection with Corollary $8=15$, note that if. A, B, C, D, are four pointe and if $\frac{m}{\overline{A B}}=\frac{m}{C D}$ then either $\overrightarrow{A B} \| \overrightarrow{C D}$ or A, B, C, D are colinear. To test four points A, B, C, D for colinearity we could check to see if they all have the same $x=c o o r d i n a t e$. If not, then they

In traditional analytic geometry courses, the equation in Theoren 8-16 is sometimes called a symmetric equation for the line in the $x y$-plane. Although it is not included in this text, this result extende easily to symmetric equations for a line in an xyz-coordinate system. Trus, if $P=\left(x_{1}, y_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ and if $x_{2}-x_{1} \neq 0, y_{2}-y_{1} \neq 0, z_{2}-z_{1} \neq 0$, then \quad,

$$
\left\{\begin{array}{l}
\overrightarrow{P Q}=\left\{(x, y, z): \frac{x-x_{1}}{\left.x_{2}-\frac{x_{1}}{}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}\right\} .} \begin{array}{l}
\text { In the proof of Corollary } 8-16-1 .
\end{array}\right. \text { it is nermiss }
\end{array}\right.
$$

In the proof of Corollary 8-16-1, it is permissible to divide by $x_{2}-x_{1}$ and by $y_{2}-y_{1}$, since they are each different from zero. This follows from the fact that $\overrightarrow{P Q}$. of Theorem $8-16$ is an oblique line.

A working knowledede of parametric equations for a Ine, the equations of the form $x=a$ and, $y=a$ for vertical and horizontal lines, respectively, and the equations in Section 8-7 ff., will provide the student a good background for working with lines in the coordinate geometry of the plane.

If you are planning to teach Chapter 10 you may want to omit this section, along with many of the probiems in the next problem set. In Chapter 10 we prove that two
non-zero vectors are perpendicular if and only if the sum of the products of corresponding components is equal to zero; that is, if $a_{1} a_{2}+b_{1} b_{2} \equiv 0$. The stmilarity Detween this condition and $m_{1} m_{2}==1$ is revealed if we note that. $\mathrm{m}_{1}=-\frac{b_{1}}{a_{1}}$ and $m_{2}=-\frac{b_{3}}{a_{2}}\left(a_{1}, a_{2} \neq 0\right)$.

If you plan to teach Chapter 10 you may also want to omit Theorems $8-22$ and $8-24$ since these are also proved as Theorems 10-15 and $10-1$ k respectively. Actually there are many more theorems in Chapter 8 which may oe postponeg to Chapter 10 , where they may be proved with the afd of directed segments or vectors. However you should permit your students sufficient practice in the use of coordinates in proof's of theorems before presenting them with the vector methods.

In this section we intend to prepare the student with some basio definitions and theorems concerning parallelograms and special kinds of parallelograms. Theve are some good opportunities to use the concept of subsets as indicated in the diagram in Section 8-11. It is also an opportunity to explore some of the propesties of parallelograms and special kinds of parallelograms. This study $1 s$ continued in Section $8=13$, where coordinates are used extensively as an aid in proofe. In this section proofes need not use coordinates.

In Proof" I we could, of course, set up an $x y=$ coordinate system so that. $A=(0,0), \bar{B}=(b, 0), C=(c, d)$ with $b>0$ and $d>0$. The proof given in the text could then be modified slightly by omitting several absolute value symbols near the end of the proof as follows:

$$
\begin{aligned}
& \mathrm{DE} \equiv\left|\frac{b+c}{2}+\frac{c}{2}\right|=\left|\frac{b}{c}\right| \equiv \frac{b}{c}, \\
& A B=|b-0| \equiv b, \\
& D E=\frac{1}{2} A B .
\end{aligned}
$$

6
The proof with coordinates of Theorem $8-22$ requires no Ingenutty; fust do what comes naturally and there is the result!. The traditional proof without coordinates is a bit ingenious. Fer those of yoy who do not recail it, the plan of proof is as follows:

+ .

كLet F be the point in $\overrightarrow{D E}$ such that $D E \equiv E F$ and E is between D and $F=$ Prove $C D=\overrightarrow{F B}, \overline{C D} \| \overline{F B}$. Then $F B=A D, \overline{F B}| | \overline{A D}, A D F B$ is a paralielogram, $D F=A B, \overline{\overline{D F}} \| \overline{A \bar{B}}$, and $D E=\frac{1}{2} A \overline{A B}, \overline{D E} \| \overline{\mathrm{AF}}$.

Another proof of Theorem 8-22 appears in Chapter 10 on vectors. Some teachers may wish to gnit the proofs of several theorems which are proved both in chapter 8 and In Chapter 10. But in the case of this theorem we have used it as an example in introducing proois with coordinates: In no oase should it be omitted from this chapter.

This section, $8=13$, shows how coordinates are used to advantage in producing simple proofs of theorems. The subject matter of these theorems was chosen deliberately to be parallelograms in order that students might continue the study initiated in Section 8-il, this time with coordinates.

Theorem 8-23 seems to say that a parallelogram 15 determined by three of $i t s$ vertices. It is in one sense, and it'is not in another sense. If A, B, C, D are the vertices of a parallelogram $A B C D$, and if A, B, D are

485

4610 ;

The point \mathcal{F}_{3} is in the interior of each of the angles of the triangle, hence' in the interior of the triangle. It is equidistant from the lines which contain, The three sides; it is the enter of the inscribed circle of the triangle and is sometimes called the incenter of the triangle.

Illustrative Test Items

Chapter 8

1. Given $\triangle A B C$ with $A=(6,2), B=(-8,7), C=(2,-4)$.
(a) Find the coordinates of D, the midpoint of $\overline{A C}$,
(b) What is the slope of $\overline{A C}$?
(c) Show that $\overline{B D} \perp \overline{A C}$.
(d) What kind of triangle is ABC ?
(e) Check your answer to (d) by finding $B C$ and $B A$.
(f) Express ${ }^{\rightarrow}{ }_{A C}$ using parametric equations.
(g) Express $\overrightarrow{B D}$ using the two-point form.
(h) Find the coordinates of the point of intersection of the x-axis and $\overrightarrow{A C}^{*}$.
(1) Express the line through B parallel to ${ }_{A C}$. using the potyz-slope form.
(j) Find E gon hat BCAE is a parallelogram.
(k) Find so that CABF is a paralielogram.
2. '(a) Find the length of the side of a square whose diagonal meastures $12 \sqrt{2}$.
(b) How long is the diagonal of a square whose side measures $12 \sqrt{2}$?
3. For each of the properties listed below, tell whether a parallelogram having that property is best classified as a rectangle, as a rhombus, or as a square.
(a) Its diagonals are congruent.
(b) Its diagonals bisect its angles.
(c) Its diagonals are perpendicular to each other.
(d) Its diagonals are congruent and mutually perpendicular.
(e) It is equiangular.
(f) It is equilateral.
(g) It is both equiangular and equilateral.

4. Prove that a parallelogram is a rectangle if ind only if its diagonals are congruent.
5. $A=(-1, \overrightarrow{2})$ and $B=(3,0)$. Find the coordinates of P if:-
(a) $A P=3 A B$ and P is in $\overrightarrow{A B}$.
(b) $A P=3 A B$ and P is in $\overrightarrow{B A}$.
6. Mel whether p is a vertical, a horizontal; or an oblique line.
(a) $p=\{(x, y): x=3+2 k, y=2, \vec{k}$. 1 s real $\}$
(b) $p=\{(x, y): x=3+2 k, y=2+k, k$ is real $\}$
(c) $p=\{(x, y): x=3, \bar{y}=2+k, k$ is real $\}$
(d) $p=\{(x, y): x+y \stackrel{1}{\cong} 7\}$.
(e) $p=\{(k, y): y=3\}$.
7. Prove: The line containing the median of a trapezoid bisects each of its altitudes.
8. "In rectangle $A B C D, A B=20, B C=15$ If P is in $\overline{A C}$ and $\overline{B P} \perp \overline{A C}$, find $\frac{A P}{A C}$.

Chapter 9

PERPENDICULARITY, PARALLELISM,' AND COORDINATES
IN SPACE
The main objective of this chapter is to help the student develop his concepts of spatial relationships. We went him to be able to think in terms of three dimensions and to be able to visualize and sketch threé-dimensional configurations.

No attempt has been made to present a completely formal approach to space geometry. We agree with the Commission Report that thẹe is neither the time nor is there "virtue in so doing.": We want the student to "discover" the essential space relationships and we, have therefore used an intuitive approach in the form of exploratory problems. These are followed by formal theorems, with some deductive proofs inciuded just to convince the student that there is nothing very peculiar about proofs in three-dimensional geometry. One could easily spend a great deal of class time on these proofs, but this would not be economical. Most teachers will aim for comprehension of the theorems rather than facility, in proving them.

Problems requiring proofs are optional. Those proofs not developed in the text have been included in this Commentary for teachers who wish them.

It is to be hoped that teachers will extend the intuitive presentation at the beginning of each section. The lists of exploratory problems are far from exhaustive. Likewise, the suggested physical models to be used in experimentation are the most readily available ones--pencils paper, books. Many other frequently used aids can prove most helpful. These include wire coat hangers, thin wires, straws, string, cardboard, toothp1cks, and balsam wood. Standard classroom equipment such as yardsticks, pointers,
and window poles can serve as good demonstration models. In addition, some excellent materials for constructing models are available commercially from suppliers of scientific and mathematical equipment. Models constructed by the student are preferred to those ready-made.

At the beginning of the first unit, it might be well to review related properties studied in the plane. It will be helpful if the students recall the simple relationships mentioned in Chapter 2 , and then discuss the postulates stated in later chapters which assure them of the existence of infinitely many points. Refer to the Review Problems at. the end of Chapter 2 ; concerning the number of different planes that might contain (a) one. point, (b) ascertain, pair of points, and (c) a certain set of three points. Contrast the answers given at the end of Chapter 2 with acceptable answers at this point in the development of our logical system.

The set of Exploratory Problems is designed to capitalize. on the students' intuitive ideas of parallel, intersecting, or perpendicular lines and planes. This is also fop opportunity for the students to practice sketching figures in space. At this point, the diagrams should be carefully checked and, when necessary, the students' should be referred to the suggestions offered in Appendix V.

At the beginning of Section $9-2$, the experiments may be performed individually or as a class activity. In either ouse, try to make certain that all of your students have an intuitive idea of perpendicularity in space before proceeding to the formal definitions and theorems,

Discussion of a spoked wheel and axle should make* Theorem 9-1 plausible to the students: Any line perpen= dicular to the axle at the hub must be in the plane of the wheel.

THEOREM 9-3. There is a unique line which is perpendicular to a given plane at a given point in the plane....

Proof: To prove this theorem we must show two things: first, that there is at least one mine perpen= dicular to the given plane at the given point, and second, that there is no more than one such line.

To show the existence of a perpendicular inge, let F be a given point in a given plane P and let p be any line in P which contains F. According to Postulate 24 there is a unique plane, say \mathcal{X}, which is perpendicular to p at F. Let r be the intersection of the planes P, and \mathscr{C} and let l be the line in \neq which is. . perpendicular to r at the point F.

Then ℓ is perpendicular to both p and r. Hence, by Theorem $9=2$ it is perpendicular to the plane \mathcal{D} at the point F, as required.

To show that there is no other line which is perpendicular to P at the point F, suppose that there were such a line, say \mathcal{L}, Let \mathcal{L} be the plane determined by ℓ and ℓ^{\prime}; and let p be the line in which \mathcal{L} and γ intersect (Postulate 9).

467

Then in the plane \mathcal{C} both \mathcal{L} and \mathscr{C} ' are perpendicular to p at the point F, But in a given plane there is exactly one line which is perpendicular to a given line at a given point. Hence the assumption of a second inline, ℓ^{\prime}, perpendicular to the plane P at the point F leads to a contradiction and must be rejected. In other words, there is exactly one line which is perpendicular to the given plane \mathcal{O} at the given point" F in \mathcal{P}.

THEOREM 9-7. If a line intersects one of two distinct parallel planes in a single point, $1 t^{*}$ intersects the other plane in a single point also.

Proof: * Let P and $\not \subset$ be two distinct parallel planes and let ℓ be a line which intersects \mathscr{O} in a single point, say P. Let R be any point in the plane \mathscr{P} not on $\mathscr{\mathscr { E }}$, and let \mathcal{X} be the plane determined by ℓ and R.

Now \mathcal{X} has the point P in common with the plane \mathcal{O} and the point ' R ' in common with the plant X. Hence by' Theorem $9-6, \mathcal{C}$ must intersect $\not \subset$ and \mathscr{P} in two parallel. lines, say p and ur r, respectively, each of which $1 s$ clearly different from \mathscr{L}. Thus in \mathscr{C} we have two parallel lines, p and r, one of which, namely p, is meta by ℓ. The other line r must also be met by $\ell \ell$. Since $\mathscr{\ell}$ meets r, it certainly meets \mathscr{P}, as asserted.

THEOREM 9-8. If a line is parallel to one of two parallel planes, 金t is parallel, to the other also.

Proof: By hypothesis, the line $\mathcal{\ell}$ and the planes
P and P_{1} satisfy the conditions that $\ell \| P$ and $\varnothing \| P_{1}{ }^{1}$. We wish to prove that $\angle \| P_{1} \cdot$ Suppose ℓ were not parallel to \varnothing_{1}. Then ℓ intersects P_{1} in a single point. Thus ∇^{1}, which by hypothesis does not intersect ℓ in a single point, is distinct from \mathcal{O}_{1} We now apply Theorem $9-7$ to find that \mathscr{A} intersects ρ^{1} in a single point. Contradiction! Hence $\ell \| \nu_{1}$.

4634

THEOREM 9-11. If a plane is perpendicular fo one of two distinct parallel lines, it is perpendicular to the other line also:
4
Proof: Let Λ_{1} and ℓ_{2} be two parallel ines and let \mathcal{P} be a plane which is perpendicular to one of these lines; say ℓ_{1}, at the point L_{1}. Then by Theorem 9-4, \mathcal{P} must also intersect ℓ_{2} in a point, say L_{2}.

Now at L_{2} there is, by Theorem 9-3, a dine which $i_{9} s$ perpendicular to \mathcal{O}, say ℓ_{3}. By Postulate 25 this line is parallel to ℓ_{1}. But according to the Parallel Postulate, there is a unique line parallel to a given line through a given point. Hence, since both l_{2} and. l_{3} are parallel to l_{1} and pass through L_{2}, it follows that ℓ_{2} and ℓ_{3} are the same line. In other words, ℓ_{2} is also perpendicular to ρ, as asserted.

THEOREM 9-12. If two lines are each parallel to a third line, they are parallel to each other.

Proof: Let ℓ_{1} and ℓ_{2}, be two lines each of which is parallel to a third line, b. Let p be any point of b and let \mathcal{D} be the plane which by Postulate 24 is perpen dicular to b at P . Then by Theorem $9-11, \ell_{1}$ and ℓ_{2} are each perpendicular to $\varnothing \therefore$ Hence, by Postulate 25 , they are parallel, as asserted.

THEOREM 9+13. Given a plane and a point not in the plane, there is a unique line which passes through the point and is perpendicular to the plane.

Proof: Let P be the given plane and let A be the given point, not in P. Let P be any point in P and let b be the unique perpendicular to P at P, which is guaranteed by Theorem 9-3. If b passes through A, it is the required perpendicular. If b does not pass through A, let a be the line parallel to b through A which is guaranteed by Theorem 6-3.

Then by Theorem 9-11, a is also perpendicular to P, and hence is the desired line.

$$
{ }^{471} 36
$$

However we must still show that there is only one line through A which is perpendicular to $P \rightarrow T o$ do this, let al be any line through A which 18 perpendicular to D. . Then by Postulate 25, a' is parallel to b. However, according to the Parallel Postulate, there is only one line through A which is parallel to b. Hence a^{\prime} "and a are the same line, and our proof iss complete.

$$
\pm
$$

THEOREM 9-14. There is a unique plane parallel to a given *. plane through a given point.

Proof: Set \mathcal{D} be the given plane and let L be the given point. Then there is a unique line ℓ which passes through L and is perpendicular to \varnothing. Let \mathcal{X} be the . plane which is perpendicular to \boldsymbol{l} at L. Then by

2.

Theorem 9-9, \mathcal{L} is parallel to \mathcal{P}. Moreover, there can be no other plane through L parallel to P. In fact, if \mathcal{L}^{\prime} is any plane through L parallel to D, then by Theorem 9-10, \mathcal{L} 'is perpendicular to ℓ. But by Postulate 4 , there is exactly one plane perpendicular to a given line at a given point. Hence \mathcal{L}^{\prime} and \mathcal{L} are the same plane, and our proof is complete.

$$
3 i
$$

472

THEOREM 9-15. If two planes are each parallel to a third plane, they are parallel to each other.

Proof: Let P and P be two planes each of which is parallel to a third plane θ^{\prime}. Let \mathcal{C} be a line perpendicular to $\mathscr{\delta}$. Then aby Theorem $9-10, \ell$ is also perpendicular to P and \mathscr{C}. since \mathcal{P} and \mathscr{P} are both perpendicular to ℓ, then by Theorem 9-9 they are parallel, as asserted.

Notice the remarks that parallelism for lines and parallelism for planes are equivalence relations: they have the the reflexive, symmetric, and transitive properties. This feature is one persuasive argument in favor of adopting the convention that a line or a plane is parallel to itself.

THEOREM 9-17. All segments which are perpendicular to each of two distinct parallel planes and have their endpoints in the planes have the same length.

Proof: Let P and \mathscr{P}. be two distinct parallel planes. Let the points P_{1} and P_{2} in P and the points R_{1} and R_{2} in \mathscr{P} be such that each of the distinct segments $\overline{\bar{P}_{1} R_{1}}$ and $\overline{\mathrm{P}_{2} R_{2}}$ is perpendicular to each of the planes P and P (Theorem 9-10).

47333

By Postulate 25, the two lines ${\overrightarrow{P_{1}}}_{1} \vec{R}_{1}$ and ${ }^{4} \vec{P}_{2} R_{2}$ are parallel; hence they lie in the same plane, say $\mathscr{\varnothing}$. By Theorem $9-6{ }^{4} \overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$ and ${\overrightarrow{R_{1}} \vec{R}_{2}}$ are parallel. Therefore $P_{1} P_{2} R_{2} R_{1}$. is a parallelogram ($1 n$ fact, it is a rectangle), and hence, by Theorem 6-6, $P_{1} R_{1}={ }_{2} \mathrm{P}_{2}$, as asserted.

Although the theory of projections is important in engineering, particularly in drafting, it was deemed not necessary to devote a section of the text to this particular concept. Instead, definitions of the projection of a point into a plane and of the projection of a set of points into a plane are stated in Problem Set 9-4, followed by some problems based upon these concepts. It would be weli to precede the assignment of these problems with a brief discussion of this geometrical interpretation of the word projection.
/The conventional phrase is to project a point or figure "onto" a plane rather than "into" a plane. We have preferred "into," in order to be consistent with mathematical usage in the theory of mappings or transformations. A mapping is a correspondence which assocites with each point of a given set S a unique point of a se't S '. We describe this by saying that each point of S is "mapped into" its associated point of S^{\prime} and that S is "mapped into" S^{\prime}. We say S is "mapped onto" S^{\prime} only when the whole of S^{\prime} is involved, that is when each point of
S^{1} is the associated point of some point of S. Since this distinction between "into" and "onto" is quite firmly established in higher mathematics we thought it wise to use the appropriate technical term "into" even, at this elementary level.

Review Section 4-13 with the students to recall the definition of a dihedral angle. Note that we cannot just speak of the union of two halfplanes, but that we must include their common edge in the union. This is because a halfplane does not contain its edge. Similarly, the face of a dihedral angle is deffined, not as a halfplane, but as the union of a halfplane and its edge. (This is sometimes called a "closed" halfplane to emphasize that the halfplane has been "closed up" by adjoining its bounding line; in contrast, a halfplane in our sense is called an "open" halfplane.) Observe that the intersection of the two faces is their common edge, just as the intersection of the two sides of an (ordinary) angle. is their common endpoint.

Illustrate dihedral anglés by using the covers, or two pages, of a book. From this physical model, try to give the students a feeling for the relative size of dihedral angles, bisection, perpendicularity of planes, etc.

Suggested definitions: Dihedral angles $\angle A=P Q-B$ and $\angle A^{\prime}-P Q-B^{\prime}$ are vertical if A and A^{\prime} are on opposite sides of ${ }^{*} \overrightarrow{P Q}$, and B and B, are on opposite sides of $\overrightarrow{P Q}$.

The interior of dihedral angle $\angle A-P G B$ consists of all points which are on the same side of B and are on the same side of plane BPQus A. The exterior of a dihedral angle consists of all points which are not in the interior of the dinedral angle and . are not in the dihedral angle itself.

$$
40
$$

475

THEOREM 9-20. If a line is perpendicular to a plane, then any plane containing this line is perpendicular to the given plane.

Proof: Let $\overrightarrow{Q P}$ be the line perpendicular to a given plane \mathcal{P} at the point P , and let \mathcal{L} be any plane contanning $\stackrel{\rightharpoonup}{Q \mathrm{P}}$. Let $\overrightarrow{\mathrm{AB}}$ be the intersection of \mathcal{X} and \mathcal{P}; and in P let ${ }_{\mathrm{PR}}$ be the line which is perpendicular to $\overrightarrow{A B}$ at P. Since $\overrightarrow{Q P}$ is perpendicular to P, the

InAne $\overrightarrow{\mathrm{AB}}$ is also perpendicular to $\overrightarrow{\mathrm{QP}}$. Theorem 9-2, the plane determined by $\stackrel{\rightharpoonup}{Q P}$ and $\overrightarrow{P R}$ is perpendicular to $\overrightarrow{A B}$. Therefore $\angle Q P R$ is a plane angle of the dihedral angle $\angle Q-A B-R$. Moreover, since ${ }_{\overrightarrow{Q P}}$ is perpendicular to the plane \varnothing, it follows that $\angle Q P R$ is a right angle. Hence $\angle Q-A B-R$ is a right dihedral angle, and \mathcal{Z} is perpendicular to \mathcal{P}, as asserted.

THEOREM 9-22. If two planes are perpendicular, then any Inc perpendicular to one of the planes at a point on their line of intersection lies in the other plane.

Proof: By hypothesis, $\eta \perp \underset{m}{ }$, intersecting in $\stackrel{\rightharpoonup}{C D}$, and $\overrightarrow{A B} \perp M$ at B on $\overrightarrow{C D}$. We are asked to prove that $4 \overrightarrow{A B}$ lies in the plane 7 . In η, there is a line $\xrightarrow[A \cdot B]{ }$ which is perpendicular to $\overrightarrow{C D}$ at B. Then $\overrightarrow{A^{\prime} \cdot \vec{B}} \perp m$

at B by Theorem 9-21.

Therefore $\overrightarrow{A B}$ and $\overrightarrow{A^{\prime} B}$ coincide by Theorem 9-3. Since $\vec{A} \cdot B$ lies in plane $\eta, \overrightarrow{A B}$ lies in plane η.

Sections 9-6 through 9-9, concerning a threedimensional coordinate system, are not considered part of the minimum course. Inclusion of these sections in a course for your students should depend upon the time avaliable, the degree of success they enfoyed in studying Chapter 8 , and the feeling for spatial relationships they were able to develop in Section 9-1 through 9-5.

Our treatment of a three-dimensional coordinate system is brief, but not rigorous. Rather, it is an extension of the concepts of a two-dimensional coordinate system as developed in Chapter 8. We have tried to dapitalize upon some intuitive notions through the use of illustrative diagrams. If your students are not capable of doing all of the work, you might use the diagrams and charts in Section 9-6 as a basis for an informal discussion of a coordinate system in space, omitting the remaining sections.

Some classes may be able to benelit only from Sections 9-6 and 9-7, including the distance formula, but omitting the description of a line or a plane by means of equations. For classes of superior students, not only are all sections strongly recommended, but the treatment of coordinates in space might well be extended.

This is the first time the students have encountered a family of lines presented in set builder notation. Remind them that $\{m: m \quad \| \quad z$-axis\} reads "the set of all lines m such that m is paraliel to the z-axis." Spend some time discussing with your students the pictorial representation of the family of lines.

Using diagrams or physical model students the concepts summarized in tharts. A very helpful physical model can be made easily from three pieces of pegboard. If the pegboard is painted with green slate paint and colored elastic is used for lines, the model is effective as well as attractive. Such aids are also available commer*ially.

477

$$
42
$$

Illustrative Test Items

Chapter 2

1. For each of the following, write t, if the statement is true (true in every ease); write 0 if the statement is false (false in some or all cases).
(a) Given $P_{1}(2,0,-3)$ and $P_{2}(-2,-5,0)$, the length of $\overline{\mathrm{P}_{1} \overline{\mathrm{P}}_{2}}$ is $5 \sqrt{2}$.
(b) If a line is perpendicular to each of two: distinct lines in a plane it is perpendicular to the plane.
(c) Through a point in a plane only one plane can be passed.
(d) There are infinitely many lines perpendicular to a given line at a given point on the line.
(e) Two distinct lines perpendicular to the same plane, are coplanar.
(f) Through a point on a line two distinct planes can be passed perpendicular to the line.
(g) Ali point's that are equidistant from the endpoints of a given segment are coplanar.
(h) In a three-dimensional coordinate system, $y \equiv 0$ is an equation of the $\overline{y z}=$ plane.
(i) Given a plane ξ, a line which is perpen= dicular to a ine in ξ is perpendicular to ξ.
(f) If ${ }^{4}$ and plane \mathcal{F} are each perpendicular to ${ }^{4} \overrightarrow{\mathrm{FH}}$ at point P , then ${ }^{\boldsymbol{A}} \overline{\mathrm{AB}}$ lies in plane ξ.
(k) If a plane intersects two other planes in parallel lines, then the two planes are parallel.
(1) Two planes perpendicular to the same line are parallel.
*(m) If each of two planes is parallel to a. line, the planes are parallel to each other.
(n) The projection of a line into a plane is a line.
(o) Two lines are parallel if they have no point in common.
(p) The length of the projection of a segment into a plane is less than the length of the segment.
(a) Two lines paraliel to the same plane are parallel to each other.
(r) If two planes are each perpendicular to a third plane, they are parallel to one another.
(s) If a plane bisects a segment, every point of the plane is equidistant from the ends of the segment.
(t) Through a point not in a plane there is exactiy one line perpendicular to the plane.
(u) If plane $\underset{\overrightarrow{A B}|\mid \overrightarrow{C D}}{\vec{C}}$, then $\left.\xi\right|_{\overrightarrow{C D}} ^{\vec{C}}$.
(v) A plane perpendicular to one of two perpendicular planes is not perpendicular to the other plane.
(w) If plane \nVdash is perpendicular to plane η and $\triangle A B C \cdot$ lies in plane \mathscr{M}, then the projection of $\triangle A B C$ into plane η is a segment.
(x) It is possible for the (degree) metsure of a plane angle of an acute dihedral angle to be 90 .
(y) Given $A(4,-3,0)$ and $B(-2,-1,6)$, the coordinates of the midpoint of $\overline{\overline{A B}}$ are $(1,-2,3)$.
(z) If a line is not perpendicular to a plane, then each plane containing this line is not perpendiculan to the plane.

$$
479
$$

2. Given in this figure that
${ }^{4} \overrightarrow{\mathrm{BK}} \perp^{4} \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{QB}} \perp^{4} \overrightarrow{\mathrm{AB}}$,
${ }^{4} \overrightarrow{\mathrm{HB}} \underline{4}^{4} \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{RB}} \underline{\underline{A B}}$ and
$\overrightarrow{\mathrm{BF}} \boldsymbol{\perp} \overrightarrow{\mathrm{AB}}$.
(a) ${ }^{4} \overrightarrow{\mathrm{BK}}$ and $\overrightarrow{\mathrm{AB}}$ determine $\xrightarrow{\text { a } \mathrm{BQ}}$ plane ABK . Is plane $A B K$?
(b) $\mathrm{Do} \stackrel{+\mathrm{FB}}{\mathrm{FB}}, \overrightarrow{\mathrm{HB}}$ ali lie in plane KBQ ? Why?
(c) There are at most \qquad different planes determined by pairs of the
 given lines.
3. In the figure, plane $P_{\perp} \stackrel{\rightharpoonup}{\mathrm{AB}}$ and plane $\vec{P} \mathcal{A B}^{\vec{A}}$.
(a) Is $P \| \notin ?$ Why?
(b) Plane ξ intergects $\cdot P$ and P in ${ }^{4} W K$ and ${ }^{4} \overrightarrow{Q F}$, respectively. Is ${ }^{4} \overrightarrow{W K}| |^{4}$ QF Why?
(c) If a line m is perpendicular to ${ }^{W} \mathrm{WK}$ and intersects ${ }^{4} \overrightarrow{Q F}$, what wind of angles does m
 make with $\overrightarrow{Q F}^{\boldsymbol{Q}}$? Justify your answer.
4. In this figure, plane ξ bisects $\overline{\mathrm{RQ}}$ and $\underset{\mathrm{E}}{\mathrm{RQ}}$. Also $\quad R T=Q T$, Explain why T lies in plane ξ.

40
5. Points A, B, C, and
D are not coplanar.
$\triangle A B C$ is isosceles
with $A B=A C$.
$\triangle D B C$ is isosceles
with $\mathrm{DB} \equiv \mathrm{DC}$.
F is the midpoint of

$\overline{\mathrm{BC}}$. In the figure at
least one segment is
perpendicular to a plane.
What segment? What plane?
Justify your answers.
6. Given: $\overrightarrow{{ }^{4} \overrightarrow{X A}} \perp \boldsymbol{\xi}$ at A. a point on $\overrightarrow{Q B}$. Are X, A, B, F coplanar? State a theorem to support your conclusion.

B is in \neq
$\stackrel{\rightharpoonup}{C D} \perp \xi$ at D.
C, 1 l in \neq
Prove: $\quad A C=B D$.

48140°
8. The following sets of lines (m) and planes (ρ) are described in reference to a three-dimensional coordinate system, having x, y, z-axes. By pairing those on the left with those on the right, match the equivalent sets.
(a) $[\mathrm{m}: \mathrm{m} \| \overrightarrow{\mathrm{OY}}\rangle \quad$ (r) $\{\mathcal{P}: \rho \perp \mathrm{z}$-axis $\}$
(b) $(\rho: \infty| | y z-p l a n e)$
(s) [m:m $\perp x y=p l a n e]$
(c) $[\mathscr{P}: \nsim| | x y$-plane $]$
(t) $(D: D \perp y$-axis $)$
(d) $\left[m: m| | \frac{\mathrm{ox}}{}\right.$)
(u) ($D: D \perp x$-axis)
(e) $\left[\mathrm{m}: \mathrm{m} \|{ }^{4} \overrightarrow{\mathrm{O}}\right\}$
(v) ($\mathrm{m}: m \perp$ yz-plane)
(f) $(\mathcal{O}: \perp| | x z=$ plane $)$
(w) $\{m: m \perp x z$-plane $\}$
9. Find the point in which the line. m intersects the $x z-p l a n e$ 1f
$\mathrm{m}=((\mathrm{x}, \mathrm{y}, \mathrm{z}): \mathrm{x}=2+\mathrm{k}, \mathrm{y}=4-2 \mathrm{k}, \mathrm{z}=3 \mathrm{k}$, k is a real number .
10.* Show that $\triangle A B C$ is isosceles if its vertices are $A(2,3,-5) ; B(-2,4,-2) ; C(-1,0,1)$:
11. Find an equation of the line in the $x y-p l a n e$ which is the line of intersection of the $x y-p l a n e$ and the plane whose equation is. $2 x-y+z \equiv 7$.
12. (a) Given points $M(6,-2,3)$ and $N(-5,1,4)$. Find the coordinates of the midpoint P of $\overline{M N}$.
(b) Given points $\mathrm{A}(2,0,-2)$ and $\mathrm{B}(\mathrm{x},-1, z)$. Find x and z, so that the midpoint of $\overline{A B}$ is the same point P as in Part (a).
13. Find an equation of the plane determined by the points $A(1,2,5) ; B(0,1,6) ; C(2,0,1)$.
14. V is the midpoint of edge $\overline{\mathrm{RW}}$ of the cube shown in this figure.

Prove, with or without coordinates, that $\mathrm{VB}=\mathrm{VF}$.

482

Chapter 10
 DIRECTED SEGMENTS AND VECTORS

10-1. Introduction.
This is an optional chapter and should be omitted where the ability level of the class or the lack of time makes its omission necessary. For this reason relatively few geometrical theorems are proved and no new ones are presented.

The purpose of this chapter is to introduce the student of äbove average ability to another mathematical system, one which has wide application in physics and engineering, as well as in mathematics. Moreover we feel that the work in this chapter will help to solidify the ideas of closure, commutativity, associativity, and the ' other properties of real numbers.

The treatment of an entire set of directed line segments as a single entity, called a vector, will probably seem an unnecessary departure from the common notion of directed \ddagger ine segments being vectors. However this is the modern concept and we believe that the ideas stressed in this chapter will make it easier for the student to proceed to a more advanced study of vector analysis with relatively little difficulty.

Some of the problems in the problem sets and in the review set deal with the use of vectors in solving certain problems of physics. The student does not need an extensi background in physics to handie the problems. It is sufficient that he knows that when two or more forces or velocities act on a body the resultant force or velocity cañ be found by the rules of vector addition.

10-2. Directed Segments.

695

The main ideas of this section are equivalence of directed segnents, addition of directed segments, and multiplication of directed segments by real numbers. The student is required to translate statements of geometric relation into algebraic language.

By this time equivalence relations, should be familiar to the students. The fact that directed segment equivalence is reflexive, symmetric and transitive enables us to consider all directed begments that are equivalent to a given directed segment as a set that is well defined. It is this fact that paves the way for the definition of a vector in Section 3.

As a matter of vocabulary, it is worth noting that directed segments, which are often inaccurately referred to simply as vectors, are sometimes called bound vectors, since in a sense they are "bound" to a particular point, as origin. When this terminology is used, the entities which we call vectors are then referred to as free vectors. Since it is very convehient to be able to denote a vector (in our sense) by the symbol $\overrightarrow{A B}$, we have introduced the symbol ($\overline{A, B}$) for a directed segment (or bound vector).

We have tried to stress that the addition of directed segments is not commatative. This may be the students' first encounter with non-commutative addition and, as such, should not be "glossed" over. *

10-3. Vectors.
The main topic of this section is the algebra of vectors as ordered pairs, [p,q]. The transition from coordinates of points to components of vectors is a ilttle subtle and may present difficulty to the student, but once the changeover is made, the algebraic properties are easily established.

Property 3 states $\vec{u}+\overrightarrow{0}=\vec{u}$. In other words $\overrightarrow{0}$ plays the role in vector addition comparable to 0 in the addition of real numbers. Hence σ is often called the identity element for vector addition. Similarly Property 4 indicates that each vector has an additive inverse.

Properties of Vectors

1. If \vec{u}, \vec{v} are vectors then $\vec{u}+\vec{v}$ is a vectori.
2. If $\vec{u}, \vec{v}, \vec{w}$ are any three vectors then

$$
(\stackrel{\rightharpoonup}{u}+\stackrel{\rightharpoonup}{v})+\frac{1}{w}=\vec{u}+\left(\vec{v}+\frac{\rightharpoonup}{w}\right) .
$$

3. There is a vector $\overrightarrow{0}$ such that for any \vec{u}

$$
\stackrel{\rightharpoonup}{\mathrm{u}}+\stackrel{\rightharpoonup}{\mathrm{o}}=\stackrel{\rightharpoonup}{\mathrm{u}} .
$$

4. For every vector \vec{u} there 1 is a vector $-\vec{u}$ such that

$$
\overrightarrow{\mathrm{u}}+(\overrightarrow{-u})=\vec{o} .
$$

5. If \vec{u}, \vec{v} are any two vectors then

$$
\stackrel{\rightharpoonup}{\mathrm{u}}+\stackrel{\rightharpoonup}{\mathrm{v}}=\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}} .
$$

6. If \vec{u}, \vec{v} are any two, vectors and k is any scalar then

$$
k(\vec{u}+\vec{v})=k \vec{u}+k \vec{v}
$$

7. If \vec{u} is any vector then $k \vec{u}=\vec{u}$ when $k=1 \ldots$
8. If \vec{u} is any vector and p, q are any two scalars then

$$
(p+q) \stackrel{\rightharpoonup}{u}=p \stackrel{\rightharpoonup}{u}+q \ddot{u} .
$$

9. If \vec{u} is any vector and p, q are any two scalars then

$$
\mathrm{p}(\mathrm{q} \overrightarrow{\mathrm{u}})=(\mathrm{pq}) \overrightarrow{\mathrm{u}} .
$$

10. If \vec{u} is any vector and k is any scalar then $|k \vec{u}| \equiv|k| \cdot|\vec{u}|$.

$$
50
$$

Proof of 1: Obvious from definition.
Proof of 2: If $\overrightarrow{\mathrm{u}}=[\mathrm{a}, \mathrm{b}], \overrightarrow{\mathrm{v}} \equiv[\mathrm{c}, \mathrm{d}], \overrightarrow{\mathrm{w}}=[\mathrm{e}, \mathrm{f}]$, then
$(\stackrel{\rightharpoonup}{\mathrm{u}}+\overrightarrow{\mathrm{v}})+\overrightarrow{\mathrm{w}}=([\mathrm{a}, \mathrm{b}]+[\mathrm{c}, \mathrm{d}])+[e, \mathrm{f}]$
$=[a+c, b+d]+[e, f]=[a+c+e, b+d+f]$
$=[a, b]+[c+e, d+f] \equiv[a, b]+([c, d]+[e, f])$.
Proof of 3: Let $\vec{u}=[a, b]$ and $\vec{O}=[0,0]$. Then
$\vec{u}+\vec{o}=[a, b]+[0,0] \equiv[a, b] \equiv \vec{u}$.
Proof of 4 : Let $\vec{u}=[a, b],-\vec{u}=[-a,-b]$. Then
$\stackrel{\rightharpoonup}{\mathrm{u}}+(-\overrightarrow{\mathrm{u}})=[\mathrm{a}, \mathrm{b}]+[-\mathrm{a},-\mathrm{b}]=[0,0]=\stackrel{\rightharpoonup}{0}$.
Proof of 5 : Let $\vec{u}=[a, b]$ and $\vec{v}=[c, d]$. Then
$\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}=\left[\mathrm{c}_{\mathrm{b}} \mathrm{b}\right]+[\mathrm{c}, \mathrm{d}]$
$=[a+c, b+d]=[c+a, d+b]$.
$=[c, d]+[a, b]$
$=\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}}$.
Proof of 6: Let $\vec{u}=[a, b]$ and $\vec{v}=[c, d]$. Then
$k(\vec{u}+\vec{v})=k([a, b]+[c, d])=k[a+c, b+d]$
$=[k(a+c), k(b+d)]$
$=[k a+k c, k b+k d]=[k a, k b]+[k c, k d]$
$=k[a, b]+k[c, d]$
$=k \vec{u}+k \vec{v}$.
Proof of $\overline{7}$: Let $\vec{u}=[a, b]$. Then
$k \stackrel{A}{u}=k[a, b]=[k a, k b]$. But if $k=1$, then
$[k a, k b]=[1 \cdot a, 1 \cdot b]=[a, b]$.
Proof of 8 : Let $\vec{u}=[a, b]$. Then
$(p+q) \vec{u}=(p+q)[a, b]=[(p+q) a,(p+q) b]$
$=[p a+q a, p b+q b]=[p a, p b]+[q a, q b]$
$=p[a, b]+q[a, b]$
$=\mathrm{p} \stackrel{\rightharpoonup}{\mathrm{u}}+\mathrm{q} \overrightarrow{\mathrm{u}}$.

Proof of 9: Let $\vec{u}=[\mathrm{a}, \mathrm{b}]$. Then

$$
p(q \vec{u}) \equiv p(q[a, b])=p[q a, q b]=[p q a, p q b]
$$

$$
=(p q)[a, b]
$$

$$
=(\mathrm{pq}) \stackrel{\mathrm{u}}{\mathrm{u}} .
$$

Proof of 10: Let $\vec{u}=[a, b]$. Then

$$
k \stackrel{u}{u}=k[a, b]=[k a, k b]
$$

Thus $|k u|=|[k a, k b]|=\sqrt{k^{2} a^{2}+k^{2} b^{2}}=|k| \sqrt{a^{2}+b^{2}}$. But $\quad|k| \cdot|\vec{u}|=|k| \cdot|[a, b]|=|k| \sqrt{a^{2}+b^{2}}$.

10-4. The Two Fundamental Theorems.
Theorem 2. One point in this proof is the assertion that if $k \vec{v}=\vec{O}$ then $k=0$. The students may have trouble following this and therefore we suggest that the following be discussed prior to the discussion of this theorem.

If $k \vec{v}=\overrightarrow{0}$, it and $\vec{v} \neq \overrightarrow{0}$ then $k=0$.
Proof: $k \vec{v}=\vec{O}$ means $k \vec{v}=\overrightarrow{0}=[0,0]$ also \vec{v} is some vector of the type $[a, b]$ where, by hypothesis, a and b are not both zero.

But : $\mathrm{k} \overrightarrow{\mathrm{v}}=\mathrm{k}[\mathrm{a}, \mathrm{b}]=[k a, k b]$, therefore $\quad[k a, k b]=[0,0]$
and it follows that $k=0$.
Incidentally, the occurrence in this proof of both the zero vector, $\overrightarrow{0}$, and the scalar quantity, 0 , should be carefully noted, and the difference should be made clear to the student.

${ }^{487} 5$

10-5. Geometrical Application of Vectors.

This section has two main topics. The first is that vectors can be manipulated according to most of the usual rules of algebra; the second is that certain problems of elementary geometry can be solved by such manipulations.

Each of the examples is worked out as an isolated problem. No hint is given about a general approach to any type of problem. However, there is a general approach which teachers may want to digcuss. Each problem can be solved by:

1. Choosing two directed line segments on non-parallel ines.
2. Expressing each of the other directed line segments in terms of the ones originally selected.

10-6. The Scalar Product of Two Vectors.
The scalar product is often called the inner product or dot product. We chose the terminology scalar product to emphasize that the result of this operation is a number (or scalar). However, great care must be exercibed so that the student does not confuse the soalar product with multiplication of a vector by a scalar.

To prevent a careless student from mistaldng
$\vec{a} \cdot \vec{b}$, a scalar product of two vectors, for x, y, a product of two numbers, we recommend that the dot not be used for the product of two numbers, if there is a possi= bility of confusion.

The symbol $\stackrel{\rightharpoonup}{0}$ was used to represent the zero vector. Students should be cautioned not to use the single letter 0 to name a vector as it may lead to unnecessary errors. Moreover it should be made quite clear that if we have $\stackrel{\rightharpoonup}{u} \cdot \stackrel{\rightharpoonup}{v} \equiv 0$, the result is a scalar and is different from $\vec{u}=k \stackrel{\rightharpoonup}{v} \Rightarrow \stackrel{\rightharpoonup}{0}$.

$$
\begin{aligned}
& \text { Proof of Property } 3 . \\
& \text { Let } \overrightarrow{\mathrm{u}}=[a, b] ; \overrightarrow{\mathrm{w}}=[c, d], \\
& \therefore \overrightarrow{\mathrm{u}} \cdot(\mathrm{k} \overrightarrow{\mathrm{w}})=[\mathrm{a}, \mathrm{~b}] \cdot[k c, k d] \\
&=a k c+b k d=(k \dot{u}) \cdot \frac{\stackrel{\rightharpoonup}{w}}{} \\
&=k(a c+b d) \\
&=k(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{~W}}) .
\end{aligned}
$$

Proof of Property 4.

$$
\text { Let } \begin{aligned}
\overrightarrow{\bar{u}} & =[\bar{a}, b] \\
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}} & =[\overline{\mathrm{a}}, \mathrm{~b}] \cdot[\mathrm{a}, \mathrm{~b}] \\
& =a^{2}+\mathrm{b}^{2} \\
& =|\overrightarrow{\mathrm{u}}|^{2}
\end{aligned}
$$

The scalar product enriches vector algebra to the point that it can be used to prove many more geometric theorems. In Problem 19 of the sample test questions the student 1 s asked to prove the diagonais of a rhombus are perpendicular to one another. The teacher may wish to present this in clads to show an application of the scalar product to geometric proofs.

The student should be made aware of the fact that the scalar product does not obey the law of closure, He might well be asked to give other examples which do not obey the law of closure. Some examples of this are:

1. The product of two negative numbers is not in the set of negative numbers.
2. The product of two irrationals is not always irrational.
3. The region formed by two triangles with a side In common is not always a tiangular-region.
$1489^{\circ} 3$

Leaving the world of methematics we have,
4. Combining two gases does not always produce a gas. Hydrogen and oxygen may combine to form water.

Illustrative Test Items for Chapter 10

1．If A, B, C are three collinear points such that B is between A and C ，list all the directed line segments they determine．
2．If A, B, C are the points $(4,2),(3,7),(-2,1)$ ， respectively，list all the vectors represented by the directed segments joining these points．
3．If $\overrightarrow{\mathrm{a}}$ is $[3,7]$ and $\overrightarrow{\mathrm{b}}$ is $[-2,1]$ find
（a） $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$ ．
（b）$\vec{a}-\vec{b}$ ．
（c）首．它．
＊（d）$|\vec{a}|$ ．
（e） $\mid \vec{a}+$ 市
4．If $A B C D$ is a parallelogram，as indicated below，

（a）$(\overline{A ; B}) \doteq$ ？
（b）$(\overrightarrow{A, D}) \doteq$ ？
（c）$(\overline{\mathrm{D}, \stackrel{\mathrm{A}}{ })} \stackrel{\text { ？}}{ }$
（d）$(\overline{\mathrm{D}, \mathrm{C}})+(\overrightarrow{\mathrm{C}, \overrightarrow{\mathrm{B}}}) \geqslant$ ？
（e）$(\overrightarrow{D, \bar{C}})+(\overrightarrow{C, B})+(\overrightarrow{B, \stackrel{A}{A}}) \doteq$ ？
5．What is the negative of $[-2,3]$ ？
6．What is the vector \vec{f} such that for all $\overrightarrow{\mathrm{v}}$ we have $\vec{v}+\overrightarrow{\mathrm{f}}=\overrightarrow{\mathrm{v}}$ ？
7．If $\stackrel{\rightharpoonup}{a}=(2,1], \vec{b}_{e}=[3,6], \vec{c}=[-1,-3]$ ，find
（a）$\frac{\dot{a}}{a}+\vec{b}+\vec{c}$ ．
（b）$|\vec{a}+\vec{b}+\vec{c}|$ ．

4915
8. Determine x and y so that
(a) $[5,6]+[x, y]=[3,2]$.
(b) $[-2,3]+[x, y]=[4,5]$.
(c) $[5,2\}+[x, y] \equiv[0,0]$.
(d) $[9,7]+[x, y]=[14,-3]$.
(e) $[-6,-2]+[x, y] \equiv[-6,-2]$.
9. Determine x and y so that $x[2,-3]+y[3,-1]=[5,3]$.
10. If $\overrightarrow{\mathrm{a}}=[2,1]$ and $\overrightarrow{\mathrm{b}}=[3,6]$, find $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$.
11. If $A M \cong M B$, must $(\overline{\mathrm{A}, \mathrm{M}}) \doteq(\overline{\mathrm{M}, \mathrm{B}})$?

Explain your answer.
12. If $A M_{M}=M B$, must $|\overrightarrow{A M}|=|\overrightarrow{M B}|$?

Explatin your answer.
13. If $\vec{a}=[3,4]$ and $\vec{b}=[6,8]$,
$\begin{array}{lll}\text { (a) express } & \vec{b} & \text { in terms of } \vec{a} \text {; } \\ \text { (b) express } \overrightarrow{\mathrm{a}} & \text { in terms of } \overrightarrow{\mathrm{b}}\end{array}$
14. Determine x and y so that $[5,6]+[-2,3]+[x, y] \equiv[6,4]$.
15. What conditions must hold for two directed line segments to be equivalent?
16. Show that $P(0,0), Q(6,8), R(15,18)$ and $S(9,10)$ are the vertices of a parallelogram.
17. Show that $\vec{P}(2,1), Q(5,3), \vec{R}(3,6), S(0,4)$ are the vertices of a rectangle.
18. Show that the 1 ine determined by $P(6,6)$ and $Q(8,0)$ is perpendicular to the line determined by $R(3,5)$ and $S(9,7)$.
19. Prove that the diagonals of a rhombus are perpendicular to each other.
20. If $A B C$ is a triangle and D, E are points on $\overline{A B}$ and $\overline{A C}$ respectively such that $A D=\frac{1}{3} A B$ and $A E=\frac{1}{3} A C$, prove that $\overline{\mathrm{DE}} 18$ parallel to $\overline{\mathrm{BC}}$ and $D E=\frac{1}{3} B C$.

A Note on Chapters 11 and 12.
There are several adaptations that the teacher might make in using the present text without loss of continuity of subject matter. Four alternate plans are outined briefly for consideration by the teacher. Each teacher. should study the plans cerefuliy and decide which one, if any, is more desirable than the present sequence of the text for use with a particular class.

Plan A
Sections 12-1 through 12-5, Sections 12-1 through 12-5,
11-1 through 11-12,
12-6 through 12-9.

Plan C
Sections 11-1 through 11-3, Sections 11-1 through 11-8,
12-1 through 12-5, 12-1 through 12-9,
11-4 through 11-8, $\quad 11-9$ through $11-12$.
12-6 through 12-9;
\rightarrow 11-9 through 11-12.

Any one of the above plans may be modified by placing Section ll-3 immediately before Section 11-8.

Teachers who are pressed for time should consider omitting entirely the sections (11-6 through 11-9) on polyhedrons, to gain time for Chapter 12. In any case, Sections 12-1 through 12-5 should not be omitted.

- This chapter treats the conventional sulbject matter of polygons and polyhedrons. The viewpoint is essentialiy that of Eucild, and many of the theorems in this chapter have proofs similar to the proofs, of corresponding theorems in other geometry texts; However, therer are several differences. First, the introduction of the term polygonal-region; and second, the study of area by postulating the properties of area rather than by deriving the properties from a definition of area based on the measurement process. Actually both of these treatments are implicit in the conventional treatment. We have only brought them to the surface, sharpened, and clarified them. After this basis is laid, our methods of proof are simple and conventional. However, the placement of topics and the order of theorefs hay differ from the conventional sequence.

In the work with polygonal-regions we are restricting ourselves to the relatively simple case of a polygonalregion whose boundary is rectilinear, that is, whose boundary $1 s$ a union of segments. Our theory for polygonal-regions will be extended in a later chapter to include more general configurations such as circles.

Althoug' we have previously defined polygon, convex polygon, $a n$, he interior of a convex polygon (see Section 4-12 of text), difficulty arises when an attempt is made to define the interior of a non-convex polygon. Since any triangle is a convex polygon, our definition of polygonal-region avoids this difficulty. We merely take the simplest and most basic type of region, the triangular-region, and use it as a building block to define a polygonal-region.

$$
495 \quad 59
$$

You should also note that we have not defined region as a single word, and that our use of the term polygonalregion differs from the usual mathematical usage which requires that a region be connected or "appear in one piece." Since our definition of a polygonal-region does. not require cormection, we avoid confusion by placing a hyphen between the words polygonal and region.

The following plctures illustrate three polygonalregions which represent:
(1) The union of two triangular-regions with no points in common;
(2) The union of two triangular-regions with one point I in common; and
(3) The union of two triangular-regions with a segment, in common.

Figure
Figure 1
1

Gur definition of polygonal-region, which allows a tisconnected portion of the plane, implies that the boundary of a polygonal-region is not necessarily a polygon. This should cause no trouble; it simply means that our theory has broader coverage than the usual mathematical use of the word,

In many geometry texts the theorem and corollaries pertaining to the sum of the measures of the angles of a polygon follow Theorem 6-9. "We did not include this material in Chapter 6.because our primary objective in Chapters $1=7$ was to develop a sequence of theorems essential to the establishment of the Pythagorean Theorem, which would permit us to make eariy use of a coordinate system in a plane. This was not essential to that development. Since the theorem on the sum of the measures of the angles of a polygon and the subject of areas require an understanding of polygonal-regions, we achieve unity of subject matter by treating polygonal-regions, the sum si of the measures of the angles of a polygon, and the area of polygons in the same chapter.

Prior to Theorem ll-1, there is a set of exploratory problems which should help the students understand the proof of this theorem. The answers to the se problems are given below:

Number of sides of convex polygon	Number of diagonals from A	Number of triangular regions	Sum of measures of angles of the polygon
4	1	2	$2 \times 180=360$
5	2	3	$3 \times 180=540$
6	3	4	$4 \times 180=720$
7	4	5	$5 \times 180 \equiv 900$
8	5	6	$6 \times 180=1080$
n	$n=3$	$n-2$	$(n-2) 180$

Sometimes in a mathematical discussion we give an explicit definition of area for a certain type of figure. For example, the area of a rectangle is the number of unit squares into which the corresponding rectangular-region can be separated. This is a difficult thing to do in general terms for a wide varlety of figures. Thus the suggested definition of area of a) rectangle (rectangular= region) is applicable only if the rectangle has sides whose lengths are integers. Literally how many unit squares are contained in a rectangular region whose
dimensions are $\frac{1}{2}$ and $\frac{1}{3}$? The answer is none! Clearly the suggested defifition must be modified for a rectangle with rational dimensions. To formulate a suitable definition when the dimensions are irrational numbers, for example $\sqrt{2}$ and $\sqrt{3}, 1$ still more complicated and involves the concept of limits. Furthermore, it would also be necessary to define the area concept for triangles, quadrilaterals, circles, and so on. The complete study of area along these lines involves integral calculus and finds-its culmination in the branch of mathematics called the Theory of Measure.

Since this is too sophisticated an approach for our purposes, we do not attempt to give an explicit definition of a polygonal-region by means of a measurement process using unit squares. Rather we study area in terms of its basic properties as stated in Postulates $26,27,28,29$. On the basis of these postulates we prove the familiar formula for the area of a triangle. Consequentiy we get an explicit procedure for obtaining areas of triangles and of polygonal-regions in general.

Some remarks on the postulates. Observe that our. treatment of area is similar to that for distance and the measure of angles. Instead of giving an explicit definition of area (or distance, or angle measure) by means of a measurement process, we postulate its basic properties which are intuitively familiar from study of the measurement process.

Postulate 26 is analogous to Postulate 10 for distance. The "given polygonal-region" plays the same role as the unit-pair. However, the difference lies in the fact that in area we soon restricted ourselves to one unit of area, which does not necessitate an additional postulate for a change of the unit of area. Postulate 26 can also be considered an analog of Postulate 16 for angles.

Postulate 27. is analogous to the definitions of betweenness for points on a line and betweenness for angles. It is a precise formulation, for the study of f aręa, of the vague statement "The whole is the sum of its. parts." This statement is open to several objections. It seems to mean that the measure of a figure is the sum of the measures of its parts. Even in this form it is not acceptable, since the terms "figure" and "part" need to be sharpened in this context, and it permits the "parts" to overlap. Postulate 27 makes clear that the "figures" are to be polygonal-regions, the "theasures" are areas, and that. the "parts" are to be polygonal-regions whose union is the "whole" and which do not overlap.

In Chapter 3 we defined congruence of segments in terms of segments having the same length. Here, our situation is different. We already have the notions of congruence, and we try to make our idea of area come into line with that of congruence. Hence, we formulate then the triangular regions associated with them have the same area with respect to any given unit of area.

These three postulates sedm to give the essential properties of area, but they are not quite complete. We pointed out that Postulate 26 presupposes that a unit has been chosen, but we have no way of determining such a unit, that is, a polygonal-region whose area is unity. For example, these postulates permit a rectangle of dimensions 3 and 7 to have area unity.

Postulate 29 takes care of this by guaranteeing that a square whose edge has length 1 shall have area 1 . In addition, Postulate 29 gives us an important basis for further reasoning by assuming the formula for the area of a rectangle.
ice we are introducing a block of postulates concerning area, this may be a good time to remind your students of the significance and purpose of postulates.

They are precise formulations of the basic intuitive. Judgments suggested by experience, from which we, derive . more complex principles by deductive reasoning.

To make the postulates on area more significant for the studentis discuss the measuring process for area concoetely; using aimple figures like rectangles or right triangles with integral or rational dimensions. Have them subdivide regions into congruent unit squares, so that the students get the idea that every "figure" has a uniquely determined area number. \mathcal{H} - Then present the postulates as, simple properties of the area number which can be verified concretely in diagrams.

The problems in Sgetion $11-4$ emphasize the relations that exist when a set of rectangles have equal bases, equal altitudes, or equal areas. They are introduced early In the study of area and serve as exploratory problems for the development of the theorems in Sections 11-6 and 11-7.* Similar exploratory problems should"be included in daily revidws along with the development of the theorems in Section 11-5.

The formulas for the area of triangles and quadri= laterals are developed in junior high achool mathematics courses and most of them are familiar to high school students. We develop them in rapid sequence so that the thread of continuity is maintained in proceeding from one theorem to another. Teachers of superior students wili probably want to teach these theorems in a single day. Teachers who need to use a slower pace will find the problems in the Problem Set organized in a sequence which will make convenient day by day assignments relating to any specific theorem or combination of theorems. However, 1t would be helpful to students in these classes if they would reread the section after all formulas have been developed in order that they can more fully appreciate the continuous thread of development.

6\$500

Large cardboard models of triángles and quadrilàterals should be helpful in demonstrating the various theorems in this section. Use the figures accompanying the theorems as patterns in constructing the models.

After postuilating the area of a rectangle we proceed to develop our formulas for areas in the following manner: right triangle, triangle, rhombus, parallelogram and trapezold. The right triangle permits us to work with any triangle. This in turp gives us the machinery to find the area of any polygonal-region by chopping it up into a number of triangelar regions and finding the sum of the areas of these triangular regions. The proofs of these theorems illustrate the fact that Postulate 27 is a sort of separation theorem, in which a given region R is the union of the regions R_{1} and R_{2}.

The problems in Problem Set 11-4 following the postulate for the area of a rectangle give pupils early opportunity to explore the relations that exist for sets of rectangles with equal bases, equal altitude, and equal area. Students should be given similar numerical exercises for the triangle and the parallelogram, and questions should be asked which lead students to make the generalizations which are proved as theorems in Section 11-6. Visual aids such as sets, of cardboard triangles with equal bases, equal altitudes, and equal areas should help students understand these felfations.

Some of the problems in Problem Set 11-4 deal with similar rectangles. A procedure similar to that used for developing the generalizations in Section 11-6 should be used in developing the generalizations in Section 11-7. By means of student drawings and informal discussions students should come to the following understandings:
(1) Corresponding linear measurements of similar polygons have the same ratio, and (2) Corresponding areas of similar polygons have the same ratio as the squares of any two corresponding linear measures.

$$
6_{u}^{+}
$$

In conventional texts the area of a regular polygon - is developed in the chapter on circles. In order to unify the work on area of polygons, we include it at this time. Hence our definitions of center, radius, and apothem must be independent of inscribed and circumscribed circles. Theorem 11-8 serves as basis for these definitions,
-
The work in the remainder of the chapter is informal in nature. Models, experiments, and exploratory problems serve as the basis, for student discovery of many important theorems. By this time students should realize that this is not a part of our formal development of geometry, but an informal extension of two dimensional concepts into three dimensional space. Students should be encouraged to make models of the regular polyhedrons in atudying Euleris famous formula and Theorem 11-19.

The exploratory problems in Section 11-10 help the student to discover the ideas embodied in Theorems 11=17 and 11-18. They also help the student to visualize the difference between congruence and symmetry of models in the physical world. The solutions to the problems are as fotlows:

1. $8 ; 90$.
2. Yes; yes; yes; no; the vertex would lie in the plane of the determining polygon.
3. No, same reason as Problem 2.
4. No, same reason as Problem 2.
5. Less than 360 .
6. Yes.
7. Yes.
8. No.
9. They exhibit a correspondence such that the corresponging face angles are congruent, but they are arranged in "reverse" order. Common examples of symmetrical models in the physical world are a pair of shoes, a pair of gloves; and the reverse plan of a house.
10. No; yes.

粮

Theorems $11-17$ and 11-18 are interesting to students; and the proofs of the theorems are easy to demonstrate to the class when large physical models are used in the demonstration. However, the notation in writing these proofs becomes very involved. For this reason the proofs are omitted from the text. A sketch of the proof of each is included in the Commentary for teachers who wish to use them in class demonstrations,

Before the details of the Proof of Theorem 11-17 can be supplied, you will need two theorems in order to establish the following property for triangles: In $\triangle V B H$ and $\triangle \mathrm{VOH}$, if $\mathrm{VB}=\mathrm{VG}$ and $\mathrm{BH}>\mathrm{GH}$, then $m \angle B C H>m \angle G V H$: These two theorems will be designated as Theorem 11-17A and Theorem 11-17B. However, many teachers may wish to do only Theorem $11-17 \mathrm{~B}$ in an informal manner and thus avoid a break in the continuity of the subject matter.
l

Prisms and pyramids are introduced and problems for finding the area of the lateral surface and the area of the total surface are included. The volume of prisms and pyramids is fiscussed in the appendix. In working with * prismis, pyramids, and frustums, teachers will find that large models similar to those pictured in the text will be useful in demonstrating theorems and explaining problems in the problem set These models can easily be constructed from various media such as $D-s t i x$, balsa wood, pieces of wire, and cardboarf.

The answers to the experiment in Section $11-11$ are:

1. Perimeteri; base; lateral edge; the perimeter of the base; the length of a lateral edge.
2. Yes; the lateral area is the sum of the areas of the parallelograms, each of which has a base equal to a lateral edge and the sum of whose altitudes is RS ; right section.

Theorem 11-17A. If two sides of one triangle are equal respectively to two sides of another triangle, but the measures of the included angles are unequal, then the sides opposite the unequal angles are unequal in the same order.

Proof: We are given $\triangle A B C$ and $\triangle D E F$ with $A B=D E$; $A C=D F$; and $m \angle B A C>m \angle D$. We are required to prove. $\mathrm{BC}>\overline{\mathrm{EF}}$.

63

504

Consider $\overrightarrow{A F}$ so that $m \angle B A F) \equiv m \angle E D F \quad$ and let $\mathrm{AF}^{\prime}=\mathrm{DF}=\mathrm{AC}$, Then $\triangle \mathrm{BAF}, \cong \triangle \mathrm{EDF}$ by S.A.S. and $\mathrm{BF}^{\prime}=\mathrm{EF}$.
a The bisector of $\angle F^{\prime A C}$ intersects $\overline{\overline{B C}}$ at G. Then $B G+G C \equiv B C^{*}$, and $\triangle A G F^{\cong} \cong \triangle A G C^{*}$. by S.A.S.

Therefore, $F^{\prime} G=C G$.
But $B G+G F^{\prime}>B F^{\prime}$ by the Triangle Inequality Theorem.

Therefore, $B G+G C>E G$, and $B C>E F$.

Theorem 11-17B. If two sides of one triangle are equal respectively to two sides of another, but the third sides are unequal, then the measures of the angles opposite the unequal sides are unequal in the same order.

Proof: We are given $\triangle \mathrm{ABC}$ and $\triangle E D F$ with $A B=\mathrm{DE}$; $A C=\overline{D F}$, and $B C>E F$. We are required to prove that $m \angle A>m \angle \bar{D}$.

We will use the indirect method to prove $m \angle A>m \angle D$. The possibilities are:
(1) $m \angle A=m \angle D ;(2) \quad m \angle A<\pi \angle D ;(3) m \angle A>m \angle D$.

If $\quad \angle A=m \angle D$, then $\triangle A B C \cong \triangle \overline{D E F}$, and $B C=E F$.
But $B C \neq E F$. Therefore $m \angle A>m \angle D$.
If $m \angle A<m \angle D$, then by the previous theorem $\mathrm{BC}<\mathrm{EF}$. But BC 13 not less than EF , and hence $m \angle A \quad 18$ not less than $m \angle D$.

Therefore, $m \angle A>m \angle D$.

$$
=(i)
$$

Theorem 11-17. The sum of the measures of any two face angles of a trihedral angle is greater than the measure of the third face angle.

We give only a sketch of the proof of this theorem. Let the given trinedral angle be $\angle V-A B C$. Suppose that $\angle A V C$ has the greatest measure of any of the three face angles: If we can show that $m \angle A V B+m \angle B V C>m \angle A V C$, then the theorem is proved. Why?

In the interior of $\angle A V C$, consider the point G such that $m \angle A V G=m \angle A V B$ and $V G \equiv V B$. Since $\triangle A V G \cong \triangle A V B$, we conclude that $A G=A B$. Let H be the intersection of plane $\overline{A B G}$ and ray $\overrightarrow{\mathrm{VC}}$. Then $\mathrm{BH}>\mathrm{GH}$. The next step is to show that $m \angle B V H>m \angle G V H$, and finaliy we conclude that $m \angle A V B+m \angle B V C>m \angle A V C$.

Theorem 11-18. The sum of the measures of the face angles of any convex polyhedral angle is less than 360 .

Proof: We are given polyhedral $\angle V-P_{1} P_{2} P_{3} \ldots P_{n}$. We are required to prove $m \angle P_{1} \overline{V P}_{2}+\ldots \angle \mathrm{P}_{2} V \bar{P}_{3}+\ldots+$ $m \angle \bar{P}_{n} \overline{V P}_{1}<360$.

Let, aplane intersect the faces of the polyhedrai angle to form section $Q_{1} Q_{2} Q_{3} \ldots Q_{n}$. Take a point' 0 in the interior of $Q_{1} Q_{2} Q_{3} \ldots Q_{n}$ and draw segments from 0 to each of the vertices of the polygon. These segments form with the sides of the polygon n triangles with a common vertex 0 . We will designate these triangles as the "O triangles." Therefore, the sum of the measures of the angles of the "O triangles" 15 180n.

We wili designate the triangles with vertex v as the "V triangles." There are n "V triangles." Hence the sum of the measures of the angles of the "V .triangles" is 180n.

In trihedral $\angle Q_{1}-Q_{n 1} V Q_{2}, m \angle Q_{n} Q_{1} V+m \angle V Q_{1} Q_{2}>m \angle Q_{n} Q_{1} Q_{2}$
In trinedral $\angle Q_{2}-Q_{1} V Q_{3}, m \angle Q_{1} Q_{2} V+m \angle V Q_{2} Q_{3}>m \angle Q_{1} Q_{2} Q_{3}$ etc.

Therefore, the sum of the measures of the base angles of the "V triangles" is greater than the sum of the measures of the base angles of the "O triangles," and the sum of the measures of the vertex angles of the "V triahgles" is less than the sum of the measures of the vertex angles of the " 0 -triangles."

But the sum of the measures of the vertex angles of the "O trlangles" $1 s 360$.

Therefore, the sum of the measures of the vertex angles of the "V triangles" is less than 360 , or
$m \angle \mathrm{P}_{1}{ }^{*} \mathrm{VP}_{2}+\mathrm{m} \angle \mathrm{P}_{2} \mathrm{VP}_{3}+\ldots+\mathrm{m} \angle \mathrm{P}_{\mathrm{n}} \mathrm{VP}_{1}<360$.
The volume of prisms and pyramids is discussed in the appendix,

Illustrative Test Items for' Chapter 11

A. Measure of the Angles of a Polygon.

Each of the questions or incomplete statements in 1-12 15 followed by three or four suggested answers. Choose the answer you consider correct.

1. The measure of each interior angle of a regular . octagon 1s: (a) 120 , (b) 108 , (c) 135 , (d) 45 .
2. If the sum of the measures of the interior angles of a polygon is 720 , the number of sides of the polygon is: (a) 8 , (b) 6 , (c) 5 , (d) 4 .
3. If the measure of each interior angle of a polygon is 165 , the number of sides of the
~ polygon 1s: (a) 10 , (b) 12 , (c) 15 , (d) 24 .
4. If the measure of each exterior angle of a regular polygon is x, the number of sides of the polygon 1s: (a) $\frac{360}{x}$, (b) $180(x-2)$, (c) $\frac{180(x-2)}{x}$, (d) $180-\frac{360}{x}$.
5. The sum of the measures of the interior angles of a polygon of nine sides 1s: (a) 1620, (b) 360 , (c) 1080 , (d) 1260 .
6. If a regular polygon has ten sides, the measure of each exterior angle is: (a) 36 , (b) 144 , (c) 45 , (d) 135 .
7. If the sum of the measures of the interior angles of a polygon is 1620, the number of sides of the polygon 1s: (a) 7 , (b) 9 , (c) 11 , (d) 13 .

$$
50 \% 2
$$

8. If the sum of the measures of sexen angles of an octagon is 980 , the measure of the eighth angle is: (a) 135 , (b) 140 , (c) 100 (d) $122 \frac{1}{2}$.
9. Consider a set of polygons of n sides. As n is replaced by greater integers, the sum of the measures of the interior angies: (a) increases, (b) decreases, (c) remains the same.
10. Consider a set of polygons of n sides. As \Rightarrow $1 s$ replaced by greater integers, the sum of t : measures of the exterior angles: (a) increases, (b) decreases, (c) remains the same
11. Consider a set of regulsp po+ysons of n sides. As n is replaced by greater integers, the measure of each exterior angle: (a) increases, (b) decreases, (c) remains the same.
12. Consider a set of regular polygons of n sides. As n is replaced by greater integers, the measure of each interior angle: (a) increases, (b) decreases, (c) reialns the same.

B. Area Formulas.

1. The perimeter of a square is 20. Find its area.
2. The area of a square is n : Find its side.
3. Find the area of the figure in terms of the lengths indicated.

4. The base of a rectangle is three times as long. as the altitude. The area is 147 square inches. Find the base and the altitude.
5. The area of a triangle is 72 . If one side is 12 , what is the altitude to that side?

$$
\because
$$

6. In the figure $W Y=X Y$ and $W Z=X Z=W X \neq 8$
and $Y Z=12 \cdot$ Find the area of WZXY .

7. RSTV is a paralielogram. If the lower case letters in the drawing reprosent lengths, give the area of:
(a) Parallelogram RSTV.
(b) \triangle STU .
(c) Quādrilateral VRUT.

8. Show how a formula for the area of a trapezoid maȳ be obtained from the formula $A=\frac{1}{2} b h$ for the area of a triangle.

9. In surveying field $A B C D$ shown here a surveyor laid off north and south line NS through B and then located the east and west innes ${ }^{4} \overrightarrow{\mathrm{CE}},{ }^{4} \overrightarrow{\mathrm{DF}}$ and ${ }^{4} \overrightarrow{\mathrm{AG}}$. He found that $C E=6$ rods; $\mathrm{DF}=14$ rods, $\mathrm{AG}=12$ rods, $\mathrm{BG}, 7$, rods, BF E 11 rods, $F E=5$ rods. Find the area of the field.

Yq
C. Comparison of Areas.

1. Given: ABCD is a trapezoid. Diagonais $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersect at 0 .

Prove: Area $\triangle A O D$
2. In this figure $P Q R S$ is a parallelogram with $P T=T Q$ and $M S=S R$. In (a) through (e) below compare the areas of the two figures 11sted.
(a) Parallelogran SRQP

+ and $\triangle S Q R$.
(b) Parallelogram SRQP and $\triangle M T R$.
(c) $\triangle P N S$ and $\triangle M T R$.
(d) $\triangle S Q R$ and $\triangle S \overline{P R}$.
(e) $\triangle M T \bar{R}$ and $\triangle \overline{R Q T}$.
D. Miscellaneous Problems.

$$
=\text { Area } \triangle B O C \text {. }
$$

3. ABCD is a rhombus with $A C=24$ and $A B=32$.
(a) Compute its area.
(b) Compute the length of the altitude to $\overline{\mathrm{DC}}$.

4. Find the area of a triangle whose sides are $9^{\prime \prime}$, 12^{11}, and 15^{11}.
5. ABCD 1 s a parallelogram with aititude $\overline{\mathrm{DE}}$. Find the area of the parallelogram if:
(a) $\mathrm{DE}=2 \frac{1}{2}$ and $A B=6 \frac{1}{3}$.
(b) $A B=10, A D=4$,
and $m \angle A=30$.

6. Find the area of an isosceles triangle which has congruent sides of length 8 and base angles of 30°.
者
E. Coordinates.
7. The coordinates of the vertices of a triangle are: $A(-2,-3), B(4,5)$, and $C(-4,1)$. Find the area of the triangle.
8. The coordinates of the vertices of a quadrilateral are: $A(3,2), B(0,6), C(-3,2)$ and $\mathrm{D}(0,-2)$.
(a) What is the name of the quadrilateral? Explain.
(b) Find the area of the quadrilateral.
9. The coordinates of the vertices of \triangle RST are $(-5,1),(-3,-3)$, and $(4,6)$. Find the area of $\triangle R S T$, Hint: The area can be found by subtracting areas of right triangles from the area of a rectangle.
10. Prove the area of $\triangle A B C$ is $\frac{a(t-s)+b(r-t)+c(s-r)}{2}$ where $A=(a, r), B=(b, s)$, and $C \equiv(c, t)$. Hint: Find three trapezoids in the figure.

F. Area Relations.
11. Two similar polygons have corresponding sides of lengths 5 and 9 . The area of the larger is 567 . What is the area of the smaller?
12. If the ratio of the bases of two parallelograms is $2: 3$, and the ratio of the corresponding altitudes is $3: 2$, the ratio of the areas is
\qquad .
13. Two triangles have equal areas. If the ratio of the bases $1 s$, and 3 , then the ratio of the corresponding aititudes is \qquad .
14. If the side of one square is double the side of a given square, the area of the square is
\qquad the area of the glven square.
15. If the side of one square is double the side of a given square, the perimeter of the square is
\qquad the perimeter of the given square.
16. Two triangles have equal bases. If the ratio of the aititudes $182: 3$, then the ratio of the areas is \qquad .
17. If the area of a square is double the area of a given square, then each side of the square is
\qquad a side of the given square.

$$
7
$$

8. What is the ratio of the areas of two similar triangles whose bases are 3 inches and 4 inches? x inches and y inches?
9. A side of one of two similar triangles is : 5 times the corresponding side of the other. If the area of the first 136 , what is the area of the second?
10. In the figure if \bar{H} is the midpoint of $\overline{A F}$ and K is the midpoint of $\overline{\mathrm{AB}}$, the area of $\triangle \mathrm{ABF}$ is how many times as great as the area of $\triangle \mathrm{AKH}$? If the area of $\triangle A B F$ 1s 15 ,
 find the area of $\triangle A K H$.
11. The area of the larger of two similar triangles is 9 times the area of the smaller. A side of the larger is how mafy times the corresponding side of the smaller?
12. The areas of two similar triangles are 225 sq. in. and 36 sq . in. Find the base of the smaller if the base of the larger is 20 inches.
G. Regular Polygons.

9

1. Find the area of a regular polygon if the perimeter of the polygon is 36 inches and the apothem is $3 \sqrt{3}$ inches.
2. The apothems of two equilatenal triangles are 3 and 7 . What $1 s$ the ratlo of the sides? the perimeters? the areas?
3. Find the area of a regular hexagon if the radius of the hexagon is 10 . ;

1

$$
\begin{gathered}
514 \\
10
\end{gathered}
$$

8. What is the ratio of the areas of two similar triangles whose bases are 3 inches and 4 inches? x inches and y inches?
9. A side of one of two similar triangles is 5 times the corresponding side of the other. If the area of the first is 6 , what is the area of the second?
10. In the figure if \bar{H} is the midpoint of $\overline{A F}$ and K is the midpoint of $\overline{A B}$, the area of $\triangle A B F$ is how many times as great as the area of $\triangle A K H ?$ If the area of $\triangle A B F$ 1: 15 ,
 find the area of $\triangle A K H$.
11. The area of the larger of two similar triangles is 9 times the area of the smaller. A side of the larger is how mafy times the corresponding side of the smaller?
12. The areas of two similar triangles are 225 sq.
in. and 36 sq . in. Find the base of the smaller if the base of the larger is 20 inches.
G. Regular Polygons.
13. Find the area of a regular polygon if the perimeter of the polygon is 36 inches and the apothem is $3 \sqrt{3}$ inches.
14. The apothems of two equilaterlal triangles are 3 and 7 . What 1 . the ratio of the sides?
the perimeters? the areas?
15. Find the area of a regular hexagon if the radius of the hexagon is 10 .

$$
\begin{aligned}
& 5 \pm 4 \\
& \hdashline 3
\end{aligned}
$$

7. Find the area of the lateral surface of the frustum of a regular pentagonal pyramid. Each edge of the upper base is 12 and each edge of the lower base is 14 * The altitude of one of the faces 6 the frustum is
8. Find the area of
 the lateral surface.
9. The edges of one cube are double those of another.
(a) What is the ratio of the sums of their edges?
(b) What is the ratio of their total surface areas?

The depth of treatment of the material of this chapter must depend upon factors which inciude the caliber of class and the time remaining in the school year., Generally speaking, there are three levels of treatment: (a) the minimal, which strives only for basic appreciation of the relations between angles and arcs; of tangents, chords, and secants; and of the measures of sector area and arc length; (b) the average treatment, which adds to the minimal some deeper analysis of the above relations by use

* of coordinates; and (c) the thorough treatment, which involves considering every problem in the chapter. The minimal treatment is recommended only where time permits nothing more; the thorough treatment is strongly recommend ed for high-ability classes.

Observe that in the proof of Theorem 12-1 we do not assert that $\left((x, y, z): x^{2}+y^{2}+z^{2}=r^{2}\right.$ and $z=0$) is the same set of poin'ts as $\left\{(x, y): x^{2}+y^{2}=r^{2}\right\}$. Te make such an assertion would be to say that a set of ordered triples of numbers is a set of ordered pairs of numbers! It would be correct to say that the following two sets are equal:

$$
\begin{aligned}
& \left\{(x, y, z): x^{2}+y^{2}+z^{2}=r^{2} \text { and } z=0\right\} \\
& \left\{(x, y, 0): x^{2}+y^{2} \equiv r^{2}\right\}
\end{aligned}
$$

and this is, in fact, what we asserted when we "recognized" $\left\{(x, y, 0): x^{2}+y^{2} \equiv r^{2}\right\}$ to be the set of points in the xy-plane given by $\left\{(x, y): x^{2}+y^{2}=r^{2}\right\}$.

The equations of circie and aphere developed in the text keep the centers at the origin. In the problem set that follows, notably in Problems 4, 5, 18, equations of circles or spheres whose centers are not at the origin are introduced. This is not a difficult concept and should be part of the average treatment.

In the minimal treatment, Theorem $12-4$ and its corollaries may be asserted without proof. In the average treatment, the teacher should lead the class through the proof of one of the cases of the theorem. All classes should understand the proof of Theorem 12-5.

Note in the proof of Theorem 12-4 the assertion $\ell \equiv\{(a, \bar{y})]$, We ask that, in this chapter, the curly brackets be taken to signify sets of points rather than sets of ordered paifs (triples) of numbers. In other words, we $a s k$ that $\{(a, y)\},\{(x, y): x \equiv a\}$, [($a, y): y$ real] and $[(x, y): x \equiv a, \dot{y}$ reai $\}$ all be read alike, as the set of all points whose coordinates are ordered pairs of real numbers such that the first number is a and the second is not restricted.

Note that our definition of tangent circles requires therf to be coplanar. Noncoplanar circles can, of course, intersect in a single point. However, we have chosen not to apply the word "tangent" in such cases. In other texts, tangent circles may be defined in such a way as not to require them to be coplanar.

Some teachers may search the text: In vain for a method of "constructing" a tangent to a given cirole from a given point outside the olrcle. It may be useful and appropriate at some point to demonstrate, not how to "construct" the tangent, but how to find the coordinates of the point of tangency. A sample of such a demonstration is here indicated: Choose a coordinate system such that 0 , the center of the given circle has coordinates $(0,0)$ and A, the given point, has coordinates $(a, 0)$. Then, P, the point of tangency $\frac{y}{y}$ must have coordinates (x, y) such that $\frac{y}{x} \cdot \frac{y}{x-a}=-1$ and $x^{2}+y^{2}=r^{2}$. That $1 s, \frac{m}{\overline{O P}} \cdot \frac{m_{\overline{A P}}}{\Rightarrow}-1$; and P is on the given circle. These yield

$$
\left(\frac{r^{2}}{a^{2}}, \frac{r}{a} \sqrt{a^{2}-r^{2}}\right) \text { and }\left(\frac{r^{2}}{a^{2}},=\frac{r}{a} \sqrt{a^{2}-r^{2}}\right)
$$

as coordinates of \bar{P}.

Some bright student may observe the general relationship between the measure of angles and the measures of arcs they intercept. If no student makes the discovery on his own, the class should be led to $1 t$. The measure of the angle is half of elther the sum or the difference of the measures of the intercepted arcs depending upon the location of the vertex. If the vertex is inside the d^{i} circle (special case, at the center) the measure of the angle is half the sum; if outside, half the difterence; if on the circle, it doesn't matter, for one "intercepted arc" has zero measure.

It.may be advisabie to introduce Section 12-5 with an informal, intuitive discussion of "segments joining a point to a circle." Problem 5 of Problem Set l-4 should be reviewed. A well-drawn circle on the blackboard, a meter stick, and a selection of situations; each analyzed numericaily, should lead the students to generalize somewhat as follows: the point can be inside, on, or outside the circle; for a given point, the product of the lengths of the two segments joining it to the "circle remains constant, regardless of the slope of the line containing the segments. Of course, if the point is on the circle, one segment has zero length; and if the "line is tangent to the circle, the "two segments" have the same length; but the generalization still holds.

Teachers wishing to give a test at this point will find a number of suitable questions in the Illustrative Test Items for the chapter.
*
The following section is devoted to a discussion of the constructibility of a triangle whose sides are to be congruent respectively to three given line segments. It is presented as an example of a method one might use to investigate such problems when the only available drawing instruments are straightedge and compass.

Suppose we wish to make a copy of a certain triangle. One way of doing it would be to follow these, steps.
(1) Measure the sides of the triangle ydu wish to copy .
(2) Draw a segment $\overline{A B}$ whose length $1 s$ one of the lengths you found in step $1 . \mathrm{A}, \mathrm{B}$
(3) With a compass, draw a circle with center at A, whose radius is another of the lengths you found in Step 1 , and draw a circle with center at B whose radius is the third of the lengthg' you found in Step 1. Your diagram should now look like this.

!

Then, if C and C ave the intersection points of your circles, each of triangles $A B C$ and $A B C '$ is congruent to the original triangle (by S.S.s.), and therefore a copy of it. This method of construction guarantees that all the triangles it produces are copies of the original one. Does it necessarily produce any triangles? Could the construction lead to a diagram like this?
\checkmark

It is certainly possible to draw two circled, such as those of the last diagram, which have no common points. Our question is whether it is possible to draw non-intersecting circles with centers A and B, if it given that the radii of the circles are the lengths of two sides of a triangle whose third side has length $A B$. A theorem. asserts that this is not possible.
/ Theorem. Let \dot{a}, b, c be positive numbers for which
$\mathrm{a}+\mathrm{b}>\dot{\mathrm{c}}$,
$b+c>a$,
$\mathrm{c}+\mathrm{a}>\mathrm{b}$.
Then
I. There is a triangle whose sides have lengths a, b, and c.
II. If the distance between the centers of two coplaner circles is a and if the circles have radic a and b, then the circles intersect in two points, one on each side of the line of centers.
Proof: Here are some situations in which the inequalities stated in the theorem are all satisfied:

Here are some situations in which the inequalities stated in the theorem are not all satisfied. It appears that the circles do not intersect and that no triangle is formed.

We. prove Parts I and II together, using coordinates. We consider the points $A(0,0)$ and $B(0, c)$, and try to find the coordinates (x, y) of a point c where the circle with center A and radius b intersects the circle with center B and radius a. By finding such a C we show that there is a triangle $A B C$ whose sides have lengths a, b, and c. It will turn out that there are two such points, one on each side of the x-axis. We use the distance formula to express the conditions that $A B=b$ and $B C=a$.

1)
820

We have

$$
x^{2}+y^{2}=b^{2}
$$

and

$$
(x-c)^{2}+y^{2}=a^{2} .
$$

We try to find values of x and y which satisfy both these equations. We rewrite the second as

$$
x^{2}-2 c x+c^{2}+y^{2}=a^{2}
$$

and then subtract the fjrst, obtaining

$$
-2 c x+c^{2}=a^{2}-b^{2}
$$

This shows that the only possible value for x is

$$
\frac{c^{2}+b^{2}-a^{2}}{2 c}
$$

We return to the first equation with this value for x and try to find y. We have

$$
\left(\frac{c^{2}+b^{2}-a^{2}}{2 c}\right)^{2}+y^{2}=b^{2}
$$

or

$$
y^{2}=b^{2}-\left(\frac{c^{2}+b^{2}-a^{2}}{2 c}\right)^{2}
$$

We can solve this equation for y if and only if the right side is not negative. Let us try therefore to show that

$$
b^{2}=\left(\frac{c^{2}+b^{2}-a^{2}}{2 c}\right)^{2}
$$

is not negative. By means of algebraic, manipulation it can be derived that this expression equals

$$
\frac{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}{4 c^{2}} .
$$

That this latter expression is positive follows from the facts that

$$
\begin{gathered}
a+b+c>0 \\
a+b-c>0 \\
b+c-a>0 \\
c+a-b>0 \\
4 c^{2}>0 \\
523
\end{gathered}
$$

Let us call this expression u. Now that we know that u is positive, we know that the sympol \sqrt{u} is a meaningful one, and that the possible values for y are \sqrt{u} and $=\sqrt{u}$. We conclude that there are two such pointe (x, y). They are

$$
\left(\frac{c^{2}+b^{2}-a^{2}}{2 c}, \sqrt{u}\right)
$$

and

$$
\left(\frac{c^{2}+b^{2}-a^{2}}{2 c},-\sqrt{u}\right)
$$

Notice that \sqrt{u} is positive, $-\sqrt{u}$ is negative, so that these points lie on opposite sides of the x-axis, which is the line joining the centers of the two circles.
\square

Illustrative Test Items for Chapter 12.
Part A. Indicate by " + " if each of the following is always true, by " 0 " if it is possibiy false.
1.' If two chords of a circle bisect each other, both are diameters of the circle.
2. If one chord contains one endpoint of a diameter and another chord contains the other endpoint of the diapeter, the two chords are equidistant from the center of the circle.
3. If a tangent and a chord intersect at a point of the circle, and if the measure of the tangent chord-angle is 30 , the length" on the chord is equal to the length of the radius of the circle.
4. If two chords of a circle are perpendicular to each other then at least one of the chords is a diameter.
5. If two chords of equal length, ut not diameters, - Intersect in the interior of the circie, the quadrilateral whose vertices are the endpoints of the chords is an isosceles trapezoid.
6. If two phords of equal length intersect in the interior of a circle, the radius containing the point of intersection bisects one of the pairs of vertical angles containing the two chords.
7. Aldiameter which bisects a chord is perpendicular to the chord.
8. If a chord intersects a tangent at the point of contact, the chord is a diameter.
9. If a rhombus is inscribed in a circle, the rhombus is square.
10. If a parallelogram is circumscribed about a circle, then it is a square.
$525: 83$
11. The set of centers of lall possible circies tangent to a given line at a given point is contained in the line perpendicular to the given line at the given point.
12. A trapezoid inscribed in a circle is isoscele's.
13. If a pair of opposite angles of a quadrilateral are supplementary, a oircle exists which contains all four of the vertices of the quadrilateral.
14. If a tangent to' a circle contains a vertex of an inscribed triangle, at least one of the tangent-chord angles is congruent to one of the angles of the triangle.
15. The measure of an inscribed angle, is equal to one half of the degree measure of the arc in which it is inscribed,?
16. If one side of an inscribed triangle is a diameter of the circumscribing circle, two of the angles of the triangle are complementary.
17. If an inscribed angle contains two chords of equal length, its midray contains the center of the circle.
18. An angle inscribed in a major arc is obtuse.
19. If a circie is circumscribed about a regular hexagon, the radius of the circle $1 s$ congruent to a side of the hexagon.
20. An inscribed angle that intercepts a minor arc is acute.
21. If two chords intersect within foircle forming pairs of non-adjacent angles, and if the nonadjacent arcs intercepted by these angles are congruent, then the chords are diameters of the circle.
22. If a right triangle is inscribed in a circie, \rightarrow its hypotenuse is the diameter of the circle.
23. The quotient of the circumference divided by the radius i/s the same number for all circles.
24. If two regulax polygons are inscribed in a circle, the one with the greater number of sides has an" apothem which 18 more nearly equal to the radius of the circumscribing circie. .
25. If the radius of one circle is three times that of a second circle, the circumference of the first is three times that of the second.
26. The area of a square inscribed in a given circle is half the area of one circumscribed about the circle.
27. In a given circle, the areas of two sectors are proportional to the degree measures of their arcs.
28. The quotient of the area of a circle divided by the square of its radius is π.
.29.: The length of an arc of a circle can be obtained by dividing its degree measure by π.
30. The areas of two circles are proportional to their respective circumferences.

Part . B.

1. Chords $\overline{C D}$ and $\overline{B A}$ intersect at P. The degree measures of nonadjacent arcs $\widehat{A D}$ and $\widehat{B C}$, respectively, are 32 and 40 . What is the measure of $\angle A P D$?
2. Chords $\overline{A B}$ and $\overline{C D}$ are perpendicular. The degree measures of adjacent arcs $\widehat{B D}$ and $\widehat{D A}$, respectively are 50 and 40 . What are the degree measures of $\overparen{A C}$ and $\overparen{C B}$?
3. Chords $\overline{A C}$ and $\overline{B D}$ are equal in length and they intersect at P. The degree measures of adjacent arcs $\overparen{B C}$ and $\stackrel{\rightharpoonup}{C D}$, respectively, are 50 and 80 . What are the measures of $\angle C P D$, $\angle \mathrm{ADC}$, and $\angle \mathrm{DCB}$?
4. Parallel chords $\overline{A E}$ and $\overline{B D}$ intersect chord $\overline{A C}$ in two points A and P, respectiveiy. $\mathrm{m} \widehat{\mathrm{CD}}=\frac{1}{3} \mathrm{~m} \widehat{\mathrm{AB}} . \mathrm{m} \widehat{\mathrm{DE}} \Rightarrow 84 . \mid \mathrm{D}$ and E are on the same side of $\overrightarrow{A C}$. What is the measure of $\angle \mathrm{CAE}$?
5. Find the messure of an interior angle of a regular nine-sided polygon.
6. Into how many triangular regions would a convex polygonal region, with a polygon of 100 sides as the boundary, be separated by all possible diagonals which connect a given vertex of the boundary with other vertices of the boundary?
7. If the circumference of a circle is a number C such that $16<\mathrm{c}<24$, and the radius of the circle is an integer, find the radius.
8. If the number of sides of a regular polygon inscribed in a given circle is increased indefinitely, what is the limit of the length of one side? of its perimeter?
9. Write a formula for the area of a circle in terms of its circumference instead of in terms of its radius.
10. The area of a circle $1 \mathrm{~s} 2 \pi$; what is its radius?
11. If the areas of two circles have the ratio $\frac{1}{100}$, what is the ratio of their diameters?
12. Two sectors of a circle are such that the measures of their angles are 50,100 respectively. What is the ratio of the lengths of their respective arcs? What the ratio of their respective areas?
13. A circular lake 1s approximately 2 miles in diameter. Aboyt how many hours will it take to walk around it if you walk at 3 miles per hour? (alve the answer to the nearest whole number.)
14. What is the least possible value of the difference between the area of a semiciroular region and the area of a triangle insoribed in the aemicircle, if the radius of the semicircle is 6 ?
15. Sphere $s=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \equiv 36\right\}$. Tell whether each of the following points is on the sphere, in its interior, or in its exterior.
(a) $(-6,0,0)$
(e) $(-\sqrt{27},-3,0)$
(b) $(-6,1,0)$
(f) $(5,5,-5)$
(c) $(-6,-1,-1)$
(g) $(4,-4,2)$
(d) $(5,2,2)$
(h) $(3,1,5)$
16. Chord $\overline{\mathrm{AD}}$ intersects diameter $\overline{\mathrm{AC}}$ at A . $A C=50 . A D=30$. What is the distance from the center to $\overline{\mathrm{AD}}$?
17. In a circle whose center is 0 , the chord $\overline{X Y}$ 1s the perpendicular bisector of radius $\overline{O A}$. $O A=6$. Find m XAY , $\ell, \widehat{X A Y}$, the area of sector XOY, and the area of the segment of the circle bounged by $\overline{X Y}$ and $\widehat{X A Y}$.
18. A regular hexagon 18 circumseribed about a circle. The porimeter of the hexagon is 12 . Find the circumference and the area of the circle
19. On an aerial photograph the surface of a reserfoir appears as a circular-region of diameter $7 / 8$ inch. If the scale of the photograph is 2 miles to 1 inch, find the approximate (nearest one-half square mile) area of the surface of the reservoir.

20: Circle $C=\left((x, y): x^{2}+y^{2}=25\right)$. Find the slope of each of the two chords whose endpoints are, respectively, the point $P(3,4)$ and an endpoint of the diameter in the x-axis. Find
1 the slope of each of the two chords whose endpoints are, respectively, P and an endpoint of the diameter in the y-axis.
21. If a plane is 8 inches from the center of a sphere whose radius is 17 inches, what is the length of the radius of the cipcle which is the intersection of the plane and Ehe sphere? What is the ratio of the area of this circie to the area of a great circle of the sphere? .
22. $\overrightarrow{\mathrm{CD}}$ is tangent at C to the cirghe whose center is B. $\overline{A B}$ is perpendicuiar to the plane of the circle. $\mathrm{BC}=6 . \quad \mathrm{AB}=8 . \quad \mathrm{CD}=24$.
Find AD..
23. A continuous belt runs around two wheels of radius $\sqrt{2}$ and $9 \sqrt{2}$ feet, respectively. The centers of the wheels are 16 feet apart. Find the approximate length of the belt (to the nearest foot). ($\sqrt{2}$ is approximately 1.414 ; π is approximately 3.142 .)
24. Circle $C=\left\{(x, y): x^{2}+y^{2}=25\right\}$ and line $\ell=\{(x, y): x+y=5\}$. Find the length of the chord of c which is contained in ℓ.
25. Circle $C=\left\{(x, y): x^{2}+y^{2}=5\right\}$ and line $t=\{(x, y): 2 x+y=5\}$. Find the coordinates of a point of intersection of C and t. How many such points of intersection exist? What is the relation between t and c ?

26. Circle $C_{-}=\left\{(x, y): x^{2}+y^{2}=10\right\}$ and line $\ell=[(x, y): x+2 y=5]$:
(a) Find the coordinates of the points of intersection of C and b.
(b) Find the midpoint of the chord of C contained in l.
(c) Find the slope of this chord.
(d) Write an equation of the line cohtaining the midpoint of the chord and the center of the circle.
(e) Find the distance from the chord to the center of the circle:
27. Circle $c=\left\{(x, y) \times x^{2}+y^{2}=4\right\}$
(a) What is the x-coordinate of each point of C whose y-coordinate is 1 ?
(b) Does the point $T(\sqrt{2}, \sqrt{2})$ lie on the circle?
(c) Does the point $S(2,3)$ lie on the circle?
28. Find the coordinates of the points of intersection (if any exist) of the circle
$c=\left\{(x, y): x^{2}+\dot{y}^{2}=\cdot 25\right\}$ and each of the following sets of points;
(a) $\mathrm{A} \equiv((\mathrm{x}, \mathrm{y}): \mathrm{y}=-4\}$
(b) $B=((x, y): y-x=7\}$
(c) $\mathrm{c}=((\mathrm{x}, \mathrm{y}): \mathrm{x}=2+\mathrm{k}, \mathrm{y}=9+\mathrm{k}, \mathrm{k}$ real $\}$
(d) $D=\left\{(x, y): x^{2}+y^{2}=9\right\}$

ϕ

In this Talk we investigate further the equations of lines and planes discussed in Chapters 8 and 9.

1. Lines in the xy-plane.

Consider first a line ℓ in the $x \dot{y}-\mathrm{plane}$ which is not parallel to the y-axis. Then it has a slope m and if $\left(x_{1}, y_{1}\right)$ is any point on it we may write:

$$
\ell=\left\{(x, y): y-y_{1}=m\left(x-x_{1}^{\prime}\right)\right\}
$$

in which the equation has the familiar point-slope form. Using some elementary algebra we get:

$$
\begin{aligned}
& \ell=\left\{(x, y): y-y_{1}=m x-m x_{1}\right\}, \\
& \ell=\left\{:(x, y): m x-y+\left(-m x_{1}-y_{1}\right)=0\right\}
\end{aligned}
$$

and if we set $a=m ; b=-1, c=-m x_{1}-y_{1}$, then

$$
\mathscr{C}=\{(x, y): a x+b y+c=0\}
$$

in which the equation has the form of the general first degree equation in x and y. An equation of the form $a x+b y+c=0$ is a first degree equation in x and y if a, b, c are real numbers and a and b are not both zero.

Consider next a vertical line v in the $x y-p l a n e$. Then v does not have a slope and if $\left(x_{1}, y_{1}\right)$ is any point on it, we have

$$
v=\left\{(x, y): x=x_{1}\right\}
$$

If we set $a=1, b=0, c=x_{1}$, then L,

$$
v=\{(x, y): a x+b y+c=0\}
$$

Hence a vertical line has an equation which is a special case of the general first degree equation.
2. General First Degree Equations in x and y.

In section 1. we observed that every 'inge ℓ in the ', $x y$-plane can be represented by an equation of the form $a x+b y+c=0 \quad 1 n$ which a and b f are not both zero. The representation is in the following sense:
Given a line ℓ, there exist real numbers a, b, c with a and b not both 0 , such that

$$
\boldsymbol{\ell}=\{(x, y): 6 a x+b y+c=0\}
$$

- In this section we consider the question: Does every first degree equation $a x+b y+c=0$ represent a line? Note that

$$
\left\{(x, y): 0 x^{2}+O y l+0=0\right\}
$$

is the entire $x y-p l a n e$ and that

$$
\{(x, y): 0 x+0 y+1=0\}
$$

is the null set. This shows that there are at least two equations of the form $a x+b y+c=0$ which are not equations of lines. Indeed,

$$
\{(x, y): 0 x+0 y+c=0\}
$$

is either the null set (if $c \neq 0$) on the entire xy-plane (if $c=\sigma$). But note also that $O x+0 y+c=0$ is not a first degree equation.

Consider now any general first degree equation. To be definite, suppose we are given three real numbers, a, b, e with " a and b not both 0 , and that S is the following set:

$$
S=\{(x, y): a x+b y+c=0\} .
$$

We wish to show that the set S is a line.
There are two cases o consider:- either $b=0$ dr $b \neq 0$.
If $\mathrm{b} \equiv 0$, then $\mathrm{a} \neq 0$, and
$S=\left\{(x, y): x=-\frac{c}{d}\right\}$.
\because

But if ℓ is the vertical in e through $\left(-\frac{c}{a}, 0\right)$, we know that $\mathscr{l}=\left\{(x, y): x=-\frac{c}{a}\right]$.
It follows that $s=l$ and hence that s is a line.
if $b \neq 0$, then,

$$
s=\left((x, y) ; y=-\frac{a}{b} x-\frac{c}{b}\right)
$$

Let p be the line with slope $=\frac{5}{b}$ which contains the point, ($0,-\frac{c}{b}$). . Then

$$
p=\left\{(x, y): y+\frac{c}{b}=-\frac{a}{b}(x-0)\right\}
$$

It follows that $S \equiv p$ and that S is a inn.
This shows that every equation $a x+b y \neq c=0$ in which a^{*} and b are not both 0 is the equation of a line in the $x y$ plane. Summarizing Sections 1 and 2 , we see that every equation $a \bar{x}+b y+c=0$, with a and b not both 0 , is the equation of a'line in the xy-plane, and conversely, that every line in the xy-plane can be represented by an equation $a x+b y+c=0$ in which a and b are not both 0 . Of course, this is why $a x+b y+c=0$ is called a linear equation.
3. Parametric versus Linear Form.

In Section 1 we derived the general linear equation starting from the point-slope form. In this and the next sections we show two other derivations of the general linear equation, one using parametric equations and one using the Pythagorean Theorem.

Let $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ be two distinct points and ℓ the inc which contains them. Then
$\ell=\left((x, y): x=x_{1}+k\left(x_{2}=x_{1}\right), y=y_{1}+k\left(y_{2}=y_{1}\right), k\right.$ is real $]$

We consider two cases: \boldsymbol{l} is vertical, or it isn't. If \boldsymbol{l} is vertical, then $x_{2}=x_{1}, y_{2} \neq y_{1}$, and

$$
\ell=\left\{(x, y): r^{r} x=x_{1}, y=y_{1}+k\left(y_{2}-y_{1}\right), k \text { is real }\right\} .
$$

We know from our work in Chapter 3 that the set of all peal numbers y such that $y \equiv y_{1}+k\left(y_{2}-y_{1}\right)$ for some real number k is the set of all real numbers. Therefore the last two conditions on x and y in the set-builder symbol for $\mathscr{\ell}$,
are equivalent to the condition that y be real. Therefore

$$
\ell=\left\{(x, y): x=x_{1}\right\},
$$

- and

$$
\mathscr{l}=((x, y): a x+b y+c=0\}
$$

in which $a=1, b=0, c=-x_{1}$ (and hence a is not $\overline{0}$). If ℓ is not vertical, then $x_{2} \neq x_{1}$ and

$$
\ell=\left\{(x, y): k=\frac{x-x_{1}}{x_{2}-x_{1}}, y=y_{1}+k\left(y_{2}-y_{1}\right), \notin 18 \text { real }\right\}
$$

and

$$
\ell=\left\{(x, y): k=\frac{x-x_{1}}{x_{2}-x_{1}}, y=y_{1}+\frac{x-x_{1}}{x_{2}-x_{1}}\left(y_{2}-y_{1}\right), k \text { is real }\right\} .
$$

Since every real number x can be obtained from some real number k by using the formula $k=\frac{x-x_{1}}{x_{2}-x_{1}}$, the first and third conditions in the set-builder symbol above are equivalent to the condition that x be real. Therefore

$$
\begin{aligned}
& \ell=\left\{(x, y): y=y_{1}+\frac{x-x_{1}}{x_{2}-x_{1}}\left(y_{2}-y_{1}\right)\right\}, \\
& \ell=\left\{(x, y):\left(y_{2}-y_{1}\right) x+\left(x_{1}-x_{2}\right) y+\left(x_{2} y_{1}-x_{1} y_{2}\right)=0\right\},
\end{aligned}
$$

and

$$
\ell=\{(x, y): a x+b y+c=0\} .
$$

in which $a=y_{2}-y_{1}, b=x_{1}-x_{2}$, and $c=x_{2} y_{1}-x_{1} y_{2}$ (and hence b is not zero.)

This shows that if. we start with any line in the xy-plane and accept the fact that it can be represented parametrically as in Chapter 8, then it has a first degree equation $a x+b y+c_{-}=0$.
'Suppose, now, that we start with a general first degree equation. Can we get parametric equations for a line from it? Let a, b, c be real numbers with a and b not both 0 and let S be the following set.

$$
S=\{(x, y): a x+b y+c \equiv 0\}
$$

Then either $b \equiv 0$ or $b \neq 0$. Ti $b=0$, then $a \neq 0$, $\left(-\frac{c}{a}, 0\right) \in S$ and $\left(-\frac{c}{a}, 1\right) \in S$. Let ℓ be the line:

$$
\hat{\ell}=\left\{(x, y): x=-\frac{c}{a}+k\left(-\frac{c}{a}+\frac{c}{a}\right), y \equiv 0+k(1-0), k \text { is real }\right\}
$$

Then

$$
\ell=\left[(x, y): x=-\frac{c}{a}\right] \equiv[(x, y): a x+c=0] \equiv S
$$

If, on the other hard, $b \neq 0$, then $\left(0,-\frac{c}{b}\right) \in S$ and (1, $\left.\frac{-a-c}{b}\right) \in S$. Let q be the inge:

$$
q=\left\{(x, y): x=0+k(1-0), y=-\frac{c}{b}+k\left(\frac{-a}{b}\right), k \text { is real }\right\}
$$

Then

$$
\begin{aligned}
& q \equiv\left\{(x, y): y \equiv \frac{-c}{b}+x\left(\frac{-a}{b}\right)\right\} \\
& q=\{(x, y): a x+b y+c \equiv 0\},
\end{aligned}
$$

and $q=S$. This shows that if we accept the parametric equations for a in e in the $x y=p l a n e$ and if $a x+b y+c \equiv 0$ i's any first degree equation, then there are two distinct y points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ such that the set

$$
S=\{(x, y): a x+b y+c \neq 0\}
$$

is the same as the set

$$
\mathscr{\ell}=\left[(x, y): x=x_{1}+k\left(x_{2}-x_{1}\right), y=y_{1}+k\left(y_{2}-y_{1}\right), k \text { is real }\right]
$$

$$
\therefore \quad 1 u_{i}
$$

4. Derivation of the Linear Equation Uaing the Pythagorean

Theorem.
Let l be any line in the $x y$-plane which does not contain $(0,0)$. Let $A(a, b)$ be the foot of the perpendicular from 0 to \mathbb{L} : Note, since b does not contain $: 0$, that a and b are not both zero. Then $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is a point on ℓ If and only if

$$
(O P)^{2}=(O A)^{2}+(A P)^{2}
$$

$$
x^{2}+y^{2}=a^{2}+b^{2}+(x-a)^{2}+(y-b)^{2}
$$

$$
0=2 a^{2}+2 b^{2}-2 a x-2 b x,
$$

$$
a x+b y=a^{2}+b^{2}
$$

Therefore

$$
\dot{l} \equiv\left((x, y): a x+b y=a^{2}+b^{2}\right)
$$

Thus

$$
\ell=\{(x, y): a x+b y+c=0\}
$$

where (a, b) is the foot of the perpendicular from 0 to l and $c=-a^{2}-b^{2}$.

Suppose next that p is a line in the $x y$-plane through the point $(0,0)$ and that $A(a, b)$ is a point different from $O(0,0)$ on the line through $(0,0)$ in the $x y-p l a n e$ which is perpendicular to p. Note that a and b are not both, 0 . Then $P(x, y)$ 1s.a point in p if and only if

$$
\begin{aligned}
(O A)^{2}+(O P)^{2} & =(A P)^{2} \\
a^{2}+b^{2}+x^{2}+y^{2} & =(x-a)^{2}+(y-b)^{2} \\
0 & =-2 a x-2 b y, \\
a x+b y & =0 . \\
&
\end{aligned}
$$

$$
\because p=\{(x, y): a x+b y+\infty=0\}
$$

where (a, b) is, a point, not 0 , on the line through 0 and perpendicular to p, and where $c=0 \%$.
\because In this section we not only have derived the first degree equation for a line using the Pythagorean Theorem but we have obtained a useful by-product. It 1s: If. a and b are not both 0 ; then the line from $(0,0)$ to (a, b) is perpendicular to the line $a x+b y+c=0$, whether this latter ine is through the origin or not. Stated in another way: If $a x+b y+c=0$ is a first degree equation for a line $\boldsymbol{L}, \boldsymbol{L}$, then. $[\mathrm{a}, \mathrm{b}]$ is a vector perpendicular to ℓ (i,e perpendicular to every vector which can be represented by a directed line segment contedned in ℓ), briefiy, [a,b] is a normal vector to ℓ.
5. First Degree Equations for Planes:-

Let p be a plane not containing $(0,0,0)$ and suppose. $A \equiv(a, b, c)$ is the foot of the perpendicular from 0 to p. Note that a, b, c are not all zero. Then $P(x, y, z)$ is in p if and only if

$$
\begin{aligned}
(O P)^{2} & \equiv(O A)^{2}+(A P)^{2} \\
x^{2}+y^{2}+z^{2} & \equiv a^{2}+b^{2}+c^{2}+(x-a)^{2}+(y-b)^{2}+(z=c)^{2}
\end{aligned}
$$

$2 a x+2 b y+2 c z=2 a^{2}+2 b^{2}+2 c^{2}$,

$$
a x+b y+c z=a^{2}+b^{2}+c^{2}
$$

and

$$
p=\left\{(x, y, z): a x+b y+c z=a^{2}+b^{2}+c^{2}\right\}
$$

Observe that

$$
p \equiv\{(x, y, z): a x+b y+c z \equiv d\}
$$

Where $[a, b, c]$ is a normal vector for the plane.

539

$$
102
$$

Let q be a plane through $0(0,0,0)$ and suppose
$A=(a, b, c)$ is a point other than 0 on the line, through 0 and perpendicular to q. Note that a, b, c are not adl. zero. Then $P(x, y ; z)$ is point in q if and only if

$$
\begin{aligned}
(O A)^{2}+(O P)^{2} & (A P)^{2} \\
a^{2}+b^{2}+c^{2}+x^{2}+y^{2}+z^{2} & =(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \\
a x+b y+c z & =0
\end{aligned}
$$

Observe thaterein

$$
q=((x, y, z) ; a x+b y+c z=0\}
$$ and that $[a, b, c]$ is a normal vector for q :

Next we start with an arbitrary first degree equation in x, y, z. Suppose, $a x+b y+c z=d \quad i s$ any equation with a, b, c not all 0 .
Is this an equation for a plane? on the basis of our development above it would seem. so if either $d=0$ or $d=a^{2}+b^{2}+c^{2}$. What is the situation for an equation like $3 x+4 y+5 z=6$ for which neither of the equations, $d=0$, $d=a^{2}+b^{2}+c^{2}$, is true? (We are identifying $a=3$, $b=4, c=5, d=6$ in this example.) Is

$$
S=\{(x, y, z): 3 x+4 y+5 z \quad 6\}
$$

a plane? Multipiying through by $\frac{6}{3^{2}+4^{2}+5^{2}}\left(1: e \cdot \frac{d}{a^{2}+b^{2}+c^{2}}\right)$ we see that

$$
S=\left\{(x, y, z): \frac{18}{50} x+\frac{24}{50} y+\frac{30}{50} z=\frac{36}{50}\right\}
$$

and that

$$
\left(\frac{18}{50}\right)^{2}+\left(\frac{24}{50}\right)^{2}+\left(\frac{30}{50}\right)^{2}=\frac{36}{50}
$$

If we set

$$
a^{\prime}=\frac{18}{50}, b^{\prime}=\frac{24}{50}, c^{\prime}=\frac{30}{50}, d^{\prime}=\frac{36}{50},
$$

then

$$
d^{\prime}=a^{2}+b^{\prime 2}+c^{2} .
$$

Thus s. 18 the plane which is perpendicular at $\left(\frac{18}{50}, \frac{24}{50}, \frac{30}{50}\right)$
to the directed segment from the origin to the point
$\left(\frac{18}{50}, \frac{24}{50}, \frac{30}{50}\right)$:
In the general case, if a, b, c are not all zero, and if. $S=\{(x, y, z): a x+b y+c z=d\}$,
then
$\cdots \cdots, S_{2}[(x, y, z): a x+b y+c z=0]$
if $d=0$; and

$$
S=\left\{(x, y, z): a^{\prime} x+b^{\prime} y+c^{\prime} z \equiv d^{\prime}\right\}
$$

if $d \neq 0^{\circ}$, where

$$
a^{\prime}=\frac{a d}{a^{2}+b^{2}+c^{2}} b^{\prime}=\frac{b d}{a^{2}+b^{2}+c^{2}}, c^{\prime} \equiv \frac{c d}{a^{2}+b^{2}+c^{2}} .
$$

- and

$$
d^{\prime}=\frac{d^{2}}{a^{2}+b^{2}+c^{2}}
$$

Note that $d^{\prime}=a^{2}+b^{2}+c^{2}$
and that $\left[a, b^{\prime}, c^{\prime}\right]$ and $[a, b, c]$ are parallel vectors. Thus it follows, regardless of whether or not d is zero, that S is a plane with normal vector $[a, b, c]$. If $d=0$ then S is the plane containing the origin and perpendicular to the segment from ($0,0,0$) to (a, b, c).. If $d \neq 0$ ant (1) a $\neq 0$ (or (1i) b $\neq 0$, or (111) $c \neq 0$] then S is the plane contaiding (1) ($\frac{d}{a}, 0,0$) [or (11) ($0, \frac{d}{b}, 0$) or (111) ($0,0, \frac{\mathrm{~d}}{\mathrm{c}}$)] and perpendicular to the segment from $(0,0,0)$ to (a, b, c).

In the development above we made direct use of the Pythagorean Theorem in developing the first degree equation for a plane. We present now another development using vector 1deas. (Elementary properties of vectors are discussed in the a Text in Chapter 10 and in Appendix XI.) Recall that two vectors are perpendicular if and only if their scalar (or dot)

$$
\left.{ }^{541} 10_{i}\right\}
$$

(50 , 50 , 50):
In the general case, if a, b, c are not all zero, and if $S=\{(x, y, z): a x+b y+c z=d\}, \quad \psi$
then
$\cdots S_{-}, f(x, y, z):$ ax $\left.+b y+c z=0\right\}, \ldots, \quad(\ldots)$
if $d=0$; and
$S=\left\{(x, y, z): a^{\prime} x+b^{\prime} y+c^{\prime} z=d^{\prime}\right\}$
if $d \neq 0^{\circ}$, where

$$
a^{\prime}=\frac{a d}{a^{2}+b^{2}+c^{2}} b^{\prime} \equiv \frac{b d}{a^{2}+b^{2}+c^{2}}, c^{\prime}=\frac{c d}{a^{2}+b^{2}+c^{2}} .
$$

and

$$
d^{\prime}=\frac{d^{2}}{a^{2}+b^{2}+c^{2}}
$$

Note that $d^{\prime}=a y^{2}+b^{\prime 2}+c^{2} \quad \quad \quad$
and that $\left[a!, b^{\prime}, c^{\prime}\right]$ and $[a, b, c]$ are parallel vectors. Thus it follows, regardless of whether or not d is zero, that S is a plane with normal vector $[a, b, c]$. If $d=0$ then S is the plane containing the origin and perpendicular to the segment from ($0,0,0$) to (a, b, c).. If $d \neq 0$ ant (1) $a \neq 0 \quad[$ or (1i) $b \neq 0$, or (111) $c \neq 0]$ then S is the plane contaip ing (1) ($\frac{\mathrm{a}}{\mathrm{a}}, 0,0$) [or (11) ($0, \frac{\mathrm{~d}}{\mathrm{~b}}, 0$) or (1i1) ($0,0, \frac{d}{c}$)] and perpendicular to the segment from $(0,0,0)$ to (a, b, c).

In the development above we made direct use of the Pythagorean Theorem in developing the first degree equation for a plane. We present now another development using vector ideas. (Elementary properties of vectors are discussed in the Text in Chapter 10 and in Appendix XI.) Recall that two vectors are perpendicular if and only if their scalar (or dot)

The text development leading to this result rests in a very essential way upon the Ruler postulate and the theorem regarding proportionality of the segments formed when three parallel lines are cut by two transversals. The following alternate development is based on vector ideas:

Given a line $\overrightarrow{A B}$ where $A=\left(x_{1}, y_{1}, z_{1}\right)$ and
$B=\left(x_{2}, y_{2}, z_{2}\right)$, then $P(x, y, z)$ is on $\widehat{A B}$ and if and only if

- there is a real number k such that $\overrightarrow{A P} \equiv k \cdot \overrightarrow{A B}$, and. .

$$
\left[x-x_{1}, y-y_{1}, z-z_{1}\right]=k\left[x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right] .
$$

\int But this vector equation is true if and only if all three following scalar equations hold:

$$
\begin{aligned}
& x-x_{1}=k\left(x_{2}-\left(x_{1}\right)\right. \\
& y-y_{1}=k\left(y_{2}-y_{1}\right) \\
& z-z_{1}=k\left(z_{2}-z_{1}\right)
\end{aligned}
$$

It follows that.

$$
\ell \equiv\left\{\begin{array}{c}
x \equiv x_{1}+k\left(x_{2}-x_{1}\right), \\
(x, y, z): y \equiv y_{1}+k\left(y_{2}-y_{1}\right), \text { and } k \text { is real. } \\
, \quad z \equiv z_{1}+k\left(z_{2}-z_{1}\right),
\end{array}\right\}
$$

A similar development yields a parametric equation
representation for a plane. Let $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$, $C\left(x_{3}, y_{3}, z_{3}\right)$ be three noficoplanar points and p the plane which contains them. Then $P(x, y, z)$ is in p if and only if y.

$$
\begin{aligned}
& \overrightarrow{\mathrm{AD}} \equiv h \cdot \overrightarrow{\mathrm{AB}} \\
& \overrightarrow{\mathrm{AE}}=k \cdot \overrightarrow{\mathrm{AC}}
\end{aligned}
$$

543

$$
103
$$

$*$
there are two real numbers h and k such that

$$
\overrightarrow{A P}=\langle h \cdot \overrightarrow{A B}+k \cdot \overrightarrow{A C} ;
$$

that is,

$$
\begin{aligned}
& {\left[x-x_{z}, y-y_{1} ; z-z_{1}\right]} \\
& =h\left[x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right]+k\left[x_{3}-x_{1}, y_{3}-y_{1}, z_{3}-z_{1}\right]_{.}, \\
& \text {or: } \\
& {\left[x-x_{1}, y-y_{1}, z:-z_{1}\right]} \\
& =\left[h\left(x_{2}-x_{1}\right)+k\left(x_{3} \ddot{-} x_{1}\right), h\left(y_{2}-y_{1}\right)+k^{\prime}\left(y_{3}-y_{1}-\right)_{2} h\left(z_{2}-z_{1}\right) .\right.
\end{aligned}
$$

- $\int^{\left.+k\left(z_{3}=z_{1}^{\prime}\right)\right] .}$

But this vector equation is true if gad only if the following three scalar equations are all true:

$$
\text { (*) }\left\{\begin{array}{l}
x-x_{1}=h\left(x_{2}-x_{1}\right)+k\left(x_{3}-x_{1}\right) \\
y-y_{1}=h\left(y_{2}-y_{1}\right)+k\left(y_{3}-y_{1}\right) \\
z-z_{1}=h\left(z_{2}-z_{1}\right)+k\left(z_{3}-z_{1}\right)
\end{array}\right\} .
$$

- Therefore

$$
p=\left\{\begin{array}{c}
x=x_{1}+h\left(x_{2}-x_{1}\right)+k\left(x_{3}-x_{1}\right) \\
\left.(x, y, z): y=y_{1}+h\left(y_{2}-y_{1}\right)+k\left(y_{3}-y_{1}\right) \quad \text { and } h \text { and } k\right\} \\
z-z_{1}+h\left(z_{2}-z_{1}\right)+k\left(z_{3}-z_{1}\right)
\end{array}\right\}
$$

It is of interest to note that if h and k are
"eliminated" from the set of three equations (*) above, that a first degree equation in x, y, z results. One way to show this is to rewrite the equations as

$$
\begin{array}{r}
-\left(x-x_{1}\right)+h\left(x_{2}-x_{1}\right)+k\left(x_{3}-x_{1}\right) \equiv 0 \\
-\left(y-y_{1}\right)+h\left(y_{2}-y_{1}\right)+k\left(y_{3}-y_{1}\right)=0 \\
-\left(z-z_{1}\right)+h\left(z_{2}-z_{1}\right)+k\left(z_{3}-z_{1}\right) \equiv 0
\end{array}
$$

* and to think of them as three equations in the "unknowns,", -1, h and k. The corresponding determinant of the coefficients is.

$$
\Delta=\left|\begin{array}{lrr}
x-x_{1} & x_{2}-x_{1} & x_{3}-x_{1} \\
y-y_{1} \\
z-z_{1} & , & y_{3}-y_{1} \\
y_{2}-y_{1} & z_{3}-z_{1}
\end{array}\right|
$$

Since the system of equations (*) has a "solution". other than $(0 ; 0,0)$, it follows that Δ must be 0 . Expanding the determinant we get
\checkmark (1) $a x+b y+c z=a x_{1}+b y_{1}+c z_{1}$
where
$a\left|=\left|\begin{array}{lll}y_{2}-y_{1} & y_{3} & -\dot{x}_{1} \\ z_{2} & -z_{1} & z_{3}-z_{1}\end{array}\right| \quad b=\left|\begin{array}{lll}x_{3}-x & x_{2}-x_{1} \\ z_{3}-z_{1} & z_{2}-z_{1}\end{array}\right| c=\left|\begin{array}{lll}x_{2}-x_{1} & x_{3}-x_{1} \\ y_{2}-y_{1} & y_{3}-y_{1}\end{array}\right|\right.$ and (1) - is the desired equation.
7. Why Parametric Equations?

$$
\text { (1) }\left\{\begin{array}{l}
\text { Consider, the sets } \\
\left\{\begin{array}{l}
S_{1} \equiv\{(x, y, z)=7 x-2 y-2 z=3\} \\
S_{2} \equiv((x, y, z): x-2 y+z=0\} \\
S_{3}=\left\{(x, y, z): 7 x-2 y-2 z^{\prime}=3 r \text { and } x-2 y+z=0\right\}
\end{array}\right.
\end{array}\right.
$$

Then $\cdot S_{1}$ and: \dot{S}_{2} are planes and S_{3} is the line of intersection of s_{1} and s_{2}. What Information about in ne S_{3} is revealed by the'equations in the set-builder symbol for S_{3} ? It is easy to see that S_{3} lies in S_{1} and S_{2}, and hence that S_{3} is perpendicular to each of the normal vectors $[7,-2,-2]^{\prime \prime}$ and $[1,-2,1]$. But what is the direction of S_{3}, and what points does it "contain?

- Set $x=1$ in the equations $7 x^{3}-2 y-2 z=3$ and. $x-2 y+z=0$ and solve the resulting equation for y and $2: D o$ his over again with, $x=3$. We find that $(1,1,1)$ and $(3,4,5)$ are two points in S_{3} and hence that
(2) $S_{3} \equiv\left\{\begin{aligned} & x=1+k(3-1), \\ &(x, y, \bar{y}): \begin{array}{l}y\end{array}=1+k(4-1), \\ & z \equiv 1+k(5-1),\end{aligned}\right\}$ and k is real $\}$
(3) $S_{3}=\left\{\begin{aligned} x & \equiv 1+2 k^{x}, \\ (x, y, z): y & \equiv 1+3 k, \text { and } k \text { is real } \\ z & =1+4 k,\end{aligned}\right\}$

The parametric equations in (2) seem to reveal more information about S_{3} than the equations in (1). Ars inspection of (2) reveais that S_{3} passes through $A(1,1,1)$ and $B(3,4,5)$, using $k=0$ and $k=1$. By taking $k=-1 ; \pm 2, \pm 3, \ldots$ we get other points along S_{3} with a. minimum expenditure of effort.

The parametric equations in (3) show that s_{3} contains ($1,1,1$) , by taking $k=0$, and that it is paraliel to the vector $[2,3,4]$, by looking at the coefficients of k.

One way to think of the parametric equations is as a "mapping" from the f-axis to a set of points in xyz-space.
s. As a point "marches along" the k axis,

the corresponding point (x, y, z) "marches along" the line s_{3}.

$0 \longrightarrow(1,1,1)$
$1 \longrightarrow(3,4,5)$
$2 \longrightarrow(5,7,9)$
$3 \longrightarrow(7,10,13)$
(As another example let us consider the sets
$\therefore \quad \dot{s}_{4}=\left[(x, y, z) ; x^{2}+y^{4}=9, x \geq 0, y \geq 0\right\}$,
$S_{5}=\left\{(x, y, z): x=3 \cos z, \theta \leq z \leq \frac{\pi}{2}\right\}$
$\therefore \quad \therefore s_{6}=\left\{\begin{aligned}(x, y, z): & x^{2}+y^{2}=9 ; x=3 \cos z \\ & x \geq 0, y \geq 0, \sigma \leq 2 \leq \frac{\pi}{2}\end{aligned}\right\}$
s_{4} Asa portion of a right circular cylinder.

S_{5} is a cylindrical surface which is the union of Ines parallel to the y-axis.
${ }^{-\infty}$

S_{6} is the intersection of S_{4} and S_{5}, actually an arc of a helix. The equations in the set-builder/symbol for S_{6} above tells us that the curve S_{6} is the intersection of two surfaces; it seems to emphasize the surfaces unnecessarily if the object of one's attention is really the curve in which they intersect.

$$
{ }_{547} 110
$$

Compare the above representation as the intersection of two surfaces with the following parametric representation.

Imagine a "particle" moving along the $k=a x i s$ from 0 to $\frac{\pi}{2}$. As it does, the corresponding "particie" (x, y, z) moves continuously from $(3,0,0)$ to $\left(0,3, \frac{\pi}{2}\right)$ along the curve S_{6}. If k denotes the number of time units (minutes for example) since the particie departed from ($3,0,0$) of its filight along the helix, then the parametric equations for S_{6} may be used to find easily the position of the partiole at any given ingtant.

Two problems in differential geometry are (1) to find the inne which $1 s$ tangent to a curve at a given point, and (2) to find the plane which is perpendicular to a ourve at a given point. The parametric equations for S_{6} may be used to solve these problems easily for the arc of the helix in the example. Thus, corresponding to $k=\frac{\pi}{4}$, we have the point.
,$P_{1}\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, \frac{\pi}{4}\right)$ on S_{6}. Using a bit of elementary calculus as indicated below we find the components of a tangent vector to S_{6}. at P_{1}. (The dots indicate differentiation with respect to the parameter k.)
\%
Then $\left[-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 1\right]$ 1s.a tangent vector to S_{6} at \bar{P}. It then lollows easily that the tangent ine and the normald plane are as follows:
T.L. $\xlongequal{=}\left\{\begin{aligned} \bar{x} & =\frac{3}{\sqrt{2}}-\frac{3}{\sqrt{2}} k, \\ (x, y, z): & y \\ = & \frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2} k}, \text { and } k \text { is real } \\ z & =\frac{\pi}{4}+k,\end{aligned}\right\}$.
$\mathrm{N}, \mathrm{P} .=\left\{(\mathrm{x}, \mathrm{y}, \bar{z}):-\frac{3}{\sqrt{2}}\left(\mathrm{x}-\frac{3}{\sqrt{2}}\right)+\frac{3}{\sqrt{2}}\left(\mathrm{y}-\frac{3}{\sqrt{2}}\right)+1\left(\mathrm{z}-\frac{\pi}{4}\right)=0\right\}$
As another example let us consider the sphere
$S_{7}=\left[(x, y, z): x^{2}+y^{2}+z^{2}=9\right)$.
This non-parametric equation reveals clearly that S_{7} is the set of ali points (x, y, z) the square of whose distance from ($0,0,0$) 1s, 1 : But there are other things about the sphere not clearly revealed by this equation-=things having to do with "latitude" and "longitude," for example. Also this form of representation has the disadvantage that the relationships among x, y, z are implicit; the equation does not give us any one of the variables explicizly as a functifon of the others. If we solve for z in terms of x and y we get $z= \pm \sqrt{9-x^{2}=y^{2}}$, a "double-valued function." Neither of the two functions included in this* "double function" possesses partial derivatives for values of x and y such that $x^{2}+y^{2}=9$. Of course this'is a disadvantage if one is interested in normal vectors or tangent planes, or one of the host of applications which use these vectors and planes as tools.

$$
14
$$

Another representation of this sphere S_{7} is the following parametric one based on the spherical coordinates θ, ϕ, r; with $r=3$.

$$
S_{7}=\left\{\begin{array}{lll}
& x=3 \cos \cdot \dot{\theta} \sin \phi, & \\
(x, y): & y=3 \sin \theta \sin , \phi, & 0 \leq \theta<2 \pi \\
& z=\cos \cdot \phi, & 0 \leq \phi \leq \pi
\end{array}\right\}
$$

 the colatitude, respectively. The three equations define x, y, z explicitiy as single=valued, différentiable functions

* of the parameters θ and \varnothing. As one might expect, the parametric equations for S_{7} are more fruitful and easier to use for certain purposes than is the nonparametric equation for s_{7}. Furthermore the variables θ and ϕ seem. to belong to a coordinate representation of the sphere The θ and \varnothing values at a point are more useful for many purposes than are the x, y, and z vaiues at the point.

A final example is the cycioid arch given parametically as follows:

$$
S_{8}=\left\{(x, y): x_{y}=3(\theta-\sin \theta) ; y=/ 3(1-\cos \theta), 0 \leq \theta \leq 2 \pi\right\}
$$

These parametric equations are derived in a natural way from the, definition of the cycloid. These equations express x and \bar{y} in terms of the radian measure θ of the angle through which the generating circle nas rotated. For the details see any of the traditional college analytic geometry texts. This same oycloid aroh may be given in non=parametric ferm as follows:
$S_{8}=\left\{\begin{array}{c}x=3 \cos ^{-1} \frac{3-y}{3}-\sqrt{6 y-y^{2}} \\ (x, y): \\ x=6 \pi-3 \cos ^{-1} \frac{3=y}{3}-\sqrt{6 y-y^{2}}, \\ x\end{array}\right\}$
Of course this is less useful and more difficult to handie than the parametric equations. And who in the world would ever discover these non-pdrametric equations without first finding. the parametric equations?

1

$$
11 .
$$

Chapter 8
1.

(b) $m_{\overline{A C}}=\frac{2-(-4)}{6-2}=\frac{6}{4}=\frac{3}{2}$
(c) $m_{\overrightarrow{B D}}=\frac{-1}{4}-(-8)=\frac{-8}{12}=-\frac{2}{3}$ and $\frac{m}{\overrightarrow{A C}} \cdot m_{\overrightarrow{B D}}=-1$
(d) $\triangle A B C$ is isosceles, because $\overleftrightarrow{B D}$ is the perpendicular bisector of $\overline{\mathrm{AC}}$.
(e) $B A \equiv \sqrt{(6-(-8))^{2}+(2-7)^{2}} \equiv \sqrt{196+25}=\sqrt{221}$ $B C=\sqrt{(2-(-8))^{2}+(-4-7)^{2}}=\sqrt{100+121} \equiv \sqrt{221}$
(f) $\overrightarrow{A C} \equiv((x, y): x \equiv 2+4 k, y=-4+6 k, k$ is real $\}$ or any equivalent form.
(g) $\frac{x+8}{4+8}=-\frac{y}{1}-7$ or any equivalent form.
(h) If: $y \neq 0$. for a point of ${ }^{-} \overrightarrow{A C}$, then $-4+6 k=0$, so $k=\frac{2}{3}$. Then $x=2+4 \cdot \frac{2}{3}=\frac{\sqrt{4}}{3}$. Intersection \therefore point $15 \quad\left(\frac{14}{3}, 0\right)$.
(i) $y-7=\frac{3}{2}(x-(=8))$.
(J) $(-4,13)$
(k) $(-12,1)$

$$
4
$$

2. (a) 12
(o) 2
3.

(a) Rectangle
(e) Rectangle
(b) Rinombus
(f). Rhombus
(c) Rhombus.
(g) Square
(d) Square
4. There is a coordinate system which assigns to paralielogran ABCD the cootdinates as shown.

Part I. Given $D B=A C$, to prove $A B C D$, is a rectangle,
Proof: $D B=A C$ implies
$\sqrt{(a-b)^{2}+c^{2}}=\sqrt{(a+b)^{2}+c^{2}}$ or
$a^{2}-2 a b+b^{2}+c^{2}=a^{2}+2 a b+b^{2}+c^{2}$ or
$-a b=a b$
or, since
$a \neq 0,-b=b$,
or $\quad b \equiv 0$,
or D is on the y-axis,
or $\angle B A D$ is a right angle,
or $A B C D$ is a rectangle.
Part II. Given $A B C D$ a rectangle, to prove $B D \equiv A C$. Proof: ABCD is a right angle. Therefore D is in the $A y$-axis, and $b=0$.

Therefore $A C=\sqrt{a^{2}+c^{2}}$ and $B D=\sqrt{a^{2}+c^{2}}$, so $A C=B D$.
5. (a) $P=(-1+4 \cdot 3,2=2 \cdot 3)=(11,-4)$
(b) $\quad P_{4}=(-1+4(-3), 2-2(-3))=(-13,8)$
(c) $P=(-1+4 \cdot 100-2-2 \cdot 100)=(399,-198)$
6. (a) Horizontal
(d) oblique
(b) Oblique
(e) Horizontal
(c) Vertical
7. The line containing the median of a trapezoid bisects each of its altitudes. Proof. Let ABCD be the trapezold. There is a coordinate system which assigns coordinates to A, B, C, D as indicated. Then the
 coordinates of the endpoints F and E of the median are as indicated. If $\overline{M N}$ is. perpendicular to $\overline{A B}$ and has its endpoints in the lines containing the parallel sides of. ABCD, then $\overline{M N}$ is an altitude of $A B C D$. In terms of coordinates, $\overline{M N}$ is an altitude if and oniy if $M=(x, 20)$ and $N \equiv(x, 0)$, for some x. The midpoint of $\overline{M N}$ is therefore $\left(\frac{x}{2}, c\right)$: Since $\overrightarrow{F E}$ is $\{(x, y): y=c, x$ is real\}, it follows that the midpoint is on $\overrightarrow{\mathrm{FE}}$.
8. $A B C D$ is a rectangle with coordinates as given. $B F \perp A C$. We are required to find how far along $\overline{\mathrm{AC}}, \mathrm{P}$ lies.

$\overline{\mathrm{AC}}=\left\{(x, y): x^{\prime}=20 k, y=15 k\right.$ and $\left.0 \leq k \leq 1\right\}$.
Slope of $\overline{\mathrm{BF}}=-\frac{20}{15}$.
$\overrightarrow{\mathrm{BP}}=\{(x, y): x=20-15 \mathrm{~h}, \mathrm{y}=20 \mathrm{~h}$ and h is real $\}$.

11,

Then there are real numbers k and h such that $P=(x, y)=(20 k, 15 k)=(20=15 h, 20 h)$.

$$
\text { Then } 20 k=20-15 h \text { and } 15 k \equiv 20 h,
$$

$$
\text { or } 16 \mathrm{k}=16-12 \mathrm{~h} \text { and } 9 \mathrm{k} \equiv 12 \mathrm{~h}
$$

Then $25 k=16$

$$
k \equiv \frac{16}{25}
$$

and $\quad \frac{A P}{\overline{A C}}=\frac{16}{25}$.

Alternate solution, using siopes.

Alternate solution, using Pythagorean Theorem and proportions of a right triangle.
(1) $A C \equiv \sqrt{(A \bar{B})^{2}+(B C)^{2}} \equiv \sqrt{(20)^{2}+(15)^{2}}=25$
(2) $(A B)^{2}=(\overline{A C})(A P)$
$(20)^{2}=25 \cdot A P$

$$
16=A P
$$

(3) $\frac{\mathrm{AP}}{\mathrm{AC}}=\frac{16}{25}$.

1155

$$
\begin{aligned}
& =\frac{m}{\overline{\mathrm{AP}}}=\frac{\mathrm{m}}{\overline{\mathrm{AC}}} ; \frac{\bar{y}}{\mathrm{x}}=\frac{15}{20}, y=\frac{3 \bar{x}}{4}, \\
& \frac{\mathrm{~m}}{\overline{\mathrm{BP}} ;}=\frac{1}{\overline{\mathrm{~m}}} ; \frac{\bar{y}}{\overline{\mathrm{AC}}}=-\frac{20}{15}=-\frac{4}{3}, \\
& 3 y \equiv-4(x-20) \\
& 3\left(\frac{3 x}{4}\right)=-4 x+80 \text {, } \\
& 9 x=-16 x+320 \\
& 25 x=320 \\
& x=\frac{64}{5} \text {, } \\
& k=\frac{x_{\mathrm{P}}}{\mathrm{x}_{\mathrm{C}}}=\frac{\frac{64}{5}}{20}=\frac{16}{25} . \quad \text { Thus } \quad \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{16}{25} .
\end{aligned}
$$

Answers for IIlustrative Test Items

Chapter 9

1. (a) +
(h) 0
(o) $0 \quad(v) \quad 0$
(b) 0
(i) 0
(p) 0
(w) +
(c) 0
(j) +
(q) 0
(x) 0
(d) +
(k) 0
(r) 0
(y) +
(e) +
(1) +
(s) 0

(z) 0
(f) 0
(m) 0
(t) +
(g) +
(n) 0
(u) +
2. (a) Not necessarily. $\overrightarrow{\overline{\mathrm{BQ}}}$ cannot be proved perpen= dicular to plane $A B K$ on the basis of information given.
(b) Yes, by Theorem 9-1.
(c) Six planes: $A B K, A B Q, A B H, A B R, A B F$, and the plane perpendicular to $\overrightarrow{A B}$ at B.
3. (a) $P \| \notin \mathcal{P}$, since planes perpendicular to the same inne are parallel. (Theorem 9-9)
(b) ${ }^{4} \overrightarrow{W K}| |_{Q F}$ by Theorem $9-6$.
(c) Right angles. In a plane, if a line is perpendicular to one of two parallel lines, it is perpendicular to the other.
4. This follows from Theorem 9-18.
5. Points F, A, \bar{D} determine a plane; for if. they were colinear, the ine oontaining them and the ine $\overrightarrow{B C}$ would determine a plane containing all four of the noncoplanar points A, B, C, D. Then $\overline{B C}$ is perpendicular to plane DFA, by Theorem $9-2$ (or, by Theorem 9-18).
6. Two inés perpendicular to the same plane are parallel, and any two parallel lines are coplanar.
7. Since $\overrightarrow{A B} \perp \xi$ and $\overrightarrow{C D} \perp \xi$ by hypothesis, $\overrightarrow{A B} \|_{\overrightarrow{C D}}^{+}$ by Postulate 25. Thus $A, \bar{B}, \bar{C}, \bar{D}$ are coplanar, and $\overline{\mathrm{BADC}}$ is a quadrilateral. Since $\overline{\mathrm{AB}} \perp \xi$ and $\overrightarrow{\mathrm{CD}} \perp \xi$, each of the angles $\angle B A \bar{D}$ and $\angle C D A$ is a right angle. Since $\mathcal{F} \| \neq \neq$ by hypothesis, $\overrightarrow{A B} \mid \mathcal{F}$ and ${ }^{4} \overrightarrow{\mathrm{CD}} \perp \boldsymbol{7}^{7}$ by Theorem $9=10$. Hence each of the angles $\angle A B C$ and $\angle D C B$ 1s'a right angle. By Theorem 8-20, the quadrilateral BADC 15 a rectangle. By Theorem $8-25, \quad A C=\overline{B D}$.
8. (a) (w)
(d) (v)
(b) (u)
(e) (s)
(c) (r)
(f) (t)
9. A point is in the $x z=p l a n e$ if and only if its y -coordinate is 0 . Therefore, $4-2 k \equiv 0$, or $k=2$. Hence the required point has coordinates $(4,0,6)$.
10. $A B \equiv \sqrt{26}$ and $B C \equiv \sqrt{26}$. Therefore, $\triangle A B C$ is isosceles by definition.
11. A point is in the $x y-p l a n e$ if and only if its \bar{z}-coordinate is 0 . Therefore, points in the xy-plane which also 11 in the plane whose equation is $2 x-y+z=7$ lie on the line of intersection, represented by the equation $2 x-y=7$.
12. (a) $\mathrm{P}\left(\frac{1}{2},-\frac{1}{2}, \frac{7}{2}\right)$
(b) $\frac{x+2}{2}=\frac{1}{2}, x=-1$

$$
\frac{z-2}{2}=\frac{7}{2}, z=9
$$

13. Using the equation of a plane, $a x+b y+c z=d$, and coordinates of points. A, B, C, we have the following equations to solve for a, b, and c in terms of d.
$a+2 b+5 c=d$
$b+6 c=d$

$$
2 a+c=d
$$

$a=\frac{2}{5} d, b=-\frac{1}{5} d, c=\frac{1}{5} d$ and an equation of the plane becomes $2 x-y+z=5$.

$$
558
$$

1. \triangle RAB $\cong \triangle W H F$.
2. $\mathrm{RB}=\mathrm{WF}$.
3. $\mathrm{RV} \equiv \mathrm{VW}$.
4. $\angle V R B$ and $\angle V W F$ are right angles.
5. $\triangle \mathrm{VRB} \cong \triangle \mathrm{VWF}$.
6. $\mathrm{VB}=\mathrm{VF}$.

Reasons

1. S.A.S.
2. Definition of congruente for triangles.
3. Definition of midpoint.
4. Definition of line perpendicular to a line.
5. S.A.S.
6. Definition of congruence for triangles.

Proof, with coordinates.
Choose the coordinate axes so that vertex H is at $(0,0,0)$ and vertex $S_{R(20,0,20)}$ at (2a,2a,2立), where 2a is the length of . each edge of the cube. The coordinates of V, the midpoint of $\overline{W R}$, will be (a,0,2a).

Using the distance formula,
$V B=\sqrt{a^{2}+4 a^{2}+4 a^{2}}=3 a$,
$V F=\sqrt{a^{2}+4 a^{2}+4 a^{2}}=3 a$.
Therefore, $\mathrm{VB}=\mathrm{VF}$.

559 12

Since the magnitudes of $[m, n]$ and $[x, y]$ are equal, we can say

$$
\begin{aligned}
& \sqrt{m^{2}+n^{2}}=\sqrt{x^{2}+y^{2}} \\
& m^{2}+n^{2}=x^{2}+y^{2} \\
& x^{2}+m^{2}+y^{2}=n^{2}=0
\end{aligned}
$$

and thus the diagonals are perpendicular.
20. Let triangle $A B C$ have D, E points on $\overline{A B}$ and $\overline{A C}$. respectively such that $A D=\frac{1}{3} A B$ and \quad, $A E \doteq \frac{1}{3} A C$, and let the segments be directed as shown. The segments represent the indicated vectors.

$$
\frac{1}{3} \vec{v}_{3}+\vec{v}_{2}=\frac{1}{3} \vec{v}_{4} \quad \text { and } \quad \vec{v}_{3}+\stackrel{\rightharpoonup}{v}_{1}=\vec{v}_{4}
$$

$$
\text { or } \stackrel{\rightharpoonup}{v}_{2}=\frac{1}{3}\left(\vec{v}_{4}-\stackrel{\rightharpoonup}{v}_{3}\right) \text { and } \vec{v}_{1}=\stackrel{\rightharpoonup}{v}_{4}-\overrightarrow{\mathrm{v}}_{3} ;
$$

therefore $\quad \stackrel{\rightharpoonup}{v}_{2}=\frac{1}{3} \vec{v}_{1} ;$
which implies that $\mathrm{DE}=\frac{1}{3} \mathrm{BC}$ and $\overline{\mathrm{DE}} \| \overline{\mathrm{BC}}$.

A. Measures of the Angles of a Polygon.

1. c.
2. b. . 8. c.
3. d.
4.1 .
4. d.
5. a.
6. c.
7. a .
8. c c.
9. b .
10. a .

B. Area Formulas.

1. 25
2. \sqrt{n}.
3. $a b+a(c-a)$, or $a c+a(b-a)$, or $a b+a c-a^{2}$,
4. Let a be the length of the altitude and $3 a$ the length of the base. Then

$$
\begin{aligned}
3 a^{2} & =147 \\
a^{2} & =49 \\
a & =7 .
\end{aligned}
$$

The altitude is 7 . The length of the base is 21.
5. * 12.
6. Consider the figure to be the union of triangular regions $W Y Z$ and XYZ . It can be proved that $\overline{\mathrm{YZ}}$ is the perpendicular bisector of $\overline{W X}$. Hence $\overline{W P}$ and $\overline{X P}$ are altitudes of triangle $W Y Z$ and $X Y Z$ respectively. The area of each of these triangles is 24 . Hence the area of WZXY is 48 .
7. (a) ad.
(b) $\frac{1}{2} \mathrm{~d}(a-c)$:
(c) $\frac{1}{2} \mathrm{~d}(\mathrm{a}+\mathrm{c})$.

563
120

3. (a) 384 . (See figure at right.)
(b) $19.2(384+20$.

4. 54 . ($\frac{1}{2}$. $9 \cdot 12$. The triangle is a right triangle.)
5. (a) $15 \frac{5}{6}$.
(b) 20 .

6: $16 \sqrt{3}$. (or $4 \sqrt{48}$.)

E. Coordinates.

1. Slope of $B C=\frac{1}{2}$

Slope of $A C=-2$.
Therefore, $\overline{B C} \perp A B$, and $\triangle A B C$ is a right triangle.
$\mathrm{BC}=\sqrt{80} ; \mathrm{AC}=\sqrt{20}$.
Therefore,
$A=\frac{1}{2}(\sqrt{80} \cdot \sqrt{20})$
$A=\frac{1}{2} \cdot \sqrt{1600}$
$\mathrm{A}=20$.

565

$$
12 \%
$$

2. (a) Rhombus The diagonals are - perpendicular and bisect each other.
(b) 24 .

$$
\begin{aligned}
& A=\frac{1}{2} d \cdot d \\
& A=\frac{1}{2} \cdot 8 \cdot 6
\end{aligned}
$$

3. $A \equiv 23$.

The vertices of the rectangle are designated by the following coordinates:
$A(-5,6), B(-5,-3)$, $C(4,-3), T(46)$. Area of rectans e $(-5-3) 6$ $A B C T=81$.
Area of $\triangle R A T=22 \frac{1}{2}$
Area of $\Delta T C S=\$ 1 \frac{1}{2}$
Area of $\triangle R S B=4$.
4. $K=$ area of $\triangle A B C$
= Area of XYBA + Area of YZCB - Area of XZCA.
$K \equiv \frac{(b-a) \cdot(r+s)}{2}+\frac{(c-b)(s+t)}{2}-\frac{(c-a)(t+r)}{2}$
$K=\frac{b r+p 6-a t-a s+c B+\phi t-b \phi-b t-q t-c r+a t+q t}{2}$
$K=\frac{a(t-s)+b(r-t)+c(s-r)}{2}$.

F. Area Relations.

1. 175 .
2. 1 to 1 .
3., 3 to 2 .
3. 4 times.
4. 2 times.
5. 2 to 3 .
6. $\sqrt{2}$ times. $\quad=$
7. $\frac{9}{16} ; \frac{x^{2}}{y^{2}}$ 4.
8. $\frac{6}{25}$.
9. 4 ; $\frac{15}{4}$.

11: 3 .
12. 8 .
G. Regular Polygons.

1. $54 \sqrt{3}$.
2. $\frac{3}{7} ; \frac{3}{7} ; \frac{9}{49}$.
3. $\mathrm{p}=60 ; \mathrm{a} \equiv 5 \sqrt{3}$
$A=150 \sqrt{3}$.
H. Polyhedrons.
4. 180 .
5. $40<x<160$.
6. (a) 5 .
(b) Tetrahedron

Hexahedron
(c) 4

Octahedron . 8
Dodecahedron 12
Icosahedron 20
4. $F+V=E=2$.
5. $210+25 \sqrt{3}$.
6. $p=5.2 \mathrm{in}$.
7. 975 .
8. 2 to 1 ; 4 to 1 .

120

Chapter 12
Part A.

1. $m \angle A P D=36$
2. $m \widehat{A C}=130 ; m \widehat{B C}=140$
3. $m \angle C P D=80 . ; m \angle A D C=65 ; m \angle D C B=115$.
4. $m \angle C A E=56$
5. 140
6. 98
7. Radius is 3
8. Zero. The circumference of the circumscribing circle
9. $A=\frac{C^{2}}{4 \pi}$
10. Radius is $\sqrt{2}$
11. $\frac{1}{10}$
12. $\frac{1}{2}$; $\frac{1}{2}$
13. 2
14. $18 \pi-36$
15. (a) on S

(b) exterior
(f) exterior
(c) exterior
(g) on S
(d) interior
(h) interior
16. 20
17. $\mathrm{m} \overparen{X A Y}=120 ; \boldsymbol{\ell} \overparen{X A Y}=4 \pi$; area of sector XOY $=12 \pi$; area of segment $=12 \pi-9 \sqrt{3}$
:18. Circumference is $2 \pi \sqrt{3}$; area is 3π.
18. $2 \frac{1}{2}$ square miles
19. Slopes of first pair are -2 and $\frac{1}{2}$, of the second pair 3 and $-\frac{1}{3}$.
20. Radius is 15 . Ratio of areas is $\frac{225}{289}$. 22. $A D=26$
21. 85 feet
22. $5 \sqrt{2}$
23. One point. $(2,1)$. t is tangent to C.
24. (a) $(3,1),(-1,3)$
(b) $(1,2)$
(c) $-\frac{1}{2}$
(d) $y=2 x$
(e) $\sqrt{5}$
25. (a) $\sqrt{3},-\sqrt{3}$
(b) Yes.
(c) NO ,
26. (a) $(3,-4),(-3,-4)$
(b) $(-3,4),(-4,3)$
(c) Same as (b)
(d) No paints of intersection

$$
569 . \quad 13 \hat{1}
$$

(a) 3
(b) 1
(c) 8
(d) 13
(e) 6
(f) 3
(g) $2 a$
*(h) $a-b$ if $a \geq b$ $b=a, 1 f$
5.
(a) $7 \frac{1}{2}$,

$$
\text { (b) }-\underset{-10}{-5 \frac{1}{2},} \quad \underset{-7}{ }
$$

(f) $r+b+1, \quad(r+b=2)+2, \quad(r+b=2)+4$. $r+b+1, r+b, \quad, r+b+2$

573134
6.

(c) Letter | Floor, Row, Table | |
| :---: | :---: |
| A | $3,1,23$ |
| B | $2 ; 2,2$ |
| C | $2,3,2$ |
| D | $1,2,2$ |
| E | $1,2,4$ |
| F | $3,3,2$ |
| G | $2,1,2$ |
| H | $1,1,4$ |

1.

(a) $(5,0)$
(b) $(0,6)$
3. I', III, II , IV, II.
4. It means that for every ordered pair of real numbers there corresponds a unique point and for every point there corresponds a unique ordered pair of numbers.
5. $(3,2),(3,5),(3,8)$.
$\mathrm{P}, \mathrm{R}, \mathrm{Q}$.
6. The set is a vertical line which intersects the x-axis in a point whose coordinate is 3 . The set is a horizontal line which intersects the y-axis in a point whose coordinate is $=5$. They intersect in the point $(3,-5)$.
7. (a) 7 points.
(b) 3 points.
(c) 15 points.

575130

13576

(g)
(h)

*9. (a) 4 units. With respect to the $x=$ coordinate systerb on the x-axis the Ruler Postulate may be applied.
(b) $C D=4$. Consider $A=(3,0)$ and $B=(7,0)$ the respective projections of C and D into the x-axis. Quadrilateral ABDC is a parallelogram. Therefore $C D=A B=4$.
10. $(2,-3),(-1,-1),(3,0),(0,1),(-5,4),(8,6)$.
11. $(-\pi, 6),(-3,4),(0,8),(2,0),(\pi,-2),(4,-3)$.
*12.
(a) 13
(d) $b-a$ if $b \geq a, a-b$ if $b<a$
(b) ${ }^{1} 3$
(c) 4
(e) $t-5$ if $t \geq 5,5=t$ if $t<5$
13. (a) The set of points in Quadrant IV.
(b) Points in Quadrant I or on x-axis and to the right of the origin.
(c) Quadrant III.
(d) The Right halfplane whose edge 18 a vertical . inne 2 units to the left of the y-axis.
(e) At an intersection of a line $x=a$ and a line $y \equiv b$, where a and b are integers.
(f) Any point in the $x y-p l a n e$.
*14.

*15. (a) $(3, a)$
(c) $\left(\frac{3 a}{2}, c\right)$
(b) $\left(1, \frac{a+b}{2}\right)$
(d) $\left(\frac{x_{1}+x_{2}}{2}, y_{1}\right)$
16. The point is In Quadrant III, 7 units from the y-axis and 8 units. from the x-axis.

$$
\therefore \cdot \therefore=
$$

Problem Set 8-3

1. (a) $\sqrt{36+100} \equiv \sqrt{136}$ (g) $\sqrt{1521+6400} \equiv 89$
(b) $\sqrt{36+100}=\sqrt{136}$ (h) $\sqrt{100+25}=\sqrt{125}$
\approx (c) $\sqrt{25+144}=13$
(1) $\sqrt{25 \pm 16}=\sqrt{41}$
(d) $\sqrt{49+576}=25$
(j) $\sqrt{16+9}=\frac{1}{5}$
.1
(e) $\sqrt{64+225}=17$
(k) $\sqrt{4.84+1.21}=\sqrt{6.05}$
(f) $\sqrt{1+1}=\sqrt{2}$
(1) $\sqrt{25 \pi^{2}+4 \pi^{2}}=\pi \sqrt{29}$
2. (a) $(3,5)$
(e) $(-5,2)$
(b) $(-3,5)$
(f) $(2 a, 2)$
(c) $\left(3 \frac{1}{2}, 8\right)$
(g) $(-r, 3 s)$
(d) $\left(-\frac{1}{2}, \frac{7}{2}\right)$
3. (a) $\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
(b) $(x-0)^{2}+(y=0)^{2}=25$

4: (a) $\sqrt{9+16}=\sqrt{25}$

$$
\sqrt{9+0}=\sqrt{9} \quad 25=9+16
$$

$$
\sqrt{0+16}=\sqrt{16}
$$

(b) $\sqrt{121+9}=\sqrt{130}$ $\sqrt{1+25}=\sqrt{26} \quad 130=26+104$ $\sqrt{100+4}=\sqrt{104}$
(c) $\sqrt{36+64}=\sqrt{300}$
$\sqrt{64+16}=\sqrt{80} \quad 100=80+20$
$\sqrt{4+16}=\sqrt{20}$
(d) $\sqrt{16+9}=\sqrt{25}$
$\sqrt{1+49}=\sqrt{50} \quad 50 \equiv 25+25$
$\sqrt{9+16}=\sqrt{25}$
(e) $\sqrt{484+16}=\sqrt{500}$
$\sqrt{36+144}=\sqrt{180} \quad 500=180+320$
$\sqrt{256+64}=\sqrt{320}$
(f) $\sqrt{16+36}=\sqrt{52}$
$\sqrt{81+36}=\sqrt{117} \quad 169=52+117$
$\sqrt{169+0}=\sqrt{169}$
5. (a) $A C=\sqrt{25+16} ; B D=\sqrt{25+16}$
(b) M1dpoint of $\overline{A C}$ 1s $\left(\frac{5}{2}, 2\right)$: Midpoint of $\overline{\mathrm{BD}}$ is $\left(\frac{5}{2}, 2\right)$.

$$
\begin{aligned}
& 580 \\
& 14
\end{aligned}
$$

6. Midpoint of $\overline{\mathrm{BC}}$ is $(1,2)$.

Length of median to $\overline{\mathrm{BC}}$ is $\sqrt{10}$.
7. (a) Length of median to $\overline{S T}$ is $\frac{1}{2} \sqrt{433}$.
(b) Length of median to $\overline{\mathrm{RS}}$ is $\frac{1}{2} \sqrt{193}$.
8. $\left(\frac{-1+7}{2}, \frac{0+4}{2}\right)=(3,2)=C$
$A C=\sqrt{4^{2}+2^{2}}=\sqrt{20}$
$\mathrm{CB}=\sqrt{4^{2}+2^{2}}=\sqrt{20} \quad \sqrt{80}=2 \sqrt{20} ; \mathrm{AC}=\mathrm{CB}=\frac{1}{2} \mathrm{AB}$.
$\mathrm{AB}=\sqrt{8^{2}+4^{2}}=\sqrt{80}$.
9. (a) $A B=\sqrt{49+81}=\sqrt{130}$ $A C=\sqrt{9+121}=\sqrt{130}$
(b) Length of median to $\overline{A B}$ is $\sqrt{\left(3-\frac{5}{2}\right)^{2}+\left(0-\frac{13}{2}\right)^{2}}=\sqrt{\frac{170}{4}}$

Length of median to $\overline{A C}$ is $\sqrt{\left(\frac{9}{2}+1\right)^{2}+\left(\frac{11}{2}-2\right)^{2}}=\sqrt{\frac{170}{4}}$
10. $\mathrm{AB}=\sqrt{16+36}=\sqrt{52}=2 \sqrt{13}$
$B C=\sqrt{4+9} \quad=\sqrt{13}$
$A C=\sqrt{36+81}=\sqrt{117}=3 \sqrt{13}$
$A B+B C=A C ; A, B, C$ are collinear since they cannot be the vertices of a triangle. See Theorem 6-21.
11. $(0-6)^{2}+(y+2)^{2}=100$
$(y+2)^{2}=64$
$(y+2)=8$ or $y+2=-8$ $y \equiv 6$ or $y=-10$
12. $(x-1)^{2}+(0+6)^{2}=100$
$(x-1)^{2}=64$
$x-1 \equiv+8$ or $x-1 \equiv-8$
$x=9$ or $\quad x=-7$
Two points satisfy the requirements: $(0,9)$ and $(0 ;-7)$.

$$
{ }^{581} 142
$$

*13. $A \bar{A} \equiv \sqrt{b^{2}+c^{2}}$
$\Rightarrow \quad B C=\sqrt{(a+b-a)^{2}+(c-0)^{2}}=\sqrt{b^{2}+c^{2}}$,
14. One diagonal $=\sqrt{[a-(-a)]^{2}+[a-(-a)]^{2}}$

$$
=\sqrt{4 a^{2}+4 a^{2}}
$$

Other diagonal $=\sqrt{(-a-a)^{2}+[a-(-a)]^{2}}$

$$
=\sqrt{4 a^{2}+4 a^{2}}
$$

Therefore the diagonals are congruent.
15. $x y$-system: $P(-8,2), Q(4,-3)$

$$
P Q=\sqrt{144+25}=13
$$

x'y'-system: $\bar{P}(-6,-4), Q(6,1)$

$$
P Q=\sqrt{144+25}=13 .
$$

Yes, as long as the coordinate system on each of the axes is established with referende to the same (or equivalent) unit-pair.

Problem Set 8-5

1. (a) IV
(b) III
(g) II, IV, the empty set
(c) II
(h) I, II, III, IV
(d) I
(1) I, IV
(j) IV
(e) II
(f) I, III, the empty set
(k) II intersected with the $11 n$ through the origin bisecting the angle formed by the side of Quadrant II.
2. (a) $\left(0,-3 \frac{1}{2}\right),\left(0,3 \frac{1}{2}\right)$.
(b) $(-4,0),(8,0)$ or $(-8,0),(4,0)$.
(c) $(0,0),(0, r) ;(0,0),(r, 0) ;(0,0),(-r, 0)$; $(0,0),(0,-r)$.
(d) $(-4,5),(4,5)$.
(e) $\left(-\frac{5}{\sqrt{2}}, 0\right),\left(0, \frac{-5}{\sqrt{2}}\right) ;\left(\frac{-5}{\sqrt{2}}, 0\right),\left(0, \frac{5}{\sqrt{2}}\right)$; $\left(\frac{5}{\sqrt{2}}, 0\right),\left(0, \frac{-5}{\sqrt{2}}\right) ;\left(\frac{5}{\sqrt{2}}, 0\right),\left(0, \frac{5}{\sqrt{2}}\right)$ Note that $\frac{5}{\sqrt[6]{2}}=\frac{5 \sqrt{2}}{2}$.
(f) Endpoints of $\overline{A B}:(0,0),(0,6)$ or

$$
(0,0),(0,-6)
$$

Endpoints of $\overline{C D}:(3,2),(3,8)$ or $(3,2),(3,-4)$.
3. (a) $(-3,0),(3,0),(0,4)$.
(b) $(0,2.5),(0,-2.5),(3,0)$.
(c) $(-3,0),(3,0),(0,4)$.
(d) $A=(0,0), B=(7,0), C=(10,5)$, $D=(e, 5)$, or $A \equiv(0,0), B \equiv(-7,0), C \equiv(-7+e, 5)$, $D \equiv(e, 5)$.
4. (a) $C=(0,0), B=(-10,0), A=(0,21)$ or $(0,-21)$
(b) $A=(0,0), B=(4,0), C=(2,3)$ or $(2,-3)$.
(c) $A=(3,2), B=(3,-2), C=(0,0)$.
(d) $A=(-5,0), B=(5,0), C=(0,5 \sqrt{3}) ;$ or $A=(5,0), B=(-5,0), C=(0,5 \sqrt{3})$.
5. (a) $A=(0, a), B=(=b, 0), C=(0,0)$.
(b) $A=(0,0) ; B=(b, 0), C=\left(\frac{b}{c_{2}}, a\right)$.
(c) $A=\left(a, \frac{b}{2}\right), B \equiv\left(a,-\frac{b}{2}\right), C \equiv(0,0)$; or

$$
A=\left(a,-\frac{b}{2}\right), B=\left(a, \frac{b}{2}\right), C=(0,0) .
$$

(d) $\left(-\frac{5}{2}, 0\right),\left(\frac{8}{2}, 0\right),\left(0, \frac{8}{2} \sqrt{3}\right)$.

Probiem Set 8-6
Problem 1 is an exploratory problem designed to introduce the work in the next section. It should', not be omitted.

1. The lines are both vertical, hence parallel, and $4-(-4)=8$ units apart.
2. $(0,3),(\pi, 3),(-2,3)$, for instance. .
3.

4. The union is the set of all points each of which lies in one or both of the two lines. Yes.
5. The intersection is the set whose only element is. the point (2,3). Yes. Yes.
6. (a)
(b) a line segment

(c) an infinite number
\cdot
7. (a) Aray

(c) The union of a right angle and its interior.

(d) The union of a rectangular region and three of its sides (except for two endpoints).

9. (a) $\{(x, y): y=7$ or $y=-3\}$.
(b) $\{(x, y):|x|=4\}$ or $\{(x, y): x=-4$ or $x=4\}$
(c) $((x, y): x=-5, y \equiv 3)$.
*(d) $\{(x, y): y=0\}$.
Let $P(x, 0)$ be in
($(x, y): y=0\}$.
Then $(P A)^{2}=(P O)^{2}+(O A)^{2}$
$=x^{2}+(-3)^{2}=x^{2}+9$
and

and
$1 ., 586$

Converse: Let $P(x, y)$ be so located that $P A=P B$. Then $\triangle O A P=\triangle O B P$ by S.S.s. Then $\angle P O A \cong \angle P O B$. Hence $\overline{O P} \perp \overline{A B}, y \equiv 0$, and $(x, y) \in((x, y): y=0)$.
10. Sets are equal if and only if their conditions are equivalent.
(a) The two sets are equal since their condftions are equivalent:
(b) The two sets are equal since, using properties of order, the conditions can be sinown to be equivalent.
(c) The two sets are not equal since proper use of order properties indicates that the conditions are not equivalent.
(d) The two sets are not equal. The conditions are not equivalent because $-2 x+4<8$ is equivalent to $x \gg-\hat{2}$..
(e) The two setrararinnot equal. Every negative number is an efement of $\{x: 6 \geq 3 x\}$ while no negative number is an element of $\left(x: \frac{6}{x} \geq 3\right)$.
*11. (a) $k \equiv 2 ; t=2$. Parallel lines cut off proportional segments on two transversals. $k^{\prime} \equiv 3 ; \mathrm{MO} \equiv 3 \mathrm{MN}$.
(b) 4, 4, 12.
(c) $5,2, A^{\prime} C^{\prime}=\frac{5}{2} A^{\prime} \mathrm{B}^{\prime}, \frac{5}{2}$.
(d) 4 .
(e) Paraliel ines intercept proportional segments on two transversals, and the definition of the length of a segment.
$O P^{\prime} \equiv O A^{\prime}+A^{\prime} P^{\prime} \equiv x \equiv 2+2 k$.
(f) Same as (e). $O \bar{P}^{\prime \prime} \equiv O A^{\prime \prime}+A^{\prime \prime} P^{\prime \prime}=y$; $y \equiv 3+2 k$.

$$
1.43
$$

587
(g) (1) P lies in ray $\overrightarrow{A B}$, such that B is between A and P.
(2) $P=B$.
(3) P lies in $\overline{A B}$, but $P \neq A$ and $P \neq B$. (4) P lies in the ray opposite to $\overrightarrow{A B}$.
(5) $P=A$.

Problem Set 8-7

1. (a) $\overrightarrow{A B}=\{(x, y): x=1+k, y=4+2 k ; k$ is real $\}$ $\overrightarrow{\mathrm{AB}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=1+\mathrm{k}, \mathrm{y}=4+2 \mathrm{k} ; 0 \leq \mathrm{k} \leq 1\}$, $\overrightarrow{A B}=\{(x, y): x=1+k, y=4+2 k, k \geq 0\}$. Ray opposite $\overrightarrow{A B}=[(x, y): x=1+k$, $\mathrm{y} \equiv 4+2 \mathrm{k}, \mathrm{k} \leq 0$).
(b) $\underset{\overrightarrow{A B}}{\rightarrow}=\{(x, y): x=-1+3 k, y=3-3 k, k$ is real $\}$
$\overline{\mathrm{AB}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=-1+3 \mathrm{k}, \mathrm{y}=3-3 \mathrm{k}, 0 \leq \mathrm{k} \leq 1\}$
$\overrightarrow{A B}=\{(x, y): x=-1+3 k, y=3-3 k, 0 \leq k\}$.
Ray opposite $\overrightarrow{A B}=\{(x, y): x=-1+3 k$, $y=3-3 k, k \leq 0\}$.
(c) $\overrightarrow{A B}=\{(x, y): x=3 k, y=2 k, k$ is real $\}$, etc.
(d) $\overrightarrow{\mathrm{AB}}=\{(x, y): x=1+3 \mathrm{k}, \mathrm{y} \equiv 1+3 \mathrm{k}$, k is reall, etc.
(e) $\overrightarrow{A B}=f(x, y): x=-1+2 k, y=3-5 k$, k is real\}, etc.
(f) $\overrightarrow{\mathrm{AB}}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=-3+3 \mathrm{k}, \mathrm{y} \equiv-2+3 \mathrm{k}$, k is real), etc.
(g) $\overrightarrow{A B}=((x, y): x=a+(c-a) k, y=b+(d-b) k$, k is real\}, ete.
(h) $\overrightarrow{A B}=\{(x, y): x=a+2 a k, y=2 a+2 a k$,

$$
\mathrm{k} \text { is real], etc. }
$$

1485

9. (a) If P is between A and B then $A P+P B=A B$, that is $P B=A B-A P$. Since. $A P=3 P B$, we have in this erase $A P=3(A B-A P)$, that 18 $A P=\frac{3}{4} \mathrm{AB}$. Thus, using the method of solution of Problems $7 \underset{\substack{\text { and } \\ 8}}{ } \underline{P}=\left(2,-\frac{1}{4}\right)$.
If B is between A and P then $A B+B P=A P$, that is $P B=A P=A B$. Since $A P: 3 P B$, we have in this case $A P=3(A P-A B)$, that is $A P=\frac{3}{2} A B . \quad$ Thus, using the method of solution of Problems 7 and $8, P=(5,-5.5)$.
If A is between B and P then $P A+A B=P B$. Since $A P=3 P B$, we have in this case $A P=3(A P+A B)$, that is $A P=-\frac{3}{2} A B$. But this is impossible, since the distance $A P$ cannot be negative. Hence there are two solutions $P \equiv\left(2,-\frac{1}{4}\right)$ or $(5,-5.5)$.
(b). Using the same analysis as in Part (a) we find two solutions: $\mathrm{P}=\left(-\frac{1}{5}, \frac{18}{5}\right)$ or $\left(-\frac{7}{3}, \frac{22}{3}\right)$.
(c) $P=(11,-16)$ or $(-5,12)$.
(d) $P=(19,-30)$ or $(-21,40)$.
10. (a) $\stackrel{C D}{ }$ is horizontal.
$\xrightarrow[C D]{\longrightarrow} \equiv\{(x, y): x=-1+(5-(-1)) k$,

$$
\mathrm{y}=2+(2-2) \mathrm{k}, \mathrm{k} \text { is real }\}
$$

$$
=\{(x, y): x=-1+6 k, y \equiv 2, k \text { is real }\} .
$$

$$
\text { If } k=0,(x, y)=(-1,2) \text {. If } k=1,
$$

$$
(x, y)=(5,2) \quad \text { If } k=-2,(x, y)=(-13,2)
$$

(b) $\quad\left((x, y): x=\underset{k}{x_{1}}+\underset{\text { is real }\}}{ }+x_{1}-x_{1}\right), y=a+k(a-a)$,
$=\left\{(x, y): x=x_{1}+k\left(x_{2}-x_{1}\right), y \equiv a\right.$, $\therefore k$ is real
$=\{(x, y): y=a\}$, which is the horizontal line ${ }^{*} \overrightarrow{C D}$.
k is real)
$=\left\{(x, y): x=a, y=y_{1}+k\left(y_{2}-y_{1}\right)\right.$, k is real)
$=\{(x, y): \dot{x}=a\}$, which is the vertical line ${ }^{\mathrm{EF}}{ }^{\circ}$.
11.
(a) $\overline{\mathrm{AB}}=\{(x, y): x=0, y=3 k, 0 \leq k \leq 1\}$
$\overline{\overline{A C}} \equiv\{(x, y): x=4 k, y=0,0 \leq k \leq 1\}$
$\overline{B C}=\{(x, y): x=4 k, y=3-3 k, 0 \leq k \leq 1\}$.
(b) $\overline{\mathrm{DE}}=\{(x, y): x=-3+3 k, y=3 k, 0 \leq k \leq 1\}$
$\overline{\mathrm{DF}}=((\mathrm{x}, \mathrm{y}): \mathrm{x}=-3+6 \mathrm{k}, \mathrm{y}=0,0 \leq \mathrm{k} \leq 1)$
$\overline{E F}=\{(x, y): x=3 k, y=3-3 k, 0 \leq k \leq 1\}$.
12. (a) $\{(x, y): x=1+2 k, y=2-k, k$ is real $\}$. $(1,2)$ for $k=0$, $(3,1)$ for $k=1$.

(b) $\{(x, y): x=2 k, y=k, o<k<2\}$ $(0,0)$ for $k=0$, and $(4,2)$ for $k=2$.
These are the endpoints of the segment.

591
152
(c) $\{(x, y): x=-1+k, y=-k, k \geq 0\}$ yields for $k=0,(-1,0)$ and for $k=1,(0,-1)$ and these are points in the ray the first being its endpoint.

(d) $\{(x, y): x=k, y=-k, k \leq 0\}$ yields for $k \neq 0,(0,0)$ the endpoint of the ray, and for $k=-1,(-1,1)$ another point in the ray.

(e) $\{(x, y): x=3, y=k,-2 \leq k \leq 3\}$
yields for $k=-2,(3,-2)$,
and for $k=3$, $(3,3)$,
and.these are the endpoints of the segment.

象
*

曷

592
153
13. $\left\{(x, y): x^{\prime}=3 k-1, y=3-5 k, k\right.$ 1s real $\}$
(a) If $x=5, k=\frac{1}{2}, y=-7$.
(b) If $y=8, k=-1, x=-4$.
(c) If $x=29, k=10, y=-47$.
(d) If $y=0, k=\frac{3}{5}, x=\frac{4}{5}$.
(e) If $x=0, k=\frac{1}{3}, y=\frac{4}{3}$.
14. $\mathrm{D}=\left(\frac{9}{2}, 0\right), \mathrm{E}=(6,3), \mathrm{F}=\left(\frac{3}{2}, 3\right)$.
$F B \equiv\left\{(x, y): x=\frac{3}{2}+\frac{15}{2} x, y=3-3 k, 0 \leq \hat{k} \leq 1\right\}$,
$E \overline{E A}=((x, y): x=6-6 k, y=3-3 k, 0 \leq k \leq 1)$,
$\overline{\overline{D C}}=\left\{(x, y): x=\frac{9}{2}-\frac{3}{2} k, y=6 k, 0 \leq k \leq 1\right\}$.
Each of these segments contains the point $(4,2)$. Take $k=\frac{1}{3}$ in each case.)
15. $\mathrm{p}=\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=\mathrm{a}+\mathrm{ck}, \mathrm{y}=\mathrm{b}+\mathrm{dk}, \mathrm{k}$ is real $\}$.
(a) If $c=0, p=\left\{(x, y): \begin{array}{c}x=a, y=b+d k, \\ k \text { is reai }\}\end{array}\right.$
$=\{(x, y): x=a\}$, which is a vertical line.
(b) If $d=0, p=[(x, y): x=a+c k, y=b$, k is real)

$$
=\{(x, y): y=b\} \text {, which is } a
$$ horizontal line.

(c) If $a=0 \equiv b$, then

$$
p=\{(x, y): x \neq c k, y=d k, k \text { is real }\}
$$

If $k=0,(x, y)=(0,0)$, which is a point in p.

$$
593154
$$

Problem Set 8-8a

$1 \therefore$ (a) $\frac{1}{3}$
(f) -1
(b) $-\frac{1}{3}$
(g) $-\frac{5}{7}$
(c) $\frac{7}{4}$
(h) $\frac{3}{4}$
(d) $\frac{3}{4}$
(1) 1°
(e.) $=\frac{15}{8}$
(J) -1
(a). 6
(c) $-1^{\prime \prime}$
(b) $\frac{9}{2}$
(d) Any real number except 5 .
3.

Slope of $\overline{\mathrm{AB}}=$ slope of $\overline{\mathrm{DC}}=\frac{2}{7}$
Slope of $\overline{D A}=$ slope of $\overline{C B}=-\frac{3}{2}$.
4.

Slope of $\overline{R Q}=\frac{5}{3}=$ slope of $\overline{S P}$.
Slope \cdot of $\overline{\mathrm{SR}}=-\frac{1}{2}=$ slope of $\overline{\mathrm{PQ}}$.

155
5. (a) Negative
(d) Negative
(b) Zero
(e) Negative
(c) Positive:
(f) Positive

Positive slope indicates "uphill" from left to right; negative slope "downhill" from left to right.
6. $\frac{101}{100}>\frac{100}{101}$, so segment from $(0,0)$ to $(100,101)$ is steeper:

7. slope $=\frac{\frac{b}{a}-\frac{a}{b}}{b-a}=\frac{\frac{b^{2}-a^{2}}{a b}}{b-a}=\frac{b+a}{a b}$.
8. $\widehat{A B}=((x, y): \dot{x}=3-2 k, y=-1+3 k(x$ is real $)$ contains $P_{1}\left(x_{1}, y_{1}\right)=(3,-1)$ and $P_{2}\left(x_{2}, y_{2}\right)=(1,2)$. Then $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3}{-2}=-\frac{3}{2}$ is the slope of $\stackrel{\rightharpoonup}{A B}$.

595
150

The second point in each of the preceding graphs could have been located in.several ways. of courser, the same line would resuilt in every case.
-10.

11. (a) $\{(x, y): x=2 k, y=3 k\}$
(b) $\{(x, y): x=5 k, y \equiv-3 k\}$ or

$$
\{(x, y): x=-5 k, y=3 x\}
$$

(c) $\left\{(x, y): x_{4}=k, y=4 k\right\}$
(d) $\{(x, y): x=2 k, y=r k\}$.

Problem Set 8-8b

1. (a) slope of $\overrightarrow{A B}=\frac{3}{8}$; slope of $\overrightarrow{C D}=\frac{3}{8}$. Slope of $\overrightarrow{A D}=5$; slope of $\overrightarrow{B C}=5$.
(b) Slope of $\overrightarrow{A B}=\frac{1}{10}$; slope of $\overrightarrow{C D}=\frac{1}{10}$.

Slope of $\overrightarrow{A D}=0$; slope of ${ }^{4} \overrightarrow{B C}=0$.
(c) Slope of ${ }^{4} \overrightarrow{\mathrm{AB}}=\frac{5}{4}$; slope of ${ }^{4} \overrightarrow{\mathrm{CD}}=\frac{5}{4}$. Slope of $\overrightarrow{A D}=-\frac{1}{3}$; slope of $\overrightarrow{B C}=-\frac{1}{3}{ }^{\prime}$.
2. Slope of $\overrightarrow{\mathrm{AB}} \equiv-\frac{2}{7}$; slope of $\overrightarrow{\mathrm{CD}} \equiv-\frac{2}{9}$.
3. (a) Slope of $\overrightarrow{\mathrm{AB}^{+}}=4$; slope of $\overrightarrow{\mathrm{BC}}^{\overrightarrow{B C}}=4$; yes.
(b) $\frac{4+1}{-5-2} \neq \frac{-8-4}{16+5}$. No.
(c) Slope of $\overrightarrow{\mathrm{AB}}=\frac{96}{96}=1$; slope of $\overrightarrow{\mathrm{BC}}=\frac{-100}{-100}=1$; уes.
15^{596}

> (d) Slope of $\overrightarrow{A B}=\frac{96}{96}=1$; slope of $\overrightarrow{C D}=1$;
> $\therefore \overrightarrow{A B} \| \overrightarrow{C D}$.
> Slope of $\overrightarrow{\mathrm{BC}}=\frac{197}{197}=1 ; \cdots \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CD}}$.
> (a) $p=\{(x, y): x=3+3 k, y=8+2 k, k$ is real $\}$
> $k=0 \quad$ y fields $\quad(3,8)$
> $k=1 \quad$ yields $(6,10)$
> $k=-1$ yields $(0,6)$
> $k=2$ 'yields $(9,12)$.
> (b) $q=\{(x, y): x=-1+4 k, y=0-3 k, k$ is read $\}$
> $k=0 \quad$ yields $(-1,0)$
> $k=1$ yields $(3,-3)$
> $k=-1$ yields ($-5,3$).
> $k=2$ yields $(7,-6)$.
> 5. (a) \{(x, y): $x=3+3 k, y=4+2 k, k$ is real $\}$
> Parametric equations: $\left\{\begin{array}{l}x=3+3 k, k \\ y=4+2 k, \\ y=1 s \text { real. }\end{array}\right.$
> (b) $((x, y): x=-1+k, y=3-k, k$ is real)
> Parametric equations: $\left\{\begin{array}{l}x=-k+k, k \text { is real. } \\ y=3-k, k \text { is real. }\end{array}\right.$
> 6.
> $\xrightarrow[C D]{=}=\{(x, y): \dot{x}=2 k, y=-3 k, k$ is real $\}$, or
> $\overleftrightarrow{C D}=\{(x, y): \quad x=-2 k, y=3 k, k$ is real $\}$.
> 7. Slope of a 亲 $\frac{-k}{2 k}=-\frac{1}{2}$; slope of $b=\frac{-h}{2 h}=-\frac{1}{2}$.
> However, $k=0$ yields $(1,2)$ in a,
> $h \equiv 0$ yields $(3,-1)$ in b,

> Hence $a \neq b$.
> 8. Slope of p is $\frac{4}{2}$. Slope of $q=\frac{8}{4}$. These are equal. Also $(1,3)$ is on p and on q. So, $\mathrm{p}=\mathrm{q}$.
9. (a) Slope of $m^{\prime}=\frac{3}{2}$; slope of $n=-\frac{3}{2} ; m ; n^{\prime}$ not parallel. Therefore m and n intersect in one point.
(b) We seek $\{(x, y): x=1+2 k, y=2+3 k$, and * $x=1-2 h, y=2+3 h ; h, k$ real $\}$

Hence, $\quad 1+2 k=1-2 h$
and

$$
2+3 k \equiv 2+3 h
$$

That is, $k=-h$ and $k=h$.
So, $k=0=h-$, which gives
'($(x, y): x=1, y=2)$.
So, the point of intersection is $(1,2)$.
10. Slope $\overline{A B}=\frac{3}{2}$; slope $\overline{B C}=-\frac{7}{3}$; slope $\overline{\mathrm{CD}}=\frac{3}{2}$,

- slope $\overline{\mathrm{AC}}=-\frac{4}{5} ;$ slope $\overline{\mathrm{AD}} \equiv-\frac{7}{3}$; slope $\overline{\mathrm{BD}}=-10$. $\overline{A B}\|\overline{C D} ; \overline{B C}\| \overline{A D}$. The segments are distinct since their endpoints are different.

11. Slope $\overrightarrow{A B}=-\frac{2}{3} \equiv$ slope $\overrightarrow{C D}$.

Slope $\overline{B C}=-3=$ slope $\overline{A D}$ and B, C, A are not collinear. Hence $A B C D$ is a parallelogram.
12. By definition of vertical lines, if m is a vertical line, it is paralleì to the y-axis. If $n|\mid m$, then n is also parallel to the y-axis and hence is a vertical line. (Recall that, in this text, a line is parallel to itself.)
13.

$$
\begin{aligned}
& \mathrm{D}=\left(\frac{4-2}{2}, \frac{2-4}{2}\right)=(1,-1) . \\
& E=\left(\frac{4+6}{2}, \frac{2+0}{2}\right)=(5,1) . \\
& \quad \overrightarrow{\mathrm{AC}}=\frac{4}{8}=\frac{1}{2}, \\
& \text { Slope } \overrightarrow{\mathrm{DE}}=\frac{2}{4}=\frac{1}{2}, \text { so } \overrightarrow{\mathrm{AC}} \| \overrightarrow{\mathrm{DE}} .
\end{aligned}
$$

14. (a) Slope $\overline{A B}=4$, slope $\overline{B C}=\frac{1}{2}$,
slope $\overline{C D}=5$,
slope $\overline{A D}=\frac{3}{8}$.
It is false that $A B C D$ is a parallelogram.
(b) Slope $\overline{P Q}=\frac{2}{3}$,
slope $\overline{Q R}=-\frac{1}{5}$,
slope $\overline{R S}=\frac{2}{3}$,
slope $\overline{\mathrm{SP}}=-\frac{1}{5}$. It is true that PQRS is a parallelogram.
15. $\frac{n-0}{0-3 n}=-\frac{1}{3}=\frac{2 n-0}{0-6 n}$.
16. If $\widehat{P Q} \| \overrightarrow{R S}$ then either they both have the same slope or both are vertical. In case they are vertical $a=3$ and $b=4$, so $a=b-1$. In case they have the same slope, $\frac{\sqrt[V]{a}}{3-\frac{1}{-b}}=\frac{1}{4-b}$; that -is $4-b=3-a$ or $a=b-1$. on the other hand if $a=b-1$ and $4-b \neq 0$ then $\frac{1}{4-b}=\frac{1}{4=(a+1)}=\frac{1}{3-a}$, and $\stackrel{\rightharpoonup}{P Q}\left|\left.\right|^{4} \overrightarrow{R S}\right.$.
Further, if $a=b=1$ and
$4-b=0$, then $b=4$ and $a=3$ and both lines are vertical and again $\overrightarrow{P Q}\left\|\|^{4} S\right.$. Furthermore, in case ${ }^{4} \overrightarrow{P Q} \mid \Gamma^{4} \overrightarrow{R S}, \overrightarrow{P Q}={ }^{4} \overrightarrow{R S}$ if and only if ${ }^{\dagger} \overrightarrow{Q R}| |^{\overrightarrow{P Q}} \overrightarrow{ }$.
Now, slope $\overrightarrow{Q R}=\frac{1}{3-b}$. So $\overrightarrow{Q R} \| \overrightarrow{P Q}$ implies
$\frac{1}{3-b}=\frac{1}{3-a}$ or $a=b$. But $a=b-1$, so $\overrightarrow{\mathrm{PQ}} \neq{ }^{\circ} \overrightarrow{\mathrm{RS}}$.

Problem Set 8=9

1. (a) $\frac{x-1}{4-1}=\frac{y-4}{3-4}$
(c) $\frac{x-(-3)}{5-(-3)}=\frac{y-2}{-4-2}$
(b) $\frac{x-0}{-3}=0=\frac{y=5}{0}=-5$
(e) $\frac{x-0}{7-0}=\frac{y-0}{8}=0$
(c) $\frac{x-0}{3-0}=\frac{y-(-5)}{0=(-5)}$
(f) $\frac{x-(-1)}{1}=\frac{y-1}{-1-1}$

599
163
2. (a) $y=0=\frac{1}{2}(x-0)$
(b) $y=5=\frac{2}{3}(x-(-3))$
(c) $y-7=-\frac{3}{4}(x-(-2))$
(d) $y-(-2)=2(x-(-3))$
(e) $y-2=-1(x-(-3))$
(f) $y-(-5)=3(x-0)$
3. $y-8=-\frac{3}{4}(x-5)$
4. (a) $\frac{x-0}{1-0}=\frac{y-0}{6-0}$, or $y \geq 6 x$
(b) $\frac{x-0}{5-0}=\frac{y-0}{2-0}$, or $y=\frac{2}{5} x$
(c) $\frac{x-0}{3-0}=\frac{y-0}{4-0}$, or $y=\frac{4}{3} x \quad \begin{aligned} & \quad(\text { M1dpoint of } \\ & \overline{B C}=(3,4))\end{aligned}$
(d) $\begin{array}{r}\frac{x-\frac{1}{2}}{\frac{5}{2}-\frac{1}{2}} \equiv \frac{y-3}{1-3}, \text { or } y=-x+\frac{7}{2} \quad \text { (M1dpoint of } \\ \overline{A B}=\left(\frac{1}{2}, 3\right) ; \text { mid }-\end{array}$ point of $\left.\overline{\mathrm{AC}}=\left(\frac{5}{2}, 1\right)\right)$
(e) $\frac{x-1}{5-1}=\frac{y-6}{2-6}$, or $y=-x+7$
(f) $\overrightarrow{\mathrm{AD}} \equiv\{(\mathrm{x}, \mathrm{y}): y=\mathrm{x}\}$

$$
\stackrel{+}{\mathrm{BC}}=\{(x, y): y-2=-(x-5)\}
$$

Solving these equations
(1) $y=-x+7$
(2) $\bar{y}=\bar{x}$
$\bar{y}=\frac{7}{2}, \bar{x}=\frac{7}{2}$, therefore the point of intersection is $\left(\frac{7}{2}, \frac{7}{2}\right)$.
5. a, c, d
6. (a) $y-4=2(x+2)$
(b) $y-4=x+2$
(c) $y-4=0$
(d) $y-4=-(x+2)$
(e) $y-4=\frac{1}{2}(x+2)$
(f) $y-4=-\frac{3}{2}(x+2)$
7. $m_{p}=\frac{1}{2}, m_{q}=-2, m_{r}=-2 ; m_{s}=\frac{1}{2}$

Hence, $p \| s$ and $q \| r$.
8. (a) Intersect in one point since $p \neq q$ and p H .
(b) $p=q$ since $p \| q$ and the point $(8,0)$ is on both p and q.
(c) $\mathrm{p} \| \mathrm{q}$ since slopes are the same but $\mathrm{p} \neq \mathrm{q}$ since $(8,0)$ is on p but not on q
9. It is the equation of a line since it is linear. Further it contains ($a, 0$) and ($0, b$) since $\frac{a}{a}+\frac{o}{b}=1 \quad$ and $\quad \frac{O}{a}+\frac{b}{b}=1$.
10. If $x \equiv 0, y=b$. Hence the point $(0, b)$ is on the line and this is the point of the y-axis which is on the line. If $x=1, y \equiv m+b$. Hence; $(1, m+b)$ is on the line. The slope of the line is determined from $(0, b)$ and ($1, m+b$) as

$$
\frac{m+b-b}{1-0}=m
$$

Problem Set 8-10
1, $p \perp r ; q \perp s$.
2. (a) $-\frac{2}{7}$
(c) $\frac{2}{9}$
(b) $\frac{7}{2}$
(d) $-\frac{9}{2}$
3. $\frac{2-0}{3}-\frac{2}{3} ;-\frac{3-0}{2}-0=-\frac{3}{2} ;\left(\frac{2}{3}\right)\left(-\frac{3}{2}\right)=-1$.
a
4. $\frac{\mathrm{m}}{\mathrm{AB}} \underset{\mathrm{Z}}{\mathrm{m}} ; \mathrm{m}_{\mathrm{BC}}=\frac{\mathrm{a}}{\mathrm{b}} ;\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\left(-\frac{\mathrm{a}}{\mathrm{b}}\right)=-1$.
5. $\mathrm{m}_{\mathrm{PQ}}=\frac{-6-2}{5-1}=-2 ; \mathrm{m}_{\mathrm{QR}}=\frac{1}{2}=\frac{b+6}{b-5}$
which yields $b-5=2(b+6)$ or $b=-17$.
6. (1) For, $k=0$, both $\overrightarrow{A B}$ and ${ }^{\circ} \overrightarrow{C D}$ contain $(1,2)$.
(2) $m_{A B}=\frac{3}{2}, \frac{m}{C D}=\frac{2}{3}$.. Hence $\left(m_{A B}^{A B}\right)\left(m_{C D}\right) \stackrel{y}{=}-1$. So $\widehat{A B} \perp \overrightarrow{C D}$.
7. $\overleftrightarrow{C D}=\{(x, y): x=-2+3 k, y=2+4 k, k$ is real $\}$.
8. (a) $\{(x, y): x=3+4 k, y=2=k, k$ is real $\}$
(b) $\{(x, y): x=3+k, y=2+4 k, k$ is real $\}$
(c) $\{(x, y): x=k, y=-3 k, k$ is real $\}$
(d) $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}=3 \mathrm{k}, \mathrm{y}=\mathrm{k}, \mathrm{k}$ is real $\}$
(e) $m_{\overrightarrow{B C}}=-3, \overrightarrow{B C}=\{(x, y): y-2=-3(x-3)\}$
$m_{\overline{A D}}=\frac{1}{3}, \quad \overrightarrow{A D}=\left((x, y): y=\frac{1}{3} x\right)$
(D) $\equiv((x, y): y=-3 x+11$ and* $3 y=x)$
(D) $\equiv\{(x, y): y=-3(3 y+11)$ and $3 y=x\}$
(D) $=\left\{(x, y): y=\frac{11}{10}\right.$ and $\left.x=\frac{33}{10}\right\}$
$D=\left(\frac{33}{10}, \frac{11}{10}\right)$
9. $m_{\overline{A B}}=-2=\frac{m}{\overline{C D}} ; m_{\overline{B C}}=\frac{1}{2}=\frac{m}{\overline{A D}}$;
f $\left(\mathrm{m}_{\overline{A B}}\right)\left(\mathrm{m}_{\overline{\mathrm{BC}}}\right)=-1$; therefore $\angle B$ is a right angle.
$\left(m_{B C}\right)\left(m_{C D}\right)=-1$; therefore $\angle C$ is a right angle.
$\left(\mathrm{m}_{\mathrm{CD}}\right)\left(\mathrm{m}_{\mathrm{AD}}\right)=-1$; therefore $\angle \mathrm{D}$ is a right angle.
$\left(m_{\overline{A D}}^{*}\right)\left(\frac{m_{\overline{A B}}}{}\right)=-1$; therefore $\angle A^{*}$ is a right angle.
10. (a) $\{(x, y): x=2+k, y-2-k, k$ is real $\}$
(b) $\left\{(x, y): x=k, y=\frac{1}{2}+2 k, k\right.$ is real $\}$
(c) $((x, y): x=k, y=2-k, k$ is real $)$
(d) $\left\{f(x, y): x=\frac{a}{2}+b \bar{k}, y=\frac{b}{2}-a k ;{ }_{k}\right.$ is real $\}$
ii. $m_{p}=\frac{d-b}{c-a}$ if $a \neq c$.
$m_{q}=\frac{a-c}{d-b}=-\frac{e-a}{d-b}=-\frac{1}{m_{p}} \quad$ if $a \neq c, d \neq b$.
If $a=c, p$ is a vertical inline and q is a horizontal line.
If $d=b, p$ is a horizontal line and q is a vertical line.
12. (a) $x=\frac{5}{2}$
(b) $x=5$
13. Plot $A(3,5)$. Through A draw a horizontal line and on it locate $D(10,5)$. Through D draw a vertical line and on it locate $E(10,1)$.

14: (a) $m_{\mathrm{PQ}}=-2$. Plot $\mathrm{S}(6,-2) .{ }_{\mathrm{RS}}$ is the line.
(b) Plot $T(7,1)$. $\widehat{R T}^{\text {P }}$ is the in ne.
15. $p=\{(x, y): x=2+3 k, y=3+2 k, k$ is real $\}$
(a) $k=1$ yields $(5,5)$
$k=-1$ yields ($-1,1$)
(b) $\mathrm{q} \perp \mathrm{p}$ and $(2,3)$ on q ; $q=\{(x, y): x=2+2 k, y=3-3 k, k$ is real $\}$ $k=1$ yields $(4,0)$ $k=-1$ yields $(0,6)$.

$$
{ }^{4} \cdot \quad{ }^{603} 164
$$

16. (a) $A C=\sqrt{(a+c-a)^{2}+(b+c-b)^{2}}$; $\mathrm{BD}=\sqrt{(\mathrm{a}+\mathrm{c}-\mathrm{a})^{2}+(\mathrm{b}-\mathrm{b}-\mathrm{c})^{2}} ; \mathrm{AC}=\mathrm{BD} ;$
$0 \quad \overline{\mathrm{AC}} \cong \overline{\mathrm{BC}}$.
(b) $\quad m_{\overline{A C}}=\frac{b+c-b}{a+c-a}=1, m_{\overline{B D}}=\frac{b-b-c}{a+c-a}=-1$. Hence $\overline{A C} \perp \overline{B D}$.
(c) Midpoint of $\overline{A C}=\left(\frac{a+c+a}{2}, \frac{b+b+c}{2}\right)$;

Midpoint of $\overline{B D}=\left(\frac{a+c+a}{2}, \frac{b+b+c}{2}\right)$.

Problem Set 8-11

1. Yes. A rhombus has all the properties of a parallelogram, since it is a paralledogram. No. A parallelogram is not necessarily a rhombus and therefore would not always have all the properties of a rhombus.
2. (a) A.rhombus is a square if and only if it has a right angle.
(b) A rectangle is a square if and only if two consecutive s" les are congruent.
3. (a) If a quadrilateral is equiangular, then it is a rectangle.

If a quadrilateral is a rectangle, then it is equiangular.
(b) In quadrilateral $A B C D, \angle A \cong \angle B \cong \angle C \cong \angle D$. Therefore $A B C D$ is a parallelogram by Theorem 8-19 since opposite angles are congruent. Since it is a parallelogram, consecutive angles must be supplementary. If $\angle A$ and $\angle B$ are both congruent and supplementary, then each must be a right angle. Since a parallelogram with a right angle is a rectangle, $A B C D$ must be a rectangle.

604
153

Conversely, if ABCD is a rectangle, then ABCD. is a parallelogram with at least one right angle, say at A.

By definition of a parallelogram, $\overline{\mathrm{AD}}|\mid \overline{\mathrm{BC}}$.
Therefore, the consecutive interior angles are supplementary; $m \angle A+m \angle B=180$. Since it is given that $m \angle A=90$, then $m \angle B=90$. Opposite angles of a parallelogram are congruent by Theorem $8=19$; therefore $m \angle C=90$ and $\mathrm{m} \angle \mathrm{D} \equiv 90$. Therefore, ABCD is equiangular.
4. (a) If a quadrilateral is equilateral, then it is a rhombus.

If a quadrilateral is a rhombus, then it is equilateral.
(b) In quadrilateral $A B C D, a 114$ sides are congruent. Since opposite sides are congruent then by Theorem 8=18, we know that ABCD is a parallelogram. Since this parallelogram has two consecutive sides congruent, it is a rhombus, by the definition of a rhombus.

Conversely, if $A B C D$ is a rhombus, then $A B C D$ is a parallelogram with two consecutive sides congruent, say $\overline{A B} \cong \overline{B C}$. By Theorem 6-6, we know that $\overline{A B} \cong \overline{D C}$ and $\overline{B C} \cong \overline{D A}$. By the transitive property of congruence, we know that all four sides are congruent and therefore $A B C D$ is equilateral.
5. (a) True. Theorem $8=20$.
(b) True. Theorem 8-20,
(c) True. Theorem 8-21.
(d) True: Theorem 8-21.
(e) True. If regular, then it is equilateral and . equiangular. This makes it a rectangle and a rhombus both. When both, it is called a square.

605
$15 ;$
(f) True; In parallelogram $A B C D, \triangle A B C \cong \triangle C D A$, by S.S.S. Congruence Postulate or A.S'A. Congruence Postulate.
\therefore (g) False. Consider the case in quadrilateral $A B C D$ when we know only that $\triangle A B C \cong \triangle A D C$.

Problem Set 8-12

1. In $\triangle \mathrm{ABC}, \mathrm{A}=(0,0), \overline{\mathrm{B}}=(2 \mathrm{~b}, 0), \mathrm{C}=(2 \mathrm{c}, 2 \mathrm{~d})$. Then we find the midpoint of $\overline{\mathrm{AC}}, \mathrm{D}=(\mathrm{c}, \mathrm{d})$, and the midpoint of $\overline{\mathrm{BC}}, \quad \mathrm{E}=(\mathrm{b}+\mathrm{c}, \mathrm{d})$.

Since ${ }^{D}$ and E have the same y coordinates, $4 \overrightarrow{\mathrm{DE}}{ }^{*}$ is a horizontal ine and parallel to the X -axis which is $\overline{\mathrm{AB}}$. Also, by the distance formula,
$D E=|b+c-c| \equiv|b|$.
$A B=|2 \ddot{b}=' 0|=|2 b|=2|b|$.
Therefore $D E=\frac{1}{2} A B$.
The advantage is that the coordinates of D and E are simplified.
2. 12. Since each side of $\triangle D E F$ 1s half of a side of $\triangle A B C$; the perimeter is half that of $\triangle A B C$.
3. $X Y=2 M N$ by Theorem 8-22.
4. right triangle. $\overline{\mathrm{AB}}$ is on the x -axis. $\overline{\mathrm{AC}}$ would be on the \bar{y}-akis. Thus two sides of the triangle would be perpendicular and $\angle A$ would be a right angle.
.
5.

Then by the distance formula,

$$
\begin{aligned}
& C D=\sqrt{b^{2}+d^{2}} \\
& B D=\sqrt{b^{2}+d^{2}} \\
& A D=\sqrt{b^{2}+d^{2}} .
\end{aligned}
$$

Thue D is equally distant from A, \bar{B} and C.
6. Let $\overline{A B}$ be the base of isosceles triangle $A B C$. Then, $A x \equiv(-2 a, 0), B=(2 a, 0)$, and $C=(0,2 b)$.
7. Use coordinates suggested in Problem 6. Let \bar{D} be the midpoint of $\overline{\mathrm{AC}}$ and E be the midpoint of $\overline{\mathrm{BC}}$. Then $D=(-a, b)$ and $E=(a, b)^{*}$.
Therefore $~ D B=\sqrt{9 a^{2}+b^{2}}=$ the length of one median and $E A=\sqrt{9 a^{2}+b^{2}} \equiv$ the length of the other median. Therefore the medians are congruent.
8. Let $H=(-2 \mathrm{a}, 0), \mathrm{B}=(2 \mathrm{a}, 0), \mathrm{C} \equiv(2 \mathrm{c}, 2 \mathrm{~d})$. Let $\overline{\mathrm{AE}}$ and $\overline{\mathrm{BD}}$ be the two congruent medians. Then $D=(c-a$, $d)$

$$
E=(c+a, d)
$$

We are given that $\overline{\mathrm{AE}} \cong \overline{\mathrm{BD}}$, therefore

607
163

Therefore, either (1) $c+3 a \equiv c-3 \bar{c}$

$$
\text { a or (2) } \quad c+3 a=-\left(c^{*}-3 a\right)
$$

In other words, either (1) $a=0$, or (2) $c=0$.
Since a cannot be 0 , c must be 0 .
Thus $A C=\sqrt{4 a^{2}+4 d^{2}}$ and $B C=\sqrt{4 a^{2}+4 d^{2}}$.
Thus $A C=B C$ and the triangle is isosceles.
9. The medians to two sides of a triangle are congruent if "and only if the triangle is isoggeles.
10. $(\overline{C B})^{2}=(b-a)^{2}+c^{2}$
$(A C)^{2}=b^{2}+c^{2}$,
$(A B)^{2} \equiv a^{2 *}$
$A B=|a|=a$ since a is taken in the positive ; x-axis.
$A R \equiv|b| \equiv b$ since b is positive, $\angle A$ being acute.
Therefore $(C B)^{2}=(A C)^{2}+(A B)^{2}=2 A B$ - AR , since
$(b=a)^{2}+c^{2}=\left(b^{2}+c^{2}\right)+\left(a^{2}\right)-2 \cdot a \cdot b$.
11. $(A C)^{2}=b^{2}+c^{2}$ and $(B C)^{2}=s^{2}$.

Thus $(A C)^{2}+(B C)^{2}=a^{2}+b^{2}+c^{2}$.
$(A B)^{2} \equiv(b-a)^{2}+c^{2}$.
$M=\left(\frac{a+b}{2}, \frac{c}{2}\right)$.
$(M C)^{2}=\left(\frac{a+b}{2}\right)^{2}+\left(\frac{c}{2}\right)^{2}=(a+b)^{2}+c^{2}$.
Thus $\frac{(A B)^{2}}{2}+2(M C)^{2}$
$\equiv \frac{b^{2}=2 a b+a^{2}+c^{2}}{2}+\frac{a^{2}+2 a b+b^{2}+c^{2}}{2}$
which simplifies to $\frac{2 a^{2}+2 b^{2}+2 c^{2}}{2}=a^{2}+b^{2}+c^{2}$.
Therefore, $(\overline{A C})^{2}+(\overline{B C})^{2}=\frac{(A B)^{2}}{2}+2(M C)^{2}$.
\backslash
Problem Set 8-13

1. If $A B C D$ is a parallelogram, then $\overline{A C}$ and $\overline{B D}$ bisect each other.

Proof: $A=(0,0), B=(a, 0), C=(a+b, c)$, $D \equiv(b, c)$ by Theorem $8=23$.
Then the midpoint of $\overline{A C}$ is $\left(\frac{a+b}{2}, \frac{c}{2}\right)$ and the midpoint of $\left.\frac{a}{B D} * \frac{a+b}{2}, \frac{c}{2}\right)$.
Since the midpoint of $\overline{\mathrm{AC}}$ is also the midpoint of $\overline{\mathrm{BD}}$, the diagonals bisect each other.
2. Part (1). If the diagonals of a parallelogram ABCD are congruent, it is a rectangle. $A \equiv(0,0), B=(a, 0), C \equiv(a+b, c), D=(b, c)$. By Theorem 8=23, we must prove $b=0$.
We know that $A C=\overline{B D}$, therefore $(A C)^{2}=(B D)^{2}$, and

$$
(a+b)^{2}+c^{2}=(b-a)^{2}+c^{2}
$$

Therefore, $(a+b)^{2}=(b=a)^{2}$ and
either $a+b=b-a$ or $a+b==(b-a)$.
Since $a \neq 0, b=0$.
Part (2). If ABCD is a rectangle, the diagonals are congruent. $A=\frac{(0,0)}{2}, B=(a, 0), C=(a, c)$, $D=(0, c) \quad A C=\sqrt{a^{2}+c^{2}}$ and $B D \equiv \sqrt{(-a)^{2}+c^{2}}$. Thus $\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$.
3. Part (1). If the diagonals of a parallelogram are perpendicular, it is a rhombus:
$A=(0,0), B \equiv(a, 0), C \equiv(a+b, c), D \equiv(b, c)$ where $a>0$. We must prove $a=\sqrt{b^{2}+c^{2}}$.
Slope of $\stackrel{\rightharpoonup}{\mathrm{AC}}=\frac{\mathrm{c}}{\overline{\mathrm{a}+\mathrm{b}}}$; slope ${ }^{4} \mathrm{BD}=\frac{c}{\mathrm{~b}-\mathrm{a}}$:
Since

$$
\frac{c}{(a+b)} \cdot \frac{c}{(b-a)} \equiv-1 \quad \text { and } c^{2} \equiv=\left(b^{2}-a^{2}\right) .
$$ Therefore $a^{2}=b^{2}+c^{2}$ and $a=\sqrt{b^{2}+c^{2}}$.

Part (2). If $A B C D$ is a rhombus, $\overline{A C} \perp \overline{B D}$.
Let $A=(0,0), B=\left(\sqrt{b^{2}+1 c^{2}}, 0\right)$,
$C=\left(\sqrt{b^{2}+c^{2}}+b, c\right), D \equiv(b, c)$ where B
is on the x-axis to the right of A.
Therefore, the slope of $\overrightarrow{A C}=\frac{c}{\sqrt{b^{2}+c^{2}+b}}$ and the slope of $\overrightarrow{B D}=\frac{-c}{\sqrt{b^{2}+c^{2}-b}}$ and $m_{\overline{A C}} \cdot m_{\overline{B D}}=\frac{-c^{2}}{\left(b^{2}+c^{2}\right)-b^{2}}=-1$. Therefore, $\overline{\mathrm{AC}} \perp \overline{\mathrm{BD}}$
4.

Prove:
(1) If $A B C D$ is a parallelo= gram and $\overrightarrow{A C}$ bisects $\angle D A B$, then $A B C D$ is a rhombus.
(2) If $\underset{\overrightarrow{A C}}{\rightarrow}$ bisects is a rhombus,

1
(Note: We do not use coordinates because students need trigonometry before they can write the equation of an angle bisector.)
" ω Proof:
Part (1). $\angle D A C \cong \angle B A C$ by definition of angle bisector. Since $\overline{A B} \| \overline{D C}, \angle B A C \cong \angle D C A$ because they are alternate interior angles. Therefore, by the transitive property of congruence, $\angle \mathrm{DAC} \cong \angle D C A$. Then, sidnce two angles in $\triangle A D C$ are congruent, the sides opposite those angles are congruent. $\overline{\mathrm{AD}} \cong \overline{\underline{\mathrm{DC}}}$. Thus $A B C D$ is a rhombus.
Part (2). $A B C D$ is a rhombus. Therefore, $A D=A B$, $D C=B C$. Also, $A C=A C . \triangle A D C \cong \triangle A B C$ by S.s.s. Therefore $\angle \mathrm{DAC} \cong \angle \mathrm{BAC}$ since they are corresponding angles. $\overrightarrow{\mathrm{AC}}^{\mathbf{t}}$ is the midray.
roi
5. A rectangle $1 s$ equiangular and all angles are right angles. Its diagonals are congruent.
6. A rhombus is equilateral. Its diagonala are perpendicular and bisect the angles.
7. Yes. Yes. A parallelogram, a rectangle, and a rhombus.
8.

9. $Q=$ set of quadrilaterals
$P=$ set of parallelograms
$\mathrm{R}_{1} \equiv$ set of rectangles
$\mathrm{R}_{2}=$ set of rhombuses
$S \equiv$ set of squares
\subset means "is contained in", or "is a subset of," and has the transitive property.
$S \subset \mathrm{R}_{1} \subset \mathrm{P} \subset Q$.
$S \subset R_{2} \subset P \subset Q$.

$$
6111 \%
$$

Problem Set 8-14
1.

We may assume without loss of generality that $a>0$, $\mathrm{b}>0, \mathrm{~b}>\mathrm{d}, \mathrm{c}>0 . \mathrm{E} \equiv(\mathrm{d}, \mathrm{c}), \mathrm{F}=(\mathrm{a}+\mathrm{b}, \mathrm{c})$.

- Thus $\xrightarrow[\mathrm{DC}^{*}]{\overrightarrow{\mathrm{EF}}}$ and $\overrightarrow{A B}$.

Also, $\quad \mathrm{EF}=\mathrm{a}+\mathrm{b}-\mathrm{d}$
$A B=2 a$ and $D C=2 b-2 d$. $\frac{1}{2}(A B+D C)=a+b-d$.
Therefore, $\quad E F=\frac{1}{2}(A B+D C)$.
2. (a) $x=11$
(b) $x=10$
(c) $x=6, y=8$.
3. In $A B C D, \overline{A B} \| \overline{\mathrm{DC}}$.

If $m \angle A=100, m \angle D=80$ we would not know the measures of the other two angles.
If $m \angle A=100$ and $m \angle C=70$, then $m \angle D=80$ and $m \angle B=110$.

$$
1 ;
$$

4.

Given a trapezoid, label it $A B C D$ and set up an
$x y$-coordinate system so that $A=(-a, 0), B=(a, 0)$,
$c=(b, c), D=(-d, c)$; with $a>0, b>0$,
$c>0, b>-d$. Then $b+d \neq$ 2a . (For 1 f
$b+d=2 a$, then $A B=C D$ and $A B C D$ is a parallelogram, not a trapezoid.) We are to prove two statements:
(1) If $A D=B C$, then $\angle A=\angle B$.
(2) If $\angle A \cong \angle B$, then $A D \cong B C$.
(1) If $A D=B C$ then $(A D)^{2} \equiv(B C)^{2}$,
$(-d+a)^{2}+c^{2}=(b-a)^{2}+c^{2}$,
$(-d+a)^{2} \equiv(b-a)^{2}$,
$\begin{array}{rlrlrl}-d+a & =b-a & \text { or } & -d+a & =-b+a, \\ 2 a & =b+d & \text { or } & & b & =d .\end{array}$
But $\quad 2 a \neq b+d$,
therefore $\quad b=d$.
Then $\begin{gathered}A O=a=O B, \\ A D=\sqrt{(-b+a)^{2}+c^{2}}=\sqrt{(b-a)^{2}+c^{2}}=B C,\end{gathered}, \quad, \quad, ~$
DO $=\sqrt{(-d)^{2}+c^{2}}=\sqrt{b^{2}+\dot{c}^{2}}=O C$,
and $\triangle \mathrm{DAO} \cong \triangle C B O$ by S.S.S.
Then $\angle D A O \cong \angle C B O$.
,
(2) Let $E=(0, c)$. If $\angle A \cong \angle B$, then it is easy to show that $\angle \mathrm{EBC} \cong \angle \mathrm{EAD}, \mathrm{EB} \neq \mathrm{EA}, \angle \mathrm{BEC} \cong \angle \mathrm{AED}$, hence that $\triangle E B C \cong \triangle E A D$ and $B C=A D$.
5. Given a trapezoid, label it $A B C D$ and set up an xy-coordinate system so that $A=(-a, 0), B=(a, 0)$, $C=(b, c), D=(d, c)$, with $a>0, c>0, b>d$, $b-d \neq 2 a$ (compare with solution to Probiem 4). We must prove two statements:
(1) If $A D=B C$, then $A C \cong B D$.
(2) If $A C=B D$, then $A D=B C$.
(1) If $\mathrm{AD} \equiv \mathrm{BC}$, then $\mathrm{d} \equiv-\mathrm{b}$ (compare with solution to Problem 4) and
$(A C)^{2} \equiv(-a-b)^{2}+(0-c)^{2}=(a+b)^{2}+c^{2}$, $(B D)^{2} \equiv(a-d)^{2}+(0-c)^{2}=(a+b)^{2}+c^{2}$, and $\quad \mathrm{AC} \equiv \mathrm{BD}$.
(2) If $A C \equiv B D$, then
$(-a-b)^{2}=(0-c)^{2}=(a-d)^{2}+(0-c)^{2}$, $(b+a)^{2}=(-a+a)^{2}$,
$b=a=-d+a$ or $b+a=d-a$.
$b=-d \quad$ or $b-d=-2 a$.
But $b-d \neq-2 a$, since $b>d$ and $a>0$.
Therefore $b=-d$.
Then $(B C)^{2}=(b-a)^{2}+c^{2}=(-a-d)^{2}+c^{2}$ $=(A D)^{2}$, and $B C=A D$.

$$
1
$$

6.

Let $A(0,0), B(2 a, 0), C(2 d, 2 c)$, and $D(2 b, 2 c)$ be vertices of a trapezoid, with $a>0, c>0$, and $d>b$. Then $a+b \neq d$ (see solution to Problem 4).

> Let E be midpoint of $\overline{A C}, E=(d, c)$.
> Let F be midpoint of $\overline{B D}, F=(a+b, c)$.

Then $m_{\overline{E F}}=\frac{c-c}{a+b-d}=0$ and $\overline{E F}\|\overline{\mathrm{DC}}\| \overline{\mathrm{AB}}$.
Also $E F=|a+b-d|$,
and $|A B-D C|=|2 a-(2 d-2 b)|=2|a+b=d|$.
Therefore $E F=\frac{1}{2}|A B-D C|$.

Problem Set 8-15

1. Theorem $8-28$ and Corollary $8=28-1$. Find midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$, and draw perpendicular bisectors. Their intersection is the desired point.
2. Theorem 8-29 and Corollary 8-29-1. Draw midray of each angle. Their intersection is the desired point.
3. (a) Draw perpendicular bisector of $\overline{\mathrm{AB}}$ and midray of $\angle A C B$. Their intersection is the required point.
(b) Use the miler to plot the midpoint $(1,0)$.
(c) $(0,4)$.

$$
1 \% 3
$$

4. (a) By Theorem $8=22, \mathrm{DE}=\frac{1}{2}(12)=6, \mathrm{EF}=\frac{9}{2}$, $\mathrm{FD}=5$.
(b). By Theorem 8-22, $\overline{D E}\|\overline{A B}, \overline{E F}\| \overline{B C}, \overline{F D} \| \overline{A C}$.
(c) $\overline{\mathrm{DE}}, \overline{\mathrm{EF}}, \overline{\mathrm{DF}}$.
(d) The perpendicular bisectors of the sides of $\triangle A B C$ are the altitudes of $\triangle D E F$. Since the former are concurrent by the corollary to Theorem 8-28, the latter are concurrent. .
5. Proof I. Since the perpendicular bisectors of $\triangle P Q R$ are concurrent (by corollary to Theorem 8-28), and these are the altitudes of $\triangle A B C$, the latter are concurrent.
Proof II. $\quad \frac{m}{\overline{C B}}=\frac{0-b}{c-0}=-\frac{b}{c}=\frac{m}{\overline{A B}}=\frac{b-0}{0-a}=-\frac{b}{a}$. $m_{h_{a}}=-\frac{1}{\frac{m_{\bar{D}}}{\bar{\sigma}}}=\frac{c}{b}, m_{h_{c}}=\frac{1}{\frac{1}{\overline{A B}}}=\frac{a}{\bar{b}}$.

Two non-vertical ilnes are perpendicular if and only if the product of their slopes is -1 .
($0,-\frac{a c}{b}$) is contained in h_{a}, because
$h_{a}=\{(x, y): x=a+k b, y=k c, k$ is real $\}$ and $k=-\cdot \frac{a}{b}$ yields ($0,-\frac{a c}{b}$).
($0,-\frac{a c}{b}$) is contained in h_{c}, because
$h_{c}=\{(x, y): x \equiv c+b p, y=a p, p$ is real $\}$ and
$p=-\frac{c}{b}$ yields ($0,-\frac{a c}{b}$).
2Thus h_{a}, h_{c} intersect in (0, $-\frac{a c}{b}$). Also h_{b} contains $\left(0,-\frac{a c}{b}\right)$, because h_{b} is the $y=a x i s$ and contains all points whose x-coordinate is 0 . So h_{a}, h_{c}, h_{b} are concurrent.

$$
616
$$

Note:" In Proof II we chose $k \equiv=\frac{a}{b}$ and $p \equiv-\frac{c}{b}$. These were "happy choices" which showed that h_{a} and h_{c} had a point of intersection in the y-axis. But
"these "happy" cholces were not accidental. They required some ingenuity:
'In Proof I, which did not use coordinates, there was ingenuity displayed in considering $\triangle P Q R$.

Ingenuity cars be exercised no matter which type of proof is used.
6. In $\triangle A B C, \quad \hat{A}=(0,0), \bar{B}=(2 b, 2 c)$ and $C=(2 \bar{a}, 0)$.
(a) Plañ: Find the point of intersection of two of
: the perpendicular pisectors and then test to see if that point is contained In the third perpendicular bisector.

$$
\frac{m}{\overline{B C}}=\frac{2 c}{2 b-2 a}=\frac{c}{b-a}
$$

Let p, q, a be the perpendicular

- bisectors of $\overline{A B}, \overline{B C}$ and $\overline{A C}$ respectively.
$(\cdot 2) \quad \bar{p} \equiv\left\{(x, y): y-c \equiv-\frac{b}{c}(x-b)\right\}$
$x \equiv\{(x, y) ; x \equiv a\}$.
By substitution $y-c==\frac{\mathrm{b}}{\mathrm{c}}(\mathrm{a}-\mathrm{b})$

$$
y \equiv \frac{b^{2}+c^{2}-a b}{c}
$$

$$
x=a
$$

Therefore, $\left(a, \frac{b^{2}+c^{2}-a b}{c}\right)$ is the point of intersection of p and r. call it 0 .

$$
617 \quad 1 \because
$$

Review Problems
1.

$$
\begin{array}{cc}
p=\{(x, y): x=2, & q=\{(x, y): y=2 \\
0<y<3\} & 0 \leq x \leq 3\}
\end{array}
$$

$$
r=\{(-1,3),(1,1),(3,-1)\}
$$

$$
\begin{aligned}
s= & \{(x, y): x+y=3, \\
& 0<x<3,0<y<3\}
\end{aligned}
$$

$$
t \equiv\{(x, y): x+y=3
$$

$$
r-3<x<0]
$$

| 2. (a) Yes | (g) Yes |
| :--- | :--- | :--- |
| (b) Yes | (h) Yes |
| (c) Yes | (i) No |
| (d) No | (d) Yes |
| (e) Yes | (k) Yes |
| (f) No | (1) No |

'3. Since the diagonals of a rhombus are perpendicular and bisect each other

$$
\begin{aligned}
\left(\frac{d_{1}}{2}\right)^{2}+\left(\frac{d_{2}}{2}\right)^{2} & =s^{2} \\
(8)^{2}+(15)^{2} & =s^{2} \\
289 & =s^{2} \\
17 & =s .
\end{aligned}
$$

Therefore $P=68$.
4. $(3 x)^{2}+(4 x)^{2}=(40)^{2}$
$(3 x)^{2}+(4 x)^{2}=(5 \cdot 8)^{2}$

$$
x=8
$$

Therefore the sides of the rectangle are 24 and 32 .
5. (a) $(-1,5)$
(b) $(1,-1)$
(c) $(1,2)$
(d) the measure of $A B=|3-(-1)|=4$
(e)

$$
A C=\sqrt{[3-(-1)]^{2}+[5-(-1)]^{2}}=\sqrt{4^{2}+6^{2}}
$$

$$
\mathrm{BD} \equiv \sqrt{[-1-3]^{2}+[5-(-1)]^{2}}=\sqrt{4^{2}+6^{2}}
$$ Therefore $A C \equiv B D$:

(f) $\overrightarrow{A B}=((x, y): y=-1)$

$$
\begin{aligned}
& \text { (h) } Q=(-1+4 \cdot 4,-1+6 \cdot 4) \\
& Q=(15,23) \\
& 15 i
\end{aligned}
$$

(1) Slope of $\overline{\text { AC }}$ is $\frac{3}{2}$ slope of line perpendicular to $\overline{\mathrm{AC}}$ 1s $-\frac{2}{3}$. Therefore the required line is

$$
\{(x, y): x=3+3 k, y=5-2 k, k \text { is real }\} .
$$

6. (a) $\frac{b}{3 a}$
(b) $-\frac{b}{3 a}$
(c) Slope not defined.

7. (a) Proof: Set up an
xy-coordinate system
so that $A=(0,0)$,
$B=(2 a, 0)$,
$c=(2 a, 2 a)$,

$D=(0 ; 2 \mathrm{a})$.
Then since . R is midpoint of $\overline{B C}, \bar{R}=(2 a, a)$ and since S is the midpoint of $\overline{D C}$, $S=(a, 2 a)$. Then by the distance formula
$\therefore \quad \mathrm{AR} \equiv \sqrt{(2 a)^{2}+(a)^{2}}=\sqrt{5 \mathrm{a}^{2}}$ and BS $=\sqrt{a^{2}+(-2 a)^{2}}=\sqrt{5 a^{2}}$. Thus $A R=B S$.
(b) Slope of $\overline{B S}=\frac{2 a}{-a}$; slope of $\overline{A R}=\frac{a}{2 a}=\frac{1}{2}$.

Since the product of these slopes $=-1, \overline{B S} \perp \overline{\mathrm{AR}}$.
(c) The equation of ${ }_{\mathrm{AR}}$ by point-slope form is
$y=\frac{1}{2} x$. The equation of ${ }^{\boldsymbol{B S}}$ by point-slope
form is $y=-2(x-2 a)$.
The intersection of these two lines is the point $T\left(\frac{8 a}{5}, \frac{4 a}{5}\right)$.
Then DT $=\sqrt{\left(\frac{8 a}{5}\right)^{2}-\left(\frac{4 a}{5}-2 a\right)^{2}}=\sqrt{\frac{64 a^{2}}{25}+\frac{(-6 a)^{2}}{25}}$

$$
1 \Rightarrow 2 \mathrm{a}, \mathrm{AB}=2 \mathrm{a} \text {. Therefore } \mathrm{TD}=\mathrm{AB} \text {. }
$$

$$
621182
$$

8. Theorem: The median of a trapezoid bisects a diagonal.
Proof: If we select a . coordinate system which assigns the coordinates to the vertices of trapezoid ABCD as indrcated in the digram
 (with a>0; b>a, $c>0$), then the midpoints of the nonparailel sides $\overline{A D}$ and $\overline{B C}$ will be $F(d, c)$ and $E(a+b, c)$ FE is the median of $A B C D$. We are asked to prove that the midpoint of $\overline{\mathrm{DB}}$ is on $\overline{\mathrm{FE}}$. It is clear that $\overrightarrow{F E}$ is $\{(x, y): y=c, x$ is real\}. The midpoint of $\overline{\overline{D B}}$ is $(d+a ; c)$. Then the midpoint of $\overline{\mathrm{DE}}$ is in $\overrightarrow{\mathrm{FE}}$. It must still be shown to be in $\overline{\text { FE }}$. Now $d<d+a<a+b$, since a, b are all assumed positive and since $b>d$. Then the point. (d $+a, c$) lies between F and E and the midpoint of $\overline{\mathrm{DB}}$ is in FE.

Alternate Proof:
$\overrightarrow{\mathrm{FE}}=\{(x, y): y=c, x$ is real $\}$
$\overrightarrow{\mathrm{DB}}=\{(x, y): x=2 a+k(2 d-2 a) ; y=k(2 c)$, k hs real).
The intersection T of these lines must have as its y-coordinate $c=2 \mathrm{ck}$, whence $k=\frac{1}{2}$, and $T=\left(2 a+\frac{1}{2}(2 d-2 a), \frac{1}{2}(2 c)\right)=(a+d, c) e$, which is the midpoint of $\overline{B D}$.
9. (a) $\mathrm{y}=0$
(b) $x=0$
(c) If $\mathrm{y} \equiv 0$, then for all values of $\mathrm{x}, \mathrm{xy}=0$. If $x=0$, then for all values of $y, x y=0$.. Therefore each point of both axes satisfies $\mathrm{xy}=0$.
10. Our coordinate system assigns $(0,0)$, to A and $(6,0)$ to B. Since $m \angle \mathrm{DAB}$ is given. as 60 , and $m \angle C B X=m \angle D A B$ (corresponding angles of two parallel lines cutting a transversal), $m \angle C B X=60$.
 Consider $\overline{\mathrm{CC}}!\perp \overrightarrow{\mathrm{AX}}$. Then
in $\triangle \mathrm{BCC}^{\prime \prime}, \mathrm{m} \angle \mathrm{BCC}=30, \mathrm{BC}=6$, and $\mathrm{BC}{ }^{\prime}=3$ (in a $30-60$ right triangle, the shortest side is half of the hypotenuse), and using the fythagorean Theorem we find

$$
C C^{\prime}=\sqrt{36-9}=3 \sqrt{3} .
$$

(a) Thus $\mathrm{c}=(9,3 \sqrt{3})$
(b) $\mathrm{D}=(3,3 \sqrt{3})$
(c) $\mathrm{AC}=\sqrt{81+27}=\sqrt{108}=6 \sqrt{3}$
(d) $\mathrm{ED}=\sqrt{3^{2}+27}=6$. Thus $\mathrm{AC}=\sqrt{3} \mathrm{BD}$.
(e) $\overrightarrow{A C}=\{(x, y): x=3 k, y \equiv k \sqrt{3}$ and $k \geq 0\}$
11. (a) $\{(x, y): x=1$ and y is real\}
(b) $f(x, y):|y|=3$ and x is real $\}$
(c) $\{(x, y): y=x$ or $y=-x$; x and y are real $\}$
(d) $\{(x, y): y=3$ and x is real $\}$

- (e) $\{(x, y): x=12$ and y is real $\}$
(f) $\{(x, y): y=-8$ and x is real $\}$

12. $A=(3,4), B=(-1,5), C=(-2,1)$
$A B=\sqrt{4^{2}+1^{2}}=\sqrt{17}$
$B C=\sqrt{1^{2}+4^{2}}=\sqrt{17}$
$A C=\sqrt{5^{2}+3^{2}}=\sqrt{34}$
Thus $A B C$ is an isosceles triangle, since $A B=B C$, and ABC is a right triangle, since $(A C)^{2}=(B C)^{2}+(A B)^{2}$.
13. MIdpoint of $\overline{\mathrm{AB}}=(-4,2)$.

Slope of $\overline{A B}=\frac{4}{8}=\frac{1}{2}$, slope of line perpendicular
to $\overline{\mathrm{AB}}=-2$. Therefore the line is
($(x, y): x=-4+k, y=2-2 k, k$ is real).
14. $\mathrm{AB}=\sqrt{(\mathrm{c}-1)^{2}+(6-1)^{2}}=\sqrt{(\mathrm{c}-1)^{2}+25}$
$A C=\sqrt{(c-3)^{2}+(6-5)^{2}}=\sqrt{(c-3)^{2}+1}$.
Then $A B=A C$ gives $(c-1)^{2}+25=(c-3)^{2}+1$

$$
c^{2}-2 c+1+25=c^{2}-6 c+9+1
$$

$\rho=-4$.
15. The distance from (h,3) to the x-axio is 3 , its distance from the y-axis is $|\mathrm{h}|$. Therefore $3=2|h|,|h|=\frac{3}{2}$, that $1 \mathrm{~s}, \left\lvert\, \mathrm{h}=\frac{3}{2}\right.$ or $\mathrm{h}=-\frac{3}{2}$.
16. Select a coordinate system which assigns coordinates to the vertices of parallelogram ABCD as indicated in the diagram. Then M is the midpoint of $\overline{A B}$ and has coordinates $(a, 0)$. We are to show that one of the trisection points of $\overline{\mathrm{AC}}$ lies on $\overline{\mathrm{MD}}$.
 $\overline{\mathrm{MD}}=\{(\lambda, y): x=b+k(a-b), y=c-k c$,

$$
0 \leq k \leq 1\}
$$

The trisection points of $\overline{\mathrm{AC}}$ are $\mathrm{R}\left(\frac{\mathrm{b}+2 \mathrm{a}}{3}, \frac{\mathrm{C}}{3}\right)$ and $S\left(\frac{2(b+2 a)}{3}, \frac{2 c}{3}\right)$. Now, if R is on $M D$ then there is k such that $0 \leq k \leq 1$ and $c-k e=\frac{c}{3}$. Clearly $k=\frac{2}{3}$ satisfies this requirement. Using $k=\frac{2}{3}$ we see that K is a member of set $\overline{M D}$.

$$
15 .
$$

Alternate solution:

$\overrightarrow{A C}=\{(x, y): x=k(b+2 a), y=c k, k$ is real $\}$
$\overrightarrow{D M}=\{(\neq y): x=a+h(b-a), y=c h, h$ is real $\}$.
Intersection of $\overrightarrow{A C}, \overrightarrow{D M}$, has y-coordinate such that, $\mathrm{ck}=\mathrm{ch}$, or $k=h$.
Then its x-coordinate is such that
$k(b+2 a)=a+h(b-a)=a+k(b-a)$, or
$k b+2 a k=a+k b-k a$, or
$2 a k=a-a k \cdot$, or
$\left.k=\frac{1}{3}=n\right\}$.
Therefore, R, the intersection point, has coordinates

$$
\left(\frac{1}{3}(b+2 a), \frac{c}{3}\right)=\left(\frac{2 a+b}{3}, \frac{c}{3}\right),
$$

which are the coordinates of a trisection point of $\overline{S C}$.
17. Assume a coordinate system which assigns the coordinates
as indicated to B, C, A.
Then, referring to the
diagram, we know that
$E=(2 b+a, 2 c)$,
$D=(b, c)$, and we are to show $\frac{B F}{B E}=\frac{3}{4}$ and $\frac{D F}{F C}=\frac{1}{6}$.
An equation of $\overrightarrow{W E}^{+}$is

$$
y=\frac{2 c}{2 b+a} x
$$

- An equation of $\overrightarrow{\mathrm{DC}}$ is

$$
y=\frac{c}{b-3 a}(x-3 a)
$$

so
from which

Then $\frac{B F}{F E}=\frac{y_{F}}{y_{E}-y_{F}}=\frac{\frac{6 c}{7}}{2 c-\frac{6}{7} c}=\frac{3}{4}$
and $\frac{D F}{F C}=\frac{x_{F}-x_{D}}{x_{C}-x_{F}}=\frac{\frac{3}{7}(2 b+a)-b}{3 a-\frac{3}{7}(2 b+a)}=\frac{1}{6}$.

Problem Set 9-2

1. No. The definition requires that the line be perpen= dicular to every line containing Q and lying in \mathcal{E}.
2. $\angle \overrightarrow{A B R}, \angle \mathrm{ABK}, \angle \mathrm{TBA}, \overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{RB}}, \overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{KB}}, \overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{BT}}$, and by definition, $\overrightarrow{\mathrm{AB}} \perp$ E implies perpendicular lines, the angles are right angles.
3. (a) Yes. A plane is determined by three noncollinear points. If R, S, T were collinear, then T would be in $7 \mathscr{Z}$, \supset by Postulate 8 .
(b) $\angle P S T, \angle P S R$. Definition of perpendicularity: a line and a plane, and two lines.
4. (a) Three. Plane determined by $\overline{A B}$ and $\overline{F B}$, plane determined by $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BH}}$, and the plane of square FRHB.
(b) $\overline{F B} \perp$ plane $A B H$, Since $\overline{A B} \perp \overline{\overline{F B}}$ by hypothesis and $\overline{\mathrm{FB}} \perp \overline{\text { BF }}$ from definition of a square, $\overline{F B} \perp$ plane $A B H$ by Theorem $9-$.
5. (a) Three. Planes RHB, RAF, and ABF.
(b) $\overline{\mathrm{BH}} \perp$ plane $\mathrm{ARF} \cdot \overline{\mathrm{BH}} \perp \overline{\mathrm{RH}}$ by hypothesis, $\overline{\overline{B H}} \perp \overline{\mathrm{AF}}$ at point H by Theorem $5-8$. Therefore $\overline{\mathrm{BH}} \perp$ plane ARF by Theorem 9-2.
6. Yes. By Theorem 9-1.
7. (a) Yes. By the definition of perpendicularity for a lIne and a plane.
(b) Yes. By the definition of perpendicularity for a line, and a plane.
(c) No. By hypothesis, $\overrightarrow{\mathrm{BC}}$ lies in plane $\overrightarrow{\mathcal{F}}$. and therefore cannot be perpendicular to $\overrightarrow{A B}$. By Theorem 9-1, all lines perpendicular to ${ }^{4} \overrightarrow{A B}$ at B must le in the plane perpendicular to $\stackrel{\rightharpoonup}{\mathrm{AB}}$ at B (that is, plane Er).
8. By hypothesis, $\overline{\overrightarrow{F B}} \perp$ plane $\Rightarrow \quad \overline{\overrightarrow{F B}} \perp \overline{\mathrm{AB}}$ yand $\overline{\mathrm{FB}} \perp \overline{\mathrm{RB}}$ by definition of perpendicularity of line and plane. $\triangle A B F \cong \triangle R B F$ by $S . A . S . F A=F R$ by definition of congr nee for triangles. $\angle F A R \cong \angle F R A$ by base angles of an poles triangle.
9. Yes.

Statements	Reasons
1. WA $=\mathrm{WF}$;	1. Property of a cube.
2. $\mathrm{AB}=\mathrm{FB}$	2. Property of a cube.
3. $\mathrm{BR}=\mathrm{BL}$	3. Hypothesis.
4. $\mathrm{AR}=\mathrm{FL}$	4. Addition property for equality.
5. $\angle \mathrm{WAR} \cong$ § ${ }_{\text {WFL }}$.	5. Property of a cube.
6. \triangle WAR $\cong \triangle W F L$.	6. S.A.S.
7. $W R=W L$	7. Definition of congruence for triangles.
8. $\overline{K W} \perp \overline{W A}$,	8. Property of a cube.
9. $\overline{K W} \perp$ plane AWF	9. Theorem 9-2.
10. $K W \perp \overline{W R}$, KW \perp WL	10. Definition of perpendicularity for a line and a plane.
11. $\mathrm{KW}=\mathrm{KW}$	11. Reflexive property of equality.
12. \triangle KWR $\cong \triangle \mathrm{KWL}$	12. S.A.S.
13. $K R=K L$.	13. Definition of congruence for triangles.

Problem Set 9-3 ,

1. (a) T
(b) F
(d) F
(c) T
(e) T
(g) F (J) T
(f) T
(h) F
(1) F
2. $\overline{A C}$ and $\overline{A E}$ determine a plane which intersects Y at $\stackrel{\rightharpoonup}{\mathrm{BD}}$ and intersects Z at $\overrightarrow{\mathrm{CE}}$.

Statements	Reasons	
1. $\overline{\overline{B D}} \\|$ \| CE .	1. Theorem 9-6.	
2. $\angle A D B \cong \angle A E C$.	2. Corollary 6-4-1.	
3. $\angle A \cong \angle A E C$.	3. Theorem 5-6.	
4. $\angle \mathrm{ADB} \cong \xlongequal[\cong]{\cong} \angle \mathrm{A}$	4. Transitive property for congruence of angles.	
5. $B D=B A$	5. Theorem 5-7.	

628
$10 j$

Alternatively, after Step 2 above: $\triangle A B D \sim \triangle A C E$, by Theorem 7-6. Hence - $A C, C E$ are proportional to $A B, B D$. Therefore $A B=B D$, since $A C=C E$.
3. Proof: Let l_{1} and l_{2} be two parallel lines. - Let P_{1} be a plane which is parallel to one of the lines, say ℓ_{1}. We wish to show that \mathcal{P} is parallel to ℓ_{2}. Suppose \ngtr were not parallel to ℓ_{2}. Then
 ℓ_{1}, which by hypothesis does not have exactly one point in common with ρ, is distinct from l_{2}. We now apply Theorem $9-4$ to find that p ilintersects ℓ_{1} in a point. On the basis of this contradiction
to the hypothesis, we must reject the posibibility that P and l_{2} are not parallel. Hence P is parallel to $\boldsymbol{l}_{2}{ }^{2}$.

Problem Set 9-4

1. Points W, X, Y, Z are equidistant from the endpoints of " $\overline{\mathrm{AB}}$ by hypothesis. By Theorem 9-18 they all belong to the perpendicular bisecting plane of $\overline{A B}$ and are therefore coplanar.

Statements 3		Reasons	
$\begin{aligned} & 1 . \\ & m \perp \overline{\mathrm{AB}}, \\ & m \perp \overline{\mathrm{AB}} . \end{aligned}$	1.	Hypothesis.	
2. $m \\| \pi$.	2.	Theorem.9-9.	
3. $m \perp \overline{\mathrm{CD}}$	3	Hypothesis.	
4. $n \perp \overline{\mathrm{CD}}$		Theorem 9-10.	
Statements		Reasons	
1. $\mathrm{AB} \equiv \mathrm{CD}$		Theorem 9-17.	
2. $\overline{\mathrm{AB}} \perp \overline{\mathrm{BD}}$,	2.	Definition of line perpendicular to plane.	
3. $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$.	3.	S.A.S.	
4. $\mathrm{AD} \equiv \mathrm{CB}$.		Definition of congruence	

4. (a) $\overline{B W} \cdot \overline{\overline{B K}} \cdot \overline{\mathrm{ER}} \cdot 90$. $\angle \mathrm{BKF}$.
(b) Not necessarily. W, K, R could be any points in \boldsymbol{E}.
5. (a) Yes.
(f) No.
(b) No.
(c) Yes. Yes. Yes.
(g) Not necessarily.
(h) Yes.
(d) Yes.
(i) Yes.
(e) No.
(d) Yes.
6. (a) 6 inches. (d) $3 \sqrt{2}$ inches or ≈ 4.242 inches.
(b) 0 inches. (e) $3 \sqrt{3}$ inches or ≈ 5.196 inches.
(c) 3 inches.

7: $\widehat{A X}$ and $\widehat{\overline{B Y}}$ are perpendicular to plane Π. Hence $\overrightarrow{A X}$ and $\overrightarrow{B Y}$ are parallel lines and therefore coplanar. Since 0 is in $\overline{A B}$ and N is in $\overline{X Y}$, the plane ABXY contains both 0 and N. Since each of the coplanar lines ${ }^{4} \overrightarrow{A X},{ }^{4} \overrightarrow{O N}$, and ${ }^{4} \overrightarrow{B Y}$ is perpendicular to ${ }^{4} \overline{X Y}$, they are parallel to one another. Since $A O=O B$, we apply Theorem 7-2 to obtain $X N=N Y$. Thus N is the midpoint of $\overline{X Y}$.
8. Let $\overrightarrow{\mathrm{BE}}$ be the perpendicular to plane \dddot{M}. at B. Then $\overline{A B} \perp \overline{\mathrm{BE}}$, and it is given that $\overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$. Hence ${ }^{\psi} \overline{\mathrm{AB}} \perp$ plane EBC. By the definition of projection, ${ }^{4} \mid \mathscr{C D}$. Then ${ }^{4} \overrightarrow{C D} \mid \|_{\overrightarrow{B E}}$, so that D is in the plane EBC. Then $\overline{\mathrm{DB}}$ is in this plane. . Hence $\overline{A B} \perp \overline{B D}$, or $\angle A B D$ is a right angle.
9. Let the given point be P and the given plane be $\underset{\xi}{\boldsymbol{\xi}}$. Let F be the projection of P into $\underset{\xi}{ }$. If X is any point in ξ distinct from F, then $4 \overrightarrow{\mathrm{FX}}$ is a line in ξ. Since $\overrightarrow{\mathrm{AF}}$ is perpendicular to ζ it is perpendicular to every line in ξ through F; in particular, $\overrightarrow{A F} \perp \overrightarrow{F X}$. By Theorem $6-19, \overline{\mathrm{AF}}$ is shorter than $\overline{\mathrm{AX}}$. Thus $\overline{\mathrm{AF}}$ is the shortest segment foining A and a point in ξ.

Problem Set 9-5

1. (a) 12 in the usual classroom.
(b) Right.
(c) (1) A dihedeflat angle 1s acute if and only if 1ts meabure is less than 90 .
(2) A dihedral angle is obtuse if and only if
\therefore its measure $1 s$ greater than 90.
(d) Two dihedral angles are adjacent if and only. if they have respective plane artles-which are adjacent.
(e) Two dihedral angles are supplementary if and only if the sum of their measures is 180 .
(f). Two dihedral angles are complementary if and only if the sum of their measures is 90 .
2. $\mathrm{m} \angle \mathrm{C}=\mathrm{PA}-\mathrm{B}=90 \quad(\mathrm{~m} \angle \mathrm{CPB} \equiv 90)$.
$\mathrm{m} \angle \mathrm{CAB}=60$, since $\triangle \mathrm{CAB}$ is equilateral. $(\triangle \mathrm{APC} \cong \triangle \mathrm{BPC} \cong \triangle \mathrm{APB}$.
3. In \boldsymbol{E} :iet ${ }^{4} \overrightarrow{\mathrm{BC}}$ be perpendicular to $\overrightarrow{\mathrm{PQ}}^{\boldsymbol{C}}$. Then by the definition of a plane angle, $\angle A B C$ is a plane angle of $\angle A-P Q-C, \not \perp \xi$ by hypothesis. Hence

* $\angle A-P Q-C$ is a right dihedral angle, and its plane angle, $\angle A B C, 1 s$ a right angle, and $\overline{A B} \perp \overline{B C}$. Since it is given that $\overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{PQ}}$, we now have $\overrightarrow{\mathrm{AB}}$ perpendicular to two ilnes in \boldsymbol{F} through B; hence, by Theorem $9-2, \overrightarrow{\bar{A} B} \perp E$:

4. Using the figure in the text, consider ${ }^{4} \mathrm{XN}$ and ${ }^{4 N}$ in \varnothing such that $\hat{\mathrm{XN}}^{4} \perp \overrightarrow{\mathrm{NC}}$ and $\mathrm{YN}^{4} \mathrm{NB}^{4} \overrightarrow{\mathrm{XN}} \perp \varnothing$ and $\stackrel{H N}{\mathrm{YN}} \not \subset$ by Theorem $9-21$. Then, by definition of a line perpendicular to a plane, ${ }^{4} \underset{\mathrm{XN}}{\mathrm{MN}}$ and

(c) In the plane parallel to the $y z$-plane and three units behind it.

5. (a) xz-plane is $y=0$.
(b) $y=2$ (Parallel to xz-plane.)

(c) $z \equiv 0 \cdot(x y-p l a n e)$

- (d) $z=-4 \quad$ (Parallel to xy-plane.)

635
193
5. The locus (the set) 1s:
(a) the x-axis . .
(b) the z -axis
(c) the y-axis
(d) the origin
(e) A line in the $y z-p i a n e$ which is paraliel to .. the z-axis and intersects the y-axis at $(0,2,0)$.
(f) A line parallel to the z-axis and intersecting the $x y$-plane in the point $(2,1,0)$.
6. (a) The eight vertices might have coordinates $(0,0,0) ;(0, a, 0) ;(a, a, 0) ;(a, 0,0) ;$ ($0,0, a$) ; ($0, a, a) ;(a, a, a) ;(a, 0, a)$.
(b) The eight vertices might have coordinates

$$
(0,0,0) ;(0, b, 0) ;(a, b, 0) ;(a, 0,0) ;
$$ $(0,0, c) ;(0, b, c) ;(a, b, c) ;(a, 0, c)$.

7. All the points in space
for which $x_{1}+\mathbf{y}=$? lie in a plane which is parallel to the z-axis and which intersects the $x y$-plane in the inne $x+y=2$.

Problem set 9-7

1. (a) 13
(b) 7
(c) 5
(d) $\sqrt{41}$
(e) 3
(f) $\sqrt{14}$

636
197
2. $P(x, 3,4)$

$$
\begin{aligned}
& \sqrt{x^{2}+3^{2}+4^{2}} \equiv 13 \\
& x^{2}=169-25 \\
& x= \pm 12 \\
& P_{1}(12,3,4) \text {; } \\
& P_{2}(-12,3,4) \ldots
\end{aligned}
$$

3. $(O P)^{2}=6^{2}+8^{2}+z^{2}=100$

4. $(1, \sqrt{14}, 1)$ and $(1,-\sqrt{14}, 1)^{*}$.
5. $(A B)^{2}=1+4+9=14$
$(B C)^{2}=16+4+6=20$
$(A C)^{2}=9+16+9=34$
$(A B)^{2}+(B C)^{2}=(A C)^{2}$. Therefore, $\triangle A B C$ is a right triangle.
6. $A B=\sqrt{6^{2}+4^{2}+2^{2}}=\sqrt{56}=2 \sqrt{14}$
$A C=\sqrt{6^{2}+2^{2}+4^{2}}=\sqrt{56}=2 \sqrt{14}$
$A B=A C$, and hence, $\triangle A B C$ is isosceles by definition of isosceles triangle.
7. $A B=\sqrt{1+1+4}=\sqrt{6}$
$B C=\sqrt{1+4+1}=\sqrt{6}$ $A C=\sqrt{4+1 \mp 1}=\sqrt{6}$ $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ Therefore $\triangle A B C$ is equilateral.
8. (a) $A B=\sqrt{4+1+16}=\sqrt{21}$, $\mathrm{BC}=\sqrt{9+1+4}=\sqrt{14}$,
$\mathrm{CD} \vDash \sqrt{4+1+\frac{\dot{1}}{}}=\sqrt{21}$,

- .
$A D=\sqrt{9+1+4}=\sqrt{14}, \quad=$ $A B=C D ., B C=A D$.
(b) No, because it does not assure us that points (A, B, C, D are coplanar.

9. (a) $A B=\sqrt{5}$,
$C D=\sqrt{5}$,
$\mathrm{AD}=3$,
$B C=3$.
Hence the ppopite sides of the figure are congruent.
(b) $A C=\sqrt{1+4+9}=\sqrt{14}$,
$\mathrm{BD}=\sqrt{9+4+1}=\sqrt{14}$,
$(A D)^{2}+(D C)^{2}=9+5$
$=14=(A C)^{2}$.
Hence $\angle D$ is a right angle. Similarly,
 $\angle A, \angle B, \angle C$. are right angles.
(c) No. It has not been proved that the four vertices are coplanar.
10. Given two points A and B, choose $\overrightarrow{A B}$ as the y-axis and the midpoint of $\overline{A B}$ as the origin.

There is a real number a, a $\neq 0$, such that $A=(0,-a, 0)$ and $B=(0, a, 0)$. Then the $x z=p l a n e$ is the perpendicular bisector of $\overline{\mathrm{AB}}$. We have two things to prove:
(1) If P is in the $x \bar{z}-p l a n e$, then $A P=B P$.
(2) If $A P=B P \quad, \quad P$ is in the $x z$-plane.
(1) If P is in the $x z-p l a n e$, then $P=(b, 0, c)$

- for real numbers b and c.
$A P=\sqrt{(b-0)^{2}+(0+a)^{2}+(c-0)^{2}}$.
$=\sqrt{b^{2}+a^{2}+c^{2}}$.
$B P=\sqrt{(b-0)^{2}+(0-a)^{2}+(c-0)^{2}}$
$=\sqrt{b^{2}+a^{2}+c^{2}}$,
and $A P=B P$.
(2) If $P(x, y, z)$ is any point such that $A P=B P$, then it follows from the distance formula that
$\sqrt{(x-0)^{2}+(y+a)^{2}+(z-0)^{2}}$
$=\sqrt{(x-0)^{2}+(y-a)^{2}+(z-0)^{2}}$,
$x^{2}+y^{2}+2 a y+a^{2}+z^{2}=x^{2}+y^{2}-2 a y+a^{2}+z^{2}$. Lay $=0$, and since $a \neq 0, \quad \&$

$$
\mathrm{y}_{\mathrm{s}}=0 .
$$

, Therefore P is in the $x z-p l a n e$.

$$
{ }^{639} 90
$$

Problem Set 9-8

1. The coordinates of the endpoints of the diagonals $\overline{\mathrm{EF}}$ and $\overline{\mathrm{GH}}$ are
$E=(2 a, 0,2 a)$
$F=(0,2 a, 0)$.
$\dot{G}=(2 a, 0,0)^{n}$.
$\mathrm{GH}=\sqrt{\left.(2 \mathrm{a}-0)^{2}+(0,2 \mathrm{a}, 2 \mathrm{a}) .2 \mathrm{a}\right)^{2}+(0-2 \mathrm{a})^{2}}$.
3: $=\sqrt{12 \mathrm{a}^{2}}=2 \mathrm{a} \sqrt{3}$,
$E F=\sqrt{(2 a-0)^{2}+(0-2 a)^{2}+{ }^{\prime}(2 a-0)^{2}}$
$=\sqrt{12 a^{2}}=2 a \sqrt{3}$.
By Example $2(\mathrm{a})$, , $\mathrm{AB}=2 \mathrm{a} \sqrt{3}$.
Therefore, $\quad \mathrm{GH}=\mathrm{EF} \equiv \mathrm{AB}$.
2. (a) $\overrightarrow{\mathrm{AB}}=\{(\mathrm{x}, \mathrm{y}, \mathrm{z}): \mathrm{x}=-2+10 \mathrm{k}, \mathrm{y}=2 \mathrm{k}, \mathrm{z}=4-6 \mathrm{k}$, k is a real number \int
(b) $\overline{\mathrm{AB}}=\left\{(x, y, z): x=-2+10 k, y=2 k, z^{2}=4=6 k\right.$, $0 \leq k \leq 1\}$
(c) $\overrightarrow{A B} \equiv\{(x, y, z): x \geqslant+10 k, y=2 k, z=4-6 k$, $\mathrm{k} \geq 0$)
3. (a) Midpoint of $\overline{A B}$ is

$$
\begin{aligned}
\{(x, y, z): x & =-2+10 k, y=2 k, z=4-6 k, \\
1 & \left.k=\frac{1}{2}\right\} \equiv(3,1,1) .
\end{aligned}
$$

(b) Trisection point of $\overline{A B}$ nearer A is

$$
\begin{aligned}
((x, y, z): & x=-2+10 k, y=2 k), z=4-6 k, \\
k & \left.=\frac{1}{3}\right\}=\left(\frac{4}{3}, \frac{2}{3} m 2\right) .
\end{aligned}
$$

(c) Trisection point of $\overline{A B}$ nearer B is

$$
\begin{aligned}
\{(x, y, z): x & =-2+10 k, y=2 k, z=4-6 k, \\
k & \left.=\frac{2}{3}\right\}=\left(\frac{14}{3}, \frac{4}{3}, 3\right) .
\end{aligned}
$$

$$
211_{i}^{640}
$$

(d) When $\mathrm{k}=3, \mathrm{P}=(28,6,-14)$.
(e) When $k=-3, \quad P=(-32,-6,22)$
(f) $z \equiv 0=4=6 k$
$k=\frac{2}{3} 5$
$S_{P}=\left(\frac{14}{3}, \frac{4}{3}, 0\right)$.
\cdot

$$
\mathrm{y}=0=2 \mathrm{k}
$$

$$
v_{0}^{\prime}=0
$$

$$
P=(-2,0,4)
$$

: 1

$$
\begin{aligned}
& \because=0=-2+10 k \\
&(k=\frac{1}{5} \\
& P=\left(0, \frac{2}{5}, \frac{14}{5}\right) . \\
&(g) \quad 3=4-6 k \\
& k=\frac{1}{6} \\
& P=\left(-\frac{1}{3}, \frac{1}{3}, 3\right) . \\
& 1 \\
& y=-2=2 k \\
& k=-1 \\
& P=(-12,-2,10) . \\
& x=-3=-2+10 k \\
& k=-\frac{1}{10} \\
& P=\left(-3,-\frac{1}{5}, \frac{23}{5}\right) .
\end{aligned}
$$

4. If a rectangular solid is given, there is ra coordinate system which assigns coordinates to the vertices as in the diagram. We must show that all the diagonals $\overline{\mathrm{AH}}, \overline{\mathrm{BE}}, \overline{\mathrm{CF}}$ $\overline{B G}$ have the same length - and the same, midpoint. " (2g,0,0) Using the distance formula four times, we find that each diagonal has length
$\sqrt{(2 a)^{2}+(2 b)^{2}+(2 c)^{2}}=2 \sqrt{a^{2}+b^{2}+c^{2}}$. Midpoint of $\frac{f}{C F}$ is

$$
\left(\frac{0+2 a}{2}, \frac{0+2 b}{2}, \frac{2 c+0}{2}\right)=(a, b, c) .
$$

Similarly,
midpoint of $\overline{B E}$ is (a, b, c);
mf point of $\overline{G D}$ is (a, b, c);
midpoift of $\overline{A H}$ is (a, b, f).
Thus the point $(a, b ; c))_{1 s}$ the midpoint of each. diagonal, and therefore the diagonals bisect each other at (a, b, c).

8. Let the coordinates of

rectangular solid be
$A(2 a, 0,2 c) ;$.
$B(2 a, 2 b, 2 c)$;
$C(0,2 b, 2 c)$;
$D(0,0,2 c)$;

- $E(2 a, 0,0)$;

F(2a,2b,0);
$\mathrm{G}(0,2 \mathrm{~b}, 0)$;
$H(0,0,0)$.
M ; the midpoint of all diagonals, would

- have coordinates (a, b, c).

Using different pairs of diagonals and the Pythagorean Theorem, the following relationships among a, b, c, may be established.
In right triangle DMC, $(D M)^{2}+(M C)^{2}=(D C)^{2}$.
Hence, $(a-0)^{2}+(b=0)^{2}+(c-2 c)^{2}+(a-0)^{2}$ $+(b-2 b)^{2}+(c=2 c)^{2}=(2 b)^{2}$,
or $\quad 2 a^{2}+2 b^{2}+2 c^{2}=4 b^{2}$,
and $\quad a^{2}+c^{2}=b^{2}$.
Similarly, from $\triangle G M F, \quad b^{2}+c^{2}=a^{2}$, and from $\triangle D M H, \quad a^{2}+b^{2}=c^{2}$.
9. (a): $M\left(\frac{11}{2},=\frac{1}{2}, 3\right)$.
(b) $\frac{6+5}{2}=\frac{11}{2}$
$\frac{y+0}{2}=-\frac{1}{2}, y=-1$
$\frac{z+0}{2}=3, z=6$.
Hence, the coordinates of D are $(6,-1,6)$.
(c) Yes. Vertices A, B, C, D isle in the plane determined by the intersecting lines $\overrightarrow{A C}$ and $\overrightarrow{B D}$, and hence $A B C D$ is a quadrilateral. If the diagonals of a quadrilateral bisect each other the quadrilateral is a parallelogram.

644

$$
240
$$

10. 'M , mi đ̛̣ point,
\bar{M}, midpoint, of $\overline{B D}$, is $\left(\frac{7}{2}, 1,4\right) \therefore \quad, \quad, \quad$. Therefore, $M=M^{4}$ and $A B C D$ is a plane figure, \square determined by the two intersex ting diagonals, Hence, ABCD 1\&, a parallelogram, since the opposite sides are congruent (or by the diagonals bisecting, each other).
, 11, M, midpoint of $\overline{A C}$, is ($\left.\frac{9}{2}, 2,-\frac{1}{2}\right)$; $M^{\prime}, m i d p b i n t$ of $B D, i s\left(\frac{9}{2}, 2,-\frac{1}{3}\right)$.

- Hence, $\because M=M \cdot$, and $A B C D$ is a plane figure, detertíned by the intersecting diagonals $\overline{\mathrm{AC}}$ and $\overline{B D}$. ABCD is a rectangle since it is a quadrilateral with all right angles.

Problem Set 9-9

1. (a) Using $a x+b y+c z=d$,

$$
\begin{aligned}
& \text { : } P_{1}(1,0,0): a+0+0=d \text {; } \\
& P_{2}(0,1,0): 0+b+0=d \text {; } \\
& \text { - } P_{3}(0,0,1): 0+0+c=d \text { : } \\
& \begin{aligned}
\text { Therefore } & d x+d y+d z=d \\
\text { or } & x+y+z=1 .
\end{aligned} \\
& \text { (b) } P_{1}(3,0,1): 3 a+{ }^{\prime} c=d ; 3 a+\frac{d}{2}=d ; a=\frac{d}{6} \text {; } \\
& \mathrm{P}_{\mathrm{e}}^{\prime}(0,1,0): \mathrm{b}=\mathrm{d} ; \\
& P_{3}(0,0,2): 2 c=d ; c=\frac{d}{2} . \\
& \text { Therefore } \frac{d}{b} x+d y+\frac{d}{2} z=d \\
& \text { or } \quad x+6 y+3 z \equiv 6 \text {. }
\end{aligned}
$$

645

$$
2!3
$$

(c) $\quad P_{1}(3,0,1): 3 a+c=d$
$P_{2}(\not, a, 0): a+2 b=d$
$P_{3}(0,2,4): 2 b+4 c=d$.
Solving,
$c=\frac{d}{13}$
$a=\frac{4 d}{13}$
$\mathrm{b}=\frac{\dot{9} \mathrm{~d}}{26}$.
Therefore $8 x+9 y+2 z=26$.
(d) $p_{1}(1,-1,0): a-b=d$;
$P_{2}(2,0,3): 2 a+3 c=d ;$
$P_{3}(0,-3,1):-3 b+c=a$.
Solving, $b=-\frac{4 d}{1]}$
$c=:=\frac{d}{11}$
$a=\frac{7 d}{11}$.
Therefore $7 x-4 y=z \equiv 11$.
2. $\sqrt{(x-1)^{2}+(y-2)^{2}+(z-3)^{2}}$
$=\sqrt{(x-2)^{2}+(y-5)^{2}+(z-4)^{2}}$
$x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9$
$=x^{2}=4 x+4+y^{2}-10 y+25+z^{2}-8 z+16$.
Hence, $2 x+6 y+2 z=31$.
3. (a) $5 x+4 y=20$
is a plane perpendicular to the xy-plane and intersecting the $x y-p l a n e$ in line $5 x+4 y=20$. This plane intersects
the $y z=$ plane in the line whose equation in the $y z=$ plane is $y=5$.
(Using xyz-coordinates, the line is, of course, $((x ; y, z): y=5$ and $x=0)$.
(b) $x+2 y+z=5$ is an equation of a plane.

5 The intersection of this plane and the $x y-p l a n e$ is the line whose equation in the $x y=p l a n e$ is $x+2 y=5$, (or $\{(x, y, z): x+2 y=5$ and $z=0\}$). The intersection of this plane and the $x \neq$-plane 15 the line whose equation in the xz-plane. is $x+z \equiv 5$,
(or $\{(x, y, z): x+z=\dot{5}$ and $y=0\}$).
The intersection of this plane and the yz-plane is the line whose equation in the $y z$-plane is $2 y+z=5$, (or $\{(x, y, z): 2 y+z=5$ and $x=0\})$.

4. $\bar{x}=2 y+2 z=9$.
5. (a) $y+z=-1$.
(b) $y+z=-1$.
(c) $3 x+5 y+14 z=7$.
6. $3(2-3 k) 45(1+k)+14(4-2 k)=11$
$\mathrm{k} \equiv \frac{7}{4}$
The point of intersection is $\left(-\frac{13}{4}, \frac{11}{4}, \frac{1}{2}\right)$.

$$
203
$$

Review Problems

6. (a) Right.
(b) Equilateral.
(c) Isosceles right.
7. (a) Collinear.
(b) Collinear.
(c) Noncollinear.
(d) Collinear.
8. Not necessarily. All four vertices must be coplanar if ABCD is a parallelogram.
9. Yes. The fact that the diagonals bisect each other assures us that the vertices are coplanar.
10. Yes (because $3-1+2=4$).
11. The line $\{(x, y, 0): 2 x-3 y=6\}$.
12. Plane perpendicular to the y-axis at $(0,5,0)$.
13. $4 x+6 y-4 z=-9$.
14. Let M be the origin and 'A'B'C'D' be the $x y-p l a n e$ of a three-dimensional coordinate system, assigning coordinates as follows:
$A^{\prime}(0,-a, 0), D^{\prime}(0, a, 0), B^{\prime}(b,-a, 0), C \cdot(b, a, 0)$
$A(0,-a, c), D(0, a, c), B(b,-a, c), C(b, a, c)$.
Then, $M B=\sqrt{b^{2}+(-a)^{2}+c^{2}}$
$M C=\sqrt{b^{2}+a^{2}+c^{2}}$
and $M B=M C$.


```
\(76 .+\)
77. 0
\(78 .+\)
79. +
\(80 .+\)
81. 0
82. +
83. +
84. +
85. 0
86. +
\(37 .+\)
88.0
\(89 .+\)
90. 0
91. +
92. +
93. \({ }^{\circ}+\)
94. 0
95. 0
96. +
97. 0
98. 0
99. +
100. 0
```

```
    20
651
```

1. $(\overrightarrow{A ; B}),(\overrightarrow{B, A})$.
2. $(\overrightarrow{A, C}),(\overrightarrow{A, B}),(\overrightarrow{B, C}),(\overrightarrow{C, A}) \geqslant(\overrightarrow{B, A}),(\overrightarrow{C, B})$.
 Figure $b: \quad(\overline{C, D}) \doteq(\overrightarrow{B, F})$.
Figure $\mathrm{c}: ~(\overline{\mathrm{~A}, \mathrm{C}}) \doteq(\overline{\mathrm{D}, \vec{F}})$.
3. (a) By the Betweenness-Addition Theorem $\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$ and therefore $A C \approx B D$. Also by the collinearity of the points in the brder given 1t follows that $\overrightarrow{A C}$ is a subset of $\overrightarrow{B D}$ or $\overrightarrow{\overline{B D}}$ is a subset of, $\overrightarrow{A C}$, hence $\overrightarrow{A C}|\mid \overrightarrow{B D}$ and $(\overrightarrow{\mathrm{A}, \mathrm{C}}) \div(\overrightarrow{\mathrm{B}, \mathrm{D}})$.
(b) Same proof as (a).
(c) $(\overrightarrow{A, B}) \doteq(\overrightarrow{C, D})$ tells us that $\overrightarrow{A B}|\mid \overrightarrow{C D}$ and $A B \equiv C D$. It follows that B and D are on the same side of ${ }^{4} \overrightarrow{A C}$ and hence ABDC is a parallelogram. Hence ($\overrightarrow{A, C}) \lambda=(\overrightarrow{B, D})$.
(d) If A, B, C are.collinear and D is not in $\overrightarrow{\bar{A} \vec{B}}$, then $\overrightarrow{A B}$ intersects $\overrightarrow{C D}$ and this would contradict the hypothesis that $\overrightarrow{A B}|\mid \overrightarrow{C D}$.
(e) If \bar{C}, \bar{D} are between A, B, then $A \bar{B} \neq \overline{C D}$, which contradicts the hypothesis that $(\overrightarrow{\mathrm{A}, \overrightarrow{\mathrm{B}}}) \stackrel{(\overrightarrow{\mathrm{C}}, \mathrm{D}}{\mathrm{D}})$.
4. For each oase let the projections of B, F, G, H into ℓ be $B^{\prime}, F^{\prime}, G^{\prime}, H^{\prime}$, and consider ines parallel to, ℓ through B and G into which the projection of B, F, G, H are $B, F^{\prime \prime}, G, H^{\prime \prime}$. Then $\triangle \mathrm{BFF}^{\prime \prime} \cong \triangle \mathrm{OH} H^{\prime \prime}$ by the $\mathrm{S}, \mathrm{A} . \mathrm{A}$. Theorem, and we have $B F^{\prime \prime} \equiv G H^{\prime \prime}$. It folldws then in rectangles $B^{\prime} F^{\prime} F^{\prime \prime} B$ and $G^{i} H^{\prime \prime} H^{\prime \prime}$ ethat $\overline{B^{\prime \prime} F^{\top}}$ and $\overline{G^{\prime} H^{\prime}}$, the projections into ℓ of $\overline{\mathrm{BF}}$ and $\overline{\mathrm{GF}}$, are congruent, and $B^{\prime} \mathrm{F}^{\prime} \equiv \mathrm{G}^{\prime} \mathrm{H}^{\prime}$.

652
212

In Case (a), $\mathrm{G}^{\prime}=\mathrm{B}^{\prime}$, and all points of ($\overline{\mathrm{G}, \mathrm{H}}$) except G are on the same side of $\overrightarrow{B B^{\prime}}$ as F so that in Ine $\ell \overrightarrow{B^{\prime} F}=\overrightarrow{G^{\prime} H^{\prime}}$. In Case (b), all points of ($\overrightarrow{\mathrm{G}, \mathrm{H}}$) including G are on the same side of $\overrightarrow{\mathrm{BB}^{\prime}}$ as $\overline{\mathrm{F}}$ so that in line $\boldsymbol{\ell} \overrightarrow{\mathrm{G}^{\prime} \mathrm{H}^{\prime}}$ is a subset of $\overrightarrow{B^{\prime} F}$. In Case (c), all points of (\bar{B}, \bar{F}) are on the same side of ${ }_{\overline{G G}}$ as, H so that in line $\ell \overrightarrow{\mathrm{B}^{\prime} \overrightarrow{7}}$ is a subset of $\overrightarrow{\mathrm{G}^{\prime} H}$. This establishes for the three cases that $\overrightarrow{B^{\prime} F^{\prime}} \| \overrightarrow{G^{\prime} H}$, and together with $B^{\prime} F^{\prime}=G^{\prime} H^{\prime}$ shows that $\left(\overline{B^{\prime}, F^{\prime}}\right) \doteq\left(\overline{G^{\prime}, H^{\prime}}\right)$.
6. (a) 3 .
(f) $=1$.
(b) -2 .
(g) -4 .
(c) 2 .
(h) $\frac{1}{2}$.
(d) 1 .
(i) $-\frac{1}{2}$.
7. (a) $r=\frac{1}{2} ; s \equiv \frac{1}{2}$.
(b) $\quad r=2 ; s=-1$.
(c) $r \equiv-1 ; s=2$.
(d) $r \equiv \frac{2}{3} ; s=\frac{1}{3}$.

2
(e) $r=\frac{3}{2} ; s=-\frac{1}{2}$.
(f) $r \equiv-\frac{1}{2} ; s=\frac{3}{2}$.
8. (a) 2 .
(e) 1 .
(b) $\frac{1}{2}$.
(f) -2 .
(c) -1 .
(g) -2 .
(d) -2 .
9. (a) $\frac{1}{3}$:
(e) $-\frac{2}{3}$.
(b) $-\frac{1}{2}$
(f) 1 .
(c) $\frac{3}{2}$.
(g) - 1 .
(d) $\frac{2}{3}$.

$$
653211^{\prime \prime}
$$

1. DEFINITION. If $(\widehat{\mathrm{A}, \bar{B}})$, ($\overline{\mathrm{C}, \mathrm{D}})$ are two directed line; segments, then $(\bar{A}, \bar{B})-(\overline{C, D})$ is the diretted line segment $(\overrightarrow{\mathrm{E}, \vec{F}})$ such that $(\overrightarrow{C, D})+(\overrightarrow{E, F})=(\overrightarrow{A, B})$. The determination of ($\overrightarrow{E, F}$), when ($\overline{\mathrm{A}, \bar{B}}$) and ($\overline{\mathrm{C}, \mathrm{D}}$) are given is called subtraction of directed line segments.
2. (a) $(\overrightarrow{\mathrm{A}, \mathrm{C}})$.
(e) $(\overrightarrow{\mathrm{A}, \mathrm{A}})^{\circ}$.
(b) $(\overrightarrow{A, C})$.
(f) $(\overline{\mathrm{B}, \mathrm{B}})$.
(c) $(\overrightarrow{A, C})$.
(g) ($\overrightarrow{\mathrm{A}, \mathrm{B}})$.
(d). ($\overrightarrow{B, A}$).
3. (a) ($(\overrightarrow{D, C})$.
(c) ($\bar{A}, \bar{D})$.
(b) ($\widehat{B, C}$).
(d) $(\stackrel{\rightharpoonup}{A}, \vec{A})$.
4. (a) A directed segment of approximate length $2 \frac{1}{2}$ extending from A at an angle of approximately 157° with ℓ.
(b) A directed segment of approximite length $2 \frac{1}{2}$ extending from C at an angle of approximately 157° with ℓ_{1}. \quad.
(c) The two are equivalent.
5. \qquad
(a) Approx. 1.3" Approx. 79° A
(b) Approx. 2.6" Approx. 40° C
(c) Approx. 3.0 ${ }^{\text {II }}$ Approx. 85°. A
(d) Approx. 3.3" Approx. 67° A
(e) Approx: 3.3" Approx. $67^{\circ} \quad \therefore$ A
(f) They are equal.
6. Approximately 25° east of north and approximately 8.3^{\prime} miles.
7. (a) ($\overline{\mathrm{D}, \mathrm{E}})$.
(d) -3 .
(b) $-\frac{1}{3}$.
(e) $\frac{1}{2}, \frac{1}{3}$.
(c) $\frac{2}{3}$.

$$
\angle 1 \vdots
$$

- Problem Set 10-3

\therefore
(a) $[3,1] \mid$
(b) $[-3,-1]$:
(e) $[-2,2]$
(f) $[-5,1]$.
(c) $[0,0]$.
(g) $[2,-2]$.
(d) $[5,-1]$.
2. (a) $[5,-5\}$. (e) $[10,-2]$:
(b) $[=5,5]$
(f) $[5,3]$.
(c) $[0,0]$.
(g) $[-10,2]$.
(d) $[-5,-3] \ldots$.
$\%$
3. (a) X is $(9,2)$.
(c) X is $(3,0)$.

- (b) X is $(-1,4)$. (d) X is $(-1,4)$.

4. (a) x is $(-1,-6)$. (c) x is $(-11,4)$.
(b) X is $(9,0)$.
(d) X is $(9,0)$.
5. (a) $[-1,5]$
(e) $[2,5]$.
(b) $[-2,8]$
(f) $[-2,-5]$.
(c) $[-7,1]$.
(g) $[-4,1]$.
(d) $[-6,11] \ldots$
(e) $[-14,15\}$.
(b) $[-2,10]$.
(f) $\left[-12 \frac{1}{2}, 4\right]$.
(c) $[-9,-6]$.
(g) $\left[4 \frac{1}{2},-\frac{3}{4}\right]$.
6. (a) $\sqrt{13}$.
(e) $2 \sqrt{17}$.
(b) $\sqrt{10}$.
(f) $\sqrt{26}$.
(c) 5 .
(E) $\sqrt{17}$.
(d) $\sqrt{61}$.
7. (a) $[0,-3]$]
(d) $[3,0]$.
(b) $[=1,-4]$.
(e) $[0,0]$
(c) $[=1,-4]$.
8. Approximately , 5.8 miles per hour at an angle of approximately, 120°.

$$
210
$$

1. $x=2, y=-3$.

2. $x=-\frac{13}{6}, y \stackrel{\frac{13}{6}}{6}$.
3. $x=-\frac{1}{5}, y=\frac{4}{5}$
4. $\quad \mathrm{x}=\frac{27}{13}, \mathrm{y}=\frac{8}{13}$.
5. $\mathrm{x}=-1, \mathrm{y}=0$, (fnfinite number of solutions \sim satisfying. $x+2 y=-1$).

Problem Set 10-5

1 .

Let the trapezoid and median be lettered as shown and the segments directed as shown. Then

$$
\overrightarrow{\mathrm{EF}}=\overrightarrow{\overline{\mathrm{DC}}}+\overrightarrow{\overrightarrow{\mathrm{CF}}}=\overrightarrow{\overline{\mathrm{D}}} \overrightarrow{\mathrm{E}} \text { and } \overrightarrow{\overline{\mathrm{EF}}}=\overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{FB}}
$$

$$
\text { therefore } \quad 2 \overrightarrow{\mathrm{EF}} \equiv \overrightarrow{\mathrm{DC}}+\overrightarrow{\mathrm{CF}}=\overrightarrow{\mathrm{DE}}+\overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{FB}}
$$

But $\quad \overrightarrow{\mathrm{DE}}=\overrightarrow{\mathrm{EA}}$ and $\overrightarrow{\mathrm{CF}} \equiv \overrightarrow{\mathrm{FB}}$:
Thus we can simplify, and obtain

$$
\begin{aligned}
2 \overrightarrow{\mathrm{EF}} & =\overrightarrow{\mathrm{DC}}+\overrightarrow{\mathrm{AB}} \\
\hat{r}^{\prime \prime} \overrightarrow{\mathrm{ED}} & =\frac{1}{2}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{DC}})
\end{aligned}
$$

or
But because $\overrightarrow{D C} \| \overrightarrow{A B}$ it follows that $\overrightarrow{D C}=k \overrightarrow{A B}$.
\because

The same result is obtained by using the third median with one of the first two. Therefore the point P is an element of all three medians and is a trisection point of each.
4. Let the parallelogram be labeled as shown and segments directed as indicated. E is the midpoint of $\overline{A B}$ and $\overline{D E}$ intersects $\overline{\mathrm{AC}}$ at \bar{F}.

知 3

$$
\overrightarrow{A F}+\overrightarrow{\mathrm{FE}}=\overrightarrow{\mathrm{AE}}=\frac{1}{2} \overrightarrow{A B} \text { and }, \overrightarrow{\mathrm{DF}}+\overrightarrow{\mathrm{FC}}=\overrightarrow{\mathrm{DC}}
$$

but. $\overrightarrow{F E}=x \overrightarrow{D E}, \overrightarrow{A F}=y \overrightarrow{A C}, \overrightarrow{D F}=(1-x) \overrightarrow{D E}$, and

$$
\overrightarrow{\mathrm{FC}}=(1-y) \overrightarrow{\mathrm{AC}} \quad \text { and } \overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{AB}}
$$

Hence, substituting into the first two equations we obtain respectively,

$$
y \overrightarrow{A C}+x \overrightarrow{D E}=\frac{1}{2} \overrightarrow{C C} \text { or } \quad 2 y \overrightarrow{A C}+2 x \overrightarrow{D E}=\overrightarrow{D C}
$$

and

$$
(1-y) \overrightarrow{\mathrm{AC}}+(1-x) \overrightarrow{\mathrm{DE}} \equiv \stackrel{\rightharpoonup}{\mathrm{DC}},
$$

from which, we obtain

$$
\begin{aligned}
2 \bar{y} & =1-y & \text { and } \quad 2 \bar{x} & =1-x \\
3 y & \equiv 1 & & 3 x
\end{aligned}=1
$$

$$
\text { Thus } \quad . \quad \overrightarrow{A F}=y \overrightarrow{A C}=\frac{1}{3} \overrightarrow{A C}
$$

5. Let the parallelogram be labeled as shown and segments directed as indicated, with E a point on $\overline{\mathrm{AB}}$ such that $\mathrm{AE} \equiv \frac{1}{\frac{1}{m}} \mathrm{AB}$ and $\overline{\mathrm{DE}}$ intersecting $\overline{\mathrm{AC}}$ at. F.

$\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{FE}} \equiv \overrightarrow{\mathrm{AE}}=\frac{\overline{1}}{\mathrm{~m}} \overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{DF}}+\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{DC}} ;$ but

$$
\begin{aligned}
& \overrightarrow{\mathrm{AF}}=x \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{FC}} \\
& \overrightarrow{\overrightarrow{D F}} \equiv(1-\overrightarrow{\bar{x}}) \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{FE}}=(1-y) \hat{\mathrm{DE}},
\end{aligned}
$$

Thus $\quad x \overrightarrow{A C}+y \overrightarrow{D E}=\frac{1}{m} \overrightarrow{A B} \quad$ or $\quad m x \overrightarrow{A C}+m y \overrightarrow{D E}=\overrightarrow{A B}$

$$
(1-x) \overrightarrow{A C}+(1-y) \stackrel{\rightharpoonup}{D E} \equiv \frac{\Delta}{\overline{D C}} \equiv \overrightarrow{A B}
$$

Therefore

$$
\begin{aligned}
\mathrm{mx} \equiv 1 & =x \\
\mathrm{mx}+\mathrm{x} & \equiv 1 \\
(\mathrm{~m}+1) \mathrm{x} & =1 \\
\mathrm{x} & =\frac{1}{\mathrm{~m}+1}
\end{aligned}
$$

Hence

$$
\overrightarrow{A F}=\frac{1}{-\frac{1}{A C}}
$$

Problem Set ion

1. 0 , perpendicular.
2. -24 .
3. -25 .
4. -24.
5. - 13 . perpendicular.
6. -16 .
7. -96.
8. 9 .
9. 0 , perpendicular.
10. Since $\overrightarrow{P Q}=[4,-6]$ 县 $=[12,8]$, the scalar product $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{RS}}=0$.
11. Since $\overrightarrow{\mathrm{PQ}}=[3,-12]$, $\overrightarrow{Q R}=[-8,-2], \overrightarrow{\mathrm{PR}}=\left[-5,-1^{4} 4\right]$, then $\overrightarrow{P Q} \cdot \overrightarrow{Q R}=0, \overrightarrow{Q R} \cdot \overrightarrow{P R}=68, \overrightarrow{P Q} \cdot \overrightarrow{P R}=153$. Since $\overrightarrow{P Q} \cdot \overrightarrow{Q R}=0, \triangle P Q R$ is a right triangle.

$$
\begin{aligned}
& \text { 13. }(\vec{u},-\vec{v}) \cdot\left(\vec{w}-\frac{\vec{z}}{\mathbf{v}}\right) \equiv(\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}) \cdot \frac{\overrightarrow{\mathrm{w}}}{\mathrm{w}}+(\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}) \cdot\left(-\frac{\vec{z}}{\mathbf{z}}\right) \\
& =\frac{\mathbf{w}}{\mathbf{w}} \cdot(\stackrel{\rightharpoonup}{u}-\vec{v})=\frac{\vec{z}}{\mathbf{z}} \cdot(\vec{u}-\vec{v}) \\
& =\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathbf{w}}-\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{z}}+\overrightarrow{\mathrm{v}} \cdot \frac{\vec{Z}}{\vec{a}} \quad, \\
& =\overrightarrow{\mathrm{u}}: \overrightarrow{\mathrm{w}}=\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathbf{Z}}-\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathbf{Z}} .
\end{aligned}
$$

$$
22 i
$$

14. Proof: Let m be any line through the origin, 0 , and let n be the perpeficular to m through 0 . Let $P(x, y)$ be a point on m and $Q(a, b)$ be a point on n nat the origin.

Since m is perpendicular to $n, \overrightarrow{O Q} \cdot \overrightarrow{O P}=0$. In terms of components, since $\vec{O} \bar{Q}=[a, b]$ and ${ }_{O} \overline{O P}^{\prime}=[x ; y]$, we have, $[a ; b] \therefore[x, y]=0$ which is equivalent to $a x+b y=0$.
15. (1) Let $\overrightarrow{\mathrm{u}}=\left[\mathrm{p}_{1}, \mathrm{p}_{2}\right]$ and $\overrightarrow{\mathrm{v}}=\left[\mathrm{q}_{1}, \mathrm{q}_{2}\right]$; then

$$
\begin{aligned}
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} & =\mathrm{p}_{1} q_{1}+\mathrm{p}_{2} q_{2} \\
& =\mathrm{p}_{2} q_{2}+\mathrm{p}_{1} q_{1} \\
& =\vec{v} \cdot \overrightarrow{\mathrm{u}} .
\end{aligned} \begin{aligned}
& \text { Definition of scalar } \\
& \text { product. } \\
& \text { Commutative property of } \\
& \text { numbers. }
\end{aligned} \begin{aligned}
& \text { Definition of scalar } \\
& \text { product. }
\end{aligned}
$$

(2) Let $\stackrel{\rightharpoonup}{u}=\left[p_{1}, p_{2}\right], \vec{v}=\left[q_{1}, q_{2}\right], \vec{w}=\left[t_{1}, t_{2}\right]$; then

$$
\vec{u} \cdot(\vec{v}+\vec{w})
$$

$=\dot{\imath} \cdot\left(\left[q_{1}+t_{1}, q_{2}+t_{2}\right]\right)$ Definition of vector sump.
$=p_{1}\left(q_{1}+t_{1}\right)+p_{2}\left(q_{2}+t_{2}\right) \quad \begin{aligned} & \text { Definition of scalar }\end{aligned}$ product.
$=\left(p_{1} q_{1}+p_{1} t_{1}\right)+\left(p_{2} q_{2}+p_{2} t_{2}\right)$
Distributive property
of numbers.
$=\left(p_{1} q_{1}+p_{2} q_{2}\right)+\left(p_{1} t_{1}+p_{4}{ }^{4}\right)$ Associative and commutative
$=\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{u}} \cdot \stackrel{\rightharpoonup}{\mathrm{w}}$.
properties of numbers. Definition of scalar. product.

$$
\text { But } \quad \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{DC}} \text { and } \overrightarrow{\mathrm{FD}}=\overrightarrow{\mathrm{BE}} \cdot ;
$$

hence $\quad \dot{\overrightarrow{A E}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BE}}=\overrightarrow{\mathrm{FC}}$
which implies that $A E=P C$ and $A E I T F C$.
Therefore AECF is a parallelogram.
3. $\overrightarrow{P \mathrm{Q}}=[-6,-10], \overrightarrow{\mathrm{Q}}=[-3,-5]$.

Since $\quad[-6,-10]=2[-3,-5]$;
therefore $\quad \overrightarrow{\mathrm{PQ}} \| \overrightarrow{\mathrm{Q}}$. ,
Hence $\overrightarrow{P Q} \| \overrightarrow{Q R}$.
But Q lies on both lines.
Therefore, ${ }^{2} \mathbf{P Q}^{\prime}=\overrightarrow{Q R}$.
4. $\overrightarrow{\mathrm{PQ}}=[3,8], \overrightarrow{\mathrm{SR}}=[3,8]$, implying $\mathrm{PQ}=\mathrm{SR}$ and $\overline{P Q} \| \overrightarrow{S R}$. Also P, Q, R, S are not collinear, because

$$
\overrightarrow{Q R}^{\prime}=[-7,2] \neq[3,8]=\overrightarrow{P Q} .
$$

Therefore, these points are the vertices of a parallelogram.
5. (a) $[1,2]$.
(c) $[8,10]$.
(b) $[-3,=8]$.
(d) $[-10,-6]$.
6. (a) $\frac{1}{2}$:
(d) $(\overrightarrow{B, A})$.
(b) 2,2 .
(e) $\frac{1}{2}$.
(c) $\frac{1}{2}$.

$(\overrightarrow{B, A}) \doteq(\overrightarrow{C, D})$ ($\overrightarrow{D, B}),(\overrightarrow{B, D})$.
$(\overrightarrow{A, D}) \doteq(\overrightarrow{B, C})$.
$(\overline{\mathrm{D}, \stackrel{\mathrm{A}}{ }}) \doteq(\overline{\mathrm{C}, \stackrel{\mathrm{B}}{ }})$.
8. (a) $(\overrightarrow{\mathrm{D}, \mathrm{B}}) \doteq(\overrightarrow{\mathrm{D}, \mathrm{C}})+(\overrightarrow{\mathrm{D}, \mathrm{A}})$.
(b) $(\overrightarrow{\mathrm{D}, \stackrel{\mathrm{B}}{\mathrm{B}})} \doteq(\overrightarrow{\mathrm{D}, \mathrm{C}})+(\overrightarrow{\mathrm{C}, \mathrm{B}})$.
(c),$(\overrightarrow{D, B}) \doteq(\overrightarrow{A, B})-(\overrightarrow{B, C})$.
(d) $(\overrightarrow{D, B}) \doteq(\overrightarrow{A, B})-(\overrightarrow{A, D})$.
(e) $(\overline{D, B}) \doteq-(\widehat{B, A})-(\overrightarrow{B, C})$.
9. (a) $(\vec{O}, \vec{B}) \doteq(\vec{O}, \stackrel{Q}{Q}) \leqslant\left(\overrightarrow{O_{R}, \vec{P}}\right)$.
(b) ${ }^{`}(\overrightarrow{0, C}) \equiv(\overline{0}, \bar{Q})-\left(\overrightarrow{O_{p}} \bar{P}\right)$

(e) ($\overrightarrow{\mathrm{D}, \vec{B})} \underset{\underline{\bar{D}}}{ } 2(\overrightarrow{\mathrm{O}, \mathrm{Q}})+2(\overrightarrow{\mathrm{O}, \overrightarrow{\mathrm{P}})}$.
(f) $\longrightarrow_{(\overrightarrow{A, C})}=2(\overrightarrow{O, Q})-2(\overrightarrow{O, \vec{P}})$.
(g$)(\overline{\mathrm{C}, \overline{\mathrm{A}})}=-2(\overrightarrow{\mathrm{O}, \mathrm{Q}})+2(\overrightarrow{\mathrm{O}, \vec{P}})$.
(h) $(\vec{B}, \vec{D})=-2(\overrightarrow{\mathrm{O}, \vec{Q}})-2(\overrightarrow{\mathrm{O}, \vec{P}})$
10. (a) $\mathrm{x}=3, \mathrm{y}=2$.
(b) $\mathrm{x}=-1, \mathrm{y}=3$.
(c) $x=0, y=1$.
(d) $\mathrm{x}=0, \mathrm{y}=0$.
(e) $x=4, y=-2$.
11. (a) $\sqrt{10}$.
(d) $\sqrt{5}$.
(b) 5 .
(e) $\sqrt{5}$.
(c) $\sqrt{5}$.
12. (a) $[2,1]$.
(d). [4,2].
(b) $[-2,-1]$.
(e) $[-4,-2]$.
(c) $[-2,-1]$.
13. (a) 6 .
(d) 9 .
(b) 4 .
(e) 1 ..
(c) 16
14. 4 .
15. o .
16. (a)

(b)

17. $5 \sqrt{\text { t }}$ pounds.
18. ' (a) $500 \sqrt{3}$, pounds.
(b) 500 pounds.

74
19. (a) Force in $\overline{\mathrm{AC}}$ is $\frac{10000}{\sqrt{3}}$ or approximately 5770 :
(b) Force in $\overline{B C}$ is $\frac{5000}{\sqrt{3}}$ (ty approximately 2885
(c) Force in $\overline{C W}$ is 5000
20. $20.4 \mathrm{miles} / \mathrm{hr}$.
11° ssouth of east:
-

10. No. The measure of exch interior angle of a regular polygon equals $\frac{\left(n-\xi^{2}\right) 180}{n}$ where n represents the number of sides and must therefore be integral. $\frac{(n-2) 180}{n} \leq 153$ gives a non-integral value to n.
11. 36 .
12. $m \angle c+m \angle d+m \angle e=330$,

$$
m, \angle c=4 k, m \angle d=3 k, m \angle e=4 k,
$$

$$
11 k=330
$$

$k=30$
$\mathrm{m}^{6} \angle \mathrm{c}=120$.
Then $\angle b$ and $\angle c$ are supplementary and, since they are consecutive interior angles with respect to $\stackrel{C D}{ }$, $\overrightarrow{B A}$ and transversal $\overrightarrow{\mathrm{BC}}$, it follows that $\overrightarrow{\mathrm{AB}} \|_{\overrightarrow{C D}}$.
13.

For all values of $n>4$, $A B C D$ is a quadrilateral. $\triangle A B C \cong \triangle D C B$ by SAsS. Then $\overline{B D} \cong \overline{\equiv C A}$. Then $\triangle A B D \cong \triangle D C A$ by S.S.S. It follows that $m \angle B A D=\bar{m} \angle C D A$.

Also since $m \angle C B A=m \angle D C B$, and $m \angle B A D+m \angle C B A+m \angle C D A$ $+m \angle D C B=360$, it follows that
$2 m \angle B A D+2 m \angle C B A=360$ or $m \angle B A D+m \angle C B A=180$. Then $\angle B A D$ and $\angle C B A$ are supplementary, and since they are the consecutive interior angles of trans = verbal $\overrightarrow{B A}$ and lines $\overrightarrow{B C}$ and $\overrightarrow{A D}$, it follows that $\overline{\mathrm{AD}}|\mid \overline{\mathrm{BC}}$.
14. $m \angle C B X=18^{\circ}$.
$m \angle D C X=36$.
$m \angle X B D=1^{4} 8$.
15. (a) 4 .
(b) 6 .
(c) Yes. The measure of each interior angle would have to be a factor of 360 , or $\frac{x(n-2) 180}{n}=360$ must be such that x is an integer and n is an integer ≥ 3.
$x=\frac{2 n}{n-2}=2+\frac{4}{n-2}, \frac{4}{n-2}$ is an integer
for n only if $n=3,4$, or 6. Three hexagonal tiles would be needed.
(d) $2 x+y=360$ $2 \cdot 108+144=360 ; \underset{\text { decagon }}{2}$ pentafons and one 2. $150+60=360$; 2/ dodecagons and an equilateral triangle. No polygon with pore than 12 sides could be used since $y \geq 60$ and hence $x \leq 150$.
(e) Some of the possible combinations using three regular polygons each with different number of sides are: 4,6,12 ; 4,5,20 ; 3,8,24; 3,10,15 ; 3,7,42 ; 3,9,18. [The numbers represent the number of sides.]
16. (a) increases.
(b) remains the same.
(c) increases.
(d) decreases.

Problem Set 11-4

1. (a) Areas are 6, 12, 24, 48. Ratio is 1 to 2 .
(b) Areas are 6, 18, 54 . Ratio is 1 to 3 .
(c) Altitudes are $20,10,5, \frac{5}{2}, \frac{5}{4}$. Ratio is 2 to 1 .
(d) Areas are 2, 18, 162, 1458. 1 to 3 ; 1 to 3 ; 1 to 9 ; similar.
(e) 1 to $9 ; 4$ to 9 ..
2. (a) $\frac{2}{3}$.
(d) $\frac{2}{1}$
(b) $\frac{1}{2}$
(e) $\frac{3}{2}$
(c) $\frac{1}{2}$
(f) $\frac{1-1}{4}$
3. (a) 1 to 3
(c) 3 to 1
(b) 1 to 8
(d) 4 to 5
4.. 68 and 85
4.

$$
\begin{gathered}
A=a^{2}+b^{2}+2 a b=(a+b)^{2} \\
2
\end{gathered}
$$

6. (a) R_{2}, R_{3}, R_{6}
(b) R_{1}, R_{4}, R_{5}
(c) (d) (e) A rectangle is separated by its diagonal into two congruent triangles.
(f) Combine steps (c), (d), (e), Postulate 27, and the addition property of equality.

Problem Set 11-5

The following classification of problems should help teachers in making daily assignments.

Theorem ll-3------------------Problems $1=6$.
Theorem 玉l-4--------------=-=-Problems 7-11.
Theorem 11-5----s--------------Problems 12 - 16.
Theorem 11-6------------------Problems 17 - 20.
Theorem 1l-7-=====-------------Problems 21-23.
Miscellaneous-------------------Problems 24-34.

1. 30
2. 72
.3. 36
231

*

(b) $\frac{h^{2}}{4}$

$$
\text { 6. (a) } \frac{1}{2} h
$$

(b) $\frac{1}{2} h \sqrt{3}$
(c) $\frac{h^{2} \sqrt{3}}{8}$
-
7. (a) 60
(b) 24
(c) 3
(d) 4
8.
(a) 3 to 4
(c) 1 to 2
(b) 1 to 2
(d) 1 to 1
(c) $12 \sqrt{2}$
(b) $12 \sqrt{3}$
(d) $16 \sqrt{3}$
9. (a) 12
: 10.

By hypothesis we have an equilateral triangle $A B C$ with the measure of the side $=$'s and area $=A$.

We are required to prove $A=\frac{s^{2} \sqrt{3}}{4}$.

Let \bar{D} be the foot of the altitude $\overline{C D}$ upon $\overline{A B}$. Then
(a) $\mathrm{DB}=\mathrm{AD}$ or $\mathrm{DB}=\frac{1}{2} \mathrm{~B}$
*(b) $a^{2}=s^{2}-\left(\frac{s}{2}\right)^{2}$.
(c) $a=\frac{s}{2} \sqrt{3}$.
(d) $A=\frac{1}{2} \mathrm{as}$

ancm
*
(e) $A=\frac{1}{2}\left(\frac{s}{2} \sqrt{3}\right) s$ or

$$
A=\frac{s^{2} \sqrt{3}}{4}
$$

(a) The altitude of an equilateral triangle bisects the base.
(b) Pythagorean Theorem.
(c) From Step (b) with the properties of equality.
(d) The area of a triangle is half the
" \quad 'product of any base and the altitude upon that base.
(e) From Steps (c) and
(d) uising the substitution property of equality.

* Pupils should be able to omit this step and obtain.
CD from Theorem $7-10$.

$$
671 \text { פin }
$$

11. 240
12. 240
13. 216
14. $\mathrm{d}^{2}=.40, \mathrm{~d}^{\prime} \equiv 80$
15.

In a square with length of Eide $=s$, length of diagonal $\equiv d$ and area $\equiv \bar{A}$, we are required to prove that

$$
A=\frac{d^{2}}{2}
$$

A square is a rhombus and also a rectangle. As a rhombus, $A=\frac{l}{2}$ the product of its diagonals. As a rectangle, its diagonals are equal. Hence $A=\frac{1}{2} d^{2}$.
16. 32
17. 84
18. 56.2
'19.
(a) 70
(c) $70 \sqrt{3}$
(b) $70 \sqrt{2}$
(d) 140
20. 5
21.
(a) 21
(d) 36
(b) 102
(e) 18
(c) 12
22. $\frac{16 \sqrt{3}}{3}$
23. Let $A B C D$ be the trapezoid with $\overline{A B} \| \overline{C D}$. We use the coordinate system in which A is $(0,0)$, B. is $(a, 0), D$ is (b, c), and C is ($d, c)$ where $\mathrm{a}>0,0>0$, and $\mathrm{d}>\mathrm{b}$. The midpoint of $\overline{D A}$ is $E=\left(\frac{b}{2}, \frac{c}{2}\right)$. The midpoint of $\overline{C B}$ is $F=\left(\frac{a+d}{2}, \frac{c}{2}\right)$. Then

$E \bar{F}=\frac{a+d}{2}-\frac{b}{2}=\frac{a+d-b}{2}$,
$A B+D C=a+(d-b)=2 E F$, and $E F=\frac{A B+D C}{2}$, But $m \equiv E F$ and $h=c$ are the lengths of the median and altitude, respectively. Using Theorem $7=1$ we see that the area is given by $h \cdot \frac{A B+D C}{2}=\mathrm{hm}$.
24. 12 feet.
25. Area of $\triangle A D C=49$, Area of $\triangle A B D=35$.
26. Total area $\equiv \frac{1}{2} \cdot 7(26)+\frac{1}{2} \cdot 5(28) \equiv 161$.

Area $P Q B A \equiv 63$; Area $Q R C B=40$.
Area of $A B C D=161=(40+63)=58$.
27. Measures of the sides are $\sqrt{2^{2}+4^{2}}, \sqrt{8^{2}+4^{2}}$, $\sqrt{6^{2}+8^{2}}$ or $\sqrt{20}, \sqrt{80}, \sqrt{100}$. By the converse of the Pythagorean Theorem, these sides form a right triangle. The area is $\frac{1}{2} \sqrt{20} \sqrt{80} \equiv 20$.
28. (a) $D=(-2,-6)$
(b) $A=\frac{1}{2} \sqrt{128} \sqrt{32}=32$
29. Altitude $=6$; Area $\equiv 3(27)=81$.
30. Area $\equiv \frac{1}{2}(4 \cdot 9)+\frac{1}{2}(5 \cdot 9)=\frac{1}{2}(9 \cdot 9)=40 \frac{1}{2}$.
31. Area of $\triangle E F C=$ Area of $A B C D=$ (Area of $\triangle A E F$ + Area of $\triangle E B C+$ Area of $\triangle F D C$)

$$
=7 \cdot 5-\frac{1}{2}(3 \cdot 2+5 \cdot 5+2 \cdot 7)=12 \frac{1}{2} .
$$

32. $A B C D$ is a parallelogram and $A B D E$ is a parallelo= gram since in each one pair of opposite sides are both congruent and parallel. ABCD is a rhombus and $A B D E$ is a rhombus since each is a parallelogram with one pair of adjacent sides congruent. $A D=B C=E A$ $\equiv B D$ by hypothesis or because they are opposite sides of a parallelogram. Then $A D \cong B D=A B$ and $\triangle A B D$ is equilateral* Similarly $\triangle E A D$ and $\triangle D B C$ are also equilateral. Moreover the three triangles are congruent. Therefore the area of rhombus $A E \bar{D} \bar{B}=$ area of rhombus $A D C B$. Area of $A B D E=5 E B \cdot A D$ and Area of $A B C \bar{D}=\frac{1}{2} A C$. $B D$. Theref $\frac{1}{2} \mathrm{AC} \cdot \mathrm{BD} \equiv \frac{1}{2} \mathrm{~EB} \cdot \mathrm{AD}$ or $\mathrm{AC} \cdot \mathrm{BD}=\frac{\mathrm{F}}{\boldsymbol{2}} \cdot \mathrm{AD}$.
33. $\frac{1}{2} \mathrm{AB}=\mathrm{AC} \equiv$ Area of $\triangle \mathrm{ABC} \equiv \frac{1}{2} \mathrm{AD}: \mathrm{BC}$. Therefore $A B \cdot A C=B C \cdot A D$.

$$
673<+i
$$

34. In terms of the diagram we must prove that

Area of $\mathrm{ABCD}=\frac{1}{2} \mathrm{DB}=\mathrm{AC}$.
Area of $A B C D=$ Area of $\triangle A D B+$ Area of $\triangle C D B$.
Since $\overline{\mathrm{AC}} \perp \overline{\mathrm{DB}}$, this becomes
$\frac{1}{2} \mathrm{AP} \cdot \mathrm{DB}+\frac{1}{2} \mathrm{PC} \cdot \mathrm{DB}$ or $\frac{1}{2} \mathrm{DB}(\mathrm{AP}+\mathrm{PC})$.
But. $A \bar{P}+\overline{P C}=A C$.
Therefore Area of $A B C D=\frac{1}{2} D B \cdot A C$.

Problem Set $11-6$

1. Proof: For defintteness we prove the theorem for a. set of three parallelograms."
(a) By hypothesis, all the bases have the same measure, say b. Let the areas of the parallelograms be $A, A^{\prime}, A^{\prime \prime}$, and 1 et the corresponding altitudes be $h, h^{\prime}, h^{\prime \prime}$.

Now $\dot{A}=\mathrm{bh}, \mathrm{A}^{\prime} \equiv \mathrm{bh}, \mathrm{A}^{\prime \prime}=\mathrm{bh}{ }^{\prime \prime}$; hence the numbers $A, A^{\prime}, A^{\prime \prime}$ are proportional to the numbers $h, h^{\prime}, h^{\prime \prime}$ with the non-zero number b as the proportionality constant.
(b) By hypothesis, all the altitudes are the same number, say h. Let the areas of the triangles be $A, A^{\prime}, A^{\prime \prime}$, and let the corresponding, bases be $b, b^{\prime}, b^{\prime \prime}$.

$$
\begin{aligned}
& \mathcal{Y}_{1} \\
& 674
\end{aligned}
$$

Now $A=h b, A$ 䣒 $h b^{\prime}, A^{\prime \prime} \equiv h b^{\prime \prime}$; hence the numbers $A, A^{\prime}, A^{\prime \prime}$ are proportional to $\mathrm{b}, \mathrm{b}^{\prime}$, $\mathrm{b}^{\prime \prime}$ with the non-zero number h as the: proportionality constant.
(c) By hypothesis, all the areas are the same number, say A. Let the bases of the triangles be
$f \ldots b, b^{\prime}, b^{\prime \prime}$, and let the corresponding altitudes be $h, h^{\prime}, h^{\prime \prime}$.

Now $A=b h ; A \equiv b^{\prime} h^{\prime}$, $A \equiv b^{\prime \prime} h^{\prime \prime}$ or $\mathrm{bh} \equiv \mathrm{b}^{\prime} \mathrm{h}^{\prime}=\mathrm{b}^{\prime \prime} \mathrm{h}^{\prime \prime}=\mathrm{A}_{1}$. Thus ${ }^{\prime} \mathrm{b}$, b^{\prime}, $\mathrm{b}^{\prime \prime}$ are inversely proportional to $h, h^{\prime}, h^{\prime \prime}$.
2. All three have the same area since all have base $\overline{\mathrm{AB}}$ and altitude $\overline{\mathrm{AF}}$.
3. Each triangular-region has the distance from E to $\xrightarrow{\overrightarrow{A D}}$ as altitude. Since the bases of R_{1}, R_{2}, and \bar{R}_{3} are proportional to $1,2,3$, the areas of R_{1}, R_{2}, R_{3} are proportional to $1, \varepsilon, 3$ by Theorem 11-8.: :
4. $\frac{\text { Area of } A D F C}{\text { Area of } A D E B}=\frac{h^{\prime}}{h}$ by Theorem $11-9 a$ since ADEB and ADFC are parallelograms.
Now $\frac{h^{\prime}}{h^{\prime}} \equiv \frac{A C}{A B}$ since corresponding sides of similar
triangles are proportional.
But $\frac{A C}{A B}=\frac{10 x}{4 X}=\frac{5}{2}$.
Then the areas of $A D E B$ and $A D F C$ are in the ratio. of 2 to 5 .

$$
675 \quad 2: i_{i}
$$

5.

By hypothesis we have parallelogram ABCD divided into 4 triangular-regions, AEB , BEC , CED and DEA by diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$. Wé are required to prove that all four triangular regions have equal area.

Let h be the length of the perpendicular from D to $\overline{A C}$. Then h is the altitude of $\triangle A E D$ upon base $\overline{A E}$ and h is the altitude of $\triangle C E D$ upor $\overline{E C}$. $A E \equiv E C$ since the diagonals of a parallelogram bisect each other. Then

Area of $\triangle \mathrm{AED} \equiv \frac{1}{2} \mathrm{~h} \cdot \mathrm{AE}=\frac{1}{{ }_{2}^{2}} \mathrm{~h} \cdot \mathrm{EC} \equiv$ Area of $\triangle C E D$. But $\triangle A E B \cong \triangle C E D$ and $\triangle C E B \cong \triangle A E D$ (s.s.s.). Since congruent triangles have equal areas, Area of $\triangle A E D=$ Area of $\triangle C E D=$ Area of $\triangle A E B$ $=$ Area of $\triangle C E B$.
6.

$\overline{\mathrm{CD}}$ is the median of $\triangle \mathrm{ABC}$.
$\overline{C D}$ forms two triangularregions ADC and DBC . We are required to prove that regions $A D C$ and. DBC have equal areas.

Both regions have the same altitude (the length h of the perpendicular from C to $\overrightarrow{A B}$.)
$A D=D B$ from the definition of median.
$\frac{1}{2} h \cdot A D=\frac{1}{2} h \cdot D B$, and thus
Area of region $A D C=$ Area of region $D B C$.

676
$23:$
7.

By Problem 6, Area of $\triangle A C D \equiv$ Area of $\triangle B C D$ and
Area of $\triangle A O D=$ Area of $\triangle B O D$. Then
Area of $\triangle C O A=$ Area of $\triangle B O C$.
Similarly it can be proved using median $\overline{\mathrm{BF}}$ that

Area of $\triangle \mathrm{BOC}=$ Area of $\triangle \mathrm{AOB}$.

Hence Area of $\triangle A O B \equiv$ Area of $\triangle B O C \equiv$ Area of $\triangle C O A$.
8. By Problem 7, the medians separate the triangle into regions of equal area; so if the cardboard triangle has uniform thickness, we should expect the regions to have equal weight.
9. Area of $\triangle \mathrm{ABO}=$ Area of $\triangle \mathrm{BOC}=$ Area of $\triangle C O A$ $=\frac{216}{3}=72$.

Area of $\triangle O D B=$ Area of $\triangle B O E=$ Area of $\triangle A O F$ $=\frac{72}{2}=36$.
*10. (a) $5 \frac{5}{6}$.
(b) 12 .
(c) $10 \frac{1}{2}$.
11. (a) 15.
(b) 90 .
(c) $\frac{405}{2}$.
(d) $\frac{225}{2}$.
12. (a) 3 to 1
(d) 3 to $\cdot 2$
(b) 1 to 4
(e) 11 to 10
(c) 3. to 4

$$
\frac{200}{27}
$$

13. No. Let $b, h ; b+5, h-5$, denote a base and corresponding altitude of the first triangle and a base and corresponding altitude of the second triangle. Then their areas are equal if and only if

$$
b h=(b+5)(h-5)=b h+5 h-5 b-25,
$$

that is, if and only if
$h=b+5$.
14. $\frac{16}{15}$

Problem Set 11-7

1. $\frac{16}{25}$
2. $\frac{4}{5}, \frac{4}{5}, \frac{4}{5}$
3. 4 to 1
4. 30
5. $\frac{S}{\frac{S}{2} \sqrt{3}}=\frac{2}{\sqrt{3}}$
$\frac{A_{1}}{A_{2}}=\frac{4}{3}$

(a)

If on $\overline{C A}$ points D and E are selected such that $\overline{\mathrm{CD}}, \overline{\mathrm{CE}}, \overline{\mathrm{CA}}$ are proportional to $1, \sqrt{2}, \sqrt{3}$ and if through D and $E, \overline{D F}$ and $\overline{E G}$ are parallel to $\overline{A B}$, then the required polygonalregions will be determined.

A method for locating D and E is begun in (a) where $\overline{\mathrm{C}_{\mathrm{N}}}$ is any convenient unit, $\overline{N O} \perp \overline{N C T}$, and $\overline{\mathrm{OP}} \perp \overline{\mathrm{OCT}}$, and completed in (b).

$$
\begin{aligned}
& 678 \\
& 2^{\prime} ?
\end{aligned}
$$

(b) On any angle with vertex C^{\prime}, take A^{\prime} on one side and $N^{\prime}, O^{\prime}, P^{\prime}$ on the other side so that $C^{\prime} A^{\prime}=C A, C^{\prime} N^{\prime}=C^{\prime}{ }^{\prime}, C^{\prime} O^{\prime}=C^{\prime} O, C^{\prime} P^{\prime}=C^{\prime} P$. Draw parallel lines as suggested in the figure. Use lengths C'D' and C'IE' to locate D and \bar{E}; draw $\overline{\mathrm{EF}}$ and $\overline{E G}$ parallel to $\overline{\overline{A B}}$.

7. Let K be the proportionality factor. Then by definition of similar polygons,
$A B \equiv K \cdot A^{\prime} B^{\prime} ; B C=K \cdot B^{\prime} C 1 ; C D=K \cdot C D^{\prime} ;$ $D E \equiv K \cdot D^{\prime} E \prime ; E D=K \cdot E^{\prime} A^{\prime}$; and the corresponding - angles have equal measures. It can then be proved that the corresponding triangles formed by the diagonals and the sides of the given polygons are similar. Thus by the S.A.S. Similarity Theorem
$\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A D E \sim \triangle A^{\prime} D^{\prime} E^{\prime}$.
$m \angle A C D^{n}$ can be shown equal to $m \angle A^{\prime} C^{\prime} D^{\prime}$ and
$(A C, D C) \overline{\bar{p}}\left(A^{\prime} C^{\prime}, D^{\prime} C^{\prime}\right)$. Then
$\triangle A C D \sim \triangle A^{\prime} C^{\prime} D^{\prime}$ by the A.S.A. Similarity Theorem
It follows that $R_{1}=K^{2} R_{1}{ }_{1} ; R_{2}=K^{2} R_{2}$ and $R_{3}=K^{2} R_{n}$. since the areas of two similar triangles are proportional to the squares of any two corresponding sides.

Then $R_{1}+R_{2}+R_{3}=K^{2}\left(R_{1} I_{1}+R_{2}+R_{3}\right)$
or the area of $A \overline{B C D E}=K^{2}$ (the area of $\left.A^{\prime} B^{\prime} C^{\prime} D^{\prime} E I\right)$. $\frac{\text { Area of } \frac{A B C D E}{\text { Area of } A^{\top} B^{\prime} C^{\prime} D^{\top} E T}}{=K^{2}=\left(\frac{A B}{A^{\top} B^{r}}\right)^{2} \equiv \frac{S^{2}}{\left(S^{\prime}\right)^{2}} . ~ . ~ . ~ . ~}$
8. The proof in Problem 7 would be changed to show the area of $A B C D E . . N=K^{2}$ (the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} \ldots N^{\prime}$). This requires the insertion of an indefinite, finite number of triangles of the form of $\triangle A C D$ between the triangles containing the side of the polygon having A as a left endpoint and the one having A as a right endpoint, The corresponding pairs of such triangles can be proved similar by the S.A.S. Similarity Theorem. The procedure is similar to that in 7 .
9. 12
10. $\frac{49}{100}, \frac{7}{10}$
11. $\frac{1}{\sqrt{2}}$
12. Let square $A B C D$ have sides of length a : f Then square ACEF has sides of length a $\sqrt{2}$. Then

$$
\text { Area } \quad A B C D=a^{2}
$$

$$
\text { Area } A C E F=(a \sqrt{2})^{2} \equiv 2 a^{2}
$$

13. $\frac{3}{2}, \frac{3}{2}, \frac{9}{4}$
14. $\frac{9}{2}$
15. $\frac{\text { Area } \triangle \mathrm{ABC}}{\text { Area } \triangle \mathrm{DEC}}=\frac{9}{1}$

-

16. $\frac{S^{2}}{10^{2}}=\frac{2 \mathrm{~A}}{\mathrm{~A}}=2$, $S=10 \sqrt{2}$

By hypothesis $\triangle A B C$ is equity lateral. $\overline{C D}$ is the altitude of $A B C$; length of $\overline{C D} \equiv \mathrm{a}$. $\triangle C B F \sim \triangle C D E$ with side $\overline{C B}$ corresponding to $\overline{C D}$. We are required to show that
$\frac{\text { Area of }}{\text { Area of }} \frac{\triangle C B F}{\triangle C D E}=\frac{4}{3}$.
Let S be the length of a side of $\triangle A B C$.
ξ
$\frac{\text { Area of } \triangle C B F}{\text { Area of } \triangle C D E}=\frac{s^{2}}{a^{2}} \quad$ since the areas of two similar triangles have the same ratio as the squares of any two corresponding sides.

But the altitude of an equilateral triangle is $\frac{\sqrt{3}}{2}$ times the length of a side of the triangle.
$\frac{\text { Area of } \triangle C B F}{\text { Area of } \triangle C D E}=\frac{s^{2}}{a^{2}}=\frac{s^{2}}{\left(\frac{\sqrt{3}}{2} s\right)^{2}}=\frac{4}{3}$.
18. Let $\ell \equiv$ length of the wire.

Then $\frac{l}{4}=$ length of side of the square and $\frac{\ell}{3}=$ length of side of the triangle.
Area of the square $=\frac{\ell^{2}}{16}$;
area of the triangle $=\frac{\sqrt{3}}{4} \frac{\ell^{2}}{9}$

- $\frac{\text { Area of the square }}{\text { Area of the triangle }}=\frac{9}{4 \sqrt{3}}$

Problem Set 11-8

1. Yes. It is the altitude of an isosceles triangle of which the side is the base.
2. 20.
1. $3 \sqrt{2}, 24,3,36$.
2. $\frac{5 \sqrt{3}}{3}, \frac{5 \sqrt{3}}{6}$.
3. $\sqrt{3}, 2,6 \sqrt{3}$.
4. $\frac{\mathrm{r} \sqrt{2}}{2}, \mathrm{r} \sqrt{2}, 4 \mathrm{r} \sqrt{2}, 2 \mathrm{r}^{2}$.
5. (a) $\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{9}$.
(b) $\frac{1}{2} \mathrm{bh}=\frac{1}{2}(16 \sqrt{3})(24)=192 \sqrt{3}$.
$\frac{5^{2} \sqrt{3}}{4}=\frac{(16 \sqrt{3})^{2} \sqrt{3}}{\frac{11}{}}=192 \sqrt{3}$.
6. (a) $288 \sqrt{3}$.
(b) $48 \sqrt{3}, A=\frac{1}{2} \mathrm{ap}=\frac{1}{2} \cdot 12 \cdot 48 \sqrt{3}=288 \sqrt{3}$.
$A=\frac{6(8 \sqrt{3})^{2} \sqrt{3}}{4}=\frac{6 \cdot 64 \cdot 3 \cdot \sqrt{3}}{4}=288 \sqrt{3}$

Problem Set 11-9.
1.

Regular Polyhedron	Boundary of Face	Number of Faces	Number of Edges	Number of Vertices	Number of Faces (or Edges at a Vertex
Tetrahedron	Regular triangle	4	6	4	3
Octahedron	Regular triangle	8	12	6	4
Icosahedron	Regular triangle	20	30	12	5
Hexahedron	Square	6	12	8	3
Dodecahedron	Regular pentagon	12	30	20	3

2. $f-e+v=2$.
(a) $4-6+4=2$
(d) $6-12+8=2$
(b) $8-12+6=2$
(e) $12-30+20=2$
(c) $20-30+12=2$
Yes, the property does not appear to depend upon the length of edges or the measure of angles.
3. A polyhedron consists of a finite number of polygonal recions joined together in a manner specified in the, definition. Two planes M and N intersecting in line ℓ_{1} form regions which are halfplanes but form no polygonal regions, as in (a) below, If a third plane, R intersects plane M and plane N in two distinct ines ℓ_{2} and \mathscr{C}_{3} respectively as in (b) and (c) below, again no polygonal regions are formed. It takes a fourth plane to form a polygonal region. These regions, now formed, satisfy the requirements specified in the definition of a polyhedron.

$$
2: 9
$$

Problem Set 11-10

1. Let m represent the measure of the third face angle in each of the problems.
(a) $25<m<175$
(d) $30<m<40$
(b) $25<m<135$
(e) $85<m<175$
(c) $75<\mathrm{m}<165$
(f) $15<m<175$
2. (a) +
(e) 0
(b) 0
(f) 0
(c) +
(g) 0
(d) 0
(h) +

Problem Set 11-11a

1. By definition of a prism, the lateral faces of a prism are parallelograms. If $e_{1}, e_{2}, e_{3}, e_{4}, \ldots e_{n}$ represent the lateral edges, ahy two consecutive edges, such as e_{1} and e_{2}, or e_{2} and e_{3}, are parallel since they are opposite sides of a parallelogram. It follows that $e_{1}| | e_{3}$ since if two innes are each paraliel to a third ilne, they are paraliel to each other. By continuing this reasoning, it can be established that all the edges are parallel to one anothér.
2. Let $e_{1}, e_{2}, e_{3}, e_{4}, \ldots e_{n}$ be the edges of a right prism with bases B_{1} and B_{2}.
By Problem 1, $e_{1}| | e_{2}| | e_{3}| | e_{4}| | \ldots| | e_{n} \cdot$ By definition of a right prism, one edge, say e_{1}, 1 perpendicular to one base, say $\bar{B}_{1}=$. Then, by Theorem 9-11, B_{1} is perpendicular to $e_{2}, e_{3}, e_{4}, \ldots e_{n}:$ Since $B_{1} \| B_{2}$ by definition of a prism, $e_{1} \perp B_{2}$ by Theorem $9-10$. Then, again rusing Theorem $9-11, B_{2} \perp e_{2}, e_{3}, e_{4}, \ldots e_{n}$. Thus every lateral edge is perpendicular to each base.

Problem Set 11-11b

1. (1) Opposite sides of a parallelogram are congruent.
(2) Definition of a right section
(3) The area of any parallelogram equals the product il of any base and the altitude upon that base.
(4) Distributive property of numbers
(5) Substitution property of equality
2. In a right prism, the base is a right section. It follows from Theorem 11-20 that the lateral area of . a right prism is the product of the lateral edge and the perimeter of the base.
3. 210
4. Total area \equiv lateral area +2 (area of the base)
$=240+2 \because 16 \sqrt{3}$
$=240+32 \sqrt{3}$.
5. $3,6,3 \sqrt{3} ; 30,60,90 ; \frac{9}{2} \sqrt{3}$.
6. 5.2
7. The measure of each side of the base is 16 . The J lateral area is 96.20 , or 1920.
8. Total area $=$ lateral area +2 . area of base $\equiv 2 \cdot 20 \cdot 12+2 \cdot 10 \cdot 12+2 \cdot 12^{2}$
(aptitude of faces with angle of measure of 30 15 10 .)
$=2 \cdot 12(20+10+12)$
$\overrightarrow{=}=24(42)$
$\equiv 1008$.

$$
24
$$

The diagonals of a rectangular parallelepiped have equal length.
Proof: - There is a coordinate system which assigns coordinates to the vertices of a rectangylar
parallelepiped as shown in the diagram.
Then in terms of the data on the diagram we are required to prove that $\mathrm{EB}=\mathrm{DG}=\mathrm{FC} \equiv \mathrm{AH}$. By the distance formula

$$
\begin{aligned}
& \mathrm{EB}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} ; \mathrm{DG}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \\
& \mathrm{AH}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} ; \mathrm{FC}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}
\end{aligned}
$$

Therefore $E B=D G=A H=F C$.
10. Using the diagram of Problem 9, we are required to prove $\overline{E B}, \overline{\mathrm{DG}}, \overline{\mathrm{FC}} \overline{\mathrm{AH}}$ bisect each other or that the same point is the midpoint of each diagonal.
Midpoint of $\overline{E B}=\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$;
midpoint of $\overline{D G}=\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$;
midpoint of $F \overline{F C} \equiv\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$;
midpoint of $\overline{A H}=\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$.
Since, all the diagonals have the same midpoint, they bisect each other.

Problem Set 11-12

By hypothesis we have a regular pyramid V-ABCDE. . N : We are required to prove:
$\triangle A V B, \triangle B V C, \triangle C V D$, etc., are isosceles and are congruent to each other:
(1) Let O be the foot
of the \perp from V
to the base. Then
0 is the center of ABCDE...N.
(2) $\mathrm{AB}=\mathrm{BC} \equiv \mathrm{DC} \equiv \mathrm{DE}=\ldots \mathrm{NA}$.
(3) $O A=O B=O C=O D=O E$, etc.
(4) $\triangle V O A \cong \triangle V O B \cong \triangle V O C$, etc.
(5) $\mathrm{VA} \equiv \mathrm{VB}=\mathrm{VC} \equiv \mathrm{VD}$, etc.
(6) $\triangle V A B, \triangle V B C \quad \triangle V Q D$, etc. are isosceles.
(7) $\triangle V A B \cong \triangle V B C \cong \triangle V C D$, etc.
(1) Definition of regular pyramid
(2) Definition of regular pyramid
(3) From meaning of center
(4) S.A.S.
(5) Definition of congruence
(6) Each has two congruent sides, Step (5)
(7) S.S.S. Steps (2) and (5)
2. The faces of a regular pyramid are congruent triangles as proved in Problem 1 . The area of each triangle equals $\frac{1}{2}$ the product of a base and the altitude upon that base. If s is the length of a side of the regular polygon and n the number of sides, then there are in the lateral area n triangles each of area $\frac{1}{2}$ as . The 1 ateral area $=\frac{1}{2}$ as $\cdot n=\frac{1}{2}$ ap since the perimeter p of a regular polygon of n sides $=$ ns .

$$
68724
$$

3. (a) $A=\frac{1}{2} \operatorname{ap} \equiv \frac{1}{2} \cdot \frac{11}{2} \cdot 18=49 \frac{1}{2}$ sq. in.
(b) $9 \frac{3}{8}$ or $\frac{25}{24}$, depending upon the units used.
4. 80
$\div 5$
5. . 24
6. Trapezoid
7. $A=\frac{1}{2^{2}}\left(p+p^{\prime}\right)$
8. 112 ; 212
9. 5
10. (a) Two parallel planes intersect a third plane in two lines which are parallel to each other, and a line cutting two sides of a triangle and parallel to the other oide divides the triangle. into two similar trianglea.
(b) If $\overline{V O}$ is the altitude of $V=A B C D$, then by definition it is perpendicular to the plane of the base. It must, then, be perpendicular to any line in that plane which contains its foot.
(c) $\overrightarrow{\mathrm{VK}}$ perpendicular plane of EFGH since a line perpendicular to one of two parallel planes is perpendicular to the other: Then use the A, A. Similarity Theorem.
(d) $\frac{2}{3}$
(e) 24
(f) 6
(g) 324
(h) 180

Areas of similar triangles are in the same ratio as the squares of any two corresponding sides.
$\frac{\text { Area of } \triangle V A B=\text { Area of } \triangle V E F}{\text { Area of } \triangle V A B}=\frac{9-4}{9}$;
$\frac{\text { Area of one section of frustum }}{\text { Area of corresponding lateral face }}=\frac{5}{9}$.
688

$$
240
$$

- 12. Proof:
(a) 1. Plane $A^{\prime} B^{\prime} C^{\prime}$
|| plane ABC..

2. हाCT \| $\overline{\mathrm{BC}}$,有酊 || $\overline{\mathrm{AB}}$, ATCT \| $\overline{A C}$.
3. $\triangle V B^{\prime} C!\sim \triangle V B C$ $\triangle V^{\prime} B^{\prime} \sim \triangle V A B$ \triangle VAIC'~ \triangle VAC.
4. $\frac{A^{\prime} B^{\prime}}{A B}=\frac{V B^{\prime}}{V B}=\frac{B^{\prime} C^{\prime}}{B C}$

$$
=\frac{V C^{\prime}}{V C}=\frac{A^{\prime} C}{A C}
$$

$$
\text { 5. } \frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{A C}
$$

$$
\text { 6. } \triangle A^{\prime} B^{\prime} C ' \sim \triangle A B C
$$ squares of any two corresponding sides.

(b) 1. $\triangle V A^{\prime} P^{\prime} \sim \triangle V A P$.
2. $\frac{V A^{\prime}}{V A}=\frac{V P^{\prime}}{V P}=\frac{k}{h}$.
3. But $\frac{V A^{\prime}}{V A}=\frac{A^{\prime} B^{\prime}}{A B}$.
property of equality.
5. Areas of similar polygons are proportional to the

1. A.A. Similarity Theorem.
2. Corresponding sides of similar triangles are proportional.
3. Corresponding sides of similar triangles are proportional. property of equality.
4. Area of $\triangle A^{\prime} B^{\prime} C^{\prime}=$ $\left(\frac{A^{\prime} B^{\prime}}{A B}\right)^{2}=\left(\frac{k}{h}\right)^{2}$.
5. 96 square inches
6. 5 feet

Review Problems

1. 156,24
2. 36
3. No. $2[(n-2) 180]=(2 n-4) 180 \neq(2 n-2) 180$.
4. 64 to 169
5.. 44 < measure of third face angle < 156
5. (b), (d).
6. Yes. Squares, equilateral triangles and various combinations"as discussed in an earlier probiem set. The sum of the, mieasures of the interior angles must be 360 .
7. (a) $h^{2}+\frac{s^{2}}{4}=s^{2} ; h^{2}=\frac{3}{4} s^{2}$ and $h=\frac{s^{3}}{2} \sqrt{3}$.
(b) $A=\frac{1}{2} h s=\frac{1}{2}\left(\frac{s}{2} \sqrt{3}\right) s=\frac{\sqrt{3}}{4} s^{2}$.
8. (a) $\sqrt{3}$
(c) $\frac{3}{4} \sqrt{3}$
(b) $16 \sqrt{3}$
(d) $\frac{49}{4} \sqrt{3}$
9. $s=6 ; h \equiv 3 \sqrt{3}$
10. $\mathrm{s}=16 ; \mathrm{A}=64 \sqrt{3}$
11. $36 \sqrt{3}$
12. $s^{2}-2 b s$
13. Let the length of the side of the isosceles right triangle be e. Then the length of its hypótenuse $18 \quad e \sqrt{2}$, and the area of a square on the hypotenuse is $(\mathrm{e} \sqrt{2})^{2}=2 \mathrm{e}^{2}$. The area of the triangle is $\frac{1}{2} e^{2}$, which is one-fourth of the
 area of the square.

$$
691 \text { 25 }
$$

Alternate solution: The five triangles in the drawing are all congruent; so all have the same area. Therefore, area BCDE is four times area $\triangle \mathrm{ABC}$.
15. $\mathrm{BE}=12$.

(c) $(\mathrm{BC})^{2}=256$ or.
$B C=16$
(d) $\frac{1}{2}(C E)(C F)=\frac{1}{2}(C E)^{2}$ $\frac{1}{2}(C E)^{2}=200$. $C E=20$
(e) $\mathrm{BE}=12$
(e) Pythagorean Theorem
(e) $81 \sqrt{2}$
(b) $\frac{1 / 3}{4}: 8^{2}=16 \sqrt{3}$
(f) 216
(c) $\frac{d^{2}}{2}=72$
(g) Insufficient data
(d) Insufficient data
(h) $30 \sqrt{3}$
17. The area of RSPQ is $\frac{1}{5}$ that of $A B C D$ as can be
fitted by rearranging the triangular regions as : shown. Use the S.A.A. Theorem to "justify this employment of the triangular regions.

18. 12
19. $150=\mathrm{A}$ and $12 \frac{1}{2}=\mathrm{s}$
20. 48

$$
253
$$

21. 1010
$A=\frac{1}{2} \cdot 15 \cdot 44+\left(\frac{1}{2} \cdot 24 \cdot 7+\frac{1}{2} \cdot 16 \cdot 12\right.$

$$
+\frac{1}{2} \cdot(24+16) \cdot 25
$$

22. Consider - $\overline{B X}$ as a base for $\triangle B X C$ and $\overline{B A}$ as a base for parallelogram ADCB. Then the area of BXC 18 $\frac{1}{4}$ of the area of ADCB. By similar argument, the area of $\triangle C E D$ is $\frac{1}{4}$ of the area of $A D C B$. By subtracting the areas of the two triangles from that of the parallelogram we have the area $A E C X$ or $\frac{1}{2}$ the area of ABCD :
23. Since, $A B$ is constant then the altitude to $\overrightarrow{A B}$ must be constant in order for area to be constant. Call the length of the altitude from P to $\overrightarrow{A B}^{\prime} h$. Then In plane E, P may be any point on either of the two lines parallel to $\overrightarrow{A B}$ at a distance h from ${ }^{*} \overrightarrow{A B}$. In space, P may be any point on a cylindrical. surface having $\overrightarrow{A B}$ as its axis and h as its radius.
24. $\quad \mathrm{AC}=9 \sqrt{2} ; \quad \mathrm{AF} \equiv 9 \sqrt{2} ; \quad \overline{\mathrm{F}}=9 \sqrt{2} ; \mathrm{m} \angle \mathrm{PAC} \equiv 60$. $\triangle F A C$ is an equilateral triangle whose area $1 s$ $\frac{(9 \sqrt{2})^{2}}{4} \sqrt{3}$ or $\frac{81 \sqrt{3}}{2}$.
25. The diagonal of a cube $\equiv \sqrt{e^{2}+(e \sqrt{2})^{2}}=e \sqrt{3}$ where e is the edge of the cube. $d=6 \sqrt{3}$.
26.

Suppose $A B>C D$, Let $\overline{E F}$ be median of ABCD. Take M on $\overrightarrow{A B}$ so $A M=E F$. Draw $\overline{\mathrm{DM}}$. Then AMD and MBCD are the required regions.

Area of $A M D=\frac{\frac{1}{2}}{2} \cdot A M=\frac{1}{2} h \cdot E F$.
Area of $D C A B=h$. EF since the area of a trapezoid equals the product of its altitude and its median (from Problem 3, Problem Set 11-5.)

$$
69325:
$$

Thens ${ }^{\text {b }}$
Area of $A M D \equiv \frac{1}{2}$. of the area of $A B C D$ and the area of MBCD must be the other half of the area \vec{j} of ABCD and thus equal to area AMD $=$ Let $\overline{D E}$ and $C F$ be perpendicular to $\overline{A B}$. Then $A E=4$ and $D E=4 \sqrt{3}$ $=\overline{\mathrm{CF}}$. ©Then $\triangle \mathrm{CBF} \cong \triangle \mathrm{DAE}$
 since they are right triangles with one leg and an acute angle congruent. Then $B F=4$, $E F=4=D C$.

Then the area of: ABCD

$$
\equiv \frac{1}{2} \cdot 4 \sqrt{3}(12+4)=32 \sqrt{3}
$$

28. $\mathrm{AB}=9 ; \mathrm{DC}=5$; altitude of $\mathrm{ABCD}=2$. Area $\equiv \frac{1}{2} \cdot 2(9+5)=14$.
29. (a) $\stackrel{\overrightarrow{\mathrm{PQ}}}{\overrightarrow{\mathrm{DC}}\left|\left.\right|^{4} \overrightarrow{\mathrm{AB}} \text {. }\right.}$.

(by A.S.A.) and $D C \equiv B K$ and $D Q \equiv Q K$ (definition of congruence.)

In $\triangle \mathrm{DAK}$ and $\triangle \mathrm{DPQ}, \mathrm{DA}=2 \mathrm{DP}^{2}, \mathrm{DK}=2 \mathrm{DQ}$, $\angle \mathrm{D} \cong \angle \mathrm{D}$, so $\triangle \mathrm{DAK} \sim \triangle \mathrm{DPQ}$. "Then $\angle \mathrm{DPQ} \cong \angle \mathrm{DAK}$ and $A K \equiv 2 P Q, \overline{\overline{P Q}} \| \overline{\overline{A B}}$ (since corresponding angles are congruent) and hence $\overline{P Q}$ is also $\| \overline{\mathrm{DC}}$.

$$
\begin{aligned}
& A K=A B+B K=A B+D C=2 P Q . \\
& \text { Hence } P Q=\frac{1}{2}(A B+D C)
\end{aligned}
$$

(b) 8
(c) $10 \frac{1}{2}$.

$$
69425=
$$

30. Area of trapezoid DFEC $=34$.

Area of trapezoid AGFD $=165$, and so area AGECD
$=199^{\circ}$. Area $\triangle A^{\prime} A_{B}=30^{\circ}$.
Area $\triangle B C E=32 \frac{1}{2}$. Subtracting the sum of the areas of the two triangles from AGECD, we have $136 \frac{1}{2}$.
The area of the field is $136 \frac{1}{2}$ square rods.
31. Hypothesis: In right triangle. ABC , $\angle C$ is the , right angle. ABHK is the square on $\overline{A B}$; BCaF is the square on $\overline{C B}$; $C A E D$ is the square on $\overline{C A}$. To prove: Area of $A C H=$ area of $A C D E+$ area of BFGC .

- Draw $\overline{C M}, \| \overline{A K}, \overline{C K}$, and. $\overline{\mathrm{BE}}$. Call the intersection of $\overline{\mathrm{CM}}$ and $\overline{\mathrm{AB}}, L$.

695250

11. In like manner, after drawing $\overline{A F}$, and 酸,

- it can be proved that area of MHBL $=$ area of BPGC

12. Then area of KMLA + area of MHBL $=$ area of ACDE + area of AFGO; hence area of $\mathrm{AKHB}=$ area of ACDE + area of . BFGC .
13. Steps 1 through 10.
14. Addition property of equality.
15. $\triangle B A C \cong \triangle A T U$ by (S.A.S.). Then $A U^{\circ}=A B=$ (definition of congruence.) The area of

$$
B C T U=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2}(a+b)(a+b)=\frac{1}{2}\left(a^{2}+2 a b+b^{2}\right) .
$$

But the area of BCTU equals the sum of the areas of three right triangles. ($\langle\mathrm{BAU}$ is a right angle since $\angle B A C$ and $\angle J A T$ are complementary.)

$$
\text { Area of } \mathrm{BCTU}=\frac{1}{2} \mathrm{ab}+\frac{1}{2} \mathrm{ab}+\frac{1}{2} \mathrm{c}^{2}=\frac{1}{2}\left(2 a b+\mathrm{c}^{2}\right) \text {. Then }
$$

$$
\frac{1}{2}\left(2 a b+c^{2}\right)=\frac{1}{2}\left(a^{2}+2 a b+b^{2}\right) \text {, and } c^{2}=a^{2}+b^{2} .
$$

Cube $A G$ has M, L, K. as midpoints of the sides which
 meet at A. The length of the side of the cube is 12 . We are required to find the total area of pyramid M - AK .

The area of $\triangle M A K=$ area of $\triangle M A L=$ area of $\triangle L A K=18$. $M K=M L=K L=6 \sqrt{2}$; then area of $\triangle M K L$ $=\frac{(6 \sqrt{2})^{2}}{4}(\sqrt{3})=18 \sqrt{3}$.

The total area of $M-A K L=3 \cdot 18+18 \sqrt{3}$

$$
=18(3+\sqrt{3}) .
$$

34. $10 \mathrm{p}=480$ where $\mathrm{p}=$ perimeter of the base.

Side of the base $=\frac{p}{6}=8$; apothem $=4 \sqrt{3}$. The 0 bases are congruent regular hexagonal regions each the union of $s 1 x$ congruent equilateral triangles.
The side of each triangle is 8 and its altitude is
$4 \sqrt{3}$. The area of the two bases.
$=2(6)\left(\frac{1}{2}\right)(8)(4 \sqrt{3}) \equiv 192 \sqrt{3}$. The total area
$=480+192 \sqrt{3}$.

4

3

Chapter 12

ANSWERS AND SOLUTIIONS

Problem Set 12-1

1. (a) (1) chord, secant
(2) radius
(3) length of the radiul or just radius
(4) diameter; secant
(5) chord; secant
(6) A, B, N, T, R, M, 新
(7) Q, C, 0
(8) outer end; $\overline{0 S}$
(9) outer end
(10) $O M$ or $O S$ or equal to the radius
(b) (1) radius
(2) $\mathrm{A}, \mathrm{M}, \mathrm{H}, \mathrm{B}$
(3) diameter
(4) great circie
(5) chord
(6) sphere, one and only one
(7) a circle, $O, O H$ or $O M$ or $O B$ or $O A$
(8) an infinite number
an infinite number congruent
(9) a point which is to be the center and a number which is the radius or a segment which is congruent to the radius
(10) an infinite number concentric spheres
2. (a) 0 ,
(b) \ddagger
(c) 0
(d) 0
(e) 0
(f) $+\quad$ key $0=$ False
$(g)+\quad+\equiv$ True
(h) +
3. (a) 0
(d) 0
(g) +
(b) +
(e) 0
(h) 0
(c) +
(f) 0
(1) 0
4. ${ }^{\circ}(\mathrm{a})$
(1) $\sqrt{(x-0)^{2}+(y-0)^{2}}=\sqrt{x^{2}+y^{2}}$
(2) $x^{2}+y^{2}=25$
(3) $(5,0),(-5,0),(0,5),(0,-5)$, also many others.
(4) $\mathrm{BP}=\sqrt{(-3-0)^{2}+(-2-0)^{2}}=\sqrt{9+4}=\sqrt{13}$
(5) $x^{2}+y^{2}=13$
(6) $x^{2}+y^{2}=61$
(b) (1) 4
(2) $\mathrm{y}^{2}+\mathrm{z}^{2}=16$
(3) $\mathrm{RP}=\sqrt{(3-0)^{2}+(5-0)^{2}}=\sqrt{34}$

Since $R P>4 ; R$ is in the exterior of the circie.
(4) $\mathrm{y}^{2}+\mathrm{z}^{2}=4$
5. (a) $B A=\sqrt{(x-4)^{2}+(z-3)^{2}}$
(b) $(x-4)^{2}+(z-3)^{2}=9$ or
(c) $(x+2)^{2}+(y-0)^{2}=4$ or $x^{2}+4 x y^{2}=0$
(d) $(x-h)^{2}+(y-k)^{2}=r^{2}$
6. (a) Yes
(c) Yes
(b) Yes .
(d) No
7. $x^{2}+y^{2}+z^{2}=9$
8. (a) Yes
(e) Yes
(b) Yes
(f) Yes
(c) Yes
(g) No
(d) $\mathrm{N} \circ$
9. $(13,0,0),(0,0,13),(0,0,-13),(3,4,12)$, $(4,3,12),(-4,-3,-12), \ldots$
10. Consider an $x y$-coordinate system and $C=$ the set of points belonging to the circie.
(a) $C=\left((x, y): x^{2}+y^{2}=9\right]$
(b) $C=\left\{(x, y): x^{2}+y^{2}=\frac{1}{4}\right\}=\left\{(x, y): 4 x^{2}+4 y^{2}=1\right\}$
(c) $C=\left\{(x, y): x^{2}+y^{2}=5\right\}$
11. (a) $x>0$ and $y>0$
(b) The portion in Quadrants I and IV and the point where the circle crosses the positive x-axis.
(c) $\mathrm{x}<0$ and $\mathrm{y}<0$
12. (a) $x=\sqrt{5}$ or $x \equiv-\sqrt{5}$
(b) $y=0$
(c) No. There 1 is no real number y such that $16+y^{2}=9$ is true.
13. (a) $z \equiv 4$ or $z=-4$
(b) $y=0$
(c) $x=5$ or $x=-5$
(d) No. For all real values of z, f $3^{2}+5^{2}+z^{2}>25$ so all points with coordinates $(3,5, z)$ are in the exterior of the circle.
14. Let c be the length of any chord not a diameter. Draw radil to 1 ts endpoints. Then $2 r>c$, because the sum of the lengths of two sides of a - triangle is greater than the length of the third side. But $2 r$ is the length of the diameter. Hence the diameter is longer than any other chord.
15.
Statements Reasons

1. $\overline{A B}$ and $\overline{C D}$ contain center P.
2. $\overline{\mathrm{PC}} \cong \overline{\mathrm{OD}} \cong \overline{\mathrm{AP}} \cong \overline{\mathrm{PB}}$
3. $\angle \mathrm{APC} \cong \angle \mathrm{DPB}$
4. $\triangle \mathrm{APC} \cong \triangle \mathrm{DPB}$
5. $\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$
6. Definition of diameter
7. These segments are radil and all radil of the same circle are congruent.
8. Vertical angles are congruent.
9. S.A.S. Póstulate
10. Definition of congruences for triangles
The diameters of a circle are congruent and contain
the center. It follows that they bisect each other.
A quadrilateral is a rectangle if the diagonals
bisect each other and are congruent.
By hypothesis, $\overline{P A}$ and $\overline{P B}$
are radil of circle P and

230

最
Problem Set 12-2a ,

1. If $a=3$, then $y= \pm 4$ and the intersection of C and M is $\{(3,4),(3,-4)\}$.
If $a=4$, then $y=0$ and the intersection is $\{(4,0)\}$.
If $a=5$, the intersection is the empty set since there is no real value of y for which $25+\mathrm{y}^{2}=16$.
2. (a) 2
(b) 1
(c) 0
3. A circle and a line in the plane of the circle may have 2 points in common, 1 point in common, or no points in common.

Problem Set 12-2b

Problem 22 is exploratory and leads toward Theorem $12=6$.

1. (a) on
(e) on
(b) Exterior
(f) Exterior
(c) Exterior
(g) Interior
(d) Interior
2. (a) $r=\sqrt{34}$
(b) The points whose coordinates are most easily determined are those symmetrical to $(3,5)$ with

* respect to either axis or the origin. These have coordinates $(3,-5),(-3,5),(-3,-5)$. The points of intersection of the circle and the axes have coordinates $(0, \sqrt{34}),(0,-\sqrt{34})$, $(\sqrt{34}, 0),(-\sqrt{34}, 0)$.
(c) Obvious ones are those along the axes and such that their distances from the origin is less than $\sqrt{3^{4}}$.
Any (x, y) such that $x^{2}+y^{2}<\sqrt{34}$.
(d) Any (x, y) such that $x^{2}+y^{2}>\sqrt{34}$.

$$
12^{3} ;
$$

3. (a) 12-4-2
(e) 12-5
(b) 12-4-1,
(f) $12-4-1 \mathrm{~F} \cdot \mathrm{C}$
(c) $12-4=4$
(g) 12-4-2
(d) 12-4-3
(h) $12-5$
4. 8 units
5. 2.5 units
6. $8 \sqrt{2}$
7. Let $x=\frac{1}{2} \mathrm{PQ}$.

Then, since $\overline{P Q} \perp \overline{A B}, 4 x^{2} \equiv x^{2}+36$ and $x=2 q^{=}$. $P Q=4 \sqrt{3}$.
8. (a) \bar{D}
(f) A
(b) C
(g)
(c) C
(h) D
(d) A
(1) C
(e) C
(j) D
9. 18
10. Since a tangent to a circle is perpendicular to the radius, and thus to the diameter, drawn to the point of contact, the two tangents the same line and are, therefore, parallel.
11. (a) If a diameter is perpendicular to a non-diameter chord, it bisects the chord. If diameter $\overline{A B}$ is perpendicular to chord $\overline{C D}$ and if O is the center of the circle, then it $\triangle O C E \cong \triangle O D E$ by the Hypotenuse-Leg Theorem. Then $\overline{C E} \cong \overline{E D}$.
(b) If a diameter bisects a non-diameter chord, it $1 s$ perpendicular to the chord.

If in a circle with center 0 diameter $\overline{A B}$ bisects chord $\overline{C D}$ (not a diameter) at E, then $\triangle O C E \cong \triangle O D E$ by S.S.S. and $\angle C E O$ and $\angle O E D$ are a linear pair and congruent. Therefore $\overline{A B} \perp \overline{C D}$.

$$
28
$$

12. Consider $\overline{O R}$ where O is the common center. Then $\overline{\mathrm{OR}} \perp \overline{\mathrm{AB}}$ since $\overline{\mathrm{AB}}$ is tangent to the smaller circle. It follows by applying Corollary 12-4-2 to the larger circle, since ${ }^{\circ} \overrightarrow{O R}$ is a line containing the center and perpendicular to chord $\overline{A B}$, that $\overrightarrow{O R}$ bisects $\overline{A B}$.
13. Examples of 3 circles each tangent to the other two. *。

14. 14. Let ℓ be the common tangent. Then in both cases, - PT $\perp \ell$ and $Q T \perp \ell$ because every line tangent to a circle is perpendicular to the radius drawn to the point of contact. Since there exists only one perpendicular to a line at any given point on the line, then $\overline{P T}$ and $\overline{Q T}$ are the same line; and, therefore, P, Q, and T are collinear. of course, the circales are coplanar, since they are tangent circles.

$23 ;$
705
1. $A C \equiv 14=x+10=x \equiv 18$
$24-2 x=18$
$x \equiv 3$.
$\overline{B R}=3, \quad C P=7$,
$A Q=11$
A, B, C are coplanar and hence, by the
$\because \quad$ Betweenness-Distance Theorem,

$$
\begin{aligned}
& A P+\mathrm{PC} \equiv \mathrm{AC} \\
& \mathrm{AQ}+\mathrm{QB}=\mathrm{AB} \\
& \mathrm{CR}+\overline{\mathrm{R}} \overline{\mathrm{~B}}=\mathrm{CB}
\end{aligned}
$$

16. The segment joining the midpoint of each chord to the center of the given circle is perpendicular to the chord and thus the length of this segment is the distance from the midpoint of the chord to the center. Since the chords are congruent, all these distances are equal. By definition of a circle, all these midpoints at the constant distance from the center of the given circle lie on the circle having that point as center and having a radius equal to that constant distance. This circle is, then, concentric with the original circle. Since the midpoints will be the outer endpoints of the radil of the new circle and since the chords are perpendicular to the radil at these midpoints, the chords are tangent to the new circle.
17. (a)

$$
\begin{aligned}
(\mathrm{AT})^{2} & =(\mathrm{PT})^{2}-(\mathrm{AP})^{2} \\
& \equiv 400-144=256 \\
\mathrm{AT} & =16
\end{aligned}
$$

(b) Area of $\triangle \mathrm{APT}=96$; Since $\overrightarrow{\mathrm{PT}}$ is the perpendicular bisector of $\overline{\mathrm{AB}}$, $\frac{1}{2} \cdot 20 \cdot\left(\frac{1}{2} A B\right)=96$

$$
A B=19.2
$$

$$
706 \div 5,
$$

18.

2. $\angle A \cong \angle B O D$
3. $O C=O A=O B$
4. $\angle A \cong \angle A C O$
5. $\angle A C O \cong \angle C O D$
6. $\angle C O D \cong \angle B O D$
*7. $\overline{O D} \cong \overline{O D}$
8. $\triangle O C D \cong \triangle O B D$
9. $\angle O C D \cong \angle O B D$
10. $m \angle O C D=90$
11. $\mathrm{m} \angle \mathrm{OBD}=90$
12. $\overline{O B} \perp \overline{B D}$ at \bar{B}
13. $\overrightarrow{\mathrm{DB}}$ is tangent to circle C at B

Reasons

1. Hypothesis
2. Corresponding angles of parallel lines
3. Definition of circle
4. Base angles of an isosceles triangle are congruent*.
5. Alternate interior angles of parallel lines
6. Transitive property of congruence
7. Reflexive property of congruence
8. S.A.S. Postulate
9. Definition of congruence
10: A tangent is perpendicular to a radius at its outer end.
10. Congruent angles. have the same measure.
11. Definition of perpendicular innes
12. Any line in the same plane perpendicular to a radius at its outer end is tangent to the circle.
13.

(a) $a=10$ or -10
(b) $\mathrm{m}_{\mathrm{CT}} \equiv 1$, therefore $m_{t}=-1$

$$
\begin{aligned}
& \frac{\mathrm{y}-5 \sqrt{2}}{\mathrm{x}-5 \sqrt{2}}=-1 \text { or } \mathrm{y}-5 \sqrt{2}=-\mathrm{x}+5 \sqrt{2} \\
& \text { or } \mathrm{y}=-\mathrm{x}+10 \sqrt{2}
\end{aligned}
$$

20. (a) Yes
(b) Yes. Center is at $(1,-2)$, radius $=5$.
(c) The following equations are equivalent.

$$
\begin{array}{ll}
(x-1)^{2}+(y+2)^{2}=25 \\
\left(x^{2}=2 x+1\right)+\left(y^{2}+4 y+4\right) & =25 \\
x^{2}=2 x+y^{2}+4 y & =20 \\
x^{2}+y^{2}-2 x+4 y & =20
\end{array}
$$

The last equation can be transformed into the first by completing squares.
(d) Slope of radius to $(5,1)$ is $\frac{3}{4}$. Therefore, slope of tangent at $(5,1)$ is $\frac{-4}{3}$.
Equation of tangent: $\frac{y-1}{x-5}=\frac{-4}{3}$ or

$$
4 x+3 y=23
$$

21. (a) $\{(x, y): x \equiv-1\}$
(b) $\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=-\mathrm{x}-\sqrt{2}$ or $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}+\mathrm{y}+\sqrt{2}=0\}$
(c) $\mathrm{P}=(-\sqrt{2}, 0)$
(d) $\operatorname{PT}=\sqrt{\left(-\sqrt{2}+\frac{1}{\sqrt{2}}\right)^{2}+\left(0+\frac{1}{\sqrt{2}}\right)^{2}}$

$$
=\sqrt{\left(\frac{-2+1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1
$$

22. N is parallel to the $x y-p l a n e$ and perpendicular to the \bar{z}-axis. $S \cap N$ means the intersection of S and N .
(a) $S \cap N=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=25, z=4\right\}$

$$
=\left\{(x, y, z): x^{2}+y^{2}=9, z=4\right\}
$$

Thus, $S \cap N$ is a circle in the plane N^{*} with its center on the z-axis with 3 as the length
of its radius. of 1 ts radius.
(b) $S \cap N=\left\{(x, y, z): x^{2}+y^{2}=0, \bar{z}=5\right\}$ which is a single point $(0,0,5)$.
(c) $S \cap N=\left\{(x, y, z): x^{2}+y^{2}+49=25, z=7\right\}$

$$
=\left\{(x, y, z): x^{2}+y^{2} \equiv-24, z=7\right\}
$$

which is the empty set.
(d) It appears that a sphere and a plane have no point in common, one point in common, or a circle in common, if the distance from the center of the sphere to the plane is less than, equal to, or greater than the radius of the sphere, respectively.

2. 16
3. $Q \bar{X} \equiv 4$

4.

$\overline{O Q}$ and $\overline{\bar{O}}$ are perpendicular to the planes of the circles. Since $\overline{O Q}$ bisects every chord of the circie that passes through Q, it must be the center. Similarly R is the center of its oircle. Therefore, $\overline{O Q} \perp \overline{Q A}$ and $\overline{O P} \perp \overline{P B}$. $O A=O B$ by definition of a sphere and $O Q=O P$ by hypothesis. Theqn, by the Pythagorean Theorem (or Hyp-Leg), QA $\equiv \mathrm{PB}$. Therefore, circle $Q \cong$ circle P by definttion of congruent circles.

$$
2 \because 1
$$

5. One statement: If a plane is tangent to a sphere, then it is perpendicular to a radius at its outer end. Proof: From Case 2 of Theorem 12-6, $1 \overline{1}$ a plane 13 tangent to a sphere (which is the hypothesis in our statement), then the foot of the perpendicular from the center of the circle to the plane lies in the sphere. This means that this perpendicular is a radius with the foot as its outer end, which is the conciusion of our statement.

Converse statement: If a plane is perpendicular to a radius of a sphere at its outer end, then it is tangent to the sphere.
Proof: From Case 2 of Theorem 12-6, if the foot of the perpendicular from the center of a sphere to a plane is on the sphere, then the plane is tangent to the sphere. The hypothesis tells us that the foot of the perpendicular is the outer end of the radius, which, by definition of outer end, 1 on the sphere. The conclusion of our statement follows from Theorem $12=6$.
6. Let 0 be the center of sphere S and P_{1} and P_{2} be two planes each containing 0 . Let C_{1} and C_{2} be the great circles of S determined by P_{1} and P_{2} respectively. Then the intersection of P_{1} and P_{2} is a line which contains 0 . This line has two points, say A and B, in common with S. But all points common to P_{1} and S lie in C_{1} and all points common to P_{2} and S lie in C_{2} so all points common to ${ }^{4}$ (which is the intersection of P_{1} and \bar{P}_{2}) and S must lie in both C_{1} and $C_{\overline{2}}$ and hence in their intersection. A and B are these points and, since $\overline{\overline{A B}}$ is the diameter of S, two great circles intersect at the endpoints of a diameter of the sphere.
7. (a) Center is $(0,0,0)$; radius $\equiv 3$.
(b) $\{(k, y, z): y=3\}$ or $((x, y, z): y=-3)$; two planes.
(c) $\{(x, y, z): \bar{x}=3)$ and $((x, y, z) ; x=-3\}$.
8. (a) The empty set in each case.
(b) All points in the interior of a cube the faces of which are tangent to the sphere S and perpendicular to the axes.
(c) The intersection of S and T is all of S except the points $(4,0,0),(-4,0,0),(0,4,0)$, $(0,-4,0),(0,0,4),(0,0,-4)$.
9. The plane of the perpendicular great circie is the plane perpendicular to the inne of intersection of the planes of the given two, at the center of the sphere. There is only one such plane. (Through a given point there passes one and only one plane perpendicular to a given line.)

Any two meridians have the equator as their common perpendicular.
10. $\mathrm{AF}=\mathrm{BF}$ since they are radil of the circle of intersection. $\quad \mathrm{OF}=\mathrm{AF}$ by hypothesis. Also $\overline{\mathrm{OF}} \perp \overline{\mathrm{AF}}$, $\overline{\mathrm{OF}} \perp \overline{\mathrm{BF}}$ and $\overline{\mathrm{AF}} \perp \overline{\mathrm{BF}}$. Hence, $\triangle \mathrm{AFB} \cong \triangle A F O \cong \triangle \mathrm{BFO}$ by S.A.S. and $\triangle A O B$ is equilateral. Therefore $A O=5, m \angle A O B=60$, and $O G$, the altitude of $\triangle A O B$, equals $\frac{5}{2} \sqrt{3}$.
11. Call the three points A, B, C. To find the center of the circle in the plane of $A B C$ consider the perpendicular bisectors in the plane of $A B C$ of any two of the three segments $\overline{\overline{A B}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$. The bisectors intersect at a point equidistant from A, B, C which $1 s$ the center Q of a circle through those three points. Each of the segments $\overline{Q A}, \overline{Q B}$, $\overline{Q O}$, is a radius of the circle. If a perpendicular be drawn to the plane of $A B C$ at Q, it will meet the shpere in two points, X and Y. The midpoint P of $\overline{X Y}$ is the center of the sphere and each of the segments, $\overline{P A}, \overline{P B}, \overline{P C} ;$ is a radius of the sphere.

$$
\dot{\zeta}_{711}^{\prime}
$$

12. By Theorem 12-6 we know that plane F intersects S in a circle. The intersection of the planes E and $F{ }^{n}$ is a line. Since both intersections contain T, the circle and the line intersect at T. If they are not tangent at T, then they would intersect in some other point, R, also. Point R would then lie in plane E and in sphere S. This is impossible, since E and S are tangent at T. Hence, the circle and the line are tangent, by definition of a tangent to a circle.
13.

(a) $\left[(x, y, z): x^{2}+y^{2}=0, z=10\right\}$ or $(0,0,10)$.
(b) $S \cap P=\left\{(x, y, z): x^{2}+y^{2}=36, \quad z=8\right\}$. That is, x and y must satisfy the equation $x^{2}+y^{2}=36$ which, in the plane P, is the equation of a circle. Note, however, that $\left((x, y, z): x^{2}+y^{2}=36\right)$ is not a circle, but a right circular cylinder.
14. (a) $x^{2}=4 x+4+y^{2}+6 y+9=23+4+9$
$\left(x^{*}=2\right)^{2}+(y+3)^{2}=36$ Center is $(2,-3)$, radius is 6 .
(b) $S=\left((x, y, z):(x-2)^{2}+(y+3)^{2}+(z-0)^{2}=30\right.$

$$
=\left\{(x, y, z): x^{2}+y^{2}+z^{2}-4 x+6 y=23\right\} .
$$

(c) $\{(x, y, z): z=10\},\{(x, y, z): z=-10\}$
Probiem Set 12-4a

1. (a) (1) $\angle \mathrm{APD}, \angle \mathrm{CPB}, \angle \mathrm{CPD}, \angle \mathrm{BPD}, \angle \mathrm{CPA}$
(द) 180
?
(3) $\overparen{A D}, \overparen{A C}, \overparen{C B}, \overparen{B D}, \overparen{C B D}$
$(1, \overparen{D A C}, \overparen{D A B}, \overparen{A C D}, \overparen{C B A}, \overparen{B D C}$
(5) $\overparen{A D} \cong \overparen{D B}$
(6) Semicircles $\overparen{A C B}$ and $\overparen{A D B}$ are not associated with central angles.

$$
\because \because \quad .
$$

$$
21
$$

4. Since the inscribed angle is measured by half the are which it intercepts, $\overparen{A B}$ must measure 90°. The measure of a central angle is the measure of its intercepted arc, so $\mathrm{mL} \angle \mathrm{P}=90$ and $\overline{\mathrm{BP}} \perp \overline{\mathrm{AP}}$.
5. (a) $m \angle A=m \angle B$ by Corolhary 12-7-2.
$m \angle A H K=m / B H F \times$ since the intercepted arcs have equal measure. Thertefore $\triangle A H K \sim \triangle B H F$ by a triangle similarity theorem (A.A.).
(b) $\triangle B F K$, since
$m \angle B F A=\frac{1}{2} m \overparen{H P}=\frac{1}{2} m \overparen{B F}=m \angle B H F$ and $\angle \mathrm{HBF}$ is common to the triangles.
6. $\mathrm{m} \mathrm{ST}=80$
$\mathrm{m} \overparen{\text { RV }}=150$
$\mathrm{m} \angle \mathrm{T} \equiv 95$
$m \angle V=60$
$\mathrm{m} \angle \mathrm{S}=120$
7. If quadrilateral ABCD is inscribed in eircle: 0 , then by Theorem 12-7
$\mathrm{m} \angle \mathrm{C}=\frac{1}{2} \mathrm{~m} \overparen{\mathrm{BAD}}$ and
$\mathrm{m} \angle \mathrm{A} \equiv \frac{1}{2} \mathrm{~m} \overparen{\mathrm{DCB}}$.
Since the union of a major* arc and its minor arc (or of two semicircles) has, a degree measure of 360 ,
$m \overparen{B A D}+m \overparen{D C B}=360$.
 $\frac{1}{2} \mathrm{~m} \overparen{\mathrm{BAD}}+\frac{1}{2} \mathrm{~m} \widehat{\mathrm{DCB}}=180^{\circ}$ by the multiplication property of equality. Hence, $\cdot \angle B A D$ and $\angle D C B$ are supplementary.
8. Consider $\overline{R O}$. We know $\overline{A O}$ is a diameter of the smaller circle and therefore that $m \angle A R O=90$ by Corollary 12-7-1. Then $\overline{\mathrm{AB}}$ is bisected by the smaller circle at point R by Corollary 12-4-3. The circles are coplanar since they are tangent.
9. $\triangle A C B$ is a right triangle with the right angle at C. by Corollary 12-7-1. In a right triangle the altitude from the right angle to the hypotenuse divides the triangle into two triangles, $\triangle A C D$ and $\triangle C B D$, which are similar both to each other and to the original triangle. Therefore

$$
\frac{A D}{C D}=\frac{C D}{D B} \text { or }, \mathrm{CD}^{2}=\mathrm{AD} \cdot \mathrm{DB}
$$

10. By Theorem $12-7, m \angle A^{\circ}=\frac{1}{2} m \overparen{B D C}{ }^{\prime}$. since $m \angle A=90$, $\mathrm{m} \overparen{B D C}=180$ and $\overparen{B D C}$ is a semicircie, by definition of a semicircle.
11. \quad In the circle $\overrightarrow{A C}$ bisects
 $\angle D A B$ so, by definition of angle bisector,
$m \angle B A C=m \angle D A C$. But m 血 $B A C=\frac{1}{2} m \overparen{B C}$ and $m \angle D A C=\frac{1}{2} m$ \#C. Therefore m 冎 $=\mathrm{m} \widehat{\mathrm{DC}}$ by the multiplication and substitution properties of. equality.
12. Consider radi1 $\overline{\mathrm{PA}} \hat{y}$ and $\overline{\mathrm{PB}}$. Since diameter $\overline{C D} \perp \overline{\mathrm{AB}}$, then $\mathrm{AM}=-\mathrm{BM}$ by Corollary $12=4-2$. $\triangle A P M \cong \triangle B P M$. by S.S.S. (or S.A.S. or Hypotenuse-Leg), so that $m \angle A P C=m \angle B P C \quad$. Then, $m \angle A P D=m \angle B P D$ since they are supplements of congruent angles. Therefore, $m \overparen{A C}=m \widehat{B C}$ and $\frac{10}{T l} \overparen{A D}=m \overparen{B D}$, by the definition of measure of an arc and the substitution property of equality. Hence $\overline{C D}$ bisects $\overparen{A C B}$ and $\widehat{A D B}$.

$$
241
$$

13.

葋y hypothesis
$\mathrm{m} \overparen{A D}=\mathrm{m} \widehat{\mathrm{DB}}$ and $\mathrm{AE}=\mathrm{EB}$. Consider $\triangle A D B$.
$m \angle B=\frac{1}{2} m \overparen{m D}$ and
$m \angle A \equiv \frac{1}{2} m \overparen{D B}$ by Theorem 12-7. Then $m \angle B=m \angle A$ by the multiplication and . substitution properties of equality. Thus, $\triangle A D B$ Is isosceles and $\overrightarrow{\mathrm{DE}}$, "which bisects base $\overrightarrow{\mathrm{AB}}$, is also perpendicular to $\overline{A B}$. But, since C is equit-. distant from. A and B, it is in the perpendicular . bisector of $\overline{A B}$ and hence in . $\overline{\mathrm{DE}}$.
14. By definition, $\triangle \overline{B A C}$ is isosceles since $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$; therefore, $\angle B \cong \angle C$. $m \angle B=\frac{1}{2} m \overparen{A C} \quad$ and $m \angle C=\frac{1}{2} m \cdot \widehat{A B}$ by Theorem 12-7.

Hence, $m \overparen{A C}={ }^{\prime} m \widehat{A B}$ by the substitution and multiplication properties of equality.

Let an xy-coordinate system assign (0,0) to the center of the circie. Then, if r is the radius, the extremities of a diameter would be $(r, 0)$ and $(-r, 0), r>0$. Call these points A and B. respectively, Let $P(x, y)$ be any point of the circle except. A or B. Then the slope of $\overline{P A}=\frac{y}{x-r}$ and the slope of $\overline{\overline{P B}}=\frac{Y}{x+r}$. The product of these slopes is $\frac{y^{2}}{x^{2}-r^{2}}$. But for all points $P, x^{2}+y^{2}=r^{2}$ or $y^{2}=r^{2}-x^{2}$. Thus $\frac{y^{2}}{x^{2}-r^{2}}=\frac{r^{2}-x^{2}}{x^{2}-r^{2}}=-1$.
It followst that $\overline{P B} \perp \overline{P A}$ and $\angle B P A$ is a right angle.

Problem Set 12-4b

Próblems 12, 13 and 14 help prepare for Theorems 15 and 16

1. (a) (1) inscribed angle
(2) tangent-chord angle

(3) secant-secant angle
(4) tangent-secant angle
(5) tangent-tangent angle
(b)
(i) 75
(4) 34
(2) 110
(5) 60
(3) 30
(6) 42
2. (a) 35
(f) 90
(b) 55
(c) $62 \frac{1}{2}$
(g) ${ }^{=} 27 \frac{1}{\sum_{2}^{2}}$
(d) $12 \frac{1}{2}$
(h) 35
(e) $22 \frac{1}{2}$
(1) 125
(j) 50
3.

In the congruent circles P and P^{1} we are given that $m \overparen{A B}=\bar{m} \overparen{A^{\prime} B}$. It follows that their respective central angles P and P^{\prime} are of equal measure: Thus $\triangle A P B \cong \triangle A^{\prime} P^{\prime} B^{\prime}$ by S.A.S. and $\overline{A B} \cong \overline{A^{\top}} \bar{B}^{T}$ by definition of congruence.

$$
230
$$

4. (a) $m \overparen{F B A}=m \widehat{B A H}$ by Theorem 12-8. $m \overparen{P B}+m \overparen{B A}=m \overparen{F B A}$ and $m \overparen{A H}+m \overparen{B A}=m * \overparen{B A H}$ by Postulate 30. Then $m \widehat{F B}=m \widehat{A H}$ by the addition property and the substitution property of equality. Hence $\widehat{\overrightarrow{F B}} \cong \widehat{A H}$.
(b) From (a) we conclude that $\overline{F B}=A H$ by Theorem 12-9. $\angle F B H \cong \angle H A F$ and $\angle A F B \cong \angle A H B$ by Theorem 12-7. Then $\triangle B M F \cong \triangle A M H$ by A.S.A.
5. $A B C D$ is a square and
$\overline{\mathrm{DA}} \cong \overline{\mathrm{AB}} \cong \overline{\mathrm{BC}}$ and therefore
$\widehat{D A} \cong \overparen{B A} \cong \widehat{B C}$. Theorem 12-8.
Then $m \angle D E A \equiv m \angle A E B=m \angle B E C$ since they are inscribed angles and are equal to one-half the messures of the congruent ares which they intercept. $\angle D E C$ has then been trisected.
6. (a) $\angle B A C$
(f) , $\angle A D C$
(b) $\angle \mathrm{CAF}$
(g) $\angle D C A, \triangle D B A$
(c) $\angle A D B, \angle B A F$
(h) $\angle \mathrm{DAF}$
(d) $\angle D A F$
(i) $\angle \mathrm{EAB}$
(e) $\angle D C B$
(1) $\angle \mathrm{DBC}$
7. Since $m \overparen{P B}=120, \mathrm{~m} \angle \mathrm{BPC}=60$ by Theorem $12-10$. $\overline{\mathrm{PQ}} \perp \overline{\mathrm{OP}}$, so $\mathrm{m} \angle \mathrm{BPQ} \equiv 30 . \triangle \mathrm{APQ}$ is a $30^{\circ}-60^{\circ}$ right triangle. Since $P Q=6$, then $A P=4 \sqrt{3}$.
8. Consider the common tangent at H. Then an angle formed by the tangent at H and line u is measured by the same arc as an angle formed by line u and the tangent M or N. It follows that the tangents at M and N are parallel, by corresponding angles in one case and alternate interior angles in the other case.
?

$$
20 i
$$

9. Consider PB . By oThẹprem $12-7, m \angle B P R=\frac{1}{2} m$ 有 . By Theorem 12-10, $\mathrm{m} \angle \mathrm{BPT}=\frac{1}{2} \mathrm{~m} \widehat{\mathrm{~PB}}$. But $m \widehat{B R}=\mathrm{mP}$, so $m \angle \mathrm{BPR}=\mathrm{m} \angle \mathrm{BPT}$. 副 $\sum_{\overrightarrow{\mathrm{PT}}}$ and $\overline{B E} \perp^{4} \overrightarrow{P T}$ by the definition of distance from a point to a line. $\mathrm{PB}=\mathrm{PB}$ so $\triangle \mathrm{PBE} \cong \triangle \mathrm{PBF}$ by A.S.A. (or A.A.S.). Therefore, by definitation of congruence, $\mathrm{BE}=\mathrm{BF}$.
10. Case I: Consider the diameter from P. Since the - diameter is perpendicular to the tangent, it is perpendicular to $\overrightarrow{A B}$. Therefore it bisects $\widehat{A B}$ and $\overparen{A B}$ and $m \overparen{A P}=m \widehat{B P}$.
Case II: Consider the diameter perpendicular to the secants. This diameter will bisect CPD and $\overparen{A P B}$. Thus $m \widehat{A P} \equiv \mathrm{~m} \widehat{\mathrm{BP}}$. and $\mathrm{m} \widehat{C P} \Rightarrow \mathrm{~m} \widehat{\mathrm{DP}}$. Then by pbetweenness for arcs and the properties of equality $\mathrm{m} \overparen{\mathrm{AC}} \Rightarrow \mathrm{m} \overparen{\mathrm{BD}}$
Case III: The diameter from P will have Q as its other endpoint. Then the two aros are semicircles and have equal measures, by definition of the degree measure of a semicircle.

Alternate proofs involve radil to form congruent triangles, or chords which are transversals and using alternate interior angles.
*11. (a) $[A, B] \equiv\left((x, y): x^{2}+y^{2}=25, y=3\right)$
$=\left[(x, y): x^{2}=16, y=3\right\} \equiv\{(4,3),(-4,3)\}$.
(b) $[C, D] \equiv\left\{(x, y): x^{2}+y^{2}=25, x=0\right]$

$$
=[(0,5),(0,-5)]
$$

(c) $\mathrm{QA}: \mathrm{QB}=\sqrt{(0-4)^{2}+(3-3)^{2}} \cdot \sqrt{(0+4)^{2}+(3-3)^{2}}$ $\begin{aligned} & =4 \cdot 4=16 . \\ 5 Q \cdot Q D & =\sqrt{(0-0)^{2}+(3-5)^{2}} \cdot \sqrt{(0-0)^{2}+(3+5)^{2}}\end{aligned}$ $\Gamma=2 \cdot 8=16$.
*12.
(a) $(A, B)=\left\{(x, y): x^{2}+y^{2}=25, y=3\right\}$

$$
=\{(4,3),(-4,3)\} .
$$

(b) $\{c, D\}=\left\{(x, y): x^{2}+y^{2}=25, y=x-5\right\}$

$$
=\left\{\left((x, y): x^{2}+(x-5)^{2}=25 ; y=x-5\right\}\right.
$$

$$
=\left\{(x, y): 2 x^{2}-10 x+25=25, y=x-5\right\}
$$

$$
f=\{(x, y): x(2 x-10)=0, y=x-5\}
$$

$$
=[(0,-5),(5,0)]
$$

(c) $\mathrm{PA} \cdot \mathrm{PB}=\sqrt{(8-4)^{2}+(3-3)^{2}} \cdot \sqrt{(8+4)^{2}+(3-3)^{2}}$

$$
\begin{aligned}
& =4 \cdot 12=48 \\
\mathrm{PC} \cdot \mathrm{PD} & =\sqrt{(8-0)^{2}+(3+5)^{2}} \cdot \sqrt{(8-5)^{2}+(3-0)^{2}}
\end{aligned}
$$

$$
=\sqrt{128} \cdot \sqrt{18}=\sqrt{16 \cdot 8 \cdot 9 \cdot 2}=48
$$

*13. (a) $\triangle \mathrm{ADB} \sim \triangle \mathrm{CDA}$ because $\angle \mathrm{B} \cong \angle C A D$ and $\angle \mathrm{D} \cong \angle \mathrm{D}$.
(b) Corresponding sides of similar triangles are proportional.
(c) $A D=6 k, B D=k(6 k)=6 k^{2}$
(d) $A D \cdot A D=(6 k)(6 k)=6 \cdot 6 k^{2}$
$\mathrm{BD} \cdot \mathrm{CD}=\left(6 \mathrm{k}^{2}\right)(6)=6 \cdot 6 \mathrm{k}^{2}$
Therefore $(A D)^{2}=B D \cdot C D$.
Relation is true for $k>0$ and $C D>0$. If $k=0$, then $A=D=C$ and $(A D)^{2}=B D \cdot C D \quad$ is true. If $k<0$, then it is impossible to have $A D=k \cdot C D$.

Problem Set 12-5.

1. (a) 2 , lengths, bisector, angle
(b) in(on), in or on,
A is between R and S.

*

(c) 12,12

2
2. (a) (1) tangent-segments
(2) 10 , Theorem 12-13: The two tangentsegments to a circle from an external point are congruent.
(3) 45 ; The last part of Theorem 12-13 bays that the two tangent-segments from an external point form congrient angles with the line joining the external point to the f center of the circle.
(b) (1) $\overline{R X}$
(2) $\overline{\mathrm{RD}}$
(3) $\overline{\mathrm{RC}}$
(4) $\mathrm{RC}+\mathrm{CD}=\mathrm{RD}$ by the Betweenness-Distance Theorem.
(5) Yes, since $12^{2}=8(10+8)$.
(6) Yes, since $12^{2}=6(18+6)$.

Other pairs of factors of 144 are the easiest to consider. RC . RD could be $9 \cdot 16,4 \cdot 36,3 \cdot 48$, etc., as far as the products are concerned. However, since $C D$ is less than or equal to the diameter of the circle, restrictions must be made with reference to any given circle.
(c) (1) $a(a+b)=x \cdot(x+y)$ Theorem 12-14: The product of the length
s. of a secant-segment from a given point and the length of its external segment is constant for any secant containing the external point.
(2) Yes, since $3(3+17)=4(4+11):$
3. (a) When it contains the center of the clapcie.
(b) When the secant contains the center of the circle.
(c) decrease, increase, tangent-segmenty the tangent-segment.
(d) $Q A^{\prime \prime \prime} \cdot Q A^{\prime \prime}$

9. By Theorem 12-16, we have

$$
\begin{aligned}
& x(19-x)=6 \\
& x^{2}-19 x+48=0 \\
&(x-3)(x-16)=0 \\
& x=19-x=16
\end{aligned}
$$

10. Let r be the radius. Then, by Theorem -12-15,
$(r+8)(r-8)=6 \cdot 6$
$r^{2}-64=36, r=10$

11. Let the radius of the circle be r. Then by Theorem 12-15,

$$
4(2 r+4)=12^{2}
$$

$$
\text { Hence } \quad r=16
$$

12.: Since all angles of the triangle have measure 60 , the minor arc has measure 120 . This leaves 240 for the measure of the major arc.
13. (a) Four; two internal, two external
(b) One internal, two external
(c) Two external only
(d) One external only
(e) None
14. Since tangents to a circle from an external point are congruent,

$$
\left\{\begin{aligned}
\mathrm{SN} & =\mathrm{SP} \\
\mathrm{NR} & =\mathrm{RM} \\
\mathrm{CL} & =\mathrm{CP} \\
\mathrm{DL} & =\mathrm{DM}
\end{aligned}\right.
$$

By the addition property of equality and the asfoci= ative property of numbers, $(\mathrm{SN}+\mathrm{NR})+(\mathrm{CL}+\mathrm{DL})=(\mathrm{SP}+\mathrm{CP})+(\mathrm{RM}+\mathrm{DM})$.

By the Betweenness-Distance Theorem,
$\mathrm{SN}+\mathrm{NR} \Rightarrow \mathrm{SR}, \mathrm{CL}+\mathrm{DL}=\mathrm{CD}, \mathrm{SP}+\mathrm{CP}=\mathrm{SC}$,
$R M+D M \equiv R D:$ It follows from the substitution property of equality that $\mathrm{SR}+\mathrm{CD} \equiv \mathrm{SC}+\mathrm{RD}$.
15.

Statements
Reasons

1. ${ }^{4} \overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{BD}}$ are
2. Hypothesig
tangent at A and
C, respectively.
3. 2. $\triangle A O B$ and $\triangle C O B$ are
right triangles.
1. $m \angle A B O \equiv m \angle C B O \equiv 60 \quad$ 3. $m \angle A B C=120$, and Theorem 12-13
2. $A B=\frac{1}{2} O B$
$\mathrm{CB}=\frac{1}{2} \mathrm{OB}$
3. $\overline{A B}+\overline{C B}=\overline{O B}$
4. Draw $\overline{Q R} \perp \overline{A P}$, In $\triangle P Q R, R Q=\sqrt{(P Q)^{2}-(P R)^{2}}$. Hence $R Q=48$. But $A B \cong R Q$, since RQBA is a rectangle. Therefore, $A B=48$.
5. As in the previous problem, draw a perpendicular from the center of the smaller circle to a radius of the larger circle. By the Pythagorean Theorem, the distance between the centers is 39 inches.
6. (a) $\overrightarrow{\mathrm{PA}}$ and $\overrightarrow{\mathrm{PA}}{ }^{-}$are both the midray for $\angle \mathrm{CPB}$, by Theorem 12-13. Since each angle has one and only one midray, $\overrightarrow{\mathrm{PA}} \equiv \overrightarrow{\mathrm{PA}}$.
(b) $\overline{\mathrm{m}^{t} C^{t}}=130$. One possible solution follows. $\overline{A C}$ and $\overline{\text { ATCT }}$ are, by Corollary 12-4-1, both perpendicular to $\overline{P C}$ and $\overline{A B}$ and $\overline{A^{\prime} \bar{B}}$ are both perpendicular to $\overline{\mathrm{PB}}$. . Consider quadrilaterals ACPB and A'C'PB' . The sum of the measures of the interior angles in each equals 360. $m \angle A C P=m \angle A^{\prime} C^{\prime} P=m \angle A B P=m \angle A^{\prime} B^{\prime} \bar{P}=90$. 2

Hy applying the addition property and subatitution property of equality, $m \angle C A B+m \angle P=180$ and $m \angle C^{\prime} A^{\prime} B^{\prime}+m \angle P=180$. Then $m \angle C A B=m \angle C^{\prime} A^{\prime} B^{\prime}$. since these and are supplements of the same 'angle. But m, m $=m \angle C A B$ and $m C^{\prime} B '=m \angle C ' A ' B '$ by definition of degree measure of a minor aro. Therefore, m C'By, $m \widehat{m B}=130$ by the substitu tion property of, equality.
19. If m is the length of the shortest of the four segmenta, the rest of its chord would have to be the longest of the segments. Otherwise the product of the segments of this chord would certainiy be less than the product of the segments of the other. Hence, if it were possible to have consecutive integers for the lengths they would be labeled as shown. But in thys case, by Theorem $12=16$, it would be necessary, that:

$$
\begin{aligned}
m(m+3) & =(m+1)(m+2) \\
m^{2}+3 m & =m^{2}+3 m+2 \\
0 & \equiv 2
\end{aligned}
$$

or
or
Since this is impossible, the lengths of the segments cannot be consecutive. integers.
20. (a)

$$
\begin{aligned}
(P) & =\{(x, y): y=5, x-y=12\} \\
& =\{(17,5)\} ; P=(17,5) \\
{[T] } & =\left\{(x, y):(x-1)^{2}+(y+3)^{2}=64, y=5\right) \\
& =\left((x, y):(x-1)^{2}+8^{2}=64, y=5\right\} \\
& =\left\{(x, y):(x-1)^{2}=0, y=5\right\} \\
& =[(1,5)\} ; T=(1,5)
\end{aligned}
$$

(b)
(c) $\{R, S\}^{*}=\left[(x, y):(x-1)^{2}+(y+3)^{2}=64, * 1\right.$; $x-y=12\}$
$=\left\{(x, y):(x-1)^{2}+[(x-12)+3]^{2}=64\right.$, $y=x-12\}$
$=\left\{(x, y): x^{2}-2 x+1+x^{2}-18 x+81=64\right.$, $y=x-12]$
$0=\left\{(x ; y): 2 x^{2}-20 x+18=0, \cdot y=x-12\right\}$
$=\left\{(x, y):(x-9)(x-1)_{0}=0, y=x^{2}-12\right\}$
$=[(9,-3),(1,-11)]$
(d) $\mathrm{PT}=\sqrt{(17-1)^{2}+(5-5)^{2}}=16 ; \mathrm{PT}^{2}=256 .$.
(e) Let $R=(9,-B), T=(-1,-11)$;

Then $\cdot P R=\sqrt{(17-9)^{2}+(5+3)^{2}}=\sqrt{128}$,
l and $\mathrm{PS}=\sqrt{(17-1)^{2}+(5+11)^{2}}=\sqrt{512}$.
$\mathrm{PR} \cdot \mathrm{PS}=\sqrt{128} \cdot \sqrt{512}=\sqrt{16 \cdot 8 \cdot 16 \cdot 16: 2}$
$=256$
(f) Theorem 12-15 asserted the equality here verified.
21. Consider radio $\overline{R A}$ and $\overline{Q B}$. Let $\overline{\overline{A B}}$ intersect $\overline{R Q}$ at $P, m \angle A \equiv m \angle B=90$, and $m \angle A P R=\dot{m} \angle B P Q$ by vertical angles.. Therefore, $\triangle A P R \sim \triangle B P Q$ by $A . A$. This gives $\frac{R P}{Q P}=\frac{R A}{Q B}$. Now suppose $\overline{B C}$ meets $\overline{\mathrm{RQ}}$ at point P^{\prime}. Then, by a similar argument we arrive at $\frac{R P^{\prime}}{Q P^{\prime}}=\frac{R A}{Q B}$. Hence $\frac{R P^{\prime}}{Q P^{\prime}}=\frac{R P}{Q P}$, and P and P^{\prime} are both between R and Q. Therefore, $P^{\prime}=P$.

A direct method could show that the point of intersection of $\overline{A B}$ and $\overline{C D}$, along with R, determines the perpendicular bisector of ${ }^{-} \overline{\mathrm{AC}}$. It can then be shown that Q lies on this bisector.
' 22. Let : d"be the required distance, By Theorem 18-15,

$$
\begin{aligned}
& d^{2}=\frac{h}{5280}\left(8000+\frac{h}{5280}\right) . \\
& d^{2}=\frac{50}{33} h+\left(\frac{h}{5280}\right)^{2} .
\end{aligned}
$$

Now since h is very small compared to: 5280 , $\left(\frac{h}{5 R 80}\right)^{2}$ is exceedingly smapl, and is not significant: So approximately, $d=\sqrt{1.515 h}=1.23 \sqrt{h}$. Hence d is roughly $\frac{5}{4} \sqrt{h}$.
e

1. $\frac{22}{7}$ is closer.

- $\frac{22}{7}=3.1429-$
$\pi=3.1416$ (accurate to four decimal places)
$3.14=3.1400$

2. (a) $d=14, c=14 \pi$
(d) $C=12 \pi \mathrm{a}, \mathrm{d}=12 \mathrm{a}$
(b) 'd $=\frac{36}{\pi}, r=\frac{18}{\pi}$
(e) $C^{\prime}=2 \pi x \sqrt{3}$
(c) $\mathrm{c}=15 \pi, \mathrm{r}=7.5$
$\mathrm{d}=2 \mathrm{x} \sqrt{3}$
3. (a) $c_{1}=3 \cdot c_{2}$.
(c) $c_{1}=2 \cdot c_{2}$
(b) $\mathrm{d}_{2}=5 \cdot \mathrm{~d}_{1}$
(d) $\mathrm{C}_{2}=2 \cdot \mathrm{C}_{1}$
4. (a) $m \widehat{B A}$ (In degrees) $=m \overparen{B^{\prime} A^{\prime}}$ (in degrees).
(b) length of $\widehat{B A}=2$. length of $\widehat{B A}$.
(c) \mathbf{f}
5. (a) $\frac{C_{t}}{C_{u}}=\frac{6}{4}=\frac{3}{2}$
(b) $\frac{3}{2}$.
6. $C=2 \pi R=480,000 \pi$. The circumference 1 s approximately $1,500,000$ miles.
7. The formula gives:

$$
\begin{aligned}
2 \pi r & =6.28 \times 93 \cdot 10^{6} \\
\therefore 2 \pi r & =584 \cdot 10^{6}
\end{aligned}
$$

which is 584 million miles (approx.). Our speed ia about 67,000 miles per hour.
8. $c \equiv 2 \pi ; 628=6.28 \mathrm{r} ; \mathrm{r}=100 \mathrm{y} \mathrm{d}$. (approx.)
9. (a) The radius of the circle
(b) 0
(c) ${ }^{2} 180$
(d) The circumference of the circle
${ }^{\circ}$

10. | 3 | 120 | 30 | 60 |
| ---: | ---: | ---: | ---: |
| 4 | 90 | 45 | 90 |
| 5 | 72 | 54 | 108 |
| 6 | 60 | 60 | 120 |
| 8 | 45 | $67 \frac{1}{2}$ | 135 |
| 9 | 40 | 70 | 140 |
| 10 | 36 | 72 | 144 |
| 12 | 30 | 75 | 150 |
| 15 | 24 | 78 | 156 |
| 18 | 20 | 80 | 160 |
| 20 | 18 | 81 | 162 |
| 24 | 15 | $82 \frac{1}{2}$ | 165 |
11. 2 units ; $\sqrt{3}$
12. Radius of the inscribed circle is 6 , 1ts circumference is 12π. The radius of the circumscribed circle is $6 \sqrt{2}$, 'so its circumference is $12 \pi \sqrt{2}$.
13. The increase in circumference is 2π in each case.
14. In the figure, side $\overline{A B}$ of a regular inscribed octagon is 1 unit long: Since $\triangle A D O$ is a right. isosceles triangle,
$A D=D O=\frac{r}{\sqrt{2}}$.
$\mathrm{BD}=\mathrm{r}-\frac{\mathrm{r}}{\sqrt{2}}$. In right

triangle $A B D ;(A D)^{2}+(D B)^{2}=(A B)^{2}$ or
$\left(\frac{r}{\sqrt{2}}\right)^{2}+\left(r-\frac{r}{\sqrt{2}}\right)^{2}=1$, from which $r=\sqrt{\frac{1}{2-\sqrt{2}}}$
15. The perimeter of PQRS is greater than the circumference of the circle. $A D=' 2$ and $X W=\sqrt{2}$. Hence, $\quad \mathrm{PS}=\frac{1}{2}(2+\sqrt{2})$.
The perimeter of the square is $\pi(\sqrt{2}+2 \sqrt{2})$. The circumference of the circle is 2π.
But $2+\sqrt{2}>2$.

Problem Set 12-7

1. (a) $C=2 \pi r$
$C=10 \pi$
$C=31.4$
${ }^{*} A=\pi r^{2}$
$A=(3.14) 25$
$A=78.5$
(b) $\quad c=2 \pi r$
$C=20 \pi$
$c=62.8$
$A=\pi r^{2}$
$A=314$
(c) $\begin{aligned} \mathrm{c} & =2 \pi(2.5) \\ \mathrm{C} & =15.70\end{aligned}$
$\therefore \because$
2. (a) $A=\pi R^{2}-\pi r^{2}$

$$
A=3 \pi \quad \text { or approx. } \quad 9.4 .8 \dot{q} \cdot \mathrm{~cm}
$$

(b) No.
6. $A=$ area of first. $\frac{\mathrm{A}}{\mathrm{A}} \mathbf{T}=\frac{9}{1}$
7. The circle is larger.
$\pi r^{2}-5^{2}$
$\pi\left(\frac{10}{\pi}\right)^{2}=25$
$A^{\prime}=$ area of second.
\square
t
$31,8-25=6.8$. square inches greater.
8. $\mathrm{R}^{2} \pi-\mathrm{r}^{2} \pi$
$\pi\left[(5 \sqrt{2})^{2}-5^{2}\right]$
25π square inches
9. $4 \sqrt{3}$ inches, $8 \pi \sqrt{3}, 48 \pi$ square inches
10. It is only necessary/to find the square of the radius of the circle. It a radius is drawn to a vertex of the cross, it is seen to be; the hypotenuse of a right triangle of sides 2 and $6 .$. The square of the radius is therefore $2^{2}+6^{2}=40 \%$ The area of the circle is therefore $40 \pi, 125.6$ approximately. The required apea is therefore $125.6-80=45.6$.
11. Consider $\overline{P B}$, and $\overline{P C}$. The 'aréa of the annulus is $\pi(P C)^{2}-\pi(P B)^{2}$, the difference of the areas of the two circdes. This can also be written $\pi\left[(P C)^{2}=(P B)^{2}\right]$. By' Pythagorean Theorem, $(P C)^{2}=(P B)^{2}=(B C)^{2}$. Therefore, the area of the annulus is $\pi(B C)^{2}$.
12. The section nearer the center of the sphere will be. the larger:

$$
\begin{aligned}
& \because r_{1}^{2}=10^{2}-5^{2} \\
& r^{2}=10^{2}-3^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{\pi}{8}(A C)^{2}+\frac{\pi}{8}(B C)^{2}=\frac{\pi}{8}(A B)^{2} \\
& (r+g)+(h+s)=g+h+t . \\
& \mathbf{r}+\mathrm{s} \Rightarrow \mathrm{t} \text { : }
\end{aligned}
$$

15. (a) Note that $r_{1}=0 \mathrm{OA} \equiv \mathrm{OR} \equiv \mathrm{BP}$ and $\mathrm{r}_{2} \equiv \mathrm{OS} \equiv \mathrm{CP}$: ; By successive use of the Pythagorean Theorem we get $r_{1} \equiv r \sqrt{2}, r_{2}=r \sqrt{3}, r_{3} \equiv r \sqrt{4}$.
(b) Now, using the area formula for a circie, we have

$$
\begin{aligned}
& a=\pi r^{2} \\
& b=\pi(r \sqrt{2})^{2}=a=\pi r^{2} ; \\
& c^{2}=\pi(r \sqrt{3})^{2}-(a+b)=3 \pi r^{2}-2 \pi r^{2}=\pi r^{2} \\
& d=\pi(2 r)^{2}-(a+b+c)=4 \pi r^{2}-3 \pi r^{2}=\pi r^{2}
\end{aligned}
$$

16. From the second figure, $4^{2}-2^{2}=12$, so the altitude of the trapezoid is $2 \sqrt{3}$. In the first' figure, since the bases are . parallel and tangent to the circle, we see that $\overline{F H}$ (altitude of the trapezoid) must be a diameter; thus the radius is $\sqrt{3}$. The area of the circle is, then, 3π. The area of the trapezoid is
 $8 \sqrt{3}$. The area outside the circle is. $(8 \sqrt{3}-3 \pi)$ square inches. This is approximately 4 square inches.

Problem Set 12-8

1. The length of $\overparen{C D}$ is greater than the length of $\widehat{\mathrm{EF}}$.
2. The arc of one inch on a half dollar.
3. Yes, to both questions.
4. No. $\ell \overparen{A B}=\frac{\pi r}{180} \mathrm{~m} \overparen{\mathrm{AB}}$

r

$$
\ell \overparen{C D}=\frac{\pi \Gamma^{\prime}}{180} \cdot m \overparen{C D}
$$

If $\quad \ell \widehat{\mathrm{AB}}=\ell \widehat{\mathrm{CD}}$ then
$\mathrm{r} \cdot \mathrm{m} \widehat{\mathrm{AB}}=\mathrm{r} \cdot \mathrm{m} \widehat{\mathrm{CD}}$;
If $m \widehat{A B}>m \widehat{C D}$, then $r<r^{\prime}$
5. $5 \pi, 7.5 \pi, 6 \pi, 3 \pi$
6. $9 \pi, \pi / 10,6 \pi, 5.4 \pi$

$$
7350
$$

7. 9π
8. -2π
9. $\dot{r}=\frac{3}{\pi} . \quad$ Chord $=\frac{3}{\pi}$ or .96 cm .
10. 90
11. (a) The intersection of S and P is
$\left\{(x, y, z): x^{2}+, y^{2}=16, z=3\right\}$, a circle. in plane $z=3$, with $(0,0,3)$ as center and 4 (as radius.

$\because \because$

(b) The radius, r_{1}, of the circle of intersection is 4. The radius, r, of the great circle of S is 5. If C_{1}-and d denote the circumferences of . these circles, there $\mathrm{C}_{1}=\frac{\mathrm{r}_{1}}{\mathrm{r}}, \mathrm{C}=\frac{4}{5} \mathrm{C}$.
(c) Area of circle of intersection $=\frac{4^{2}}{5^{2}}$ times the
area of the great circle.
(d) These arcs will be $\frac{1}{4}$ of the circumferences * . In each case so the arc of the circle of intersection is $\frac{4}{5}$ of the arc of the great circle of S.

736

$$
\ddot{L}]^{\prime}
$$

13. (a) Area of sector $=\frac{1}{6} \pi \cdot 12^{2}=24 \pi$ Area of triangle $=\frac{12^{2}}{4} \sqrt{3}=36 \sqrt{3}$ Area of segment $=24 \pi-36 \sqrt{3}$ or 13.04
(b) Area of sector $=\frac{1}{3} \pi \cdot 6^{2}=12 \pi$

Area of triangle $=\frac{1}{2} \cdot 6 \sqrt{3} \cdot 3=9 \sqrt{3}$ Area of segment $=12 \pi-9 \sqrt{3}$ or 22.11
(c) Area of sector $=\frac{1}{8} \pi \cdot 8^{2}=8 \pi$ Area of triangle $=\frac{1}{2} \cdot 8 \cdot 4 \sqrt{2} \equiv 16 \sqrt{2}$
(a) Area of segment $=8 \pi-16 \sqrt{2}$ or 2.51 ;
(b) π^{*}
15. Draw $\overline{B C} \perp \overline{A C}$. Then $G C=6, A G \equiv 24$. In the right $\triangle A G B$, the length of the hypotenuse is twice the length of one leg, so $m \angle A B G=30, m \angle B A G=60$, 'and $C E=G B=24 \sqrt{3}$. The major arc $\widehat{C D}$ has the length $\frac{2}{3}(2 \pi, 30)=40 \pi$ and the minor arc $\overparen{E F}$ has the length $\frac{1}{3}(2 \pi \cdot 6)=4 \pi$. Thus; the total length
' of the belt is $2(24 \sqrt{3})+40 \pi+4 \pi=48 \sqrt{3}+44 \pi$. The belt is approximately 221 inches long.
16. 'To find one small' shaded area, subtract the area of a 90° sector whose radius is $2 \sqrt{2}$ from the area of a square whose side is $2 \sqrt{2}$.
$(2 \sqrt{2})^{2}-\frac{\pi(2 \sqrt{2})^{2}}{4}=8-2 \pi$.

The area of the given shaded region is $4(8-2 \pi)$. This is approximately 6.87 square inches.
*
293

Praplem Set 12-9

(1. The center of the circumscribed circle about a given acute triangle is in the interior; about a right triangle it is the midpoint of the hypotenuse; about an obtuse triangle it is an the exterior, of the triangle and in the interior of the obtuse angle. Proof: if $\angle C$ is alright angle $\angle B C A$ intercepts a semicircle of which $\overline{\mathrm{BC}}$ is a diameter. ."
\If $\angle \mathrm{C}$ 'is an obtuse angle $\angle B C A$ intercepts a major are and hence is inscribed In a minor arc. Then C and 0 , the center, must be on opposite sides of $\overline{\mathrm{AB}}$.

If $\angle C$ is an acute angle then it intercepts a minor arc and hence is Inscribed in a major arc. Then C and O are on the. same side of a diameter.
2. Yes. The midray of each angle is in the interior of its angle (except for the vertex of the angle). Therefore, the intersection must be in the interior of each angle, hence ${ }^{\text {in }}$ the interior of the triangle.

Qu The median is a radius of the circle and hence its length is 12 .
4. Let a coordinate system be established with vertices of rectangle $A B C D$ as shown. Let ' $O(x, y)$ be

- the center of a circumscribing circle. Then $x^{2}+y^{2}=\left(x^{2}-a\right)^{2}+y^{2}$
$=(x-a)^{2}+(y-b)^{2}$
$=x^{2}+(y-b)^{2}$ yielding

$x=\frac{a}{2}, y=\frac{b}{2}$. Thus $O\left(\frac{a}{2}, \frac{b}{2}\right)$.
exists and a circle can be circumscribed about a given rectangle.
© Let $I\left(x^{\prime}, y^{\prime}\right)$ be the center of an inscribed circle. Then, $x^{\prime} \equiv y^{\prime}=a-x^{\prime}=b-y^{\prime}$, yielding $a=b$; and demanding that, in order for an inscribed circle to exist, the rectangle must be a square.

5. Yes. The diagonals are bisectors of the angles. Hence, (茾heir intersection is equally distant from the sides of the rhombus. No, unless the rhombus is also a square.
6. By Theorem 5-9 each angle bisector also bisects the opposite side and is perpendicular to it. Therefore the angle bisectors are concurrent in the same point as the perpendicular bisectors.
$3: 7$. Let 0 be the common center; E, the midpoint of $\overline{\mathrm{BC}}$. Then $\overrightarrow{B O}$ is the midray of $\angle A B E$ and $\overrightarrow{C O}$ is the midray of $\angle A C E$. $\triangle B O E \cong \triangle C O E$ by S.A.S. $m \angle O B E=m \angle O C E$, $\angle A B E \cong \angle A C E$. Thus, by extending the argument, we may prove the triangle equiangular and hence equilateral.
 If $A B C D$ is the quadrilateral then consider the circle circumscribing $\triangle A B C$.

If D is not on the arictle, then $m \angle D \neq \frac{1}{2}(m \widehat{A B C})$ and $\angle D$ is not supplementary to $\angle \mathrm{B}$. Hence, if $\angle \mathrm{B}$ and $\angle D$ are supplementary angles,

then D is on the circle through
A, B, C and the quadrilateral has
a circumscribed circle.

$$
300
$$

9. Let a Coordinate system be established with origin at the midpoint of a base of 1soscelés trapezoid. ABCD as shown.

Let. $P(0, y)$ be such that $P A=P B=P C=P D$. Then $a_{-}^{2}+y^{2}=(-x)^{2}+y^{2}$ $=(-b)^{2}+(y-c)^{2}$
$=\quad b^{2}+(y-c)^{2}$, yielding
 $y=\frac{b^{2}+c^{2}-a^{2}}{2 c},(c \neq 0)$. Thus $P^{\prime \prime}\left(0, \frac{b^{2}+c^{2}-a^{2}}{2 c}\right)$ exists and consequently $\cdot a^{3}$. circle can be circumscribed about a given isosceles trapezoid.

It is not true, however, that every isosceles trapezoid has an inscribed circle.
10. As the figure indicates,

$$
\begin{aligned}
&(5 x)^{2}=(2 x+2)^{2}+(3 x+2)^{2} \\
& 25 x^{2}=4 x^{2}+8 x+4^{2}+9 x^{2}+12 x+4 \\
& 3 x^{2}-5 x-2=(3 x+1)(x-2)=0 \\
& x=2 ; \\
& \text { length of hypotenuse }=10 .
\end{aligned}
$$

11. (a) Midpoint of $\overline{X Y}=(4,0)$; slope of $\overline{X Y}$ is zero. Perpendicular bisector of $\overline{X Y}=\{(x, y): x=4\}$.
(b) Midpoint of $\overline{X Z}=\left(\frac{5}{2}, \frac{3}{2}\right)$; slope of $\overline{X Z}$ is $\frac{3}{5}$. Perpendicular bisector of $\overline{X Z}=$ $=\left\{(x, y): y-\frac{3}{2}=-\frac{5}{3}\left(x-\frac{5}{2}\right)\right\}$ $=\{(x, y): 3 y+5 x=17\}$

$$
740 j i j
$$

(c) $\{c\}=\left\{(x, y): x=4, y=-\frac{5 x}{3}+\frac{17}{3}\right\}$ or $C \perp(4,-1) \ldots$
.
0
(d) MIdpoint of $\overline{Y Z}=\left(\frac{13}{2}, \frac{3}{2}\right)$, slope of $\overline{Y Z}$ is, -1 . Perpendicular bisector of $\overline{\mathrm{YZ}}$
$=\left\{(x, y) ; y-\frac{3}{2}=1\left(x-\frac{13}{2}\right)\right\}$
$=\{(x, y): y=x-5\}$.
The coordinates of $C(4,-1)$ satisfy this equation. Therefore, the perpendicular bisectors are concurrent at $(4,-1)$.
(e) $\mathrm{CX}=\sqrt{(4-0)^{2}+(-1-0)^{2}}=\sqrt{17}$.
$\mathrm{CY}=\sqrt{(4-8)^{2}+(-1-0)^{2}}=\sqrt{17}$
$C Z=\sqrt{(4-5)^{2}+(-1-3)^{2}}=\sqrt{1+16}=\sqrt{17}$
(f) Circle $C=\left\{(x, y):(x-4)^{2}+(y+1)^{2}=17\right\}$

$$
=\left\{(x, y): x^{2}+y^{2}-8 x+2 y=0\right\}
$$

12. (a) Median to $\overline{X Y}$ is in $((x, y): y=3 x-12)$
(b) Median to $\overline{X Z}$ is in $\left\{(x, y): y=-\frac{3 x}{11}+\frac{24}{11}\right\}$
(c) Median to $\overline{Y Z}$ is in $\left((x, y): y=\frac{3 x}{13}\right)$
(d) Median to $\overline{X Y} \equiv\{(x, y): x=5-k, y=3-.3 \mathrm{k}$, $0 \leq k \leq 1\}$
Median to $\overline{X Z} \equiv\left\{(x, y): x=8-\frac{11}{2} k, y=\frac{3}{2} k\right.$,

$$
0 \leq k \leq 1]
$$

Median to $\overline{Y Z}=\left\{(x, y): x=\frac{13}{2} k, y=\frac{3}{2} k\right.$, $0 \leq k \leq 1\}$
$k=\frac{2}{3}$ yields trisection point $\left(\frac{13}{3}, 1\right)$ in median to $\overline{X Y}$.
$k=\frac{-2}{3}$ yields trisection point $\left(\frac{13}{3}, 1\right)$ in median to $\overline{\mathrm{XZ}}$.
$k=\frac{2}{3}$. yields trisection point $\left(\frac{13}{3}, 1\right)$ in median to $\overline{Y Z}$.
$-\quad 762$
13. (a) Altitude to $\overline{X Y}$ is a subset of $((x, y): x=5)$ (b) The altitude to $\overline{X Z}$ is a subset of the line $\left\{(x, y): y=\frac{-5}{3}(x-8)\right\}=\left\{(x, y):, y=-\frac{5}{3} x+\frac{40}{3}\right\}$. The altitude to $\overline{\overline{Z Y}}$ is a subset of the line $[(x, y): y=x]$.
(c) The orthocenter is (5,5). The orthocenter is in the exterior of the triangle.
(d) The problem is to show that $(4,-1)\left(\frac{13}{3}, 1\right)$ and $(5,5)$ are collinear. An equation for the line containing $(4,-1)$ and. $(5,5)$ is $y=6 x-25$. This equation is satisfied by $\left(\frac{13}{3}, 1\right) \ldots$

0

4

$$
3.2
$$

Review Problems

Sections 1 through 5

1. (a) circle, $10,(0,0)$.
(b) A on the circle; B interior; C exterior
(c) $L_{1} \cap C^{*}=\left\{(x, y): x^{2}+y^{2} \cong 100, x=-10\right\}$

$$
\begin{aligned}
& =\{(x, y): y=0, x=-10\} \\
& =\{(-10,0)\} .
\end{aligned}
$$

(d) $L_{2} \cap C_{=}=\left\{(x, y): x^{2}+y^{2}=100, y=6\right\}$
$=\cdot\left((x, y): x^{2}=64, y=6\right)$
$=\{(8,6),(-8,6)\}$.
(e) $L_{3} \cap C=\left\{(x, y): x^{2}+y^{2}=100, y=\frac{4}{3} x\right\}$
$=\left\{(x, y): x^{2}+\frac{16 x^{2}}{9}=100, y=\frac{4}{3} x\right\}^{\prime}$
$=\left\{(x, y): x^{2}=36, y \neq \frac{4}{3} x\right\}$
$=\{(6,8),(-6,-8)\}$.
2. (a) $S=\left((x, y, z): x^{2}+y^{2}+z^{2}=100\right\}$
(b) (1) $(10,0,0),(-10,0,8)$
(2) $(0,10,0),(0,-10,8)$
(3) $(0,0,10),(0,0,-10)$
(c) $\left\{(x, y, z): x^{2}+y^{2}=100, z=0\right\}$
(d) $\left\{(x, y, z): x^{2}+z^{2}=100, y=0\right\}$
(e) $\left\{(x, y, z): y^{2}+z^{2}=100, x=0\right\}$
(f) A is in S since $3^{2}+(-4)^{2}+(5 \sqrt{3})^{2}=100$.
B is in the interior of S since $3^{2}+(-5)^{2}+7^{2}=83<100$.
c is in the exterior of S since $9^{2}+6^{2}+1^{2}=118>100$.
743.1
3. (a) $(x-3)^{2}+(y+2)^{2}=16$ or

$$
\left\{(x, y, z): x^{2}+y^{2}-6 x+4 y-3=0, z=0\right\}
$$

(b) $(x-2)^{2}+(y+1)^{2}+(z-3)^{2}=9$ or . $\left((x, y, z): x^{2}+y^{2}+z^{2}=4 x+2 y-6 z+5 \equiv 0\right\}=$
4. (a) If they are:
(i) radil of the same or congruent circles.
(2) diameters of the same or congruent circles.
(3) in the same circle and are associatef with congruent arcs.
(4) tangent-segments from the same exterior point.
(5) Chords in the same or congruent circles and equidistant from the center.
(6) the parts into which a diameter perpen= dicular to a chord separates the chord.
(b) If it is:
(1) inscribed in a semicircle.
(2) determined by a radius and the tangent at its outer end.
(3) determined by a chord and the diameter which bisects $1 t$.
(c) If they are:
(1) inscribed in congruent ares.
(2) intercept congruent arcs.
(3) the angles between two tangent-segments. " from the same exterior point and the line which contains that point and the center of the circle.
(4) centril angles associated with arcs which have the same degree measure.
(d) If they are:
(1) associated with congruent chords in congruent circles.
(2) intercepted by congruent inscribed angles in congruent circies.

744

$$
3: 5
$$

11. $A Y=A P$ and $A X=A P$, because tangent-segments to a circle from an external point are congruent. Therefore, $A Y=A X$.
12. The figure shows a cross-section with x the depth to be found. $25^{2}=20^{2}+(25-x)^{2}$ $225=(25-x)^{2}$
$15=25=x$
$x=10$. The depth $1 s$
10 Inches.

13. By the Pythagorean Theorem, $A D=9$. If r is the radius, then $O D=\bar{r}-9$ and $O C=r$, Hence, in $\triangle D O C$,

$$
r^{2} \equiv(r-9)^{2}+12^{2}
$$

$$
\begin{aligned}
r^{2} & =r^{2}-18 r+81+144 \\
r & =12.5
\end{aligned}
$$

The diameter of the wheel is 25 inches long.
14. Consider the distance BX
to any other point x on the circle, and the radius EX .
$\mathrm{BC}+\mathrm{AB}=\mathrm{AC}=\mathrm{CX}$.
$\mathrm{BC}+\mathrm{BX}>\mathrm{CX}$. Hence,
$\mathrm{BC}+\mathrm{BX}>\mathrm{BC}+\mathrm{AB}$, and
$\mathrm{BX}>\mathrm{AB}$ or $\mathrm{AB}<\mathrm{BX}$.
Also $\mathrm{BX}<\mathrm{BC}+\mathrm{CX}$,
or $\mathrm{BX}<\mathrm{BC}+\mathrm{CD}$.
Since $B C+C D=B D$,

$\mathrm{BD}>\mathrm{BX}$.
Thus $A \bar{B}<{ }^{5} \overline{B X}<\overline{B D}$ where $B X 1 s$ any other segment
joining B to the circle:

$$
7463:
$$

15. Let $m \widehat{\mathrm{HE}}=\mathrm{r}$. Then $\cdot \mathrm{m} \angle \mathrm{PCH}=90-\mathrm{r}$,
$\mathrm{m} \angle \mathrm{NHC}=180-(90-\mathrm{r})$ or $90+\mathrm{r}$. Then $m \angle \mathrm{NHR}=\mathrm{m} \angle \mathrm{NHC}-90=(90+\mathrm{r})-90 \equiv \mathrm{r}$. Hence, $m \overparen{\mathrm{HE}}=\mathrm{m} \angle \mathrm{NHR}$.
16. $(4000)^{2} \cong(100)^{2}+(4000-x)^{2}$ $(4000-x)^{2}=15,990,000$.

$$
\begin{aligned}
4000=x & =3,998.75 . \\
x & =1.25, \text { approx } .
\end{aligned}
$$

The shaft will be about $\frac{1}{\frac{1}{4}}$ miles deep.
17. (a) T is the exterior of the circle in the $x z$-plane with its center at $(0,0)$ and with radius 2 .
(b) M is a circie in the $x y-p l a n e$ with its center at $(2,-4)$ and with radius 7 .
(c) N is the interior of a circie in the yz-plane with its center at $(0,0)$ and with its radius equal to 3 .
(d) R is the intersection of a sphere with its center at $(0,0,0)$ and with its radius equal to 5 and a plane parallel to the $x y$-plane and intersecting the z-axis at $(0,0,3)$. This

* is the circle $\bar{R}=\left((x, y, z): x^{2}+y^{2}=16\right.$, $z \equiv 3)$ which has its center at $(0,0,3)$, has a radius equal to 4 and lies in the plane. $\{(x, y, z): z=3\}$.
(e) Two points, $(1,0,0)$ and $(-1,0,0)$.
(f) The intersection is the empty set since D and F are two concentric spheres with radic 4 and $2 \sqrt{2}$ respectively.
(g) The intersection is $\left((x, y, z): x^{2}+y^{2} \equiv 9\right.$, $|z|=4\}$. U is a cylinder with its axis the z-axis and with its cross section a circle with center in the z-axis and radius 3 . U inter= sects T in two circles, one in the plane parallel to the $x y$-plane and 4 units above $1 t$, the other paraliel to the $x y$-plane and 4 units below it.

$$
3: 3
$$

18. $(A P)^{2}=1(8+1)=9$, by Theorem 12-15. f. $A P=P X=X Y=3$, so $Q X=2$ and $X Z=6$. $3 \cdot A X=2 \cdot 6$, by Theorem 12-16. $A X=4$.
19. The angle measures can be. Getermined as shown. .Hence, $\triangle P A R$ and $\triangle Q C R$. arè equilateral triangles and PRQB is a parallelogram.
$P C=P R+R C=A R+R Q$.
But. $A R=A P$ and $R Q \cong P B$. Hence, $P C=A P+P B$.
20. Applying Theorem 12-15, we have $(A M)^{2}=M R \cdot M S$ and $(M B)^{2}=M R$. MS . Hence, $(A M)^{2}=(M B)^{2}$ and $A M=M B \quad$ Similarly $C N=N D$.
a

Chapter 12
Review Problems

1. 2π
2. (a) The areatof a cirole is the init of the aread of the inscribed (or circumsoribed) regular polygons as the number of sides of the polygons increases indefinitely, [The exact wording of

- (b) the text may be used.]
-
* (b) The length of an arc $\widehat{A B}$ of a olrcie is the limit ff $A P_{1}+P_{1} P_{2}+\ldots+P_{n-1} B$ as the number of shords increases indefinitely. [The exact wording of the text may be used.]

3. Between 1 and 2
4. 5
5. 2
6. (a) 10 to 1 ; (b) 10 to 1 ; (c) 100 to 1

- .

7. $5 ; \frac{10 \pi}{6}$ or $\frac{5 \pi}{3}$
8. $A \equiv \pi r^{2}=\pi\left(\frac{d}{2}\right)^{2}=\frac{\pi d^{2}}{4}$.
9. The inscribed octagon has the greater apothem and the greater perimeter. The circumsoribed square has the greater perimeter; the apothems are equal.
10. $A=\frac{1}{2} a p$
11. $\frac{60}{\pi}$
12. Area $=4 \pi$ sq. 1n.; are length $\equiv \frac{2 \bar{\pi}}{3}$ inches
13. There are many aceptable proofs. One is to consider the situation wherein the vertices of the inscribed triangle are the midpoints of the ciroumscribed triangle, and prove the four smalier trianglés congruent.
14. $\mathrm{m} \overparen{D A}=88$ and $\mathrm{m} \widehat{\mathrm{BC}}=122$
$m \angle E D C=m \angle D B C=31$
$m \angle C M D=m \angle A M B=m \angle A B C=75$
$\mathrm{m} \angle \mathrm{DMA}=\mathrm{m} \angle \mathrm{CMB}=105$
$\mathrm{m} \angle \mathrm{FDB}=\mathrm{m} \angle \mathrm{DCB}=88$
$m \angle A C B=m \angle A C B=m \angle D B A=44$
$m \angle C A B \equiv m \angle C D B=61$
$\because \quad \mathrm{m} \angle \mathrm{DCE}=\mathrm{m} \angle \mathrm{BDE}=92^{\circ}$
$m \angle D E C=57$
$\mathrm{m} \angle \mathrm{DFA}=48$
$m \angle C A F=119$
$m \angle C D F=149$
$m \angle A C E=136$
15. Draw $\overline{\mathrm{ZE}} \underline{1}^{\boldsymbol{P} P A}$. Since $P Q=20$ and $P E=7+9=16$, then $\mathrm{QE}=12=\mathrm{AB}$.
16. (a) By Corollary 12-7-2,
$\therefore m \angle A D P=m \angle B C P$ and
$m \angle D A P=m \angle C B P$. Hence
$\triangle A P D \sim \triangle B P C$ by A.A.
(b) Since similar triangles' have corresponding sides proportional, $A P \cdot P C=P D \cdot P B$.
17. (a) Yes. The slope of $\overline{\mathrm{AB}}$ is -1 .
(b) The midpoint is $(2,2)$.
(c) $y=x$
(d) The origin is contained in $y=x$. This 111ustrates Corollary 12-4-3: In the plane of a circle, the perpendicular bisector of a chord contains the center of the circle.
(e) The points with coordinates $(2 \sqrt{2}, 2 \sqrt{2})$, and $(-2 \sqrt{2},-2 \sqrt{2})$; midpoint.

$$
31 i
$$

18. By hypothesis, P in the figure
is the center of the circle, and $\mathrm{m} \angle A E P^{\circ}=\mathrm{m} \angle D E P$. Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$. Consider $\overline{\overline{P G}} \perp \overline{A B}$ and $\overline{\mathrm{PH}} \perp \overline{\mathrm{CD}}$. Then $\triangle P G E$ and $\triangle P H E$ are right triangies with $m \angle G E P=m \angle H E P$ and EP $\equiv \mathrm{EP}$. There'fore, $\triangle P G E \cong \triangle P H E$; making $P G=P H$. Therefore, $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$, because in the same circle or congruent circles, chords equidistant from the center are congruent.
?

$$
312
$$

*

752
312

